1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include <cassert>
33 #include <utility>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "instcombine"
39 
40 namespace {
41 
42   /// Class representing coefficient of floating-point addend.
43   /// This class needs to be highly efficient, which is especially true for
44   /// the constructor. As of I write this comment, the cost of the default
45   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46   /// perform write-merging).
47   ///
48   class FAddendCoef {
49   public:
50     // The constructor has to initialize a APFloat, which is unnecessary for
51     // most addends which have coefficient either 1 or -1. So, the constructor
52     // is expensive. In order to avoid the cost of the constructor, we should
53     // reuse some instances whenever possible. The pre-created instances
54     // FAddCombine::Add[0-5] embodies this idea.
55     FAddendCoef() = default;
56     ~FAddendCoef();
57 
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     void set(short C) {
65       assert(!insaneIntVal(C) && "Insane coefficient");
66       IsFp = false; IntVal = C;
67     }
68 
69     void set(const APFloat& C);
70 
71     void negate();
72 
73     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74     Value *getValue(Type *) const;
75 
76     bool isOne() const { return isInt() && IntVal == 1; }
77     bool isTwo() const { return isInt() && IntVal == 2; }
78     bool isMinusOne() const { return isInt() && IntVal == -1; }
79     bool isMinusTwo() const { return isInt() && IntVal == -2; }
80 
81   private:
82     bool insaneIntVal(int V) { return V > 4 || V < -4; }
83 
84     APFloat *getFpValPtr()
85       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86 
87     const APFloat *getFpValPtr() const
88       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89 
90     const APFloat &getFpVal() const {
91       assert(IsFp && BufHasFpVal && "Incorret state");
92       return *getFpValPtr();
93     }
94 
95     APFloat &getFpVal() {
96       assert(IsFp && BufHasFpVal && "Incorret state");
97       return *getFpValPtr();
98     }
99 
100     bool isInt() const { return !IsFp; }
101 
102     // If the coefficient is represented by an integer, promote it to a
103     // floating point.
104     void convertToFpType(const fltSemantics &Sem);
105 
106     // Construct an APFloat from a signed integer.
107     // TODO: We should get rid of this function when APFloat can be constructed
108     //       from an *SIGNED* integer.
109     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110 
111     bool IsFp = false;
112 
113     // True iff FpValBuf contains an instance of APFloat.
114     bool BufHasFpVal = false;
115 
116     // The integer coefficient of an individual addend is either 1 or -1,
117     // and we try to simplify at most 4 addends from neighboring at most
118     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119     // is overkill of this end.
120     short IntVal = 0;
121 
122     AlignedCharArrayUnion<APFloat> FpValBuf;
123   };
124 
125   /// FAddend is used to represent floating-point addend. An addend is
126   /// represented as <C, V>, where the V is a symbolic value, and C is a
127   /// constant coefficient. A constant addend is represented as <C, 0>.
128   class FAddend {
129   public:
130     FAddend() = default;
131 
132     void operator+=(const FAddend &T) {
133       assert((Val == T.Val) && "Symbolic-values disagree");
134       Coeff += T.Coeff;
135     }
136 
137     Value *getSymVal() const { return Val; }
138     const FAddendCoef &getCoef() const { return Coeff; }
139 
140     bool isConstant() const { return Val == nullptr; }
141     bool isZero() const { return Coeff.isZero(); }
142 
143     void set(short Coefficient, Value *V) {
144       Coeff.set(Coefficient);
145       Val = V;
146     }
147     void set(const APFloat &Coefficient, Value *V) {
148       Coeff.set(Coefficient);
149       Val = V;
150     }
151     void set(const ConstantFP *Coefficient, Value *V) {
152       Coeff.set(Coefficient->getValueAPF());
153       Val = V;
154     }
155 
156     void negate() { Coeff.negate(); }
157 
158     /// Drill down the U-D chain one step to find the definition of V, and
159     /// try to break the definition into one or two addends.
160     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161 
162     /// Similar to FAddend::drillDownOneStep() except that the value being
163     /// splitted is the addend itself.
164     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165 
166   private:
167     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168 
169     // This addend has the value of "Coeff * Val".
170     Value *Val = nullptr;
171     FAddendCoef Coeff;
172   };
173 
174   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175   /// with its neighboring at most two instructions.
176   ///
177   class FAddCombine {
178   public:
179     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180 
181     Value *simplify(Instruction *FAdd);
182 
183   private:
184     using AddendVect = SmallVector<const FAddend *, 4>;
185 
186     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187 
188     /// Convert given addend to a Value
189     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190 
191     /// Return the number of instructions needed to emit the N-ary addition.
192     unsigned calcInstrNumber(const AddendVect& Vect);
193 
194     Value *createFSub(Value *Opnd0, Value *Opnd1);
195     Value *createFAdd(Value *Opnd0, Value *Opnd1);
196     Value *createFMul(Value *Opnd0, Value *Opnd1);
197     Value *createFNeg(Value *V);
198     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200 
201      // Debugging stuff are clustered here.
202     #ifndef NDEBUG
203       unsigned CreateInstrNum;
204       void initCreateInstNum() { CreateInstrNum = 0; }
205       void incCreateInstNum() { CreateInstrNum++; }
206     #else
207       void initCreateInstNum() {}
208       void incCreateInstNum() {}
209     #endif
210 
211     InstCombiner::BuilderTy &Builder;
212     Instruction *Instr = nullptr;
213   };
214 
215 } // end anonymous namespace
216 
217 //===----------------------------------------------------------------------===//
218 //
219 // Implementation of
220 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221 //
222 //===----------------------------------------------------------------------===//
223 FAddendCoef::~FAddendCoef() {
224   if (BufHasFpVal)
225     getFpValPtr()->~APFloat();
226 }
227 
228 void FAddendCoef::set(const APFloat& C) {
229   APFloat *P = getFpValPtr();
230 
231   if (isInt()) {
232     // As the buffer is meanless byte stream, we cannot call
233     // APFloat::operator=().
234     new(P) APFloat(C);
235   } else
236     *P = C;
237 
238   IsFp = BufHasFpVal = true;
239 }
240 
241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242   if (!isInt())
243     return;
244 
245   APFloat *P = getFpValPtr();
246   if (IntVal > 0)
247     new(P) APFloat(Sem, IntVal);
248   else {
249     new(P) APFloat(Sem, 0 - IntVal);
250     P->changeSign();
251   }
252   IsFp = BufHasFpVal = true;
253 }
254 
255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256   if (Val >= 0)
257     return APFloat(Sem, Val);
258 
259   APFloat T(Sem, 0 - Val);
260   T.changeSign();
261 
262   return T;
263 }
264 
265 void FAddendCoef::operator=(const FAddendCoef &That) {
266   if (That.isInt())
267     set(That.IntVal);
268   else
269     set(That.getFpVal());
270 }
271 
272 void FAddendCoef::operator+=(const FAddendCoef &That) {
273   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
274   if (isInt() == That.isInt()) {
275     if (isInt())
276       IntVal += That.IntVal;
277     else
278       getFpVal().add(That.getFpVal(), RndMode);
279     return;
280   }
281 
282   if (isInt()) {
283     const APFloat &T = That.getFpVal();
284     convertToFpType(T.getSemantics());
285     getFpVal().add(T, RndMode);
286     return;
287   }
288 
289   APFloat &T = getFpVal();
290   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291 }
292 
293 void FAddendCoef::operator*=(const FAddendCoef &That) {
294   if (That.isOne())
295     return;
296 
297   if (That.isMinusOne()) {
298     negate();
299     return;
300   }
301 
302   if (isInt() && That.isInt()) {
303     int Res = IntVal * (int)That.IntVal;
304     assert(!insaneIntVal(Res) && "Insane int value");
305     IntVal = Res;
306     return;
307   }
308 
309   const fltSemantics &Semantic =
310     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311 
312   if (isInt())
313     convertToFpType(Semantic);
314   APFloat &F0 = getFpVal();
315 
316   if (That.isInt())
317     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                 APFloat::rmNearestTiesToEven);
319   else
320     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321 }
322 
323 void FAddendCoef::negate() {
324   if (isInt())
325     IntVal = 0 - IntVal;
326   else
327     getFpVal().changeSign();
328 }
329 
330 Value *FAddendCoef::getValue(Type *Ty) const {
331   return isInt() ?
