1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GetElementPtrTypeIterator.h" 19 #include "llvm/IR/PatternMatch.h" 20 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 namespace { 27 28 /// Class representing coefficient of floating-point addend. 29 /// This class needs to be highly efficient, which is especially true for 30 /// the constructor. As of I write this comment, the cost of the default 31 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 32 /// perform write-merging). 33 /// 34 class FAddendCoef { 35 public: 36 // The constructor has to initialize a APFloat, which is unnecessary for 37 // most addends which have coefficient either 1 or -1. So, the constructor 38 // is expensive. In order to avoid the cost of the constructor, we should 39 // reuse some instances whenever possible. The pre-created instances 40 // FAddCombine::Add[0-5] embodies this idea. 41 // 42 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} 43 ~FAddendCoef(); 44 45 void set(short C) { 46 assert(!insaneIntVal(C) && "Insane coefficient"); 47 IsFp = false; IntVal = C; 48 } 49 50 void set(const APFloat& C); 51 52 void negate(); 53 54 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 55 Value *getValue(Type *) const; 56 57 // If possible, don't define operator+/operator- etc because these 58 // operators inevitably call FAddendCoef's constructor which is not cheap. 59 void operator=(const FAddendCoef &A); 60 void operator+=(const FAddendCoef &A); 61 void operator-=(const FAddendCoef &A); 62 void operator*=(const FAddendCoef &S); 63 64 bool isOne() const { return isInt() && IntVal == 1; } 65 bool isTwo() const { return isInt() && IntVal == 2; } 66 bool isMinusOne() const { return isInt() && IntVal == -1; } 67 bool isMinusTwo() const { return isInt() && IntVal == -2; } 68 69 private: 70 bool insaneIntVal(int V) { return V > 4 || V < -4; } 71 APFloat *getFpValPtr() 72 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } 73 const APFloat *getFpValPtr() const 74 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } 75 76 const APFloat &getFpVal() const { 77 assert(IsFp && BufHasFpVal && "Incorret state"); 78 return *getFpValPtr(); 79 } 80 81 APFloat &getFpVal() { 82 assert(IsFp && BufHasFpVal && "Incorret state"); 83 return *getFpValPtr(); 84 } 85 86 bool isInt() const { return !IsFp; } 87 88 // If the coefficient is represented by an integer, promote it to a 89 // floating point. 90 void convertToFpType(const fltSemantics &Sem); 91 92 // Construct an APFloat from a signed integer. 93 // TODO: We should get rid of this function when APFloat can be constructed 94 // from an *SIGNED* integer. 95 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 96 97 private: 98 bool IsFp; 99 100 // True iff FpValBuf contains an instance of APFloat. 101 bool BufHasFpVal; 102 103 // The integer coefficient of an individual addend is either 1 or -1, 104 // and we try to simplify at most 4 addends from neighboring at most 105 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 106 // is overkill of this end. 107 short IntVal; 108 109 AlignedCharArrayUnion<APFloat> FpValBuf; 110 }; 111 112 /// FAddend is used to represent floating-point addend. An addend is 113 /// represented as <C, V>, where the V is a symbolic value, and C is a 114 /// constant coefficient. A constant addend is represented as <C, 0>. 115 /// 116 class FAddend { 117 public: 118 FAddend() : Val(nullptr) {} 119 120 Value *getSymVal() const { return Val; } 121 const FAddendCoef &getCoef() const { return Coeff; } 122 123 bool isConstant() const { return Val == nullptr; } 124 bool isZero() const { return Coeff.isZero(); } 125 126 void set(short Coefficient, Value *V) { 127 Coeff.set(Coefficient); 128 Val = V; 129 } 130 void set(const APFloat &Coefficient, Value *V) { 131 Coeff.set(Coefficient); 132 Val = V; 133 } 134 void set(const ConstantFP *Coefficient, Value *V) { 135 Coeff.set(Coefficient->getValueAPF()); 136 Val = V; 137 } 138 139 void negate() { Coeff.negate(); } 140 141 /// Drill down the U-D chain one step to find the definition of V, and 142 /// try to break the definition into one or two addends. 143 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 144 145 /// Similar to FAddend::drillDownOneStep() except that the value being 146 /// splitted is the addend itself. 147 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 148 149 void operator+=(const FAddend &T) { 150 assert((Val == T.Val) && "Symbolic-values disagree"); 151 Coeff += T.Coeff; 152 } 153 154 private: 155 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 156 157 // This addend has the value of "Coeff * Val". 158 Value *Val; 159 FAddendCoef Coeff; 160 }; 161 162 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 163 /// with its neighboring at most two instructions. 164 /// 165 class FAddCombine { 166 public: 167 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} 168 Value *simplify(Instruction *FAdd); 169 170 private: 171 typedef SmallVector<const FAddend*, 4> AddendVect; 172 173 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 174 175 Value *performFactorization(Instruction *I); 176 177 /// Convert given addend to a Value 178 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 179 180 /// Return the number of instructions needed to emit the N-ary addition. 181 unsigned calcInstrNumber(const AddendVect& Vect); 182 Value *createFSub(Value *Opnd0, Value *Opnd1); 183 Value *createFAdd(Value *Opnd0, Value *Opnd1); 184 Value *createFMul(Value *Opnd0, Value *Opnd1); 185 Value *createFDiv(Value *Opnd0, Value *Opnd1); 186 Value *createFNeg(Value *V); 187 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 188 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 189 190 InstCombiner::BuilderTy *Builder; 191 Instruction *Instr; 192 193 // Debugging stuff are clustered here. 194 #ifndef NDEBUG 195 unsigned CreateInstrNum; 196 void initCreateInstNum() { CreateInstrNum = 0; } 197 void incCreateInstNum() { CreateInstrNum++; } 198 #else 199 void initCreateInstNum() {} 200 void incCreateInstNum() {} 201 #endif 202 }; 203 204 } // anonymous namespace 205 206 //===----------------------------------------------------------------------===// 207 // 208 // Implementation of 209 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 210 // 211 //===----------------------------------------------------------------------===// 212 FAddendCoef::~FAddendCoef() { 213 if (BufHasFpVal) 214 getFpValPtr()->~APFloat(); 215 } 216 217 void FAddendCoef::set(const APFloat& C) { 218 APFloat *P = getFpValPtr(); 219 220 if (isInt()) { 221 // As the buffer is meanless byte stream, we cannot call 222 // APFloat::operator=(). 