1 //===- InstCombineAddSub.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/GetElementPtrTypeIterator.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// AddOne - Add one to a ConstantInt. 23 static Constant *AddOne(Constant *C) { 24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 25 } 26 /// SubOne - Subtract one from a ConstantInt. 27 static Constant *SubOne(ConstantInt *C) { 28 return ConstantInt::get(C->getContext(), C->getValue()-1); 29 } 30 31 32 // dyn_castFoldableMul - If this value is a multiply that can be folded into 33 // other computations (because it has a constant operand), return the 34 // non-constant operand of the multiply, and set CST to point to the multiplier. 35 // Otherwise, return null. 36 // 37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { 38 if (!V->hasOneUse() || !V->getType()->isIntegerTy()) 39 return 0; 40 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (I == 0) return 0; 43 44 if (I->getOpcode() == Instruction::Mul) 45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) 46 return I->getOperand(0); 47 if (I->getOpcode() == Instruction::Shl) 48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { 49 // The multiplier is really 1 << CST. 50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 51 uint32_t CSTVal = CST->getLimitedValue(BitWidth); 52 CST = ConstantInt::get(V->getType()->getContext(), 53 APInt(BitWidth, 1).shl(CSTVal)); 54 return I->getOperand(0); 55 } 56 return 0; 57 } 58 59 60 /// WillNotOverflowSignedAdd - Return true if we can prove that: 61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 62 /// This basically requires proving that the add in the original type would not 63 /// overflow to change the sign bit or have a carry out. 64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { 65 // There are different heuristics we can use for this. Here are some simple 66 // ones. 67 68 // Add has the property that adding any two 2's complement numbers can only 69 // have one carry bit which can change a sign. As such, if LHS and RHS each 70 // have at least two sign bits, we know that the addition of the two values 71 // will sign extend fine. 72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) 73 return true; 74 75 76 // If one of the operands only has one non-zero bit, and if the other operand 77 // has a known-zero bit in a more significant place than it (not including the 78 // sign bit) the ripple may go up to and fill the zero, but won't change the 79 // sign. For example, (X & ~4) + 1. 80 81 // TODO: Implement. 82 83 return false; 84 } 85 86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 87 bool Changed = SimplifyAssociativeOrCommutative(I); 88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 89 90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 91 I.hasNoUnsignedWrap(), TD)) 92 return ReplaceInstUsesWith(I, V); 93 94 // (A*B)+(A*C) -> A*(B+C) etc 95 if (Value *V = SimplifyUsingDistributiveLaws(I)) 96 return ReplaceInstUsesWith(I, V); 97 98 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 99 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { 100 // X + (signbit) --> X ^ signbit 101 const APInt& Val = CI->getValue(); 102 uint32_t BitWidth = Val.getBitWidth(); 103 if (Val == APInt::getSignBit(BitWidth)) 104 return BinaryOperator::CreateXor(LHS, RHS); 105 106 // See if SimplifyDemandedBits can simplify this. This handles stuff like 107 // (X & 254)+1 -> (X&254)|1 108 if (SimplifyDemandedInstructionBits(I)) 109 return &I; 110 111 // zext(bool) + C -> bool ? C + 1 : C 112 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 113 if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext())) 114 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 115 } 116 117 if (isa<PHINode>(LHS)) 118 if (Instruction *NV = FoldOpIntoPhi(I)) 119 return NV; 120 121 ConstantInt *XorRHS = 0; 122 Value *XorLHS = 0; 123 if (isa<ConstantInt>(RHSC) && 124 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 125 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 126 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue(); 127 unsigned ExtendAmt = 0; 128 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 129 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 130 if (XorRHS->getValue() == -RHSVal) { 131 if (RHSVal.isPowerOf2()) 132 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 133 else if (XorRHS->getValue().isPowerOf2()) 134 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 135 } 136 137 if (ExtendAmt) { 138 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 139 if (!MaskedValueIsZero(XorLHS, Mask)) 140 ExtendAmt = 0; 141 } 142 143 if (ExtendAmt) { 144 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 145 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 146 return BinaryOperator::CreateAShr(NewShl, ShAmt); 147 } 148 } 149 } 150 151 if (I.getType()->isIntegerTy(1)) 152 return BinaryOperator::CreateXor(LHS, RHS); 153 154 if (I.getType()->isIntegerTy()) { 155 // X + X --> X << 1 156 if (LHS == RHS) 157 return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 158 } 159 160 // -A + B --> B - A 161 // -A + -B --> -(A + B) 162 if (Value *LHSV = dyn_castNegVal(LHS)) { 163 if (LHS->getType()->isIntOrIntVectorTy()) { 164 if (Value *RHSV = dyn_castNegVal(RHS)) { 165 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 166 return BinaryOperator::CreateNeg(NewAdd); 167 } 168 } 169 170 return BinaryOperator::CreateSub(RHS, LHSV); 171 } 172 173 // A + -B --> A - B 174 if (!isa<Constant>(RHS)) 175 if (Value *V = dyn_castNegVal(RHS)) 176 return BinaryOperator::CreateSub(LHS, V); 177 178 179 ConstantInt *C2; 180 if (Value *X = dyn_castFoldableMul(LHS, C2)) { 181 if (X == RHS) // X*C + X --> X * (C+1) 182 return BinaryOperator::CreateMul(RHS, AddOne(C2)); 183 184 // X*C1 + X*C2 --> X * (C1+C2) 185 ConstantInt *C1; 186 if (X == dyn_castFoldableMul(RHS, C1)) 187 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); 188 } 189 190 // X + X*C --> X * (C+1) 191 if (dyn_castFoldableMul(RHS, C2) == LHS) 192 return BinaryOperator::CreateMul(LHS, AddOne(C2)); 193 194 // A+B --> A|B iff A and B have no bits set in common. 195 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 196 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); 197 APInt LHSKnownOne(IT->getBitWidth(), 0); 198 APInt LHSKnownZero(IT->getBitWidth(), 0); 199 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); 200 if (LHSKnownZero != 0) { 201 APInt RHSKnownOne(IT->getBitWidth(), 0); 202 APInt RHSKnownZero(IT->getBitWidth(), 0); 203 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); 204 205 // No bits in common -> bitwise or. 206 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 207 return BinaryOperator::CreateOr(LHS, RHS); 208 } 209 } 210 211 // W*X + Y*Z --> W * (X+Z) iff W == Y 212 if (I.getType()->isIntOrIntVectorTy()) { 213 Value *W, *X, *Y, *Z; 214 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && 215 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { 216 if (W != Y) { 217 if (W == Z) { 218 std::swap(Y, Z); 219 } else if (Y == X) { 220 std::swap(W, X); 221 } else if (X == Z) { 222 std::swap(Y, Z); 223 std::swap(W, X); 224 } 225 } 226 227 if (W == Y) { 228 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); 229 return BinaryOperator::CreateMul(W, NewAdd); 230 } 231 } 232 } 233 234 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 235 Value *X = 0; 236 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 237 return BinaryOperator::CreateSub(SubOne(CRHS), X); 238 239 // (X & FF00) + xx00 -> (X+xx00) & FF00 240 if (LHS->hasOneUse() && 241 match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { 242 Constant *Anded = ConstantExpr::getAnd(CRHS, C2); 243 if (Anded == CRHS) { 244 // See if all bits from the first bit set in the Add RHS up are included 245 // in the mask. First, get the rightmost bit. 246 const APInt &AddRHSV = CRHS->getValue(); 247 248 // Form a mask of all bits from the lowest bit added through the top. 249 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 250 251 // See if the and mask includes all of these bits. 252 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 253 254 if (AddRHSHighBits == AddRHSHighBitsAnd) { 255 // Okay, the xform is safe. Insert the new add pronto. 256 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 257 return BinaryOperator::CreateAnd(NewAdd, C2); 258 } 259 } 260 } 261 262 // Try to fold constant add into select arguments. 263 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 264 if (Instruction *R = FoldOpIntoSelect(I, SI)) 265 return R; 266 } 267 268 // add (select X 0 (sub n A)) A --> select X A n 269 { 270 SelectInst *SI = dyn_cast<SelectInst>(LHS); 271 Value *A = RHS; 272 if (!SI) { 273 SI = dyn_cast<SelectInst>(RHS); 274 A = LHS; 275 } 276 if (SI && SI->hasOneUse()) { 277 Value *TV = SI->getTrueValue(); 278 Value *FV = SI->getFalseValue(); 279 Value *N; 280 281 // Can we fold the add into the argument of the select? 282 // We check both true and false select arguments for a matching subtract. 283 if (match(FV, m_Zero()) && 284 match(TV, m_Sub(m_Value(N), m_Specific(A)))) 285 // Fold the add into the true select value. 286 return SelectInst::Create(SI->getCondition(), N, A); 287 if (match(TV, m_Zero()) && 288 match(FV, m_Sub(m_Value(N), m_Specific(A)))) 289 // Fold the add into the false select value. 290 return SelectInst::Create(SI->getCondition(), A, N); 291 } 292 } 293 294 // Check for (add (sext x), y), see if we can merge this into an 295 // integer add followed by a sext. 296 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 297 // (add (sext x), cst) --> (sext (add x, cst')) 298 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 299 Constant *CI = 300 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 301 if (LHSConv->hasOneUse() && 302 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 303 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 304 // Insert the new, smaller add. 305 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 306 CI, "addconv"); 307 return new SExtInst(NewAdd, I.getType()); 308 } 309 } 310 311 // (add (sext x), (sext y)) --> (sext (add int x, y)) 312 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 313 // Only do this if x/y have the same type, if at last one of them has a 314 // single use (so we don't increase the number of sexts), and if the 315 // integer add will not overflow. 