1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 580 "out-of-bound access"); 581 582 Value *Result; 583 if (!SimpVect.empty()) 584 Result = createNaryFAdd(SimpVect, InstrQuota); 585 else { 586 // The addition is folded to 0.0. 587 Result = ConstantFP::get(Instr->getType(), 0.0); 588 } 589 590 return Result; 591 } 592 593 Value *FAddCombine::createNaryFAdd 594 (const AddendVect &Opnds, unsigned InstrQuota) { 595 assert(!Opnds.empty() && "Expect at least one addend"); 596 597 // Step 1: Check if the # of instructions needed exceeds the quota. 598 599 unsigned InstrNeeded = calcInstrNumber(Opnds); 600 if (InstrNeeded > InstrQuota) 601 return nullptr; 602 603 initCreateInstNum(); 604 605 // step 2: Emit the N-ary addition. 606 // Note that at most three instructions are involved in Fadd-InstCombine: the 607 // addition in question, and at most two neighboring instructions. 608 // The resulting optimized addition should have at least one less instruction 609 // than the original addition expression tree. This implies that the resulting 610 // N-ary addition has at most two instructions, and we don't need to worry 611 // about tree-height when constructing the N-ary addition. 612 613 Value *LastVal = nullptr; 614 bool LastValNeedNeg = false; 615 616 // Iterate the addends, creating fadd/fsub using adjacent two addends. 617 for (const FAddend *Opnd : Opnds) { 618 bool NeedNeg; 619 Value *V = createAddendVal(*Opnd, NeedNeg); 620 if (!LastVal) { 621 LastVal = V; 622 LastValNeedNeg = NeedNeg; 623 continue; 624 } 625 626 if (LastValNeedNeg == NeedNeg) { 627 LastVal = createFAdd(LastVal, V); 628 continue; 629 } 630 631 if (LastValNeedNeg) 632 LastVal = createFSub(V, LastVal); 633 else 634 LastVal = createFSub(LastVal, V); 635 636 LastValNeedNeg = false; 637 } 638 639 if (LastValNeedNeg) { 640 LastVal = createFNeg(LastVal); 641 } 642 643 #ifndef NDEBUG 644 assert(CreateInstrNum == InstrNeeded && 645 "Inconsistent in instruction numbers"); 646 #endif 647 648 return LastVal; 649 } 650 651 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 652 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 653 if (Instruction *I = dyn_cast<Instruction>(V)) 654 createInstPostProc(I); 655 return V; 656 } 657 658 Value *FAddCombine::createFNeg(Value *V) { 659 Value *NewV = Builder.CreateFNeg(V); 660 if (Instruction *I = dyn_cast<Instruction>(NewV)) 661 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 662 return NewV; 663 } 664 665 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 666 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 667 if (Instruction *I = dyn_cast<Instruction>(V)) 668 createInstPostProc(I); 669 return V; 670 } 671 672 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 673 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 674 if (Instruction *I = dyn_cast<Instruction>(V)) 675 createInstPostProc(I); 676 return V; 677 } 678 679 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 680 NewInstr->setDebugLoc(Instr->getDebugLoc()); 681 682 // Keep track of the number of instruction created. 683 if (!NoNumber) 684 incCreateInstNum(); 685 686 // Propagate fast-math flags 687 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 688 } 689 690 // Return the number of instruction needed to emit the N-ary addition. 691 // NOTE: Keep this function in sync with createAddendVal(). 692 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 693 unsigned OpndNum = Opnds.size(); 694 unsigned InstrNeeded = OpndNum - 1; 695 696 // The number of addends in the form of "(-1)*x". 697 unsigned NegOpndNum = 0; 698 699 // Adjust the number of instructions needed to emit the N-ary add. 700 for (const FAddend *Opnd : Opnds) { 701 if (Opnd->isConstant()) 702 continue; 703 704 // The constant check above is really for a few special constant 705 // coefficients. 706 if (isa<UndefValue>(Opnd->getSymVal())) 707 continue; 708 709 const FAddendCoef &CE = Opnd->getCoef(); 710 if (CE.isMinusOne() || CE.isMinusTwo()) 711 NegOpndNum++; 712 713 // Let the addend be "c * x". If "c == +/-1", the value of the addend 714 // is immediately available; otherwise, it needs exactly one instruction 715 // to evaluate the value. 716 if (!CE.isMinusOne() && !CE.isOne()) 717 InstrNeeded++; 718 } 719 return InstrNeeded; 720 } 721 722 // Input Addend Value NeedNeg(output) 723 // ================================================================ 724 // Constant C C false 725 // <+/-1, V> V coefficient is -1 726 // <2/-2, V> "fadd V, V" coefficient is -2 727 // <C, V> "fmul V, C" false 728 // 729 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 730 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 731 const FAddendCoef &Coeff = Opnd.getCoef(); 732 733 if (Opnd.isConstant()) { 734 NeedNeg = false; 735 return Coeff.getValue(Instr->getType()); 736 } 737 738 Value *OpndVal = Opnd.getSymVal(); 739 740 if (Coeff.isMinusOne() || Coeff.isOne()) { 741 NeedNeg = Coeff.isMinusOne(); 742 return OpndVal; 743 } 744 745 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 746 NeedNeg = Coeff.isMinusTwo(); 747 return createFAdd(OpndVal, OpndVal); 748 } 749 750 NeedNeg = false; 751 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 752 } 753 754 // Checks if any operand is negative and we can convert add to sub. 755 // This function checks for following negative patterns 756 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 757 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 758 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 759 static Value *checkForNegativeOperand(BinaryOperator &I, 760 InstCombiner::BuilderTy &Builder) { 761 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 762 763 // This function creates 2 instructions to replace ADD, we need at least one 764 // of LHS or RHS to have one use to ensure benefit in transform. 765 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 766 return nullptr; 767 768 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 769 const APInt *C1 = nullptr, *C2 = nullptr; 770 771 // if ONE is on other side, swap 772 if (match(RHS, m_Add(m_Value(X), m_One()))) 773 std::swap(LHS, RHS); 774 775 if (match(LHS, m_Add(m_Value(X), m_One()))) { 776 // if XOR on other side, swap 777 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 778 std::swap(X, RHS); 779 780 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 781 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 782 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 783 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 784 Value *NewAnd = Builder.CreateAnd(Z, *C1); 785 return Builder.CreateSub(RHS, NewAnd, "sub"); 786 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 787 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 788 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 789 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 790 return Builder.CreateSub(RHS, NewOr, "sub"); 791 } 792 } 793 } 794 795 // Restore LHS and RHS 796 LHS = I.getOperand(0); 797 RHS = I.getOperand(1); 798 799 // if XOR is on other side, swap 800 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 801 std::swap(LHS, RHS); 802 803 // C2 is ODD 804 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 805 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 806 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 807 if (C1->countTrailingZeros() == 0) 808 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 809 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 810 return Builder.CreateSub(RHS, NewOr, "sub"); 811 } 812 return nullptr; 813 } 814 815 /// Wrapping flags may allow combining constants separated by an extend. 