223 new(P) APFloat(C); 224 } else 225 *P = C; 226 227 IsFp = BufHasFpVal = true; 228 } 229 230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 231 if (!isInt()) 232 return; 233 234 APFloat *P = getFpValPtr(); 235 if (IntVal > 0) 236 new(P) APFloat(Sem, IntVal); 237 else { 238 new(P) APFloat(Sem, 0 - IntVal); 239 P->changeSign(); 240 } 241 IsFp = BufHasFpVal = true; 242 } 243 244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 245 if (Val >= 0) 246 return APFloat(Sem, Val); 247 248 APFloat T(Sem, 0 - Val); 249 T.changeSign(); 250 251 return T; 252 } 253 254 void FAddendCoef::operator=(const FAddendCoef &That) { 255 if (That.isInt()) 256 set(That.IntVal); 257 else 258 set(That.getFpVal()); 259 } 260 261 void FAddendCoef::operator+=(const FAddendCoef &That) { 262 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 263 if (isInt() == That.isInt()) { 264 if (isInt()) 265 IntVal += That.IntVal; 266 else 267 getFpVal().add(That.getFpVal(), RndMode); 268 return; 269 } 270 271 if (isInt()) { 272 const APFloat &T = That.getFpVal(); 273 convertToFpType(T.getSemantics()); 274 getFpVal().add(T, RndMode); 275 return; 276 } 277 278 APFloat &T = getFpVal(); 279 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 280 } 281 282 void FAddendCoef::operator-=(const FAddendCoef &That) { 283 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 284 if (isInt() == That.isInt()) { 285 if (isInt()) 286 IntVal -= That.IntVal; 287 else 288 getFpVal().subtract(That.getFpVal(), RndMode); 289 return; 290 } 291 292 if (isInt()) { 293 const APFloat &T = That.getFpVal(); 294 convertToFpType(T.getSemantics()); 295 getFpVal().subtract(T, RndMode); 296 return; 297 } 298 299 APFloat &T = getFpVal(); 300 T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode); 301 } 302 303 void FAddendCoef::operator*=(const FAddendCoef &That) { 304 if (That.isOne()) 305 return; 306 307 if (That.isMinusOne()) { 308 negate(); 309 return; 310 } 311 312 if (isInt() && That.isInt()) { 313 int Res = IntVal * (int)That.IntVal; 314 assert(!insaneIntVal(Res) && "Insane int value"); 315 IntVal = Res; 316 return; 317 } 318 319 const fltSemantics &Semantic = 320 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 321 322 if (isInt()) 323 convertToFpType(Semantic); 324 APFloat &F0 = getFpVal(); 325 326 if (That.isInt()) 327 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 328 APFloat::rmNearestTiesToEven); 329 else 330 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 331 } 332 333 void FAddendCoef::negate() { 334 if (isInt()) 335 IntVal = 0 - IntVal; 336 else 337 getFpVal().changeSign(); 338 } 339 340 Value *FAddendCoef::getValue(Type *Ty) const { 341 return isInt() ? 342 ConstantFP::get(Ty, float(IntVal)) : 343 ConstantFP::get(Ty->getContext(), getFpVal()); 344 } 345 346 // The definition of <Val> Addends 347 // ========================================= 348 // A + B <1, A>, <1,B> 349 // A - B <1, A>, <1,B> 350 // 0 - B <-1, B> 351 // C * A, <C, A> 352 // A + C <1, A> <C, NULL> 353 // 0 +/- 0 <0, NULL> (corner case) 354 // 355 // Legend: A and B are not constant, C is constant 356 // 357 unsigned FAddend::drillValueDownOneStep 358 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 359 Instruction *I = nullptr; 360 if (!Val || !(I = dyn_cast<Instruction>(Val))) 361 return 0; 362 363 unsigned Opcode = I->getOpcode(); 364 365 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 366 ConstantFP *C0, *C1; 367 Value *Opnd0 = I->getOperand(0); 368 Value *Opnd1 = I->getOperand(1); 369 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 370 Opnd0 = nullptr; 371 372 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 373 Opnd1 = nullptr; 374 375 if (Opnd0) { 376 if (!C0) 377 Addend0.set(1, Opnd0); 378 else 379 Addend0.set(C0, nullptr); 380 } 381 382 if (Opnd1) { 383 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 384 if (!C1) 385 Addend.set(1, Opnd1); 386 else 387 Addend.set(C1, nullptr); 388 if (Opcode == Instruction::FSub) 389 Addend.negate(); 390 } 391 392 if (Opnd0 || Opnd1) 393 return Opnd0 && Opnd1 ? 2 : 1; 394 395 // Both operands are zero. Weird! 396 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 397 return 1; 398 } 399 400 if (I->getOpcode() == Instruction::FMul) { 401 Value *V0 = I->getOperand(0); 402 Value *V1 = I->getOperand(1); 403 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 404 Addend0.set(C, V1); 405 return 1; 406 } 407 408 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 409 Addend0.set(C, V0); 410 return 1; 411 } 412 } 413 414 return 0; 415 } 416 417 // Try to break *this* addend into two addends. e.g. Suppose this addend is 418 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 419 // i.e. <2.3, X> and <2.3, Y>. 420 // 421 unsigned FAddend::drillAddendDownOneStep 422 (FAddend &Addend0, FAddend &Addend1) const { 423 if (isConstant()) 424 return 0; 425 426 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 427 if (!BreakNum || Coeff.isOne()) 428 return BreakNum; 429 430 Addend0.Scale(Coeff); 431 432 if (BreakNum == 2) 433 Addend1.Scale(Coeff); 434 435 return BreakNum; 436 } 437 438 // Try to perform following optimization on the input instruction I. Return the 439 // simplified expression if was successful; otherwise, return 0. 440 // 441 // Instruction "I" is Simplified into 442 // ------------------------------------------------------- 443 // (x * y) +/- (x * z) x * (y +/- z) 444 // (y / x) +/- (z / x) (y +/- z) / x 445 // 446 Value *FAddCombine::performFactorization(Instruction *I) { 447 assert((I->getOpcode() == Instruction::FAdd || 448 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 449 450 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 451 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 452 453 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 454 return nullptr; 455 456 bool isMpy = false; 457 if (I0->getOpcode() == Instruction::FMul) 458 isMpy = true; 459 else if (I0->getOpcode() != Instruction::FDiv) 460 return nullptr; 461 462 Value *Opnd0_0 = I0->getOperand(0); 463 Value *Opnd0_1 = I0->getOperand(1); 464 Value *Opnd1_0 = I1->getOperand(0); 465 Value *Opnd1_1 = I1->getOperand(1); 466 467 // Input Instr I Factor AddSub0 AddSub1 468 // ---------------------------------------------- 469 // (x*y) +/- (x*z) x y z 470 // (y/x) +/- (z/x) x y z 471 // 472 Value *Factor = nullptr; 473 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 474 475 if (isMpy) { 476 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 477 Factor = Opnd0_0; 478 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 479 Factor = Opnd0_1; 480 481 if (Factor) { 482 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 483 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 484 } 485 } else if (Opnd0_1 == Opnd1_1) { 486 Factor = Opnd0_1; 487 AddSub0 = Opnd0_0; 488 AddSub1 = Opnd1_0; 489 } 490 491 if (!Factor) 492 return nullptr; 493 494 FastMathFlags Flags; 495 Flags.setUnsafeAlgebra(); 496 if (I0) Flags &= I->getFastMathFlags(); 497 if (I1) Flags &= I->getFastMathFlags(); 498 499 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 500 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 501 createFAdd(AddSub0, AddSub1) : 502 createFSub(AddSub0, AddSub1); 503 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 504 const APFloat &F = CFP->getValueAPF(); 505 if (!F.isNormal()) 506 return nullptr; 507 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 508 II->setFastMathFlags(Flags); 509 510 if (isMpy) { 511 Value *RI = createFMul(Factor, NewAddSub); 512 if (Instruction *II = dyn_cast<Instruction>(RI)) 513 II->setFastMathFlags(Flags); 514 return RI; 515 } 516 517 Value *RI = createFDiv(NewAddSub, Factor); 518 if (Instruction *II = dyn_cast<Instruction>(RI)) 519 II->setFastMathFlags(Flags); 520 return RI; 521 } 522 523 Value *FAddCombine::simplify(Instruction *I) { 524 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); 525 526 // Currently we are not able to handle vector type. 527 if (I->getType()->isVectorTy()) 528 return nullptr; 529 530 assert((I->getOpcode() == Instruction::FAdd || 531 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 532 533 // Save the instruction before calling other member-functions. 