316 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 317 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 318 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 319 RHSConv->getOperand(0))) { 320 // Insert the new integer add. 321 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 322 RHSConv->getOperand(0), "addconv"); 323 return new SExtInst(NewAdd, I.getType()); 324 } 325 } 326 } 327 328 return Changed ? &I : 0; 329 } 330 331 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 332 bool Changed = SimplifyAssociativeOrCommutative(I); 333 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 334 335 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 336 // X + 0 --> X 337 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 338 if (CFP->isExactlyValue(ConstantFP::getNegativeZero 339 (I.getType())->getValueAPF())) 340 return ReplaceInstUsesWith(I, LHS); 341 } 342 343 if (isa<PHINode>(LHS)) 344 if (Instruction *NV = FoldOpIntoPhi(I)) 345 return NV; 346 } 347 348 // -A + B --> B - A 349 // -A + -B --> -(A + B) 350 if (Value *LHSV = dyn_castFNegVal(LHS)) 351 return BinaryOperator::CreateFSub(RHS, LHSV); 352 353 // A + -B --> A - B 354 if (!isa<Constant>(RHS)) 355 if (Value *V = dyn_castFNegVal(RHS)) 356 return BinaryOperator::CreateFSub(LHS, V); 357 358 // Check for X+0.0. Simplify it to X if we know X is not -0.0. 359 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 360 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) 361 return ReplaceInstUsesWith(I, LHS); 362 363 // Check for (fadd double (sitofp x), y), see if we can merge this into an 364 // integer add followed by a promotion. 365 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 366 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 367 // ... if the constant fits in the integer value. This is useful for things 368 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 369 // requires a constant pool load, and generally allows the add to be better 370 // instcombined. 371 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 372 Constant *CI = 373 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 374 if (LHSConv->hasOneUse() && 375 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 376 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 377 // Insert the new integer add. 378 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 379 CI, "addconv"); 380 return new SIToFPInst(NewAdd, I.getType()); 381 } 382 } 383 384 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 385 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 386 // Only do this if x/y have the same type, if at last one of them has a 387 // single use (so we don't increase the number of int->fp conversions), 388 // and if the integer add will not overflow. 389 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 390 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 391 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 392 RHSConv->getOperand(0))) { 393 // Insert the new integer add. 394 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 395 RHSConv->getOperand(0),"addconv"); 396 return new SIToFPInst(NewAdd, I.getType()); 397 } 398 } 399 } 400 401 return Changed ? &I : 0; 402 } 403 404 405 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the 406 /// code necessary to compute the offset from the base pointer (without adding 407 /// in the base pointer). Return the result as a signed integer of intptr size. 408 Value *InstCombiner::EmitGEPOffset(User *GEP) { 409 TargetData &TD = *getTargetData(); 410 gep_type_iterator GTI = gep_type_begin(GEP); 411 const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext()); 412 Value *Result = Constant::getNullValue(IntPtrTy); 413 414 // Build a mask for high order bits. 415 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 416 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 417 418 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; 419 ++i, ++GTI) { 420 Value *Op = *i; 421 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; 422 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { 423 if (OpC->isZero()) continue; 424 425 // Handle a struct index, which adds its field offset to the pointer. 426 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 427 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 428 429 Result = Builder->CreateAdd(Result, 430 ConstantInt::get(IntPtrTy, Size), 431 GEP->getName()+".offs"); 432 continue; 433 } 434 435 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 436 Constant *OC = 437 ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); 438 Scale = ConstantExpr::getMul(OC, Scale); 439 // Emit an add instruction. 