816 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 817 InstCombiner::BuilderTy &Builder) { 818 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 819 Type *Ty = Add.getType(); 820 Constant *Op1C; 821 if (!match(Op1, m_Constant(Op1C))) 822 return nullptr; 823 824 // Try this match first because it results in an add in the narrow type. 825 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 826 Value *X; 827 const APInt *C1, *C2; 828 if (match(Op1, m_APInt(C1)) && 829 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 830 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 831 Constant *NewC = 832 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 833 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 834 } 835 836 // More general combining of constants in the wide type. 837 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 838 Constant *NarrowC; 839 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 841 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateSExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 846 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 847 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 848 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 849 Value *WideX = Builder.CreateZExt(X, Ty); 850 return BinaryOperator::CreateAdd(WideX, NewC); 851 } 852 853 return nullptr; 854 } 855 856 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 858 Constant *Op1C; 859 if (!match(Op1, m_ImmConstant(Op1C))) 860 return nullptr; 861 862 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 863 return NV; 864 865 Value *X; 866 Constant *Op00C; 867 868 // add (sub C1, X), C2 --> sub (add C1, C2), X 869 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 870 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 871 872 Value *Y; 873 874 // add (sub X, Y), -1 --> add (not Y), X 875 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 876 match(Op1, m_AllOnes())) 877 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 878 879 // zext(bool) + C -> bool ? C + 1 : C 880 if (match(Op0, m_ZExt(m_Value(X))) && 881 X->getType()->getScalarSizeInBits() == 1) 882 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 883 // sext(bool) + C -> bool ? C - 1 : C 884 if (match(Op0, m_SExt(m_Value(X))) && 885 X->getType()->getScalarSizeInBits() == 1) 886 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 887 888 // ~X + C --> (C-1) - X 889 if (match(Op0, m_Not(m_Value(X)))) 890 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 891 892 const APInt *C; 893 if (!match(Op1, m_APInt(C))) 894 return nullptr; 895 896 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 897 Constant *Op01C; 898 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && 899 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) 900 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 901 902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 903 const APInt *C2; 904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 906 907 if (C->isSignMask()) { 908 // If wrapping is not allowed, then the addition must set the sign bit: 909 // X + (signmask) --> X | signmask 910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 911 return BinaryOperator::CreateOr(Op0, Op1); 912 913 // If wrapping is allowed, then the addition flips the sign bit of LHS: 914 // X + (signmask) --> X ^ signmask 915 return BinaryOperator::CreateXor(Op0, Op1); 916 } 917 918 // Is this add the last step in a convoluted sext? 919 // add(zext(xor i16 X, -32768), -32768) --> sext X 920 Type *Ty = Add.getType(); 921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 923 return CastInst::Create(Instruction::SExt, X, Ty); 924 925 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 926 // (X ^ signmask) + C --> (X + (signmask ^ C)) 927 if (C2->isSignMask()) 928 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 929 930 // If X has no high-bits set above an xor mask: 931 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 932 if (C2->isMask()) { 933 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 934 if ((*C2 | LHSKnown.Zero).isAllOnes()) 935 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 936 } 937 938 // Look for a math+logic pattern that corresponds to sext-in-register of a 939 // value with cleared high bits. Convert that into a pair of shifts: 940 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 941 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 942 if (Op0->hasOneUse() && *C2 == -(*C)) { 943 unsigned BitWidth = Ty->getScalarSizeInBits(); 944 unsigned ShAmt = 0; 945 if (C->isPowerOf2()) 946 ShAmt = BitWidth - C->logBase2() - 1; 947 else if (C2->isPowerOf2()) 948 ShAmt = BitWidth - C2->logBase2() - 1; 949 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 950 0, &Add)) { 951 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 952 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 953 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 954 } 955 } 956 } 957 958 if (C->isOne() && Op0->hasOneUse()) { 959 // add (sext i1 X), 1 --> zext (not X) 960 // TODO: The smallest IR representation is (select X, 0, 1), and that would 961 // not require the one-use check. But we need to remove a transform in 962 // visitSelect and make sure that IR value tracking for select is equal or 963 // better than for these ops. 964 if (match(Op0, m_SExt(m_Value(X))) && 965 X->getType()->getScalarSizeInBits() == 1) 966 return new ZExtInst(Builder.CreateNot(X), Ty); 967 968 // Shifts and add used to flip and mask off the low bit: 969 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 970 const APInt *C3; 971 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 972 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 973 Value *NotX = Builder.CreateNot(X); 974 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 975 } 976 } 977 978 // If all bits affected by the add are included in a high-bit-mask, do the 979 // add before the mask op: 980 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00 981 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) && 982 C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) { 983 Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C)); 984 return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2)); 985 } 986 987 return nullptr; 988 } 989 990 // Matches multiplication expression Op * C where C is a constant. Returns the 991 // constant value in C and the other operand in Op. Returns true if such a 992 // match is found. 993 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 994 const APInt *AI; 995 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 996 C = *AI; 997 return true; 998 } 999 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1000 C = APInt(AI->getBitWidth(), 1); 1001 C <<= *AI; 1002 return true; 1003 } 1004 return false; 1005 } 1006 1007 // Matches remainder expression Op % C where C is a constant. Returns the 1008 // constant value in C and the other operand in Op. Returns the signedness of 1009 // the remainder operation in IsSigned. Returns true if such a match is 1010 // found. 1011 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1012 const APInt *AI; 1013 IsSigned = false; 1014 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1015 IsSigned = true; 1016 C = *AI; 1017 return true; 1018 } 1019 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1020 C = *AI; 1021 return true; 1022 } 1023 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1024 C = *AI + 1; 1025 return true; 1026 } 1027 return false; 1028 } 1029 1030 // Matches division expression Op / C with the given signedness as indicated 1031 // by IsSigned, where C is a constant. Returns the constant value in C and the 1032 // other operand in Op. Returns true if such a match is found. 1033 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1034 const APInt *AI; 1035 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1036 C = *AI; 1037 return true; 1038 } 1039 if (!IsSigned) { 1040 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1041 C = *AI; 1042 return true; 1043 } 1044 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1045 C = APInt(AI->getBitWidth(), 1); 1046 C <<= *AI; 1047 return true; 1048 } 1049 } 1050 return false; 1051 } 1052 1053 // Returns whether C0 * C1 with the given signedness overflows. 1054 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1055 bool overflow; 1056 if (IsSigned) 1057 (void)C0.smul_ov(C1, overflow); 1058 else 1059 (void)C0.umul_ov(C1, overflow); 1060 return overflow; 1061 } 1062 1063 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1064 // does not overflow. 1065 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1066 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1067 Value *X, *MulOpV; 1068 APInt C0, MulOpC; 1069 bool IsSigned; 1070 // Match I = X % C0 + MulOpV * C0 1071 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1072 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1073 C0 == MulOpC) { 1074 Value *RemOpV; 1075 APInt C1; 1076 bool Rem2IsSigned; 1077 // Match MulOpC = RemOpV % C1 1078 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1079 IsSigned == Rem2IsSigned) { 1080 Value *DivOpV; 1081 APInt DivOpC; 1082 // Match RemOpV = X / C0 1083 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1084 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1085 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1086 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1087 : Builder.CreateURem(X, NewDivisor, "urem"); 1088 } 1089 } 1090 } 1091 1092 return nullptr; 1093 } 1094 1095 /// Fold 1096 /// (1 << NBits) - 1 1097 /// Into: 1098 /// ~(-(1 << NBits)) 1099 /// Because a 'not' is better for bit-tracking analysis and other transforms 1100 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1101 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1102 InstCombiner::BuilderTy &Builder) { 1103 Value *NBits; 1104 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1105 return nullptr; 1106 1107 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1108 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1109 // Be wary of constant folding. 