1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20 
21 using namespace llvm;
22 using namespace PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 namespace {
27 
28   /// Class representing coefficient of floating-point addend.
29   /// This class needs to be highly efficient, which is especially true for
30   /// the constructor. As of I write this comment, the cost of the default
31   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
32   /// perform write-merging).
33   ///
34   class FAddendCoef {
35   public:
36     // The constructor has to initialize a APFloat, which is unnecessary for
37     // most addends which have coefficient either 1 or -1. So, the constructor
38     // is expensive. In order to avoid the cost of the constructor, we should
39     // reuse some instances whenever possible. The pre-created instances
40     // FAddCombine::Add[0-5] embodies this idea.
41     //
42     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
43     ~FAddendCoef();
44 
45     void set(short C) {
46       assert(!insaneIntVal(C) && "Insane coefficient");
47       IsFp = false; IntVal = C;
48     }
49 
50     void set(const APFloat& C);
51 
52     void negate();
53 
54     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
55     Value *getValue(Type *) const;
56 
57     // If possible, don't define operator+/operator- etc because these
58     // operators inevitably call FAddendCoef's constructor which is not cheap.
59     void operator=(const FAddendCoef &A);
60     void operator+=(const FAddendCoef &A);
61     void operator-=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     bool isOne() const { return isInt() && IntVal == 1; }
65     bool isTwo() const { return isInt() && IntVal == 2; }
66     bool isMinusOne() const { return isInt() && IntVal == -1; }
67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
68 
69   private:
70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
71     APFloat *getFpValPtr()
72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
73     const APFloat *getFpValPtr() const
74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
75 
76     const APFloat &getFpVal() const {
77       assert(IsFp && BufHasFpVal && "Incorret state");
78       return *getFpValPtr();
79     }
80 
81     APFloat &getFpVal() {
82       assert(IsFp && BufHasFpVal && "Incorret state");
83       return *getFpValPtr();
84     }
85 
86     bool isInt() const { return !IsFp; }
87 
88     // If the coefficient is represented by an integer, promote it to a
89     // floating point.
90     void convertToFpType(const fltSemantics &Sem);
91 
92     // Construct an APFloat from a signed integer.
93     // TODO: We should get rid of this function when APFloat can be constructed
94     //       from an *SIGNED* integer.
95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
96 
97   private:
98     bool IsFp;
99 
100     // True iff FpValBuf contains an instance of APFloat.
101     bool BufHasFpVal;
102 
103     // The integer coefficient of an individual addend is either 1 or -1,
104     // and we try to simplify at most 4 addends from neighboring at most
105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
106     // is overkill of this end.
107     short IntVal;
108 
109     AlignedCharArrayUnion<APFloat> FpValBuf;
110   };
111 
112   /// FAddend is used to represent floating-point addend. An addend is
113   /// represented as <C, V>, where the V is a symbolic value, and C is a
114   /// constant coefficient. A constant addend is represented as <C, 0>.
115   ///
116   class FAddend {
117   public:
118     FAddend() : Val(nullptr) {}
119 
120     Value *getSymVal() const { return Val; }
121     const FAddendCoef &getCoef() const { return Coeff; }
122 
123     bool isConstant() const { return Val == nullptr; }
124     bool isZero() const { return Coeff.isZero(); }
125 
126     void set(short Coefficient, Value *V) {
127       Coeff.set(Coefficient);
128       Val = V;
129     }
130     void set(const APFloat &Coefficient, Value *V) {
131       Coeff.set(Coefficient);
132       Val = V;
133     }
134     void set(const ConstantFP *Coefficient, Value *V) {
135       Coeff.set(Coefficient->getValueAPF());
136       Val = V;
137     }
138 
139     void negate() { Coeff.negate(); }
140 
141     /// Drill down the U-D chain one step to find the definition of V, and
142     /// try to break the definition into one or two addends.
143     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
144 
145     /// Similar to FAddend::drillDownOneStep() except that the value being
146     /// splitted is the addend itself.
147     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
148 
149     void operator+=(const FAddend &T) {
150       assert((Val == T.Val) && "Symbolic-values disagree");
151       Coeff += T.Coeff;
152     }
153 
154   private:
155     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
156 
157     // This addend has the value of "Coeff * Val".
158     Value *Val;
159     FAddendCoef Coeff;
160   };
161 
162   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
163   /// with its neighboring at most two instructions.
164   ///
165   class FAddCombine {
166   public:
167     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
168     Value *simplify(Instruction *FAdd);
169 
170   private:
171     typedef SmallVector<const FAddend*, 4> AddendVect;
172 
173     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
174 
175     Value *performFactorization(Instruction *I);
176 
177     /// Convert given addend to a Value
178     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
179 
180     /// Return the number of instructions needed to emit the N-ary addition.
181     unsigned calcInstrNumber(const AddendVect& Vect);
182     Value *createFSub(Value *Opnd0, Value *Opnd1);
183     Value *createFAdd(Value *Opnd0, Value *Opnd1);
184     Value *createFMul(Value *Opnd0, Value *Opnd1);
185     Value *createFDiv(Value *Opnd0, Value *Opnd1);
186     Value *createFNeg(Value *V);
187     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
188     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
189 
190     InstCombiner::BuilderTy *Builder;
191     Instruction *Instr;
192 
193      // Debugging stuff are clustered here.
194     #ifndef NDEBUG
195       unsigned CreateInstrNum;
196       void initCreateInstNum() { CreateInstrNum = 0; }
197       void incCreateInstNum() { CreateInstrNum++; }
198     #else
199       void initCreateInstNum() {}
200       void incCreateInstNum() {}
201     #endif
202   };
203 
204 } // anonymous namespace
205 
206 //===----------------------------------------------------------------------===//
207 //
208 // Implementation of
209 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
210 //
211 //===----------------------------------------------------------------------===//
212 FAddendCoef::~FAddendCoef() {
213   if (BufHasFpVal)
214     getFpValPtr()->~APFloat();
215 }
216 
217 void FAddendCoef::set(const APFloat& C) {
218   APFloat *P = getFpValPtr();
219 
220   if (isInt()) {
221     // As the buffer is meanless byte stream, we cannot call
222     // APFloat::operator=().
