1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr()
86       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87 
88     const APFloat *getFpValPtr() const
89       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Points to the constant addend of the resulting simplified expression.
523   // If the resulting expr has constant-addend, this constant-addend is
524   // desirable to reside at the top of the resulting expression tree. Placing
525   // constant close to supper-expr(s) will potentially reveal some optimization
526   // opportunities in super-expr(s).
527   const FAddend *ConstAdd = nullptr;
528 
529   // Simplified addends are placed <SimpVect>.
530   AddendVect SimpVect;
531 
532   // The outer loop works on one symbolic-value at a time. Suppose the input
533   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
534   // The symbolic-values will be processed in this order: x, y, z.
535   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
536 
537     const FAddend *ThisAddend = Addends[SymIdx];
538     if (!ThisAddend) {
539       // This addend was processed before.
540       continue;
541     }
542 
543     Value *Val = ThisAddend->getSymVal();
544     unsigned StartIdx = SimpVect.size();
545     SimpVect.push_back(ThisAddend);
546 
547     // The inner loop collects addends sharing same symbolic-value, and these
548     // addends will be later on folded into a single addend. Following above
549     // example, if the symbolic value "y" is being processed, the inner loop
550     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
551     // be later on folded into "<b1+b2, y>".
552     for (unsigned SameSymIdx = SymIdx + 1;
553          SameSymIdx < AddendNum; SameSymIdx++) {
554       const FAddend *T = Addends[SameSymIdx];
555       if (T && T->getSymVal() == Val) {
556         // Set null such that next iteration of the outer loop will not process
557         // this addend again.
558         Addends[SameSymIdx] = nullptr;
559         SimpVect.push_back(T);
560       }
561     }
562 
563     // If multiple addends share same symbolic value, fold them together.
564     if (StartIdx + 1 != SimpVect.size()) {
565       FAddend &R = TmpResult[NextTmpIdx ++];
566       R = *SimpVect[StartIdx];
567       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
568         R += *SimpVect[Idx];
569 
570       // Pop all addends being folded and push the resulting folded addend.
571       SimpVect.resize(StartIdx);
572       if (Val) {
573         if (!R.isZero()) {
574           SimpVect.push_back(&R);
575         }
576       } else {
577         // Don't push constant addend at this time. It will be the last element
578         // of <SimpVect>.
579         ConstAdd = &R;
580       }
581     }
582   }
583 
584   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
585          "out-of-bound access");
586 
587   if (ConstAdd)
588     SimpVect.push_back(ConstAdd);
589 
590   Value *Result;
591   if (!SimpVect.empty())
592     Result = createNaryFAdd(SimpVect, InstrQuota);
593   else {
594     // The addition is folded to 0.0.
595     Result = ConstantFP::get(Instr->getType(), 0.0);
596   }
597 
598   return Result;
599 }
600 
601 Value *FAddCombine::createNaryFAdd
602   (const AddendVect &Opnds, unsigned InstrQuota) {
603   assert(!Opnds.empty() && "Expect at least one addend");
604 
605   // Step 1: Check if the # of instructions needed exceeds the quota.
606 
607   unsigned InstrNeeded = calcInstrNumber(Opnds);
608   if (InstrNeeded > InstrQuota)
609     return nullptr;
610 
611   initCreateInstNum();
612 
613   // step 2: Emit the N-ary addition.
614   // Note that at most three instructions are involved in Fadd-InstCombine: the
615   // addition in question, and at most two neighboring instructions.
616   // The resulting optimized addition should have at least one less instruction
617   // than the original addition expression tree. This implies that the resulting
618   // N-ary addition has at most two instructions, and we don't need to worry
619   // about tree-height when constructing the N-ary addition.
620 
621   Value *LastVal = nullptr;
622   bool LastValNeedNeg = false;
623 
624   // Iterate the addends, creating fadd/fsub using adjacent two addends.
625   for (const FAddend *Opnd : Opnds) {
626     bool NeedNeg;
627     Value *V = createAddendVal(*Opnd, NeedNeg);
628     if (!LastVal) {
629       LastVal = V;
630       LastValNeedNeg = NeedNeg;
631       continue;
632     }
633 
634     if (LastValNeedNeg == NeedNeg) {
635       LastVal = createFAdd(LastVal, V);
636       continue;
637     }
638 
639     if (LastValNeedNeg)
640       LastVal = createFSub(V, LastVal);
641     else
642       LastVal = createFSub(LastVal, V);
643 
644     LastValNeedNeg = false;
645   }
646 
647   if (LastValNeedNeg) {
648     LastVal = createFNeg(LastVal);
649   }
650 
651 #ifndef NDEBUG
652   assert(CreateInstrNum == InstrNeeded &&
653          "Inconsistent in instruction numbers");
654 #endif
655 
656   return LastVal;
657 }
658 
659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
660   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
661   if (Instruction *I = dyn_cast<Instruction>(V))
662     createInstPostProc(I);
663   return V;
664 }
665 
666 Value *FAddCombine::createFNeg(Value *V) {
667   Value *NewV = Builder.CreateFNeg(V);
668   if (Instruction *I = dyn_cast<Instruction>(NewV))
669     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670   return NewV;
671 }
672 
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675   if (Instruction *I = dyn_cast<Instruction>(V))
676     createInstPostProc(I);
677   return V;
678 }
679 
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682   if (Instruction *I = dyn_cast<Instruction>(V))
683     createInstPostProc(I);
684   return V;
685 }
686 
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688   NewInstr->setDebugLoc(Instr->getDebugLoc());
689 
690   // Keep track of the number of instruction created.
691   if (!NoNumber)
692     incCreateInstNum();
693 
694   // Propagate fast-math flags
695   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696 }
697 
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701   unsigned OpndNum = Opnds.size();
702   unsigned InstrNeeded = OpndNum - 1;
703 
704   // The number of addends in the form of "(-1)*x".
705   unsigned NegOpndNum = 0;
706 
707   // Adjust the number of instructions needed to emit the N-ary add.
708   for (const FAddend *Opnd : Opnds) {
709     if (Opnd->isConstant())
710       continue;
711 
712     // The constant check above is really for a few special constant
713     // coefficients.
714     if (isa<UndefValue>(Opnd->getSymVal()))
715       continue;
716 
717     const FAddendCoef &CE = Opnd->getCoef();
718     if (CE.isMinusOne() || CE.isMinusTwo())
719       NegOpndNum++;
720 
721     // Let the addend be "c * x". If "c == +/-1", the value of the addend
722     // is immediately available; otherwise, it needs exactly one instruction
723     // to evaluate the value.
