1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GetElementPtrTypeIterator.h" 19 #include "llvm/IR/PatternMatch.h" 20 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 namespace { 27 28 /// Class representing coefficient of floating-point addend. 29 /// This class needs to be highly efficient, which is especially true for 30 /// the constructor. As of I write this comment, the cost of the default 31 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 32 /// perform write-merging). 33 /// 34 class FAddendCoef { 35 public: 36 // The constructor has to initialize a APFloat, which is unnecessary for 37 // most addends which have coefficient either 1 or -1. So, the constructor 38 // is expensive. In order to avoid the cost of the constructor, we should 39 // reuse some instances whenever possible. The pre-created instances 40 // FAddCombine::Add[0-5] embodies this idea. 41 // 42 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} 43 ~FAddendCoef(); 44 45 void set(short C) { 46 assert(!insaneIntVal(C) && "Insane coefficient"); 47 IsFp = false; IntVal = C; 48 } 49 50 void set(const APFloat& C); 51 52 void negate(); 53 54 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 55 Value *getValue(Type *) const; 56 57 // If possible, don't define operator+/operator- etc because these 58 // operators inevitably call FAddendCoef's constructor which is not cheap. 59 void operator=(const FAddendCoef &A); 60 void operator+=(const FAddendCoef &A); 61 void operator-=(const FAddendCoef &A); 62 void operator*=(const FAddendCoef &S); 63 64 bool isOne() const { return isInt() && IntVal == 1; } 65 bool isTwo() const { return isInt() && IntVal == 2; } 66 bool isMinusOne() const { return isInt() && IntVal == -1; } 67 bool isMinusTwo() const { return isInt() && IntVal == -2; } 68 69 private: 70 bool insaneIntVal(int V) { return V > 4 || V < -4; } 71 APFloat *getFpValPtr() 72 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } 73 const APFloat *getFpValPtr() const 74 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } 75 76 const APFloat &getFpVal() const { 77 assert(IsFp && BufHasFpVal && "Incorret state"); 78 return *getFpValPtr(); 79 } 80 81 APFloat &getFpVal() { 82 assert(IsFp && BufHasFpVal && "Incorret state"); 83 return *getFpValPtr(); 84 } 85 86 bool isInt() const { return !IsFp; } 87 88 // If the coefficient is represented by an integer, promote it to a 89 // floating point. 90 void convertToFpType(const fltSemantics &Sem); 91 92 // Construct an APFloat from a signed integer. 93 // TODO: We should get rid of this function when APFloat can be constructed 94 // from an *SIGNED* integer. 95 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 96 97 private: 98 bool IsFp; 99 100 // True iff FpValBuf contains an instance of APFloat. 101 bool BufHasFpVal; 102 103 // The integer coefficient of an individual addend is either 1 or -1, 104 // and we try to simplify at most 4 addends from neighboring at most 105 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 106 // is overkill of this end. 107 short IntVal; 108 109 AlignedCharArrayUnion<APFloat> FpValBuf; 110 }; 111 112 /// FAddend is used to represent floating-point addend. An addend is 113 /// represented as <C, V>, where the V is a symbolic value, and C is a 114 /// constant coefficient. A constant addend is represented as <C, 0>. 115 /// 116 class FAddend { 117 public: 118 FAddend() : Val(nullptr) {} 119 120 Value *getSymVal() const { return Val; } 121 const FAddendCoef &getCoef() const { return Coeff; } 122 123 bool isConstant() const { return Val == nullptr; } 124 bool isZero() const { return Coeff.isZero(); } 125 126 void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; } 127 void set(const APFloat& Coefficient, Value *V) 128 { Coeff.set(Coefficient); Val = V; } 129 void set(const ConstantFP* Coefficient, Value *V) 130 { Coeff.set(Coefficient->getValueAPF()); Val = V; } 131 132 void negate() { Coeff.negate(); } 133 134 /// Drill down the U-D chain one step to find the definition of V, and 135 /// try to break the definition into one or two addends. 136 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 137 138 /// Similar to FAddend::drillDownOneStep() except that the value being 139 /// splitted is the addend itself. 140 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 141 142 void operator+=(const FAddend &T) { 143 assert((Val == T.Val) && "Symbolic-values disagree"); 144 Coeff += T.Coeff; 145 } 146 147 private: 148 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 149 150 // This addend has the value of "Coeff * Val". 151 Value *Val; 152 FAddendCoef Coeff; 153 }; 154 155 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 156 /// with its neighboring at most two instructions. 157 /// 158 class FAddCombine { 159 public: 160 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} 161 Value *simplify(Instruction *FAdd); 162 163 private: 164 typedef SmallVector<const FAddend*, 4> AddendVect; 165 166 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 167 168 Value *performFactorization(Instruction *I); 169 170 /// Convert given addend to a Value 171 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 172 173 /// Return the number of instructions needed to emit the N-ary addition. 174 unsigned calcInstrNumber(const AddendVect& Vect); 175 Value *createFSub(Value *Opnd0, Value *Opnd1); 176 Value *createFAdd(Value *Opnd0, Value *Opnd1); 177 Value *createFMul(Value *Opnd0, Value *Opnd1); 178 Value *createFDiv(Value *Opnd0, Value *Opnd1); 179 Value *createFNeg(Value *V); 180 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 181 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 182 183 InstCombiner::BuilderTy *Builder; 184 Instruction *Instr; 185 186 // Debugging stuff are clustered here. 187 #ifndef NDEBUG 188 unsigned CreateInstrNum; 189 void initCreateInstNum() { CreateInstrNum = 0; } 190 void incCreateInstNum() { CreateInstrNum++; } 191 #else 192 void initCreateInstNum() {} 193 void incCreateInstNum() {} 194 #endif 195 }; 196 197 } // anonymous namespace 198 199 //===----------------------------------------------------------------------===// 200 // 201 // Implementation of 202 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 203 // 204 //===----------------------------------------------------------------------===// 205 FAddendCoef::~FAddendCoef() { 206 if (BufHasFpVal) 207 getFpValPtr()->~APFloat(); 208 } 209 210 void FAddendCoef::set(const APFloat& C) { 211 APFloat *P = getFpValPtr(); 212 213 if (isInt()) { 214 // As the buffer is meanless byte stream, we cannot call 215 // APFloat::operator=(). 