223     new(P) APFloat(C);
224   } else
225     *P = C;
226 
227   IsFp = BufHasFpVal = true;
228 }
229 
230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
231   if (!isInt())
232     return;
233 
234   APFloat *P = getFpValPtr();
235   if (IntVal > 0)
236     new(P) APFloat(Sem, IntVal);
237   else {
238     new(P) APFloat(Sem, 0 - IntVal);
239     P->changeSign();
240   }
241   IsFp = BufHasFpVal = true;
242 }
243 
244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
245   if (Val >= 0)
246     return APFloat(Sem, Val);
247 
248   APFloat T(Sem, 0 - Val);
249   T.changeSign();
250 
251   return T;
252 }
253 
254 void FAddendCoef::operator=(const FAddendCoef &That) {
255   if (That.isInt())
256     set(That.IntVal);
257   else
258     set(That.getFpVal());
259 }
260 
261 void FAddendCoef::operator+=(const FAddendCoef &That) {
262   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
263   if (isInt() == That.isInt()) {
264     if (isInt())
265       IntVal += That.IntVal;
266     else
267       getFpVal().add(That.getFpVal(), RndMode);
268     return;
269   }
270 
271   if (isInt()) {
272     const APFloat &T = That.getFpVal();
273     convertToFpType(T.getSemantics());
274     getFpVal().add(T, RndMode);
275     return;
276   }
277 
278   APFloat &T = getFpVal();
279   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
280 }
281 
282 void FAddendCoef::operator-=(const FAddendCoef &That) {
283   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
284   if (isInt() == That.isInt()) {
285     if (isInt())
286       IntVal -= That.IntVal;
287     else
288       getFpVal().subtract(That.getFpVal(), RndMode);
289     return;
290   }
291 
292   if (isInt()) {
293     const APFloat &T = That.getFpVal();
294     convertToFpType(T.getSemantics());
295     getFpVal().subtract(T, RndMode);
296     return;
297   }
298 
299   APFloat &T = getFpVal();
300   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
301 }
302 
303 void FAddendCoef::operator*=(const FAddendCoef &That) {
304   if (That.isOne())
305     return;
306 
307   if (That.isMinusOne()) {
308     negate();
309     return;
310   }
311 
312   if (isInt() && That.isInt()) {
313     int Res = IntVal * (int)That.IntVal;
314     assert(!insaneIntVal(Res) && "Insane int value");
315     IntVal = Res;
316     return;
317   }
318 
319   const fltSemantics &Semantic =
320     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
321 
322   if (isInt())
323     convertToFpType(Semantic);
324   APFloat &F0 = getFpVal();
325 
326   if (That.isInt())
327     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
328                 APFloat::rmNearestTiesToEven);
329   else
330     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
331 }
332 
333 void FAddendCoef::negate() {
334   if (isInt())
335     IntVal = 0 - IntVal;
336   else
337     getFpVal().changeSign();
338 }
339 
340 Value *FAddendCoef::getValue(Type *Ty) const {
341   return isInt() ?
342     ConstantFP::get(Ty, float(IntVal)) :
343     ConstantFP::get(Ty->getContext(), getFpVal());
344 }
345 
346 // The definition of <Val>     Addends
347 // =========================================
348 //  A + B                     <1, A>, <1,B>
349 //  A - B                     <1, A>, <1,B>
350 //  0 - B                     <-1, B>
351 //  C * A,                    <C, A>
352 //  A + C                     <1, A> <C, NULL>
353 //  0 +/- 0                   <0, NULL> (corner case)
354 //
355 // Legend: A and B are not constant, C is constant
356 //
357 unsigned FAddend::drillValueDownOneStep
358   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
359   Instruction *I = nullptr;
360   if (!Val || !(I = dyn_cast<Instruction>(Val)))
361     return 0;
362 
363   unsigned Opcode = I->getOpcode();
364 
365   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
366     ConstantFP *C0, *C1;
367     Value *Opnd0 = I->getOperand(0);
368     Value *Opnd1 = I->getOperand(1);
369     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
370       Opnd0 = nullptr;
371 
372     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
373       Opnd1 = nullptr;
374 
375     if (Opnd0) {
376       if (!C0)
377         Addend0.set(1, Opnd0);
378       else
379         Addend0.set(C0, nullptr);
380     }
381 
382     if (Opnd1) {
383       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
384       if (!C1)
385         Addend.set(1, Opnd1);
386       else
387         Addend.set(C1, nullptr);
388       if (Opcode == Instruction::FSub)
389         Addend.negate();
390     }
391 
392     if (Opnd0 || Opnd1)
393       return Opnd0 && Opnd1 ? 2 : 1;
394 
395     // Both operands are zero. Weird!
396     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
397     return 1;
398   }
399 
400   if (I->getOpcode() == Instruction::FMul) {
401     Value *V0 = I->getOperand(0);
402     Value *V1 = I->getOperand(1);
403     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
404       Addend0.set(C, V1);
405       return 1;
406     }
407 
408     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
409       Addend0.set(C, V0);
410       return 1;
411     }
412   }
413 
414   return 0;
415 }
416 
417 // Try to break *this* addend into two addends. e.g. Suppose this addend is
418 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
419 // i.e. <2.3, X> and <2.3, Y>.
420 //
421 unsigned FAddend::drillAddendDownOneStep
422   (FAddend &Addend0, FAddend &Addend1) const {
423   if (isConstant())
424     return 0;
425 
426   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
427   if (!BreakNum || Coeff.isOne())
428     return BreakNum;
429 
430   Addend0.Scale(Coeff);
431 
432   if (BreakNum == 2)
433     Addend1.Scale(Coeff);
434 
435   return BreakNum;
436 }
437 
438 // Try to perform following optimization on the input instruction I. Return the
439 // simplified expression if was successful; otherwise, return 0.