724     if (!CE.isMinusOne() && !CE.isOne())
725       InstrNeeded++;
726   }
727   return InstrNeeded;
728 }
729 
730 // Input Addend        Value           NeedNeg(output)
731 // ================================================================
732 // Constant C          C               false
733 // <+/-1, V>           V               coefficient is -1
734 // <2/-2, V>          "fadd V, V"      coefficient is -2
735 // <C, V>             "fmul V, C"      false
736 //
737 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
738 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
739   const FAddendCoef &Coeff = Opnd.getCoef();
740 
741   if (Opnd.isConstant()) {
742     NeedNeg = false;
743     return Coeff.getValue(Instr->getType());
744   }
745 
746   Value *OpndVal = Opnd.getSymVal();
747 
748   if (Coeff.isMinusOne() || Coeff.isOne()) {
749     NeedNeg = Coeff.isMinusOne();
750     return OpndVal;
751   }
752 
753   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
754     NeedNeg = Coeff.isMinusTwo();
755     return createFAdd(OpndVal, OpndVal);
756   }
757 
758   NeedNeg = false;
759   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
760 }
761 
762 // Checks if any operand is negative and we can convert add to sub.
763 // This function checks for following negative patterns
764 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
765 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
766 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
767 static Value *checkForNegativeOperand(BinaryOperator &I,
768                                       InstCombiner::BuilderTy &Builder) {
769   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
770 
771   // This function creates 2 instructions to replace ADD, we need at least one
772   // of LHS or RHS to have one use to ensure benefit in transform.
773   if (!LHS->hasOneUse() && !RHS->hasOneUse())
774     return nullptr;
775 
776   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
777   const APInt *C1 = nullptr, *C2 = nullptr;
778 
779   // if ONE is on other side, swap
780   if (match(RHS, m_Add(m_Value(X), m_One())))
781     std::swap(LHS, RHS);
782 
783   if (match(LHS, m_Add(m_Value(X), m_One()))) {
784     // if XOR on other side, swap
785     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
786       std::swap(X, RHS);
787 
788     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
789       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
790       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
791       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
792         Value *NewAnd = Builder.CreateAnd(Z, *C1);
793         return Builder.CreateSub(RHS, NewAnd, "sub");
794       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
795         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
796         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
797         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
798         return Builder.CreateSub(RHS, NewOr, "sub");
799       }
800     }
801   }
802 
803   // Restore LHS and RHS
804   LHS = I.getOperand(0);
805   RHS = I.getOperand(1);
806 
807   // if XOR is on other side, swap
808   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
809     std::swap(LHS, RHS);
810 
811   // C2 is ODD
812   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
813   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
814   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
815     if (C1->countTrailingZeros() == 0)
816       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
817         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
818         return Builder.CreateSub(RHS, NewOr, "sub");
819       }
820   return nullptr;
821 }
822 
823 /// Wrapping flags may allow combining constants separated by an extend.
824 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
825                                   InstCombiner::BuilderTy &Builder) {
826   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
827   Type *Ty = Add.getType();
828   Constant *Op1C;
829   if (!match(Op1, m_Constant(Op1C)))
830     return nullptr;
831 
832   // Try this match first because it results in an add in the narrow type.
833   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
834   Value *X;
835   const APInt *C1, *C2;
836   if (match(Op1, m_APInt(C1)) &&
837       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
838       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
839     Constant *NewC =
840         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
841     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
842   }
843 
844   // More general combining of constants in the wide type.
845   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
846   Constant *NarrowC;
847   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
848     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
849     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
850     Value *WideX = Builder.CreateSExt(X, Ty);
851     return BinaryOperator::CreateAdd(WideX, NewC);
852   }
853   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
854   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
855     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
856     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
857     Value *WideX = Builder.CreateZExt(X, Ty);
858     return BinaryOperator::CreateAdd(WideX, NewC);
859   }
860 
861   return nullptr;
862 }
863 
864 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
865   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
866   Constant *Op1C;
867   if (!match(Op1, m_Constant(Op1C)))
868     return nullptr;
869 
870   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
871     return NV;
872 
873   Value *X;
874   Constant *Op00C;
875 
876   // add (sub C1, X), C2 --> sub (add C1, C2), X
877   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
878     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
879 
880   Value *Y;
881 
882   // add (sub X, Y), -1 --> add (not Y), X
883   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
884       match(Op1, m_AllOnes()))
885     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
886 
887   // zext(bool) + C -> bool ? C + 1 : C
888   if (match(Op0, m_ZExt(m_Value(X))) &&
889       X->getType()->getScalarSizeInBits() == 1)
890     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
891   // sext(bool) + C -> bool ? C - 1 : C
892   if (match(Op0, m_SExt(m_Value(X))) &&
893       X->getType()->getScalarSizeInBits() == 1)
894     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
895 
896   // ~X + C --> (C-1) - X
897   if (match(Op0, m_Not(m_Value(X))))
898     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
899 
900   const APInt *C;
901   if (!match(Op1, m_APInt(C)))
902     return nullptr;
903 
904   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
905   const APInt *C2;
906   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
907     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
908 
909   if (C->isSignMask()) {
910     // If wrapping is not allowed, then the addition must set the sign bit:
911     // X + (signmask) --> X | signmask
912     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
913       return BinaryOperator::CreateOr(Op0, Op1);
914 
915     // If wrapping is allowed, then the addition flips the sign bit of LHS:
916     // X + (signmask) --> X ^ signmask
917     return BinaryOperator::CreateXor(Op0, Op1);
918   }
919 
920   // Is this add the last step in a convoluted sext?
921   // add(zext(xor i16 X, -32768), -32768) --> sext X
922   Type *Ty = Add.getType();
923   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
924       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
925     return CastInst::Create(Instruction::SExt, X, Ty);
926 
927   if (C->isOneValue() && Op0->hasOneUse()) {
928     // add (sext i1 X), 1 --> zext (not X)
929     // TODO: The smallest IR representation is (select X, 0, 1), and that would
930     // not require the one-use check. But we need to remove a transform in
931     // visitSelect and make sure that IR value tracking for select is equal or
932     // better than for these ops.
933     if (match(Op0, m_SExt(m_Value(X))) &&
934         X->getType()->getScalarSizeInBits() == 1)
935       return new ZExtInst(Builder.CreateNot(X), Ty);
936 
937     // Shifts and add used to flip and mask off the low bit:
938     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
939     const APInt *C3;
940     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
941         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
942       Value *NotX = Builder.CreateNot(X);
943       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
944     }
945   }
946 
947   return nullptr;
948 }
949 
950 // Matches multiplication expression Op * C where C is a constant. Returns the
951 // constant value in C and the other operand in Op. Returns true if such a
952 // match is found.
