1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86 
87     const APFloat *getFpValPtr() const {
88       return reinterpret_cast<const APFloat *>(&FpValBuf);
89     }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Simplified addends are placed <SimpVect>.
523   AddendVect SimpVect;
524 
525   // The outer loop works on one symbolic-value at a time. Suppose the input
526   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527   // The symbolic-values will be processed in this order: x, y, z.
528   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529 
530     const FAddend *ThisAddend = Addends[SymIdx];
531     if (!ThisAddend) {
532       // This addend was processed before.
533       continue;
534     }
535 
536     Value *Val = ThisAddend->getSymVal();
537 
538     // If the resulting expr has constant-addend, this constant-addend is
539     // desirable to reside at the top of the resulting expression tree. Placing
540     // constant close to super-expr(s) will potentially reveal some
541     // optimization opportunities in super-expr(s). Here we do not implement
542     // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543     // call later.
544 
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (!R.isZero()) {
574         SimpVect.push_back(&R);
575       }
576     }
577   }
578 
579   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
580          "out-of-bound access");
581 
582   Value *Result;
583   if (!SimpVect.empty())
584     Result = createNaryFAdd(SimpVect, InstrQuota);
585   else {
586     // The addition is folded to 0.0.
587     Result = ConstantFP::get(Instr->getType(), 0.0);
588   }
589 
590   return Result;
591 }
592 
593 Value *FAddCombine::createNaryFAdd
594   (const AddendVect &Opnds, unsigned InstrQuota) {
595   assert(!Opnds.empty() && "Expect at least one addend");
596 
597   // Step 1: Check if the # of instructions needed exceeds the quota.
598 
599   unsigned InstrNeeded = calcInstrNumber(Opnds);
600   if (InstrNeeded > InstrQuota)
601     return nullptr;
602 
603   initCreateInstNum();
604 
605   // step 2: Emit the N-ary addition.
606   // Note that at most three instructions are involved in Fadd-InstCombine: the
607   // addition in question, and at most two neighboring instructions.
608   // The resulting optimized addition should have at least one less instruction
609   // than the original addition expression tree. This implies that the resulting
610   // N-ary addition has at most two instructions, and we don't need to worry
611   // about tree-height when constructing the N-ary addition.
612 
613   Value *LastVal = nullptr;
614   bool LastValNeedNeg = false;
615 
616   // Iterate the addends, creating fadd/fsub using adjacent two addends.
617   for (const FAddend *Opnd : Opnds) {
618     bool NeedNeg;
619     Value *V = createAddendVal(*Opnd, NeedNeg);
620     if (!LastVal) {
621       LastVal = V;
622       LastValNeedNeg = NeedNeg;
623       continue;
624     }
625 
626     if (LastValNeedNeg == NeedNeg) {
627       LastVal = createFAdd(LastVal, V);
628       continue;
629     }
630 
631     if (LastValNeedNeg)
632       LastVal = createFSub(V, LastVal);
633     else
634       LastVal = createFSub(LastVal, V);
635 
636     LastValNeedNeg = false;
637   }
638 
639   if (LastValNeedNeg) {
640     LastVal = createFNeg(LastVal);
641   }
642 
643 #ifndef NDEBUG
644   assert(CreateInstrNum == InstrNeeded &&
645          "Inconsistent in instruction numbers");
646 #endif
647 
648   return LastVal;
649 }
650 
651 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
652   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
653   if (Instruction *I = dyn_cast<Instruction>(V))
654     createInstPostProc(I);
655   return V;
656 }
657 
658 Value *FAddCombine::createFNeg(Value *V) {
659   Value *NewV = Builder.CreateFNeg(V);
660   if (Instruction *I = dyn_cast<Instruction>(NewV))
661     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
662   return NewV;
663 }
664 
665 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
666   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
667   if (Instruction *I = dyn_cast<Instruction>(V))
668     createInstPostProc(I);
669   return V;
670 }
671 
672 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
673   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
674   if (Instruction *I = dyn_cast<Instruction>(V))
675     createInstPostProc(I);
676   return V;
677 }
678 
679 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
680   NewInstr->setDebugLoc(Instr->getDebugLoc());
681 
682   // Keep track of the number of instruction created.
683   if (!NoNumber)
684     incCreateInstNum();
685 
686   // Propagate fast-math flags
687   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
688 }
689 
690 // Return the number of instruction needed to emit the N-ary addition.
691 // NOTE: Keep this function in sync with createAddendVal().
692 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
693   unsigned OpndNum = Opnds.size();
694   unsigned InstrNeeded = OpndNum - 1;
695 
696   // Adjust the number of instructions needed to emit the N-ary add.
697   for (const FAddend *Opnd : Opnds) {
698     if (Opnd->isConstant())
699       continue;
700 
701     // The constant check above is really for a few special constant
702     // coefficients.
703     if (isa<UndefValue>(Opnd->getSymVal()))
704       continue;
705 
706     const FAddendCoef &CE = Opnd->getCoef();
707     // Let the addend be "c * x". If "c == +/-1", the value of the addend
708     // is immediately available; otherwise, it needs exactly one instruction
709     // to evaluate the value.
710     if (!CE.isMinusOne() && !CE.isOne())
711       InstrNeeded++;
712   }
713   return InstrNeeded;
714 }
715 
716 // Input Addend        Value           NeedNeg(output)
717 // ================================================================
718 // Constant C          C               false
719 // <+/-1, V>           V               coefficient is -1
720 // <2/-2, V>          "fadd V, V"      coefficient is -2
721 // <C, V>             "fmul V, C"      false
722 //
723 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
724 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
725   const FAddendCoef &Coeff = Opnd.getCoef();
726 
727   if (Opnd.isConstant()) {
728     NeedNeg = false;
729     return Coeff.getValue(Instr->getType());
730   }
731 
732   Value *OpndVal = Opnd.getSymVal();
733 
734   if (Coeff.isMinusOne() || Coeff.isOne()) {
735     NeedNeg = Coeff.isMinusOne();
736     return OpndVal;
737   }
738 
739   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
740     NeedNeg = Coeff.isMinusTwo();
741     return createFAdd(OpndVal, OpndVal);
742   }
743 
744   NeedNeg = false;
745   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
746 }
747 
748 // Checks if any operand is negative and we can convert add to sub.
749 // This function checks for following negative patterns
750 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
751 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
752 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
753 static Value *checkForNegativeOperand(BinaryOperator &I,
754                                       InstCombiner::BuilderTy &Builder) {
755   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
756 
757   // This function creates 2 instructions to replace ADD, we need at least one
758   // of LHS or RHS to have one use to ensure benefit in transform.