440 //
441 //   Instruction "I" is                Simplified into
442 // -------------------------------------------------------
443 //   (x * y) +/- (x * z)               x * (y +/- z)
444 //   (y / x) +/- (z / x)               (y +/- z) / x
445 //
446 Value *FAddCombine::performFactorization(Instruction *I) {
447   assert((I->getOpcode() == Instruction::FAdd ||
448           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
449 
450   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
451   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
452 
453   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
454     return nullptr;
455 
456   bool isMpy = false;
457   if (I0->getOpcode() == Instruction::FMul)
458     isMpy = true;
459   else if (I0->getOpcode() != Instruction::FDiv)
460     return nullptr;
461 
462   Value *Opnd0_0 = I0->getOperand(0);
463   Value *Opnd0_1 = I0->getOperand(1);
464   Value *Opnd1_0 = I1->getOperand(0);
465   Value *Opnd1_1 = I1->getOperand(1);
466 
467   //  Input Instr I       Factor   AddSub0  AddSub1
468   //  ----------------------------------------------
469   // (x*y) +/- (x*z)        x        y         z
470   // (y/x) +/- (z/x)        x        y         z
471   //
472   Value *Factor = nullptr;
473   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
474 
475   if (isMpy) {
476     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
477       Factor = Opnd0_0;
478     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
479       Factor = Opnd0_1;
480 
481     if (Factor) {
482       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
483       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
484     }
485   } else if (Opnd0_1 == Opnd1_1) {
486     Factor = Opnd0_1;
487     AddSub0 = Opnd0_0;
488     AddSub1 = Opnd1_0;
489   }
490 
491   if (!Factor)
492     return nullptr;
493 
494   FastMathFlags Flags;
495   Flags.setUnsafeAlgebra();
496   if (I0) Flags &= I->getFastMathFlags();
497   if (I1) Flags &= I->getFastMathFlags();
498 
499   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
500   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
501                       createFAdd(AddSub0, AddSub1) :
502                       createFSub(AddSub0, AddSub1);
503   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
504     const APFloat &F = CFP->getValueAPF();
505     if (!F.isNormal())
506       return nullptr;
507   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
508     II->setFastMathFlags(Flags);
509 
510   if (isMpy) {
511     Value *RI = createFMul(Factor, NewAddSub);
512     if (Instruction *II = dyn_cast<Instruction>(RI))
513       II->setFastMathFlags(Flags);
514     return RI;
515   }
516 
517   Value *RI = createFDiv(NewAddSub, Factor);
518   if (Instruction *II = dyn_cast<Instruction>(RI))
519     II->setFastMathFlags(Flags);
520   return RI;
521 }
522 
523 Value *FAddCombine::simplify(Instruction *I) {
524   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
525 
526   // Currently we are not able to handle vector type.
527   if (I->getType()->isVectorTy())
528     return nullptr;
529 
530   assert((I->getOpcode() == Instruction::FAdd ||
531           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
532 
533   // Save the instruction before calling other member-functions.
534   Instr = I;
535 
536   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
537 
538   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
539 
540   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
541   unsigned Opnd0_ExpNum = 0;
542   unsigned Opnd1_ExpNum = 0;
543 
544   if (!Opnd0.isConstant())
545     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
546 
547   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
548   if (OpndNum == 2 && !Opnd1.isConstant())
549     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
550 
551   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
552   if (Opnd0_ExpNum && Opnd1_ExpNum) {
553     AddendVect AllOpnds;
554     AllOpnds.push_back(&Opnd0_0);
555     AllOpnds.push_back(&Opnd1_0);
556     if (Opnd0_ExpNum == 2)
557       AllOpnds.push_back(&Opnd0_1);
558     if (Opnd1_ExpNum == 2)
559       AllOpnds.push_back(&Opnd1_1);
560 
561     // Compute instruction quota. We should save at least one instruction.
562     unsigned InstQuota = 0;
563 
564     Value *V0 = I->getOperand(0);
565     Value *V1 = I->getOperand(1);
566     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
567                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
568 
569     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
570       return R;
571   }
572 
573   if (OpndNum != 2) {
574     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
575     // splitted into two addends, say "V = X - Y", the instruction would have
576     // been optimized into "I = Y - X" in the previous steps.
577     //
578     const FAddendCoef &CE = Opnd0.getCoef();
579     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
580   }
581 
582   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
583   if (Opnd1_ExpNum) {
584     AddendVect AllOpnds;
585     AllOpnds.push_back(&Opnd0);
586     AllOpnds.push_back(&Opnd1_0);
587     if (Opnd1_ExpNum == 2)
588       AllOpnds.push_back(&Opnd1_1);
589 
590     if (Value *R = simplifyFAdd(AllOpnds, 1))
591       return R;
592   }
593 
594   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
595   if (Opnd0_ExpNum) {
596     AddendVect AllOpnds;
597     AllOpnds.push_back(&Opnd1);
598     AllOpnds.push_back(&Opnd0_0);
599     if (Opnd0_ExpNum == 2)
600       AllOpnds.push_back(&Opnd0_1);
601 
602     if (Value *R = simplifyFAdd(AllOpnds, 1))
603       return R;
604   }
605 
606   // step 6: Try factorization as the last resort,
607   return performFactorization(I);
608 }
609 
610 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
611   unsigned AddendNum = Addends.size();
612   assert(AddendNum <= 4 && "Too many addends");
613 
614   // For saving intermediate results;
615   unsigned NextTmpIdx = 0;
616   FAddend TmpResult[3];
617 
618   // Points to the constant addend of the resulting simplified expression.
619   // If the resulting expr has constant-addend, this constant-addend is
620   // desirable to reside at the top of the resulting expression tree. Placing
621   // constant close to supper-expr(s) will potentially reveal some optimization
622   // opportunities in super-expr(s).
623   //
624   const FAddend *ConstAdd = nullptr;
625 
626   // Simplified addends are placed <SimpVect>.
627   AddendVect SimpVect;
628 
629   // The outer loop works on one symbolic-value at a time. Suppose the input
630   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
631   // The symbolic-values will be processed in this order: x, y, z.
632   //
633   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
634 
635     const FAddend *ThisAddend = Addends[SymIdx];
636     if (!ThisAddend) {
637       // This addend was processed before.
638       continue;
639     }
640 
641     Value *Val = ThisAddend->getSymVal();
642     unsigned StartIdx = SimpVect.size();
643     SimpVect.push_back(ThisAddend);
644 
645     // The inner loop collects addends sharing same symbolic-value, and these
646     // addends will be later on folded into a single addend. Following above
647     // example, if the symbolic value "y" is being processed, the inner loop
648     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
649     // be later on folded into "<b1+b2, y>".
650     //
651     for (unsigned SameSymIdx = SymIdx + 1;
652          SameSymIdx < AddendNum; SameSymIdx++) {
653       const FAddend *T = Addends[SameSymIdx];
654       if (T && T->getSymVal() == Val) {
655         // Set null such that next iteration of the outer loop will not process
656         // this addend again.
657         Addends[SameSymIdx] = nullptr;
658         SimpVect.push_back(T);
659       }
660     }
661 
662     // If multiple addends share same symbolic value, fold them together.
663     if (StartIdx + 1 != SimpVect.size()) {
664       FAddend &R = TmpResult[NextTmpIdx ++];
665       R = *SimpVect[StartIdx];
666       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
667         R += *SimpVect[Idx];
668 
669       // Pop all addends being folded and push the resulting folded addend.