953 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
954   const APInt *AI;
955   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
956     C = *AI;
957     return true;
958   }
959   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
960     C = APInt(AI->getBitWidth(), 1);
961     C <<= *AI;
962     return true;
963   }
964   return false;
965 }
966 
967 // Matches remainder expression Op % C where C is a constant. Returns the
968 // constant value in C and the other operand in Op. Returns the signedness of
969 // the remainder operation in IsSigned. Returns true if such a match is
970 // found.
971 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
972   const APInt *AI;
973   IsSigned = false;
974   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
975     IsSigned = true;
976     C = *AI;
977     return true;
978   }
979   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
980     C = *AI;
981     return true;
982   }
983   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
984     C = *AI + 1;
985     return true;
986   }
987   return false;
988 }
989 
990 // Matches division expression Op / C with the given signedness as indicated
991 // by IsSigned, where C is a constant. Returns the constant value in C and the
992 // other operand in Op. Returns true if such a match is found.
993 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
994   const APInt *AI;
995   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
996     C = *AI;
997     return true;
998   }
999   if (!IsSigned) {
1000     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1001       C = *AI;
1002       return true;
1003     }
1004     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1005       C = APInt(AI->getBitWidth(), 1);
1006       C <<= *AI;
1007       return true;
1008     }
1009   }
1010   return false;
1011 }
1012 
1013 // Returns whether C0 * C1 with the given signedness overflows.
1014 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1015   bool overflow;
1016   if (IsSigned)
1017     (void)C0.smul_ov(C1, overflow);
1018   else
1019     (void)C0.umul_ov(C1, overflow);
1020   return overflow;
1021 }
1022 
1023 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1024 // does not overflow.
1025 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1026   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1027   Value *X, *MulOpV;
1028   APInt C0, MulOpC;
1029   bool IsSigned;
1030   // Match I = X % C0 + MulOpV * C0
1031   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1032        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1033       C0 == MulOpC) {
1034     Value *RemOpV;
1035     APInt C1;
1036     bool Rem2IsSigned;
1037     // Match MulOpC = RemOpV % C1
1038     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1039         IsSigned == Rem2IsSigned) {
1040       Value *DivOpV;
1041       APInt DivOpC;
1042       // Match RemOpV = X / C0
1043       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1044           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1045         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1046         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1047                         : Builder.CreateURem(X, NewDivisor, "urem");
1048       }
1049     }
1050   }
1051 
1052   return nullptr;
1053 }
1054 
1055 /// Fold
1056 ///   (1 << NBits) - 1
1057 /// Into:
1058 ///   ~(-(1 << NBits))
1059 /// Because a 'not' is better for bit-tracking analysis and other transforms
1060 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1061 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1062                                            InstCombiner::BuilderTy &Builder) {
1063   Value *NBits;
1064   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1065     return nullptr;
1066 
1067   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1068   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1069   // Be wary of constant folding.
1070   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1071     // Always NSW. But NUW propagates from `add`.
1072     BOp->setHasNoSignedWrap();
1073     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1074   }
1075 
1076   return BinaryOperator::CreateNot(NotMask, I.getName());
1077 }
1078 
1079 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1080   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1081   Type *Ty = I.getType();
1082   auto getUAddSat = [&]() {
1083     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1084   };
1085 
1086   // add (umin X, ~Y), Y --> uaddsat X, Y
1087   Value *X, *Y;
1088   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1089                         m_Deferred(Y))))
1090     return CallInst::Create(getUAddSat(), { X, Y });
1091 
1092   // add (umin X, ~C), C --> uaddsat X, C
1093   const APInt *C, *NotC;
1094   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1095       *C == ~*NotC)
1096     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1097 
1098   return nullptr;
1099 }
1100 
1101 Instruction *InstCombinerImpl::
1102     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1103         BinaryOperator &I) {
1104   assert((I.getOpcode() == Instruction::Add ||
1105           I.getOpcode() == Instruction::Or ||
1106           I.getOpcode() == Instruction::Sub) &&
1107          "Expecting add/or/sub instruction");
1108 
1109   // We have a subtraction/addition between a (potentially truncated) *logical*
1110   // right-shift of X and a "select".
1111   Value *X, *Select;
1112   Instruction *LowBitsToSkip, *Extract;
1113   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1114                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1115                                m_Instruction(Extract))),
1116                            m_Value(Select))))
1117     return nullptr;
1118 
1119   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1120   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1121     return nullptr;
1122 
1123   Type *XTy = X->getType();
1124   bool HadTrunc = I.getType() != XTy;
1125 
1126   // If there was a truncation of extracted value, then we'll need to produce
1127   // one extra instruction, so we need to ensure one instruction will go away.
1128   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1129     return nullptr;
1130 
1131   // Extraction should extract high NBits bits, with shift amount calculated as:
1132   //   low bits to skip = shift bitwidth - high bits to extract
1133   // The shift amount itself may be extended, and we need to look past zero-ext
1134   // when matching NBits, that will matter for matching later.
1135   Constant *C;
1136   Value *NBits;
1137   if (!match(
1138           LowBitsToSkip,
1139           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1140       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1141                                    APInt(C->getType()->getScalarSizeInBits(),
1142                                          X->getType()->getScalarSizeInBits()))))
1143     return nullptr;
1144 
1145   // Sign-extending value can be zero-extended if we `sub`tract it,
1146   // or sign-extended otherwise.
1147   auto SkipExtInMagic = [&I](Value *&V) {
1148     if (I.getOpcode() == Instruction::Sub)
1149       match(V, m_ZExtOrSelf(m_Value(V)));
1150     else
1151       match(V, m_SExtOrSelf(m_Value(V)));
1152   };
1153 
1154   // Now, finally validate the sign-extending magic.
1155   // `select` itself may be appropriately extended, look past that.
1156   SkipExtInMagic(Select);
1157 
1158   ICmpInst::Predicate Pred;
1159   const APInt *Thr;
1160   Value *SignExtendingValue, *Zero;
1161   bool ShouldSignext;
1162   // It must be a select between two values we will later establish to be a
1163   // sign-extending value and a zero constant. The condition guarding the
1164   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1165   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1166                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1167       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1168     return nullptr;
1169 
1170   // icmp-select pair is commutative.
1171   if (!ShouldSignext)
1172     std::swap(SignExtendingValue, Zero);
1173 
1174   // If we should not perform sign-extension then we must add/or/subtract zero.