759   if (!LHS->hasOneUse() && !RHS->hasOneUse())
760     return nullptr;
761 
762   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
763   const APInt *C1 = nullptr, *C2 = nullptr;
764 
765   // if ONE is on other side, swap
766   if (match(RHS, m_Add(m_Value(X), m_One())))
767     std::swap(LHS, RHS);
768 
769   if (match(LHS, m_Add(m_Value(X), m_One()))) {
770     // if XOR on other side, swap
771     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
772       std::swap(X, RHS);
773 
774     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
775       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
776       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
777       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
778         Value *NewAnd = Builder.CreateAnd(Z, *C1);
779         return Builder.CreateSub(RHS, NewAnd, "sub");
780       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
781         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
782         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
783         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
784         return Builder.CreateSub(RHS, NewOr, "sub");
785       }
786     }
787   }
788 
789   // Restore LHS and RHS
790   LHS = I.getOperand(0);
791   RHS = I.getOperand(1);
792 
793   // if XOR is on other side, swap
794   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
795     std::swap(LHS, RHS);
796 
797   // C2 is ODD
798   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
799   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
800   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
801     if (C1->countTrailingZeros() == 0)
802       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
803         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
804         return Builder.CreateSub(RHS, NewOr, "sub");
805       }
806   return nullptr;
807 }
808 
809 /// Wrapping flags may allow combining constants separated by an extend.
810 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
811                                   InstCombiner::BuilderTy &Builder) {
812   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
813   Type *Ty = Add.getType();
814   Constant *Op1C;
815   if (!match(Op1, m_Constant(Op1C)))
816     return nullptr;
817 
818   // Try this match first because it results in an add in the narrow type.
819   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
820   Value *X;
821   const APInt *C1, *C2;
822   if (match(Op1, m_APInt(C1)) &&
823       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
824       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
825     Constant *NewC =
826         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
827     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
828   }
829 
830   // More general combining of constants in the wide type.
831   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
832   Constant *NarrowC;
833   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
834     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
835     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
836     Value *WideX = Builder.CreateSExt(X, Ty);
837     return BinaryOperator::CreateAdd(WideX, NewC);
838   }
839   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
840   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
841     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
842     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
843     Value *WideX = Builder.CreateZExt(X, Ty);
844     return BinaryOperator::CreateAdd(WideX, NewC);
845   }
846 
847   return nullptr;
848 }
849 
850 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
851   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
852   Constant *Op1C;
853   if (!match(Op1, m_ImmConstant(Op1C)))
854     return nullptr;
855 
856   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
857     return NV;
858 
859   Value *X;
860   Constant *Op00C;
861 
862   // add (sub C1, X), C2 --> sub (add C1, C2), X
863   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
864     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
865 
866   Value *Y;
867 
868   // add (sub X, Y), -1 --> add (not Y), X
869   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
870       match(Op1, m_AllOnes()))
871     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
872 
873   // zext(bool) + C -> bool ? C + 1 : C
874   if (match(Op0, m_ZExt(m_Value(X))) &&
875       X->getType()->getScalarSizeInBits() == 1)
876     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
877   // sext(bool) + C -> bool ? C - 1 : C
878   if (match(Op0, m_SExt(m_Value(X))) &&
879       X->getType()->getScalarSizeInBits() == 1)
880     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
881 
882   // ~X + C --> (C-1) - X
883   if (match(Op0, m_Not(m_Value(X))))
884     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
885 
886   const APInt *C;
887   if (!match(Op1, m_APInt(C)))
888     return nullptr;
889 
890   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
891   Constant *Op01C;
892   if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
893       haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
894     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
895 
896   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
897   const APInt *C2;
898   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
899     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
900 
901   if (C->isSignMask()) {
902     // If wrapping is not allowed, then the addition must set the sign bit:
903     // X + (signmask) --> X | signmask
904     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
905       return BinaryOperator::CreateOr(Op0, Op1);
906 
907     // If wrapping is allowed, then the addition flips the sign bit of LHS:
908     // X + (signmask) --> X ^ signmask
909     return BinaryOperator::CreateXor(Op0, Op1);
910   }
911 
912   // Is this add the last step in a convoluted sext?
913   // add(zext(xor i16 X, -32768), -32768) --> sext X
914   Type *Ty = Add.getType();
915   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
916       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
917     return CastInst::Create(Instruction::SExt, X, Ty);
918 
919   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
920     // (X ^ signmask) + C --> (X + (signmask ^ C))
921     if (C2->isSignMask())
922       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
923 
924     // If X has no high-bits set above an xor mask:
925     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
926     if (C2->isMask()) {
927       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
928       if ((*C2 | LHSKnown.Zero).isAllOnes())
929         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
930     }
931 
932     // Look for a math+logic pattern that corresponds to sext-in-register of a
933     // value with cleared high bits. Convert that into a pair of shifts:
934     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
935     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
936     if (Op0->hasOneUse() && *C2 == -(*C)) {
937       unsigned BitWidth = Ty->getScalarSizeInBits();
938       unsigned ShAmt = 0;
939       if (C->isPowerOf2())
940         ShAmt = BitWidth - C->logBase2() - 1;
941       else if (C2->isPowerOf2())
942         ShAmt = BitWidth - C2->logBase2() - 1;
943       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
944                                      0, &Add)) {
945         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
946         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
947         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
948       }
949     }
950   }
951 
952   if (C->isOne() && Op0->hasOneUse()) {
953     // add (sext i1 X), 1 --> zext (not X)
954     // TODO: The smallest IR representation is (select X, 0, 1), and that would
955     // not require the one-use check. But we need to remove a transform in
956     // visitSelect and make sure that IR value tracking for select is equal or
957     // better than for these ops.
958     if (match(Op0, m_SExt(m_Value(X))) &&
959         X->getType()->getScalarSizeInBits() == 1)
960       return new ZExtInst(Builder.CreateNot(X), Ty);
961 
962     // Shifts and add used to flip and mask off the low bit:
963     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
964     const APInt *C3;
965     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
966         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
967       Value *NotX = Builder.CreateNot(X);
968       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
969     }
970   }
971 
972   // If all bits affected by the add are included in a high-bit-mask, do the
973   // add before the mask op:
974   // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
975   if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
976       C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
977     Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
978     return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
979   }
980 
981   return nullptr;
982 }
983 
984 // Matches multiplication expression Op * C where C is a constant. Returns the
985 // constant value in C and the other operand in Op. Returns true if such a
986 // match is found.
987 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
988   const APInt *AI;
989   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
990     C = *AI;
991     return true;
992   }
993   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
994     C = APInt(AI->getBitWidth(), 1);
995     C <<= *AI;
996     return true;
997   }
998   return false;
999 }
1000 
1001 // Matches remainder expression Op % C where C is a constant. Returns the
1002 // constant value in C and the other operand in Op. Returns the signedness of
1003 // the remainder operation in IsSigned. Returns true if such a match is
1004 // found.
1005 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1006   const APInt *AI;
1007   IsSigned = false;
1008   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1009     IsSigned = true;
1010     C = *AI;
1011     return true;
1012   }
1013   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1014     C = *AI;
1015     return true;
1016   }
1017   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1018     C = *AI + 1;
1019     return true;
1020   }
1021   return false;
1022 }
1023 
1024 // Matches division expression Op / C with the given signedness as indicated
1025 // by IsSigned, where C is a constant. Returns the constant value in C and the
1026 // other operand in Op. Returns true if such a match is found.
1027 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1028   const APInt *AI;
1029   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1030     C = *AI;
1031     return true;
1032   }
1033   if (!IsSigned) {
1034     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1035       C = *AI;
1036       return true;
1037     }
1038     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1039       C = APInt(AI->getBitWidth(), 1);
1040       C <<= *AI;
1041       return true;
1042     }
1043   }
1044   return false;
1045 }
1046 
1047 // Returns whether C0 * C1 with the given signedness overflows.