216 new(P) APFloat(C); 217 } else 218 *P = C; 219 220 IsFp = BufHasFpVal = true; 221 } 222 223 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 224 if (!isInt()) 225 return; 226 227 APFloat *P = getFpValPtr(); 228 if (IntVal > 0) 229 new(P) APFloat(Sem, IntVal); 230 else { 231 new(P) APFloat(Sem, 0 - IntVal); 232 P->changeSign(); 233 } 234 IsFp = BufHasFpVal = true; 235 } 236 237 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 238 if (Val >= 0) 239 return APFloat(Sem, Val); 240 241 APFloat T(Sem, 0 - Val); 242 T.changeSign(); 243 244 return T; 245 } 246 247 void FAddendCoef::operator=(const FAddendCoef &That) { 248 if (That.isInt()) 249 set(That.IntVal); 250 else 251 set(That.getFpVal()); 252 } 253 254 void FAddendCoef::operator+=(const FAddendCoef &That) { 255 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 256 if (isInt() == That.isInt()) { 257 if (isInt()) 258 IntVal += That.IntVal; 259 else 260 getFpVal().add(That.getFpVal(), RndMode); 261 return; 262 } 263 264 if (isInt()) { 265 const APFloat &T = That.getFpVal(); 266 convertToFpType(T.getSemantics()); 267 getFpVal().add(T, RndMode); 268 return; 269 } 270 271 APFloat &T = getFpVal(); 272 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 273 } 274 275 void FAddendCoef::operator-=(const FAddendCoef &That) { 276 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 277 if (isInt() == That.isInt()) { 278 if (isInt()) 279 IntVal -= That.IntVal; 280 else 281 getFpVal().subtract(That.getFpVal(), RndMode); 282 return; 283 } 284 285 if (isInt()) { 286 const APFloat &T = That.getFpVal(); 287 convertToFpType(T.getSemantics()); 288 getFpVal().subtract(T, RndMode); 289 return; 290 } 291 292 APFloat &T = getFpVal(); 293 T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode); 294 } 295 296 void FAddendCoef::operator*=(const FAddendCoef &That) { 297 if (That.isOne()) 298 return; 299 300 if (That.isMinusOne()) { 301 negate(); 302 return; 303 } 304 305 if (isInt() && That.isInt()) { 306 int Res = IntVal * (int)That.IntVal; 307 assert(!insaneIntVal(Res) && "Insane int value"); 308 IntVal = Res; 309 return; 310 } 311 312 const fltSemantics &Semantic = 313 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 314 315 if (isInt()) 316 convertToFpType(Semantic); 317 APFloat &F0 = getFpVal(); 318 319 if (That.isInt()) 320 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 321 APFloat::rmNearestTiesToEven); 322 else 323 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 324 } 325 326 void FAddendCoef::negate() { 327 if (isInt()) 328 IntVal = 0 - IntVal; 329 else 330 getFpVal().changeSign(); 331 } 332 333 Value *FAddendCoef::getValue(Type *Ty) const { 334 return isInt() ? 335 ConstantFP::get(Ty, float(IntVal)) : 336 ConstantFP::get(Ty->getContext(), getFpVal()); 337 } 338 339 // The definition of <Val> Addends 340 // ========================================= 341 // A + B <1, A>, <1,B> 342 // A - B <1, A>, <1,B> 343 // 0 - B <-1, B> 344 // C * A, <C, A> 345 // A + C <1, A> <C, NULL> 346 // 0 +/- 0 <0, NULL> (corner case) 347 // 348 // Legend: A and B are not constant, C is constant 349 // 350 unsigned FAddend::drillValueDownOneStep 351 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 352 Instruction *I = nullptr; 353 if (!Val || !(I = dyn_cast<Instruction>(Val))) 354 return 0; 355 356 unsigned Opcode = I->getOpcode(); 357 358 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 359 ConstantFP *C0, *C1; 360 Value *Opnd0 = I->getOperand(0); 361 Value *Opnd1 = I->getOperand(1); 362 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 363 Opnd0 = nullptr; 364 365 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 366 Opnd1 = nullptr; 367 368 if (Opnd0) { 369 if (!C0) 370 Addend0.set(1, Opnd0); 371 else 372 Addend0.set(C0, nullptr); 373 } 374 375 if (Opnd1) { 376 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 377 if (!C1) 378 Addend.set(1, Opnd1); 379 else 380 Addend.set(C1, nullptr); 381 if (Opcode == Instruction::FSub) 382 Addend.negate(); 383 } 384 385 if (Opnd0 || Opnd1) 386 return Opnd0 && Opnd1 ? 2 : 1; 387 388 // Both operands are zero. Weird! 389 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 390 return 1; 391 } 392 393 if (I->getOpcode() == Instruction::FMul) { 394 Value *V0 = I->getOperand(0); 395 Value *V1 = I->getOperand(1); 396 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 397 Addend0.set(C, V1); 398 return 1; 399 } 400 401 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 402 Addend0.set(C, V0); 403 return 1; 404 } 405 } 406 407 return 0; 408 } 409 410 // Try to break *this* addend into two addends. e.g. Suppose this addend is 411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 412 // i.e. <2.3, X> and <2.3, Y>. 413 // 414 unsigned FAddend::drillAddendDownOneStep 415 (FAddend &Addend0, FAddend &Addend1) const { 416 if (isConstant()) 417 return 0; 418 419 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 420 if (!BreakNum || Coeff.isOne()) 421 return BreakNum; 422 423 Addend0.Scale(Coeff); 424 425 if (BreakNum == 2) 426 Addend1.Scale(Coeff); 427 428 return BreakNum; 429 } 430 431 // Try to perform following optimization on the input instruction I. Return the 432 // simplified expression if was successful; otherwise, return 0. 433 // 434 // Instruction "I" is Simplified into 435 // ------------------------------------------------------- 436 // (x * y) +/- (x * z) x * (y +/- z) 437 // (y / x) +/- (z / x) (y +/- z) / x 438 // 439 Value *FAddCombine::performFactorization(Instruction *I) { 440 assert((I->getOpcode() == Instruction::FAdd || 441 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 442 443 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 444 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 445 446 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 447 return nullptr; 448 449 bool isMpy = false; 450 if (I0->getOpcode() == Instruction::FMul) 451 isMpy = true; 452 else if (I0->getOpcode() != Instruction::FDiv) 453 return nullptr; 454 455 Value *Opnd0_0 = I0->getOperand(0); 456 Value *Opnd0_1 = I0->getOperand(1); 457 Value *Opnd1_0 = I1->getOperand(0); 458 Value *Opnd1_1 = I1->getOperand(1); 459 460 // Input Instr I Factor AddSub0 AddSub1 461 // ---------------------------------------------- 462 // (x*y) +/- (x*z) x y z 463 // (y/x) +/- (z/x) x y z 464 // 465 Value *Factor = nullptr; 466 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 467 468 if (isMpy) { 469 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 470 Factor = Opnd0_0; 471 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 472 Factor = Opnd0_1; 473 474 if (Factor) { 475 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 476 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 477 } 478 } else if (Opnd0_1 == Opnd1_1) { 479 Factor = Opnd0_1; 480 AddSub0 = Opnd0_0; 481 AddSub1 = Opnd1_0; 482 } 483 484 if (!Factor) 485 return nullptr; 486 487 FastMathFlags Flags; 488 Flags.setUnsafeAlgebra(); 489 if (I0) Flags &= I->getFastMathFlags(); 490 if (I1) Flags &= I->getFastMathFlags(); 491 492 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 493 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 494 createFAdd(AddSub0, AddSub1) : 495 createFSub(AddSub0, AddSub1); 496 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 497 const APFloat &F = CFP->getValueAPF(); 498 if (!F.isNormal()) 499 return nullptr; 500 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 501 II->setFastMathFlags(Flags); 502 503 if (isMpy) { 504 Value *RI = createFMul(Factor, NewAddSub); 505 if (Instruction *II = dyn_cast<Instruction>(RI)) 506 II->setFastMathFlags(Flags); 507 return RI; 508 } 509 510 Value *RI = createFDiv(NewAddSub, Factor); 511 if (Instruction *II = dyn_cast<Instruction>(RI)) 512 II->setFastMathFlags(Flags); 513 return RI; 514 } 515 516 Value *FAddCombine::simplify(Instruction *I) { 517 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); 518 519 // Currently we are not able to handle vector type. 520 if (I->getType()->isVectorTy()) 521 return nullptr; 522 523 assert((I->getOpcode() == Instruction::FAdd || 524 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 525 526 // Save the instruction before calling other member-functions. 