1110 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1111 // Always NSW. But NUW propagates from `add`. 1112 BOp->setHasNoSignedWrap(); 1113 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1114 } 1115 1116 return BinaryOperator::CreateNot(NotMask, I.getName()); 1117 } 1118 1119 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1120 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1121 Type *Ty = I.getType(); 1122 auto getUAddSat = [&]() { 1123 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1124 }; 1125 1126 // add (umin X, ~Y), Y --> uaddsat X, Y 1127 Value *X, *Y; 1128 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1129 m_Deferred(Y)))) 1130 return CallInst::Create(getUAddSat(), { X, Y }); 1131 1132 // add (umin X, ~C), C --> uaddsat X, C 1133 const APInt *C, *NotC; 1134 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1135 *C == ~*NotC) 1136 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1137 1138 return nullptr; 1139 } 1140 1141 Instruction *InstCombinerImpl:: 1142 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1143 BinaryOperator &I) { 1144 assert((I.getOpcode() == Instruction::Add || 1145 I.getOpcode() == Instruction::Or || 1146 I.getOpcode() == Instruction::Sub) && 1147 "Expecting add/or/sub instruction"); 1148 1149 // We have a subtraction/addition between a (potentially truncated) *logical* 1150 // right-shift of X and a "select". 1151 Value *X, *Select; 1152 Instruction *LowBitsToSkip, *Extract; 1153 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1154 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1155 m_Instruction(Extract))), 1156 m_Value(Select)))) 1157 return nullptr; 1158 1159 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1160 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1161 return nullptr; 1162 1163 Type *XTy = X->getType(); 1164 bool HadTrunc = I.getType() != XTy; 1165 1166 // If there was a truncation of extracted value, then we'll need to produce 1167 // one extra instruction, so we need to ensure one instruction will go away. 1168 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1169 return nullptr; 1170 1171 // Extraction should extract high NBits bits, with shift amount calculated as: 1172 // low bits to skip = shift bitwidth - high bits to extract 1173 // The shift amount itself may be extended, and we need to look past zero-ext 1174 // when matching NBits, that will matter for matching later. 1175 Constant *C; 1176 Value *NBits; 1177 if (!match( 1178 LowBitsToSkip, 1179 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1180 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1181 APInt(C->getType()->getScalarSizeInBits(), 1182 X->getType()->getScalarSizeInBits())))) 1183 return nullptr; 1184 1185 // Sign-extending value can be zero-extended if we `sub`tract it, 1186 // or sign-extended otherwise. 1187 auto SkipExtInMagic = [&I](Value *&V) { 1188 if (I.getOpcode() == Instruction::Sub) 1189 match(V, m_ZExtOrSelf(m_Value(V))); 1190 else 1191 match(V, m_SExtOrSelf(m_Value(V))); 1192 }; 1193 1194 // Now, finally validate the sign-extending magic. 1195 // `select` itself may be appropriately extended, look past that. 1196 SkipExtInMagic(Select); 1197 1198 ICmpInst::Predicate Pred; 1199 const APInt *Thr; 1200 Value *SignExtendingValue, *Zero; 1201 bool ShouldSignext; 1202 // It must be a select between two values we will later establish to be a 1203 // sign-extending value and a zero constant. The condition guarding the 1204 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1205 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1206 m_Value(SignExtendingValue), m_Value(Zero))) || 1207 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1208 return nullptr; 1209 1210 // icmp-select pair is commutative. 1211 if (!ShouldSignext) 1212 std::swap(SignExtendingValue, Zero); 1213 1214 // If we should not perform sign-extension then we must add/or/subtract zero. 1215 if (!match(Zero, m_Zero())) 1216 return nullptr; 1217 // Otherwise, it should be some constant, left-shifted by the same NBits we 1218 // had in `lshr`. Said left-shift can also be appropriately extended. 1219 // Again, we must look past zero-ext when looking for NBits. 1220 SkipExtInMagic(SignExtendingValue); 1221 Constant *SignExtendingValueBaseConstant; 1222 if (!match(SignExtendingValue, 1223 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1224 m_ZExtOrSelf(m_Specific(NBits))))) 1225 return nullptr; 1226 // If we `sub`, then the constant should be one, else it should be all-ones. 1227 if (I.getOpcode() == Instruction::Sub 1228 ? !match(SignExtendingValueBaseConstant, m_One()) 1229 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1230 return nullptr; 1231 1232 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1233 Extract->getName() + ".sext"); 1234 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1235 if (!HadTrunc) 1236 return NewAShr; 1237 1238 Builder.Insert(NewAShr); 1239 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1240 } 1241 1242 /// This is a specialization of a more general transform from 1243 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally 1244 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1245 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1246 InstCombiner::BuilderTy &Builder) { 1247 // TODO: Also handle mul by doubling the shift amount? 1248 assert((I.getOpcode() == Instruction::Add || 1249 I.getOpcode() == Instruction::Sub) && 1250 "Expected add/sub"); 1251 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1252 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1253 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1254 return nullptr; 1255 1256 Value *X, *Y, *ShAmt; 1257 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1258 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1259 return nullptr; 1260 1261 // No-wrap propagates only when all ops have no-wrap. 1262 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1263 Op1->hasNoSignedWrap(); 1264 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1265 Op1->hasNoUnsignedWrap(); 1266 1267 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1268 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1269 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1270 NewI->setHasNoSignedWrap(HasNSW); 1271 NewI->setHasNoUnsignedWrap(HasNUW); 1272 } 1273 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1274 NewShl->setHasNoSignedWrap(HasNSW); 1275 NewShl->setHasNoUnsignedWrap(HasNUW); 1276 return NewShl; 1277 } 1278 1279 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1280 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1281 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1282 SQ.getWithInstruction(&I))) 1283 return replaceInstUsesWith(I, V); 1284 1285 if (SimplifyAssociativeOrCommutative(I)) 1286 return &I; 1287 1288 if (Instruction *X = foldVectorBinop(I)) 1289 return X; 1290 1291 // (A*B)+(A*C) -> A*(B+C) etc 1292 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1293 return replaceInstUsesWith(I, V); 1294 1295 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1296 return R; 1297 1298 if (Instruction *X = foldAddWithConstant(I)) 1299 return X; 1300 1301 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1302 return X; 1303 1304 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1305 Type *Ty = I.getType(); 1306 if (Ty->isIntOrIntVectorTy(1)) 1307 return BinaryOperator::CreateXor(LHS, RHS); 1308 1309 // X + X --> X << 1 1310 if (LHS == RHS) { 1311 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1312 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1313 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1314 return Shl; 1315 } 1316 1317 Value *A, *B; 1318 if (match(LHS, m_Neg(m_Value(A)))) { 1319 // -A + -B --> -(A + B) 1320 if (match(RHS, m_Neg(m_Value(B)))) 1321 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1322 1323 // -A + B --> B - A 1324 return