1048 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1049   bool overflow;
1050   if (IsSigned)
1051     (void)C0.smul_ov(C1, overflow);
1052   else
1053     (void)C0.umul_ov(C1, overflow);
1054   return overflow;
1055 }
1056 
1057 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1058 // does not overflow.
1059 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1060   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1061   Value *X, *MulOpV;
1062   APInt C0, MulOpC;
1063   bool IsSigned;
1064   // Match I = X % C0 + MulOpV * C0
1065   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1066        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1067       C0 == MulOpC) {
1068     Value *RemOpV;
1069     APInt C1;
1070     bool Rem2IsSigned;
1071     // Match MulOpC = RemOpV % C1
1072     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1073         IsSigned == Rem2IsSigned) {
1074       Value *DivOpV;
1075       APInt DivOpC;
1076       // Match RemOpV = X / C0
1077       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1078           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1079         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1080         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1081                         : Builder.CreateURem(X, NewDivisor, "urem");
1082       }
1083     }
1084   }
1085 
1086   return nullptr;
1087 }
1088 
1089 /// Fold
1090 ///   (1 << NBits) - 1
1091 /// Into:
1092 ///   ~(-(1 << NBits))
1093 /// Because a 'not' is better for bit-tracking analysis and other transforms
1094 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1095 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1096                                            InstCombiner::BuilderTy &Builder) {
1097   Value *NBits;
1098   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1099     return nullptr;
1100 
1101   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1102   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1103   // Be wary of constant folding.
1104   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1105     // Always NSW. But NUW propagates from `add`.
1106     BOp->setHasNoSignedWrap();
1107     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1108   }
1109 
1110   return BinaryOperator::CreateNot(NotMask, I.getName());
1111 }
1112 
1113 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1114   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1115   Type *Ty = I.getType();
1116   auto getUAddSat = [&]() {
1117     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1118   };
1119 
1120   // add (umin X, ~Y), Y --> uaddsat X, Y
1121   Value *X, *Y;
1122   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1123                         m_Deferred(Y))))
1124     return CallInst::Create(getUAddSat(), { X, Y });
1125 
1126   // add (umin X, ~C), C --> uaddsat X, C
1127   const APInt *C, *NotC;
1128   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1129       *C == ~*NotC)
1130     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1131 
1132   return nullptr;
1133 }
1134 
1135 Instruction *InstCombinerImpl::
1136     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1137         BinaryOperator &I) {
1138   assert((I.getOpcode() == Instruction::Add ||
1139           I.getOpcode() == Instruction::Or ||
1140           I.getOpcode() == Instruction::Sub) &&
1141          "Expecting add/or/sub instruction");
1142 
1143   // We have a subtraction/addition between a (potentially truncated) *logical*
1144   // right-shift of X and a "select".
1145   Value *X, *Select;
1146   Instruction *LowBitsToSkip, *Extract;
1147   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1148                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1149                                m_Instruction(Extract))),
1150                            m_Value(Select))))
1151     return nullptr;
1152 
1153   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1154   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1155     return nullptr;
1156 
1157   Type *XTy = X->getType();
1158   bool HadTrunc = I.getType() != XTy;
1159 
1160   // If there was a truncation of extracted value, then we'll need to produce
1161   // one extra instruction, so we need to ensure one instruction will go away.
1162   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1163     return nullptr;
1164 
1165   // Extraction should extract high NBits bits, with shift amount calculated as:
1166   //   low bits to skip = shift bitwidth - high bits to extract
1167   // The shift amount itself may be extended, and we need to look past zero-ext
1168   // when matching NBits, that will matter for matching later.
1169   Constant *C;
1170   Value *NBits;
1171   if (!match(
1172           LowBitsToSkip,
1173           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1174       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1175                                    APInt(C->getType()->getScalarSizeInBits(),
1176                                          X->getType()->getScalarSizeInBits()))))
1177     return nullptr;
1178 
1179   // Sign-extending value can be zero-extended if we `sub`tract it,
1180   // or sign-extended otherwise.
1181   auto SkipExtInMagic = [&I](Value *&V) {
1182     if (I.getOpcode() == Instruction::Sub)
1183       match(V, m_ZExtOrSelf(m_Value(V)));
1184     else
1185       match(V, m_SExtOrSelf(m_Value(V)));
1186   };
1187 
1188   // Now, finally validate the sign-extending magic.
1189   // `select` itself may be appropriately extended, look past that.
1190   SkipExtInMagic(Select);
1191 
1192   ICmpInst::Predicate Pred;
1193   const APInt *Thr;
1194   Value *SignExtendingValue, *Zero;
1195   bool ShouldSignext;
1196   // It must be a select between two values we will later establish to be a
1197   // sign-extending value and a zero constant. The condition guarding the
1198   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1199   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1200                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1201       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1202     return nullptr;
1203 
1204   // icmp-select pair is commutative.
1205   if (!ShouldSignext)
1206     std::swap(SignExtendingValue, Zero);
1207 
1208   // If we should not perform sign-extension then we must add/or/subtract zero.
1209   if (!match(Zero, m_Zero()))
1210     return nullptr;
1211   // Otherwise, it should be some constant, left-shifted by the same NBits we
1212   // had in `lshr`. Said left-shift can also be appropriately extended.
1213   // Again, we must look past zero-ext when looking for NBits.
1214   SkipExtInMagic(SignExtendingValue);
1215   Constant *SignExtendingValueBaseConstant;
1216   if (!match(SignExtendingValue,
1217              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1218                    m_ZExtOrSelf(m_Specific(NBits)))))
1219     return nullptr;
1220   // If we `sub`, then the constant should be one, else it should be all-ones.
1221   if (I.getOpcode() == Instruction::Sub
1222           ? !match(SignExtendingValueBaseConstant, m_One())
1223           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1224     return nullptr;
1225 
1226   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1227                                              Extract->getName() + ".sext");
1228   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1229   if (!HadTrunc)
1230     return NewAShr;
1231 
1232   Builder.Insert(NewAShr);
1233   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1234 }
1235 
1236 /// This is a specialization of a more general transform from
1237 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1238 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1239 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1240                                             InstCombiner::BuilderTy &Builder) {
1241   // TODO: Also handle mul by doubling the shift amount?
1242   assert((I.getOpcode() == Instruction::Add ||
1243           I.getOpcode() == Instruction::Sub) &&
1244          "Expected add/sub");
1245   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1246   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1247   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1248     return nullptr;
1249 
1250   Value *X, *Y, *ShAmt;
1251   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1252       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1253     return nullptr;
1254 
1255   // No-wrap propagates only when all ops have no-wrap.