670       SimpVect.resize(StartIdx);
671       if (Val) {
672         if (!R.isZero()) {
673           SimpVect.push_back(&R);
674         }
675       } else {
676         // Don't push constant addend at this time. It will be the last element
677         // of <SimpVect>.
678         ConstAdd = &R;
679       }
680     }
681   }
682 
683   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
684          "out-of-bound access");
685 
686   if (ConstAdd)
687     SimpVect.push_back(ConstAdd);
688 
689   Value *Result;
690   if (!SimpVect.empty())
691     Result = createNaryFAdd(SimpVect, InstrQuota);
692   else {
693     // The addition is folded to 0.0.
694     Result = ConstantFP::get(Instr->getType(), 0.0);
695   }
696 
697   return Result;
698 }
699 
700 Value *FAddCombine::createNaryFAdd
701   (const AddendVect &Opnds, unsigned InstrQuota) {
702   assert(!Opnds.empty() && "Expect at least one addend");
703 
704   // Step 1: Check if the # of instructions needed exceeds the quota.
705   //
706   unsigned InstrNeeded = calcInstrNumber(Opnds);
707   if (InstrNeeded > InstrQuota)
708     return nullptr;
709 
710   initCreateInstNum();
711 
712   // step 2: Emit the N-ary addition.
713   // Note that at most three instructions are involved in Fadd-InstCombine: the
714   // addition in question, and at most two neighboring instructions.
715   // The resulting optimized addition should have at least one less instruction
716   // than the original addition expression tree. This implies that the resulting
717   // N-ary addition has at most two instructions, and we don't need to worry
718   // about tree-height when constructing the N-ary addition.
719 
720   Value *LastVal = nullptr;
721   bool LastValNeedNeg = false;
722 
723   // Iterate the addends, creating fadd/fsub using adjacent two addends.
724   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
725        I != E; I++) {
726     bool NeedNeg;
727     Value *V = createAddendVal(**I, NeedNeg);
728     if (!LastVal) {
729       LastVal = V;
730       LastValNeedNeg = NeedNeg;
731       continue;
732     }
733 
734     if (LastValNeedNeg == NeedNeg) {
735       LastVal = createFAdd(LastVal, V);
736       continue;
737     }
738 
739     if (LastValNeedNeg)
740       LastVal = createFSub(V, LastVal);
741     else
742       LastVal = createFSub(LastVal, V);
743 
744     LastValNeedNeg = false;
745   }
746 
747   if (LastValNeedNeg) {
748     LastVal = createFNeg(LastVal);
749   }
750 
751   #ifndef NDEBUG
752     assert(CreateInstrNum == InstrNeeded &&
753            "Inconsistent in instruction numbers");
754   #endif
755 
756   return LastVal;
757 }
758 
759 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
760   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
761   if (Instruction *I = dyn_cast<Instruction>(V))
762     createInstPostProc(I);
763   return V;
764 }
765 
766 Value *FAddCombine::createFNeg(Value *V) {
767   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
768   Value *NewV = createFSub(Zero, V);
769   if (Instruction *I = dyn_cast<Instruction>(NewV))
770     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
771   return NewV;
772 }
773 
774 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
775   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
776   if (Instruction *I = dyn_cast<Instruction>(V))
777     createInstPostProc(I);
778   return V;
779 }
780 
781 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
782   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
783   if (Instruction *I = dyn_cast<Instruction>(V))
784     createInstPostProc(I);
785   return V;
786 }
787 
788 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
789   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
790   if (Instruction *I = dyn_cast<Instruction>(V))
791     createInstPostProc(I);
792   return V;
793 }
794 
795 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
796   NewInstr->setDebugLoc(Instr->getDebugLoc());
797 
798   // Keep track of the number of instruction created.
799   if (!NoNumber)
800     incCreateInstNum();
801 
802   // Propagate fast-math flags
803   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
804 }
805 
806 // Return the number of instruction needed to emit the N-ary addition.
807 // NOTE: Keep this function in sync with createAddendVal().
808 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
809   unsigned OpndNum = Opnds.size();
810   unsigned InstrNeeded = OpndNum - 1;
811 
812   // The number of addends in the form of "(-1)*x".
813   unsigned NegOpndNum = 0;
814 
815   // Adjust the number of instructions needed to emit the N-ary add.
816   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
817        I != E; I++) {
818     const FAddend *Opnd = *I;
819     if (Opnd->isConstant())
820       continue;
821 
822     const FAddendCoef &CE = Opnd->getCoef();
823     if (CE.isMinusOne() || CE.isMinusTwo())
824       NegOpndNum++;
825 
826     // Let the addend be "c * x". If "c == +/-1", the value of the addend
827     // is immediately available; otherwise, it needs exactly one instruction
828     // to evaluate the value.
829     if (!CE.isMinusOne() && !CE.isOne())
830       InstrNeeded++;
831   }
832   if (NegOpndNum == OpndNum)
833     InstrNeeded++;
834   return InstrNeeded;
835 }
836 
837 // Input Addend        Value           NeedNeg(output)
838 // ================================================================
839 // Constant C          C               false
840 // <+/-1, V>           V               coefficient is -1
841 // <2/-2, V>          "fadd V, V"      coefficient is -2
842 // <C, V>             "fmul V, C"      false
843 //
844 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
845 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
846   const FAddendCoef &Coeff = Opnd.getCoef();
847 
848   if (Opnd.isConstant()) {
849     NeedNeg = false;
850     return Coeff.getValue(Instr->getType());
851   }
852 
853   Value *OpndVal = Opnd.getSymVal();
854 
855   if (Coeff.isMinusOne() || Coeff.isOne()) {
856     NeedNeg = Coeff.isMinusOne();
857     return OpndVal;
858   }
859 
860   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
861     NeedNeg = Coeff.isMinusTwo();
862     return createFAdd(OpndVal, OpndVal);
863   }
864 
865   NeedNeg = false;
866   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
867 }
868 
869 // If one of the operands only has one non-zero bit, and if the other
870 // operand has a known-zero bit in a more significant place than it (not
871 // including the sign bit) the ripple may go up to and fill the zero, but
872 // won't change the sign. For example, (X & ~4) + 1.
873 static bool checkRippleForAdd(const APInt &Op0KnownZero,
874                               const APInt &Op1KnownZero) {
875   APInt Op1MaybeOne = ~Op1KnownZero;
876   // Make sure that one of the operand has at most one bit set to 1.