534 Instr = I; 535 536 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 537 538 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 539 540 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 541 unsigned Opnd0_ExpNum = 0; 542 unsigned Opnd1_ExpNum = 0; 543 544 if (!Opnd0.isConstant()) 545 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 546 547 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 548 if (OpndNum == 2 && !Opnd1.isConstant()) 549 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 550 551 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 552 if (Opnd0_ExpNum && Opnd1_ExpNum) { 553 AddendVect AllOpnds; 554 AllOpnds.push_back(&Opnd0_0); 555 AllOpnds.push_back(&Opnd1_0); 556 if (Opnd0_ExpNum == 2) 557 AllOpnds.push_back(&Opnd0_1); 558 if (Opnd1_ExpNum == 2) 559 AllOpnds.push_back(&Opnd1_1); 560 561 // Compute instruction quota. We should save at least one instruction. 562 unsigned InstQuota = 0; 563 564 Value *V0 = I->getOperand(0); 565 Value *V1 = I->getOperand(1); 566 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 567 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 568 569 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 570 return R; 571 } 572 573 if (OpndNum != 2) { 574 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 575 // splitted into two addends, say "V = X - Y", the instruction would have 576 // been optimized into "I = Y - X" in the previous steps. 577 // 578 const FAddendCoef &CE = Opnd0.getCoef(); 579 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 580 } 581 582 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 583 if (Opnd1_ExpNum) { 584 AddendVect AllOpnds; 585 AllOpnds.push_back(&Opnd0); 586 AllOpnds.push_back(&Opnd1_0); 587 if (Opnd1_ExpNum == 2) 588 AllOpnds.push_back(&Opnd1_1); 589 590 if (Value *R = simplifyFAdd(AllOpnds, 1)) 591 return R; 592 } 593 594 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 595 if (Opnd0_ExpNum) { 596 AddendVect AllOpnds; 597 AllOpnds.push_back(&Opnd1); 598 AllOpnds.push_back(&Opnd0_0); 599 if (Opnd0_ExpNum == 2) 600 AllOpnds.push_back(&Opnd0_1); 601 602 if (Value *R = simplifyFAdd(AllOpnds, 1)) 603 return R; 604 } 605 606 // step 6: Try factorization as the last resort, 607 return performFactorization(I); 608 } 609 610 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 611 unsigned AddendNum = Addends.size(); 612 assert(AddendNum <= 4 && "Too many addends"); 613 614 // For saving intermediate results; 615 unsigned NextTmpIdx = 0; 616 FAddend TmpResult[3]; 617 618 // Points to the constant addend of the resulting simplified expression. 619 // If the resulting expr has constant-addend, this constant-addend is 620 // desirable to reside at the top of the resulting expression tree. Placing 621 // constant close to supper-expr(s) will potentially reveal some optimization 622 // opportunities in super-expr(s). 623 // 624 const FAddend *ConstAdd = nullptr; 625 626 // Simplified addends are placed <SimpVect>. 627 AddendVect SimpVect; 628 629 // The outer loop works on one symbolic-value at a time. Suppose the input 630 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 631 // The symbolic-values will be processed in this order: x, y, z. 632 // 633 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 634 635 const FAddend *ThisAddend = Addends[SymIdx]; 636 if (!ThisAddend) { 637 // This addend was processed before. 638 continue; 639 } 640 641 Value *Val = ThisAddend->getSymVal(); 642 unsigned StartIdx = SimpVect.size(); 643 SimpVect.push_back(ThisAddend); 644 645 // The inner loop collects addends sharing same symbolic-value, and these 646 // addends will be later on folded into a single addend. Following above 647 // example, if the symbolic value "y" is being processed, the inner loop 648 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 649 // be later on folded into "<b1+b2, y>". 650 // 651 for (unsigned SameSymIdx = SymIdx + 1; 652 SameSymIdx < AddendNum; SameSymIdx++) { 653 const FAddend *T = Addends[SameSymIdx]; 654 if (T && T->getSymVal() == Val) { 655 // Set null such that next iteration of the outer loop will not process 656 // this addend again. 657 Addends[SameSymIdx] = nullptr; 658 SimpVect.push_back(T); 659 } 660 } 661 662 // If multiple addends share same symbolic value, fold them together. 663 if (StartIdx + 1 != SimpVect.size()) { 664 FAddend &R = TmpResult[NextTmpIdx ++]; 665 R = *SimpVect[StartIdx]; 666 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 667 R += *SimpVect[Idx]; 668 669 // Pop all addends being folded and push the resulting folded addend. 670 SimpVect.resize(StartIdx); 671 if (Val) { 672 if (!R.isZero()) { 673 SimpVect.push_back(&R); 674 } 675 } else { 676 // Don't push constant addend at this time. It will be the last element 677 // of <SimpVect>. 678 ConstAdd = &R; 679 } 680 } 681 } 682 683 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 684 "out-of-bound access"); 685 686 if (ConstAdd) 687 SimpVect.push_back(ConstAdd); 688 689 Value *Result; 690 if (!SimpVect.empty()) 691 Result = createNaryFAdd(SimpVect, InstrQuota); 692 else { 693 // The addition is folded to 0.0. 694 Result = ConstantFP::get(Instr->getType(), 0.0); 695 } 696 697 return Result; 698 } 699 700 Value *FAddCombine::createNaryFAdd 701 (const AddendVect &Opnds, unsigned InstrQuota) { 702 assert(!Opnds.empty() && "Expect at least one addend"); 703 704 // Step 1: Check if the # of instructions needed exceeds the quota. 705 // 706 unsigned InstrNeeded = calcInstrNumber(Opnds); 707 if (InstrNeeded > InstrQuota) 708 return nullptr; 709 710 initCreateInstNum(); 711 712 // step 2: Emit the N-ary addition. 713 // Note that at most three instructions are involved in Fadd-InstCombine: the 714 // addition in question, and at most two neighboring instructions. 715 // The resulting optimized addition should have at least one less instruction 716 // than the original addition expression tree. This implies that the resulting 717 // N-ary addition has at most two instructions, and we don't need to worry 718 // about tree-height when constructing the N-ary addition. 719 720 Value *LastVal = nullptr; 721 bool LastValNeedNeg = false; 722 723 // Iterate the addends, creating fadd/fsub using adjacent two addends. 