332     ConstantFP::get(Ty, float(IntVal)) :
333     ConstantFP::get(Ty->getContext(), getFpVal());
334 }
335 
336 // The definition of <Val>     Addends
337 // =========================================
338 //  A + B                     <1, A>, <1,B>
339 //  A - B                     <1, A>, <1,B>
340 //  0 - B                     <-1, B>
341 //  C * A,                    <C, A>
342 //  A + C                     <1, A> <C, NULL>
343 //  0 +/- 0                   <0, NULL> (corner case)
344 //
345 // Legend: A and B are not constant, C is constant
346 unsigned FAddend::drillValueDownOneStep
347   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348   Instruction *I = nullptr;
349   if (!Val || !(I = dyn_cast<Instruction>(Val)))
350     return 0;
351 
352   unsigned Opcode = I->getOpcode();
353 
354   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355     ConstantFP *C0, *C1;
356     Value *Opnd0 = I->getOperand(0);
357     Value *Opnd1 = I->getOperand(1);
358     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359       Opnd0 = nullptr;
360 
361     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362       Opnd1 = nullptr;
363 
364     if (Opnd0) {
365       if (!C0)
366         Addend0.set(1, Opnd0);
367       else
368         Addend0.set(C0, nullptr);
369     }
370 
371     if (Opnd1) {
372       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373       if (!C1)
374         Addend.set(1, Opnd1);
375       else
376         Addend.set(C1, nullptr);
377       if (Opcode == Instruction::FSub)
378         Addend.negate();
379     }
380 
381     if (Opnd0 || Opnd1)
382       return Opnd0 && Opnd1 ? 2 : 1;
383 
384     // Both operands are zero. Weird!
385     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386     return 1;
387   }
388 
389   if (I->getOpcode() == Instruction::FMul) {
390     Value *V0 = I->getOperand(0);
391     Value *V1 = I->getOperand(1);
392     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393       Addend0.set(C, V1);
394       return 1;
395     }
396 
397     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398       Addend0.set(C, V0);
399       return 1;
400     }
401   }
402 
403   return 0;
404 }
405 
406 // Try to break *this* addend into two addends. e.g. Suppose this addend is
407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408 // i.e. <2.3, X> and <2.3, Y>.
409 unsigned FAddend::drillAddendDownOneStep
410   (FAddend &Addend0, FAddend &Addend1) const {
411   if (isConstant())
412     return 0;
413 
414   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415   if (!BreakNum || Coeff.isOne())
416     return BreakNum;
417 
418   Addend0.Scale(Coeff);
419 
420   if (BreakNum == 2)
421     Addend1.Scale(Coeff);
422 
423   return BreakNum;
424 }
425 
426 Value *FAddCombine::simplify(Instruction *I) {
427   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428          "Expected 'reassoc'+'nsz' instruction");
429 
430   // Currently we are not able to handle vector type.
431   if (I->getType()->isVectorTy())
432     return nullptr;
433 
434   assert((I->getOpcode() == Instruction::FAdd ||
435           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436 
437   // Save the instruction before calling other member-functions.
438   Instr = I;
439 
440   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441 
442   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443 
444   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445   unsigned Opnd0_ExpNum = 0;
446   unsigned Opnd1_ExpNum = 0;
447 
448   if (!Opnd0.isConstant())
449     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450 
451   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452   if (OpndNum == 2 && !Opnd1.isConstant())
453     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454 
455   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456   if (Opnd0_ExpNum && Opnd1_ExpNum) {
457     AddendVect AllOpnds;
458     AllOpnds.push_back(&Opnd0_0);
459     AllOpnds.push_back(&Opnd1_0);
460     if (Opnd0_ExpNum == 2)
461       AllOpnds.push_back(&Opnd0_1);
462     if (Opnd1_ExpNum == 2)
463       AllOpnds.push_back(&Opnd1_1);
464 
465     // Compute instruction quota. We should save at least one instruction.
466     unsigned InstQuota = 0;
467 
468     Value *V0 = I->getOperand(0);
469     Value *V1 = I->getOperand(1);
470     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472 
473     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474       return R;
475   }
476 
477   if (OpndNum != 2) {
478     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479     // splitted into two addends, say "V = X - Y", the instruction would have
480     // been optimized into "I = Y - X" in the previous steps.
481     //
482     const FAddendCoef &CE = Opnd0.getCoef();
483     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484   }
485 
486   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487   if (Opnd1_ExpNum) {
488     AddendVect AllOpnds;
489     AllOpnds.push_back(&Opnd0);
490     AllOpnds.push_back(&Opnd1_0);
491     if (Opnd1_ExpNum == 2)
492       AllOpnds.push_back(&Opnd1_1);
493 
494     if (Value *R = simplifyFAdd(AllOpnds, 1))
495       return R;
496   }
497 
498   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499   if (Opnd0_ExpNum) {
500     AddendVect AllOpnds;
501     AllOpnds.push_back(&Opnd1);
502     AllOpnds.push_back(&Opnd0_0);
503     if (Opnd0_ExpNum == 2)
504       AllOpnds.push_back(&Opnd0_1);
505 
506     if (Value *R = simplifyFAdd(AllOpnds, 1))
507       return R;
508   }
509 
510   return nullptr;
511 }
512 
513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514   unsigned AddendNum = Addends.size();
515   assert(AddendNum <= 4 && "Too many addends");
516 
517   // For saving intermediate results;
518   unsigned NextTmpIdx = 0;
519   FAddend TmpResult[3];
520 
521   // Points to the constant addend of the resulting simplified expression.
522   // If the resulting expr has constant-addend, this constant-addend is
523   // desirable to reside at the top of the resulting expression tree. Placing
524   // constant close to supper-expr(s) will potentially reveal some optimization
525   // opportunities in super-expr(s).
526   const FAddend *ConstAdd = nullptr;
527 
528   // Simplified addends are placed <SimpVect>.
529   AddendVect SimpVect;
530 
531   // The outer loop works on one symbolic-value at a time. Suppose the input
532   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533   // The symbolic-values will be processed in this order: x, y, z.
534   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535 
536     const FAddend *ThisAddend = Addends[SymIdx];
537     if (!ThisAddend) {
538       // This addend was processed before.
539       continue;
540     }
541 
542     Value *Val = ThisAddend->getSymVal();
543     unsigned StartIdx = SimpVect.size();
544     SimpVect.push_back(ThisAddend);
545 
546     // The inner loop collects addends sharing same symbolic-value, and these
547     // addends will be later on folded into a single addend. Following above
548     // example, if the symbolic value "y" is being processed, the inner loop
549     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550     // be later on folded into "<b1+b2, y>".
551     for (unsigned SameSymIdx = SymIdx + 1;
552          SameSymIdx < AddendNum; SameSymIdx++) {
553       const FAddend *T = Addends[SameSymIdx];
554       if (T && T->getSymVal() == Val) {
555         // Set null such that next iteration of the outer loop will not process
556         // this addend again.
557         Addends[SameSymIdx] = nullptr;
558         SimpVect.push_back(T);
559       }
560     }
561 
562     // If multiple addends share same symbolic value, fold them together.
563     if (StartIdx + 1 != SimpVect.size()) {
564       FAddend &R = TmpResult[NextTmpIdx ++];
565       R = *SimpVect[StartIdx];
566       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567         R += *SimpVect[Idx];
568 
569       // Pop all addends being folded and push the resulting folded addend.
570       SimpVect.resize(StartIdx);
571       if (Val) {
572         if (!R.isZero()) {
573           SimpVect.push_back(&R);
574         }
575       } else {
576         // Don't push constant addend at this time. It will be the last element
577         // of <SimpVect>.
