1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include <cassert>
33 #include <utility>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "instcombine"
39 
40 namespace {
41 
42   /// Class representing coefficient of floating-point addend.
43   /// This class needs to be highly efficient, which is especially true for
44   /// the constructor. As of I write this comment, the cost of the default
45   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46   /// perform write-merging).
47   ///
48   class FAddendCoef {
49   public:
50     // The constructor has to initialize a APFloat, which is unnecessary for
51     // most addends which have coefficient either 1 or -1. So, the constructor
52     // is expensive. In order to avoid the cost of the constructor, we should
53     // reuse some instances whenever possible. The pre-created instances
54     // FAddCombine::Add[0-5] embodies this idea.
55     FAddendCoef() = default;
56     ~FAddendCoef();
57 
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     void set(short C) {
65       assert(!insaneIntVal(C) && "Insane coefficient");
66       IsFp = false; IntVal = C;
67     }
68 
69     void set(const APFloat& C);
70 
71     void negate();
72 
73     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74     Value *getValue(Type *) const;
75 
76     bool isOne() const { return isInt() && IntVal == 1; }
77     bool isTwo() const { return isInt() && IntVal == 2; }
78     bool isMinusOne() const { return isInt() && IntVal == -1; }
79     bool isMinusTwo() const { return isInt() && IntVal == -2; }
80 
81   private:
82     bool insaneIntVal(int V) { return V > 4 || V < -4; }
83 
84     APFloat *getFpValPtr()
85       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86 
87     const APFloat *getFpValPtr() const
88       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89 
90     const APFloat &getFpVal() const {
91       assert(IsFp && BufHasFpVal && "Incorret state");
92       return *getFpValPtr();
93     }
94 
95     APFloat &getFpVal() {
96       assert(IsFp && BufHasFpVal && "Incorret state");
97       return *getFpValPtr();
98     }
99 
100     bool isInt() const { return !IsFp; }
101 
102     // If the coefficient is represented by an integer, promote it to a
103     // floating point.
104     void convertToFpType(const fltSemantics &Sem);
105 
106     // Construct an APFloat from a signed integer.
107     // TODO: We should get rid of this function when APFloat can be constructed
108     //       from an *SIGNED* integer.
109     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110 
111     bool IsFp = false;
112 
113     // True iff FpValBuf contains an instance of APFloat.
114     bool BufHasFpVal = false;
115 
116     // The integer coefficient of an individual addend is either 1 or -1,
117     // and we try to simplify at most 4 addends from neighboring at most
118     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119     // is overkill of this end.
120     short IntVal = 0;
121 
122     AlignedCharArrayUnion<APFloat> FpValBuf;
123   };
124 
125   /// FAddend is used to represent floating-point addend. An addend is
126   /// represented as <C, V>, where the V is a symbolic value, and C is a
127   /// constant coefficient. A constant addend is represented as <C, 0>.
128   class FAddend {
129   public:
130     FAddend() = default;
131 
132     void operator+=(const FAddend &T) {
133       assert((Val == T.Val) && "Symbolic-values disagree");
134       Coeff += T.Coeff;
135     }
136 
137     Value *getSymVal() const { return Val; }
138     const FAddendCoef &getCoef() const { return Coeff; }
139 
140     bool isConstant() const { return Val == nullptr; }
141     bool isZero() const { return Coeff.isZero(); }
142 
143     void set(short Coefficient, Value *V) {
144       Coeff.set(Coefficient);
145       Val = V;
146     }
147     void set(const APFloat &Coefficient, Value *V) {
148       Coeff.set(Coefficient);
149       Val = V;
150     }
151     void set(const ConstantFP *Coefficient, Value *V) {
152       Coeff.set(Coefficient->getValueAPF());
153       Val = V;
154     }
155 
156     void negate() { Coeff.negate(); }
157 
158     /// Drill down the U-D chain one step to find the definition of V, and
159     /// try to break the definition into one or two addends.
160     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161 
162     /// Similar to FAddend::drillDownOneStep() except that the value being
163     /// splitted is the addend itself.
164     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165 
166   private:
167     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168 
169     // This addend has the value of "Coeff * Val".
170     Value *Val = nullptr;
171     FAddendCoef Coeff;
172   };
173 
174   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175   /// with its neighboring at most two instructions.
176   ///
177   class FAddCombine {
178   public:
179     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180 
181     Value *simplify(Instruction *FAdd);
182 
183   private:
184     using AddendVect = SmallVector<const FAddend *, 4>;
185 
186     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187 
188     /// Convert given addend to a Value
189     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190 
191     /// Return the number of instructions needed to emit the N-ary addition.
192     unsigned calcInstrNumber(const AddendVect& Vect);
193 
194     Value *createFSub(Value *Opnd0, Value *Opnd1);
195     Value *createFAdd(Value *Opnd0, Value *Opnd1);
196     Value *createFMul(Value *Opnd0, Value *Opnd1);
197     Value *createFNeg(Value *V);
198     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200 
201      // Debugging stuff are clustered here.
202     #ifndef NDEBUG
203       unsigned CreateInstrNum;
204       void initCreateInstNum() { CreateInstrNum = 0; }
205       void incCreateInstNum() { CreateInstrNum++; }
206     #else
207       void initCreateInstNum() {}
208       void incCreateInstNum() {}
209     #endif
210 
211     InstCombiner::BuilderTy &Builder;
212     Instruction *Instr = nullptr;
213   };
214 
215 } // end anonymous namespace
216 
217 //===----------------------------------------------------------------------===//
218 //
219 // Implementation of
220 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221 //
222 //===----------------------------------------------------------------------===//
223 FAddendCoef::~FAddendCoef() {
224   if (BufHasFpVal)
225     getFpValPtr()->~APFloat();
226 }
227 
228 void FAddendCoef::set(const APFloat& C) {
229   APFloat *P = getFpValPtr();
230 
231   if (isInt()) {
232     // As the buffer is meanless byte stream, we cannot call
233     // APFloat::operator=().