724 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 725 I != E; I++) { 726 bool NeedNeg; 727 Value *V = createAddendVal(**I, NeedNeg); 728 if (!LastVal) { 729 LastVal = V; 730 LastValNeedNeg = NeedNeg; 731 continue; 732 } 733 734 if (LastValNeedNeg == NeedNeg) { 735 LastVal = createFAdd(LastVal, V); 736 continue; 737 } 738 739 if (LastValNeedNeg) 740 LastVal = createFSub(V, LastVal); 741 else 742 LastVal = createFSub(LastVal, V); 743 744 LastValNeedNeg = false; 745 } 746 747 if (LastValNeedNeg) { 748 LastVal = createFNeg(LastVal); 749 } 750 751 #ifndef NDEBUG 752 assert(CreateInstrNum == InstrNeeded && 753 "Inconsistent in instruction numbers"); 754 #endif 755 756 return LastVal; 757 } 758 759 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 760 Value *V = Builder->CreateFSub(Opnd0, Opnd1); 761 if (Instruction *I = dyn_cast<Instruction>(V)) 762 createInstPostProc(I); 763 return V; 764 } 765 766 Value *FAddCombine::createFNeg(Value *V) { 767 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 768 Value *NewV = createFSub(Zero, V); 769 if (Instruction *I = dyn_cast<Instruction>(NewV)) 770 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 771 return NewV; 772 } 773 774 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 775 Value *V = Builder->CreateFAdd(Opnd0, Opnd1); 776 if (Instruction *I = dyn_cast<Instruction>(V)) 777 createInstPostProc(I); 778 return V; 779 } 780 781 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 782 Value *V = Builder->CreateFMul(Opnd0, Opnd1); 783 if (Instruction *I = dyn_cast<Instruction>(V)) 784 createInstPostProc(I); 785 return V; 786 } 787 788 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 789 Value *V = Builder->CreateFDiv(Opnd0, Opnd1); 790 if (Instruction *I = dyn_cast<Instruction>(V)) 791 createInstPostProc(I); 792 return V; 793 } 794 795 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 796 NewInstr->setDebugLoc(Instr->getDebugLoc()); 797 798 // Keep track of the number of instruction created. 799 if (!NoNumber) 800 incCreateInstNum(); 801 802 // Propagate fast-math flags 803 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 804 } 805 806 // Return the number of instruction needed to emit the N-ary addition. 807 // NOTE: Keep this function in sync with createAddendVal(). 808 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 809 unsigned OpndNum = Opnds.size(); 810 unsigned InstrNeeded = OpndNum - 1; 811 812 // The number of addends in the form of "(-1)*x". 813 unsigned NegOpndNum = 0; 814 815 // Adjust the number of instructions needed to emit the N-ary add. 816 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 817 I != E; I++) { 818 const FAddend *Opnd = *I; 819 if (Opnd->isConstant()) 820 continue; 821 822 const FAddendCoef &CE = Opnd->getCoef(); 823 if (CE.isMinusOne() || CE.isMinusTwo()) 824 NegOpndNum++; 825 826 // Let the addend be "c * x". If "c == +/-1", the value of the addend 827 // is immediately available; otherwise, it needs exactly one instruction 828 // to evaluate the value. 829 if (!CE.isMinusOne() && !CE.isOne()) 830 InstrNeeded++; 831 } 832 if (NegOpndNum == OpndNum) 833 InstrNeeded++; 834 return InstrNeeded; 835 } 836 837 // Input Addend Value NeedNeg(output) 838 // ================================================================ 839 // Constant C C false 840 // <+/-1, V> V coefficient is -1 841 // <2/-2, V> "fadd V, V" coefficient is -2 842 // <C, V> "fmul V, C" false 843 // 844 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 845 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 846 const FAddendCoef &Coeff = Opnd.getCoef(); 847 848 if (Opnd.isConstant()) { 849 NeedNeg = false; 850 return Coeff.getValue(Instr->getType()); 851 } 852 853 Value *OpndVal = Opnd.getSymVal(); 854 855 if (Coeff.isMinusOne() || Coeff.isOne()) { 856 NeedNeg = Coeff.isMinusOne(); 857 return OpndVal; 858 } 859 860 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 861 NeedNeg = Coeff.isMinusTwo(); 862 return createFAdd(OpndVal, OpndVal); 863 } 864 865 NeedNeg = false; 866 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 867 } 868 869 // If one of the operands only has one non-zero bit, and if the other 870 // operand has a known-zero bit in a more significant place than it (not 871 // including the sign bit) the ripple may go up to and fill the zero, but 872 // won't change the sign. For example, (X & ~4) + 1. 873 static bool checkRippleForAdd(const APInt &Op0KnownZero, 874 const APInt &Op1KnownZero) { 875 APInt Op1MaybeOne = ~Op1KnownZero; 876 // Make sure that one of the operand has at most one bit set to 1. 877 if (Op1MaybeOne.countPopulation() != 1) 878 return false; 879 880 // Find the most significant known 0 other than the sign bit. 881 int BitWidth = Op0KnownZero.getBitWidth(); 882 APInt Op0KnownZeroTemp(Op0KnownZero); 883 Op0KnownZeroTemp.clearBit(BitWidth - 1); 884 int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; 885 886 int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; 887 assert(Op1OnePosition >= 0); 888 889 // This also covers the case of no known zero, since in that case 890 // Op0ZeroPosition is -1. 891 return Op0ZeroPosition >= Op1OnePosition; 892 } 893 894 /// Return true if we can prove that: 895 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 896 /// This basically requires proving that the add in the original type would not 897 /// overflow to change the sign bit or have a carry out. 898 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, 899 Instruction &CxtI) { 900 // There are different heuristics we can use for this. Here are some simple 901 // ones. 902 903 // If LHS and RHS each have at least two sign bits, the addition will look 904 // like 905 // 906 // XX..... + 907 // YY..... 908 // 909 // If the carry into the most significant position is 0, X and Y can't both 910 // be 1 and therefore the carry out of the addition is also 0. 911 // 912 // If the carry into the most significant position is 1, X and Y can't both 913 // be 0 and therefore the carry out of the addition is also 1. 914 // 915 // Since the carry into the most significant position is always equal to 916 // the carry out of the addition, there is no signed overflow. 917 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 918 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 919 return true; 920 921 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 922 APInt LHSKnownZero(BitWidth, 0); 923 APInt LHSKnownOne(BitWidth, 0); 924 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); 925 926 APInt RHSKnownZero(BitWidth, 0); 927 APInt RHSKnownOne(BitWidth, 0); 928 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); 929 930 // Addition of two 2's compliment numbers having opposite signs will never 931 // overflow. 932 if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || 933 (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) 934 return true; 935 936 // Check if carry bit of addition will not cause overflow. 937 if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) 938 return true; 939 if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) 940 return true; 941 942 return false; 943 } 944 945 /// \brief Return true if we can prove that: 946 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 947 /// This basically requires proving that the add in the original type would not 948 /// overflow to change the sign bit or have a carry out. 949 /// TODO: Handle this for Vectors. 950 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, 951 Instruction &CxtI) { 952 // If LHS and RHS each have at least two sign bits, the subtraction 953 // cannot overflow. 