1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GetElementPtrTypeIterator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 /// Class representing coefficient of floating-point addend. 30 /// This class needs to be highly efficient, which is especially true for 31 /// the constructor. As of I write this comment, the cost of the default 32 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 33 /// perform write-merging). 34 /// 35 class FAddendCoef { 36 public: 37 // The constructor has to initialize a APFloat, which is unnecessary for 38 // most addends which have coefficient either 1 or -1. So, the constructor 39 // is expensive. In order to avoid the cost of the constructor, we should 40 // reuse some instances whenever possible. The pre-created instances 41 // FAddCombine::Add[0-5] embodies this idea. 42 // 43 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} 44 ~FAddendCoef(); 45 46 void set(short C) { 47 assert(!insaneIntVal(C) && "Insane coefficient"); 48 IsFp = false; IntVal = C; 49 } 50 51 void set(const APFloat& C); 52 53 void negate(); 54 55 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 56 Value *getValue(Type *) const; 57 58 // If possible, don't define operator+/operator- etc because these 59 // operators inevitably call FAddendCoef's constructor which is not cheap. 60 void operator=(const FAddendCoef &A); 61 void operator+=(const FAddendCoef &A); 62 void operator*=(const FAddendCoef &S); 63 64 bool isOne() const { return isInt() && IntVal == 1; } 65 bool isTwo() const { return isInt() && IntVal == 2; } 66 bool isMinusOne() const { return isInt() && IntVal == -1; } 67 bool isMinusTwo() const { return isInt() && IntVal == -2; } 68 69 private: 70 bool insaneIntVal(int V) { return V > 4 || V < -4; } 71 APFloat *getFpValPtr() 72 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } 73 const APFloat *getFpValPtr() const 74 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } 75 76 const APFloat &getFpVal() const { 77 assert(IsFp && BufHasFpVal && "Incorret state"); 78 return *getFpValPtr(); 79 } 80 81 APFloat &getFpVal() { 82 assert(IsFp && BufHasFpVal && "Incorret state"); 83 return *getFpValPtr(); 84 } 85 86 bool isInt() const { return !IsFp; } 87 88 // If the coefficient is represented by an integer, promote it to a 89 // floating point. 90 void convertToFpType(const fltSemantics &Sem); 91 92 // Construct an APFloat from a signed integer. 93 // TODO: We should get rid of this function when APFloat can be constructed 94 // from an *SIGNED* integer. 95 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 96 97 private: 98 bool IsFp; 99 100 // True iff FpValBuf contains an instance of APFloat. 101 bool BufHasFpVal; 102 103 // The integer coefficient of an individual addend is either 1 or -1, 104 // and we try to simplify at most 4 addends from neighboring at most 105 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 106 // is overkill of this end. 107 short IntVal; 108 109 AlignedCharArrayUnion<APFloat> FpValBuf; 110 }; 111 112 /// FAddend is used to represent floating-point addend. An addend is 113 /// represented as <C, V>, where the V is a symbolic value, and C is a 114 /// constant coefficient. A constant addend is represented as <C, 0>. 115 /// 116 class FAddend { 117 public: 118 FAddend() : Val(nullptr) {} 119 120 Value *getSymVal() const { return Val; } 121 const FAddendCoef &getCoef() const { return Coeff; } 122 123 bool isConstant() const { return Val == nullptr; } 124 bool isZero() const { return Coeff.isZero(); } 125 126 void set(short Coefficient, Value *V) { 127 Coeff.set(Coefficient); 128 Val = V; 129 } 130 void set(const APFloat &Coefficient, Value *V) { 131 Coeff.set(Coefficient); 132 Val = V; 133 } 134 void set(const ConstantFP *Coefficient, Value *V) { 135 Coeff.set(Coefficient->getValueAPF()); 136 Val = V; 137 } 138 139 void negate() { Coeff.negate(); } 140 141 /// Drill down the U-D chain one step to find the definition of V, and 142 /// try to break the definition into one or two addends. 143 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 144 145 /// Similar to FAddend::drillDownOneStep() except that the value being 146 /// splitted is the addend itself. 147 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 148 149 void operator+=(const FAddend &T) { 150 assert((Val == T.Val) && "Symbolic-values disagree"); 151 Coeff += T.Coeff; 152 } 153 154 private: 155 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 156 157 // This addend has the value of "Coeff * Val". 158 Value *Val; 159 FAddendCoef Coeff; 160 }; 161 162 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 163 /// with its neighboring at most two instructions. 164 /// 165 class FAddCombine { 166 public: 167 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} 168 Value *simplify(Instruction *FAdd); 169 170 private: 171 typedef SmallVector<const FAddend*, 4> AddendVect; 172 173 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 174 175 Value *performFactorization(Instruction *I); 176 177 /// Convert given addend to a Value 178 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 179 180 /// Return the number of instructions needed to emit the N-ary addition. 181 unsigned calcInstrNumber(const AddendVect& Vect); 182 Value *createFSub(Value *Opnd0, Value *Opnd1); 183 Value *createFAdd(Value *Opnd0, Value *Opnd1); 184 Value *createFMul(Value *Opnd0, Value *Opnd1); 185 Value *createFDiv(Value *Opnd0, Value *Opnd1); 186 Value *createFNeg(Value *V); 187 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 188 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 189 190 InstCombiner::BuilderTy *Builder; 191 Instruction *Instr; 192 193 // Debugging stuff are clustered here. 194 #ifndef NDEBUG 195 unsigned CreateInstrNum; 196 void initCreateInstNum() { CreateInstrNum = 0; } 197 void incCreateInstNum() { CreateInstrNum++; } 198 #else 199 void initCreateInstNum() {} 200 void incCreateInstNum() {} 201 #endif 202 }; 203 204 } // anonymous namespace 205 206 //===----------------------------------------------------------------------===// 207 // 208 // Implementation of 209 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 210 // 211 //===----------------------------------------------------------------------===// 212 FAddendCoef::~FAddendCoef() { 213 if (BufHasFpVal) 214 getFpValPtr()->~APFloat(); 215 } 216 217 void FAddendCoef::set(const APFloat& C) { 218 APFloat *P = getFpValPtr(); 219 220 if (isInt()) { 221 // As the buffer is meanless byte stream, we cannot call 222 // APFloat::operator=(). 