234     new(P) APFloat(C);
235   } else
236     *P = C;
237 
238   IsFp = BufHasFpVal = true;
239 }
240 
241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242   if (!isInt())
243     return;
244 
245   APFloat *P = getFpValPtr();
246   if (IntVal > 0)
247     new(P) APFloat(Sem, IntVal);
248   else {
249     new(P) APFloat(Sem, 0 - IntVal);
250     P->changeSign();
251   }
252   IsFp = BufHasFpVal = true;
253 }
254 
255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256   if (Val >= 0)
257     return APFloat(Sem, Val);
258 
259   APFloat T(Sem, 0 - Val);
260   T.changeSign();
261 
262   return T;
263 }
264 
265 void FAddendCoef::operator=(const FAddendCoef &That) {
266   if (That.isInt())
267     set(That.IntVal);
268   else
269     set(That.getFpVal());
270 }
271 
272 void FAddendCoef::operator+=(const FAddendCoef &That) {
273   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274   if (isInt() == That.isInt()) {
275     if (isInt())
276       IntVal += That.IntVal;
277     else
278       getFpVal().add(That.getFpVal(), RndMode);
279     return;
280   }
281 
282   if (isInt()) {
283     const APFloat &T = That.getFpVal();
284     convertToFpType(T.getSemantics());
285     getFpVal().add(T, RndMode);
286     return;
287   }
288 
289   APFloat &T = getFpVal();
290   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291 }
292 
293 void FAddendCoef::operator*=(const FAddendCoef &That) {
294   if (That.isOne())
295     return;
296 
297   if (That.isMinusOne()) {
298     negate();
299     return;
300   }
301 
302   if (isInt() && That.isInt()) {
303     int Res = IntVal * (int)That.IntVal;
304     assert(!insaneIntVal(Res) && "Insane int value");
305     IntVal = Res;
306     return;
307   }
308 
309   const fltSemantics &Semantic =
310     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311 
312   if (isInt())
313     convertToFpType(Semantic);
314   APFloat &F0 = getFpVal();
315 
316   if (That.isInt())
317     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                 APFloat::rmNearestTiesToEven);
319   else
320     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321 }
322 
323 void FAddendCoef::negate() {
324   if (isInt())
325     IntVal = 0 - IntVal;
326   else
327     getFpVal().changeSign();
328 }
329 
330 Value *FAddendCoef::getValue(Type *Ty) const {
331   return isInt() ?
332     ConstantFP::get(Ty, float(IntVal)) :
333     ConstantFP::get(Ty->getContext(), getFpVal());
334 }
335 
336 // The definition of <Val>     Addends
337 // =========================================
338 //  A + B                     <1, A>, <1,B>
339 //  A - B                     <1, A>, <1,B>
340 //  0 - B                     <-1, B>
341 //  C * A,                    <C, A>
342 //  A + C                     <1, A> <C, NULL>
343 //  0 +/- 0                   <0, NULL> (corner case)
344 //
345 // Legend: A and B are not constant, C is constant
346 unsigned FAddend::drillValueDownOneStep
347   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348   Instruction *I = nullptr;
349   if (!Val || !(I = dyn_cast<Instruction>(Val)))
350     return 0;
351 
352   unsigned Opcode = I->getOpcode();
353 
354   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355     ConstantFP *C0, *C1;
356     Value *Opnd0 = I->getOperand(0);
357     Value *Opnd1 = I->getOperand(1);
358     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359       Opnd0 = nullptr;
360 
361     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362       Opnd1 = nullptr;
363 
364     if (Opnd0) {
365       if (!C0)
366         Addend0.set(1, Opnd0);
367       else
368         Addend0.set(C0, nullptr);
369     }
370 
371     if (Opnd1) {
372       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373       if (!C1)
374         Addend.set(1, Opnd1);
375       else
376         Addend.set(C1, nullptr);
377       if (Opcode == Instruction::FSub)
378         Addend.negate();
379     }
380 
381     if (Opnd0 || Opnd1)
382       return Opnd0 && Opnd1 ? 2 : 1;
383 
384     // Both operands are zero. Weird!
385     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386     return 1;
387   }
388 
389   if (I->getOpcode() == Instruction::FMul) {
390     Value *V0 = I->getOperand(0);
391     Value *V1 = I->getOperand(1);
392     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393       Addend0.set(C, V1);
394       return 1;
395     }
396 
397     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398       Addend0.set(C, V0);
399       return 1;
400     }
401   }
402 
403   return 0;
404 }
405 
406 // Try to break *this* addend into two addends. e.g. Suppose this addend is
407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408 // i.e. <2.3, X> and <2.3, Y>.
409 unsigned FAddend::drillAddendDownOneStep
410   (FAddend &Addend0, FAddend &Addend1) const {
411   if (isConstant())
412     return 0;
413 
414   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415   if (!BreakNum || Coeff.isOne())
416     return BreakNum;
417 
418   Addend0.Scale(Coeff);
419 
420   if (BreakNum == 2)
421     Addend1.Scale(Coeff);
422 
423   return BreakNum;
424 }
425 
426 Value *FAddCombine::simplify(Instruction *I) {
427   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428          "Expected 'reassoc'+'nsz' instruction");
429 
430   // Currently we are not able to handle vector type.
431   if (I->getType()->isVectorTy())
432     return nullptr;
433 
434   assert((I->getOpcode() == Instruction::FAdd ||
435           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436 
437   // Save the instruction before calling other member-functions.
438   Instr = I;
439 
440   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441 
442   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443 
444   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445   unsigned Opnd0_ExpNum = 0;
446   unsigned Opnd1_ExpNum = 0;
447 
448   if (!Opnd0.isConstant())
449     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450 
451   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452   if (OpndNum == 2 && !Opnd1.isConstant())
453     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454 
455   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456   if (Opnd0_ExpNum && Opnd1_ExpNum) {
457     AddendVect AllOpnds;
458     AllOpnds.push_back(&Opnd0_0);
459     AllOpnds.push_back(&Opnd1_0);
460     if (Opnd0_ExpNum == 2)
461       AllOpnds.push_back(&Opnd0_1);
462     if (Opnd1_ExpNum == 2)
463       AllOpnds.push_back(&Opnd1_1);
464 
465     // Compute instruction quota. We should save at least one instruction.
466     unsigned InstQuota = 0;
467 
468     Value *V0 = I->getOperand(0);
469     Value *V1 = I->getOperand(1);
470     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472 
473     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474       return R;
475   }
476 
477   if (OpndNum != 2) {
478     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479     // splitted into two addends, say "V = X - Y", the instruction would have
480     // been optimized into "I = Y - X" in the previous steps.
481     //
482     const FAddendCoef &CE = Opnd0.getCoef();
483     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484   }
485 
486   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487   if (Opnd1_ExpNum) {
488     AddendVect AllOpnds;
489     AllOpnds.push_back(&Opnd0);
490     AllOpnds.push_back(&Opnd1_0);
491     if (Opnd1_ExpNum == 2)
492       AllOpnds.push_back(&Opnd1_1);
493 
494     if (Value *R = simplifyFAdd(AllOpnds, 1))
495       return R;
496   }
497 
498   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499   if (Opnd0_ExpNum) {
500     AddendVect AllOpnds;
501     AllOpnds.push_back(&Opnd1);
502     AllOpnds.push_back(&Opnd0_0);
503     if (Opnd0_ExpNum == 2)
504       AllOpnds.push_back(&Opnd0_1);
505 
506     if (Value *R = simplifyFAdd(AllOpnds, 1))
507       return R;
508   }
509 
510   return nullptr;
511 }
512 
513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514   unsigned AddendNum = Addends.size();
515   assert(AddendNum <= 4 && "Too many addends");
516 
517   // For saving intermediate results;
518   unsigned NextTmpIdx = 0;
519   FAddend TmpResult[3];
520 
521   // Points to the constant addend of the resulting simplified expression.