440 Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); 441 continue; 442 } 443 // Convert to correct type. 444 if (Op->getType() != IntPtrTy) 445 Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); 446 if (Size != 1) { 447 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 448 // We'll let instcombine(mul) convert this to a shl if possible. 449 Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx"); 450 } 451 452 // Emit an add instruction. 453 Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); 454 } 455 return Result; 456 } 457 458 459 460 461 /// Optimize pointer differences into the same array into a size. Consider: 462 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 463 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 464 /// 465 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 466 const Type *Ty) { 467 assert(TD && "Must have target data info for this"); 468 469 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 470 // this. 471 bool Swapped = false; 472 GetElementPtrInst *GEP = 0; 473 ConstantExpr *CstGEP = 0; 474 475 // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo". 476 // For now we require one side to be the base pointer "A" or a constant 477 // expression derived from it. 478 if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) { 479 // (gep X, ...) - X 480 if (LHSGEP->getOperand(0) == RHS) { 481 GEP = LHSGEP; 482 Swapped = false; 483 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) { 484 // (gep X, ...) - (ce_gep X, ...) 485 if (CE->getOpcode() == Instruction::GetElementPtr && 486 LHSGEP->getOperand(0) == CE->getOperand(0)) { 487 CstGEP = CE; 488 GEP = LHSGEP; 489 Swapped = false; 490 } 491 } 492 } 493 494 if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) { 495 // X - (gep X, ...) 496 if (RHSGEP->getOperand(0) == LHS) { 497 GEP = RHSGEP; 498 Swapped = true; 499 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) { 500 // (ce_gep X, ...) - (gep X, ...) 501 if (CE->getOpcode() == Instruction::GetElementPtr && 502 RHSGEP->getOperand(0) == CE->getOperand(0)) { 503 CstGEP = CE; 504 GEP = RHSGEP; 505 Swapped = true; 506 } 507 } 508 } 509 510 if (GEP == 0) 511 return 0; 512 513 // Emit the offset of the GEP and an intptr_t. 514 Value *Result = EmitGEPOffset(GEP); 515 516 // If we had a constant expression GEP on the other side offsetting the 517 // pointer, subtract it from the offset we have. 518 if (CstGEP) { 519 Value *CstOffset = EmitGEPOffset(CstGEP); 520 Result = Builder->CreateSub(Result, CstOffset); 521 } 522 523 524 // If we have p - gep(p, ...) then we have to negate the result. 525 if (Swapped) 526 Result = Builder->CreateNeg(Result, "diff.neg"); 527 528 return Builder->CreateIntCast(Result, Ty, true); 529 } 530 531 532 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 533 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 534 535 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 536 I.hasNoUnsignedWrap(), TD)) 537 return ReplaceInstUsesWith(I, V); 538 539 // (A*B)-(A*C) -> A*(B-C) etc 540 if (Value *V = SimplifyUsingDistributiveLaws(I)) 541 return ReplaceInstUsesWith(I, V); 542 543 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. 544 if (Value *V = dyn_castNegVal(Op1)) { 545 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 546 Res->setHasNoSignedWrap(I.hasNoSignedWrap()); 547 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 548 return Res; 549 } 550 551 if (I.getType()->isIntegerTy(1)) 552 return BinaryOperator::CreateXor(Op0, Op1); 553 554 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 555 // Replace (-1 - A) with (~A). 556 if (C->isAllOnesValue()) 557 return BinaryOperator::CreateNot(Op1); 558 559 // C - ~X == X + (1+C) 560 Value *X = 0; 561 if (match(Op1, m_Not(m_Value(X)))) 562 return BinaryOperator::CreateAdd(X, AddOne(C)); 563 564 // -(X >>u 31) -> (X >>s 31) 565 // -(X >>s 31) -> (X >>u 31) 566 if (C->isZero()) { 567 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) { 568 if (SI->getOpcode() == Instruction::LShr) { 569 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { 570 // Check to see if we are shifting out everything but the sign bit. 571 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == 572 SI->getType()->getPrimitiveSizeInBits()-1) { 573 // Ok, the transformation is safe. Insert AShr. 574 return BinaryOperator::Create(Instruction::AShr, 575 SI->getOperand(0), CU, SI->getName()); 576 } 577 } 578 } else if (SI->getOpcode() == Instruction::AShr) { 579 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { 580 // Check to see if we are shifting out everything but the sign bit. 581 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == 582 SI->getType()->getPrimitiveSizeInBits()-1) { 583 // Ok, the transformation is safe. Insert LShr. 584 return BinaryOperator::CreateLShr( 585 SI->getOperand(0), CU, SI->getName()); 586 } 587 } 588 } 589 } 590 } 591 592 // Try to fold constant sub into select arguments. 