877   if (Op1MaybeOne.countPopulation() != 1)
878     return false;
879 
880   // Find the most significant known 0 other than the sign bit.
881   int BitWidth = Op0KnownZero.getBitWidth();
882   APInt Op0KnownZeroTemp(Op0KnownZero);
883   Op0KnownZeroTemp.clearBit(BitWidth - 1);
884   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
885 
886   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
887   assert(Op1OnePosition >= 0);
888 
889   // This also covers the case of no known zero, since in that case
890   // Op0ZeroPosition is -1.
891   return Op0ZeroPosition >= Op1OnePosition;
892 }
893 
894 /// Return true if we can prove that:
895 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
896 /// This basically requires proving that the add in the original type would not
897 /// overflow to change the sign bit or have a carry out.
898 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
899                                             Instruction &CxtI) {
900   // There are different heuristics we can use for this.  Here are some simple
901   // ones.
902 
903   // If LHS and RHS each have at least two sign bits, the addition will look
904   // like
905   //
906   // XX..... +
907   // YY.....
908   //
909   // If the carry into the most significant position is 0, X and Y can't both
910   // be 1 and therefore the carry out of the addition is also 0.
911   //
912   // If the carry into the most significant position is 1, X and Y can't both
913   // be 0 and therefore the carry out of the addition is also 1.
914   //
915   // Since the carry into the most significant position is always equal to
916   // the carry out of the addition, there is no signed overflow.
917   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
918       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
919     return true;
920 
921   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
922   APInt LHSKnownZero(BitWidth, 0);
923   APInt LHSKnownOne(BitWidth, 0);
924   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
925 
926   APInt RHSKnownZero(BitWidth, 0);
927   APInt RHSKnownOne(BitWidth, 0);
928   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
929 
930   // Addition of two 2's compliment numbers having opposite signs will never
931   // overflow.
932   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
933       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
934     return true;
935 
936   // Check if carry bit of addition will not cause overflow.
937   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
938     return true;
939   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
940     return true;
941 
942   return false;
943 }
944 
945 /// \brief Return true if we can prove that:
946 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
947 /// This basically requires proving that the add in the original type would not
948 /// overflow to change the sign bit or have a carry out.
949 /// TODO: Handle this for Vectors.
950 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
951                                             Instruction &CxtI) {
952   // If LHS and RHS each have at least two sign bits, the subtraction
953   // cannot overflow.
954   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
955       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
956     return true;
957 
958   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
959   APInt LHSKnownZero(BitWidth, 0);
960   APInt LHSKnownOne(BitWidth, 0);
961   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
962 
963   APInt RHSKnownZero(BitWidth, 0);
964   APInt RHSKnownOne(BitWidth, 0);
965   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
966 
967   // Subtraction of two 2's compliment numbers having identical signs will
968   // never overflow.
969   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
970       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
971     return true;
972 
973   // TODO: implement logic similar to checkRippleForAdd
974   return false;
975 }
976 
977 /// \brief Return true if we can prove that:
978 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
979 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
980                                               Instruction &CxtI) {
981   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
982   bool LHSKnownNonNegative, LHSKnownNegative;
983   bool RHSKnownNonNegative, RHSKnownNegative;
984   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
985                  &CxtI);
986   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
987                  &CxtI);
988   if (LHSKnownNegative && RHSKnownNonNegative)
989     return true;
990 
991   return false;
992 }
993 
994 // Checks if any operand is negative and we can convert add to sub.
995 // This function checks for following negative patterns
996 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
997 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
998 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
999 static Value *checkForNegativeOperand(BinaryOperator &I,
1000                                       InstCombiner::BuilderTy *Builder) {
1001   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1002 
1003   // This function creates 2 instructions to replace ADD, we need at least one
1004   // of LHS or RHS to have one use to ensure benefit in transform.
1005   if (!LHS->hasOneUse() && !RHS->hasOneUse())
1006     return nullptr;
1007 
1008   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1009   const APInt *C1 = nullptr, *C2 = nullptr;
1010 
1011   // if ONE is on other side, swap
1012   if (match(RHS, m_Add(m_Value(X), m_One())))
1013     std::swap(LHS, RHS);
1014 
1015   if (match(LHS, m_Add(m_Value(X), m_One()))) {
1016     // if XOR on other side, swap
1017     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1018       std::swap(X, RHS);
1019 
1020     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
1021       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
1022       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
1023       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
1024         Value *NewAnd = Builder->CreateAnd(Z, *C1);
1025         return Builder->CreateSub(RHS, NewAnd, "sub");
1026       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1027         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1028         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1029         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1030         return Builder->CreateSub(RHS, NewOr, "sub");
1031       }
1032     }
1033   }
1034 
1035   // Restore LHS and RHS
1036   LHS = I.getOperand(0);
1037   RHS = I.getOperand(1);
1038 
1039   // if XOR is on other side, swap
1040   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1041     std::swap(LHS, RHS);
1042 
1043   // C2 is ODD
1044   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1045   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1046   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1047     if (C1->countTrailingZeros() == 0)
1048       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1049         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1050         return Builder->CreateSub(RHS, NewOr, "sub");
1051       }
1052   return nullptr;
1053 }
1054 
1055 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1056   bool Changed = SimplifyAssociativeOrCommutative(I);
1057   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1058 
1059   if (Value *V = SimplifyVectorOp(I))
1060     return replaceInstUsesWith(I, V);
1061 
1062   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1063                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1064     return replaceInstUsesWith(I, V);
1065 
1066    // (A*B)+(A*C) -> A*(B+C) etc
1067   if (Value *V = SimplifyUsingDistributiveLaws(I))
1068     return replaceInstUsesWith(I, V);
1069 
1070   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1071     // X + (signbit) --> X ^ signbit
1072     const APInt &Val = CI->getValue();
1073     if (Val.isSignBit())
1074       return BinaryOperator::CreateXor(LHS, RHS);
1075 
1076     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
1077     // (X & 254)+1 -> (X&254)|1
1078     if (SimplifyDemandedInstructionBits(I))
1079       return &I;
1080 
1081     // zext(bool) + C -> bool ? C + 1 : C
1082     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1083       if (ZI->getSrcTy()->isIntegerTy(1))
1084         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1085 
1086     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1087     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1088       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1089       const APInt &RHSVal = CI->getValue();
1090       unsigned ExtendAmt = 0;
1091       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1092       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1093       if (XorRHS->getValue() == -RHSVal) {
1094         if (RHSVal.isPowerOf2())
1095           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1096         else if (XorRHS->getValue().isPowerOf2())
1097           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1098       }
1099 
1100       if (ExtendAmt) {
1101         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1102         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1103           ExtendAmt = 0;
1104       }
1105 
1106       if (ExtendAmt) {
1107         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1108         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1109         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1110       }
1111 
1112       // If this is a xor that was canonicalized from a sub, turn it back into
1113       // a sub and fuse this add with it.