954 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 955 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 956 return true; 957 958 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 959 APInt LHSKnownZero(BitWidth, 0); 960 APInt LHSKnownOne(BitWidth, 0); 961 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); 962 963 APInt RHSKnownZero(BitWidth, 0); 964 APInt RHSKnownOne(BitWidth, 0); 965 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); 966 967 // Subtraction of two 2's compliment numbers having identical signs will 968 // never overflow. 969 if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || 970 (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) 971 return true; 972 973 // TODO: implement logic similar to checkRippleForAdd 974 return false; 975 } 976 977 /// \brief Return true if we can prove that: 978 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 979 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, 980 Instruction &CxtI) { 981 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 982 bool LHSKnownNonNegative, LHSKnownNegative; 983 bool RHSKnownNonNegative, RHSKnownNegative; 984 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, 985 &CxtI); 986 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, 987 &CxtI); 988 if (LHSKnownNegative && RHSKnownNonNegative) 989 return true; 990 991 return false; 992 } 993 994 // Checks if any operand is negative and we can convert add to sub. 995 // This function checks for following negative patterns 996 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 997 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 998 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 999 static Value *checkForNegativeOperand(BinaryOperator &I, 1000 InstCombiner::BuilderTy *Builder) { 1001 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1002 1003 // This function creates 2 instructions to replace ADD, we need at least one 1004 // of LHS or RHS to have one use to ensure benefit in transform. 1005 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 1006 return nullptr; 1007 1008 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1009 const APInt *C1 = nullptr, *C2 = nullptr; 1010 1011 // if ONE is on other side, swap 1012 if (match(RHS, m_Add(m_Value(X), m_One()))) 1013 std::swap(LHS, RHS); 1014 1015 if (match(LHS, m_Add(m_Value(X), m_One()))) { 1016 // if XOR on other side, swap 1017 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1018 std::swap(X, RHS); 1019 1020 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 1021 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 1022 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 1023 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 1024 Value *NewAnd = Builder->CreateAnd(Z, *C1); 1025 return Builder->CreateSub(RHS, NewAnd, "sub"); 1026 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 1027 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 1028 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 1029 Value *NewOr = Builder->CreateOr(Z, ~(*C1)); 1030 return Builder->CreateSub(RHS, NewOr, "sub"); 1031 } 1032 } 1033 } 1034 1035 // Restore LHS and RHS 1036 LHS = I.getOperand(0); 1037 RHS = I.getOperand(1); 1038 1039 // if XOR is on other side, swap 1040 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1041 std::swap(LHS, RHS); 1042 1043 // C2 is ODD 1044 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 1045 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 1046 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 1047 if (C1->countTrailingZeros() == 0) 1048 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 1049 Value *NewOr = Builder->CreateOr(Z, ~(*C2)); 1050 return Builder->CreateSub(RHS, NewOr, "sub"); 1051 } 1052 return nullptr; 1053 } 1054 1055 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1056 bool Changed = SimplifyAssociativeOrCommutative(I); 1057 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1058 1059 if (Value *V = SimplifyVectorOp(I)) 1060 return replaceInstUsesWith(I, V); 1061 1062 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 1063 I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) 1064 return replaceInstUsesWith(I, V); 1065 1066 // (A*B)+(A*C) -> A*(B+C) etc 1067 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1068 return replaceInstUsesWith(I, V); 1069 1070 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1071 // X + (signbit) --> X ^ signbit 1072 const APInt &Val = CI->getValue(); 1073 if (Val.isSignBit()) 1074 return BinaryOperator::CreateXor(LHS, RHS); 1075 1076 // See if SimplifyDemandedBits can simplify this. This handles stuff like 1077 // (X & 254)+1 -> (X&254)|1 1078 if (SimplifyDemandedInstructionBits(I)) 1079 return &I; 1080 1081 // zext(bool) + C -> bool ? C + 1 : C 1082 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 1083 if (ZI->getSrcTy()->isIntegerTy(1)) 1084 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 1085 1086 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1087 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1088 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 1089 const APInt &RHSVal = CI->getValue(); 1090 unsigned ExtendAmt = 0; 1091 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1092 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1093 if (XorRHS->getValue() == -RHSVal) { 1094 if (RHSVal.isPowerOf2()) 1095 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1096 else if (XorRHS->getValue().isPowerOf2()) 1097 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1098 } 1099 1100 if (ExtendAmt) { 1101 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1102 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1103 ExtendAmt = 0; 1104 } 1105 1106 if (ExtendAmt) { 1107 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 1108 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 1109 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1110 } 1111 1112 // If this is a xor that was canonicalized from a sub, turn it back into 1113 // a sub and fuse this add with it. 1114 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1115 IntegerType *IT = cast<IntegerType>(I.getType()); 1116 APInt LHSKnownOne(IT->getBitWidth(), 0); 1117 APInt LHSKnownZero(IT->getBitWidth(), 0); 1118 computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I); 1119 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 1120 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1121 XorLHS); 1122 } 1123 // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C, 1124 // transform them into (X + (signbit ^ C)) 1125 if (XorRHS->getValue().isSignBit()) 1126 return BinaryOperator::CreateAdd(XorLHS, 1127 ConstantExpr::getXor(XorRHS, CI)); 1128 } 1129 } 1130 1131 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 1132 if (Instruction *NV = FoldOpIntoPhi(I)) 1133 return NV; 1134 1135 if (I.getType()->getScalarType()->isIntegerTy(1)) 1136 return BinaryOperator::CreateXor(LHS, RHS); 1137 1138 // X + X --> X << 1 1139 if (LHS == RHS) { 1140 BinaryOperator *New = 1141 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 1142 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1143 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1144 return New; 1145 } 1146 1147 // -A + B --> B - A 1148 // -A + -B --> -(A + B) 1149 if (Value *LHSV = dyn_castNegVal(LHS)) { 1150 if (!isa<Constant>(RHS)) 1151 if (Value *RHSV = dyn_castNegVal(RHS)) { 1152 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 1153 return BinaryOperator::CreateNeg(NewAdd); 1154 } 1155 1156 return BinaryOperator::CreateSub(RHS, LHSV); 1157 } 1158 1159 // A + -B --> A - B 1160 if (!isa<Constant>(RHS)) 1161 if (Value *V = dyn_castNegVal(RHS)) 1162 return BinaryOperator::CreateSub(LHS, V); 1163 1164 if (Value *V = checkForNegativeOperand(I, Builder)) 1165 return replaceInstUsesWith(I, V); 1166 1167 // A+B --> A|B iff A and B have no bits set in common. 