1256   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1257                 Op1->hasNoSignedWrap();
1258   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1259                 Op1->hasNoUnsignedWrap();
1260 
1261   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1262   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1263   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1264     NewI->setHasNoSignedWrap(HasNSW);
1265     NewI->setHasNoUnsignedWrap(HasNUW);
1266   }
1267   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1268   NewShl->setHasNoSignedWrap(HasNSW);
1269   NewShl->setHasNoUnsignedWrap(HasNUW);
1270   return NewShl;
1271 }
1272 
1273 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1274   if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1275                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1276                                  SQ.getWithInstruction(&I)))
1277     return replaceInstUsesWith(I, V);
1278 
1279   if (SimplifyAssociativeOrCommutative(I))
1280     return &I;
1281 
1282   if (Instruction *X = foldVectorBinop(I))
1283     return X;
1284 
1285   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1286     return Phi;
1287 
1288   // (A*B)+(A*C) -> A*(B+C) etc
1289   if (Value *V = SimplifyUsingDistributiveLaws(I))
1290     return replaceInstUsesWith(I, V);
1291 
1292   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1293     return R;
1294 
1295   if (Instruction *X = foldAddWithConstant(I))
1296     return X;
1297 
1298   if (Instruction *X = foldNoWrapAdd(I, Builder))
1299     return X;
1300 
1301   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1302   Type *Ty = I.getType();
1303   if (Ty->isIntOrIntVectorTy(1))
1304     return BinaryOperator::CreateXor(LHS, RHS);
1305 
1306   // X + X --> X << 1
1307   if (LHS == RHS) {
1308     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1309     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1310     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1311     return Shl;
1312   }
1313 
1314   Value *A, *B;
1315   if (match(LHS, m_Neg(m_Value(A)))) {
1316     // -A + -B --> -(A + B)
1317     if (match(RHS, m_Neg(m_Value(B))))
1318       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1319 
1320     // -A + B --> B - A
1321     return BinaryOperator::CreateSub(RHS, A);
1322   }
1323 
1324   // A + -B  -->  A - B
1325   if (match(RHS, m_Neg(m_Value(B))))
1326     return BinaryOperator::CreateSub(LHS, B);
1327 
1328   if (Value *V = checkForNegativeOperand(I, Builder))
1329     return replaceInstUsesWith(I, V);
1330 
1331   // (A + 1) + ~B --> A - B
1332   // ~B + (A + 1) --> A - B
1333   // (~B + A) + 1 --> A - B
1334   // (A + ~B) + 1 --> A - B
1335   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1336       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1337     return BinaryOperator::CreateSub(A, B);
1338 
1339   // (A + RHS) + RHS --> A + (RHS << 1)
1340   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1341     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1342 
1343   // LHS + (A + LHS) --> A + (LHS << 1)
1344   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1345     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1346 
1347   {
1348     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1349     Constant *C1, *C2;
1350     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1351                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1352         (LHS->hasOneUse() || RHS->hasOneUse())) {
1353       Value *Sub = Builder.CreateSub(A, B);
1354       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1355     }
1356   }
1357 
1358   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1359   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1360 
1361   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1362   const APInt *C1, *C2;
1363   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1364     APInt one(C2->getBitWidth(), 1);
1365     APInt minusC1 = -(*C1);
1366     if (minusC1 == (one << *C2)) {
1367       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1368       return BinaryOperator::CreateSRem(RHS, NewRHS);
1369     }
1370   }
1371 
1372   // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1373   if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1374       C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
1375     Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1376     return BinaryOperator::CreateAnd(A, NewMask);
1377   }
1378 
1379   // A+B --> A|B iff A and B have no bits set in common.
1380   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1381     return BinaryOperator::CreateOr(LHS, RHS);
1382 
1383   // add (select X 0 (sub n A)) A  -->  select X A n
1384   {
1385     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1386     Value *A = RHS;
1387     if (!SI) {
1388       SI = dyn_cast<SelectInst>(RHS);
1389       A = LHS;
1390     }
1391     if (SI && SI->hasOneUse()) {
1392       Value *TV = SI->getTrueValue();
1393       Value *FV = SI->getFalseValue();
1394       Value *N;
1395 
1396       // Can we fold the add into the argument of the select?
1397       // We check both true and false select arguments for a matching subtract.
1398       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1399         // Fold the add into the true select value.
1400         return SelectInst::Create(SI->getCondition(), N, A);
1401 
1402       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1403         // Fold the add into the false select value.
1404         return SelectInst::Create(SI->getCondition(), A, N);
1405     }
1406   }
1407 
1408   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1409     return Ext;
1410 
1411   // (add (xor A, B) (and A, B)) --> (or A, B)
1412   // (add (and A, B) (xor A, B)) --> (or A, B)
1413   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1414                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1415     return BinaryOperator::CreateOr(A, B);
1416 
1417   // (add (or A, B) (and A, B)) --> (add A, B)
1418   // (add (and A, B) (or A, B)) --> (add A, B)
1419   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1420                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1421     // Replacing operands in-place to preserve nuw/nsw flags.
1422     replaceOperand(I, 0, A);
1423     replaceOperand(I, 1, B);
1424     return &I;
1425   }
1426 
1427   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1428   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1429   // computeKnownBits.
1430   bool Changed = false;
1431   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1432     Changed = true;
1433     I.setHasNoSignedWrap(true);
1434   }
1435   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1436     Changed = true;
1437     I.setHasNoUnsignedWrap(true);
1438   }
1439 
1440   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1441     return V;
1442 
1443   if (Instruction *V =
1444           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1445     return V;
1446 
1447   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1448     return SatAdd;
1449 
1450   // usub.sat(A, B) + B => umax(A, B)
1451   if (match(&I, m_c_BinOp(
1452           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1453           m_Deferred(B)))) {
1454     return replaceInstUsesWith(I,
1455         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1456   }
1457 
1458   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1459   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1460       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1461       haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1462     return replaceInstUsesWith(
1463         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1464                                    {Builder.CreateOr(A, B)}));
1465 
1466   return Changed ? &I : nullptr;
1467 }
1468 
1469 /// Eliminate an op from a linear interpolation (lerp) pattern.
1470 static Instruction *factorizeLerp(BinaryOperator &I,
1471                                   InstCombiner::BuilderTy &Builder) {
1472   Value *X, *Y, *Z;
1473   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1474                                             m_OneUse(m_FSub(m_FPOne(),
1475                                                             m_Value(Z))))),
1476                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1477     return nullptr;
1478 
1479   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1480   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1481   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1482   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1483 }
1484 
1485 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1486 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1487                                       InstCombiner::BuilderTy &Builder) {
1488   assert((I.getOpcode() == Instruction::FAdd ||
1489           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1490   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1491          "FP factorization requires FMF");
1492 
1493   if (Instruction *Lerp = factorizeLerp(I, Builder))
1494     return Lerp;
1495 
1496   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1497   if (!Op0->hasOneUse() || !Op1->hasOneUse())
1498     return nullptr;
1499 
1500   Value *X, *Y, *Z;
1501   bool IsFMul;
1502   if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1503        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1504       (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1505        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1506     IsFMul = true;
1507   else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1508            match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1509     IsFMul = false;
1510   else
1511     return nullptr;
1512 
1513   // (X * Z) + (Y * Z) --> (X + Y) * Z
1514   // (X * Z) - (Y * Z) --> (X - Y) * Z
1515   // (X / Z) + (Y / Z) --> (X + Y) / Z
1516   // (X / Z) - (Y / Z) --> (X - Y) / Z
1517   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1518   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1519                      : Builder.CreateFSubFMF(X, Y, &I);
1520 
1521   // Bail out if we just created a denormal constant.