1114       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1115         IntegerType *IT = cast<IntegerType>(I.getType());
1116         APInt LHSKnownOne(IT->getBitWidth(), 0);
1117         APInt LHSKnownZero(IT->getBitWidth(), 0);
1118         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1119         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1120           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1121                                            XorLHS);
1122       }
1123       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
1124       // transform them into (X + (signbit ^ C))
1125       if (XorRHS->getValue().isSignBit())
1126         return BinaryOperator::CreateAdd(XorLHS,
1127                                          ConstantExpr::getXor(XorRHS, CI));
1128     }
1129   }
1130 
1131   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1132     if (Instruction *NV = FoldOpIntoPhi(I))
1133       return NV;
1134 
1135   if (I.getType()->getScalarType()->isIntegerTy(1))
1136     return BinaryOperator::CreateXor(LHS, RHS);
1137 
1138   // X + X --> X << 1
1139   if (LHS == RHS) {
1140     BinaryOperator *New =
1141       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1142     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1143     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1144     return New;
1145   }
1146 
1147   // -A + B  -->  B - A
1148   // -A + -B  -->  -(A + B)
1149   if (Value *LHSV = dyn_castNegVal(LHS)) {
1150     if (!isa<Constant>(RHS))
1151       if (Value *RHSV = dyn_castNegVal(RHS)) {
1152         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1153         return BinaryOperator::CreateNeg(NewAdd);
1154       }
1155 
1156     return BinaryOperator::CreateSub(RHS, LHSV);
1157   }
1158 
1159   // A + -B  -->  A - B
1160   if (!isa<Constant>(RHS))
1161     if (Value *V = dyn_castNegVal(RHS))
1162       return BinaryOperator::CreateSub(LHS, V);
1163 
1164   if (Value *V = checkForNegativeOperand(I, Builder))
1165     return replaceInstUsesWith(I, V);
1166 
1167   // A+B --> A|B iff A and B have no bits set in common.
1168   if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
1169     return BinaryOperator::CreateOr(LHS, RHS);
1170 
1171   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1172     Value *X;
1173     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1174       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1175   }
1176 
1177   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1178     // (X & FF00) + xx00  -> (X+xx00) & FF00
1179     Value *X;
1180     ConstantInt *C2;
1181     if (LHS->hasOneUse() &&
1182         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1183         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1184       // See if all bits from the first bit set in the Add RHS up are included
1185       // in the mask.  First, get the rightmost bit.
1186       const APInt &AddRHSV = CRHS->getValue();
1187 
1188       // Form a mask of all bits from the lowest bit added through the top.
1189       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1190 
1191       // See if the and mask includes all of these bits.
1192       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1193 
1194       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1195         // Okay, the xform is safe.  Insert the new add pronto.
1196         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1197         return BinaryOperator::CreateAnd(NewAdd, C2);
1198       }
1199     }
1200 
1201     // Try to fold constant add into select arguments.
1202     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1203       if (Instruction *R = FoldOpIntoSelect(I, SI))
1204         return R;
1205   }
1206 
1207   // add (select X 0 (sub n A)) A  -->  select X A n
1208   {
1209     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1210     Value *A = RHS;
1211     if (!SI) {
1212       SI = dyn_cast<SelectInst>(RHS);
1213       A = LHS;
1214     }
1215     if (SI && SI->hasOneUse()) {
1216       Value *TV = SI->getTrueValue();
1217       Value *FV = SI->getFalseValue();
1218       Value *N;
1219 
1220       // Can we fold the add into the argument of the select?
1221       // We check both true and false select arguments for a matching subtract.
1222       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1223         // Fold the add into the true select value.
1224         return SelectInst::Create(SI->getCondition(), N, A);
1225 
1226       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1227         // Fold the add into the false select value.
1228         return SelectInst::Create(SI->getCondition(), A, N);
1229     }
1230   }
1231 
1232   // Check for (add (sext x), y), see if we can merge this into an
1233   // integer add followed by a sext.
1234   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1235     // (add (sext x), cst) --> (sext (add x, cst'))
1236     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1237       Constant *CI =
1238         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1239       if (LHSConv->hasOneUse() &&
1240           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1241           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1242         // Insert the new, smaller add.
1243         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1244                                               CI, "addconv");
1245         return new SExtInst(NewAdd, I.getType());
1246       }
1247     }
1248 
1249     // (add (sext x), (sext y)) --> (sext (add int x, y))
1250     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1251       // Only do this if x/y have the same type, if at last one of them has a
1252       // single use (so we don't increase the number of sexts), and if the
1253       // integer add will not overflow.
1254       if (LHSConv->getOperand(0)->getType() ==
1255               RHSConv->getOperand(0)->getType() &&
1256           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1257           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1258                                    RHSConv->getOperand(0), I)) {
1259         // Insert the new integer add.
1260         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1261                                              RHSConv->getOperand(0), "addconv");
1262         return new SExtInst(NewAdd, I.getType());
1263       }
1264     }
1265   }
1266 
1267   // (add (xor A, B) (and A, B)) --> (or A, B)
1268   {
1269     Value *A = nullptr, *B = nullptr;
1270     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1271         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1272          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1273       return BinaryOperator::CreateOr(A, B);
1274 
1275     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1276         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1277          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1278       return BinaryOperator::CreateOr(A, B);
1279   }
1280 
1281   // (add (or A, B) (and A, B)) --> (add A, B)
1282   {
1283     Value *A = nullptr, *B = nullptr;
1284     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1285         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1286          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
1287       auto *New = BinaryOperator::CreateAdd(A, B);
1288       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1289       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1290       return New;
1291     }
1292 
1293     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1294         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1295          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
1296       auto *New = BinaryOperator::CreateAdd(A, B);
1297       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1298       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1299       return New;
1300     }
1301   }
1302 
1303   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1304   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1305   // computeKnownBits.