578         ConstAdd = &R;
579       }
580     }
581   }
582 
583   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584          "out-of-bound access");
585 
586   if (ConstAdd)
587     SimpVect.push_back(ConstAdd);
588 
589   Value *Result;
590   if (!SimpVect.empty())
591     Result = createNaryFAdd(SimpVect, InstrQuota);
592   else {
593     // The addition is folded to 0.0.
594     Result = ConstantFP::get(Instr->getType(), 0.0);
595   }
596 
597   return Result;
598 }
599 
600 Value *FAddCombine::createNaryFAdd
601   (const AddendVect &Opnds, unsigned InstrQuota) {
602   assert(!Opnds.empty() && "Expect at least one addend");
603 
604   // Step 1: Check if the # of instructions needed exceeds the quota.
605 
606   unsigned InstrNeeded = calcInstrNumber(Opnds);
607   if (InstrNeeded > InstrQuota)
608     return nullptr;
609 
610   initCreateInstNum();
611 
612   // step 2: Emit the N-ary addition.
613   // Note that at most three instructions are involved in Fadd-InstCombine: the
614   // addition in question, and at most two neighboring instructions.
615   // The resulting optimized addition should have at least one less instruction
616   // than the original addition expression tree. This implies that the resulting
617   // N-ary addition has at most two instructions, and we don't need to worry
618   // about tree-height when constructing the N-ary addition.
619 
620   Value *LastVal = nullptr;
621   bool LastValNeedNeg = false;
622 
623   // Iterate the addends, creating fadd/fsub using adjacent two addends.
624   for (const FAddend *Opnd : Opnds) {
625     bool NeedNeg;
626     Value *V = createAddendVal(*Opnd, NeedNeg);
627     if (!LastVal) {
628       LastVal = V;
629       LastValNeedNeg = NeedNeg;
630       continue;
631     }
632 
633     if (LastValNeedNeg == NeedNeg) {
634       LastVal = createFAdd(LastVal, V);
635       continue;
636     }
637 
638     if (LastValNeedNeg)
639       LastVal = createFSub(V, LastVal);
640     else
641       LastVal = createFSub(LastVal, V);
642 
643     LastValNeedNeg = false;
644   }
645 
646   if (LastValNeedNeg) {
647     LastVal = createFNeg(LastVal);
648   }
649 
650 #ifndef NDEBUG
651   assert(CreateInstrNum == InstrNeeded &&
652          "Inconsistent in instruction numbers");
653 #endif
654 
655   return LastVal;
656 }
657 
658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660   if (Instruction *I = dyn_cast<Instruction>(V))
661     createInstPostProc(I);
662   return V;
663 }
664 
665 Value *FAddCombine::createFNeg(Value *V) {
666   Value *NewV = Builder.CreateFNeg(V);
667   if (Instruction *I = dyn_cast<Instruction>(NewV))
668     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
669   return NewV;
670 }
671 
672 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
673   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
674   if (Instruction *I = dyn_cast<Instruction>(V))
675     createInstPostProc(I);
676   return V;
677 }
678 
679 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
680   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
681   if (Instruction *I = dyn_cast<Instruction>(V))
682     createInstPostProc(I);
683   return V;
684 }
685 
686 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
687   NewInstr->setDebugLoc(Instr->getDebugLoc());
688 
689   // Keep track of the number of instruction created.
690   if (!NoNumber)
691     incCreateInstNum();
692 
693   // Propagate fast-math flags
694   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
695 }
696 
697 // Return the number of instruction needed to emit the N-ary addition.
698 // NOTE: Keep this function in sync with createAddendVal().
699 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
700   unsigned OpndNum = Opnds.size();
701   unsigned InstrNeeded = OpndNum - 1;
702 
703   // The number of addends in the form of "(-1)*x".
704   unsigned NegOpndNum = 0;
705 
706   // Adjust the number of instructions needed to emit the N-ary add.
707   for (const FAddend *Opnd : Opnds) {
708     if (Opnd->isConstant())
709       continue;
710 
711     // The constant check above is really for a few special constant
712     // coefficients.
713     if (isa<UndefValue>(Opnd->getSymVal()))
714       continue;
715 
716     const FAddendCoef &CE = Opnd->getCoef();
717     if (CE.isMinusOne() || CE.isMinusTwo())
718       NegOpndNum++;
719 
720     // Let the addend be "c * x". If "c == +/-1", the value of the addend
721     // is immediately available; otherwise, it needs exactly one instruction
722     // to evaluate the value.
723     if (!CE.isMinusOne() && !CE.isOne())
724       InstrNeeded++;
725   }
726   return InstrNeeded;
727 }
728 
729 // Input Addend        Value           NeedNeg(output)
730 // ================================================================
731 // Constant C          C               false
732 // <+/-1, V>           V               coefficient is -1
733 // <2/-2, V>          "fadd V, V"      coefficient is -2
734 // <C, V>             "fmul V, C"      false
735 //
736 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
737 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
738   const FAddendCoef &Coeff = Opnd.getCoef();
739 
740   if (Opnd.isConstant()) {
741     NeedNeg = false;
742     return Coeff.getValue(Instr->getType());
743   }
744 
745   Value *OpndVal = Opnd.getSymVal();
746 
747   if (Coeff.isMinusOne() || Coeff.isOne()) {
748     NeedNeg = Coeff.isMinusOne();
749     return OpndVal;
750   }
751 
752   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
753     NeedNeg = Coeff.isMinusTwo();
754     return createFAdd(OpndVal, OpndVal);
755   }
756 
757   NeedNeg = false;
758   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
759 }
760 
761 // Checks if any operand is negative and we can convert add to sub.
762 // This function checks for following negative patterns
763 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
764 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
765 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
766 static Value *checkForNegativeOperand(BinaryOperator &I,
767                                       InstCombiner::BuilderTy &Builder) {
768   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
769 
770   // This function creates 2 instructions to replace ADD, we need at least one
771   // of LHS or RHS to have one use to ensure benefit in transform.
772   if (!LHS->hasOneUse() && !RHS->hasOneUse())
773     return nullptr;
774 
775   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
776   const APInt *C1 = nullptr, *C2 = nullptr;
777 
778   // if ONE is on other side, swap
779   if (match(RHS, m_Add(m_Value(X), m_One())))
780     std::swap(LHS, RHS);
781 
782   if (match(LHS, m_Add(m_Value(X), m_One()))) {
783     // if XOR on other side, swap
784     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
785       std::swap(X, RHS);
786 
787     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
788       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
789       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
790       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
791         Value *NewAnd = Builder.CreateAnd(Z, *C1);
792         return Builder.CreateSub(RHS, NewAnd, "sub");
793       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
794         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
795         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
796         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
797         return Builder.CreateSub(RHS, NewOr, "sub");
798       }
799     }
800   }
801 
802   // Restore LHS and RHS
803   LHS = I.getOperand(0);
804   RHS = I.getOperand(1);
805 
806   // if XOR is on other side, swap
807   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
808     std::swap(LHS, RHS);
809 
810   // C2 is ODD
811   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
812   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
813   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
814     if (C1->countTrailingZeros() == 0)
815       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
816         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
817         return Builder.CreateSub(RHS, NewOr, "sub");
818       }
819   return nullptr;
820 }
821 
822 /// Wrapping flags may allow combining constants separated by an extend.
823 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
824                                   InstCombiner::BuilderTy &Builder) {
825   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
826   Type *Ty = Add.getType();
827   Constant *Op1C;
828   if (!match(Op1, m_Constant(Op1C)))
829     return nullptr;
830 
831   // Try this match first because it results in an add in the narrow type.
832   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
833   Value *X;
834   const APInt *C1, *C2;
835   if (match(Op1, m_APInt(C1)) &&
836       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
837       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
838     Constant *NewC =
839         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
840     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
841   }
842 
843   // More general combining of constants in the wide type.