1175   if (!match(Zero, m_Zero()))
1176     return nullptr;
1177   // Otherwise, it should be some constant, left-shifted by the same NBits we
1178   // had in `lshr`. Said left-shift can also be appropriately extended.
1179   // Again, we must look past zero-ext when looking for NBits.
1180   SkipExtInMagic(SignExtendingValue);
1181   Constant *SignExtendingValueBaseConstant;
1182   if (!match(SignExtendingValue,
1183              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1184                    m_ZExtOrSelf(m_Specific(NBits)))))
1185     return nullptr;
1186   // If we `sub`, then the constant should be one, else it should be all-ones.
1187   if (I.getOpcode() == Instruction::Sub
1188           ? !match(SignExtendingValueBaseConstant, m_One())
1189           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1190     return nullptr;
1191 
1192   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1193                                              Extract->getName() + ".sext");
1194   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1195   if (!HadTrunc)
1196     return NewAShr;
1197 
1198   Builder.Insert(NewAShr);
1199   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1200 }
1201 
1202 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1203   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1204                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1205                                  SQ.getWithInstruction(&I)))
1206     return replaceInstUsesWith(I, V);
1207 
1208   if (SimplifyAssociativeOrCommutative(I))
1209     return &I;
1210 
1211   if (Instruction *X = foldVectorBinop(I))
1212     return X;
1213 
1214   // (A*B)+(A*C) -> A*(B+C) etc
1215   if (Value *V = SimplifyUsingDistributiveLaws(I))
1216     return replaceInstUsesWith(I, V);
1217 
1218   if (Instruction *X = foldAddWithConstant(I))
1219     return X;
1220 
1221   if (Instruction *X = foldNoWrapAdd(I, Builder))
1222     return X;
1223 
1224   // FIXME: This should be moved into the above helper function to allow these
1225   // transforms for general constant or constant splat vectors.
1226   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1227   Type *Ty = I.getType();
1228   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1229     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1230     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1231       unsigned TySizeBits = Ty->getScalarSizeInBits();
1232       const APInt &RHSVal = CI->getValue();
1233       unsigned ExtendAmt = 0;
1234       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1235       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1236       if (XorRHS->getValue() == -RHSVal) {
1237         if (RHSVal.isPowerOf2())
1238           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1239         else if (XorRHS->getValue().isPowerOf2())
1240           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1241       }
1242 
1243       if (ExtendAmt) {
1244         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1245         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1246           ExtendAmt = 0;
1247       }
1248 
1249       if (ExtendAmt) {
1250         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1251         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1252         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1253       }
1254 
1255       // If this is a xor that was canonicalized from a sub, turn it back into
1256       // a sub and fuse this add with it.
1257       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1258         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1259         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1260           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1261                                            XorLHS);
1262       }
1263       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1264       // transform them into (X + (signmask ^ C))
1265       if (XorRHS->getValue().isSignMask())
1266         return BinaryOperator::CreateAdd(XorLHS,
1267                                          ConstantExpr::getXor(XorRHS, CI));
1268     }
1269   }
1270 
1271   if (Ty->isIntOrIntVectorTy(1))
1272     return BinaryOperator::CreateXor(LHS, RHS);
1273 
1274   // X + X --> X << 1
1275   if (LHS == RHS) {
1276     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1277     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1278     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1279     return Shl;
1280   }
1281 
1282   Value *A, *B;
1283   if (match(LHS, m_Neg(m_Value(A)))) {
1284     // -A + -B --> -(A + B)
1285     if (match(RHS, m_Neg(m_Value(B))))
1286       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1287 
1288     // -A + B --> B - A
1289     return BinaryOperator::CreateSub(RHS, A);
1290   }
1291 
1292   // A + -B  -->  A - B
1293   if (match(RHS, m_Neg(m_Value(B))))
1294     return BinaryOperator::CreateSub(LHS, B);
1295 
1296   if (Value *V = checkForNegativeOperand(I, Builder))
1297     return replaceInstUsesWith(I, V);
1298 
1299   // (A + 1) + ~B --> A - B
1300   // ~B + (A + 1) --> A - B
1301   // (~B + A) + 1 --> A - B
1302   // (A + ~B) + 1 --> A - B
1303   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1304       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1305     return BinaryOperator::CreateSub(A, B);
1306 
1307   // (A + RHS) + RHS --> A + (RHS << 1)
1308   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1309     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1310 
1311   // LHS + (A + LHS) --> A + (LHS << 1)
1312   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1313     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1314 
1315   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1316   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1317 
1318   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1319   const APInt *C1, *C2;
1320   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1321     APInt one(C2->getBitWidth(), 1);
1322     APInt minusC1 = -(*C1);
1323     if (minusC1 == (one << *C2)) {
1324       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1325       return BinaryOperator::CreateSRem(RHS, NewRHS);
1326     }
1327   }
1328 
1329   // A+B --> A|B iff A and B have no bits set in common.
1330   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1331     return BinaryOperator::CreateOr(LHS, RHS);
1332 
1333   // FIXME: We already did a check for ConstantInt RHS above this.
1334   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1335   // removal.
1336   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1337     // (X & FF00) + xx00  -> (X+xx00) & FF00
1338     Value *X;
1339     ConstantInt *C2;
1340     if (LHS->hasOneUse() &&
1341         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1342         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1343       // See if all bits from the first bit set in the Add RHS up are included
1344       // in the mask.  First, get the rightmost bit.
1345       const APInt &AddRHSV = CRHS->getValue();
1346 
1347       // Form a mask of all bits from the lowest bit added through the top.
1348       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1349 
1350       // See if the and mask includes all of these bits.
1351       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1352 
1353       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1354         // Okay, the xform is safe.  Insert the new add pronto.
1355         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1356         return BinaryOperator::CreateAnd(NewAdd, C2);
1357       }
1358     }
1359   }
1360 
1361   // add (select X 0 (sub n A)) A  -->  select X A n
1362   {
1363     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1364     Value *A = RHS;
1365     if (!SI) {
1366       SI = dyn_cast<SelectInst>(RHS);
1367       A = LHS;
1368     }
1369     if (SI && SI->hasOneUse()) {
1370       Value *TV = SI->getTrueValue();
1371       Value *FV = SI->getFalseValue();
1372       Value *N;
1373 
1374       // Can we fold the add into the argument of the select?
1375       // We check both true and false select arguments for a matching subtract.
1376       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1377         // Fold the add into the true select value.
1378         return SelectInst::Create(SI->getCondition(), N, A);
1379 
1380       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1381         // Fold the add into the false select value.