522   // If the resulting expr has constant-addend, this constant-addend is
523   // desirable to reside at the top of the resulting expression tree. Placing
524   // constant close to supper-expr(s) will potentially reveal some optimization
525   // opportunities in super-expr(s).
526   const FAddend *ConstAdd = nullptr;
527 
528   // Simplified addends are placed <SimpVect>.
529   AddendVect SimpVect;
530 
531   // The outer loop works on one symbolic-value at a time. Suppose the input
532   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533   // The symbolic-values will be processed in this order: x, y, z.
534   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535 
536     const FAddend *ThisAddend = Addends[SymIdx];
537     if (!ThisAddend) {
538       // This addend was processed before.
539       continue;
540     }
541 
542     Value *Val = ThisAddend->getSymVal();
543     unsigned StartIdx = SimpVect.size();
544     SimpVect.push_back(ThisAddend);
545 
546     // The inner loop collects addends sharing same symbolic-value, and these
547     // addends will be later on folded into a single addend. Following above
548     // example, if the symbolic value "y" is being processed, the inner loop
549     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550     // be later on folded into "<b1+b2, y>".
551     for (unsigned SameSymIdx = SymIdx + 1;
552          SameSymIdx < AddendNum; SameSymIdx++) {
553       const FAddend *T = Addends[SameSymIdx];
554       if (T && T->getSymVal() == Val) {
555         // Set null such that next iteration of the outer loop will not process
556         // this addend again.
557         Addends[SameSymIdx] = nullptr;
558         SimpVect.push_back(T);
559       }
560     }
561 
562     // If multiple addends share same symbolic value, fold them together.
563     if (StartIdx + 1 != SimpVect.size()) {
564       FAddend &R = TmpResult[NextTmpIdx ++];
565       R = *SimpVect[StartIdx];
566       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567         R += *SimpVect[Idx];
568 
569       // Pop all addends being folded and push the resulting folded addend.
570       SimpVect.resize(StartIdx);
571       if (Val) {
572         if (!R.isZero()) {
573           SimpVect.push_back(&R);
574         }
575       } else {
576         // Don't push constant addend at this time. It will be the last element
577         // of <SimpVect>.
578         ConstAdd = &R;
579       }
580     }
581   }
582 
583   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584          "out-of-bound access");
585 
586   if (ConstAdd)
587     SimpVect.push_back(ConstAdd);
588 
589   Value *Result;
590   if (!SimpVect.empty())
591     Result = createNaryFAdd(SimpVect, InstrQuota);
592   else {
593     // The addition is folded to 0.0.
594     Result = ConstantFP::get(Instr->getType(), 0.0);
595   }
596 
597   return Result;
598 }
599 
600 Value *FAddCombine::createNaryFAdd
601   (const AddendVect &Opnds, unsigned InstrQuota) {
602   assert(!Opnds.empty() && "Expect at least one addend");
603 
604   // Step 1: Check if the # of instructions needed exceeds the quota.
605 
606   unsigned InstrNeeded = calcInstrNumber(Opnds);
607   if (InstrNeeded > InstrQuota)
608     return nullptr;
609 
610   initCreateInstNum();
611 
612   // step 2: Emit the N-ary addition.
613   // Note that at most three instructions are involved in Fadd-InstCombine: the
614   // addition in question, and at most two neighboring instructions.
615   // The resulting optimized addition should have at least one less instruction
616   // than the original addition expression tree. This implies that the resulting
617   // N-ary addition has at most two instructions, and we don't need to worry
618   // about tree-height when constructing the N-ary addition.
619 
620   Value *LastVal = nullptr;
621   bool LastValNeedNeg = false;
622 
623   // Iterate the addends, creating fadd/fsub using adjacent two addends.
624   for (const FAddend *Opnd : Opnds) {
625     bool NeedNeg;
626     Value *V = createAddendVal(*Opnd, NeedNeg);
627     if (!LastVal) {
628       LastVal = V;
629       LastValNeedNeg = NeedNeg;
630       continue;
631     }
632 
633     if (LastValNeedNeg == NeedNeg) {
634       LastVal = createFAdd(LastVal, V);
635       continue;
636     }
637 
638     if (LastValNeedNeg)
639       LastVal = createFSub(V, LastVal);
640     else
641       LastVal = createFSub(LastVal, V);
642 
643     LastValNeedNeg = false;
644   }
645 
646   if (LastValNeedNeg) {
647     LastVal = createFNeg(LastVal);
648   }
649 
650 #ifndef NDEBUG
651   assert(CreateInstrNum == InstrNeeded &&
652          "Inconsistent in instruction numbers");
653 #endif
654 
655   return LastVal;
656 }
657 
658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660   if (Instruction *I = dyn_cast<Instruction>(V))
661     createInstPostProc(I);
662   return V;
663 }
664 
665 Value *FAddCombine::createFNeg(Value *V) {
666   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667   Value *NewV = createFSub(Zero, V);
668   if (Instruction *I = dyn_cast<Instruction>(NewV))
669     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670   return NewV;
671 }
672 
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675   if (Instruction *I = dyn_cast<Instruction>(V))
676     createInstPostProc(I);
677   return V;
678 }
679 
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682   if (Instruction *I = dyn_cast<Instruction>(V))
683     createInstPostProc(I);
684   return V;
685 }
686 
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688   NewInstr->setDebugLoc(Instr->getDebugLoc());
689 
690   // Keep track of the number of instruction created.
691   if (!NoNumber)
692     incCreateInstNum();
693 
694   // Propagate fast-math flags
695   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696 }
697 
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701   unsigned OpndNum = Opnds.size();
702   unsigned InstrNeeded = OpndNum - 1;
703 
704   // The number of addends in the form of "(-1)*x".
705   unsigned NegOpndNum = 0;
706 
707   // Adjust the number of instructions needed to emit the N-ary add.
708   for (const FAddend *Opnd : Opnds) {
709     if (Opnd->isConstant())
710       continue;
711 
712     // The constant check above is really for a few special constant
713     // coefficients.
714     if (isa<UndefValue>(Opnd->getSymVal()))
715       continue;
716 
717     const FAddendCoef &CE = Opnd->getCoef();
718     if (CE.isMinusOne() || CE.isMinusTwo())
719       NegOpndNum++;
720 
721     // Let the addend be "c * x". If "c == +/-1", the value of the addend
722     // is immediately available; otherwise, it needs exactly one instruction
723     // to evaluate the value.