527 Instr = I; 528 529 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 530 531 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 532 533 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 534 unsigned Opnd0_ExpNum = 0; 535 unsigned Opnd1_ExpNum = 0; 536 537 if (!Opnd0.isConstant()) 538 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 539 540 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 541 if (OpndNum == 2 && !Opnd1.isConstant()) 542 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 543 544 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 545 if (Opnd0_ExpNum && Opnd1_ExpNum) { 546 AddendVect AllOpnds; 547 AllOpnds.push_back(&Opnd0_0); 548 AllOpnds.push_back(&Opnd1_0); 549 if (Opnd0_ExpNum == 2) 550 AllOpnds.push_back(&Opnd0_1); 551 if (Opnd1_ExpNum == 2) 552 AllOpnds.push_back(&Opnd1_1); 553 554 // Compute instruction quota. We should save at least one instruction. 555 unsigned InstQuota = 0; 556 557 Value *V0 = I->getOperand(0); 558 Value *V1 = I->getOperand(1); 559 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 560 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 561 562 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 563 return R; 564 } 565 566 if (OpndNum != 2) { 567 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 568 // splitted into two addends, say "V = X - Y", the instruction would have 569 // been optimized into "I = Y - X" in the previous steps. 570 // 571 const FAddendCoef &CE = Opnd0.getCoef(); 572 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 573 } 574 575 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 576 if (Opnd1_ExpNum) { 577 AddendVect AllOpnds; 578 AllOpnds.push_back(&Opnd0); 579 AllOpnds.push_back(&Opnd1_0); 580 if (Opnd1_ExpNum == 2) 581 AllOpnds.push_back(&Opnd1_1); 582 583 if (Value *R = simplifyFAdd(AllOpnds, 1)) 584 return R; 585 } 586 587 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 588 if (Opnd0_ExpNum) { 589 AddendVect AllOpnds; 590 AllOpnds.push_back(&Opnd1); 591 AllOpnds.push_back(&Opnd0_0); 592 if (Opnd0_ExpNum == 2) 593 AllOpnds.push_back(&Opnd0_1); 594 595 if (Value *R = simplifyFAdd(AllOpnds, 1)) 596 return R; 597 } 598 599 // step 6: Try factorization as the last resort, 600 return performFactorization(I); 601 } 602 603 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 604 unsigned AddendNum = Addends.size(); 605 assert(AddendNum <= 4 && "Too many addends"); 606 607 // For saving intermediate results; 608 unsigned NextTmpIdx = 0; 609 FAddend TmpResult[3]; 610 611 // Points to the constant addend of the resulting simplified expression. 612 // If the resulting expr has constant-addend, this constant-addend is 613 // desirable to reside at the top of the resulting expression tree. Placing 614 // constant close to supper-expr(s) will potentially reveal some optimization 615 // opportunities in super-expr(s). 616 // 617 const FAddend *ConstAdd = nullptr; 618 619 // Simplified addends are placed <SimpVect>. 620 AddendVect SimpVect; 621 622 // The outer loop works on one symbolic-value at a time. Suppose the input 623 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 624 // The symbolic-values will be processed in this order: x, y, z. 625 // 626 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 627 628 const FAddend *ThisAddend = Addends[SymIdx]; 629 if (!ThisAddend) { 630 // This addend was processed before. 631 continue; 632 } 633 634 Value *Val = ThisAddend->getSymVal(); 635 unsigned StartIdx = SimpVect.size(); 636 SimpVect.push_back(ThisAddend); 637 638 // The inner loop collects addends sharing same symbolic-value, and these 639 // addends will be later on folded into a single addend. Following above 640 // example, if the symbolic value "y" is being processed, the inner loop 641 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 642 // be later on folded into "<b1+b2, y>". 643 // 644 for (unsigned SameSymIdx = SymIdx + 1; 645 SameSymIdx < AddendNum; SameSymIdx++) { 646 const FAddend *T = Addends[SameSymIdx]; 647 if (T && T->getSymVal() == Val) { 648 // Set null such that next iteration of the outer loop will not process 649 // this addend again. 650 Addends[SameSymIdx] = nullptr; 651 SimpVect.push_back(T); 652 } 653 } 654 655 // If multiple addends share same symbolic value, fold them together. 656 if (StartIdx + 1 != SimpVect.size()) { 657 FAddend &R = TmpResult[NextTmpIdx ++]; 658 R = *SimpVect[StartIdx]; 659 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 660 R += *SimpVect[Idx]; 661 662 // Pop all addends being folded and push the resulting folded addend. 663 SimpVect.resize(StartIdx); 664 if (Val) { 665 if (!R.isZero()) { 666 SimpVect.push_back(&R); 667 } 668 } else { 669 // Don't push constant addend at this time. It will be the last element 670 // of <SimpVect>. 671 ConstAdd = &R; 672 } 673 } 674 } 675 676 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 677 "out-of-bound access"); 678 679 if (ConstAdd) 680 SimpVect.push_back(ConstAdd); 681 682 Value *Result; 683 if (!SimpVect.empty()) 684 Result = createNaryFAdd(SimpVect, InstrQuota); 685 else { 686 // The addition is folded to 0.0. 687 Result = ConstantFP::get(Instr->getType(), 0.0); 688 } 689 690 return Result; 691 } 692 693 Value *FAddCombine::createNaryFAdd 694 (const AddendVect &Opnds, unsigned InstrQuota) { 695 assert(!Opnds.empty() && "Expect at least one addend"); 696 697 // Step 1: Check if the # of instructions needed exceeds the quota. 698 // 699 unsigned InstrNeeded = calcInstrNumber(Opnds); 700 if (InstrNeeded > InstrQuota) 701 return nullptr; 702 703 initCreateInstNum(); 704 705 // step 2: Emit the N-ary addition. 706 // Note that at most three instructions are involved in Fadd-InstCombine: the 707 // addition in question, and at most two neighboring instructions. 708 // The resulting optimized addition should have at least one less instruction 709 // than the original addition expression tree. This implies that the resulting 710 // N-ary addition has at most two instructions, and we don't need to worry 711 // about tree-height when constructing the N-ary addition. 712 713 Value *LastVal = nullptr; 714 bool LastValNeedNeg = false; 715 716 // Iterate the addends, creating fadd/fsub using adjacent two addends. 