1382         return SelectInst::Create(SI->getCondition(), A, N);
1383     }
1384   }
1385 
1386   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1387     return Ext;
1388 
1389   // (add (xor A, B) (and A, B)) --> (or A, B)
1390   // (add (and A, B) (xor A, B)) --> (or A, B)
1391   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1392                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1393     return BinaryOperator::CreateOr(A, B);
1394 
1395   // (add (or A, B) (and A, B)) --> (add A, B)
1396   // (add (and A, B) (or A, B)) --> (add A, B)
1397   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1398                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1399     // Replacing operands in-place to preserve nuw/nsw flags.
1400     replaceOperand(I, 0, A);
1401     replaceOperand(I, 1, B);
1402     return &I;
1403   }
1404 
1405   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1406   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1407   // computeKnownBits.
1408   bool Changed = false;
1409   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1410     Changed = true;
1411     I.setHasNoSignedWrap(true);
1412   }
1413   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1414     Changed = true;
1415     I.setHasNoUnsignedWrap(true);
1416   }
1417 
1418   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1419     return V;
1420 
1421   if (Instruction *V =
1422           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1423     return V;
1424 
1425   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1426     return SatAdd;
1427 
1428   return Changed ? &I : nullptr;
1429 }
1430 
1431 /// Eliminate an op from a linear interpolation (lerp) pattern.
1432 static Instruction *factorizeLerp(BinaryOperator &I,
1433                                   InstCombiner::BuilderTy &Builder) {
1434   Value *X, *Y, *Z;
1435   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1436                                             m_OneUse(m_FSub(m_FPOne(),
1437                                                             m_Value(Z))))),
1438                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1439     return nullptr;
1440 
1441   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1442   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1443   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1444   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1445 }
1446 
1447 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1448 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1449                                       InstCombiner::BuilderTy &Builder) {
1450   assert((I.getOpcode() == Instruction::FAdd ||
1451           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1452   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1453          "FP factorization requires FMF");
1454 
1455   if (Instruction *Lerp = factorizeLerp(I, Builder))
1456     return Lerp;
1457 
1458   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1459   Value *X, *Y, *Z;
1460   bool IsFMul;
1461   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1462        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1463       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1464        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1465     IsFMul = true;
1466   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1467            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1468     IsFMul = false;
1469   else
1470     return nullptr;
1471 
1472   // (X * Z) + (Y * Z) --> (X + Y) * Z
1473   // (X * Z) - (Y * Z) --> (X - Y) * Z
1474   // (X / Z) + (Y / Z) --> (X + Y) / Z
1475   // (X / Z) - (Y / Z) --> (X - Y) / Z
1476   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1477   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1478                      : Builder.CreateFSubFMF(X, Y, &I);
1479 
1480   // Bail out if we just created a denormal constant.
1481   // TODO: This is copied from a previous implementation. Is it necessary?
1482   const APFloat *C;
1483   if (match(XY, m_APFloat(C)) && !C->isNormal())
1484     return nullptr;
1485 
1486   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1487                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1488 }
1489 
1490 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1491   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1492                                   I.getFastMathFlags(),
1493                                   SQ.getWithInstruction(&I)))
1494     return replaceInstUsesWith(I, V);
1495 
1496   if (SimplifyAssociativeOrCommutative(I))
1497     return &I;
1498 
1499   if (Instruction *X = foldVectorBinop(I))
1500     return X;
1501 
1502   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1503     return FoldedFAdd;
1504 
1505   // (-X) + Y --> Y - X
1506   Value *X, *Y;
1507   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1508     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1509 
1510   // Similar to above, but look through fmul/fdiv for the negated term.
1511   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1512   Value *Z;
1513   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1514                          m_Value(Z)))) {
1515     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1516     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1517   }
1518   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1519   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1520   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1521                          m_Value(Z))) ||
1522       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1523                          m_Value(Z)))) {
1524     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1525     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1526   }
1527 
1528   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1529   // integer add followed by a promotion.
1530   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1531   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1532     Value *LHSIntVal = LHSConv->getOperand(0);
1533     Type *FPType = LHSConv->getType();
1534 
1535     // TODO: This check is overly conservative. In many cases known bits
1536     // analysis can tell us that the result of the addition has less significant
1537     // bits than the integer type can hold.
1538     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1539       Type *FScalarTy = FTy->getScalarType();
1540       Type *IScalarTy = ITy->getScalarType();
1541 
1542       // Do we have enough bits in the significand to represent the result of
1543       // the integer addition?
1544       unsigned MaxRepresentableBits =
1545           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1546       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1547     };
1548 
1549     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1550     // ... if the constant fits in the integer value.  This is useful for things
1551     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1552     // requires a constant pool load, and generally allows the add to be better
1553     // instcombined.
1554     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1555       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1556         Constant *CI =
1557           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1558         if (LHSConv->hasOneUse() &&
1559             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1560             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1561           // Insert the new integer add.
1562           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1563           return new SIToFPInst(NewAdd, I.getType());
1564         }
1565       }
1566 
1567     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1568     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1569       Value *RHSIntVal = RHSConv->getOperand(0);
1570       // It's enough to check LHS types only because we require int types to
1571       // be the same for this transform.
1572       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1573         // Only do this if x/y have the same type, if at least one of them has a
1574         // single use (so we don't increase the number of int->fp conversions),
1575         // and if the integer add will not overflow.
1576         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1577             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1578             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1579           // Insert the new integer add.
1580           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1581           return new SIToFPInst(NewAdd, I.getType());
1582         }
1583       }
1584     }
1585   }
1586 
1587   // Handle specials cases for FAdd with selects feeding the operation
1588   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1589     return replaceInstUsesWith(I, V);
1590 
1591   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1592     if (Instruction *F = factorizeFAddFSub(I, Builder))
1593       return F;
1594     if (Value *V = FAddCombine(Builder).simplify(&I))
1595       return replaceInstUsesWith(I, V);
1596   }
1597 
1598   return nullptr;
1599 }
1600 
1601 /// Optimize pointer differences into the same array into a size.  Consider:
1602 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1603 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1604 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1605                                                    Type *Ty, bool IsNUW) {
1606   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1607   // this.
1608   bool Swapped = false;
1609   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1610 
1611   // For now we require one side to be the base pointer "A" or a constant
1612   // GEP derived from it.
1613   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1614     // (gep X, ...) - X
1615     if (LHSGEP->getOperand(0) == RHS) {
1616       GEP1 = LHSGEP;
1617       Swapped = false;
1618     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1619       // (gep X, ...) - (gep X, ...)