724     if (!CE.isMinusOne() && !CE.isOne())
725       InstrNeeded++;
726   }
727   if (NegOpndNum == OpndNum)
728     InstrNeeded++;
729   return InstrNeeded;
730 }
731 
732 // Input Addend        Value           NeedNeg(output)
733 // ================================================================
734 // Constant C          C               false
735 // <+/-1, V>           V               coefficient is -1
736 // <2/-2, V>          "fadd V, V"      coefficient is -2
737 // <C, V>             "fmul V, C"      false
738 //
739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741   const FAddendCoef &Coeff = Opnd.getCoef();
742 
743   if (Opnd.isConstant()) {
744     NeedNeg = false;
745     return Coeff.getValue(Instr->getType());
746   }
747 
748   Value *OpndVal = Opnd.getSymVal();
749 
750   if (Coeff.isMinusOne() || Coeff.isOne()) {
751     NeedNeg = Coeff.isMinusOne();
752     return OpndVal;
753   }
754 
755   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756     NeedNeg = Coeff.isMinusTwo();
757     return createFAdd(OpndVal, OpndVal);
758   }
759 
760   NeedNeg = false;
761   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
762 }
763 
764 // Checks if any operand is negative and we can convert add to sub.
765 // This function checks for following negative patterns
766 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769 static Value *checkForNegativeOperand(BinaryOperator &I,
770                                       InstCombiner::BuilderTy &Builder) {
771   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
772 
773   // This function creates 2 instructions to replace ADD, we need at least one
774   // of LHS or RHS to have one use to ensure benefit in transform.
775   if (!LHS->hasOneUse() && !RHS->hasOneUse())
776     return nullptr;
777 
778   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779   const APInt *C1 = nullptr, *C2 = nullptr;
780 
781   // if ONE is on other side, swap
782   if (match(RHS, m_Add(m_Value(X), m_One())))
783     std::swap(LHS, RHS);
784 
785   if (match(LHS, m_Add(m_Value(X), m_One()))) {
786     // if XOR on other side, swap
787     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788       std::swap(X, RHS);
789 
790     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794         Value *NewAnd = Builder.CreateAnd(Z, *C1);
795         return Builder.CreateSub(RHS, NewAnd, "sub");
796       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800         return Builder.CreateSub(RHS, NewOr, "sub");
801       }
802     }
803   }
804 
805   // Restore LHS and RHS
806   LHS = I.getOperand(0);
807   RHS = I.getOperand(1);
808 
809   // if XOR is on other side, swap
810   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811     std::swap(LHS, RHS);
812 
813   // C2 is ODD
814   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817     if (C1->countTrailingZeros() == 0)
818       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820         return Builder.CreateSub(RHS, NewOr, "sub");
821       }
822   return nullptr;
823 }
824 
825 /// Wrapping flags may allow combining constants separated by an extend.
826 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827                                   InstCombiner::BuilderTy &Builder) {
828   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829   Type *Ty = Add.getType();
830   Constant *Op1C;
831   if (!match(Op1, m_Constant(Op1C)))
832     return nullptr;
833 
834   // Try this match first because it results in an add in the narrow type.
835   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836   Value *X;
837   const APInt *C1, *C2;
838   if (match(Op1, m_APInt(C1)) &&
839       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841     Constant *NewC =
842         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
844   }
845 
846   // More general combining of constants in the wide type.
847   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848   Constant *NarrowC;
849   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852     Value *WideX = Builder.CreateSExt(X, Ty);
853     return BinaryOperator::CreateAdd(WideX, NewC);
854   }
855   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859     Value *WideX = Builder.CreateZExt(X, Ty);
860     return BinaryOperator::CreateAdd(WideX, NewC);
861   }
862 
863   return nullptr;
864 }
865 
866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868   Constant *Op1C;
869   if (!match(Op1, m_Constant(Op1C)))
870     return nullptr;
871 
872   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873     return NV;
874 
875   Value *X, *Y;
876 
877   // add (sub X, Y), -1 --> add (not Y), X
878   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
879       match(Op1, m_AllOnes()))
880     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
881 
882   // zext(bool) + C -> bool ? C + 1 : C
883   if (match(Op0, m_ZExt(m_Value(X))) &&
884       X->getType()->getScalarSizeInBits() == 1)
885     return SelectInst::Create(X, AddOne(Op1C), Op1);
886 
887   // ~X + C --> (C-1) - X
888   if (match(Op0, m_Not(m_Value(X))))
889     return BinaryOperator::CreateSub(SubOne(Op1C), X);
890 
891   const APInt *C;
892   if (!match(Op1, m_APInt(C)))
893     return nullptr;
894 
895   if (C->isSignMask()) {
896     // If wrapping is not allowed, then the addition must set the sign bit:
897     // X + (signmask) --> X | signmask
898     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
899       return BinaryOperator::CreateOr(Op0, Op1);
900 
901     // If wrapping is allowed, then the addition flips the sign bit of LHS:
902     // X + (signmask) --> X ^ signmask
903     return BinaryOperator::CreateXor(Op0, Op1);
904   }
905 
906   // Is this add the last step in a convoluted sext?
907   // add(zext(xor i16 X, -32768), -32768) --> sext X
908   Type *Ty = Add.getType();
909   const APInt *C2;
910   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
911       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
912     return CastInst::Create(Instruction::SExt, X, Ty);
913 
914   if (C->isOneValue() && Op0->hasOneUse()) {
915     // add (sext i1 X), 1 --> zext (not X)
916     // TODO: The smallest IR representation is (select X, 0, 1), and that would
917     // not require the one-use check. But we need to remove a transform in
918     // visitSelect and make sure that IR value tracking for select is equal or
919     // better than for these ops.
920     if (match(Op0, m_SExt(m_Value(X))) &&
921         X->getType()->getScalarSizeInBits() == 1)
922       return new ZExtInst(Builder.CreateNot(X), Ty);
923 
924     // Shifts and add used to flip and mask off the low bit:
925     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
926     const APInt *C3;
927     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
928         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
929       Value *NotX = Builder.CreateNot(X);
930       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
931     }
932   }
933 
934   return nullptr;
935 }
936 
937 // Matches multiplication expression Op * C where C is a constant. Returns the
938 // constant value in C and the other operand in Op. Returns true if such a
939 // match is found.
940 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
941   const APInt *AI;
942   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
943     C = *AI;
944     return true;
945   }
946   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
947     C = APInt(AI->getBitWidth(), 1);
948     C <<= *AI;
949     return true;
950   }
951   return false;
952 }
953 
954 // Matches remainder expression Op % C where C is a constant. Returns the
955 // constant value in C and the other operand in Op. Returns the signedness of
956 // the remainder operation in IsSigned. Returns true if such a match is
957 // found.
958 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
959   const APInt *AI;
960   IsSigned = false;
961   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
962     IsSigned = true;
963     C = *AI;
964     return true;
965   }
966   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
967     C = *AI;
968     return true;
969   }
970   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
971     C = *AI + 1;
972     return true;
973   }
974   return false;
975 }
976 
977 // Matches division expression Op / C with the given signedness as indicated
978 // by IsSigned, where C is a constant. Returns the constant value in C and the
979 // other operand in Op. Returns true if such a match is found.