717 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 718 I != E; I++) { 719 bool NeedNeg; 720 Value *V = createAddendVal(**I, NeedNeg); 721 if (!LastVal) { 722 LastVal = V; 723 LastValNeedNeg = NeedNeg; 724 continue; 725 } 726 727 if (LastValNeedNeg == NeedNeg) { 728 LastVal = createFAdd(LastVal, V); 729 continue; 730 } 731 732 if (LastValNeedNeg) 733 LastVal = createFSub(V, LastVal); 734 else 735 LastVal = createFSub(LastVal, V); 736 737 LastValNeedNeg = false; 738 } 739 740 if (LastValNeedNeg) { 741 LastVal = createFNeg(LastVal); 742 } 743 744 #ifndef NDEBUG 745 assert(CreateInstrNum == InstrNeeded && 746 "Inconsistent in instruction numbers"); 747 #endif 748 749 return LastVal; 750 } 751 752 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 753 Value *V = Builder->CreateFSub(Opnd0, Opnd1); 754 if (Instruction *I = dyn_cast<Instruction>(V)) 755 createInstPostProc(I); 756 return V; 757 } 758 759 Value *FAddCombine::createFNeg(Value *V) { 760 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 761 Value *NewV = createFSub(Zero, V); 762 if (Instruction *I = dyn_cast<Instruction>(NewV)) 763 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 764 return NewV; 765 } 766 767 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 768 Value *V = Builder->CreateFAdd(Opnd0, Opnd1); 769 if (Instruction *I = dyn_cast<Instruction>(V)) 770 createInstPostProc(I); 771 return V; 772 } 773 774 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 775 Value *V = Builder->CreateFMul(Opnd0, Opnd1); 776 if (Instruction *I = dyn_cast<Instruction>(V)) 777 createInstPostProc(I); 778 return V; 779 } 780 781 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 782 Value *V = Builder->CreateFDiv(Opnd0, Opnd1); 783 if (Instruction *I = dyn_cast<Instruction>(V)) 784 createInstPostProc(I); 785 return V; 786 } 787 788 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 789 NewInstr->setDebugLoc(Instr->getDebugLoc()); 790 791 // Keep track of the number of instruction created. 792 if (!NoNumber) 793 incCreateInstNum(); 794 795 // Propagate fast-math flags 796 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 797 } 798 799 // Return the number of instruction needed to emit the N-ary addition. 800 // NOTE: Keep this function in sync with createAddendVal(). 801 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 802 unsigned OpndNum = Opnds.size(); 803 unsigned InstrNeeded = OpndNum - 1; 804 805 // The number of addends in the form of "(-1)*x". 806 unsigned NegOpndNum = 0; 807 808 // Adjust the number of instructions needed to emit the N-ary add. 809 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 810 I != E; I++) { 811 const FAddend *Opnd = *I; 812 if (Opnd->isConstant()) 813 continue; 814 815 const FAddendCoef &CE = Opnd->getCoef(); 816 if (CE.isMinusOne() || CE.isMinusTwo()) 817 NegOpndNum++; 818 819 // Let the addend be "c * x". If "c == +/-1", the value of the addend 820 // is immediately available; otherwise, it needs exactly one instruction 821 // to evaluate the value. 822 if (!CE.isMinusOne() && !CE.isOne()) 823 InstrNeeded++; 824 } 825 if (NegOpndNum == OpndNum) 826 InstrNeeded++; 827 return InstrNeeded; 828 } 829 830 // Input Addend Value NeedNeg(output) 831 // ================================================================ 832 // Constant C C false 833 // <+/-1, V> V coefficient is -1 834 // <2/-2, V> "fadd V, V" coefficient is -2 835 // <C, V> "fmul V, C" false 836 // 837 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 838 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 839 const FAddendCoef &Coeff = Opnd.getCoef(); 840 841 if (Opnd.isConstant()) { 842 NeedNeg = false; 843 return Coeff.getValue(Instr->getType()); 844 } 845 846 Value *OpndVal = Opnd.getSymVal(); 847 848 if (Coeff.isMinusOne() || Coeff.isOne()) { 849 NeedNeg = Coeff.isMinusOne(); 850 return OpndVal; 851 } 852 853 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 854 NeedNeg = Coeff.isMinusTwo(); 855 return createFAdd(OpndVal, OpndVal); 856 } 857 858 NeedNeg = false; 859 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 860 } 861 862 // If one of the operands only has one non-zero bit, and if the other 863 // operand has a known-zero bit in a more significant place than it (not 864 // including the sign bit) the ripple may go up to and fill the zero, but 865 // won't change the sign. For example, (X & ~4) + 1. 866 static bool checkRippleForAdd(const APInt &Op0KnownZero, 867 const APInt &Op1KnownZero) { 868 APInt Op1MaybeOne = ~Op1KnownZero; 869 // Make sure that one of the operand has at most one bit set to 1. 870 if (Op1MaybeOne.countPopulation() != 1) 871 return false; 872 873 // Find the most significant known 0 other than the sign bit. 874 int BitWidth = Op0KnownZero.getBitWidth(); 875 APInt Op0KnownZeroTemp(Op0KnownZero); 876 Op0KnownZeroTemp.clearBit(BitWidth - 1); 877 int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; 878 879 int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; 880 assert(Op1OnePosition >= 0); 881 882 // This also covers the case of no known zero, since in that case 883 // Op0ZeroPosition is -1. 884 return Op0ZeroPosition >= Op1OnePosition; 885 } 886 887 /// Return true if we can prove that: 888 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 889 /// This basically requires proving that the add in the original type would not 890 /// overflow to change the sign bit or have a carry out. 891 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, 892 Instruction &CxtI) { 893 // There are different heuristics we can use for this. Here are some simple 894 // ones. 895 896 // If LHS and RHS each have at least two sign bits, the addition will look 897 // like 898 // 899 // XX..... + 900 // YY..... 901 // 902 // If the carry into the most significant position is 0, X and Y can't both 903 // be 1 and therefore the carry out of the addition is also 0. 904 // 905 // If the carry into the most significant position is 1, X and Y can't both 906 // be 0 and therefore the carry out of the addition is also 1. 907 // 908 // Since the carry into the most significant position is always equal to 909 // the carry out of the addition, there is no signed overflow. 910 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 911 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 912 return true; 913 914 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 915 APInt LHSKnownZero(BitWidth, 0); 916 APInt LHSKnownOne(BitWidth, 0); 917 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); 918 919 APInt RHSKnownZero(BitWidth, 0); 920 APInt RHSKnownOne(BitWidth, 0); 921 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); 922 923 // Addition of two 2's compliment numbers having opposite signs will never 924 // overflow. 925 if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || 926 (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) 927 return true; 928 929 // Check if carry bit of addition will not cause overflow. 930 if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) 931 return true; 932 if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) 933 return true; 934 935 return false; 936 } 937 938 /// \brief Return true if we can prove that: 939 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 940 /// This basically requires proving that the add in the original type would not 941 /// overflow to change the sign bit or have a carry out. 942 /// TODO: Handle this for Vectors. 943 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, 944 Instruction &CxtI) { 945 // If LHS and RHS each have at least two sign bits, the subtraction 946 // cannot overflow. 