1168 if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT)) 1169 return BinaryOperator::CreateOr(LHS, RHS); 1170 1171 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 1172 Value *X; 1173 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 1174 return BinaryOperator::CreateSub(SubOne(CRHS), X); 1175 } 1176 1177 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1178 // (X & FF00) + xx00 -> (X+xx00) & FF00 1179 Value *X; 1180 ConstantInt *C2; 1181 if (LHS->hasOneUse() && 1182 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1183 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1184 // See if all bits from the first bit set in the Add RHS up are included 1185 // in the mask. First, get the rightmost bit. 1186 const APInt &AddRHSV = CRHS->getValue(); 1187 1188 // Form a mask of all bits from the lowest bit added through the top. 1189 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1190 1191 // See if the and mask includes all of these bits. 1192 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1193 1194 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1195 // Okay, the xform is safe. Insert the new add pronto. 1196 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 1197 return BinaryOperator::CreateAnd(NewAdd, C2); 1198 } 1199 } 1200 1201 // Try to fold constant add into select arguments. 1202 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 1203 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1204 return R; 1205 } 1206 1207 // add (select X 0 (sub n A)) A --> select X A n 1208 { 1209 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1210 Value *A = RHS; 1211 if (!SI) { 1212 SI = dyn_cast<SelectInst>(RHS); 1213 A = LHS; 1214 } 1215 if (SI && SI->hasOneUse()) { 1216 Value *TV = SI->getTrueValue(); 1217 Value *FV = SI->getFalseValue(); 1218 Value *N; 1219 1220 // Can we fold the add into the argument of the select? 1221 // We check both true and false select arguments for a matching subtract. 1222 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1223 // Fold the add into the true select value. 1224 return SelectInst::Create(SI->getCondition(), N, A); 1225 1226 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1227 // Fold the add into the false select value. 1228 return SelectInst::Create(SI->getCondition(), A, N); 1229 } 1230 } 1231 1232 // Check for (add (sext x), y), see if we can merge this into an 1233 // integer add followed by a sext. 1234 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1235 // (add (sext x), cst) --> (sext (add x, cst')) 1236 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1237 Constant *CI = 1238 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1239 if (LHSConv->hasOneUse() && 1240 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 1241 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1242 // Insert the new, smaller add. 1243 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1244 CI, "addconv"); 1245 return new SExtInst(NewAdd, I.getType()); 1246 } 1247 } 1248 1249 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1250 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1251 // Only do this if x/y have the same type, if at last one of them has a 1252 // single use (so we don't increase the number of sexts), and if the 1253 // integer add will not overflow. 1254 if (LHSConv->getOperand(0)->getType() == 1255 RHSConv->getOperand(0)->getType() && 1256 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1257 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 1258 RHSConv->getOperand(0), I)) { 1259 // Insert the new integer add. 1260 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1261 RHSConv->getOperand(0), "addconv"); 1262 return new SExtInst(NewAdd, I.getType()); 1263 } 1264 } 1265 } 1266 1267 // (add (xor A, B) (and A, B)) --> (or A, B) 1268 { 1269 Value *A = nullptr, *B = nullptr; 1270 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 1271 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 1272 match(LHS, m_And(m_Specific(B), m_Specific(A))))) 1273 return BinaryOperator::CreateOr(A, B); 1274 1275 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 1276 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 1277 match(RHS, m_And(m_Specific(B), m_Specific(A))))) 1278 return BinaryOperator::CreateOr(A, B); 1279 } 1280 1281 // (add (or A, B) (and A, B)) --> (add A, B) 1282 { 1283 Value *A = nullptr, *B = nullptr; 1284 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 1285 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 1286 match(LHS, m_And(m_Specific(B), m_Specific(A))))) { 1287 auto *New = BinaryOperator::CreateAdd(A, B); 1288 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1289 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1290 return New; 1291 } 1292 1293 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 1294 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 1295 match(RHS, m_And(m_Specific(B), m_Specific(A))))) { 1296 auto *New = BinaryOperator::CreateAdd(A, B); 1297 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 1298 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1299 return New; 1300 } 1301 } 1302 1303 // TODO(jingyue): Consider WillNotOverflowSignedAdd and 1304 // WillNotOverflowUnsignedAdd to reduce the number of invocations of 1305 // computeKnownBits. 1306 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) { 1307 Changed = true; 1308 I.setHasNoSignedWrap(true); 1309 } 1310 if (!I.hasNoUnsignedWrap() && 1311 computeOverflowForUnsignedAdd(LHS, RHS, &I) == 1312 OverflowResult::NeverOverflows) { 1313 Changed = true; 1314 I.setHasNoUnsignedWrap(true); 1315 } 1316 1317 return Changed ? &I : nullptr; 1318 } 1319 1320 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1321 bool Changed = SimplifyAssociativeOrCommutative(I); 1322 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1323 1324 if (Value *V = SimplifyVectorOp(I)) 1325 return replaceInstUsesWith(I, V); 1326 1327 if (Value *V = 1328 SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC)) 1329 return replaceInstUsesWith(I, V); 1330 1331 if (isa<Constant>(RHS)) { 1332 if (isa<PHINode>(LHS)) 1333 if (Instruction *NV = FoldOpIntoPhi(I)) 1334 return NV; 1335 1336 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 1337 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1338 return NV; 1339 } 1340 1341 // -A + B --> B - A 1342 // -A + -B --> -(A + B) 1343 if (Value *LHSV = dyn_castFNegVal(LHS)) { 1344 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); 1345 RI->copyFastMathFlags(&I); 1346 return RI; 1347 } 1348 1349 // A + -B --> A - B 1350 if (!isa<Constant>(RHS)) 1351 if (Value *V = dyn_castFNegVal(RHS)) { 1352 Instruction *RI = BinaryOperator::CreateFSub(LHS, V); 1353 RI->copyFastMathFlags(&I); 1354 return RI; 1355 } 1356 1357 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1358 // integer add followed by a promotion. 