844   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
845   Constant *NarrowC;
846   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
847     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
848     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
849     Value *WideX = Builder.CreateSExt(X, Ty);
850     return BinaryOperator::CreateAdd(WideX, NewC);
851   }
852   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
853   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
854     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
855     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
856     Value *WideX = Builder.CreateZExt(X, Ty);
857     return BinaryOperator::CreateAdd(WideX, NewC);
858   }
859 
860   return nullptr;
861 }
862 
863 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
864   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
865   Constant *Op1C;
866   if (!match(Op1, m_Constant(Op1C)))
867     return nullptr;
868 
869   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
870     return NV;
871 
872   Value *X;
873   Constant *Op00C;
874 
875   // add (sub C1, X), C2 --> sub (add C1, C2), X
876   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
877     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
878 
879   Value *Y;
880 
881   // add (sub X, Y), -1 --> add (not Y), X
882   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
883       match(Op1, m_AllOnes()))
884     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
885 
886   // zext(bool) + C -> bool ? C + 1 : C
887   if (match(Op0, m_ZExt(m_Value(X))) &&
888       X->getType()->getScalarSizeInBits() == 1)
889     return SelectInst::Create(X, AddOne(Op1C), Op1);
890   // sext(bool) + C -> bool ? C - 1 : C
891   if (match(Op0, m_SExt(m_Value(X))) &&
892       X->getType()->getScalarSizeInBits() == 1)
893     return SelectInst::Create(X, SubOne(Op1C), Op1);
894 
895   // ~X + C --> (C-1) - X
896   if (match(Op0, m_Not(m_Value(X))))
897     return BinaryOperator::CreateSub(SubOne(Op1C), X);
898 
899   const APInt *C;
900   if (!match(Op1, m_APInt(C)))
901     return nullptr;
902 
903   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
904   const APInt *C2;
905   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
906     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907 
908   if (C->isSignMask()) {
909     // If wrapping is not allowed, then the addition must set the sign bit:
910     // X + (signmask) --> X | signmask
911     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
912       return BinaryOperator::CreateOr(Op0, Op1);
913 
914     // If wrapping is allowed, then the addition flips the sign bit of LHS:
915     // X + (signmask) --> X ^ signmask
916     return BinaryOperator::CreateXor(Op0, Op1);
917   }
918 
919   // Is this add the last step in a convoluted sext?
920   // add(zext(xor i16 X, -32768), -32768) --> sext X
921   Type *Ty = Add.getType();
922   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
923       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
924     return CastInst::Create(Instruction::SExt, X, Ty);
925 
926   if (C->isOneValue() && Op0->hasOneUse()) {
927     // add (sext i1 X), 1 --> zext (not X)
928     // TODO: The smallest IR representation is (select X, 0, 1), and that would
929     // not require the one-use check. But we need to remove a transform in
930     // visitSelect and make sure that IR value tracking for select is equal or
931     // better than for these ops.
932     if (match(Op0, m_SExt(m_Value(X))) &&
933         X->getType()->getScalarSizeInBits() == 1)
934       return new ZExtInst(Builder.CreateNot(X), Ty);
935 
936     // Shifts and add used to flip and mask off the low bit:
937     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
938     const APInt *C3;
939     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
940         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
941       Value *NotX = Builder.CreateNot(X);
942       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
943     }
944   }
945 
946   return nullptr;
947 }
948 
949 // Matches multiplication expression Op * C where C is a constant. Returns the
950 // constant value in C and the other operand in Op. Returns true if such a
951 // match is found.
952 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
953   const APInt *AI;
954   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
955     C = *AI;
956     return true;
957   }
958   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
959     C = APInt(AI->getBitWidth(), 1);
960     C <<= *AI;
961     return true;
962   }
963   return false;
964 }
965 
966 // Matches remainder expression Op % C where C is a constant. Returns the
967 // constant value in C and the other operand in Op. Returns the signedness of
968 // the remainder operation in IsSigned. Returns true if such a match is
969 // found.
970 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
971   const APInt *AI;
972   IsSigned = false;
973   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
974     IsSigned = true;
975     C = *AI;
976     return true;
977   }
978   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
979     C = *AI;
980     return true;
981   }
982   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
983     C = *AI + 1;
984     return true;
985   }
986   return false;
987 }
988 
989 // Matches division expression Op / C with the given signedness as indicated
990 // by IsSigned, where C is a constant. Returns the constant value in C and the
991 // other operand in Op. Returns true if such a match is found.
992 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
993   const APInt *AI;
994   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
995     C = *AI;
996     return true;
997   }
998   if (!IsSigned) {
999     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1000       C = *AI;
1001       return true;
1002     }
1003     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1004       C = APInt(AI->getBitWidth(), 1);
1005       C <<= *AI;
1006       return true;
1007     }
1008   }
1009   return false;
1010 }
1011 
1012 // Returns whether C0 * C1 with the given signedness overflows.
1013 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1014   bool overflow;
1015   if (IsSigned)
1016     (void)C0.smul_ov(C1, overflow);
1017   else
1018     (void)C0.umul_ov(C1, overflow);
1019   return overflow;
1020 }
1021 
1022 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1023 // does not overflow.
1024 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1025   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1026   Value *X, *MulOpV;
1027   APInt C0, MulOpC;
1028   bool IsSigned;
1029   // Match I = X % C0 + MulOpV * C0
1030   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1031        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1032       C0 == MulOpC) {
1033     Value *RemOpV;
1034     APInt C1;
1035     bool Rem2IsSigned;
1036     // Match MulOpC = RemOpV % C1
1037     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1038         IsSigned == Rem2IsSigned) {
1039       Value *DivOpV;
1040       APInt DivOpC;
1041       // Match RemOpV = X / C0
1042       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1043           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1044         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1045         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046                         : Builder.CreateURem(X, NewDivisor, "urem");
1047       }
1048     }
1049   }
1050 
1051   return nullptr;
1052 }
1053 
1054 /// Fold
1055 ///   (1 << NBits) - 1
1056 /// Into:
1057 ///   ~(-(1 << NBits))
1058 /// Because a 'not' is better for bit-tracking analysis and other transforms
1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061                                            InstCombiner::BuilderTy &Builder) {
1062   Value *NBits;
1063   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064     return nullptr;
1065 
1066   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068   // Be wary of constant folding.
1069   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070     // Always NSW. But NUW propagates from `add`.
1071     BOp->setHasNoSignedWrap();
1072     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1073   }
1074 
1075   return BinaryOperator::CreateNot(NotMask, I.getName());
1076 }
1077 
1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080   Type *Ty = I.getType();
1081   auto getUAddSat = [&]() {
1082     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1083   };
1084 
1085   // add (umin X, ~Y), Y --> uaddsat X, Y
1086   Value *X, *Y;
1087   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088                         m_Deferred(Y))))
1089     return CallInst::Create(getUAddSat(), { X, Y });
1090 
1091   // add (umin X, ~C), C --> uaddsat X, C
1092   const APInt *C, *NotC;
1093   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094       *C == ~*NotC)
1095     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1096 
1097   return nullptr;
1098 }
1099 
1100 Instruction *
1101 InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1102     BinaryOperator &I) {
1103   assert((I.getOpcode() == Instruction::Add ||
1104           I.getOpcode() == Instruction::Or ||
1105           I.getOpcode() == Instruction::Sub) &&
1106          "Expecting add/or/sub instruction");
1107 
1108   // We have a subtraction/addition between a (potentially truncated) *logical*
1109   // right-shift of X and a "select".
1110   Value *X, *Select;
1111   Instruction *LowBitsToSkip, *Extract;
1112   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1113                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1114                                m_Instruction(Extract))),
1115                            m_Value(Select))))
1116     return nullptr;
1117 
1118   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1119   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1120     return nullptr;
1121 
1122   Type *XTy = X->getType();
1123   bool HadTrunc = I.getType() != XTy;
1124 
1125   // If there was a truncation of extracted value, then we'll need to produce
1126   // one extra instruction, so we need to ensure one instruction will go away.
1127   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1128     return nullptr;
1129 
1130   // Extraction should extract high NBits bits, with shift amount calculated as:
1131   //   low bits to skip = shift bitwidth - high bits to extract
1132   // The shift amount itself may be extended, and we need to look past zero-ext
1133   // when matching NBits, that will matter for matching later.