980 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
981   const APInt *AI;
982   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
983     C = *AI;
984     return true;
985   }
986   if (!IsSigned) {
987     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
988       C = *AI;
989       return true;
990     }
991     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
992       C = APInt(AI->getBitWidth(), 1);
993       C <<= *AI;
994       return true;
995     }
996   }
997   return false;
998 }
999 
1000 // Returns whether C0 * C1 with the given signedness overflows.
1001 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1002   bool overflow;
1003   if (IsSigned)
1004     (void)C0.smul_ov(C1, overflow);
1005   else
1006     (void)C0.umul_ov(C1, overflow);
1007   return overflow;
1008 }
1009 
1010 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1011 // does not overflow.
1012 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1013   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1014   Value *X, *MulOpV;
1015   APInt C0, MulOpC;
1016   bool IsSigned;
1017   // Match I = X % C0 + MulOpV * C0
1018   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1019        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1020       C0 == MulOpC) {
1021     Value *RemOpV;
1022     APInt C1;
1023     bool Rem2IsSigned;
1024     // Match MulOpC = RemOpV % C1
1025     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1026         IsSigned == Rem2IsSigned) {
1027       Value *DivOpV;
1028       APInt DivOpC;
1029       // Match RemOpV = X / C0
1030       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1031           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1032         Value *NewDivisor =
1033             ConstantInt::get(X->getType()->getContext(), C0 * C1);
1034         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1035                         : Builder.CreateURem(X, NewDivisor, "urem");
1036       }
1037     }
1038   }
1039 
1040   return nullptr;
1041 }
1042 
1043 /// Fold
1044 ///   (1 << NBits) - 1
1045 /// Into:
1046 ///   ~(-(1 << NBits))
1047 /// Because a 'not' is better for bit-tracking analysis and other transforms
1048 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1049 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1050                                            InstCombiner::BuilderTy &Builder) {
1051   Value *NBits;
1052   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1053     return nullptr;
1054 
1055   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1056   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1057   // Be wary of constant folding.
1058   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1059     // Always NSW. But NUW propagates from `add`.
1060     BOp->setHasNoSignedWrap();
1061     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1062   }
1063 
1064   return BinaryOperator::CreateNot(NotMask, I.getName());
1065 }
1066 
1067 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1068   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1069                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1070                                  SQ.getWithInstruction(&I)))
1071     return replaceInstUsesWith(I, V);
1072 
1073   if (SimplifyAssociativeOrCommutative(I))
1074     return &I;
1075 
1076   if (Instruction *X = foldVectorBinop(I))
1077     return X;
1078 
1079   // (A*B)+(A*C) -> A*(B+C) etc
1080   if (Value *V = SimplifyUsingDistributiveLaws(I))
1081     return replaceInstUsesWith(I, V);
1082 
1083   if (Instruction *X = foldAddWithConstant(I))
1084     return X;
1085 
1086   if (Instruction *X = foldNoWrapAdd(I, Builder))
1087     return X;
1088 
1089   // FIXME: This should be moved into the above helper function to allow these
1090   // transforms for general constant or constant splat vectors.
1091   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1092   Type *Ty = I.getType();
1093   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1094     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1095     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1096       unsigned TySizeBits = Ty->getScalarSizeInBits();
1097       const APInt &RHSVal = CI->getValue();
1098       unsigned ExtendAmt = 0;
1099       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1100       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1101       if (XorRHS->getValue() == -RHSVal) {
1102         if (RHSVal.isPowerOf2())
1103           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1104         else if (XorRHS->getValue().isPowerOf2())
1105           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1106       }
1107 
1108       if (ExtendAmt) {
1109         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1110         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1111           ExtendAmt = 0;
1112       }
1113 
1114       if (ExtendAmt) {
1115         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1116         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1117         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1118       }
1119 
1120       // If this is a xor that was canonicalized from a sub, turn it back into
1121       // a sub and fuse this add with it.
1122       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1123         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1124         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1125           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1126                                            XorLHS);
1127       }
1128       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1129       // transform them into (X + (signmask ^ C))
1130       if (XorRHS->getValue().isSignMask())
1131         return BinaryOperator::CreateAdd(XorLHS,
1132                                          ConstantExpr::getXor(XorRHS, CI));
1133     }
1134   }
1135 
1136   if (Ty->isIntOrIntVectorTy(1))
1137     return BinaryOperator::CreateXor(LHS, RHS);
1138 
1139   // X + X --> X << 1
1140   if (LHS == RHS) {
1141     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1142     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1143     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1144     return Shl;
1145   }
1146 
1147   Value *A, *B;
1148   if (match(LHS, m_Neg(m_Value(A)))) {
1149     // -A + -B --> -(A + B)
1150     if (match(RHS, m_Neg(m_Value(B))))
1151       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1152 
1153     // -A + B --> B - A
1154     return BinaryOperator::CreateSub(RHS, A);
1155   }
1156 
1157   // Canonicalize sext to zext for better value tracking potential.
1158   // add A, sext(B) --> sub A, zext(B)
1159   if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
1160       B->getType()->isIntOrIntVectorTy(1))
1161     return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
1162 
1163   // A + -B  -->  A - B
1164   if (match(RHS, m_Neg(m_Value(B))))
1165     return BinaryOperator::CreateSub(LHS, B);
1166 
1167   if (Value *V = checkForNegativeOperand(I, Builder))
1168     return replaceInstUsesWith(I, V);
1169 
1170   // (A + 1) + ~B --> A - B
1171   // ~B + (A + 1) --> A - B
1172   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))))
1173     return BinaryOperator::CreateSub(A, B);
1174 
1175   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1176   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1177 
1178   // A+B --> A|B iff A and B have no bits set in common.
1179   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1180     return BinaryOperator::CreateOr(LHS, RHS);
1181 
1182   // FIXME: We already did a check for ConstantInt RHS above this.
1183   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1184   // removal.
1185   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1186     // (X & FF00) + xx00  -> (X+xx00) & FF00
1187     Value *X;
1188     ConstantInt *C2;
1189     if (LHS->hasOneUse() &&
1190         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1191         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1192       // See if all bits from the first bit set in the Add RHS up are included
1193       // in the mask.  First, get the rightmost bit.
1194       const APInt &AddRHSV = CRHS->getValue();
1195 
1196       // Form a mask of all bits from the lowest bit added through the top.
1197       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1198 
1199       // See if the and mask includes all of these bits.
1200       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1201 
1202       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1203         // Okay, the xform is safe.  Insert the new add pronto.
1204         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1205         return BinaryOperator::CreateAnd(NewAdd, C2);
1206       }
1207     }
1208   }
1209 
1210   // add (select X 0 (sub n A)) A  -->  select X A n
1211   {
1212     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1213     Value *A = RHS;
1214     if (!SI) {
1215       SI = dyn_cast<SelectInst>(RHS);
1216       A = LHS;
1217     }
1218     if (SI && SI->hasOneUse()) {
1219       Value *TV = SI->getTrueValue();
1220       Value *FV = SI->getFalseValue();
1221       Value *N;
1222 
1223       // Can we fold the add into the argument of the select?