1359 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1360 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1361 // ... if the constant fits in the integer value. This is useful for things 1362 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1363 // requires a constant pool load, and generally allows the add to be better 1364 // instcombined. 1365 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 1366 Constant *CI = 1367 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 1368 if (LHSConv->hasOneUse() && 1369 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1370 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1371 // Insert the new integer add. 1372 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1373 CI, "addconv"); 1374 return new SIToFPInst(NewAdd, I.getType()); 1375 } 1376 } 1377 1378 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1379 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1380 // Only do this if x/y have the same type, if at last one of them has a 1381 // single use (so we don't increase the number of int->fp conversions), 1382 // and if the integer add will not overflow. 1383 if (LHSConv->getOperand(0)->getType() == 1384 RHSConv->getOperand(0)->getType() && 1385 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1386 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 1387 RHSConv->getOperand(0), I)) { 1388 // Insert the new integer add. 1389 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 1390 RHSConv->getOperand(0),"addconv"); 1391 return new SIToFPInst(NewAdd, I.getType()); 1392 } 1393 } 1394 } 1395 1396 // select C, 0, B + select C, A, 0 -> select C, A, B 1397 { 1398 Value *A1, *B1, *C1, *A2, *B2, *C2; 1399 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && 1400 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { 1401 if (C1 == C2) { 1402 Constant *Z1=nullptr, *Z2=nullptr; 1403 Value *A, *B, *C=C1; 1404 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { 1405 Z1 = dyn_cast<Constant>(A1); A = A2; 1406 Z2 = dyn_cast<Constant>(B2); B = B1; 1407 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { 1408 Z1 = dyn_cast<Constant>(B1); B = B2; 1409 Z2 = dyn_cast<Constant>(A2); A = A1; 1410 } 1411 1412 if (Z1 && Z2 && 1413 (I.hasNoSignedZeros() || 1414 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { 1415 return SelectInst::Create(C, A, B); 1416 } 1417 } 1418 } 1419 } 1420 1421 if (I.hasUnsafeAlgebra()) { 1422 if (Value *V = FAddCombine(Builder).simplify(&I)) 1423 return replaceInstUsesWith(I, V); 1424 } 1425 1426 return Changed ? &I : nullptr; 1427 } 1428 1429 /// Optimize pointer differences into the same array into a size. Consider: 1430 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1431 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1432 /// 1433 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1434 Type *Ty) { 1435 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1436 // this. 1437 bool Swapped = false; 1438 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1439 1440 // For now we require one side to be the base pointer "A" or a constant 1441 // GEP derived from it. 1442 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1443 // (gep X, ...) - X 1444 if (LHSGEP->getOperand(0) == RHS) { 1445 GEP1 = LHSGEP; 1446 Swapped = false; 1447 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1448 // (gep X, ...) - (gep X, ...) 1449 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1450 RHSGEP->getOperand(0)->stripPointerCasts()) { 1451 GEP2 = RHSGEP; 1452 GEP1 = LHSGEP; 1453 Swapped = false; 1454 } 1455 } 1456 } 1457 1458 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1459 // X - (gep X, ...) 1460 if (RHSGEP->getOperand(0) == LHS) { 1461 GEP1 = RHSGEP; 1462 Swapped = true; 1463 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1464 // (gep X, ...) - (gep X, ...) 1465 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1466 LHSGEP->getOperand(0)->stripPointerCasts()) { 1467 GEP2 = LHSGEP; 1468 GEP1 = RHSGEP; 1469 Swapped = true; 1470 } 1471 } 1472 } 1473 1474 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 1475 // multiple users. 1476 if (!GEP1 || 1477 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 1478 return nullptr; 1479 1480 // Emit the offset of the GEP and an intptr_t. 1481 Value *Result = EmitGEPOffset(GEP1); 1482 1483 // If we had a constant expression GEP on the other side offsetting the 1484 // pointer, subtract it from the offset we have. 1485 if (GEP2) { 1486 Value *Offset = EmitGEPOffset(GEP2); 1487 Result = Builder->CreateSub(Result, Offset); 1488 } 1489 1490 // If we have p - gep(p, ...) then we have to negate the result. 1491 if (Swapped) 1492 Result = Builder->CreateNeg(Result, "diff.neg"); 1493 1494 return Builder->CreateIntCast(Result, Ty, true); 1495 } 1496 1497 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1498 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1499 1500 if (Value *V = SimplifyVectorOp(I)) 1501 return replaceInstUsesWith(I, V); 1502 1503 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 1504 I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) 1505 return replaceInstUsesWith(I, V); 1506 1507 // (A*B)-(A*C) -> A*(B-C) etc 1508 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1509 return replaceInstUsesWith(I, V); 1510 1511 // If this is a 'B = x-(-A)', change to B = x+A. 1512 if (Value *V = dyn_castNegVal(Op1)) { 1513 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1514 1515 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1516 assert(BO->getOpcode() == Instruction::Sub && 1517 "Expected a subtraction operator!"); 1518 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1519 Res->setHasNoSignedWrap(true); 1520 } else { 1521 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1522 Res->setHasNoSignedWrap(true); 1523 } 1524 1525 return Res; 1526 } 1527 1528 if (I.getType()->isIntegerTy(1)) 1529 return BinaryOperator::CreateXor(Op0, Op1); 1530 1531 // Replace (-1 - A) with (~A). 1532 if (match(Op0, m_AllOnes())) 1533 return BinaryOperator::CreateNot(Op1); 1534 1535 if (Constant *C = dyn_cast<Constant>(Op0)) { 1536 // C - ~X == X + (1+C) 1537 Value *X = nullptr; 1538 if (match(Op1, m_Not(m_Value(X)))) 1539 return BinaryOperator::CreateAdd(X, AddOne(C)); 1540 1541 // Try to fold constant sub into select arguments. 