1134   Constant *C;
1135   Value *NBits;
1136   if (!match(
1137           LowBitsToSkip,
1138           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1139       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1140                                    APInt(C->getType()->getScalarSizeInBits(),
1141                                          X->getType()->getScalarSizeInBits()))))
1142     return nullptr;
1143 
1144   // Sign-extending value can be zero-extended if we `sub`tract it,
1145   // or sign-extended otherwise.
1146   auto SkipExtInMagic = [&I](Value *&V) {
1147     if (I.getOpcode() == Instruction::Sub)
1148       match(V, m_ZExtOrSelf(m_Value(V)));
1149     else
1150       match(V, m_SExtOrSelf(m_Value(V)));
1151   };
1152 
1153   // Now, finally validate the sign-extending magic.
1154   // `select` itself may be appropriately extended, look past that.
1155   SkipExtInMagic(Select);
1156 
1157   ICmpInst::Predicate Pred;
1158   const APInt *Thr;
1159   Value *SignExtendingValue, *Zero;
1160   bool ShouldSignext;
1161   // It must be a select between two values we will later establish to be a
1162   // sign-extending value and a zero constant. The condition guarding the
1163   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1164   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1165                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1166       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1167     return nullptr;
1168 
1169   // icmp-select pair is commutative.
1170   if (!ShouldSignext)
1171     std::swap(SignExtendingValue, Zero);
1172 
1173   // If we should not perform sign-extension then we must add/or/subtract zero.
1174   if (!match(Zero, m_Zero()))
1175     return nullptr;
1176   // Otherwise, it should be some constant, left-shifted by the same NBits we
1177   // had in `lshr`. Said left-shift can also be appropriately extended.
1178   // Again, we must look past zero-ext when looking for NBits.
1179   SkipExtInMagic(SignExtendingValue);
1180   Constant *SignExtendingValueBaseConstant;
1181   if (!match(SignExtendingValue,
1182              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1183                    m_ZExtOrSelf(m_Specific(NBits)))))
1184     return nullptr;
1185   // If we `sub`, then the constant should be one, else it should be all-ones.
1186   if (I.getOpcode() == Instruction::Sub
1187           ? !match(SignExtendingValueBaseConstant, m_One())
1188           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1189     return nullptr;
1190 
1191   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1192                                              Extract->getName() + ".sext");
1193   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1194   if (!HadTrunc)
1195     return NewAShr;
1196 
1197   Builder.Insert(NewAShr);
1198   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1199 }
1200 
1201 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1202   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1203                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1204                                  SQ.getWithInstruction(&I)))
1205     return replaceInstUsesWith(I, V);
1206 
1207   if (SimplifyAssociativeOrCommutative(I))
1208     return &I;
1209 
1210   if (Instruction *X = foldVectorBinop(I))
1211     return X;
1212 
1213   // (A*B)+(A*C) -> A*(B+C) etc
1214   if (Value *V = SimplifyUsingDistributiveLaws(I))
1215     return replaceInstUsesWith(I, V);
1216 
1217   if (Instruction *X = foldAddWithConstant(I))
1218     return X;
1219 
1220   if (Instruction *X = foldNoWrapAdd(I, Builder))
1221     return X;
1222 
1223   // FIXME: This should be moved into the above helper function to allow these
1224   // transforms for general constant or constant splat vectors.
1225   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1226   Type *Ty = I.getType();
1227   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1228     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1229     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1230       unsigned TySizeBits = Ty->getScalarSizeInBits();
1231       const APInt &RHSVal = CI->getValue();
1232       unsigned ExtendAmt = 0;
1233       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1234       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1235       if (XorRHS->getValue() == -RHSVal) {
1236         if (RHSVal.isPowerOf2())
1237           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1238         else if (XorRHS->getValue().isPowerOf2())
1239           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1240       }
1241 
1242       if (ExtendAmt) {
1243         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1244         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1245           ExtendAmt = 0;
1246       }
1247 
1248       if (ExtendAmt) {
1249         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1250         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1251         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1252       }
1253 
1254       // If this is a xor that was canonicalized from a sub, turn it back into
1255       // a sub and fuse this add with it.
1256       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1257         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1258         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1259           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1260                                            XorLHS);
1261       }
1262       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1263       // transform them into (X + (signmask ^ C))
1264       if (XorRHS->getValue().isSignMask())
1265         return BinaryOperator::CreateAdd(XorLHS,
1266                                          ConstantExpr::getXor(XorRHS, CI));
1267     }
1268   }
1269 
1270   if (Ty->isIntOrIntVectorTy(1))
1271     return BinaryOperator::CreateXor(LHS, RHS);
1272 
1273   // X + X --> X << 1
1274   if (LHS == RHS) {
1275     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1276     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1277     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1278     return Shl;
1279   }
1280 
1281   Value *A, *B;
1282   if (match(LHS, m_Neg(m_Value(A)))) {
1283     // -A + -B --> -(A + B)
1284     if (match(RHS, m_Neg(m_Value(B))))
1285       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1286 
1287     // -A + B --> B - A
1288     return BinaryOperator::CreateSub(RHS, A);
1289   }
1290 
1291   // A + -B  -->  A - B
1292   if (match(RHS, m_Neg(m_Value(B))))
1293     return BinaryOperator::CreateSub(LHS, B);
1294 
1295   if (Value *V = checkForNegativeOperand(I, Builder))
1296     return replaceInstUsesWith(I, V);
1297 
1298   // (A + 1) + ~B --> A - B
1299   // ~B + (A + 1) --> A - B
1300   // (~B + A) + 1 --> A - B
1301   // (A + ~B) + 1 --> A - B
1302   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1303       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1304     return BinaryOperator::CreateSub(A, B);
1305 
1306   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1307   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1308 
1309   // A+B --> A|B iff A and B have no bits set in common.
1310   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1311     return BinaryOperator::CreateOr(LHS, RHS);
1312 
1313   // FIXME: We already did a check for ConstantInt RHS above this.
1314   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1315   // removal.
1316   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1317     // (X & FF00) + xx00  -> (X+xx00) & FF00
1318     Value *X;
1319     ConstantInt *C2;
1320     if (LHS->hasOneUse() &&
1321         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1322         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1323       // See if all bits from the first bit set in the Add RHS up are included
1324       // in the mask.  First, get the rightmost bit.
1325       const APInt &AddRHSV = CRHS->getValue();
1326 
1327       // Form a mask of all bits from the lowest bit added through the top.
1328       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1329 
1330       // See if the and mask includes all of these bits.
1331       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1332 
1333       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1334         // Okay, the xform is safe.  Insert the new add pronto.
1335         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1336         return BinaryOperator::CreateAnd(NewAdd, C2);
1337       }
1338     }
1339   }
1340 
1341   // add (select X 0 (sub n A)) A  -->  select X A n
1342   {
1343     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1344     Value *A = RHS;
1345     if (!SI) {
1346       SI = dyn_cast<SelectInst>(RHS);
1347       A = LHS;
1348     }
1349     if (SI && SI->hasOneUse()) {
1350       Value *TV = SI->getTrueValue();
1351       Value *FV = SI->getFalseValue();
1352       Value *N;
1353 
1354       // Can we fold the add into the argument of the select?
1355       // We check both true and false select arguments for a matching subtract.
1356       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1357         // Fold the add into the true select value.
1358         return SelectInst::Create(SI->getCondition(), N, A);
1359 
1360       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1361         // Fold the add into the false select value.
1362         return SelectInst::Create(SI->getCondition(), A, N);
1363     }
1364   }
1365 
1366   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1367     return Ext;
1368 
1369   // (add (xor A, B) (and A, B)) --> (or A, B)
1370   // (add (and A, B) (xor A, B)) --> (or A, B)
1371   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1372                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1373     return BinaryOperator::CreateOr(A, B);
1374 
1375   // (add (or A, B) (and A, B)) --> (add A, B)
1376   // (add (and A, B) (or A, B)) --> (add A, B)
1377   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1378                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1379     // Replacing operands in-place to preserve nuw/nsw flags.