947 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 948 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 949 return true; 950 951 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 952 APInt LHSKnownZero(BitWidth, 0); 953 APInt LHSKnownOne(BitWidth, 0); 954 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); 955 956 APInt RHSKnownZero(BitWidth, 0); 957 APInt RHSKnownOne(BitWidth, 0); 958 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); 959 960 // Subtraction of two 2's compliment numbers having identical signs will 961 // never overflow. 962 if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || 963 (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) 964 return true; 965 966 // TODO: implement logic similar to checkRippleForAdd 967 return false; 968 } 969 970 /// \brief Return true if we can prove that: 971 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 972 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, 973 Instruction &CxtI) { 974 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 975 bool LHSKnownNonNegative, LHSKnownNegative; 976 bool RHSKnownNonNegative, RHSKnownNegative; 977 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, 978 &CxtI); 979 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, 980 &CxtI); 981 if (LHSKnownNegative && RHSKnownNonNegative) 982 return true; 983 984 return false; 985 } 986 987 // Checks if any operand is negative and we can convert add to sub. 988 // This function checks for following negative patterns 989 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 990 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 991 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 992 static Value *checkForNegativeOperand(BinaryOperator &I, 993 InstCombiner::BuilderTy *Builder) { 994 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 995 996 // This function creates 2 instructions to replace ADD, we need at least one 997 // of LHS or RHS to have one use to ensure benefit in transform. 998 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 999 return nullptr; 1000 1001 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1002 const APInt *C1 = nullptr, *C2 = nullptr; 1003 1004 // if ONE is on other side, swap 1005 if (match(RHS, m_Add(m_Value(X), m_One()))) 1006 std::swap(LHS, RHS); 1007 1008 if (match(LHS, m_Add(m_Value(X), m_One()))) { 1009 // if XOR on other side, swap 1010 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1011 std::swap(X, RHS); 1012 1013 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 1014 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 1015 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 1016 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 1017 Value *NewAnd = Builder->CreateAnd(Z, *C1); 1018 return Builder->CreateSub(RHS, NewAnd, "sub"); 1019 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 1020 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 1021 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 1022 Value *NewOr = Builder->CreateOr(Z, ~(*C1)); 1023 return Builder->CreateSub(RHS, NewOr, "sub"); 1024 } 1025 } 1026 } 1027 1028 // Restore LHS and RHS 1029 LHS = I.getOperand(0); 1030 RHS = I.getOperand(1); 1031 1032 // if XOR is on other side, swap 1033 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1034 std::swap(LHS, RHS); 1035 1036 // C2 is ODD 1037 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 1038 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 1039 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1040 if (C1->countTrailingZeros() == 0) 1041 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 1042 Value *NewOr = Builder->CreateOr(Z, ~(*C2)); 1043 return Builder->CreateSub(RHS, NewOr, "sub"); 1044 } 1045 return nullptr; 1046 } 1047 1048 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1049 bool Changed = SimplifyAssociativeOrCommutative(I); 1050 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1051 1052 if (Value *V = SimplifyVectorOp(I)) 1053 return replaceInstUsesWith(I, V); 1054 1055 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 1056 I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) 1057 return replaceInstUsesWith(I, V); 1058 1059 // (A*B)+(A*C) -> A*(B+C) etc 1060 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1061 return replaceInstUsesWith(I, V); 1062 1063 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1064 // X + (signbit) --> X ^ signbit 1065 const APInt &Val = CI->getValue(); 1066 if (Val.isSignBit()) 1067 return BinaryOperator::CreateXor(LHS, RHS); 1068 1069 // See if SimplifyDemandedBits can simplify this. This handles stuff like 1070 // (X & 254)+1 -> (X&254)|1 1071 if (SimplifyDemandedInstructionBits(I)) 1072 return &I; 1073 1074 // zext(bool) + C -> bool ? C + 1 : C 1075 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 1076 if (ZI->getSrcTy()->isIntegerTy(1)) 1077 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 1078 1079 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1080 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1081 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 1082 const APInt &RHSVal = CI->getValue(); 1083 unsigned ExtendAmt = 0; 1084 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1085 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1086 if (XorRHS->getValue() == -RHSVal) { 1087 if (RHSVal.isPowerOf2()) 1088 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1089 else if (XorRHS->getValue().isPowerOf2()) 1090 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1091 } 1092 1093 if (ExtendAmt) { 1094 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1095 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1096 ExtendAmt = 0; 1097 } 1098 1099 if (ExtendAmt) { 1100 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 1101 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 1102 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1103 } 1104 1105 // If this is a xor that was canonicalized from a sub, turn it back into 1106 // a sub and fuse this add with it. 1107 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1108 IntegerType *IT = cast<IntegerType>(I.getType()); 1109 APInt LHSKnownOne(IT->getBitWidth(), 0); 1110 APInt LHSKnownZero(IT->getBitWidth(), 0); 1111 computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I); 1112 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 1113 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1114 XorLHS); 1115 } 1116 // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C, 1117 // transform them into (X + (signbit ^ C)) 1118 if (XorRHS->getValue().isSignBit()) 1119 return BinaryOperator::CreateAdd(XorLHS, 1120 ConstantExpr::getXor(XorRHS, CI)); 1121 } 1122 } 1123 1124 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 1125 if (Instruction *NV = FoldOpIntoPhi(I)) 1126 return NV; 1127 1128 if (I.getType()->getScalarType()->isIntegerTy(1)) 1129 return BinaryOperator::CreateXor(LHS, RHS); 1130 1131 // X + X --> X << 1 1132 if (LHS == RHS) { 1133 BinaryOperator *New = 1134 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 1135 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1136 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1137 return New; 1138 } 1139 1140 // -A + B --> B - A 1141 // -A + -B --> -(A + B) 1142 if (Value *LHSV = dyn_castNegVal(LHS)) { 1143 if (!isa<Constant>(RHS)) 1144 if (Value *RHSV = dyn_castNegVal(RHS)) { 1145 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 1146 return BinaryOperator::CreateNeg(NewAdd); 1147 } 1148 1149 return BinaryOperator::CreateSub(RHS, LHSV); 1150 } 1151 1152 // A + -B --> A - B 1153 if (!isa<Constant>(RHS)) 1154 if (Value *V = dyn_castNegVal(RHS)) 1155 return BinaryOperator::CreateSub(LHS, V); 1156 1157 if (Value *V = checkForNegativeOperand(I, Builder)) 1158 return replaceInstUsesWith(I, V); 1159 1160 // A+B --> A|B iff A and B have no bits set in common. 