1522   // TODO: This is copied from a previous implementation. Is it necessary?
1523   const APFloat *C;
1524   if (match(XY, m_APFloat(C)) && !C->isNormal())
1525     return nullptr;
1526 
1527   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1528                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1529 }
1530 
1531 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1532   if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1533                                   I.getFastMathFlags(),
1534                                   SQ.getWithInstruction(&I)))
1535     return replaceInstUsesWith(I, V);
1536 
1537   if (SimplifyAssociativeOrCommutative(I))
1538     return &I;
1539 
1540   if (Instruction *X = foldVectorBinop(I))
1541     return X;
1542 
1543   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1544     return Phi;
1545 
1546   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1547     return FoldedFAdd;
1548 
1549   // (-X) + Y --> Y - X
1550   Value *X, *Y;
1551   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1552     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1553 
1554   // Similar to above, but look through fmul/fdiv for the negated term.
1555   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1556   Value *Z;
1557   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1558                          m_Value(Z)))) {
1559     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1560     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1561   }
1562   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1563   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1564   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1565                          m_Value(Z))) ||
1566       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1567                          m_Value(Z)))) {
1568     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1569     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1570   }
1571 
1572   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1573   // integer add followed by a promotion.
1574   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1575   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1576     Value *LHSIntVal = LHSConv->getOperand(0);
1577     Type *FPType = LHSConv->getType();
1578 
1579     // TODO: This check is overly conservative. In many cases known bits
1580     // analysis can tell us that the result of the addition has less significant
1581     // bits than the integer type can hold.
1582     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1583       Type *FScalarTy = FTy->getScalarType();
1584       Type *IScalarTy = ITy->getScalarType();
1585 
1586       // Do we have enough bits in the significand to represent the result of
1587       // the integer addition?
1588       unsigned MaxRepresentableBits =
1589           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1590       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1591     };
1592 
1593     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1594     // ... if the constant fits in the integer value.  This is useful for things
1595     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1596     // requires a constant pool load, and generally allows the add to be better
1597     // instcombined.
1598     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1599       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1600         Constant *CI =
1601           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1602         if (LHSConv->hasOneUse() &&
1603             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1604             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1605           // Insert the new integer add.
1606           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1607           return new SIToFPInst(NewAdd, I.getType());
1608         }
1609       }
1610 
1611     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1612     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1613       Value *RHSIntVal = RHSConv->getOperand(0);
1614       // It's enough to check LHS types only because we require int types to
1615       // be the same for this transform.
1616       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1617         // Only do this if x/y have the same type, if at least one of them has a
1618         // single use (so we don't increase the number of int->fp conversions),
1619         // and if the integer add will not overflow.
1620         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1621             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1622             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1623           // Insert the new integer add.
1624           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1625           return new SIToFPInst(NewAdd, I.getType());
1626         }
1627       }
1628     }
1629   }
1630 
1631   // Handle specials cases for FAdd with selects feeding the operation
1632   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1633     return replaceInstUsesWith(I, V);
1634 
1635   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1636     if (Instruction *F = factorizeFAddFSub(I, Builder))
1637       return F;
1638 
1639     // Try to fold fadd into start value of reduction intrinsic.
1640     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1641                                m_AnyZeroFP(), m_Value(X))),
1642                            m_Value(Y)))) {
1643       // fadd (rdx 0.0, X), Y --> rdx Y, X
1644       return replaceInstUsesWith(
1645           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1646                                      {X->getType()}, {Y, X}, &I));
1647     }
1648     const APFloat *StartC, *C;
1649     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1650                        m_APFloat(StartC), m_Value(X)))) &&
1651         match(RHS, m_APFloat(C))) {
1652       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1653       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1654       return replaceInstUsesWith(
1655           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1656                                      {X->getType()}, {NewStartC, X}, &I));
1657     }
1658 
1659     // (X * MulC) + X --> X * (MulC + 1.0)
1660     Constant *MulC;
1661     if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1662                            m_Deferred(X)))) {
1663       MulC = ConstantExpr::getFAdd(MulC, ConstantFP::get(I.getType(), 1.0));
1664       return BinaryOperator::CreateFMulFMF(X, MulC, &I);
1665     }
1666 
1667     if (Value *V = FAddCombine(Builder).simplify(&I))
1668       return replaceInstUsesWith(I, V);
1669   }
1670 
1671   return nullptr;
1672 }
1673 
1674 /// Optimize pointer differences into the same array into a size.  Consider:
1675 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1676 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1677 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1678                                                    Type *Ty, bool IsNUW) {
1679   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1680   // this.
1681   bool Swapped = false;
1682   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1683   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1684     std::swap(LHS, RHS);
1685     Swapped = true;
1686   }
1687 
1688   // Require at least one GEP with a common base pointer on both sides.
1689   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1690     // (gep X, ...) - X
1691     if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1692         RHS->stripPointerCasts()) {
1693       GEP1 = LHSGEP;
1694     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1695       // (gep X, ...) - (gep X, ...)
1696       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1697           RHSGEP->getOperand(0)->stripPointerCasts()) {
1698         GEP1 = LHSGEP;
1699         GEP2 = RHSGEP;
1700       }
1701     }
1702   }
1703 
1704   if (!GEP1)
1705     return nullptr;
1706 
1707   if (GEP2) {
1708     // (gep X, ...) - (gep X, ...)
1709     //
1710     // Avoid duplicating the arithmetic if there are more than one non-constant
1711     // indices between the two GEPs and either GEP has a non-constant index and
1712     // multiple users. If zero non-constant index, the result is a constant and
1713     // there is no duplication. If one non-constant index, the result is an add
1714     // or sub with a constant, which is no larger than the original code, and
1715     // there's no duplicated arithmetic, even if either GEP has multiple
1716     // users. If more than one non-constant indices combined, as long as the GEP
1717     // with at least one non-constant index doesn't have multiple users, there
1718     // is no duplication.
1719     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1720     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1721     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1722         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1723          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1724       return nullptr;
1725     }
1726   }
1727 
1728   // Emit the offset of the GEP and an intptr_t.
1729   Value *Result = EmitGEPOffset(GEP1);
1730 
1731   // If this is a single inbounds GEP and the original sub was nuw,
1732   // then the final multiplication is also nuw.
1733   if (auto *I = dyn_cast<Instruction>(Result))
1734     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1735         I->getOpcode() == Instruction::Mul)
1736       I->setHasNoUnsignedWrap();
1737 
1738   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1739   // If both GEPs are inbounds, then the subtract does not have signed overflow.
1740   if (GEP2) {
1741     Value *Offset = EmitGEPOffset(GEP2);
1742     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1743                                GEP1->isInBounds() && GEP2->isInBounds());
1744   }
1745 
1746   // If we have p - gep(p, ...)  then we have to negate the result.