1620       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1621             RHSGEP->getOperand(0)->stripPointerCasts()) {
1622         GEP2 = RHSGEP;
1623         GEP1 = LHSGEP;
1624         Swapped = false;
1625       }
1626     }
1627   }
1628 
1629   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1630     // X - (gep X, ...)
1631     if (RHSGEP->getOperand(0) == LHS) {
1632       GEP1 = RHSGEP;
1633       Swapped = true;
1634     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1635       // (gep X, ...) - (gep X, ...)
1636       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1637             LHSGEP->getOperand(0)->stripPointerCasts()) {
1638         GEP2 = LHSGEP;
1639         GEP1 = RHSGEP;
1640         Swapped = true;
1641       }
1642     }
1643   }
1644 
1645   if (!GEP1)
1646     // No GEP found.
1647     return nullptr;
1648 
1649   if (GEP2) {
1650     // (gep X, ...) - (gep X, ...)
1651     //
1652     // Avoid duplicating the arithmetic if there are more than one non-constant
1653     // indices between the two GEPs and either GEP has a non-constant index and
1654     // multiple users. If zero non-constant index, the result is a constant and
1655     // there is no duplication. If one non-constant index, the result is an add
1656     // or sub with a constant, which is no larger than the original code, and
1657     // there's no duplicated arithmetic, even if either GEP has multiple
1658     // users. If more than one non-constant indices combined, as long as the GEP
1659     // with at least one non-constant index doesn't have multiple users, there
1660     // is no duplication.
1661     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1662     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1663     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1664         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1665          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1666       return nullptr;
1667     }
1668   }
1669 
1670   // Emit the offset of the GEP and an intptr_t.
1671   Value *Result = EmitGEPOffset(GEP1);
1672 
1673   // If this is a single inbounds GEP and the original sub was nuw,
1674   // then the final multiplication is also nuw. We match an extra add zero
1675   // here, because that's what EmitGEPOffset() generates.
1676   Instruction *I;
1677   if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1678       match(Result, m_Add(m_Instruction(I), m_Zero())) &&
1679       I->getOpcode() == Instruction::Mul)
1680     I->setHasNoUnsignedWrap();
1681 
1682   // If we had a constant expression GEP on the other side offsetting the
1683   // pointer, subtract it from the offset we have.
1684   if (GEP2) {
1685     Value *Offset = EmitGEPOffset(GEP2);
1686     Result = Builder.CreateSub(Result, Offset);
1687   }
1688 
1689   // If we have p - gep(p, ...)  then we have to negate the result.
1690   if (Swapped)
1691     Result = Builder.CreateNeg(Result, "diff.neg");
1692 
1693   return Builder.CreateIntCast(Result, Ty, true);
1694 }
1695 
1696 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1697   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1698                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1699                                  SQ.getWithInstruction(&I)))
1700     return replaceInstUsesWith(I, V);
1701 
1702   if (Instruction *X = foldVectorBinop(I))
1703     return X;
1704 
1705   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1706 
1707   // If this is a 'B = x-(-A)', change to B = x+A.
1708   // We deal with this without involving Negator to preserve NSW flag.
1709   if (Value *V = dyn_castNegVal(Op1)) {
1710     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1711 
1712     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1713       assert(BO->getOpcode() == Instruction::Sub &&
1714              "Expected a subtraction operator!");
1715       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1716         Res->setHasNoSignedWrap(true);
1717     } else {
1718       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1719         Res->setHasNoSignedWrap(true);
1720     }
1721 
1722     return Res;
1723   }
1724 
1725   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1726     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1727       return Ext;
1728 
1729     bool Changed = false;
1730     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1731       Changed = true;
1732       I.setHasNoSignedWrap(true);
1733     }
1734     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1735       Changed = true;
1736       I.setHasNoUnsignedWrap(true);
1737     }
1738 
1739     return Changed ? &I : nullptr;
1740   };
1741 
1742   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1743   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1744   // a pure negation used by a select that looks like abs/nabs.
1745   bool IsNegation = match(Op0, m_ZeroInt());
1746   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1747         const Instruction *UI = dyn_cast<Instruction>(U);
1748         if (!UI)
1749           return false;
1750         return match(UI,
1751                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1752                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1753       })) {
1754     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1755       return BinaryOperator::CreateAdd(NegOp1, Op0);
1756   }
1757   if (IsNegation)
1758     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1759 
1760   // (A*B)-(A*C) -> A*(B-C) etc
1761   if (Value *V = SimplifyUsingDistributiveLaws(I))
1762     return replaceInstUsesWith(I, V);
1763 
1764   if (I.getType()->isIntOrIntVectorTy(1))
1765     return BinaryOperator::CreateXor(Op0, Op1);
1766 
1767   // Replace (-1 - A) with (~A).
1768   if (match(Op0, m_AllOnes()))
1769     return BinaryOperator::CreateNot(Op1);
1770 
1771   // (~X) - (~Y) --> Y - X
1772   Value *X, *Y;
1773   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1774     return BinaryOperator::CreateSub(Y, X);
1775 
1776   // (X + -1) - Y --> ~Y + X
1777   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1778     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1779 
1780   // Reassociate sub/add sequences to create more add instructions and
1781   // reduce dependency chains:
1782   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1783   Value *Z;
1784   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1785                                   m_Value(Z))))) {
1786     Value *XZ = Builder.CreateAdd(X, Z);
1787     Value *YW = Builder.CreateAdd(Y, Op1);
1788     return BinaryOperator::CreateSub(XZ, YW);
1789   }
1790 
1791   auto m_AddRdx = [](Value *&Vec) {
1792     return m_OneUse(
1793         m_Intrinsic<Intrinsic::experimental_vector_reduce_add>(m_Value(Vec)));
1794   };
1795   Value *V0, *V1;
1796   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1797       V0->getType() == V1->getType()) {
1798     // Difference of sums is sum of differences:
1799     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1800     Value *Sub = Builder.CreateSub(V0, V1);
1801     Value *Rdx = Builder.CreateIntrinsic(
1802         Intrinsic::experimental_vector_reduce_add, {Sub->getType()}, {Sub});
1803     return replaceInstUsesWith(I, Rdx);
1804   }
1805 
1806   if (Constant *C = dyn_cast<Constant>(Op0)) {
1807     Value *X;
1808     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1809       // C - (zext bool) --> bool ? C - 1 : C
1810       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1811     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1812       // C - (sext bool) --> bool ? C + 1 : C
1813       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
1814 
1815     // C - ~X == X + (1+C)
1816     if (match(Op1, m_Not(m_Value(X))))
1817       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
1818 
1819     // Try to fold constant sub into select arguments.