BinaryOperator::CreateSub(RHS, A); 1325 } 1326 1327 // A + -B --> A - B 1328 if (match(RHS, m_Neg(m_Value(B)))) 1329 return BinaryOperator::CreateSub(LHS, B); 1330 1331 if (Value *V = checkForNegativeOperand(I, Builder)) 1332 return replaceInstUsesWith(I, V); 1333 1334 // (A + 1) + ~B --> A - B 1335 // ~B + (A + 1) --> A - B 1336 // (~B + A) + 1 --> A - B 1337 // (A + ~B) + 1 --> A - B 1338 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1339 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1340 return BinaryOperator::CreateSub(A, B); 1341 1342 // (A + RHS) + RHS --> A + (RHS << 1) 1343 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1344 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1345 1346 // LHS + (A + LHS) --> A + (LHS << 1) 1347 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1348 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1349 1350 { 1351 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1352 Constant *C1, *C2; 1353 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1354 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1355 (LHS->hasOneUse() || RHS->hasOneUse())) { 1356 Value *Sub = Builder.CreateSub(A, B); 1357 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1358 } 1359 } 1360 1361 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1362 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1363 1364 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1365 const APInt *C1, *C2; 1366 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1367 APInt one(C2->getBitWidth(), 1); 1368 APInt minusC1 = -(*C1); 1369 if (minusC1 == (one << *C2)) { 1370 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1371 return BinaryOperator::CreateSRem(RHS, NewRHS); 1372 } 1373 } 1374 1375 // A+B --> A|B iff A and B have no bits set in common. 1376 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1377 return BinaryOperator::CreateOr(LHS, RHS); 1378 1379 // add (select X 0 (sub n A)) A --> select X A n 1380 { 1381 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1382 Value *A = RHS; 1383 if (!SI) { 1384 SI = dyn_cast<SelectInst>(RHS); 1385 A = LHS; 1386 } 1387 if (SI && SI->hasOneUse()) { 1388 Value *TV = SI->getTrueValue(); 1389 Value *FV = SI->getFalseValue(); 1390 Value *N; 1391 1392 // Can we fold the add into the argument of the select? 1393 // We check both true and false select arguments for a matching subtract. 1394 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1395 // Fold the add into the true select value. 1396 return SelectInst::Create(SI->getCondition(), N, A); 1397 1398 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1399 // Fold the add into the false select value. 1400 return SelectInst::Create(SI->getCondition(), A, N); 1401 } 1402 } 1403 1404 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1405 return Ext; 1406 1407 // (add (xor A, B) (and A, B)) --> (or A, B) 1408 // (add (and A, B) (xor A, B)) --> (or A, B) 1409 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1410 m_c_And(m_Deferred(A), m_Deferred(B))))) 1411 return BinaryOperator::CreateOr(A, B); 1412 1413 // (add (or A, B) (and A, B)) --> (add A, B) 1414 // (add (and A, B) (or A, B)) --> (add A, B) 1415 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1416 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1417 // Replacing operands in-place to preserve nuw/nsw flags. 1418 replaceOperand(I, 0, A); 1419 replaceOperand(I, 1, B); 1420 return &I; 1421 } 1422 1423 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1424 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1425 // computeKnownBits. 1426 bool Changed = false; 1427 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1428 Changed = true; 1429 I.setHasNoSignedWrap(true); 1430 } 1431 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1432 Changed = true; 1433 I.setHasNoUnsignedWrap(true); 1434 } 1435 1436 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1437 return V; 1438 1439 if (Instruction *V = 1440 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1441 return V; 1442 1443 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1444 return SatAdd; 1445 1446 // usub.sat(A, B) + B => umax(A, B) 1447 if (match(&I, m_c_BinOp( 1448 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1449 m_Deferred(B)))) { 1450 return replaceInstUsesWith(I, 1451 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1452 } 1453 1454 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1455 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1456 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1457 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) 1458 return replaceInstUsesWith( 1459 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1460 {Builder.CreateOr(A, B)})); 1461 1462 return Changed ? &I : nullptr; 1463 } 1464 1465 /// Eliminate an op from a linear interpolation (lerp) pattern. 1466 static Instruction *factorizeLerp(BinaryOperator &I, 1467 InstCombiner::BuilderTy &Builder) { 1468 Value *X, *Y, *Z; 1469 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1470 m_OneUse(m_FSub(m_FPOne(), 1471 m_Value(Z))))), 1472 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1473 return nullptr; 1474 1475 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1476 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1477 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1478 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1479 } 1480 1481 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1482 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1483 InstCombiner::BuilderTy &Builder) { 1484 assert((I.getOpcode() == Instruction::FAdd || 1485 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1486 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1487 "FP factorization requires FMF"); 1488 1489 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1490 return Lerp; 1491 1492 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1493 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1494 return nullptr; 1495 1496 Value *X, *Y, *Z; 1497 bool IsFMul; 1498 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1499 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1500 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1501 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1502 IsFMul = true; 1503 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1504 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1505 IsFMul = false; 1506 else 1507 return nullptr; 1508 1509 // (X * Z) + (Y * Z) --> (X + Y) * Z 1510 // (X * Z) - (Y * Z) --> (X - Y) * Z 1511 // (X / Z) + (Y / Z) --> (X + Y) / Z 1512 // (X / Z) - (Y / Z) --> (X - Y) / Z 1513 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1514 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1515 : Builder.CreateFSubFMF(X, Y, &I); 1516 1517 // Bail out if we just created a denormal constant. 1518 // TODO: This is copied from a previous implementation. Is it necessary? 1519 const APFloat *C; 1520 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1521 return nullptr; 1522 1523 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1524 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1525 } 1526 1527 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1528 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1529 I.getFastMathFlags(), 1530 SQ.getWithInstruction(&I))) 1531 return replaceInstUsesWith(I, V); 1532 1533 if (SimplifyAssociativeOrCommutative(I)) 1534 return &I; 1535 1536 if (Instruction *X = foldVectorBinop(I)) 1537 return X; 1538 1539 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1540 return FoldedFAdd; 1541 1542 // (-X) + Y --> Y - X 1543 Value *X, *Y; 1544 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1545 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1546 1547 // Similar to above, but look through fmul/fdiv for the negated term. 1548 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1549 Value *Z; 1550 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1551 m_Value(Z)))) { 1552 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1553 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1554 } 1555 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1556 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1557 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1558 m_Value(Z))) || 1559 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1560 m_Value(Z)))) { 1561 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1562 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1563 } 1564 1565 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1566 // integer add followed by a promotion. 