1747   if (Swapped)
1748     Result = Builder.CreateNeg(Result, "diff.neg");
1749 
1750   return Builder.CreateIntCast(Result, Ty, true);
1751 }
1752 
1753 static Instruction *foldSubOfMinMax(BinaryOperator &I,
1754                                     InstCombiner::BuilderTy &Builder) {
1755   Value *Op0 = I.getOperand(0);
1756   Value *Op1 = I.getOperand(1);
1757   Type *Ty = I.getType();
1758   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
1759   if (!MinMax)
1760     return nullptr;
1761 
1762   // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
1763   // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
1764   Value *X = MinMax->getLHS();
1765   Value *Y = MinMax->getRHS();
1766   if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
1767       (Op0->hasOneUse() || Op1->hasOneUse())) {
1768     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1769     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1770     return CallInst::Create(F, {X, Y});
1771   }
1772 
1773   // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
1774   // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
1775   Value *Z;
1776   if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
1777     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
1778       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
1779       return BinaryOperator::CreateAdd(X, USub);
1780     }
1781     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
1782       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
1783       return BinaryOperator::CreateAdd(X, USub);
1784     }
1785   }
1786 
1787   // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
1788   // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
1789   if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
1790       match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
1791     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1792     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1793     return CallInst::Create(F, {Op0, Z});
1794   }
1795 
1796   return nullptr;
1797 }
1798 
1799 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1800   if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
1801                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1802                                  SQ.getWithInstruction(&I)))
1803     return replaceInstUsesWith(I, V);
1804 
1805   if (Instruction *X = foldVectorBinop(I))
1806     return X;
1807 
1808   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1809     return Phi;
1810 
1811   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1812 
1813   // If this is a 'B = x-(-A)', change to B = x+A.
1814   // We deal with this without involving Negator to preserve NSW flag.
1815   if (Value *V = dyn_castNegVal(Op1)) {
1816     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1817 
1818     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1819       assert(BO->getOpcode() == Instruction::Sub &&
1820              "Expected a subtraction operator!");
1821       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1822         Res->setHasNoSignedWrap(true);
1823     } else {
1824       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1825         Res->setHasNoSignedWrap(true);
1826     }
1827 
1828     return Res;
1829   }
1830 
1831   // Try this before Negator to preserve NSW flag.
1832   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1833     return R;
1834 
1835   Constant *C;
1836   if (match(Op0, m_ImmConstant(C))) {
1837     Value *X;
1838     Constant *C2;
1839 
1840     // C-(X+C2) --> (C-C2)-X
1841     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1842       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1843   }
1844 
1845   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1846     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1847       return Ext;
1848 
1849     bool Changed = false;
1850     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1851       Changed = true;
1852       I.setHasNoSignedWrap(true);
1853     }
1854     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1855       Changed = true;
1856       I.setHasNoUnsignedWrap(true);
1857     }
1858 
1859     return Changed ? &I : nullptr;
1860   };
1861 
1862   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1863   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1864   // a pure negation used by a select that looks like abs/nabs.
1865   bool IsNegation = match(Op0, m_ZeroInt());
1866   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1867         const Instruction *UI = dyn_cast<Instruction>(U);
1868         if (!UI)
1869           return false;
1870         return match(UI,
1871                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1872                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1873       })) {
1874     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1875       return BinaryOperator::CreateAdd(NegOp1, Op0);
1876   }
1877   if (IsNegation)
1878     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1879 
1880   // (A*B)-(A*C) -> A*(B-C) etc
1881   if (Value *V = SimplifyUsingDistributiveLaws(I))
1882     return replaceInstUsesWith(I, V);
1883 
1884   if (I.getType()->isIntOrIntVectorTy(1))
1885     return BinaryOperator::CreateXor(Op0, Op1);
1886 
1887   // Replace (-1 - A) with (~A).
1888   if (match(Op0, m_AllOnes()))
1889     return BinaryOperator::CreateNot(Op1);
1890 
1891   // (X + -1) - Y --> ~Y + X
1892   Value *X, *Y;
1893   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1894     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1895 
1896   // Reassociate sub/add sequences to create more add instructions and
1897   // reduce dependency chains:
1898   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1899   Value *Z;
1900   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1901                                   m_Value(Z))))) {
1902     Value *XZ = Builder.CreateAdd(X, Z);
1903     Value *YW = Builder.CreateAdd(Y, Op1);
1904     return BinaryOperator::CreateSub(XZ, YW);
1905   }
1906 
1907   // ((X - Y) - Op1)  -->  X - (Y + Op1)
1908   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
1909     Value *Add = Builder.CreateAdd(Y, Op1);
1910     return BinaryOperator::CreateSub(X, Add);
1911   }
1912 
1913   // (~X) - (~Y) --> Y - X
1914   // This is placed after the other reassociations and explicitly excludes a
1915   // sub-of-sub pattern to avoid infinite looping.
1916   if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
1917       isFreeToInvert(Op1, Op1->hasOneUse()) &&
1918       !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
1919     Value *NotOp0 = Builder.CreateNot(Op0);
1920     Value *NotOp1 = Builder.CreateNot(Op1);
1921     return BinaryOperator::CreateSub(NotOp1, NotOp0);
1922   }
1923 
1924   auto m_AddRdx = [](Value *&Vec) {
1925     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
1926   };
1927   Value *V0, *V1;
1928   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1929       V0->getType() == V1->getType()) {
1930     // Difference of sums is sum of differences:
1931     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1932     Value *Sub = Builder.CreateSub(V0, V1);
1933     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
1934                                          {Sub->getType()}, {Sub});
1935     return replaceInstUsesWith(I, Rdx);
1936   }
1937 
1938   if (Constant *C = dyn_cast<Constant>(Op0)) {
1939     Value *X;
1940     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1941       // C - (zext bool) --> bool ? C - 1 : C
1942       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1943     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1944       // C - (sext bool) --> bool ? C + 1 : C
1945       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
1946 
1947     // C - ~X == X + (1+C)
1948     if (match(Op1, m_Not(m_Value(X))))
1949       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
1950 
1951     // Try to fold constant sub into select arguments.
1952     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1953       if (Instruction *R = FoldOpIntoSelect(I, SI))
1954         return R;
1955 
1956     // Try to fold constant sub into PHI values.
1957     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1958       if (Instruction *R = foldOpIntoPhi(I, PN))
1959         return R;
1960 
1961     Constant *C2;
1962 
1963     // C-(C2-X) --> X+(C-C2)
1964     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
1965       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1966   }
1967 
1968   const APInt *Op0C;
1969   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1970     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1971     // zero.