223 new(P) APFloat(C); 224 } else 225 *P = C; 226 227 IsFp = BufHasFpVal = true; 228 } 229 230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 231 if (!isInt()) 232 return; 233 234 APFloat *P = getFpValPtr(); 235 if (IntVal > 0) 236 new(P) APFloat(Sem, IntVal); 237 else { 238 new(P) APFloat(Sem, 0 - IntVal); 239 P->changeSign(); 240 } 241 IsFp = BufHasFpVal = true; 242 } 243 244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 245 if (Val >= 0) 246 return APFloat(Sem, Val); 247 248 APFloat T(Sem, 0 - Val); 249 T.changeSign(); 250 251 return T; 252 } 253 254 void FAddendCoef::operator=(const FAddendCoef &That) { 255 if (That.isInt()) 256 set(That.IntVal); 257 else 258 set(That.getFpVal()); 259 } 260 261 void FAddendCoef::operator+=(const FAddendCoef &That) { 262 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 263 if (isInt() == That.isInt()) { 264 if (isInt()) 265 IntVal += That.IntVal; 266 else 267 getFpVal().add(That.getFpVal(), RndMode); 268 return; 269 } 270 271 if (isInt()) { 272 const APFloat &T = That.getFpVal(); 273 convertToFpType(T.getSemantics()); 274 getFpVal().add(T, RndMode); 275 return; 276 } 277 278 APFloat &T = getFpVal(); 279 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 280 } 281 282 void FAddendCoef::operator*=(const FAddendCoef &That) { 283 if (That.isOne()) 284 return; 285 286 if (That.isMinusOne()) { 287 negate(); 288 return; 289 } 290 291 if (isInt() && That.isInt()) { 292 int Res = IntVal * (int)That.IntVal; 293 assert(!insaneIntVal(Res) && "Insane int value"); 294 IntVal = Res; 295 return; 296 } 297 298 const fltSemantics &Semantic = 299 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 300 301 if (isInt()) 302 convertToFpType(Semantic); 303 APFloat &F0 = getFpVal(); 304 305 if (That.isInt()) 306 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 307 APFloat::rmNearestTiesToEven); 308 else 309 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 310 } 311 312 void FAddendCoef::negate() { 313 if (isInt()) 314 IntVal = 0 - IntVal; 315 else 316 getFpVal().changeSign(); 317 } 318 319 Value *FAddendCoef::getValue(Type *Ty) const { 320 return isInt() ? 321 ConstantFP::get(Ty, float(IntVal)) : 322 ConstantFP::get(Ty->getContext(), getFpVal()); 323 } 324 325 // The definition of <Val> Addends 326 // ========================================= 327 // A + B <1, A>, <1,B> 328 // A - B <1, A>, <1,B> 329 // 0 - B <-1, B> 330 // C * A, <C, A> 331 // A + C <1, A> <C, NULL> 332 // 0 +/- 0 <0, NULL> (corner case) 333 // 334 // Legend: A and B are not constant, C is constant 335 // 336 unsigned FAddend::drillValueDownOneStep 337 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 338 Instruction *I = nullptr; 339 if (!Val || !(I = dyn_cast<Instruction>(Val))) 340 return 0; 341 342 unsigned Opcode = I->getOpcode(); 343 344 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 345 ConstantFP *C0, *C1; 346 Value *Opnd0 = I->getOperand(0); 347 Value *Opnd1 = I->getOperand(1); 348 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 349 Opnd0 = nullptr; 350 351 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 352 Opnd1 = nullptr; 353 354 if (Opnd0) { 355 if (!C0) 356 Addend0.set(1, Opnd0); 357 else 358 Addend0.set(C0, nullptr); 359 } 360 361 if (Opnd1) { 362 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 363 if (!C1) 364 Addend.set(1, Opnd1); 365 else 366 Addend.set(C1, nullptr); 367 if (Opcode == Instruction::FSub) 368 Addend.negate(); 369 } 370 371 if (Opnd0 || Opnd1) 372 return Opnd0 && Opnd1 ? 2 : 1; 373 374 // Both operands are zero. Weird! 375 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 376 return 1; 377 } 378 379 if (I->getOpcode() == Instruction::FMul) { 380 Value *V0 = I->getOperand(0); 381 Value *V1 = I->getOperand(1); 382 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 383 Addend0.set(C, V1); 384 return 1; 385 } 386 387 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 388 Addend0.set(C, V0); 389 return 1; 390 } 391 } 392 393 return 0; 394 } 395 396 // Try to break *this* addend into two addends. e.g. Suppose this addend is 397 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 398 // i.e. <2.3, X> and <2.3, Y>. 399 // 400 unsigned FAddend::drillAddendDownOneStep 401 (FAddend &Addend0, FAddend &Addend1) const { 402 if (isConstant()) 403 return 0; 404 405 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 406 if (!BreakNum || Coeff.isOne()) 407 return BreakNum; 408 409 Addend0.Scale(Coeff); 410 411 if (BreakNum == 2) 412 Addend1.Scale(Coeff); 413 414 return BreakNum; 415 } 416 417 // Try to perform following optimization on the input instruction I. Return the 418 // simplified expression if was successful; otherwise, return 0. 419 // 420 // Instruction "I" is Simplified into 421 // ------------------------------------------------------- 422 // (x * y) +/- (x * z) x * (y +/- z) 423 // (y / x) +/- (z / x) (y +/- z) / x 424 // 425 Value *FAddCombine::performFactorization(Instruction *I) { 426 assert((I->getOpcode() == Instruction::FAdd || 427 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 428 429 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 430 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 431 432 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 433 return nullptr; 434 435 bool isMpy = false; 436 if (I0->getOpcode() == Instruction::FMul) 437 isMpy = true; 438 else if (I0->getOpcode() != Instruction::FDiv) 439 return nullptr; 440 441 Value *Opnd0_0 = I0->getOperand(0); 442 Value *Opnd0_1 = I0->getOperand(1); 443 Value *Opnd1_0 = I1->getOperand(0); 444 Value *Opnd1_1 = I1->getOperand(1); 445 446 // Input Instr I Factor AddSub0 AddSub1 447 // ---------------------------------------------- 448 // (x*y) +/- (x*z) x y z 449 // (y/x) +/- (z/x) x y z 450 // 451 Value *Factor = nullptr; 452 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 453 454 if (isMpy) { 455 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 456 Factor = Opnd0_0; 457 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 458 Factor = Opnd0_1; 459 460 if (Factor) { 461 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 462 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 463 } 464 } else if (Opnd0_1 == Opnd1_1) { 465 Factor = Opnd0_1; 466 AddSub0 = Opnd0_0; 467 AddSub1 = Opnd1_0; 468 } 469 470 if (!Factor) 471 return nullptr; 472 473 FastMathFlags Flags; 474 Flags.setUnsafeAlgebra(); 475 if (I0) Flags &= I->getFastMathFlags(); 476 if (I1) Flags &= I->getFastMathFlags(); 477 478 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 479 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 480 createFAdd(AddSub0, AddSub1) : 481 createFSub(AddSub0, AddSub1); 482 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 483 const APFloat &F = CFP->getValueAPF(); 484 if (!F.isNormal()) 485 return nullptr; 486 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 487 II->setFastMathFlags(Flags); 488 489 if (isMpy) { 490 Value *RI = createFMul(Factor, NewAddSub); 491 if (Instruction *II = dyn_cast<Instruction>(RI)) 492 II->setFastMathFlags(Flags); 493 return RI; 494 } 495 496 Value *RI = createFDiv(NewAddSub, Factor); 497 if (Instruction *II = dyn_cast<Instruction>(RI)) 498 II->setFastMathFlags(Flags); 499 return RI; 500 } 501 502 Value *FAddCombine::simplify(Instruction *I) { 503 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); 504 505 // Currently we are not able to handle vector type. 506 if (I->getType()->isVectorTy()) 507 return nullptr; 508 509 assert((I->getOpcode() == Instruction::FAdd || 510 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 511 512 // Save the instruction before calling other member-functions. 513 Instr = I; 514 515 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 516 517 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 518 519 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 520 unsigned Opnd0_ExpNum = 0; 521 unsigned Opnd1_ExpNum = 0; 522 523 if (!Opnd0.isConstant()) 524 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 525 526 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 527 if (OpndNum == 2 && !Opnd1.isConstant()) 528 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 529 530 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 531 if (Opnd0_ExpNum && Opnd1_ExpNum) { 532 AddendVect AllOpnds; 533 AllOpnds.push_back(&Opnd0_0); 534 AllOpnds.push_back(&Opnd1_0); 535 if (Opnd0_ExpNum == 2) 536 AllOpnds.push_back(&Opnd0_1); 537 if (Opnd1_ExpNum == 2) 538 AllOpnds.push_back(&Opnd1_1); 539 540 // Compute instruction quota. We should save at least one instruction. 