1820     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1821       if (Instruction *R = FoldOpIntoSelect(I, SI))
1822         return R;
1823 
1824     // Try to fold constant sub into PHI values.
1825     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1826       if (Instruction *R = foldOpIntoPhi(I, PN))
1827         return R;
1828 
1829     Constant *C2;
1830 
1831     // C-(C2-X) --> X+(C-C2)
1832     if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))) && !isa<ConstantExpr>(C2))
1833       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1834 
1835     // C-(X+C2) --> (C-C2)-X
1836     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1837       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1838   }
1839 
1840   const APInt *Op0C;
1841   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1842     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1843     // zero.
1844     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1845     if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1846       return BinaryOperator::CreateXor(Op1, Op0);
1847   }
1848 
1849   {
1850     Value *Y;
1851     // X-(X+Y) == -Y    X-(Y+X) == -Y
1852     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1853       return BinaryOperator::CreateNeg(Y);
1854 
1855     // (X-Y)-X == -Y
1856     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1857       return BinaryOperator::CreateNeg(Y);
1858   }
1859 
1860   // (sub (or A, B) (and A, B)) --> (xor A, B)
1861   {
1862     Value *A, *B;
1863     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1864         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1865       return BinaryOperator::CreateXor(A, B);
1866   }
1867 
1868   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1869   {
1870     Value *A, *B;
1871     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1872         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1873         (Op0->hasOneUse() || Op1->hasOneUse()))
1874       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1875   }
1876 
1877   // (sub (or A, B), (xor A, B)) --> (and A, B)
1878   {
1879     Value *A, *B;
1880     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1881         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1882       return BinaryOperator::CreateAnd(A, B);
1883   }
1884 
1885   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1886   {
1887     Value *A, *B;
1888     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1889         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1890         (Op0->hasOneUse() || Op1->hasOneUse()))
1891       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1892   }
1893 
1894   {
1895     Value *Y;
1896     // ((X | Y) - X) --> (~X & Y)
1897     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1898       return BinaryOperator::CreateAnd(
1899           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1900   }
1901 
1902   {
1903     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1904     Value *X;
1905     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1906                                     m_OneUse(m_Neg(m_Value(X))))))) {
1907       return BinaryOperator::CreateNeg(Builder.CreateAnd(
1908           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1909     }
1910   }
1911 
1912   {
1913     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1914     Constant *C;
1915     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
1916       return BinaryOperator::CreateNeg(
1917           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
1918     }
1919   }
1920 
1921   {
1922     // If we have a subtraction between some value and a select between
1923     // said value and something else, sink subtraction into select hands, i.e.:
1924     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
1925     //     ->
1926     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
1927     //  or
1928     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
1929     //     ->
1930     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
1931     // This will result in select between new subtraction and 0.
1932     auto SinkSubIntoSelect =
1933         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
1934                            auto SubBuilder) -> Instruction * {
1935       Value *Cond, *TrueVal, *FalseVal;
1936       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
1937                                            m_Value(FalseVal)))))
1938         return nullptr;
1939       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
1940         return nullptr;
1941       // While it is really tempting to just create two subtractions and let
1942       // InstCombine fold one of those to 0, it isn't possible to do so
1943       // because of worklist visitation order. So ugly it is.
1944       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
1945       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
1946       Constant *Zero = Constant::getNullValue(Ty);
1947       SelectInst *NewSel =
1948           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
1949                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
1950       // Preserve prof metadata if any.
1951       NewSel->copyMetadata(cast<Instruction>(*Select));
1952       return NewSel;
1953     };
1954     if (Instruction *NewSel = SinkSubIntoSelect(
1955             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
1956             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
1957               return Builder->CreateSub(OtherHandOfSelect,
1958                                         /*OtherHandOfSub=*/Op1);
1959             }))
1960       return NewSel;
1961     if (Instruction *NewSel = SinkSubIntoSelect(
1962             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
1963             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
1964               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
1965                                         OtherHandOfSelect);
1966             }))
1967       return NewSel;
1968   }
1969 
1970   // (X - (X & Y))   -->   (X & ~Y)
1971   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
1972       (Op1->hasOneUse() || isa<Constant>(Y)))
1973     return BinaryOperator::CreateAnd(
1974         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
1975 
1976   {
1977     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1978     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1979     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1980     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1981     // So long as O here is freely invertible, this will be neutral or a win.
1982     Value *LHS, *RHS, *A;
1983     Value *NotA = Op0, *MinMax = Op1;
1984     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1985     if (!SelectPatternResult::isMinOrMax(SPF)) {
1986       NotA = Op1;
1987       MinMax = Op0;
1988       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1989     }
1990     if (SelectPatternResult::isMinOrMax(SPF) &&
1991         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1992       if (NotA == LHS)
1993         std::swap(LHS, RHS);
1994       // LHS is now O above and expected to have at least 2 uses (the min/max)
1995       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1996       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1997           !NotA->hasNUsesOrMore(4)) {
1998         // Note: We don't generate the inverse max/min, just create the not of
1999         // it and let other folds do the rest.
2000         Value *Not = Builder.CreateNot(MinMax);
2001         if (NotA == Op0)
2002           return BinaryOperator::CreateSub(Not, A);
2003         else
2004           return BinaryOperator::CreateSub(A, Not);
2005       }
2006     }
2007   }
2008 
2009   // Optimize pointer differences into the same array into a size.  Consider:
2010   //  &A[10] - &A[0]: we should compile this to "10".
2011   Value *LHSOp, *RHSOp;
2012   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2013       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2014     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2015                                                I.hasNoUnsignedWrap()))
2016       return replaceInstUsesWith(I, Res);
2017 
2018   // trunc(p)-trunc(q) -> trunc(p-q)
2019   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2020       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2021     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2022                                                /* IsNUW */ false))
2023       return replaceInstUsesWith(I, Res);
2024 
2025   // Canonicalize a shifty way to code absolute value to the common pattern.
2026   // There are 2 potential commuted variants.
2027   // We're relying on the fact that we only do this transform when the shift has
2028   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2029   // instructions).
2030   Value *A;
2031   const APInt *ShAmt;
2032   Type *Ty = I.getType();
2033   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2034       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2035       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2036     // B = ashr i32 A, 31 ; smear the sign bit
2037     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2038     // --> (A < 0) ? -A : A
2039     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2040     // Copy the nuw/nsw flags from the sub to the negate.