1380     replaceOperand(I, 0, A);
1381     replaceOperand(I, 1, B);
1382     return &I;
1383   }
1384 
1385   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1386   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1387   // computeKnownBits.
1388   bool Changed = false;
1389   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1390     Changed = true;
1391     I.setHasNoSignedWrap(true);
1392   }
1393   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1394     Changed = true;
1395     I.setHasNoUnsignedWrap(true);
1396   }
1397 
1398   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1399     return V;
1400 
1401   if (Instruction *V =
1402           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1403     return V;
1404 
1405   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1406     return SatAdd;
1407 
1408   return Changed ? &I : nullptr;
1409 }
1410 
1411 /// Eliminate an op from a linear interpolation (lerp) pattern.
1412 static Instruction *factorizeLerp(BinaryOperator &I,
1413                                   InstCombiner::BuilderTy &Builder) {
1414   Value *X, *Y, *Z;
1415   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1416                                             m_OneUse(m_FSub(m_FPOne(),
1417                                                             m_Value(Z))))),
1418                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1419     return nullptr;
1420 
1421   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1422   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1423   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1424   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1425 }
1426 
1427 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1428 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1429                                       InstCombiner::BuilderTy &Builder) {
1430   assert((I.getOpcode() == Instruction::FAdd ||
1431           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1432   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1433          "FP factorization requires FMF");
1434 
1435   if (Instruction *Lerp = factorizeLerp(I, Builder))
1436     return Lerp;
1437 
1438   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1439   Value *X, *Y, *Z;
1440   bool IsFMul;
1441   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1442        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1443       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1444        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1445     IsFMul = true;
1446   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1447            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1448     IsFMul = false;
1449   else
1450     return nullptr;
1451 
1452   // (X * Z) + (Y * Z) --> (X + Y) * Z
1453   // (X * Z) - (Y * Z) --> (X - Y) * Z
1454   // (X / Z) + (Y / Z) --> (X + Y) / Z
1455   // (X / Z) - (Y / Z) --> (X - Y) / Z
1456   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1457   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1458                      : Builder.CreateFSubFMF(X, Y, &I);
1459 
1460   // Bail out if we just created a denormal constant.
1461   // TODO: This is copied from a previous implementation. Is it necessary?
1462   const APFloat *C;
1463   if (match(XY, m_APFloat(C)) && !C->isNormal())
1464     return nullptr;
1465 
1466   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1467                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1468 }
1469 
1470 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1471   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1472                                   I.getFastMathFlags(),
1473                                   SQ.getWithInstruction(&I)))
1474     return replaceInstUsesWith(I, V);
1475 
1476   if (SimplifyAssociativeOrCommutative(I))
1477     return &I;
1478 
1479   if (Instruction *X = foldVectorBinop(I))
1480     return X;
1481 
1482   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1483     return FoldedFAdd;
1484 
1485   // (-X) + Y --> Y - X
1486   Value *X, *Y;
1487   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1488     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1489 
1490   // Similar to above, but look through fmul/fdiv for the negated term.
1491   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1492   Value *Z;
1493   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1494                          m_Value(Z)))) {
1495     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1496     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1497   }
1498   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1499   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1500   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1501                          m_Value(Z))) ||
1502       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1503                          m_Value(Z)))) {
1504     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1505     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1506   }
1507 
1508   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1509   // integer add followed by a promotion.
1510   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1511   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1512     Value *LHSIntVal = LHSConv->getOperand(0);
1513     Type *FPType = LHSConv->getType();
1514 
1515     // TODO: This check is overly conservative. In many cases known bits
1516     // analysis can tell us that the result of the addition has less significant
1517     // bits than the integer type can hold.
1518     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1519       Type *FScalarTy = FTy->getScalarType();
1520       Type *IScalarTy = ITy->getScalarType();
1521 
1522       // Do we have enough bits in the significand to represent the result of
1523       // the integer addition?
1524       unsigned MaxRepresentableBits =
1525           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1526       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1527     };
1528 
1529     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1530     // ... if the constant fits in the integer value.  This is useful for things
1531     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1532     // requires a constant pool load, and generally allows the add to be better
1533     // instcombined.
1534     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1535       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1536         Constant *CI =
1537           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1538         if (LHSConv->hasOneUse() &&
1539             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1540             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1541           // Insert the new integer add.
1542           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1543           return new SIToFPInst(NewAdd, I.getType());
1544         }
1545       }
1546 
1547     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1548     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1549       Value *RHSIntVal = RHSConv->getOperand(0);
1550       // It's enough to check LHS types only because we require int types to
1551       // be the same for this transform.
1552       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1553         // Only do this if x/y have the same type, if at least one of them has a
1554         // single use (so we don't increase the number of int->fp conversions),
1555         // and if the integer add will not overflow.
1556         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1557             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1558             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1559           // Insert the new integer add.
1560           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1561           return new SIToFPInst(NewAdd, I.getType());
1562         }
1563       }
1564     }
1565   }
1566 
1567   // Handle specials cases for FAdd with selects feeding the operation
1568   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1569     return replaceInstUsesWith(I, V);
1570 
1571   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1572     if (Instruction *F = factorizeFAddFSub(I, Builder))
1573       return F;
1574     if (Value *V = FAddCombine(Builder).simplify(&I))
1575       return replaceInstUsesWith(I, V);
1576   }
1577 
1578   return nullptr;
1579 }
1580 
1581 /// Optimize pointer differences into the same array into a size.  Consider:
1582 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1583 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1584 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1585                                                Type *Ty, bool IsNUW) {
1586   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1587   // this.
1588   bool Swapped = false;
1589   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1590 
1591   // For now we require one side to be the base pointer "A" or a constant
1592   // GEP derived from it.
1593   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1594     // (gep X, ...) - X
1595     if (LHSGEP->getOperand(0) == RHS) {
1596       GEP1 = LHSGEP;
1597       Swapped = false;
1598     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1599       // (gep X, ...) - (gep X, ...)
1600       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1601             RHSGEP->getOperand(0)->stripPointerCasts()) {
1602         GEP2 = RHSGEP;
1603         GEP1 = LHSGEP;
1604         Swapped = false;
1605       }
1606     }
1607   }
1608 
1609   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1610     // X - (gep X, ...)
1611     if (RHSGEP->getOperand(0) == LHS) {
1612       GEP1 = RHSGEP;
1613       Swapped = true;
1614     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1615       // (gep X, ...) - (gep X, ...)
1616       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1617             LHSGEP->getOperand(0)->stripPointerCasts()) {
1618         GEP2 = LHSGEP;
1619         GEP1 = RHSGEP;
1620         Swapped = true;
1621       }
1622     }
1623   }
1624 
1625   if (!GEP1)
1626     // No GEP found.
1627     return nullptr;
1628 
1629   if (GEP2) {
1630     // (gep X, ...) - (gep X, ...)
1631     //
1632     // Avoid duplicating the arithmetic if there are more than one non-constant
1633     // indices between the two GEPs and either GEP has a non-constant index and
1634     // multiple users. If zero non-constant index, the result is a constant and
1635     // there is no duplication. If one non-constant index, the result is an add
1636     // or sub with a constant, which is no larger than the original code, and
1637     // there's no duplicated arithmetic, even if either GEP has multiple
1638     // users. If more than one non-constant indices combined, as long as the GEP
1639     // with at least one non-constant index doesn't have multiple users, there
1640     // is no duplication.
1641     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1642     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1643     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1644         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1645          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1646       return nullptr;
1647     }
1648   }
1649 
1650   // Emit the offset of the GEP and an intptr_t.
1651   Value *Result = EmitGEPOffset(GEP1);
1652 
1653   // If this is a single inbounds GEP and the original sub was nuw,
1654   // then the final multiplication is also nuw. We match an extra add zero
1655   // here, because that's what EmitGEPOffset() generates.