1224       // We check both true and false select arguments for a matching subtract.
1225       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1226         // Fold the add into the true select value.
1227         return SelectInst::Create(SI->getCondition(), N, A);
1228 
1229       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1230         // Fold the add into the false select value.
1231         return SelectInst::Create(SI->getCondition(), A, N);
1232     }
1233   }
1234 
1235   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1236     return Ext;
1237 
1238   // (add (xor A, B) (and A, B)) --> (or A, B)
1239   // (add (and A, B) (xor A, B)) --> (or A, B)
1240   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1241                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1242     return BinaryOperator::CreateOr(A, B);
1243 
1244   // (add (or A, B) (and A, B)) --> (add A, B)
1245   // (add (and A, B) (or A, B)) --> (add A, B)
1246   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1247                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1248     I.setOperand(0, A);
1249     I.setOperand(1, B);
1250     return &I;
1251   }
1252 
1253   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1254   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1255   // computeKnownBits.
1256   bool Changed = false;
1257   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1258     Changed = true;
1259     I.setHasNoSignedWrap(true);
1260   }
1261   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1262     Changed = true;
1263     I.setHasNoUnsignedWrap(true);
1264   }
1265 
1266   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1267     return V;
1268 
1269   return Changed ? &I : nullptr;
1270 }
1271 
1272 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1273 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1274                                       InstCombiner::BuilderTy &Builder) {
1275   assert((I.getOpcode() == Instruction::FAdd ||
1276           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1277   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1278          "FP factorization requires FMF");
1279   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1280   Value *X, *Y, *Z;
1281   bool IsFMul;
1282   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1283        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1284       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1285        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1286     IsFMul = true;
1287   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1288            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1289     IsFMul = false;
1290   else
1291     return nullptr;
1292 
1293   // (X * Z) + (Y * Z) --> (X + Y) * Z
1294   // (X * Z) - (Y * Z) --> (X - Y) * Z
1295   // (X / Z) + (Y / Z) --> (X + Y) / Z
1296   // (X / Z) - (Y / Z) --> (X - Y) / Z
1297   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1298   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1299                      : Builder.CreateFSubFMF(X, Y, &I);
1300 
1301   // Bail out if we just created a denormal constant.
1302   // TODO: This is copied from a previous implementation. Is it necessary?
1303   const APFloat *C;
1304   if (match(XY, m_APFloat(C)) && !C->isNormal())
1305     return nullptr;
1306 
1307   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1308                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1309 }
1310 
1311 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1312   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1313                                   I.getFastMathFlags(),
1314                                   SQ.getWithInstruction(&I)))
1315     return replaceInstUsesWith(I, V);
1316 
1317   if (SimplifyAssociativeOrCommutative(I))
1318     return &I;
1319 
1320   if (Instruction *X = foldVectorBinop(I))
1321     return X;
1322 
1323   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1324     return FoldedFAdd;
1325 
1326   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1327   Value *X;
1328   // (-X) + Y --> Y - X
1329   if (match(LHS, m_FNeg(m_Value(X))))
1330     return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1331   // Y + (-X) --> Y - X
1332   if (match(RHS, m_FNeg(m_Value(X))))
1333     return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1334 
1335   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1336   // integer add followed by a promotion.
1337   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1338     Value *LHSIntVal = LHSConv->getOperand(0);
1339     Type *FPType = LHSConv->getType();
1340 
1341     // TODO: This check is overly conservative. In many cases known bits
1342     // analysis can tell us that the result of the addition has less significant
1343     // bits than the integer type can hold.
1344     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1345       Type *FScalarTy = FTy->getScalarType();
1346       Type *IScalarTy = ITy->getScalarType();
1347 
1348       // Do we have enough bits in the significand to represent the result of
1349       // the integer addition?
1350       unsigned MaxRepresentableBits =
1351           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1352       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1353     };
1354 
1355     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1356     // ... if the constant fits in the integer value.  This is useful for things
1357     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1358     // requires a constant pool load, and generally allows the add to be better
1359     // instcombined.
1360     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1361       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1362         Constant *CI =
1363           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1364         if (LHSConv->hasOneUse() &&
1365             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1366             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1367           // Insert the new integer add.
1368           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1369           return new SIToFPInst(NewAdd, I.getType());
1370         }
1371       }
1372 
1373     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1374     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1375       Value *RHSIntVal = RHSConv->getOperand(0);
1376       // It's enough to check LHS types only because we require int types to
1377       // be the same for this transform.
1378       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1379         // Only do this if x/y have the same type, if at least one of them has a
1380         // single use (so we don't increase the number of int->fp conversions),
1381         // and if the integer add will not overflow.
1382         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1383             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1384             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1385           // Insert the new integer add.
1386           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1387           return new SIToFPInst(NewAdd, I.getType());
1388         }
1389       }
1390     }
1391   }
1392 
1393   // Handle specials cases for FAdd with selects feeding the operation
1394   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1395     return replaceInstUsesWith(I, V);
1396 
1397   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1398     if (Instruction *F = factorizeFAddFSub(I, Builder))
1399       return F;
1400     if (Value *V = FAddCombine(Builder).simplify(&I))
1401       return replaceInstUsesWith(I, V);
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Optimize pointer differences into the same array into a size.  Consider:
1408 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1409 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1410 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1411                                                Type *Ty) {
1412   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1413   // this.
1414   bool Swapped = false;
1415   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1416 
1417   // For now we require one side to be the base pointer "A" or a constant
1418   // GEP derived from it.
1419   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1420     // (gep X, ...) - X
1421     if (LHSGEP->getOperand(0) == RHS) {
1422       GEP1 = LHSGEP;
1423       Swapped = false;
1424     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1425       // (gep X, ...) - (gep X, ...)
1426       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1427             RHSGEP->getOperand(0)->stripPointerCasts()) {
1428         GEP2 = RHSGEP;
1429         GEP1 = LHSGEP;
1430         Swapped = false;
1431       }
1432     }
1433   }
1434 
1435   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1436     // X - (gep X, ...)
1437     if (RHSGEP->getOperand(0) == LHS) {
1438       GEP1 = RHSGEP;
1439       Swapped = true;
1440     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1441       // (gep X, ...) - (gep X, ...)
1442       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1443             LHSGEP->getOperand(0)->stripPointerCasts()) {
1444         GEP2 = LHSGEP;
1445         GEP1 = RHSGEP;
1446         Swapped = true;
1447       }
1448     }
1449   }
1450 
1451   if (!GEP1)
1452     // No GEP found.
1453     return nullptr;
1454 
1455   if (GEP2) {
1456     // (gep X, ...) - (gep X, ...)
