1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 namespace {
28 
29   /// Class representing coefficient of floating-point addend.
30   /// This class needs to be highly efficient, which is especially true for
31   /// the constructor. As of I write this comment, the cost of the default
32   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
33   /// perform write-merging).
34   ///
35   class FAddendCoef {
36   public:
37     // The constructor has to initialize a APFloat, which is unnecessary for
38     // most addends which have coefficient either 1 or -1. So, the constructor
39     // is expensive. In order to avoid the cost of the constructor, we should
40     // reuse some instances whenever possible. The pre-created instances
41     // FAddCombine::Add[0-5] embodies this idea.
42     //
43     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
44     ~FAddendCoef();
45 
46     void set(short C) {
47       assert(!insaneIntVal(C) && "Insane coefficient");
48       IsFp = false; IntVal = C;
49     }
50 
51     void set(const APFloat& C);
52 
53     void negate();
54 
55     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
56     Value *getValue(Type *) const;
57 
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     bool isOne() const { return isInt() && IntVal == 1; }
65     bool isTwo() const { return isInt() && IntVal == 2; }
66     bool isMinusOne() const { return isInt() && IntVal == -1; }
67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
68 
69   private:
70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
71     APFloat *getFpValPtr()
72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
73     const APFloat *getFpValPtr() const
74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
75 
76     const APFloat &getFpVal() const {
77       assert(IsFp && BufHasFpVal && "Incorret state");
78       return *getFpValPtr();
79     }
80 
81     APFloat &getFpVal() {
82       assert(IsFp && BufHasFpVal && "Incorret state");
83       return *getFpValPtr();
84     }
85 
86     bool isInt() const { return !IsFp; }
87 
88     // If the coefficient is represented by an integer, promote it to a
89     // floating point.
90     void convertToFpType(const fltSemantics &Sem);
91 
92     // Construct an APFloat from a signed integer.
93     // TODO: We should get rid of this function when APFloat can be constructed
94     //       from an *SIGNED* integer.
95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
96 
97   private:
98     bool IsFp;
99 
100     // True iff FpValBuf contains an instance of APFloat.
101     bool BufHasFpVal;
102 
103     // The integer coefficient of an individual addend is either 1 or -1,
104     // and we try to simplify at most 4 addends from neighboring at most
105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
106     // is overkill of this end.
107     short IntVal;
108 
109     AlignedCharArrayUnion<APFloat> FpValBuf;
110   };
111 
112   /// FAddend is used to represent floating-point addend. An addend is
113   /// represented as <C, V>, where the V is a symbolic value, and C is a
114   /// constant coefficient. A constant addend is represented as <C, 0>.
115   ///
116   class FAddend {
117   public:
118     FAddend() : Val(nullptr) {}
119 
120     Value *getSymVal() const { return Val; }
121     const FAddendCoef &getCoef() const { return Coeff; }
122 
123     bool isConstant() const { return Val == nullptr; }
124     bool isZero() const { return Coeff.isZero(); }
125 
126     void set(short Coefficient, Value *V) {
127       Coeff.set(Coefficient);
128       Val = V;
129     }
130     void set(const APFloat &Coefficient, Value *V) {
131       Coeff.set(Coefficient);
132       Val = V;
133     }
134     void set(const ConstantFP *Coefficient, Value *V) {
135       Coeff.set(Coefficient->getValueAPF());
136       Val = V;
137     }
138 
139     void negate() { Coeff.negate(); }
140 
141     /// Drill down the U-D chain one step to find the definition of V, and
142     /// try to break the definition into one or two addends.
143     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
144 
145     /// Similar to FAddend::drillDownOneStep() except that the value being
146     /// splitted is the addend itself.
147     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
148 
149     void operator+=(const FAddend &T) {
150       assert((Val == T.Val) && "Symbolic-values disagree");
151       Coeff += T.Coeff;
152     }
153 
154   private:
155     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
156 
157     // This addend has the value of "Coeff * Val".
158     Value *Val;
159     FAddendCoef Coeff;
160   };
161 
162   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
163   /// with its neighboring at most two instructions.