1161 if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT)) 1162 return BinaryOperator::CreateOr(LHS, RHS); 1163 1164 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 1165 Value *X; 1166 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 1167 return BinaryOperator::CreateSub(SubOne(CRHS), X); 1168 } 1169 1170 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1171 // (X & FF00) + xx00 -> (X+xx00) & FF00 1172 Value *X; 1173 ConstantInt *C2; 1174 if (LHS->hasOneUse() && 1175 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1176 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1177 // See if all bits from the first bit set in the Add RHS up are included 1178 // in the mask. First, get the rightmost bit. 1179 const APInt &AddRHSV = CRHS->getValue(); 1180 1181 // Form a mask of all bits from the lowest bit added through the top. 1182 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1183 1184 // See if the and mask includes all of these bits. 1185 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1186 1187 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1188 // Okay, the xform is safe. Insert the new add pronto. 1189 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 1190 return BinaryOperator::CreateAnd(NewAdd, C2); 1191 } 1192 } 1193 1194 // Try to fold constant add into select arguments. 1195 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 1196 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1197 return R; 1198 } 1199 1200 // add (select X 0 (sub n A)) A --> select X A n 1201 { 1202 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1203 Value *A = RHS; 1204 if (!SI) { 1205 SI = dyn_cast<SelectInst>(RHS); 1206 A = LHS; 1207 } 1208 if (SI && SI->hasOneUse()) { 1209 Value *TV = SI->getTrueValue(); 1210 Value *FV = SI->getFalseValue(); 1211 Value *N; 1212 1213 // Can we fold the add into the argument of the select? 1214 // We check both true and false select arguments for a matching subtract. 1215 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1216 // Fold the add into the true select value. 1217 return SelectInst::Create(SI->getCondition(), N, A); 1218 1219 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1220 // Fold the add into the false select value. 1221 return SelectInst::Create(SI->getCondition(), A, N); 1222 } 1223 } 1224 1225 // Check for (add (sext x), y), see if we can merge this into an 1226 // integer add followed by a sext. 1227 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1228 // (add (sext x), cst) --> (sext (add x, cst')) 1229 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1230 Constant *CI = 1231 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1232 if (LHSConv->hasOneUse() && 1233 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 1234 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1235 // Insert the new, smaller add. 1236 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1237 CI, "addconv"); 1238 return new SExtInst(NewAdd, I.getType()); 1239 } 1240 } 1241 1242 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1243 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1244 // Only do this if x/y have the same type, if at last one of them has a 1245 // single use (so we don't increase the number of sexts), and if the 1246 // integer add will not overflow. 1247 if (LHSConv->getOperand(0)->getType() == 1248 RHSConv->getOperand(0)->getType() && 1249 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1250 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 1251 RHSConv->getOperand(0), I)) { 1252 // Insert the new integer add. 1253 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1254 RHSConv->getOperand(0), "addconv"); 1255 return new SExtInst(NewAdd, I.getType()); 1256 } 1257 } 1258 } 1259 1260 // (add (xor A, B) (and A, B)) --> (or A, B) 1261 { 1262 Value *A = nullptr, *B = nullptr; 1263 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 1264 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 1265 match(LHS, m_And(m_Specific(B), m_Specific(A))))) 1266 return BinaryOperator::CreateOr(A, B); 1267 1268 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 1269 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 1270 match(RHS, m_And(m_Specific(B), m_Specific(A))))) 1271 return BinaryOperator::CreateOr(A, B); 1272 } 1273 1274 // (add (or A, B) (and A, B)) --> (add A, B) 1275 { 1276 Value *A = nullptr, *B = nullptr; 1277 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 1278 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 1279 match(LHS, m_And(m_Specific(B), m_Specific(A))))) { 1280 auto *New = BinaryOperator::CreateAdd(A, B); 1281 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1282 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1283 return New; 1284 } 1285 1286 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 1287 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 1288 match(RHS, m_And(m_Specific(B), m_Specific(A))))) { 1289 auto *New = BinaryOperator::CreateAdd(A, B); 1290 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1291 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1292 return New; 1293 } 1294 } 1295 1296 // TODO(jingyue): Consider WillNotOverflowSignedAdd and 1297 // WillNotOverflowUnsignedAdd to reduce the number of invocations of 1298 // computeKnownBits. 1299 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) { 1300 Changed = true; 1301 I.setHasNoSignedWrap(true); 1302 } 1303 if (!I.hasNoUnsignedWrap() && 1304 computeOverflowForUnsignedAdd(LHS, RHS, &I) == 1305 OverflowResult::NeverOverflows) { 1306 Changed = true; 1307 I.setHasNoUnsignedWrap(true); 1308 } 1309 1310 return Changed ? &I : nullptr; 1311 } 1312 1313 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1314 bool Changed = SimplifyAssociativeOrCommutative(I); 1315 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1316 1317 if (Value *V = SimplifyVectorOp(I)) 1318 return replaceInstUsesWith(I, V); 1319 1320 if (Value *V = 1321 SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC)) 1322 return replaceInstUsesWith(I, V); 1323 1324 if (isa<Constant>(RHS)) { 1325 if (isa<PHINode>(LHS)) 1326 if (Instruction *NV = FoldOpIntoPhi(I)) 1327 return NV; 1328 1329 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 1330 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1331 return NV; 1332 } 1333 1334 // -A + B --> B - A 1335 // -A + -B --> -(A + B) 1336 if (Value *LHSV = dyn_castFNegVal(LHS)) { 1337 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); 1338 RI->copyFastMathFlags(&I); 1339 return RI; 1340 } 1341 1342 // A + -B --> A - B 1343 if (!isa<Constant>(RHS)) 1344 if (Value *V = dyn_castFNegVal(RHS)) { 1345 Instruction *RI = BinaryOperator::CreateFSub(LHS, V); 1346 RI->copyFastMathFlags(&I); 1347 return RI; 1348 } 1349 1350 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1351 // integer add followed by a promotion. 