541 unsigned InstQuota = 0; 542 543 Value *V0 = I->getOperand(0); 544 Value *V1 = I->getOperand(1); 545 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 546 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 547 548 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 549 return R; 550 } 551 552 if (OpndNum != 2) { 553 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 554 // splitted into two addends, say "V = X - Y", the instruction would have 555 // been optimized into "I = Y - X" in the previous steps. 556 // 557 const FAddendCoef &CE = Opnd0.getCoef(); 558 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 559 } 560 561 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 562 if (Opnd1_ExpNum) { 563 AddendVect AllOpnds; 564 AllOpnds.push_back(&Opnd0); 565 AllOpnds.push_back(&Opnd1_0); 566 if (Opnd1_ExpNum == 2) 567 AllOpnds.push_back(&Opnd1_1); 568 569 if (Value *R = simplifyFAdd(AllOpnds, 1)) 570 return R; 571 } 572 573 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 574 if (Opnd0_ExpNum) { 575 AddendVect AllOpnds; 576 AllOpnds.push_back(&Opnd1); 577 AllOpnds.push_back(&Opnd0_0); 578 if (Opnd0_ExpNum == 2) 579 AllOpnds.push_back(&Opnd0_1); 580 581 if (Value *R = simplifyFAdd(AllOpnds, 1)) 582 return R; 583 } 584 585 // step 6: Try factorization as the last resort, 586 return performFactorization(I); 587 } 588 589 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 590 unsigned AddendNum = Addends.size(); 591 assert(AddendNum <= 4 && "Too many addends"); 592 593 // For saving intermediate results; 594 unsigned NextTmpIdx = 0; 595 FAddend TmpResult[3]; 596 597 // Points to the constant addend of the resulting simplified expression. 598 // If the resulting expr has constant-addend, this constant-addend is 599 // desirable to reside at the top of the resulting expression tree. Placing 600 // constant close to supper-expr(s) will potentially reveal some optimization 601 // opportunities in super-expr(s). 602 // 603 const FAddend *ConstAdd = nullptr; 604 605 // Simplified addends are placed <SimpVect>. 606 AddendVect SimpVect; 607 608 // The outer loop works on one symbolic-value at a time. Suppose the input 609 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 610 // The symbolic-values will be processed in this order: x, y, z. 611 // 612 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 613 614 const FAddend *ThisAddend = Addends[SymIdx]; 615 if (!ThisAddend) { 616 // This addend was processed before. 617 continue; 618 } 619 620 Value *Val = ThisAddend->getSymVal(); 621 unsigned StartIdx = SimpVect.size(); 622 SimpVect.push_back(ThisAddend); 623 624 // The inner loop collects addends sharing same symbolic-value, and these 625 // addends will be later on folded into a single addend. Following above 626 // example, if the symbolic value "y" is being processed, the inner loop 627 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 628 // be later on folded into "<b1+b2, y>". 629 // 630 for (unsigned SameSymIdx = SymIdx + 1; 631 SameSymIdx < AddendNum; SameSymIdx++) { 632 const FAddend *T = Addends[SameSymIdx]; 633 if (T && T->getSymVal() == Val) { 634 // Set null such that next iteration of the outer loop will not process 635 // this addend again. 636 Addends[SameSymIdx] = nullptr; 637 SimpVect.push_back(T); 638 } 639 } 640 641 // If multiple addends share same symbolic value, fold them together. 642 if (StartIdx + 1 != SimpVect.size()) { 643 FAddend &R = TmpResult[NextTmpIdx ++]; 644 R = *SimpVect[StartIdx]; 645 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 646 R += *SimpVect[Idx]; 647 648 // Pop all addends being folded and push the resulting folded addend. 649 SimpVect.resize(StartIdx); 650 if (Val) { 651 if (!R.isZero()) { 652 SimpVect.push_back(&R); 653 } 654 } else { 655 // Don't push constant addend at this time. It will be the last element 656 // of <SimpVect>. 657 ConstAdd = &R; 658 } 659 } 660 } 661 662 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 663 "out-of-bound access"); 664 665 if (ConstAdd) 666 SimpVect.push_back(ConstAdd); 667 668 Value *Result; 669 if (!SimpVect.empty()) 670 Result = createNaryFAdd(SimpVect, InstrQuota); 671 else { 672 // The addition is folded to 0.0. 673 Result = ConstantFP::get(Instr->getType(), 0.0); 674 } 675 676 return Result; 677 } 678 679 Value *FAddCombine::createNaryFAdd 680 (const AddendVect &Opnds, unsigned InstrQuota) { 681 assert(!Opnds.empty() && "Expect at least one addend"); 682 683 // Step 1: Check if the # of instructions needed exceeds the quota. 684 // 685 unsigned InstrNeeded = calcInstrNumber(Opnds); 686 if (InstrNeeded > InstrQuota) 687 return nullptr; 688 689 initCreateInstNum(); 690 691 // step 2: Emit the N-ary addition. 692 // Note that at most three instructions are involved in Fadd-InstCombine: the 693 // addition in question, and at most two neighboring instructions. 694 // The resulting optimized addition should have at least one less instruction 695 // than the original addition expression tree. This implies that the resulting 696 // N-ary addition has at most two instructions, and we don't need to worry 697 // about tree-height when constructing the N-ary addition. 698 699 Value *LastVal = nullptr; 700 bool LastValNeedNeg = false; 701 702 // Iterate the addends, creating fadd/fsub using adjacent two addends. 703 for (const FAddend *Opnd : Opnds) { 704 bool NeedNeg; 705 Value *V = createAddendVal(*Opnd, NeedNeg); 706 if (!LastVal) { 707 LastVal = V; 708 LastValNeedNeg = NeedNeg; 709 continue; 710 } 711 712 if (LastValNeedNeg == NeedNeg) { 713 LastVal = createFAdd(LastVal, V); 714 continue; 715 } 716 717 if (LastValNeedNeg) 718 LastVal = createFSub(V, LastVal); 719 else 720 LastVal = createFSub(LastVal, V); 721 722 LastValNeedNeg = false; 723 } 724 725 if (LastValNeedNeg) { 726 LastVal = createFNeg(LastVal); 727 } 728 729 #ifndef NDEBUG 730 assert(CreateInstrNum == InstrNeeded && 731 "Inconsistent in instruction numbers"); 732 #endif 733 734 return LastVal; 735 } 736 737 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 738 Value *V = Builder->CreateFSub(Opnd0, Opnd1); 739 if (Instruction *I = dyn_cast<Instruction>(V)) 740 createInstPostProc(I); 741 return V; 742 } 743 744 Value *FAddCombine::createFNeg(Value *V) { 745 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 746 Value *NewV = createFSub(Zero, V); 747 if (Instruction *I = dyn_cast<Instruction>(NewV)) 748 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 749 return NewV; 750 } 751 752 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 753 Value *V = Builder->CreateFAdd(Opnd0, Opnd1); 754 if (Instruction *I = dyn_cast<Instruction>(V)) 755 createInstPostProc(I); 756 return V; 757 } 758 759 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 760 Value *V = Builder->CreateFMul(Opnd0, Opnd1); 761 if (Instruction *I = dyn_cast<Instruction>(V)) 762 createInstPostProc(I); 763 return V; 764 } 765 766 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 767 Value *V = Builder->CreateFDiv(Opnd0, Opnd1); 768 if (Instruction *I = dyn_cast<Instruction>(V)) 769 createInstPostProc(I); 770 return V; 771 } 772 773 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 774 NewInstr->setDebugLoc(Instr->getDebugLoc()); 775 776 // Keep track of the number of instruction created. 777 if (!NoNumber) 778 incCreateInstNum(); 779 780 // Propagate fast-math flags 781 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 782 } 783 784 // Return the number of instruction needed to emit the N-ary addition. 