1457     //
1458     // Avoid duplicating the arithmetic if there are more than one non-constant
1459     // indices between the two GEPs and either GEP has a non-constant index and
1460     // multiple users. If zero non-constant index, the result is a constant and
1461     // there is no duplication. If one non-constant index, the result is an add
1462     // or sub with a constant, which is no larger than the original code, and
1463     // there's no duplicated arithmetic, even if either GEP has multiple
1464     // users. If more than one non-constant indices combined, as long as the GEP
1465     // with at least one non-constant index doesn't have multiple users, there
1466     // is no duplication.
1467     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1468     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1469     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1470         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1471          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1472       return nullptr;
1473     }
1474   }
1475 
1476   // Emit the offset of the GEP and an intptr_t.
1477   Value *Result = EmitGEPOffset(GEP1);
1478 
1479   // If we had a constant expression GEP on the other side offsetting the
1480   // pointer, subtract it from the offset we have.
1481   if (GEP2) {
1482     Value *Offset = EmitGEPOffset(GEP2);
1483     Result = Builder.CreateSub(Result, Offset);
1484   }
1485 
1486   // If we have p - gep(p, ...)  then we have to negate the result.
1487   if (Swapped)
1488     Result = Builder.CreateNeg(Result, "diff.neg");
1489 
1490   return Builder.CreateIntCast(Result, Ty, true);
1491 }
1492 
1493 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1494   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1495                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1496                                  SQ.getWithInstruction(&I)))
1497     return replaceInstUsesWith(I, V);
1498 
1499   if (Instruction *X = foldVectorBinop(I))
1500     return X;
1501 
1502   // (A*B)-(A*C) -> A*(B-C) etc
1503   if (Value *V = SimplifyUsingDistributiveLaws(I))
1504     return replaceInstUsesWith(I, V);
1505 
1506   // If this is a 'B = x-(-A)', change to B = x+A.
1507   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1508   if (Value *V = dyn_castNegVal(Op1)) {
1509     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1510 
1511     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1512       assert(BO->getOpcode() == Instruction::Sub &&
1513              "Expected a subtraction operator!");
1514       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1515         Res->setHasNoSignedWrap(true);
1516     } else {
1517       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1518         Res->setHasNoSignedWrap(true);
1519     }
1520 
1521     return Res;
1522   }
1523 
1524   if (I.getType()->isIntOrIntVectorTy(1))
1525     return BinaryOperator::CreateXor(Op0, Op1);
1526 
1527   // Replace (-1 - A) with (~A).
1528   if (match(Op0, m_AllOnes()))
1529     return BinaryOperator::CreateNot(Op1);
1530 
1531   // (~X) - (~Y) --> Y - X
1532   Value *X, *Y;
1533   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1534     return BinaryOperator::CreateSub(Y, X);
1535 
1536   // (X + -1) - Y --> ~Y + X
1537   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1538     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1539 
1540   // Y - (X + 1) --> ~X + Y
1541   if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1542     return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1543 
1544   if (Constant *C = dyn_cast<Constant>(Op0)) {
1545     bool IsNegate = match(C, m_ZeroInt());
1546     Value *X;
1547     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1548       // 0 - (zext bool) --> sext bool
1549       // C - (zext bool) --> bool ? C - 1 : C
1550       if (IsNegate)
1551         return CastInst::CreateSExtOrBitCast(X, I.getType());
1552       return SelectInst::Create(X, SubOne(C), C);
1553     }
1554     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1555       // 0 - (sext bool) --> zext bool
1556       // C - (sext bool) --> bool ? C + 1 : C
1557       if (IsNegate)
1558         return CastInst::CreateZExtOrBitCast(X, I.getType());
1559       return SelectInst::Create(X, AddOne(C), C);
1560     }
1561 
1562     // C - ~X == X + (1+C)
1563     if (match(Op1, m_Not(m_Value(X))))
1564       return BinaryOperator::CreateAdd(X, AddOne(C));
1565 
1566     // Try to fold constant sub into select arguments.
1567     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1568       if (Instruction *R = FoldOpIntoSelect(I, SI))
1569         return R;
1570 
1571     // Try to fold constant sub into PHI values.
1572     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1573       if (Instruction *R = foldOpIntoPhi(I, PN))
1574         return R;
1575 
1576     // C-(X+C2) --> (C-C2)-X
1577     Constant *C2;
1578     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1579       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1580   }
1581 
1582   const APInt *Op0C;
1583   if (match(Op0, m_APInt(Op0C))) {
1584     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1585 
1586     // -(X >>u 31) -> (X >>s 31)
1587     // -(X >>s 31) -> (X >>u 31)
1588     if (Op0C->isNullValue()) {
1589       Value *X;
1590       const APInt *ShAmt;
1591       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1592           *ShAmt == BitWidth - 1) {
1593         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1594         return BinaryOperator::CreateAShr(X, ShAmtOp);
1595       }
1596       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1597           *ShAmt == BitWidth - 1) {
1598         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1599         return BinaryOperator::CreateLShr(X, ShAmtOp);
1600       }
1601 
1602       if (Op1->hasOneUse()) {
1603         Value *LHS, *RHS;
1604         SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1605         if (SPF == SPF_ABS || SPF == SPF_NABS) {
1606           // This is a negate of an ABS/NABS pattern. Just swap the operands
1607           // of the select.
1608           SelectInst *SI = cast<SelectInst>(Op1);
1609           Value *TrueVal = SI->getTrueValue();
1610           Value *FalseVal = SI->getFalseValue();
1611           SI->setTrueValue(FalseVal);
1612           SI->setFalseValue(TrueVal);
1613           // Don't swap prof metadata, we didn't change the branch behavior.
1614           return replaceInstUsesWith(I, SI);
1615         }
1616       }
1617     }
1618 
1619     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1620     // zero.
1621     if (Op0C->isMask()) {
1622       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1623       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1624         return BinaryOperator::CreateXor(Op1, Op0);
1625     }
1626   }
1627 
1628   {
1629     Value *Y;
1630     // X-(X+Y) == -Y    X-(Y+X) == -Y
1631     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1632       return BinaryOperator::CreateNeg(Y);
1633 
1634     // (X-Y)-X == -Y
1635     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1636       return BinaryOperator::CreateNeg(Y);
1637   }
1638 
1639   // (sub (or A, B), (xor A, B)) --> (and A, B)
1640   {
1641     Value *A, *B;
1642     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1643         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1644       return BinaryOperator::CreateAnd(A, B);
1645   }
1646 
1647   {
1648     Value *Y;
1649     // ((X | Y) - X) --> (~X & Y)
1650     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1651       return BinaryOperator::CreateAnd(
1652           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1653   }
1654 
1655   if (Op1->hasOneUse()) {
1656     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1657     Constant *C = nullptr;
1658 
1659     // (X - (Y - Z))  -->  (X + (Z - Y)).