1972     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1973     if ((*Op0C | RHSKnown.Zero).isAllOnes())
1974       return BinaryOperator::CreateXor(Op1, Op0);
1975   }
1976 
1977   {
1978     Value *Y;
1979     // X-(X+Y) == -Y    X-(Y+X) == -Y
1980     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1981       return BinaryOperator::CreateNeg(Y);
1982 
1983     // (X-Y)-X == -Y
1984     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1985       return BinaryOperator::CreateNeg(Y);
1986   }
1987 
1988   // (sub (or A, B) (and A, B)) --> (xor A, B)
1989   {
1990     Value *A, *B;
1991     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1992         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1993       return BinaryOperator::CreateXor(A, B);
1994   }
1995 
1996   // (sub (add A, B) (or A, B)) --> (and A, B)
1997   {
1998     Value *A, *B;
1999     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2000         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2001       return BinaryOperator::CreateAnd(A, B);
2002   }
2003 
2004   // (sub (add A, B) (and A, B)) --> (or A, B)
2005   {
2006     Value *A, *B;
2007     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2008         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2009       return BinaryOperator::CreateOr(A, B);
2010   }
2011 
2012   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2013   {
2014     Value *A, *B;
2015     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2016         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2017         (Op0->hasOneUse() || Op1->hasOneUse()))
2018       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2019   }
2020 
2021   // (sub (or A, B), (xor A, B)) --> (and A, B)
2022   {
2023     Value *A, *B;
2024     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2025         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2026       return BinaryOperator::CreateAnd(A, B);
2027   }
2028 
2029   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2030   {
2031     Value *A, *B;
2032     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2033         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2034         (Op0->hasOneUse() || Op1->hasOneUse()))
2035       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2036   }
2037 
2038   {
2039     Value *Y;
2040     // ((X | Y) - X) --> (~X & Y)
2041     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2042       return BinaryOperator::CreateAnd(
2043           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2044   }
2045 
2046   {
2047     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2048     Value *X;
2049     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2050                                     m_OneUse(m_Neg(m_Value(X))))))) {
2051       return BinaryOperator::CreateNeg(Builder.CreateAnd(
2052           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2053     }
2054   }
2055 
2056   {
2057     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2058     Constant *C;
2059     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2060       return BinaryOperator::CreateNeg(
2061           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2062     }
2063   }
2064 
2065   if (Instruction *R = foldSubOfMinMax(I, Builder))
2066     return R;
2067 
2068   {
2069     // If we have a subtraction between some value and a select between
2070     // said value and something else, sink subtraction into select hands, i.e.:
2071     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2072     //     ->
2073     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2074     //  or
2075     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2076     //     ->
2077     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2078     // This will result in select between new subtraction and 0.
2079     auto SinkSubIntoSelect =
2080         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2081                            auto SubBuilder) -> Instruction * {
2082       Value *Cond, *TrueVal, *FalseVal;
2083       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2084                                            m_Value(FalseVal)))))
2085         return nullptr;
2086       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2087         return nullptr;
2088       // While it is really tempting to just create two subtractions and let
2089       // InstCombine fold one of those to 0, it isn't possible to do so
2090       // because of worklist visitation order. So ugly it is.
2091       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2092       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2093       Constant *Zero = Constant::getNullValue(Ty);
2094       SelectInst *NewSel =
2095           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2096                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2097       // Preserve prof metadata if any.
2098       NewSel->copyMetadata(cast<Instruction>(*Select));
2099       return NewSel;
2100     };
2101     if (Instruction *NewSel = SinkSubIntoSelect(
2102             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2103             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2104               return Builder->CreateSub(OtherHandOfSelect,
2105                                         /*OtherHandOfSub=*/Op1);
2106             }))
2107       return NewSel;
2108     if (Instruction *NewSel = SinkSubIntoSelect(
2109             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2110             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2111               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2112                                         OtherHandOfSelect);
2113             }))
2114       return NewSel;
2115   }
2116 
2117   // (X - (X & Y))   -->   (X & ~Y)
2118   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2119       (Op1->hasOneUse() || isa<Constant>(Y)))
2120     return BinaryOperator::CreateAnd(
2121         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2122 
2123   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2124   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2125   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2126   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2127   // As long as Y is freely invertible, this will be neutral or a win.
2128   // Note: We don't generate the inverse max/min, just create the 'not' of
2129   // it and let other folds do the rest.
2130   if (match(Op0, m_Not(m_Value(X))) &&
2131       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2132       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2133     Value *Not = Builder.CreateNot(Op1);
2134     return BinaryOperator::CreateSub(Not, X);
2135   }
2136   if (match(Op1, m_Not(m_Value(X))) &&
2137       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2138       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2139     Value *Not = Builder.CreateNot(Op0);
2140     return BinaryOperator::CreateSub(X, Not);
2141   }
2142 
2143   // Optimize pointer differences into the same array into a size.  Consider:
2144   //  &A[10] - &A[0]: we should compile this to "10".
2145   Value *LHSOp, *RHSOp;
2146   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2147       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2148     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2149                                                I.hasNoUnsignedWrap()))
2150       return replaceInstUsesWith(I, Res);
2151 
2152   // trunc(p)-trunc(q) -> trunc(p-q)
2153   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2154       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2155     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2156                                                /* IsNUW */ false))
2157       return replaceInstUsesWith(I, Res);
2158 
2159   // Canonicalize a shifty way to code absolute value to the common pattern.
2160   // There are 2 potential commuted variants.
2161   // We're relying on the fact that we only do this transform when the shift has
2162   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2163   // instructions).
2164   Value *A;
2165   const APInt *ShAmt;
2166   Type *Ty = I.getType();
2167   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2168       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2169       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2170     // B = ashr i32 A, 31 ; smear the sign bit
2171     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2172     // --> (A < 0) ? -A : A
2173     Value *IsNeg = Builder.CreateIsNeg(A);
2174     // Copy the nuw/nsw flags from the sub to the negate.
2175     Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2176                                     I.hasNoSignedWrap());
2177     return SelectInst::Create(IsNeg, NegA, A);
2178   }
2179 
2180   // If we are subtracting a low-bit masked subset of some value from an add
2181   // of that same value with no low bits changed, that is clearing some low bits
2182   // of the sum:
2183   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2184   const APInt *AddC, *AndC;
2185   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2186       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2187     unsigned BitWidth = Ty->getScalarSizeInBits();
2188     unsigned Cttz = AddC->countTrailingZeros();
2189     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2190     if ((HighMask & *AndC).isZero())
2191       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2192   }
2193 
2194   if (Instruction *V =
2195           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2196     return V;
2197 
2198   // X - usub.sat(X, Y) => umin(X, Y)
2199   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2200                                                            m_Value(Y)))))
2201     return replaceInstUsesWith(
2202         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2203 
2204   // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2205   // TODO: The one-use restriction is not strictly necessary, but it may
2206   //       require improving other pattern matching and/or codegen.
2207   if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2208     return replaceInstUsesWith(
2209         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2210 
2211   // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2212   if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2213     return replaceInstUsesWith(
2214         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2215 
2216   // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2217   if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2218     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2219     return BinaryOperator::CreateNeg(USub);
2220   }
2221 
2222   // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2223   if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2224     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2225     return BinaryOperator::CreateNeg(USub);
2226   }
2227 
2228   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2229   if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
2230       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2231     return replaceInstUsesWith(
2232         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2233                                    {Builder.CreateNot(X)}));
2234 
2235   return TryToNarrowDeduceFlags();
2236 }
2237 
2238 /// This eliminates floating-point negation in either 'fneg(X)' or
2239 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2240 static Instruction *foldFNegIntoConstant(Instruction &I) {
2241   // This is limited with one-use because fneg is assumed better for
2242   // reassociation and cheaper in codegen than fmul/fdiv.
2243   // TODO: Should the m_OneUse restriction be removed?
2244   Instruction *FNegOp;
2245   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2246     return nullptr;
2247 
2248   Value *X;
2249   Constant *C;
2250 
2251   // Fold negation into constant operand.