785 // NOTE: Keep this function in sync with createAddendVal(). 786 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 787 unsigned OpndNum = Opnds.size(); 788 unsigned InstrNeeded = OpndNum - 1; 789 790 // The number of addends in the form of "(-1)*x". 791 unsigned NegOpndNum = 0; 792 793 // Adjust the number of instructions needed to emit the N-ary add. 794 for (const FAddend *Opnd : Opnds) { 795 if (Opnd->isConstant()) 796 continue; 797 798 // The constant check above is really for a few special constant 799 // coefficients. 800 if (isa<UndefValue>(Opnd->getSymVal())) 801 continue; 802 803 const FAddendCoef &CE = Opnd->getCoef(); 804 if (CE.isMinusOne() || CE.isMinusTwo()) 805 NegOpndNum++; 806 807 // Let the addend be "c * x". If "c == +/-1", the value of the addend 808 // is immediately available; otherwise, it needs exactly one instruction 809 // to evaluate the value. 810 if (!CE.isMinusOne() && !CE.isOne()) 811 InstrNeeded++; 812 } 813 if (NegOpndNum == OpndNum) 814 InstrNeeded++; 815 return InstrNeeded; 816 } 817 818 // Input Addend Value NeedNeg(output) 819 // ================================================================ 820 // Constant C C false 821 // <+/-1, V> V coefficient is -1 822 // <2/-2, V> "fadd V, V" coefficient is -2 823 // <C, V> "fmul V, C" false 824 // 825 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 826 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 827 const FAddendCoef &Coeff = Opnd.getCoef(); 828 829 if (Opnd.isConstant()) { 830 NeedNeg = false; 831 return Coeff.getValue(Instr->getType()); 832 } 833 834 Value *OpndVal = Opnd.getSymVal(); 835 836 if (Coeff.isMinusOne() || Coeff.isOne()) { 837 NeedNeg = Coeff.isMinusOne(); 838 return OpndVal; 839 } 840 841 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 842 NeedNeg = Coeff.isMinusTwo(); 843 return createFAdd(OpndVal, OpndVal); 844 } 845 846 NeedNeg = false; 847 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 848 } 849 850 /// \brief Return true if we can prove that adding the two values of the 851 /// knownbits will not overflow. 852 /// Otherwise return false. 853 static bool checkRippleForAdd(const KnownBits &LHSKnown, 854 const KnownBits &RHSKnown) { 855 // Addition of two 2's complement numbers having opposite signs will never 856 // overflow. 857 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 858 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 859 return true; 860 861 // If either of the values is known to be non-negative, adding them can only 862 // overflow if the second is also non-negative, so we can assume that. 863 // Two non-negative numbers will only overflow if there is a carry to the 864 // sign bit, so we can check if even when the values are as big as possible 865 // there is no overflow to the sign bit. 866 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 867 APInt MaxLHS = ~LHSKnown.Zero; 868 MaxLHS.clearSignBit(); 869 APInt MaxRHS = ~RHSKnown.Zero; 870 MaxRHS.clearSignBit(); 871 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 872 return Result.isSignBitClear(); 873 } 874 875 // If either of the values is known to be negative, adding them can only 876 // overflow if the second is also negative, so we can assume that. 877 // Two negative number will only overflow if there is no carry to the sign 878 // bit, so we can check if even when the values are as small as possible 879 // there is overflow to the sign bit. 880 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 881 APInt MinLHS = LHSKnown.One; 882 MinLHS.clearSignBit(); 883 APInt MinRHS = RHSKnown.One; 884 MinRHS.clearSignBit(); 885 APInt Result = std::move(MinLHS) + std::move(MinRHS); 886 return Result.isSignBitSet(); 887 } 888 889 // If we reached here it means that we know nothing about the sign bits. 890 // In this case we can't know if there will be an overflow, since by 891 // changing the sign bits any two values can be made to overflow. 892 return false; 893 } 894 895 /// Return true if we can prove that: 896 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 897 /// This basically requires proving that the add in the original type would not 898 /// overflow to change the sign bit or have a carry out. 899 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, 900 Instruction &CxtI) { 901 // There are different heuristics we can use for this. Here are some simple 902 // ones. 903 904 // If LHS and RHS each have at least two sign bits, the addition will look 905 // like 906 // 907 // XX..... + 908 // YY..... 909 // 910 // If the carry into the most significant position is 0, X and Y can't both 911 // be 1 and therefore the carry out of the addition is also 0. 912 // 913 // If the carry into the most significant position is 1, X and Y can't both 914 // be 0 and therefore the carry out of the addition is also 1. 915 // 916 // Since the carry into the most significant position is always equal to 917 // the carry out of the addition, there is no signed overflow. 918 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 919 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 920 return true; 921 922 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 923 KnownBits LHSKnown(BitWidth); 924 computeKnownBits(LHS, LHSKnown, 0, &CxtI); 925 926 KnownBits RHSKnown(BitWidth); 927 computeKnownBits(RHS, RHSKnown, 0, &CxtI); 928 929 // Check if carry bit of addition will not cause overflow. 930 if (checkRippleForAdd(LHSKnown, RHSKnown)) 931 return true; 932 933 return false; 934 } 935 936 /// \brief Return true if we can prove that: 937 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 938 /// This basically requires proving that the add in the original type would not 939 /// overflow to change the sign bit or have a carry out. 940 /// TODO: Handle this for Vectors. 941 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, 942 Instruction &CxtI) { 943 // If LHS and RHS each have at least two sign bits, the subtraction 944 // cannot overflow. 945 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 946 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 947 return true; 948 949 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 950 KnownBits LHSKnown(BitWidth); 951 computeKnownBits(LHS, LHSKnown, 0, &CxtI); 952 953 KnownBits RHSKnown(BitWidth); 954 computeKnownBits(RHS, RHSKnown, 0, &CxtI); 955 956 // Subtraction of two 2's complement numbers having identical signs will 957 // never overflow. 958 if ((LHSKnown.One[BitWidth - 1] && RHSKnown.One[BitWidth - 1]) || 959 (LHSKnown.Zero[BitWidth - 1] && RHSKnown.Zero[BitWidth - 1])) 960 return true; 961 962 // TODO: implement logic similar to checkRippleForAdd 963 return false; 964 } 965 966 /// \brief Return true if we can prove that: 967 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 968 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, 969 Instruction &CxtI) { 970 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 971 bool LHSKnownNonNegative, LHSKnownNegative; 972 bool RHSKnownNonNegative, RHSKnownNegative; 973 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, 974 &CxtI); 975 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, 976 &CxtI); 977 if (LHSKnownNegative && RHSKnownNonNegative) 978 return true; 979 980 return false; 981 } 982 983 // Checks if any operand is negative and we can convert add to sub. 984 // This function checks for following negative patterns 985 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 986 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 987 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 988 static Value *checkForNegativeOperand(BinaryOperator &I, 989 InstCombiner::BuilderTy *Builder) { 990 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 991 992 // This function creates 2 instructions to replace ADD, we need at least one 993 // of LHS or RHS to have one use to ensure benefit in transform. 