1660     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1661       return BinaryOperator::CreateAdd(Op0,
1662                                       Builder.CreateSub(Z, Y, Op1->getName()));
1663 
1664     // (X - (X & Y))   -->   (X & ~Y)
1665     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1666       return BinaryOperator::CreateAnd(Op0,
1667                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1668 
1669     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1670     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1671         C->isNotMinSignedValue() && !C->isOneValue())
1672       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1673 
1674     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1675     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1676       if (Value *XNeg = dyn_castNegVal(X))
1677         return BinaryOperator::CreateShl(XNeg, Y);
1678 
1679     // Subtracting -1/0 is the same as adding 1/0:
1680     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1681     // 'nuw' is dropped in favor of the canonical form.
1682     if (match(Op1, m_SExt(m_Value(Y))) &&
1683         Y->getType()->getScalarSizeInBits() == 1) {
1684       Value *Zext = Builder.CreateZExt(Y, I.getType());
1685       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1686       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1687       return Add;
1688     }
1689 
1690     // X - A*-B -> X + A*B
1691     // X - -A*B -> X + A*B
1692     Value *A, *B;
1693     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1694       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1695 
1696     // X - A*C -> X + A*-C
1697     // No need to handle commuted multiply because multiply handling will
1698     // ensure constant will be move to the right hand side.
1699     if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1700       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1701       return BinaryOperator::CreateAdd(Op0, NewMul);
1702     }
1703   }
1704 
1705   {
1706     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1707     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1708     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1709     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1710     // So long as O here is freely invertible, this will be neutral or a win.
1711     Value *LHS, *RHS, *A;
1712     Value *NotA = Op0, *MinMax = Op1;
1713     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1714     if (!SelectPatternResult::isMinOrMax(SPF)) {
1715       NotA = Op1;
1716       MinMax = Op0;
1717       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1718     }
1719     if (SelectPatternResult::isMinOrMax(SPF) &&
1720         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1721       if (NotA == LHS)
1722         std::swap(LHS, RHS);
1723       // LHS is now O above and expected to have at least 2 uses (the min/max)
1724       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1725       if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1726           !NotA->hasNUsesOrMore(4)) {
1727         // Note: We don't generate the inverse max/min, just create the not of
1728         // it and let other folds do the rest.
1729         Value *Not = Builder.CreateNot(MinMax);
1730         if (NotA == Op0)
1731           return BinaryOperator::CreateSub(Not, A);
1732         else
1733           return BinaryOperator::CreateSub(A, Not);
1734       }
1735     }
1736   }
1737 
1738   // Optimize pointer differences into the same array into a size.  Consider:
1739   //  &A[10] - &A[0]: we should compile this to "10".
1740   Value *LHSOp, *RHSOp;
1741   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1742       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1743     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1744       return replaceInstUsesWith(I, Res);
1745 
1746   // trunc(p)-trunc(q) -> trunc(p-q)
1747   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1748       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1749     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1750       return replaceInstUsesWith(I, Res);
1751 
1752   // Canonicalize a shifty way to code absolute value to the common pattern.
1753   // There are 2 potential commuted variants.
1754   // We're relying on the fact that we only do this transform when the shift has
1755   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1756   // instructions).
1757   Value *A;
1758   const APInt *ShAmt;
1759   Type *Ty = I.getType();
1760   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1761       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1762       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1763     // B = ashr i32 A, 31 ; smear the sign bit
1764     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1765     // --> (A < 0) ? -A : A
1766     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1767     // Copy the nuw/nsw flags from the sub to the negate.
1768     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1769                                    I.hasNoSignedWrap());
1770     return SelectInst::Create(Cmp, Neg, A);
1771   }
1772 
1773   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1774     return Ext;
1775 
1776   bool Changed = false;
1777   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1778     Changed = true;
1779     I.setHasNoSignedWrap(true);
1780   }
1781   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1782     Changed = true;
1783     I.setHasNoUnsignedWrap(true);
1784   }
1785 
1786   return Changed ? &I : nullptr;
1787 }
1788 
1789 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1790   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1791                                   I.getFastMathFlags(),
1792                                   SQ.getWithInstruction(&I)))
1793     return replaceInstUsesWith(I, V);
1794 
1795   if (Instruction *X = foldVectorBinop(I))
1796     return X;
1797 
1798   // Subtraction from -0.0 is the canonical form of fneg.
1799   // fsub nsz 0, X ==> fsub nsz -0.0, X
1800   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1801   if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1802     return BinaryOperator::CreateFNegFMF(Op1, &I);
1803 
1804   Value *X, *Y;
1805   Constant *C;
1806 
1807   // Fold negation into constant operand. This is limited with one-use because
1808   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1809   // -(X * C) --> X * (-C)
1810   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1811     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1812   // -(X / C) --> X / (-C)
1813   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1814     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1815   // -(C / X) --> (-C) / X
1816   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1817     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1818 
1819   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1820   // Canonicalize to fadd to make analysis easier.
1821   // This can also help codegen because fadd is commutative.
1822   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1823   // killed later. We still limit that particular transform with 'hasOneUse'
1824   // because an fneg is assumed better/cheaper than a generic fsub.
1825   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1826     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1827       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1828       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1829     }
1830   }
1831 
1832   if (isa<Constant>(Op0))
1833     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1834       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1835         return NV;
1836 
1837   // X - C --> X + (-C)
1838   // But don't transform constant expressions because there's an inverse fold
1839   // for X + (-Y) --> X - Y.
1840   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1841     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1842 
1843   // X - (-Y) --> X + Y
1844   if (match(Op1, m_FNeg(m_Value(Y))))
1845     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1846 
1847   // Similar to above, but look through a cast of the negated value:
1848   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1849   Type *Ty = I.getType();
1850   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
1851     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
1852 
1853   // X - (fpext(-Y)) --> X + fpext(Y)
1854   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
1855     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
1856 
1857   // Handle special cases for FSub with selects feeding the operation
1858   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1859     return replaceInstUsesWith(I, V);
1860 
1861   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1862     // (Y - X) - Y --> -X
1863     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
1864       return BinaryOperator::CreateFNegFMF(X, &I);
1865 
1866     // Y - (X + Y) --> -X
1867     // Y - (Y + X) --> -X
1868     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
1869       return BinaryOperator::CreateFNegFMF(X, &I);
1870 
1871     // (X * C) - X --> X * (C - 1.0)
1872     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
1873       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
1874       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
1875     }
1876     // X - (X * C) --> X * (1.0 - C)
1877     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
1878       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
1879       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
1880     }
1881 
1882     if (Instruction *F = factorizeFAddFSub(I, Builder))
1883       return F;
1884 
1885     // TODO: This performs reassociative folds for FP ops. Some fraction of the
1886     // functionality has been subsumed by simple pattern matching here and in
1887     // InstSimplify. We should let a dedicated reassociation pass handle more
1888     // complex pattern matching and remove this from InstCombine.
1889     if (Value *V = FAddCombine(Builder).simplify(&I))
1890       return replaceInstUsesWith(I, V);
1891   }
1892 
1893   return nullptr;
1894 }
1895