1352 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1353 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1354 // ... if the constant fits in the integer value. This is useful for things 1355 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1356 // requires a constant pool load, and generally allows the add to be better 1357 // instcombined. 1358 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 1359 Constant *CI = 1360 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 1361 if (LHSConv->hasOneUse() && 1362 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1363 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1364 // Insert the new integer add. 1365 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1366 CI, "addconv"); 1367 return new SIToFPInst(NewAdd, I.getType()); 1368 } 1369 } 1370 1371 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1372 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1373 // Only do this if x/y have the same type, if at last one of them has a 1374 // single use (so we don't increase the number of int->fp conversions), 1375 // and if the integer add will not overflow. 1376 if (LHSConv->getOperand(0)->getType() == 1377 RHSConv->getOperand(0)->getType() && 1378 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1379 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 1380 RHSConv->getOperand(0), I)) { 1381 // Insert the new integer add. 1382 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1383 RHSConv->getOperand(0),"addconv"); 1384 return new SIToFPInst(NewAdd, I.getType()); 1385 } 1386 } 1387 } 1388 1389 // select C, 0, B + select C, A, 0 -> select C, A, B 1390 { 1391 Value *A1, *B1, *C1, *A2, *B2, *C2; 1392 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && 1393 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { 1394 if (C1 == C2) { 1395 Constant *Z1=nullptr, *Z2=nullptr; 1396 Value *A, *B, *C=C1; 1397 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { 1398 Z1 = dyn_cast<Constant>(A1); A = A2; 1399 Z2 = dyn_cast<Constant>(B2); B = B1; 1400 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { 1401 Z1 = dyn_cast<Constant>(B1); B = B2; 1402 Z2 = dyn_cast<Constant>(A2); A = A1; 1403 } 1404 1405 if (Z1 && Z2 && 1406 (I.hasNoSignedZeros() || 1407 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { 1408 return SelectInst::Create(C, A, B); 1409 } 1410 } 1411 } 1412 } 1413 1414 if (I.hasUnsafeAlgebra()) { 1415 if (Value *V = FAddCombine(Builder).simplify(&I)) 1416 return replaceInstUsesWith(I, V); 1417 } 1418 1419 return Changed ? &I : nullptr; 1420 } 1421 1422 /// Optimize pointer differences into the same array into a size. Consider: 1423 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1424 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1425 /// 1426 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1427 Type *Ty) { 1428 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1429 // this. 1430 bool Swapped = false; 1431 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1432 1433 // For now we require one side to be the base pointer "A" or a constant 1434 // GEP derived from it. 1435 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1436 // (gep X, ...) - X 1437 if (LHSGEP->getOperand(0) == RHS) { 1438 GEP1 = LHSGEP; 1439 Swapped = false; 1440 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1441 // (gep X, ...) - (gep X, ...) 1442 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1443 RHSGEP->getOperand(0)->stripPointerCasts()) { 1444 GEP2 = RHSGEP; 1445 GEP1 = LHSGEP; 1446 Swapped = false; 1447 } 1448 } 1449 } 1450 1451 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1452 // X - (gep X, ...) 1453 if (RHSGEP->getOperand(0) == LHS) { 1454 GEP1 = RHSGEP; 1455 Swapped = true; 1456 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1457 // (gep X, ...) - (gep X, ...) 1458 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1459 LHSGEP->getOperand(0)->stripPointerCasts()) { 1460 GEP2 = LHSGEP; 1461 GEP1 = RHSGEP; 1462 Swapped = true; 1463 } 1464 } 1465 } 1466 1467 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 1468 // multiple users. 1469 if (!GEP1 || 1470 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 1471 return nullptr; 1472 1473 // Emit the offset of the GEP and an intptr_t. 1474 Value *Result = EmitGEPOffset(GEP1); 1475 1476 // If we had a constant expression GEP on the other side offsetting the 1477 // pointer, subtract it from the offset we have. 1478 if (GEP2) { 1479 Value *Offset = EmitGEPOffset(GEP2); 1480 Result = Builder->CreateSub(Result, Offset); 1481 } 1482 1483 // If we have p - gep(p, ...) then we have to negate the result. 1484 if (Swapped) 1485 Result = Builder->CreateNeg(Result, "diff.neg"); 1486 1487 return Builder->CreateIntCast(Result, Ty, true); 1488 } 1489 1490 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1491 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1492 1493 if (Value *V = SimplifyVectorOp(I)) 1494 return replaceInstUsesWith(I, V); 1495 1496 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 1497 I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) 1498 return replaceInstUsesWith(I, V); 1499 1500 // (A*B)-(A*C) -> A*(B-C) etc 1501 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1502 return replaceInstUsesWith(I, V); 1503 1504 // If this is a 'B = x-(-A)', change to B = x+A. 1505 if (Value *V = dyn_castNegVal(Op1)) { 1506 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1507 1508 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1509 assert(BO->getOpcode() == Instruction::Sub && 1510 "Expected a subtraction operator!"); 1511 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1512 Res->setHasNoSignedWrap(true); 1513 } else { 1514 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1515 Res->setHasNoSignedWrap(true); 1516 } 1517 1518 return Res; 1519 } 1520 1521 if (I.getType()->isIntegerTy(1)) 1522 return BinaryOperator::CreateXor(Op0, Op1); 1523 1524 // Replace (-1 - A) with (~A). 1525 if (match(Op0, m_AllOnes())) 1526 return BinaryOperator::CreateNot(Op1); 1527 1528 if (Constant *C = dyn_cast<Constant>(Op0)) { 1529 // C - ~X == X + (1+C) 1530 Value *X = nullptr; 1531 if (match(Op1, m_Not(m_Value(X)))) 1532 return BinaryOperator::CreateAdd(X, AddOne(C)); 1533 1534 // Try to fold constant sub into select arguments. 