994 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 995 return nullptr; 996 997 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 998 const APInt *C1 = nullptr, *C2 = nullptr; 999 1000 // if ONE is on other side, swap 1001 if (match(RHS, m_Add(m_Value(X), m_One()))) 1002 std::swap(LHS, RHS); 1003 1004 if (match(LHS, m_Add(m_Value(X), m_One()))) { 1005 // if XOR on other side, swap 1006 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1007 std::swap(X, RHS); 1008 1009 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 1010 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 1011 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 1012 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 1013 Value *NewAnd = Builder->CreateAnd(Z, *C1); 1014 return Builder->CreateSub(RHS, NewAnd, "sub"); 1015 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 1016 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 1017 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 1018 Value *NewOr = Builder->CreateOr(Z, ~(*C1)); 1019 return Builder->CreateSub(RHS, NewOr, "sub"); 1020 } 1021 } 1022 } 1023 1024 // Restore LHS and RHS 1025 LHS = I.getOperand(0); 1026 RHS = I.getOperand(1); 1027 1028 // if XOR is on other side, swap 1029 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1030 std::swap(LHS, RHS); 1031 1032 // C2 is ODD 1033 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 1034 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 1035 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1036 if (C1->countTrailingZeros() == 0) 1037 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 1038 Value *NewOr = Builder->CreateOr(Z, ~(*C2)); 1039 return Builder->CreateSub(RHS, NewOr, "sub"); 1040 } 1041 return nullptr; 1042 } 1043 1044 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1045 bool Changed = SimplifyAssociativeOrCommutative(I); 1046 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1047 1048 if (Value *V = SimplifyVectorOp(I)) 1049 return replaceInstUsesWith(I, V); 1050 1051 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 1052 I.hasNoUnsignedWrap(), SQ)) 1053 return replaceInstUsesWith(I, V); 1054 1055 // (A*B)+(A*C) -> A*(B+C) etc 1056 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1057 return replaceInstUsesWith(I, V); 1058 1059 const APInt *RHSC; 1060 if (match(RHS, m_APInt(RHSC))) { 1061 if (RHSC->isSignMask()) { 1062 // If wrapping is not allowed, then the addition must set the sign bit: 1063 // X + (signmask) --> X | signmask 1064 if (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) 1065 return BinaryOperator::CreateOr(LHS, RHS); 1066 1067 // If wrapping is allowed, then the addition flips the sign bit of LHS: 1068 // X + (signmask) --> X ^ signmask 1069 return BinaryOperator::CreateXor(LHS, RHS); 1070 } 1071 1072 // Is this add the last step in a convoluted sext? 1073 Value *X; 1074 const APInt *C; 1075 if (match(LHS, m_ZExt(m_Xor(m_Value(X), m_APInt(C)))) && 1076 C->isMinSignedValue() && 1077 C->sext(LHS->getType()->getScalarSizeInBits()) == *RHSC) { 1078 // add(zext(xor i16 X, -32768), -32768) --> sext X 1079 return CastInst::Create(Instruction::SExt, X, LHS->getType()); 1080 } 1081 1082 if (RHSC->isNegative() && 1083 match(LHS, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C)))) && 1084 RHSC->sge(-C->sext(RHSC->getBitWidth()))) { 1085 // (add (zext (add nuw X, C)), Val) -> (zext (add nuw X, C+Val)) 1086 Constant *NewC = 1087 ConstantInt::get(X->getType(), *C + RHSC->trunc(C->getBitWidth())); 1088 return new ZExtInst(Builder->CreateNUWAdd(X, NewC), I.getType()); 1089 } 1090 } 1091 1092 // FIXME: Use the match above instead of dyn_cast to allow these transforms 1093 // for splat vectors. 1094 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1095 // zext(bool) + C -> bool ? C + 1 : C 1096 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 1097 if (ZI->getSrcTy()->isIntegerTy(1)) 1098 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 1099 1100 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1101 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1102 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 1103 const APInt &RHSVal = CI->getValue(); 1104 unsigned ExtendAmt = 0; 1105 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1106 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1107 if (XorRHS->getValue() == -RHSVal) { 1108 if (RHSVal.isPowerOf2()) 1109 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1110 else if (XorRHS->getValue().isPowerOf2()) 1111 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1112 } 1113 1114 if (ExtendAmt) { 1115 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1116 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1117 ExtendAmt = 0; 1118 } 1119 1120 if (ExtendAmt) { 1121 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 1122 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 1123 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1124 } 1125 1126 // If this is a xor that was canonicalized from a sub, turn it back into 1127 // a sub and fuse this add with it. 1128 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1129 IntegerType *IT = cast<IntegerType>(I.getType()); 1130 KnownBits LHSKnown(IT->getBitWidth()); 1131 computeKnownBits(XorLHS, LHSKnown, 0, &I); 1132 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1133 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1134 XorLHS); 1135 } 1136 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1137 // transform them into (X + (signmask ^ C)) 1138 if (XorRHS->getValue().isSignMask()) 1139 return BinaryOperator::CreateAdd(XorLHS, 1140 ConstantExpr::getXor(XorRHS, CI)); 1141 } 1142 } 1143 1144 if (isa<Constant>(RHS)) 1145 if (Instruction *NV = foldOpWithConstantIntoOperand(I)) 1146 return NV; 1147 1148 if (I.getType()->getScalarType()->isIntegerTy(1)) 1149 return BinaryOperator::CreateXor(LHS, RHS); 1150 1151 // X + X --> X << 1 1152 if (LHS == RHS) { 1153 BinaryOperator *New = 1154 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 1155 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1156 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1157 return New; 1158 } 1159 1160 // -A + B --> B - A 1161 // -A + -B --> -(A + B) 1162 if (Value *LHSV = dyn_castNegVal(LHS)) { 1163 if (!isa<Constant>(RHS)) 1164 if (Value *RHSV = dyn_castNegVal(RHS)) { 1165 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 1166 return BinaryOperator::CreateNeg(NewAdd); 1167 } 1168 1169 return BinaryOperator::CreateSub(RHS, LHSV); 1170 } 1171 1172 // A + -B --> A - B 1173 if (!isa<Constant>(RHS)) 1174 if (Value *V = dyn_castNegVal(RHS)) 1175 return BinaryOperator::CreateSub(LHS, V); 1176 1177 if (Value *V = checkForNegativeOperand(I, Builder)) 1178 return replaceInstUsesWith(I, V); 1179 1180 // A+B --> A|B iff A and B have no bits set in common. 1181 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1182 return BinaryOperator::CreateOr(LHS, RHS); 1183 1184 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 1185 Value *X; 1186 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 1187 return BinaryOperator::CreateSub(SubOne(CRHS), X); 1188 } 1189 1190 // FIXME: We already did a check for ConstantInt RHS above this. 1191 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1192 // removal. 