1567 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1568 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1569 Value *LHSIntVal = LHSConv->getOperand(0); 1570 Type *FPType = LHSConv->getType(); 1571 1572 // TODO: This check is overly conservative. In many cases known bits 1573 // analysis can tell us that the result of the addition has less significant 1574 // bits than the integer type can hold. 1575 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1576 Type *FScalarTy = FTy->getScalarType(); 1577 Type *IScalarTy = ITy->getScalarType(); 1578 1579 // Do we have enough bits in the significand to represent the result of 1580 // the integer addition? 1581 unsigned MaxRepresentableBits = 1582 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1583 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1584 }; 1585 1586 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1587 // ... if the constant fits in the integer value. This is useful for things 1588 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1589 // requires a constant pool load, and generally allows the add to be better 1590 // instcombined. 1591 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1592 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1593 Constant *CI = 1594 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1595 if (LHSConv->hasOneUse() && 1596 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1597 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1598 // Insert the new integer add. 1599 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1600 return new SIToFPInst(NewAdd, I.getType()); 1601 } 1602 } 1603 1604 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1605 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1606 Value *RHSIntVal = RHSConv->getOperand(0); 1607 // It's enough to check LHS types only because we require int types to 1608 // be the same for this transform. 1609 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1610 // Only do this if x/y have the same type, if at least one of them has a 1611 // single use (so we don't increase the number of int->fp conversions), 1612 // and if the integer add will not overflow. 1613 if (LHSIntVal->getType() == RHSIntVal->getType() && 1614 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1615 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1616 // Insert the new integer add. 1617 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1618 return new SIToFPInst(NewAdd, I.getType()); 1619 } 1620 } 1621 } 1622 } 1623 1624 // Handle specials cases for FAdd with selects feeding the operation 1625 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1626 return replaceInstUsesWith(I, V); 1627 1628 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1629 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1630 return F; 1631 1632 // Try to fold fadd into start value of reduction intrinsic. 1633 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1634 m_AnyZeroFP(), m_Value(X))), 1635 m_Value(Y)))) { 1636 // fadd (rdx 0.0, X), Y --> rdx Y, X 1637 return replaceInstUsesWith( 1638 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1639 {X->getType()}, {Y, X}, &I)); 1640 } 1641 const APFloat *StartC, *C; 1642 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1643 m_APFloat(StartC), m_Value(X)))) && 1644 match(RHS, m_APFloat(C))) { 1645 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1646 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1647 return replaceInstUsesWith( 1648 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1649 {X->getType()}, {NewStartC, X}, &I)); 1650 } 1651 1652 // (X * MulC) + X --> X * (MulC + 1.0) 1653 Constant *MulC; 1654 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1655 m_Deferred(X)))) { 1656 MulC = ConstantExpr::getFAdd(MulC, ConstantFP::get(I.getType(), 1.0)); 1657 return BinaryOperator::CreateFMulFMF(X, MulC, &I); 1658 } 1659 1660 if (Value *V = FAddCombine(Builder).simplify(&I)) 1661 return replaceInstUsesWith(I, V); 1662 } 1663 1664 return nullptr; 1665 } 1666 1667 /// Optimize pointer differences into the same array into a size. Consider: 1668 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1669 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1670 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1671 Type *Ty, bool IsNUW) { 1672 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1673 // this. 1674 bool Swapped = false; 1675 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1676 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1677 std::swap(LHS, RHS); 1678 Swapped = true; 1679 } 1680 1681 // Require at least one GEP with a common base pointer on both sides. 1682 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1683 // (gep X, ...) - X 1684 if (LHSGEP->getOperand(0) == RHS) { 1685 GEP1 = LHSGEP; 1686 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1687 // (gep X, ...) - (gep X, ...) 1688 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1689 RHSGEP->getOperand(0)->stripPointerCasts()) { 1690 GEP1 = LHSGEP; 1691 GEP2 = RHSGEP; 1692 } 1693 } 1694 } 1695 1696 if (!GEP1) 1697 return nullptr; 1698 1699 if (GEP2) { 1700 // (gep X, ...) - (gep X, ...) 1701 // 1702 // Avoid duplicating the arithmetic if there are more than one non-constant 1703 // indices between the two GEPs and either GEP has a non-constant index and 1704 // multiple users. If zero non-constant index, the result is a constant and 1705 // there is no duplication. If one non-constant index, the result is an add 1706 // or sub with a constant, which is no larger than the original code, and 1707 // there's no duplicated arithmetic, even if either GEP has multiple 1708 // users. If more than one non-constant indices combined, as long as the GEP 1709 // with at least one non-constant index doesn't have multiple users, there 1710 // is no duplication. 1711 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1712 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1713 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1714 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1715 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1716 return nullptr; 1717 } 1718 } 1719 1720 // Emit the offset of the GEP and an intptr_t. 1721 Value *Result = EmitGEPOffset(GEP1); 1722 1723 // If this is a single inbounds GEP and the original sub was nuw, 1724 // then the final multiplication is also nuw. 1725 if (auto *I = dyn_cast<Instruction>(Result)) 1726 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1727 I->getOpcode() == Instruction::Mul) 1728 I->setHasNoUnsignedWrap(); 1729 1730 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1731 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1732 if (GEP2) { 1733 Value *Offset = EmitGEPOffset(GEP2); 1734 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1735 GEP1->isInBounds() && GEP2->isInBounds()); 1736 } 1737 1738 // If we have p - gep(p, ...) then we have to negate the result. 1739 if (Swapped) 1740 Result = Builder.CreateNeg(Result, "diff.neg"); 1741 1742 return Builder.CreateIntCast(Result, Ty, true); 1743 } 1744 1745 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1746 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1747 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1748 SQ.getWithInstruction(&I))) 1749 return replaceInstUsesWith(I, V); 1750 1751 if (Instruction *X = foldVectorBinop(I)) 1752 return X; 1753 1754 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1755 1756 // If this is a 'B = x-(-A)', change to B = x+A. 1757 // We deal with this without involving Negator to preserve NSW flag. 1758 if (Value *V = dyn_castNegVal(Op1)) { 1759 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1760 1761 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1762 assert(BO->getOpcode() == Instruction::Sub && 1763 "Expected a subtraction operator!"); 1764 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1765 Res->setHasNoSignedWrap(true); 1766 } else { 1767 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1768 Res->setHasNoSignedWrap(true); 1769 } 1770 1771 return Res; 1772 } 1773 1774 // Try this before Negator to preserve NSW flag. 1775 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1776 return R; 1777 1778 Constant *C; 1779 if (match(Op0, m_ImmConstant(C))) { 1780 Value *X; 1781 Constant *C2; 1782 1783 // C-(X+C2) --> (C-C2)-X 1784 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) 1785 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1786 } 1787 1788 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1789 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1790 return Ext; 1791 1792 bool Changed = false; 1793 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1794 Changed = true; 1795 I.setHasNoSignedWrap(true); 1796 } 1797 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1798 Changed = true; 1799 I.setHasNoUnsignedWrap(true); 1800 } 1801 1802 return Changed ? &I : nullptr; 1803 }; 1804 1805 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1806 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1807 // a pure negation used by a select that looks like abs/nabs. 1808 bool IsNegation = match(Op0, m_ZeroInt()); 1809 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1810 const Instruction *UI = dyn_cast<Instruction>(U); 1811 if (!UI) 1812 return false; 1813 return match(UI, 1814 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1815 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1816 })) { 1817 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1818 return BinaryOperator::CreateAdd(NegOp1, Op0); 1819 } 1820 if (IsNegation) 1821 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1822 1823 // (A*B)-(A*C) -> A*(B-C) etc 1824 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1825 return replaceInstUsesWith(I, V); 1826 1827 if (I.getType()->isIntOrIntVectorTy(1)) 1828 return BinaryOperator::CreateXor(Op0, Op1); 1829 1830 // Replace (-1 - A) with (~A). 1831 if (match(Op0, m_AllOnes())) 1832 return BinaryOperator::CreateNot(Op1); 1833 1834 // (X + -1) - Y --> ~Y + X 1835 Value *X, *Y; 1836 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1837 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1838 1839 // Reassociate sub/add sequences to create more add instructions and 1840 // reduce dependency chains: 1841 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 1842 Value *Z; 1843 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 1844 m_Value(Z))))) { 1845 Value *XZ = Builder.CreateAdd(X, Z); 1846 Value *YW = Builder.CreateAdd(Y, Op1); 1847 return BinaryOperator::CreateSub(XZ, YW); 1848 } 1849 1850 // ((X - Y) - Op1) --> X - (Y + Op1) 1851 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 1852 Value *Add = Builder.CreateAdd(Y, Op1); 1853 return BinaryOperator::CreateSub(X, Add); 1854 } 1855 1856 // (~X) - (~Y) --> Y - X 1857 // This is placed after the other reassociations and explicitly excludes a 1858 // sub-of-sub pattern to avoid infinite looping. 1859 if (isFreeToInvert(Op0, Op0->hasOneUse()) && 1860 isFreeToInvert(Op1, Op1->hasOneUse()) && 1861 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { 1862 Value *NotOp0 = Builder.CreateNot(Op0); 1863 Value *NotOp1 = Builder.CreateNot(Op1); 1864 return BinaryOperator::CreateSub(NotOp1, NotOp0); 1865 } 1866 1867 auto m_AddRdx = [](Value *&Vec) { 1868 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 1869 }; 1870 Value *V0, *V1; 1871 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 1872 V0->getType() == V1->getType()) { 1873 // Difference of sums is sum of differences: 1874 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 1875 Value *Sub = Builder.CreateSub(V0, V1); 1876 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 1877 {Sub->getType()}, {Sub}); 1878 return replaceInstUsesWith(I, Rdx); 1879 } 1880 1881 if (Constant *C = dyn_cast<Constant>(Op0)) { 1882 Value *X; 1883 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1884 // C - (zext bool) --> bool ? C - 1 : C 1885 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 1886 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1887 // C - (sext bool) --> bool ? C + 1 : C 1888 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 1889 1890 // C - ~X == X + (1+C) 1891 if (match(Op1, m_Not(m_Value(X)))) 1892 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 1893 1894 // Try to fold constant sub into select arguments. 1895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1896 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1897 return R; 1898 1899 // Try to fold constant sub into PHI values. 1900 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1901 if (Instruction *R = foldOpIntoPhi(I, PN)) 1902 return R; 1903 1904 Constant *C2; 1905 1906 // C-(C2-X) --> X+(C-C2) 1907 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 1908 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1909 } 1910 1911 const APInt *Op0C; 1912 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { 1913 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1914 // zero. 1915 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1916 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 1917 return BinaryOperator::CreateXor(Op1, Op0); 1918 } 1919 1920 { 1921 Value *Y; 1922 // X-(X+Y) == -Y X-(Y+X) == -Y 1923 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1924 return BinaryOperator::CreateNeg(Y); 1925 1926 // (X-Y)-X == -Y 1927 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1928 return BinaryOperator::CreateNeg(Y); 1929 } 1930 1931 // (sub (or A, B) (and A, B)) --> (xor A, B) 1932 { 1933 Value *A, *B; 1934 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1935 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1936 return BinaryOperator::CreateXor(A, B); 1937 } 1938 1939 // (sub (add A, B) (or A, B)) --> (and A, B) 1940 { 1941 Value *A, *B; 1942 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1943 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 1944 return BinaryOperator::CreateAnd(A, B); 1945 } 1946 1947 // (sub (add A, B) (and A, B)) --> (or A, B) 1948 { 1949 Value *A, *B; 1950 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1951 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 1952 return BinaryOperator::CreateOr(A, B); 1953 } 1954 1955 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 1956 { 1957 Value *A, *B; 1958 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1959 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1960 (Op0->hasOneUse() || Op1->hasOneUse())) 1961 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 1962 } 1963 1964 // (sub (or A, B), (xor A, B)) --> (and A, B) 1965 { 1966 Value *A, *B; 1967 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1968 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1969 return BinaryOperator::CreateAnd(A, B); 1970 } 1971 1972 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 1973 { 1974 Value *A, *B; 1975 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1976 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1977 (Op0->hasOneUse() || Op1->hasOneUse())) 1978 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 1979 } 1980 1981 { 1982 Value *Y; 1983 // ((X | Y) - X) --> (~X & Y) 1984 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1985 return BinaryOperator::CreateAnd( 1986 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1987 } 1988 1989 { 1990 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 1991 Value *X; 1992 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 1993 m_OneUse(m_Neg(m_Value(X))))))) { 1994 return BinaryOperator::CreateNeg(Builder.CreateAnd( 1995 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 1996 } 1997 } 1998 1999 { 2000 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2001 Constant *C; 2002 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2003 return BinaryOperator::CreateNeg( 2004 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2005 } 2006 } 2007 2008 { 2009 // If we have a subtraction between some value and a select between 2010 // said value and something else, sink subtraction into select hands, i.e.: 2011 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2012 // -> 2013 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2014 // or 2015 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2016 // -> 2017 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2018 // This will result in select between new subtraction and 0. 