593 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 594 if (Instruction *R = FoldOpIntoSelect(I, SI)) 595 return R; 596 597 // C - zext(bool) -> bool ? C - 1 : C 598 if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) 599 if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext())) 600 return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); 601 } 602 603 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { 604 if (Op1I->getOpcode() == Instruction::Add) { 605 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y 606 return BinaryOperator::CreateNeg(Op1I->getOperand(1), 607 I.getName()); 608 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y 609 return BinaryOperator::CreateNeg(Op1I->getOperand(0), 610 I.getName()); 611 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { 612 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) 613 // C1-(X+C2) --> (C1-C2)-X 614 return BinaryOperator::CreateSub( 615 ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0)); 616 } 617 } 618 619 if (Op1I->hasOneUse()) { 620 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression 621 // is not used by anyone else... 622 // 623 if (Op1I->getOpcode() == Instruction::Sub) { 624 // Swap the two operands of the subexpr... 625 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); 626 Op1I->setOperand(0, IIOp1); 627 Op1I->setOperand(1, IIOp0); 628 629 // Create the new top level add instruction... 630 return BinaryOperator::CreateAdd(Op0, Op1); 631 } 632 633 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... 634 // 635 if (Op1I->getOpcode() == Instruction::And && 636 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { 637 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); 638 639 Value *NewNot = Builder->CreateNot(OtherOp, "B.not"); 640 return BinaryOperator::CreateAnd(Op0, NewNot); 641 } 642 643 // 0 - (X sdiv C) -> (X sdiv -C) 644 if (Op1I->getOpcode() == Instruction::SDiv) 645 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) 646 if (CSI->isZero()) 647 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1))) 648 return BinaryOperator::CreateSDiv(Op1I->getOperand(0), 649 ConstantExpr::getNeg(DivRHS)); 650 651 // 0 - (C << X) -> (-C << X) 652 if (Op1I->getOpcode() == Instruction::Shl) 653 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) 654 if (CSI->isZero()) 655 if (Value *ShlLHSNeg = dyn_castNegVal(Op1I->getOperand(0))) 656 return BinaryOperator::CreateShl(ShlLHSNeg, Op1I->getOperand(1)); 657 658 // X - X*C --> X * (1-C) 659 ConstantInt *C2 = 0; 660 if (dyn_castFoldableMul(Op1I, C2) == Op0) { 661 Constant *CP1 = 662 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), 663 C2); 664 return BinaryOperator::CreateMul(Op0, CP1); 665 } 666 667 // X - A*-B -> X + A*B 668 // X - -A*B -> X + A*B 669 Value *A, *B; 670 if (match(Op1I, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 671 match(Op1I, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) { 672 Value *NewMul = Builder->CreateMul(A, B); 673 return BinaryOperator::CreateAdd(Op0, NewMul); 674 } 675 676 // X - A*Cst -> X + A*-Cst 677 // X - Cst*A -> X + A*-Cst 678 ConstantInt *BCst; 679 if (match(Op1I, m_Mul(m_Value(A), m_ConstantInt(BCst))) || 680 match(Op1I, m_Mul(m_ConstantInt(BCst), m_Value(A)))) { 681 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(BCst)); 682 return BinaryOperator::CreateAdd(Op0, NewMul); 683 } 684 } 685 } 686 687 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 688 if (Op0I->getOpcode() == Instruction::Sub) { 689 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y 690 return BinaryOperator::CreateNeg(Op0I->getOperand(1), 691 I.getName()); 692 } 693 } 694 695 ConstantInt *C1; 696 if (Value *X = dyn_castFoldableMul(Op0, C1)) { 697 if (X == Op1) // X*C - X --> X * (C-1) 698 return BinaryOperator::CreateMul(Op1, SubOne(C1)); 699 700 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) 701 if (X == dyn_castFoldableMul(Op1, C2)) 702 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); 703 } 704 705 // Optimize pointer differences into the same array into a size. Consider: 706 // &A[10] - &A[0]: we should compile this to "10". 707 if (TD) { 708 Value *LHSOp, *RHSOp; 709 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 710 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 711 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 712 return ReplaceInstUsesWith(I, Res); 713 714 // trunc(p)-trunc(q) -> trunc(p-q) 715 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 716 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 717 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 718 return ReplaceInstUsesWith(I, Res); 719 } 720 721 return 0; 722 } 723 724 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 725 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 726 727 // If this is a 'B = x-(-A)', change to B = x+A... 728 if (Value *V = dyn_castFNegVal(Op1)) 729 return BinaryOperator::CreateFAdd(Op0, V); 730 731 return 0; 732 } 733