1193 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1194 // (X & FF00) + xx00 -> (X+xx00) & FF00 1195 Value *X; 1196 ConstantInt *C2; 1197 if (LHS->hasOneUse() && 1198 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1199 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1200 // See if all bits from the first bit set in the Add RHS up are included 1201 // in the mask. First, get the rightmost bit. 1202 const APInt &AddRHSV = CRHS->getValue(); 1203 1204 // Form a mask of all bits from the lowest bit added through the top. 1205 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1206 1207 // See if the and mask includes all of these bits. 1208 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1209 1210 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1211 // Okay, the xform is safe. Insert the new add pronto. 1212 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 1213 return BinaryOperator::CreateAnd(NewAdd, C2); 1214 } 1215 } 1216 } 1217 1218 // add (select X 0 (sub n A)) A --> select X A n 1219 { 1220 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1221 Value *A = RHS; 1222 if (!SI) { 1223 SI = dyn_cast<SelectInst>(RHS); 1224 A = LHS; 1225 } 1226 if (SI && SI->hasOneUse()) { 1227 Value *TV = SI->getTrueValue(); 1228 Value *FV = SI->getFalseValue(); 1229 Value *N; 1230 1231 // Can we fold the add into the argument of the select? 1232 // We check both true and false select arguments for a matching subtract. 1233 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1234 // Fold the add into the true select value. 1235 return SelectInst::Create(SI->getCondition(), N, A); 1236 1237 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1238 // Fold the add into the false select value. 1239 return SelectInst::Create(SI->getCondition(), A, N); 1240 } 1241 } 1242 1243 // Check for (add (sext x), y), see if we can merge this into an 1244 // integer add followed by a sext. 1245 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1246 // (add (sext x), cst) --> (sext (add x, cst')) 1247 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1248 if (LHSConv->hasOneUse()) { 1249 Constant *CI = 1250 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1251 if (ConstantExpr::getSExt(CI, I.getType()) == RHSC && 1252 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1253 // Insert the new, smaller add. 1254 Value *NewAdd = 1255 Builder->CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv"); 1256 return new SExtInst(NewAdd, I.getType()); 1257 } 1258 } 1259 } 1260 1261 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1262 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1263 // Only do this if x/y have the same type, if at least one of them has a 1264 // single use (so we don't increase the number of sexts), and if the 1265 // integer add will not overflow. 1266 if (LHSConv->getOperand(0)->getType() == 1267 RHSConv->getOperand(0)->getType() && 1268 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1269 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 1270 RHSConv->getOperand(0), I)) { 1271 // Insert the new integer add. 1272 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1273 RHSConv->getOperand(0), "addconv"); 1274 return new SExtInst(NewAdd, I.getType()); 1275 } 1276 } 1277 } 1278 1279 // Check for (add (zext x), y), see if we can merge this into an 1280 // integer add followed by a zext. 1281 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) { 1282 // (add (zext x), cst) --> (zext (add x, cst')) 1283 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1284 if (LHSConv->hasOneUse()) { 1285 Constant *CI = 1286 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1287 if (ConstantExpr::getZExt(CI, I.getType()) == RHSC && 1288 computeOverflowForUnsignedAdd(LHSConv->getOperand(0), CI, &I) == 1289 OverflowResult::NeverOverflows) { 1290 // Insert the new, smaller add. 1291 Value *NewAdd = 1292 Builder->CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv"); 1293 return new ZExtInst(NewAdd, I.getType()); 1294 } 1295 } 1296 } 1297 1298 // (add (zext x), (zext y)) --> (zext (add int x, y)) 1299 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) { 1300 // Only do this if x/y have the same type, if at least one of them has a 1301 // single use (so we don't increase the number of zexts), and if the 1302 // integer add will not overflow. 1303 if (LHSConv->getOperand(0)->getType() == 1304 RHSConv->getOperand(0)->getType() && 1305 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1306 computeOverflowForUnsignedAdd(LHSConv->getOperand(0), 1307 RHSConv->getOperand(0), 1308 &I) == OverflowResult::NeverOverflows) { 1309 // Insert the new integer add. 1310 Value *NewAdd = Builder->CreateNUWAdd( 1311 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); 1312 return new ZExtInst(NewAdd, I.getType()); 1313 } 1314 } 1315 } 1316 1317 // (add (xor A, B) (and A, B)) --> (or A, B) 1318 { 1319 Value *A = nullptr, *B = nullptr; 1320 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 1321 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) 1322 return BinaryOperator::CreateOr(A, B); 1323 1324 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 1325 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) 1326 return BinaryOperator::CreateOr(A, B); 1327 } 1328 1329 // (add (or A, B) (and A, B)) --> (add A, B) 1330 { 1331 Value *A = nullptr, *B = nullptr; 1332 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 1333 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1334 auto *New = BinaryOperator::CreateAdd(A, B); 1335 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1336 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1337 return New; 1338 } 1339 1340 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 1341 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1342 auto *New = BinaryOperator::CreateAdd(A, B); 1343 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1344 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1345 return New; 1346 } 1347 } 1348 1349 // TODO(jingyue): Consider WillNotOverflowSignedAdd and 1350 // WillNotOverflowUnsignedAdd to reduce the number of invocations of 1351 // computeKnownBits. 1352 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) { 1353 Changed = true; 1354 I.setHasNoSignedWrap(true); 1355 } 1356 if (!I.hasNoUnsignedWrap() && 1357 computeOverflowForUnsignedAdd(LHS, RHS, &I) == 1358 OverflowResult::NeverOverflows) { 1359 Changed = true; 1360 I.setHasNoUnsignedWrap(true); 1361 } 1362 1363 return Changed ? &I : nullptr; 1364 } 1365 1366 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1367 bool Changed = SimplifyAssociativeOrCommutative(I); 1368 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1369 1370 if (Value *V = SimplifyVectorOp(I)) 1371 return replaceInstUsesWith(I, V); 1372 1373 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), SQ)) 1374 return replaceInstUsesWith(I, V); 1375 1376 if (isa<Constant>(RHS)) 1377 if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I)) 1378 return FoldedFAdd; 1379 1380 // -A + B --> B - A 1381 // -A + -B --> -(A + B) 1382 if (Value *LHSV = dyn_castFNegVal(LHS)) { 1383 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); 1384 RI->copyFastMathFlags(&I); 1385 return RI; 1386 } 1387 1388 // A + -B --> A - B 1389 if (!isa<Constant>(RHS)) 1390 if (Value *V = dyn_castFNegVal(RHS)) { 1391 Instruction *RI = BinaryOperator::CreateFSub(LHS, V); 1392 RI->copyFastMathFlags(&I); 1393 return RI; 1394 } 1395 1396 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1397 // integer add followed by a promotion. 