2041     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2042                                    I.hasNoSignedWrap());
2043     return SelectInst::Create(Cmp, Neg, A);
2044   }
2045 
2046   if (Instruction *V =
2047           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2048     return V;
2049 
2050   return TryToNarrowDeduceFlags();
2051 }
2052 
2053 /// This eliminates floating-point negation in either 'fneg(X)' or
2054 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2055 static Instruction *foldFNegIntoConstant(Instruction &I) {
2056   Value *X;
2057   Constant *C;
2058 
2059   // Fold negation into constant operand. This is limited with one-use because
2060   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
2061   // -(X * C) --> X * (-C)
2062   // FIXME: It's arguable whether these should be m_OneUse or not. The current
2063   // belief is that the FNeg allows for better reassociation opportunities.
2064   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
2065     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2066   // -(X / C) --> X / (-C)
2067   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
2068     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2069   // -(C / X) --> (-C) / X
2070   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
2071     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2072 
2073   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2074   // -(X + C) --> -X + -C --> -C - X
2075   if (I.hasNoSignedZeros() &&
2076       match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C))))))
2077     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2078 
2079   return nullptr;
2080 }
2081 
2082 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2083                                            InstCombiner::BuilderTy &Builder) {
2084   Value *FNeg;
2085   if (!match(&I, m_FNeg(m_Value(FNeg))))
2086     return nullptr;
2087 
2088   Value *X, *Y;
2089   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2090     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2091 
2092   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2093     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2094 
2095   return nullptr;
2096 }
2097 
2098 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2099   Value *Op = I.getOperand(0);
2100 
2101   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2102                                   getSimplifyQuery().getWithInstruction(&I)))
2103     return replaceInstUsesWith(I, V);
2104 
2105   if (Instruction *X = foldFNegIntoConstant(I))
2106     return X;
2107 
2108   Value *X, *Y;
2109 
2110   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2111   if (I.hasNoSignedZeros() &&
2112       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2113     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2114 
2115   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2116     return R;
2117 
2118   return nullptr;
2119 }
2120 
2121 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2122   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2123                                   I.getFastMathFlags(),
2124                                   getSimplifyQuery().getWithInstruction(&I)))
2125     return replaceInstUsesWith(I, V);
2126 
2127   if (Instruction *X = foldVectorBinop(I))
2128     return X;
2129 
2130   // Subtraction from -0.0 is the canonical form of fneg.
2131   // fsub -0.0, X ==> fneg X
2132   // fsub nsz 0.0, X ==> fneg nsz X
2133   //
2134   // FIXME This matcher does not respect FTZ or DAZ yet:
2135   // fsub -0.0, Denorm ==> +-0
2136   // fneg Denorm ==> -Denorm
2137   Value *Op;
2138   if (match(&I, m_FNeg(m_Value(Op))))
2139     return UnaryOperator::CreateFNegFMF(Op, &I);
2140 
2141   if (Instruction *X = foldFNegIntoConstant(I))
2142     return X;
2143 
2144   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2145     return R;
2146 
2147   Value *X, *Y;
2148   Constant *C;
2149 
2150   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2151   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2152   // Canonicalize to fadd to make analysis easier.
2153   // This can also help codegen because fadd is commutative.
2154   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2155   // killed later. We still limit that particular transform with 'hasOneUse'
2156   // because an fneg is assumed better/cheaper than a generic fsub.
2157   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2158     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2159       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2160       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2161     }
2162   }
2163 
2164   // (-X) - Op1 --> -(X + Op1)
2165   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2166       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2167     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2168     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2169   }
2170 
2171   if (isa<Constant>(Op0))
2172     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2173       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2174         return NV;
2175 
2176   // X - C --> X + (-C)
2177   // But don't transform constant expressions because there's an inverse fold
2178   // for X + (-Y) --> X - Y.
2179   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2180     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2181 
2182   // X - (-Y) --> X + Y
2183   if (match(Op1, m_FNeg(m_Value(Y))))
2184     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2185 
2186   // Similar to above, but look through a cast of the negated value:
2187   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2188   Type *Ty = I.getType();
2189   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2190     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2191 
2192   // X - (fpext(-Y)) --> X + fpext(Y)
2193   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2194     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2195 
2196   // Similar to above, but look through fmul/fdiv of the negated value:
2197   // Op0 - (-X * Y) --> Op0 + (X * Y)
2198   // Op0 - (Y * -X) --> Op0 + (X * Y)
2199   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2200     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2201     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2202   }
2203   // Op0 - (-X / Y) --> Op0 + (X / Y)
2204   // Op0 - (X / -Y) --> Op0 + (X / Y)
2205   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2206       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2207     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2208     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2209   }
2210 
2211   // Handle special cases for FSub with selects feeding the operation
2212   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2213     return replaceInstUsesWith(I, V);
2214 
2215   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2216     // (Y - X) - Y --> -X
2217     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2218       return UnaryOperator::CreateFNegFMF(X, &I);
2219 
2220     // Y - (X + Y) --> -X
2221     // Y - (Y + X) --> -X
2222     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2223       return UnaryOperator::CreateFNegFMF(X, &I);
2224 
2225     // (X * C) - X --> X * (C - 1.0)
2226     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2227       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2228       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2229     }
2230     // X - (X * C) --> X * (1.0 - C)
2231     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2232       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2233       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2234     }
2235 
2236     // Reassociate fsub/fadd sequences to create more fadd instructions and
2237     // reduce dependency chains:
2238     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2239     Value *Z;
2240     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2241                                      m_Value(Z))))) {
2242       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2243       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2244       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2245     }
2246 
2247     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2248       return m_OneUse(
2249           m_Intrinsic<Intrinsic::experimental_vector_reduce_v2_fadd>(
2250               m_Value(Sum), m_Value(Vec)));
2251     };
2252     Value *A0, *A1, *V0, *V1;
2253     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2254         V0->getType() == V1->getType()) {
2255       // Difference of sums is sum of differences:
2256       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2257       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2258       Value *Rdx = Builder.CreateIntrinsic(
2259           Intrinsic::experimental_vector_reduce_v2_fadd,
2260           {A0->getType(), Sub->getType()}, {A0, Sub}, &I);
2261       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2262     }
2263 
2264     if (Instruction *F = factorizeFAddFSub(I, Builder))
2265       return F;
2266 
2267     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2268     // functionality has been subsumed by simple pattern matching here and in
2269     // InstSimplify. We should let a dedicated reassociation pass handle more
2270     // complex pattern matching and remove this from InstCombine.
2271     if (Value *V = FAddCombine(Builder).simplify(&I))
2272       return replaceInstUsesWith(I, V);
2273 
2274     // (X - Y) - Op1 --> X - (Y + Op1)
2275     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2276       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2277       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2278     }
2279   }
2280 
2281   return nullptr;
2282 }
2283