2019 auto SinkSubIntoSelect = 2020 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2021 auto SubBuilder) -> Instruction * { 2022 Value *Cond, *TrueVal, *FalseVal; 2023 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2024 m_Value(FalseVal))))) 2025 return nullptr; 2026 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2027 return nullptr; 2028 // While it is really tempting to just create two subtractions and let 2029 // InstCombine fold one of those to 0, it isn't possible to do so 2030 // because of worklist visitation order. So ugly it is. 2031 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2032 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2033 Constant *Zero = Constant::getNullValue(Ty); 2034 SelectInst *NewSel = 2035 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2036 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2037 // Preserve prof metadata if any. 2038 NewSel->copyMetadata(cast<Instruction>(*Select)); 2039 return NewSel; 2040 }; 2041 if (Instruction *NewSel = SinkSubIntoSelect( 2042 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2043 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2044 return Builder->CreateSub(OtherHandOfSelect, 2045 /*OtherHandOfSub=*/Op1); 2046 })) 2047 return NewSel; 2048 if (Instruction *NewSel = SinkSubIntoSelect( 2049 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2050 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2051 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2052 OtherHandOfSelect); 2053 })) 2054 return NewSel; 2055 } 2056 2057 // (X - (X & Y)) --> (X & ~Y) 2058 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2059 (Op1->hasOneUse() || isa<Constant>(Y))) 2060 return BinaryOperator::CreateAnd( 2061 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2062 2063 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2064 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2065 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2066 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2067 // As long as Y is freely invertible, this will be neutral or a win. 2068 // Note: We don't generate the inverse max/min, just create the 'not' of 2069 // it and let other folds do the rest. 2070 if (match(Op0, m_Not(m_Value(X))) && 2071 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2072 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2073 Value *Not = Builder.CreateNot(Op1); 2074 return BinaryOperator::CreateSub(Not, X); 2075 } 2076 if (match(Op1, m_Not(m_Value(X))) && 2077 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2078 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2079 Value *Not = Builder.CreateNot(Op0); 2080 return BinaryOperator::CreateSub(X, Not); 2081 } 2082 2083 // TODO: This is the same logic as above but handles the cmp-select idioms 2084 // for min/max, so the use checks are increased to account for the 2085 // extra instructions. If we canonicalize to intrinsics, this block 2086 // can likely be removed. 2087 { 2088 Value *LHS, *RHS, *A; 2089 Value *NotA = Op0, *MinMax = Op1; 2090 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2091 if (!SelectPatternResult::isMinOrMax(SPF)) { 2092 NotA = Op1; 2093 MinMax = Op0; 2094 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2095 } 2096 if (SelectPatternResult::isMinOrMax(SPF) && 2097 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 2098 if (NotA == LHS) 2099 std::swap(LHS, RHS); 2100 // LHS is now Y above and expected to have at least 2 uses (the min/max) 2101 // NotA is expected to have 2 uses from the min/max and 1 from the sub. 2102 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 2103 !NotA->hasNUsesOrMore(4)) { 2104 Value *Not = Builder.CreateNot(MinMax); 2105 if (NotA == Op0) 2106 return BinaryOperator::CreateSub(Not, A); 2107 else 2108 return BinaryOperator::CreateSub(A, Not); 2109 } 2110 } 2111 } 2112 2113 // Optimize pointer differences into the same array into a size. Consider: 2114 // &A[10] - &A[0]: we should compile this to "10". 2115 Value *LHSOp, *RHSOp; 2116 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2117 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2118 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2119 I.hasNoUnsignedWrap())) 2120 return replaceInstUsesWith(I, Res); 2121 2122 // trunc(p)-trunc(q) -> trunc(p-q) 2123 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2124 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2125 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2126 /* IsNUW */ false)) 2127 return replaceInstUsesWith(I, Res); 2128 2129 // Canonicalize a shifty way to code absolute value to the common pattern. 2130 // There are 2 potential commuted variants. 2131 // We're relying on the fact that we only do this transform when the shift has 2132 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2133 // instructions). 2134 Value *A; 2135 const APInt *ShAmt; 2136 Type *Ty = I.getType(); 2137 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2138 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 2139 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2140 // B = ashr i32 A, 31 ; smear the sign bit 2141 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2142 // --> (A < 0) ? -A : A 2143 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 2144 // Copy the nuw/nsw flags from the sub to the negate. 2145 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2146 I.hasNoSignedWrap()); 2147 return SelectInst::Create(Cmp, Neg, A); 2148 } 2149 2150 // If we are subtracting a low-bit masked subset of some value from an add 2151 // of that same value with no low bits changed, that is clearing some low bits 2152 // of the sum: 2153 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2154 const APInt *AddC, *AndC; 2155 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2156 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2157 unsigned BitWidth = Ty->getScalarSizeInBits(); 2158 unsigned Cttz = AddC->countTrailingZeros(); 2159 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2160 if ((HighMask & *AndC).isZero()) 2161 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2162 } 2163 2164 if (Instruction *V = 2165 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2166 return V; 2167 2168 // X - usub.sat(X, Y) => umin(X, Y) 2169 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2170 m_Value(Y))))) 2171 return replaceInstUsesWith( 2172 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2173 2174 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2175 // TODO: The one-use restriction is not strictly necessary, but it may 2176 // require improving other pattern matching and/or codegen. 2177 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2178 return replaceInstUsesWith( 2179 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2180 2181 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2182 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2183 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2184 return BinaryOperator::CreateNeg(USub); 2185 } 2186 2187 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2188 if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) && 2189 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2190 return replaceInstUsesWith( 2191 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2192 {Builder.CreateNot(X)})); 2193 2194 return TryToNarrowDeduceFlags(); 2195 } 2196 2197 /// This eliminates floating-point negation in either 'fneg(X)' or 2198 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2199 static Instruction *foldFNegIntoConstant(Instruction &I) { 2200 // This is limited with one-use because fneg is assumed better for 2201 // reassociation and cheaper in codegen than fmul/fdiv. 2202 // TODO: Should the m_OneUse restriction be removed? 2203 Instruction *FNegOp; 2204 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2205 return nullptr; 2206 2207 Value *X; 2208 Constant *C; 2209 2210 // Fold negation into constant operand. 2211 // -(X * C) --> X * (-C) 2212 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2213 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2214 // -(X / C) --> X / (-C) 2215 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2216 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2217 // -(C / X) --> (-C) / X 2218 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) { 2219 Instruction *FDiv = 2220 BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2221 2222 // Intersect 'nsz' and 'ninf' because those special value exceptions may not 2223 // apply to the fdiv. Everything else propagates from the fneg. 2224 // TODO: We could propagate nsz/ninf from fdiv alone? 