1398 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1399 Value *LHSIntVal = LHSConv->getOperand(0); 1400 Type *FPType = LHSConv->getType(); 1401 1402 // TODO: This check is overly conservative. In many cases known bits 1403 // analysis can tell us that the result of the addition has less significant 1404 // bits than the integer type can hold. 1405 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1406 Type *FScalarTy = FTy->getScalarType(); 1407 Type *IScalarTy = ITy->getScalarType(); 1408 1409 // Do we have enough bits in the significand to represent the result of 1410 // the integer addition? 1411 unsigned MaxRepresentableBits = 1412 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1413 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1414 }; 1415 1416 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1417 // ... if the constant fits in the integer value. This is useful for things 1418 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1419 // requires a constant pool load, and generally allows the add to be better 1420 // instcombined. 1421 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1422 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1423 Constant *CI = 1424 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1425 if (LHSConv->hasOneUse() && 1426 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1427 WillNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1428 // Insert the new integer add. 1429 Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal, 1430 CI, "addconv"); 1431 return new SIToFPInst(NewAdd, I.getType()); 1432 } 1433 } 1434 1435 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1436 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1437 Value *RHSIntVal = RHSConv->getOperand(0); 1438 // It's enough to check LHS types only because we require int types to 1439 // be the same for this transform. 1440 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1441 // Only do this if x/y have the same type, if at least one of them has a 1442 // single use (so we don't increase the number of int->fp conversions), 1443 // and if the integer add will not overflow. 1444 if (LHSIntVal->getType() == RHSIntVal->getType() && 1445 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1446 WillNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1447 // Insert the new integer add. 1448 Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal, 1449 RHSIntVal, "addconv"); 1450 return new SIToFPInst(NewAdd, I.getType()); 1451 } 1452 } 1453 } 1454 } 1455 1456 // select C, 0, B + select C, A, 0 -> select C, A, B 1457 { 1458 Value *A1, *B1, *C1, *A2, *B2, *C2; 1459 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && 1460 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { 1461 if (C1 == C2) { 1462 Constant *Z1=nullptr, *Z2=nullptr; 1463 Value *A, *B, *C=C1; 1464 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { 1465 Z1 = dyn_cast<Constant>(A1); A = A2; 1466 Z2 = dyn_cast<Constant>(B2); B = B1; 1467 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { 1468 Z1 = dyn_cast<Constant>(B1); B = B2; 1469 Z2 = dyn_cast<Constant>(A2); A = A1; 1470 } 1471 1472 if (Z1 && Z2 && 1473 (I.hasNoSignedZeros() || 1474 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { 1475 return SelectInst::Create(C, A, B); 1476 } 1477 } 1478 } 1479 } 1480 1481 if (I.hasUnsafeAlgebra()) { 1482 if (Value *V = FAddCombine(Builder).simplify(&I)) 1483 return replaceInstUsesWith(I, V); 1484 } 1485 1486 return Changed ? &I : nullptr; 1487 } 1488 1489 /// Optimize pointer differences into the same array into a size. Consider: 1490 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1491 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1492 /// 1493 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1494 Type *Ty) { 1495 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1496 // this. 1497 bool Swapped = false; 1498 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1499 1500 // For now we require one side to be the base pointer "A" or a constant 1501 // GEP derived from it. 1502 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1503 // (gep X, ...) - X 1504 if (LHSGEP->getOperand(0) == RHS) { 1505 GEP1 = LHSGEP; 1506 Swapped = false; 1507 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1508 // (gep X, ...) - (gep X, ...) 1509 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1510 RHSGEP->getOperand(0)->stripPointerCasts()) { 1511 GEP2 = RHSGEP; 1512 GEP1 = LHSGEP; 1513 Swapped = false; 1514 } 1515 } 1516 } 1517 1518 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1519 // X - (gep X, ...) 1520 if (RHSGEP->getOperand(0) == LHS) { 1521 GEP1 = RHSGEP; 1522 Swapped = true; 1523 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1524 // (gep X, ...) - (gep X, ...) 1525 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1526 LHSGEP->getOperand(0)->stripPointerCasts()) { 1527 GEP2 = LHSGEP; 1528 GEP1 = RHSGEP; 1529 Swapped = true; 1530 } 1531 } 1532 } 1533 1534 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 1535 // multiple users. 1536 if (!GEP1 || 1537 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 1538 return nullptr; 1539 1540 // Emit the offset of the GEP and an intptr_t. 1541 Value *Result = EmitGEPOffset(GEP1); 1542 1543 // If we had a constant expression GEP on the other side offsetting the 1544 // pointer, subtract it from the offset we have. 1545 if (GEP2) { 1546 Value *Offset = EmitGEPOffset(GEP2); 1547 Result = Builder->CreateSub(Result, Offset); 1548 } 1549 1550 // If we have p - gep(p, ...) then we have to negate the result. 1551 if (Swapped) 1552 Result = Builder->CreateNeg(Result, "diff.neg"); 1553 1554 return Builder->CreateIntCast(Result, Ty, true); 1555 } 1556 1557 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1558 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1559 1560 if (Value *V = SimplifyVectorOp(I)) 1561 return replaceInstUsesWith(I, V); 1562 1563 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 1564 I.hasNoUnsignedWrap(), SQ)) 1565 return replaceInstUsesWith(I, V); 1566 1567 // (A*B)-(A*C) -> A*(B-C) etc 1568 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1569 return replaceInstUsesWith(I, V); 1570 1571 // If this is a 'B = x-(-A)', change to B = x+A. 1572 if (Value *V = dyn_castNegVal(Op1)) { 1573 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1574 1575 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1576 assert(BO->getOpcode() == Instruction::Sub && 1577 "Expected a subtraction operator!"); 1578 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1579 Res->setHasNoSignedWrap(true); 1580 } else { 1581 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1582 Res->setHasNoSignedWrap(true); 1583 } 1584 1585 return Res; 1586 } 1587 1588 if (I.getType()->getScalarType()->isIntegerTy(1)) 1589 return BinaryOperator::CreateXor(Op0, Op1); 1590 1591 // Replace (-1 - A) with (~A). 1592 if (match(Op0, m_AllOnes())) 1593 return BinaryOperator::CreateNot(Op1); 1594 1595 if (Constant *C = dyn_cast<Constant>(Op0)) { 1596 // C - ~X == X + (1+C) 1597 Value *X = nullptr; 1598 if (match(Op1, m_Not(m_Value(X)))) 1599 return BinaryOperator::CreateAdd(X, AddOne(C)); 1600 1601 // Try to fold constant sub into select arguments. 