1306   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1307     Changed = true;
1308     I.setHasNoSignedWrap(true);
1309   }
1310   if (!I.hasNoUnsignedWrap() &&
1311       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1312           OverflowResult::NeverOverflows) {
1313     Changed = true;
1314     I.setHasNoUnsignedWrap(true);
1315   }
1316 
1317   return Changed ? &I : nullptr;
1318 }
1319 
1320 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1321   bool Changed = SimplifyAssociativeOrCommutative(I);
1322   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1323 
1324   if (Value *V = SimplifyVectorOp(I))
1325     return replaceInstUsesWith(I, V);
1326 
1327   if (Value *V =
1328           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
1329     return replaceInstUsesWith(I, V);
1330 
1331   if (isa<Constant>(RHS)) {
1332     if (isa<PHINode>(LHS))
1333       if (Instruction *NV = FoldOpIntoPhi(I))
1334         return NV;
1335 
1336     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1337       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1338         return NV;
1339   }
1340 
1341   // -A + B  -->  B - A
1342   // -A + -B  -->  -(A + B)
1343   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1344     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1345     RI->copyFastMathFlags(&I);
1346     return RI;
1347   }
1348 
1349   // A + -B  -->  A - B
1350   if (!isa<Constant>(RHS))
1351     if (Value *V = dyn_castFNegVal(RHS)) {
1352       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1353       RI->copyFastMathFlags(&I);
1354       return RI;
1355     }
1356 
1357   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1358   // integer add followed by a promotion.
1359   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1360     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1361     // ... if the constant fits in the integer value.  This is useful for things
1362     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1363     // requires a constant pool load, and generally allows the add to be better
1364     // instcombined.
1365     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1366       Constant *CI =
1367       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1368       if (LHSConv->hasOneUse() &&
1369           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1370           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1371         // Insert the new integer add.
1372         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1373                                               CI, "addconv");
1374         return new SIToFPInst(NewAdd, I.getType());
1375       }
1376     }
1377 
1378     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1379     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1380       // Only do this if x/y have the same type, if at last one of them has a
1381       // single use (so we don't increase the number of int->fp conversions),
1382       // and if the integer add will not overflow.
1383       if (LHSConv->getOperand(0)->getType() ==
1384               RHSConv->getOperand(0)->getType() &&
1385           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1386           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1387                                    RHSConv->getOperand(0), I)) {
1388         // Insert the new integer add.
1389         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1390                                               RHSConv->getOperand(0),"addconv");
1391         return new SIToFPInst(NewAdd, I.getType());
1392       }
1393     }
1394   }
1395 
1396   // select C, 0, B + select C, A, 0 -> select C, A, B
1397   {
1398     Value *A1, *B1, *C1, *A2, *B2, *C2;
1399     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1400         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1401       if (C1 == C2) {
1402         Constant *Z1=nullptr, *Z2=nullptr;
1403         Value *A, *B, *C=C1;
1404         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1405             Z1 = dyn_cast<Constant>(A1); A = A2;
1406             Z2 = dyn_cast<Constant>(B2); B = B1;
1407         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1408             Z1 = dyn_cast<Constant>(B1); B = B2;
1409             Z2 = dyn_cast<Constant>(A2); A = A1;
1410         }
1411 
1412         if (Z1 && Z2 &&
1413             (I.hasNoSignedZeros() ||
1414              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1415           return SelectInst::Create(C, A, B);
1416         }
1417       }
1418     }
1419   }
1420 
1421   if (I.hasUnsafeAlgebra()) {
1422     if (Value *V = FAddCombine(Builder).simplify(&I))
1423       return replaceInstUsesWith(I, V);
1424   }
1425 
1426   return Changed ? &I : nullptr;
1427 }
1428 
1429 /// Optimize pointer differences into the same array into a size.  Consider:
1430 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1431 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1432 ///
1433 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1434                                                Type *Ty) {
1435   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1436   // this.
1437   bool Swapped = false;
1438   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1439 
1440   // For now we require one side to be the base pointer "A" or a constant
1441   // GEP derived from it.
1442   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1443     // (gep X, ...) - X
1444     if (LHSGEP->getOperand(0) == RHS) {
1445       GEP1 = LHSGEP;
1446       Swapped = false;
1447     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1448       // (gep X, ...) - (gep X, ...)
1449       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1450             RHSGEP->getOperand(0)->stripPointerCasts()) {
1451         GEP2 = RHSGEP;
1452         GEP1 = LHSGEP;
1453         Swapped = false;
1454       }
1455     }
1456   }
1457 
1458   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1459     // X - (gep X, ...)
1460     if (RHSGEP->getOperand(0) == LHS) {
1461       GEP1 = RHSGEP;
1462       Swapped = true;
1463     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1464       // (gep X, ...) - (gep X, ...)
1465       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1466             LHSGEP->getOperand(0)->stripPointerCasts()) {
1467         GEP2 = LHSGEP;
1468         GEP1 = RHSGEP;
1469         Swapped = true;
1470       }
1471     }
1472   }
1473 
1474   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1475   // multiple users.
1476   if (!GEP1 ||
1477       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1478     return nullptr;
1479 
1480   // Emit the offset of the GEP and an intptr_t.
1481   Value *Result = EmitGEPOffset(GEP1);
1482 
1483   // If we had a constant expression GEP on the other side offsetting the
1484   // pointer, subtract it from the offset we have.
1485   if (GEP2) {
1486     Value *Offset = EmitGEPOffset(GEP2);
1487     Result = Builder->CreateSub(Result, Offset);
1488   }
1489 
1490   // If we have p - gep(p, ...)  then we have to negate the result.
1491   if (Swapped)
1492     Result = Builder->CreateNeg(Result, "diff.neg");
1493 
1494   return Builder->CreateIntCast(Result, Ty, true);
1495 }
1496 
1497 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1498   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1499 
1500   if (Value *V = SimplifyVectorOp(I))
1501     return replaceInstUsesWith(I, V);
1502 
1503   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1504                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1505     return replaceInstUsesWith(I, V);
1506 
1507   // (A*B)-(A*C) -> A*(B-C) etc
1508   if (Value *V = SimplifyUsingDistributiveLaws(I))
1509     return replaceInstUsesWith(I, V);
1510 
1511   // If this is a 'B = x-(-A)', change to B = x+A.
1512   if (Value *V = dyn_castNegVal(Op1)) {
1513     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1514 
1515     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1516       assert(BO->getOpcode() == Instruction::Sub &&
1517              "Expected a subtraction operator!");
1518       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1519         Res->setHasNoSignedWrap(true);
1520     } else {
1521       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1522         Res->setHasNoSignedWrap(true);
1523     }
1524 
1525     return Res;
1526   }
1527 
1528   if (I.getType()->isIntegerTy(1))
1529     return BinaryOperator::CreateXor(Op0, Op1);
1530 
1531   // Replace (-1 - A) with (~A).