2225 FastMathFlags FMF = I.getFastMathFlags(); 2226 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2227 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2228 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2229 return FDiv; 2230 } 2231 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2232 // -(X + C) --> -X + -C --> -C - X 2233 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2234 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); 2235 2236 return nullptr; 2237 } 2238 2239 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2240 InstCombiner::BuilderTy &Builder) { 2241 Value *FNeg; 2242 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2243 return nullptr; 2244 2245 Value *X, *Y; 2246 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2247 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2248 2249 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2250 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2251 2252 return nullptr; 2253 } 2254 2255 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2256 Value *Op = I.getOperand(0); 2257 2258 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 2259 getSimplifyQuery().getWithInstruction(&I))) 2260 return replaceInstUsesWith(I, V); 2261 2262 if (Instruction *X = foldFNegIntoConstant(I)) 2263 return X; 2264 2265 Value *X, *Y; 2266 2267 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2268 if (I.hasNoSignedZeros() && 2269 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2270 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2271 2272 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2273 return R; 2274 2275 // Try to eliminate fneg if at least 1 arm of the select is negated. 2276 Value *Cond; 2277 if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) { 2278 // Unlike most transforms, this one is not safe to propagate nsz unless 2279 // it is present on the original select. (We are conservatively intersecting 2280 // the nsz flags from the select and root fneg instruction.) 2281 auto propagateSelectFMF = [&](SelectInst *S) { 2282 S->copyFastMathFlags(&I); 2283 if (auto *OldSel = dyn_cast<SelectInst>(Op)) 2284 if (!OldSel->hasNoSignedZeros()) 2285 S->setHasNoSignedZeros(false); 2286 }; 2287 // -(Cond ? -P : Y) --> Cond ? P : -Y 2288 Value *P; 2289 if (match(X, m_FNeg(m_Value(P)))) { 2290 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2291 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2292 propagateSelectFMF(NewSel); 2293 return NewSel; 2294 } 2295 // -(Cond ? X : -P) --> Cond ? -X : P 2296 if (match(Y, m_FNeg(m_Value(P)))) { 2297 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2298 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2299 propagateSelectFMF(NewSel); 2300 return NewSel; 2301 } 2302 } 2303 2304 return nullptr; 2305 } 2306 2307 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2308 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 2309 I.getFastMathFlags(), 2310 getSimplifyQuery().getWithInstruction(&I))) 2311 return replaceInstUsesWith(I, V); 2312 2313 if (Instruction *X = foldVectorBinop(I)) 2314 return X; 2315 2316 // Subtraction from -0.0 is the canonical form of fneg. 2317 // fsub -0.0, X ==> fneg X 2318 // fsub nsz 0.0, X ==> fneg nsz X 2319 // 2320 // FIXME This matcher does not respect FTZ or DAZ yet: 2321 // fsub -0.0, Denorm ==> +-0 2322 // fneg Denorm ==> -Denorm 2323 Value *Op; 2324 if (match(&I, m_FNeg(m_Value(Op)))) 2325 return UnaryOperator::CreateFNegFMF(Op, &I); 2326 2327 if (Instruction *X = foldFNegIntoConstant(I)) 2328 return X; 2329 2330 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2331 return R; 2332 2333 Value *X, *Y; 2334 Constant *C; 2335 2336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2337 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2338 // Canonicalize to fadd to make analysis easier. 2339 // This can also help codegen because fadd is commutative. 2340 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2341 // killed later. We still limit that particular transform with 'hasOneUse' 2342 // because an fneg is assumed better/cheaper than a generic fsub. 2343 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2344 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2345 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2346 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2347 } 2348 } 2349 2350 // (-X) - Op1 --> -(X + Op1) 2351 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2352 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2353 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2354 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2355 } 2356 2357 if (isa<Constant>(Op0)) 2358 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2359 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2360 return NV; 2361 2362 // X - C --> X + (-C) 2363 // But don't transform constant expressions because there's an inverse fold 2364 // for X + (-Y) --> X - Y. 2365 if (match(Op1, m_ImmConstant(C))) 2366 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2367 2368 // X - (-Y) --> X + Y 2369 if (match(Op1, m_FNeg(m_Value(Y)))) 2370 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2371 2372 // Similar to above, but look through a cast of the negated value: 2373 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2374 Type *Ty = I.getType(); 2375 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2376 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2377 2378 // X - (fpext(-Y)) --> X + fpext(Y) 2379 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2380 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2381 2382 // Similar to above, but look through fmul/fdiv of the negated value: 2383 // Op0 - (-X * Y) --> Op0 + (X * Y) 2384 // Op0 - (Y * -X) --> Op0 + (X * Y) 2385 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2386 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2387 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2388 } 2389 // Op0 - (-X / Y) --> Op0 + (X / Y) 2390 // Op0 - (X / -Y) --> Op0 + (X / Y) 2391 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2392 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2393 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2394 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2395 } 2396 2397 // Handle special cases for FSub with selects feeding the operation 2398 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2399 return replaceInstUsesWith(I, V); 2400 2401 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2402 // (Y - X) - Y --> -X 2403 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2404 return UnaryOperator::CreateFNegFMF(X, &I); 2405 2406 // Y - (X + Y) --> -X 2407 // Y - (Y + X) --> -X 2408 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2409 return UnaryOperator::CreateFNegFMF(X, &I); 2410 2411 // (X * C) - X --> X * (C - 1.0) 2412 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2413 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2414 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2415 } 2416 // X - (X * C) --> X * (1.0 - C) 2417 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2418 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2419 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2420 } 2421 2422 // Reassociate fsub/fadd sequences to create more fadd instructions and 2423 // reduce dependency chains: 2424 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2425 Value *Z; 2426 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2427 m_Value(Z))))) { 2428 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2429 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2430 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2431 } 2432 2433 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2434 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2435 m_Value(Vec))); 2436 }; 2437 Value *A0, *A1, *V0, *V1; 2438 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2439 V0->getType() == V1->getType()) { 2440 // Difference of sums is sum of differences: 2441 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2442 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2443 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2444 {Sub->getType()}, {A0, Sub}, &I); 2445 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2446 } 2447 2448 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2449 return F; 2450 2451 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2452 // functionality has been subsumed by simple pattern matching here and in 2453 // InstSimplify. We should let a dedicated reassociation pass handle more 2454 // complex pattern matching and remove this from InstCombine. 2455 if (Value *V = FAddCombine(Builder).simplify(&I)) 2456 return replaceInstUsesWith(I, V); 2457 2458 // (X - Y) - Op1 --> X - (Y + Op1) 2459 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2460 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2461 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2462 } 2463 } 2464 2465 return nullptr; 2466 } 2467