2252   // -(X * C) --> X * (-C)
2253   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2254     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2255   // -(X / C) --> X / (-C)
2256   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2257     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2258   // -(C / X) --> (-C) / X
2259   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
2260     Instruction *FDiv =
2261         BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2262 
2263     // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2264     // apply to the fdiv. Everything else propagates from the fneg.
2265     // TODO: We could propagate nsz/ninf from fdiv alone?
2266     FastMathFlags FMF = I.getFastMathFlags();
2267     FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2268     FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2269     FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2270     return FDiv;
2271   }
2272   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2273   // -(X + C) --> -X + -C --> -C - X
2274   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2275     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2276 
2277   return nullptr;
2278 }
2279 
2280 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2281                                            InstCombiner::BuilderTy &Builder) {
2282   Value *FNeg;
2283   if (!match(&I, m_FNeg(m_Value(FNeg))))
2284     return nullptr;
2285 
2286   Value *X, *Y;
2287   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2288     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2289 
2290   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2291     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2292 
2293   return nullptr;
2294 }
2295 
2296 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2297   Value *Op = I.getOperand(0);
2298 
2299   if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2300                                   getSimplifyQuery().getWithInstruction(&I)))
2301     return replaceInstUsesWith(I, V);
2302 
2303   if (Instruction *X = foldFNegIntoConstant(I))
2304     return X;
2305 
2306   Value *X, *Y;
2307 
2308   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2309   if (I.hasNoSignedZeros() &&
2310       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2311     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2312 
2313   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2314     return R;
2315 
2316   // Try to eliminate fneg if at least 1 arm of the select is negated.
2317   Value *Cond;
2318   if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
2319     // Unlike most transforms, this one is not safe to propagate nsz unless
2320     // it is present on the original select. (We are conservatively intersecting
2321     // the nsz flags from the select and root fneg instruction.)
2322     auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2323       S->copyFastMathFlags(&I);
2324       if (auto *OldSel = dyn_cast<SelectInst>(Op))
2325         if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2326             !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2327           S->setHasNoSignedZeros(false);
2328     };
2329     // -(Cond ? -P : Y) --> Cond ? P : -Y
2330     Value *P;
2331     if (match(X, m_FNeg(m_Value(P)))) {
2332       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2333       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2334       propagateSelectFMF(NewSel, P == Y);
2335       return NewSel;
2336     }
2337     // -(Cond ? X : -P) --> Cond ? -X : P
2338     if (match(Y, m_FNeg(m_Value(P)))) {
2339       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2340       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2341       propagateSelectFMF(NewSel, P == X);
2342       return NewSel;
2343     }
2344   }
2345 
2346   return nullptr;
2347 }
2348 
2349 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2350   if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2351                                   I.getFastMathFlags(),
2352                                   getSimplifyQuery().getWithInstruction(&I)))
2353     return replaceInstUsesWith(I, V);
2354 
2355   if (Instruction *X = foldVectorBinop(I))
2356     return X;
2357 
2358   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2359     return Phi;
2360 
2361   // Subtraction from -0.0 is the canonical form of fneg.
2362   // fsub -0.0, X ==> fneg X
2363   // fsub nsz 0.0, X ==> fneg nsz X
2364   //
2365   // FIXME This matcher does not respect FTZ or DAZ yet:
2366   // fsub -0.0, Denorm ==> +-0
2367   // fneg Denorm ==> -Denorm
2368   Value *Op;
2369   if (match(&I, m_FNeg(m_Value(Op))))
2370     return UnaryOperator::CreateFNegFMF(Op, &I);
2371 
2372   if (Instruction *X = foldFNegIntoConstant(I))
2373     return X;
2374 
2375   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2376     return R;
2377 
2378   Value *X, *Y;
2379   Constant *C;
2380 
2381   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2382   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2383   // Canonicalize to fadd to make analysis easier.
2384   // This can also help codegen because fadd is commutative.
2385   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2386   // killed later. We still limit that particular transform with 'hasOneUse'
2387   // because an fneg is assumed better/cheaper than a generic fsub.
2388   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2389     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2390       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2391       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2392     }
2393   }
2394 
2395   // (-X) - Op1 --> -(X + Op1)
2396   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2397       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2398     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2399     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2400   }
2401 
2402   if (isa<Constant>(Op0))
2403     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2404       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2405         return NV;
2406 
2407   // X - C --> X + (-C)
2408   // But don't transform constant expressions because there's an inverse fold
2409   // for X + (-Y) --> X - Y.
2410   if (match(Op1, m_ImmConstant(C)))
2411     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2412 
2413   // X - (-Y) --> X + Y
2414   if (match(Op1, m_FNeg(m_Value(Y))))
2415     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2416 
2417   // Similar to above, but look through a cast of the negated value:
2418   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2419   Type *Ty = I.getType();
2420   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2421     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2422 
2423   // X - (fpext(-Y)) --> X + fpext(Y)
2424   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2425     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2426 
2427   // Similar to above, but look through fmul/fdiv of the negated value:
2428   // Op0 - (-X * Y) --> Op0 + (X * Y)
2429   // Op0 - (Y * -X) --> Op0 + (X * Y)
2430   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2431     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2432     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2433   }
2434   // Op0 - (-X / Y) --> Op0 + (X / Y)
2435   // Op0 - (X / -Y) --> Op0 + (X / Y)
2436   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2437       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2438     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2439     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2440   }
2441 
2442   // Handle special cases for FSub with selects feeding the operation
2443   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2444     return replaceInstUsesWith(I, V);
2445 
2446   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2447     // (Y - X) - Y --> -X
2448     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2449       return UnaryOperator::CreateFNegFMF(X, &I);
2450 
2451     // Y - (X + Y) --> -X
2452     // Y - (Y + X) --> -X
2453     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2454       return UnaryOperator::CreateFNegFMF(X, &I);
2455 
2456     // (X * C) - X --> X * (C - 1.0)
2457     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2458       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2459       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2460     }
2461     // X - (X * C) --> X * (1.0 - C)
2462     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2463       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2464       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2465     }
2466 
2467     // Reassociate fsub/fadd sequences to create more fadd instructions and
2468     // reduce dependency chains:
2469     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2470     Value *Z;
2471     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2472                                      m_Value(Z))))) {
2473       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2474       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2475       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2476     }
2477 
2478     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2479       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2480                                                                  m_Value(Vec)));
2481     };
2482     Value *A0, *A1, *V0, *V1;
2483     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2484         V0->getType() == V1->getType()) {
2485       // Difference of sums is sum of differences:
2486       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2487       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2488       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2489                                            {Sub->getType()}, {A0, Sub}, &I);
2490       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2491     }
2492 
2493     if (Instruction *F = factorizeFAddFSub(I, Builder))
2494       return F;
2495 
2496     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2497     // functionality has been subsumed by simple pattern matching here and in
2498     // InstSimplify. We should let a dedicated reassociation pass handle more
2499     // complex pattern matching and remove this from InstCombine.
2500     if (Value *V = FAddCombine(Builder).simplify(&I))
2501       return replaceInstUsesWith(I, V);
2502 
2503     // (X - Y) - Op1 --> X - (Y + Op1)
2504     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2505       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2506       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2507     }
2508   }
2509 
2510   return nullptr;
2511 }
2512