1656   Instruction *I;
1657   if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1658       match(Result, m_Add(m_Instruction(I), m_Zero())) &&
1659       I->getOpcode() == Instruction::Mul)
1660     I->setHasNoUnsignedWrap();
1661 
1662   // If we had a constant expression GEP on the other side offsetting the
1663   // pointer, subtract it from the offset we have.
1664   if (GEP2) {
1665     Value *Offset = EmitGEPOffset(GEP2);
1666     Result = Builder.CreateSub(Result, Offset);
1667   }
1668 
1669   // If we have p - gep(p, ...)  then we have to negate the result.
1670   if (Swapped)
1671     Result = Builder.CreateNeg(Result, "diff.neg");
1672 
1673   return Builder.CreateIntCast(Result, Ty, true);
1674 }
1675 
1676 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1677   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1678                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1679                                  SQ.getWithInstruction(&I)))
1680     return replaceInstUsesWith(I, V);
1681 
1682   if (Instruction *X = foldVectorBinop(I))
1683     return X;
1684 
1685   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1686 
1687   // If this is a 'B = x-(-A)', change to B = x+A.
1688   // We deal with this without involving Negator to preserve NSW flag.
1689   if (Value *V = dyn_castNegVal(Op1)) {
1690     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1691 
1692     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1693       assert(BO->getOpcode() == Instruction::Sub &&
1694              "Expected a subtraction operator!");
1695       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1696         Res->setHasNoSignedWrap(true);
1697     } else {
1698       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1699         Res->setHasNoSignedWrap(true);
1700     }
1701 
1702     return Res;
1703   }
1704 
1705   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1706     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1707       return Ext;
1708 
1709     bool Changed = false;
1710     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1711       Changed = true;
1712       I.setHasNoSignedWrap(true);
1713     }
1714     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1715       Changed = true;
1716       I.setHasNoUnsignedWrap(true);
1717     }
1718 
1719     return Changed ? &I : nullptr;
1720   };
1721 
1722   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1723   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1724   // a pure negation used by a select that looks like abs/nabs.
1725   bool IsNegation = match(Op0, m_ZeroInt());
1726   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1727         const Instruction *UI = dyn_cast<Instruction>(U);
1728         if (!UI)
1729           return false;
1730         return match(UI,
1731                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1732                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1733       })) {
1734     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1735       return BinaryOperator::CreateAdd(NegOp1, Op0);
1736   }
1737   if (IsNegation)
1738     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1739 
1740   // (A*B)-(A*C) -> A*(B-C) etc
1741   if (Value *V = SimplifyUsingDistributiveLaws(I))
1742     return replaceInstUsesWith(I, V);
1743 
1744   if (I.getType()->isIntOrIntVectorTy(1))
1745     return BinaryOperator::CreateXor(Op0, Op1);
1746 
1747   // Replace (-1 - A) with (~A).
1748   if (match(Op0, m_AllOnes()))
1749     return BinaryOperator::CreateNot(Op1);
1750 
1751   // (~X) - (~Y) --> Y - X
1752   Value *X, *Y;
1753   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1754     return BinaryOperator::CreateSub(Y, X);
1755 
1756   // (X + -1) - Y --> ~Y + X
1757   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1758     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1759 
1760   if (Constant *C = dyn_cast<Constant>(Op0)) {
1761     Value *X;
1762     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1763       // C - (zext bool) --> bool ? C - 1 : C
1764       return SelectInst::Create(X, SubOne(C), C);
1765     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1766       // C - (sext bool) --> bool ? C + 1 : C
1767       return SelectInst::Create(X, AddOne(C), C);
1768 
1769     // C - ~X == X + (1+C)
1770     if (match(Op1, m_Not(m_Value(X))))
1771       return BinaryOperator::CreateAdd(X, AddOne(C));
1772 
1773     // Try to fold constant sub into select arguments.
1774     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1775       if (Instruction *R = FoldOpIntoSelect(I, SI))
1776         return R;
1777 
1778     // Try to fold constant sub into PHI values.
1779     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1780       if (Instruction *R = foldOpIntoPhi(I, PN))
1781         return R;
1782 
1783     Constant *C2;
1784 
1785     // C-(C2-X) --> X+(C-C2)
1786     if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))) && !isa<ConstantExpr>(C2))
1787       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1788 
1789     // C-(X+C2) --> (C-C2)-X
1790     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1791       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1792   }
1793 
1794   const APInt *Op0C;
1795   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1796     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1797     // zero.
1798     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1799     if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1800       return BinaryOperator::CreateXor(Op1, Op0);
1801   }
1802 
1803   {
1804     Value *Y;
1805     // X-(X+Y) == -Y    X-(Y+X) == -Y
1806     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1807       return BinaryOperator::CreateNeg(Y);
1808 
1809     // (X-Y)-X == -Y
1810     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1811       return BinaryOperator::CreateNeg(Y);
1812   }
1813 
1814   // (sub (or A, B) (and A, B)) --> (xor A, B)
1815   {
1816     Value *A, *B;
1817     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1818         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1819       return BinaryOperator::CreateXor(A, B);
1820   }
1821 
1822   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1823   {
1824     Value *A, *B;
1825     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1826         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1827         (Op0->hasOneUse() || Op1->hasOneUse()))
1828       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1829   }
1830 
1831   // (sub (or A, B), (xor A, B)) --> (and A, B)
1832   {
1833     Value *A, *B;
1834     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1835         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1836       return BinaryOperator::CreateAnd(A, B);
1837   }
1838 
1839   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1840   {
1841     Value *A, *B;
1842     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1843         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1844         (Op0->hasOneUse() || Op1->hasOneUse()))
1845       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1846   }
1847 
1848   {
1849     Value *Y;
1850     // ((X | Y) - X) --> (~X & Y)
1851     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1852       return BinaryOperator::CreateAnd(
1853           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1854   }
1855 
1856   {
1857     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1858     Value *X;
1859     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1860                                     m_OneUse(m_Neg(m_Value(X))))))) {
1861       return BinaryOperator::CreateNeg(Builder.CreateAnd(
1862           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1863     }
1864   }
1865 
1866   {
1867     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1868     Constant *C;
1869     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
1870       return BinaryOperator::CreateNeg(
1871           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
1872     }
1873   }
1874 
1875   {
1876     // If we have a subtraction between some value and a select between
1877     // said value and something else, sink subtraction into select hands, i.e.:
1878     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
1879     //     ->
1880     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
1881     //  or
1882     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
1883     //     ->
1884     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
1885     // This will result in select between new subtraction and 0.
1886     auto SinkSubIntoSelect =
1887         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
1888                            auto SubBuilder) -> Instruction * {
1889       Value *Cond, *TrueVal, *FalseVal;
1890       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
1891                                            m_Value(FalseVal)))))
1892         return nullptr;
1893       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
1894         return nullptr;
1895       // While it is really tempting to just create two subtractions and let
1896       // InstCombine fold one of those to 0, it isn't possible to do so
1897       // because of worklist visitation order. So ugly it is.
1898       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
1899       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
1900       Constant *Zero = Constant::getNullValue(Ty);
1901       SelectInst *NewSel =
1902           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
1903                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
1904       // Preserve prof metadata if any.
1905       NewSel->copyMetadata(cast<Instruction>(*Select));
1906       return NewSel;
1907     };
1908     if (Instruction *NewSel = SinkSubIntoSelect(
1909             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
1910             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
1911               return Builder->CreateSub(OtherHandOfSelect,
1912                                         /*OtherHandOfSub=*/Op1);
1913             }))
1914       return NewSel;
1915     if (Instruction *NewSel = SinkSubIntoSelect(
1916             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
1917             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
1918               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
1919                                         OtherHandOfSelect);
1920             }))
1921       return NewSel;
1922   }
1923 
1924   // (X - (X & Y))   -->   (X & ~Y)
1925   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
1926       (Op1->hasOneUse() || isa<Constant>(Y)))
1927     return BinaryOperator::CreateAnd(
1928         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
1929 
1930   {
1931     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1932     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1933     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1934     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1935     // So long as O here is freely invertible, this will be neutral or a win.