1602 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1603 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1604 return R; 1605 1606 // Try to fold constant sub into PHI values. 1607 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1608 if (Instruction *R = foldOpIntoPhi(I, PN)) 1609 return R; 1610 1611 // C-(X+C2) --> (C-C2)-X 1612 Constant *C2; 1613 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1614 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1615 1616 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1617 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1618 if (X->getType()->getScalarType()->isIntegerTy(1)) 1619 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1620 1621 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1622 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1623 if (X->getType()->getScalarType()->isIntegerTy(1)) 1624 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1625 } 1626 1627 const APInt *Op0C; 1628 if (match(Op0, m_APInt(Op0C))) { 1629 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1630 1631 // -(X >>u 31) -> (X >>s 31) 1632 // -(X >>s 31) -> (X >>u 31) 1633 if (*Op0C == 0) { 1634 Value *X; 1635 const APInt *ShAmt; 1636 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1637 *ShAmt == BitWidth - 1) { 1638 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1639 return BinaryOperator::CreateAShr(X, ShAmtOp); 1640 } 1641 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1642 *ShAmt == BitWidth - 1) { 1643 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1644 return BinaryOperator::CreateLShr(X, ShAmtOp); 1645 } 1646 } 1647 1648 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1649 // zero. 1650 if (Op0C->isMask()) { 1651 KnownBits RHSKnown(BitWidth); 1652 computeKnownBits(Op1, RHSKnown, 0, &I); 1653 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1654 return BinaryOperator::CreateXor(Op1, Op0); 1655 } 1656 } 1657 1658 { 1659 Value *Y; 1660 // X-(X+Y) == -Y X-(Y+X) == -Y 1661 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1662 return BinaryOperator::CreateNeg(Y); 1663 1664 // (X-Y)-X == -Y 1665 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1666 return BinaryOperator::CreateNeg(Y); 1667 } 1668 1669 // (sub (or A, B) (xor A, B)) --> (and A, B) 1670 { 1671 Value *A, *B; 1672 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1673 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1674 return BinaryOperator::CreateAnd(A, B); 1675 } 1676 1677 { 1678 Value *Y; 1679 // ((X | Y) - X) --> (~X & Y) 1680 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1681 return BinaryOperator::CreateAnd( 1682 Y, Builder->CreateNot(Op1, Op1->getName() + ".not")); 1683 } 1684 1685 if (Op1->hasOneUse()) { 1686 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1687 Constant *C = nullptr; 1688 1689 // (X - (Y - Z)) --> (X + (Z - Y)). 1690 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1691 return BinaryOperator::CreateAdd(Op0, 1692 Builder->CreateSub(Z, Y, Op1->getName())); 1693 1694 // (X - (X & Y)) --> (X & ~Y) 1695 // 1696 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1697 return BinaryOperator::CreateAnd(Op0, 1698 Builder->CreateNot(Y, Y->getName() + ".not")); 1699 1700 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1701 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1702 C->isNotMinSignedValue() && !C->isOneValue()) 1703 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1704 1705 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1706 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1707 if (Value *XNeg = dyn_castNegVal(X)) 1708 return BinaryOperator::CreateShl(XNeg, Y); 1709 1710 // Subtracting -1/0 is the same as adding 1/0: 1711 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1712 // 'nuw' is dropped in favor of the canonical form. 1713 if (match(Op1, m_SExt(m_Value(Y))) && 1714 Y->getType()->getScalarSizeInBits() == 1) { 1715 Value *Zext = Builder->CreateZExt(Y, I.getType()); 1716 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1717 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1718 return Add; 1719 } 1720 1721 // X - A*-B -> X + A*B 1722 // X - -A*B -> X + A*B 1723 Value *A, *B; 1724 Constant *CI; 1725 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1726 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 1727 1728 // X - A*CI -> X + A*-CI 1729 // No need to handle commuted multiply because multiply handling will 1730 // ensure constant will be move to the right hand side. 1731 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1732 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 1733 return BinaryOperator::CreateAdd(Op0, NewMul); 1734 } 1735 } 1736 1737 // Optimize pointer differences into the same array into a size. Consider: 1738 // &A[10] - &A[0]: we should compile this to "10". 1739 Value *LHSOp, *RHSOp; 1740 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1741 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1742 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1743 return replaceInstUsesWith(I, Res); 1744 1745 // trunc(p)-trunc(q) -> trunc(p-q) 1746 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1747 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1748 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1749 return replaceInstUsesWith(I, Res); 1750 1751 bool Changed = false; 1752 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) { 1753 Changed = true; 1754 I.setHasNoSignedWrap(true); 1755 } 1756 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) { 1757 Changed = true; 1758 I.setHasNoUnsignedWrap(true); 1759 } 1760 1761 return Changed ? &I : nullptr; 1762 } 1763 1764 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1765 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1766 1767 if (Value *V = SimplifyVectorOp(I)) 1768 return replaceInstUsesWith(I, V); 1769 1770 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), SQ)) 1771 return replaceInstUsesWith(I, V); 1772 1773 // fsub nsz 0, X ==> fsub nsz -0.0, X 1774 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { 1775 // Subtraction from -0.0 is the canonical form of fneg. 1776 Instruction *NewI = BinaryOperator::CreateFNeg(Op1); 1777 NewI->copyFastMathFlags(&I); 1778 return NewI; 1779 } 1780 1781 if (isa<Constant>(Op0)) 1782 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1783 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1784 return NV; 1785 1786 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking 1787 // through FP extensions/truncations along the way. 1788 if (Value *V = dyn_castFNegVal(Op1)) { 1789 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); 1790 NewI->copyFastMathFlags(&I); 1791 return NewI; 1792 } 1793 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { 1794 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { 1795 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); 1796 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); 1797 NewI->copyFastMathFlags(&I); 1798 return NewI; 1799 } 1800 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { 1801 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { 1802 Value *NewExt = Builder->CreateFPExt(V, I.getType()); 1803 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); 1804 NewI->copyFastMathFlags(&I); 1805 return NewI; 1806 } 1807 } 1808 1809 if (I.hasUnsafeAlgebra()) { 1810 if (Value *V = FAddCombine(Builder).simplify(&I)) 1811 return replaceInstUsesWith(I, V); 1812 } 1813 1814 return nullptr; 1815 } 1816