1532   if (match(Op0, m_AllOnes()))
1533     return BinaryOperator::CreateNot(Op1);
1534 
1535   if (Constant *C = dyn_cast<Constant>(Op0)) {
1536     // C - ~X == X + (1+C)
1537     Value *X = nullptr;
1538     if (match(Op1, m_Not(m_Value(X))))
1539       return BinaryOperator::CreateAdd(X, AddOne(C));
1540 
1541     // Try to fold constant sub into select arguments.
1542     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1543       if (Instruction *R = FoldOpIntoSelect(I, SI))
1544         return R;
1545 
1546     // C-(X+C2) --> (C-C2)-X
1547     Constant *C2;
1548     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1549       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1550 
1551     if (SimplifyDemandedInstructionBits(I))
1552       return &I;
1553 
1554     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1555     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1556       if (X->getType()->getScalarType()->isIntegerTy(1))
1557         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1558 
1559     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1560     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1561       if (X->getType()->getScalarType()->isIntegerTy(1))
1562         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1563   }
1564 
1565   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1566     // -(X >>u 31) -> (X >>s 31)
1567     // -(X >>s 31) -> (X >>u 31)
1568     if (C->isZero()) {
1569       Value *X;
1570       ConstantInt *CI;
1571       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1572           // Verify we are shifting out everything but the sign bit.
1573           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1574         return BinaryOperator::CreateAShr(X, CI);
1575 
1576       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1577           // Verify we are shifting out everything but the sign bit.
1578           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1579         return BinaryOperator::CreateLShr(X, CI);
1580     }
1581 
1582     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1583     // zero.
1584     APInt IntVal = C->getValue();
1585     if ((IntVal + 1).isPowerOf2()) {
1586       unsigned BitWidth = I.getType()->getScalarSizeInBits();
1587       APInt KnownZero(BitWidth, 0);
1588       APInt KnownOne(BitWidth, 0);
1589       computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
1590       if ((IntVal | KnownZero).isAllOnesValue()) {
1591         return BinaryOperator::CreateXor(Op1, C);
1592       }
1593     }
1594   }
1595 
1596   {
1597     Value *Y;
1598     // X-(X+Y) == -Y    X-(Y+X) == -Y
1599     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1600         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1601       return BinaryOperator::CreateNeg(Y);
1602 
1603     // (X-Y)-X == -Y
1604     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1605       return BinaryOperator::CreateNeg(Y);
1606   }
1607 
1608   // (sub (or A, B) (xor A, B)) --> (and A, B)
1609   {
1610     Value *A = nullptr, *B = nullptr;
1611     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1612         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
1613          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
1614       return BinaryOperator::CreateAnd(A, B);
1615   }
1616 
1617   if (Op0->hasOneUse()) {
1618     Value *Y = nullptr;
1619     // ((X | Y) - X) --> (~X & Y)
1620     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
1621         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
1622       return BinaryOperator::CreateAnd(
1623           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1624   }
1625 
1626   if (Op1->hasOneUse()) {
1627     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1628     Constant *C = nullptr;
1629     Constant *CI = nullptr;
1630 
1631     // (X - (Y - Z))  -->  (X + (Z - Y)).
1632     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1633       return BinaryOperator::CreateAdd(Op0,
1634                                       Builder->CreateSub(Z, Y, Op1->getName()));
1635 
1636     // (X - (X & Y))   -->   (X & ~Y)
1637     //
1638     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1639         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1640       return BinaryOperator::CreateAnd(Op0,
1641                                   Builder->CreateNot(Y, Y->getName() + ".not"));
1642 
1643     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1644     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1645         C->isNotMinSignedValue() && !C->isOneValue())
1646       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1647 
1648     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1649     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1650       if (Value *XNeg = dyn_castNegVal(X))
1651         return BinaryOperator::CreateShl(XNeg, Y);
1652 
1653     // X - A*-B -> X + A*B
1654     // X - -A*B -> X + A*B
1655     Value *A, *B;
1656     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1657         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1658       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1659 
1660     // X - A*CI -> X + A*-CI
1661     // X - CI*A -> X + A*-CI
1662     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1663         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1664       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1665       return BinaryOperator::CreateAdd(Op0, NewMul);
1666     }
1667   }
1668 
1669   // Optimize pointer differences into the same array into a size.  Consider:
1670   //  &A[10] - &A[0]: we should compile this to "10".
1671   Value *LHSOp, *RHSOp;
1672   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1673       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1674     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1675       return replaceInstUsesWith(I, Res);
1676 
1677   // trunc(p)-trunc(q) -> trunc(p-q)
1678   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1679       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1680     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1681       return replaceInstUsesWith(I, Res);
1682 
1683   bool Changed = false;
1684   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1685     Changed = true;
1686     I.setHasNoSignedWrap(true);
1687   }
1688   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1689     Changed = true;
1690     I.setHasNoUnsignedWrap(true);
1691   }
1692 
1693   return Changed ? &I : nullptr;
1694 }
1695 
1696 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1697   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1698 
1699   if (Value *V = SimplifyVectorOp(I))
1700     return replaceInstUsesWith(I, V);
1701 
1702   if (Value *V =
1703           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
1704     return replaceInstUsesWith(I, V);
1705 
1706   // fsub nsz 0, X ==> fsub nsz -0.0, X
1707   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1708     // Subtraction from -0.0 is the canonical form of fneg.
1709     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1710     NewI->copyFastMathFlags(&I);
1711     return NewI;
1712   }
1713 
1714   if (isa<Constant>(Op0))
1715     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1716       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1717         return NV;
1718 
1719   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1720   // through FP extensions/truncations along the way.
1721   if (Value *V = dyn_castFNegVal(Op1)) {
1722     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1723     NewI->copyFastMathFlags(&I);
1724     return NewI;
1725   }
1726   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1727     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1728       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1729       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1730       NewI->copyFastMathFlags(&I);
1731       return NewI;
1732     }
1733   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1734     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1735       Value *NewExt = Builder->CreateFPExt(V, I.getType());
1736       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1737       NewI->copyFastMathFlags(&I);
1738       return NewI;
1739     }
1740   }
1741 
1742   if (I.hasUnsafeAlgebra()) {
1743     if (Value *V = FAddCombine(Builder).simplify(&I))
1744       return replaceInstUsesWith(I, V);
1745   }
1746 
1747   return nullptr;
1748 }
1749