1936     Value *LHS, *RHS, *A;
1937     Value *NotA = Op0, *MinMax = Op1;
1938     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1939     if (!SelectPatternResult::isMinOrMax(SPF)) {
1940       NotA = Op1;
1941       MinMax = Op0;
1942       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1943     }
1944     if (SelectPatternResult::isMinOrMax(SPF) &&
1945         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1946       if (NotA == LHS)
1947         std::swap(LHS, RHS);
1948       // LHS is now O above and expected to have at least 2 uses (the min/max)
1949       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1950       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1951           !NotA->hasNUsesOrMore(4)) {
1952         // Note: We don't generate the inverse max/min, just create the not of
1953         // it and let other folds do the rest.
1954         Value *Not = Builder.CreateNot(MinMax);
1955         if (NotA == Op0)
1956           return BinaryOperator::CreateSub(Not, A);
1957         else
1958           return BinaryOperator::CreateSub(A, Not);
1959       }
1960     }
1961   }
1962 
1963   // Optimize pointer differences into the same array into a size.  Consider:
1964   //  &A[10] - &A[0]: we should compile this to "10".
1965   Value *LHSOp, *RHSOp;
1966   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1967       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1968     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
1969                                                I.hasNoUnsignedWrap()))
1970       return replaceInstUsesWith(I, Res);
1971 
1972   // trunc(p)-trunc(q) -> trunc(p-q)
1973   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1974       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1975     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
1976                                                /* IsNUW */ false))
1977       return replaceInstUsesWith(I, Res);
1978 
1979   // Canonicalize a shifty way to code absolute value to the common pattern.
1980   // There are 2 potential commuted variants.
1981   // We're relying on the fact that we only do this transform when the shift has
1982   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1983   // instructions).
1984   Value *A;
1985   const APInt *ShAmt;
1986   Type *Ty = I.getType();
1987   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1988       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1989       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1990     // B = ashr i32 A, 31 ; smear the sign bit
1991     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1992     // --> (A < 0) ? -A : A
1993     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1994     // Copy the nuw/nsw flags from the sub to the negate.
1995     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1996                                    I.hasNoSignedWrap());
1997     return SelectInst::Create(Cmp, Neg, A);
1998   }
1999 
2000   if (Instruction *V =
2001           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2002     return V;
2003 
2004   return TryToNarrowDeduceFlags();
2005 }
2006 
2007 /// This eliminates floating-point negation in either 'fneg(X)' or
2008 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2009 static Instruction *foldFNegIntoConstant(Instruction &I) {
2010   Value *X;
2011   Constant *C;
2012 
2013   // Fold negation into constant operand. This is limited with one-use because
2014   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
2015   // -(X * C) --> X * (-C)
2016   // FIXME: It's arguable whether these should be m_OneUse or not. The current
2017   // belief is that the FNeg allows for better reassociation opportunities.
2018   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
2019     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2020   // -(X / C) --> X / (-C)
2021   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
2022     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2023   // -(C / X) --> (-C) / X
2024   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
2025     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2026 
2027   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2028   // -(X + C) --> -X + -C --> -C - X
2029   if (I.hasNoSignedZeros() &&
2030       match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C))))))
2031     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2032 
2033   return nullptr;
2034 }
2035 
2036 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2037                                            InstCombiner::BuilderTy &Builder) {
2038   Value *FNeg;
2039   if (!match(&I, m_FNeg(m_Value(FNeg))))
2040     return nullptr;
2041 
2042   Value *X, *Y;
2043   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2044     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2045 
2046   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2047     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2048 
2049   return nullptr;
2050 }
2051 
2052 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
2053   Value *Op = I.getOperand(0);
2054 
2055   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2056                                   SQ.getWithInstruction(&I)))
2057     return replaceInstUsesWith(I, V);
2058 
2059   if (Instruction *X = foldFNegIntoConstant(I))
2060     return X;
2061 
2062   Value *X, *Y;
2063 
2064   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2065   if (I.hasNoSignedZeros() &&
2066       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2067     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2068 
2069   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2070     return R;
2071 
2072   return nullptr;
2073 }
2074 
2075 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
2076   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2077                                   I.getFastMathFlags(),
2078                                   SQ.getWithInstruction(&I)))
2079     return replaceInstUsesWith(I, V);
2080 
2081   if (Instruction *X = foldVectorBinop(I))
2082     return X;
2083 
2084   // Subtraction from -0.0 is the canonical form of fneg.
2085   // fsub -0.0, X ==> fneg X
2086   // fsub nsz 0.0, X ==> fneg nsz X
2087   //
2088   // FIXME This matcher does not respect FTZ or DAZ yet:
2089   // fsub -0.0, Denorm ==> +-0
2090   // fneg Denorm ==> -Denorm
2091   Value *Op;
2092   if (match(&I, m_FNeg(m_Value(Op))))
2093     return UnaryOperator::CreateFNegFMF(Op, &I);
2094 
2095   if (Instruction *X = foldFNegIntoConstant(I))
2096     return X;
2097 
2098   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2099     return R;
2100 
2101   Value *X, *Y;
2102   Constant *C;
2103 
2104   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2105   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2106   // Canonicalize to fadd to make analysis easier.
2107   // This can also help codegen because fadd is commutative.
2108   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2109   // killed later. We still limit that particular transform with 'hasOneUse'
2110   // because an fneg is assumed better/cheaper than a generic fsub.
2111   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2112     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2113       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2114       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2115     }
2116   }
2117 
2118   // (-X) - Op1 --> -(X + Op1)
2119   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2120       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2121     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2122     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2123   }
2124 
2125   if (isa<Constant>(Op0))
2126     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2127       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2128         return NV;
2129 
2130   // X - C --> X + (-C)
2131   // But don't transform constant expressions because there's an inverse fold
2132   // for X + (-Y) --> X - Y.
2133   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2134     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2135 
2136   // X - (-Y) --> X + Y
2137   if (match(Op1, m_FNeg(m_Value(Y))))
2138     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2139 
2140   // Similar to above, but look through a cast of the negated value:
2141   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2142   Type *Ty = I.getType();
2143   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2144     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2145 
2146   // X - (fpext(-Y)) --> X + fpext(Y)
2147   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2148     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2149 
2150   // Similar to above, but look through fmul/fdiv of the negated value:
2151   // Op0 - (-X * Y) --> Op0 + (X * Y)
2152   // Op0 - (Y * -X) --> Op0 + (X * Y)
2153   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2154     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2155     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2156   }
2157   // Op0 - (-X / Y) --> Op0 + (X / Y)
2158   // Op0 - (X / -Y) --> Op0 + (X / Y)
2159   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2160       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2161     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2162     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2163   }
2164 
2165   // Handle special cases for FSub with selects feeding the operation
2166   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2167     return replaceInstUsesWith(I, V);
2168 
2169   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2170     // (Y - X) - Y --> -X
2171     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2172       return UnaryOperator::CreateFNegFMF(X, &I);
2173 
2174     // Y - (X + Y) --> -X
2175     // Y - (Y + X) --> -X
2176     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2177       return UnaryOperator::CreateFNegFMF(X, &I);
2178 
2179     // (X * C) - X --> X * (C - 1.0)
2180     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2181       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2182       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2183     }
2184     // X - (X * C) --> X * (1.0 - C)
2185     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2186       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2187       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2188     }
2189 
2190     if (Instruction *F = factorizeFAddFSub(I, Builder))
2191       return F;
2192 
2193     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2194     // functionality has been subsumed by simple pattern matching here and in
2195     // InstSimplify. We should let a dedicated reassociation pass handle more
2196     // complex pattern matching and remove this from InstCombine.
2197     if (Value *V = FAddCombine(Builder).simplify(&I))
2198       return replaceInstUsesWith(I, V);
2199 
2200     // (X - Y) - Op1 --> X - (Y + Op1)
2201     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2202       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2203       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2204     }
2205   }
2206 
2207   return nullptr;
2208 }
2209