1535 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1536 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1537 return R; 1538 1539 // C-(X+C2) --> (C-C2)-X 1540 Constant *C2; 1541 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1542 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1543 1544 if (SimplifyDemandedInstructionBits(I)) 1545 return &I; 1546 1547 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1548 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1549 if (X->getType()->getScalarType()->isIntegerTy(1)) 1550 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1551 1552 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1553 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1554 if (X->getType()->getScalarType()->isIntegerTy(1)) 1555 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1556 } 1557 1558 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 1559 // -(X >>u 31) -> (X >>s 31) 1560 // -(X >>s 31) -> (X >>u 31) 1561 if (C->isZero()) { 1562 Value *X; 1563 ConstantInt *CI; 1564 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 1565 // Verify we are shifting out everything but the sign bit. 1566 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) 1567 return BinaryOperator::CreateAShr(X, CI); 1568 1569 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 1570 // Verify we are shifting out everything but the sign bit. 1571 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) 1572 return BinaryOperator::CreateLShr(X, CI); 1573 } 1574 1575 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1576 // zero. 1577 APInt IntVal = C->getValue(); 1578 if ((IntVal + 1).isPowerOf2()) { 1579 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1580 APInt KnownZero(BitWidth, 0); 1581 APInt KnownOne(BitWidth, 0); 1582 computeKnownBits(&I, KnownZero, KnownOne, 0, &I); 1583 if ((IntVal | KnownZero).isAllOnesValue()) { 1584 return BinaryOperator::CreateXor(Op1, C); 1585 } 1586 } 1587 } 1588 1589 { 1590 Value *Y; 1591 // X-(X+Y) == -Y X-(Y+X) == -Y 1592 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 1593 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 1594 return BinaryOperator::CreateNeg(Y); 1595 1596 // (X-Y)-X == -Y 1597 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1598 return BinaryOperator::CreateNeg(Y); 1599 } 1600 1601 // (sub (or A, B) (xor A, B)) --> (and A, B) 1602 { 1603 Value *A = nullptr, *B = nullptr; 1604 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1605 (match(Op0, m_Or(m_Specific(A), m_Specific(B))) || 1606 match(Op0, m_Or(m_Specific(B), m_Specific(A))))) 1607 return BinaryOperator::CreateAnd(A, B); 1608 } 1609 1610 if (Op0->hasOneUse()) { 1611 Value *Y = nullptr; 1612 // ((X | Y) - X) --> (~X & Y) 1613 if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) || 1614 match(Op0, m_Or(m_Specific(Op1), m_Value(Y)))) 1615 return BinaryOperator::CreateAnd( 1616 Y, Builder->CreateNot(Op1, Op1->getName() + ".not")); 1617 } 1618 1619 if (Op1->hasOneUse()) { 1620 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1621 Constant *C = nullptr; 1622 Constant *CI = nullptr; 1623 1624 // (X - (Y - Z)) --> (X + (Z - Y)). 1625 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1626 return BinaryOperator::CreateAdd(Op0, 1627 Builder->CreateSub(Z, Y, Op1->getName())); 1628 1629 // (X - (X & Y)) --> (X & ~Y) 1630 // 1631 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 1632 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 1633 return BinaryOperator::CreateAnd(Op0, 1634 Builder->CreateNot(Y, Y->getName() + ".not")); 1635 1636 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1637 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1638 C->isNotMinSignedValue() && !C->isOneValue()) 1639 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1640 1641 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1642 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1643 if (Value *XNeg = dyn_castNegVal(X)) 1644 return BinaryOperator::CreateShl(XNeg, Y); 1645 1646 // X - A*-B -> X + A*B 1647 // X - -A*B -> X + A*B 1648 Value *A, *B; 1649 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 1650 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 1651 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 1652 1653 // X - A*CI -> X + A*-CI 1654 // X - CI*A -> X + A*-CI 1655 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) || 1656 match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) { 1657 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 1658 return BinaryOperator::CreateAdd(Op0, NewMul); 1659 } 1660 } 1661 1662 // Optimize pointer differences into the same array into a size. Consider: 1663 // &A[10] - &A[0]: we should compile this to "10". 1664 Value *LHSOp, *RHSOp; 1665 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1666 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1667 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1668 return replaceInstUsesWith(I, Res); 1669 1670 // trunc(p)-trunc(q) -> trunc(p-q) 1671 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1672 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1673 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1674 return replaceInstUsesWith(I, Res); 1675 1676 bool Changed = false; 1677 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) { 1678 Changed = true; 1679 I.setHasNoSignedWrap(true); 1680 } 1681 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) { 1682 Changed = true; 1683 I.setHasNoUnsignedWrap(true); 1684 } 1685 1686 return Changed ? &I : nullptr; 1687 } 1688 1689 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1690 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1691 1692 if (Value *V = SimplifyVectorOp(I)) 1693 return replaceInstUsesWith(I, V); 1694 1695 if (Value *V = 1696 SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC)) 1697 return replaceInstUsesWith(I, V); 1698 1699 // fsub nsz 0, X ==> fsub nsz -0.0, X 1700 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { 1701 // Subtraction from -0.0 is the canonical form of fneg. 1702 Instruction *NewI = BinaryOperator::CreateFNeg(Op1); 1703 NewI->copyFastMathFlags(&I); 1704 return NewI; 1705 } 1706 1707 if (isa<Constant>(Op0)) 1708 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1709 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1710 return NV; 1711 1712 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking 1713 // through FP extensions/truncations along the way. 1714 if (Value *V = dyn_castFNegVal(Op1)) { 1715 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); 1716 NewI->copyFastMathFlags(&I); 1717 return NewI; 1718 } 1719 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { 1720 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { 1721 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); 1722 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); 1723 NewI->copyFastMathFlags(&I); 1724 return NewI; 1725 } 1726 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { 1727 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { 1728 Value *NewExt = Builder->CreateFPExt(V, I.getType()); 1729 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); 1730 NewI->copyFastMathFlags(&I); 1731 return NewI; 1732 } 1733 } 1734 1735 if (I.hasUnsafeAlgebra()) { 1736 if (Value *V = FAddCombine(Builder).simplify(&I)) 1737 return replaceInstUsesWith(I, V); 1738 } 1739 1740 return nullptr; 1741 } 1742