1542 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1543 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1544 return R; 1545 1546 // C-(X+C2) --> (C-C2)-X 1547 Constant *C2; 1548 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1549 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1550 1551 if (SimplifyDemandedInstructionBits(I)) 1552 return &I; 1553 1554 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1555 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1556 if (X->getType()->getScalarType()->isIntegerTy(1)) 1557 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1558 1559 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1560 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1561 if (X->getType()->getScalarType()->isIntegerTy(1)) 1562 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1563 } 1564 1565 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 1566 // -(X >>u 31) -> (X >>s 31) 1567 // -(X >>s 31) -> (X >>u 31) 1568 if (C->isZero()) { 1569 Value *X; 1570 ConstantInt *CI; 1571 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 1572 // Verify we are shifting out everything but the sign bit. 1573 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) 1574 return BinaryOperator::CreateAShr(X, CI); 1575 1576 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 1577 // Verify we are shifting out everything but the sign bit. 1578 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) 1579 return BinaryOperator::CreateLShr(X, CI); 1580 } 1581 1582 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1583 // zero. 1584 APInt IntVal = C->getValue(); 1585 if ((IntVal + 1).isPowerOf2()) { 1586 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1587 APInt KnownZero(BitWidth, 0); 1588 APInt KnownOne(BitWidth, 0); 1589 computeKnownBits(&I, KnownZero, KnownOne, 0, &I); 1590 if ((IntVal | KnownZero).isAllOnesValue()) { 1591 return BinaryOperator::CreateXor(Op1, C); 1592 } 1593 } 1594 } 1595 1596 { 1597 Value *Y; 1598 // X-(X+Y) == -Y X-(Y+X) == -Y 1599 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 1600 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 1601 return BinaryOperator::CreateNeg(Y); 1602 1603 // (X-Y)-X == -Y 1604 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1605 return BinaryOperator::CreateNeg(Y); 1606 } 1607 1608 // (sub (or A, B) (xor A, B)) --> (and A, B) 1609 { 1610 Value *A = nullptr, *B = nullptr; 1611 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1612 (match(Op0, m_Or(m_Specific(A), m_Specific(B))) || 1613 match(Op0, m_Or(m_Specific(B), m_Specific(A))))) 1614 return BinaryOperator::CreateAnd(A, B); 1615 } 1616 1617 if (Op0->hasOneUse()) { 1618 Value *Y = nullptr; 1619 // ((X | Y) - X) --> (~X & Y) 1620 if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) || 1621 match(Op0, m_Or(m_Specific(Op1), m_Value(Y)))) 1622 return BinaryOperator::CreateAnd( 1623 Y, Builder->CreateNot(Op1, Op1->getName() + ".not")); 1624 } 1625 1626 if (Op1->hasOneUse()) { 1627 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1628 Constant *C = nullptr; 1629 Constant *CI = nullptr; 1630 1631 // (X - (Y - Z)) --> (X + (Z - Y)). 1632 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1633 return BinaryOperator::CreateAdd(Op0, 1634 Builder->CreateSub(Z, Y, Op1->getName())); 1635 1636 // (X - (X & Y)) --> (X & ~Y) 1637 // 1638 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 1639 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 1640 return BinaryOperator::CreateAnd(Op0, 1641 Builder->CreateNot(Y, Y->getName() + ".not")); 1642 1643 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1644 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1645 C->isNotMinSignedValue() && !C->isOneValue()) 1646 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1647 1648 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1649 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1650 if (Value *XNeg = dyn_castNegVal(X)) 1651 return BinaryOperator::CreateShl(XNeg, Y); 1652 1653 // X - A*-B -> X + A*B 1654 // X - -A*B -> X + A*B 1655 Value *A, *B; 1656 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 1657 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 1658 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 1659 1660 // X - A*CI -> X + A*-CI 1661 // X - CI*A -> X + A*-CI 1662 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) || 1663 match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) { 1664 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 1665 return BinaryOperator::CreateAdd(Op0, NewMul); 1666 } 1667 } 1668 1669 // Optimize pointer differences into the same array into a size. Consider: 1670 // &A[10] - &A[0]: we should compile this to "10". 1671 Value *LHSOp, *RHSOp; 1672 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1673 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1674 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1675 return replaceInstUsesWith(I, Res); 1676 1677 // trunc(p)-trunc(q) -> trunc(p-q) 1678 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1679 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1680 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1681 return replaceInstUsesWith(I, Res); 1682 1683 bool Changed = false; 1684 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) { 1685 Changed = true; 1686 I.setHasNoSignedWrap(true); 1687 } 1688 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) { 1689 Changed = true; 1690 I.setHasNoUnsignedWrap(true); 1691 } 1692 1693 return Changed ? &I : nullptr; 1694 } 1695 1696 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1697 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1698 1699 if (Value *V = SimplifyVectorOp(I)) 1700 return replaceInstUsesWith(I, V); 1701 1702 if (Value *V = 1703 SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC)) 1704 return replaceInstUsesWith(I, V); 1705 1706 // fsub nsz 0, X ==> fsub nsz -0.0, X 1707 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { 1708 // Subtraction from -0.0 is the canonical form of fneg. 1709 Instruction *NewI = BinaryOperator::CreateFNeg(Op1); 1710 NewI->copyFastMathFlags(&I); 1711 return NewI; 1712 } 1713 1714 if (isa<Constant>(Op0)) 1715 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1716 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1717 return NV; 1718 1719 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking 1720 // through FP extensions/truncations along the way. 1721 if (Value *V = dyn_castFNegVal(Op1)) { 1722 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); 1723 NewI->copyFastMathFlags(&I); 1724 return NewI; 1725 } 1726 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { 1727 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { 1728 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); 1729 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); 1730 NewI->copyFastMathFlags(&I); 1731 return NewI; 1732 } 1733 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { 1734 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { 1735 Value *NewExt = Builder->CreateFPExt(V, I.getType()); 1736 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); 1737 NewI->copyFastMathFlags(&I); 1738 return NewI; 1739 } 1740 } 1741 1742 if (I.hasUnsafeAlgebra()) { 1743 if (Value *V = FAddCombine(Builder).simplify(&I)) 1744 return replaceInstUsesWith(I, V); 1745 } 1746 1747 return nullptr; 1748 } 1749