164   ///
165   class FAddCombine {
166   public:
167     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B), Instr(nullptr) {}
168     Value *simplify(Instruction *FAdd);
169 
170   private:
171     typedef SmallVector<const FAddend*, 4> AddendVect;
172 
173     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
174 
175     Value *performFactorization(Instruction *I);
176 
177     /// Convert given addend to a Value
178     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
179 
180     /// Return the number of instructions needed to emit the N-ary addition.
181     unsigned calcInstrNumber(const AddendVect& Vect);
182     Value *createFSub(Value *Opnd0, Value *Opnd1);
183     Value *createFAdd(Value *Opnd0, Value *Opnd1);
184     Value *createFMul(Value *Opnd0, Value *Opnd1);
185     Value *createFDiv(Value *Opnd0, Value *Opnd1);
186     Value *createFNeg(Value *V);
187     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
188     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
189 
190     InstCombiner::BuilderTy &Builder;
191     Instruction *Instr;
192 
193      // Debugging stuff are clustered here.
194     #ifndef NDEBUG
195       unsigned CreateInstrNum;
196       void initCreateInstNum() { CreateInstrNum = 0; }
197       void incCreateInstNum() { CreateInstrNum++; }
198     #else
199       void initCreateInstNum() {}
200       void incCreateInstNum() {}
201     #endif
202   };
203 
204 } // anonymous namespace
205 
206 //===----------------------------------------------------------------------===//
207 //
208 // Implementation of
209 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
210 //
211 //===----------------------------------------------------------------------===//
212 FAddendCoef::~FAddendCoef() {
213   if (BufHasFpVal)
214     getFpValPtr()->~APFloat();
215 }
216 
217 void FAddendCoef::set(const APFloat& C) {
218   APFloat *P = getFpValPtr();
219 
220   if (isInt()) {
221     // As the buffer is meanless byte stream, we cannot call
222     // APFloat::operator=().
223     new(P) APFloat(C);
224   } else
225     *P = C;
226 
227   IsFp = BufHasFpVal = true;
228 }
229 
230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
231   if (!isInt())
232     return;
233 
234   APFloat *P = getFpValPtr();
235   if (IntVal > 0)
236     new(P) APFloat(Sem, IntVal);
237   else {
238     new(P) APFloat(Sem, 0 - IntVal);
239     P->changeSign();
240   }
241   IsFp = BufHasFpVal = true;
242 }
243 
244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
245   if (Val >= 0)
246     return APFloat(Sem, Val);
247 
248   APFloat T(Sem, 0 - Val);
249   T.changeSign();
250 
251   return T;
252 }
253 
254 void FAddendCoef::operator=(const FAddendCoef &That) {
255   if (That.isInt())
256     set(That.IntVal);
257   else
258     set(That.getFpVal());
259 }
260 
261 void FAddendCoef::operator+=(const FAddendCoef &That) {
262   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
263   if (isInt() == That.isInt()) {
264     if (isInt())
265       IntVal += That.IntVal;
266     else
267       getFpVal().add(That.getFpVal(), RndMode);
268     return;
269   }
270 
271   if (isInt()) {
272     const APFloat &T = That.getFpVal();
273     convertToFpType(T.getSemantics());
274     getFpVal().add(T, RndMode);
275     return;
276   }
277 
278   APFloat &T = getFpVal();
279   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
280 }
281 
282 void FAddendCoef::operator*=(const FAddendCoef &That) {
283   if (That.isOne())
284     return;
285 
286   if (That.isMinusOne()) {
287     negate();
288     return;
289   }
290 
291   if (isInt() && That.isInt()) {
292     int Res = IntVal * (int)That.IntVal;
293     assert(!insaneIntVal(Res) && "Insane int value");
294     IntVal = Res;
295     return;
296   }
297 
298   const fltSemantics &Semantic =
299     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
300 
301   if (isInt())
302     convertToFpType(Semantic);
303   APFloat &F0 = getFpVal();
304 
305   if (That.isInt())
306     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
307                 APFloat::rmNearestTiesToEven);
308   else
309     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
310 }
311 
312 void FAddendCoef::negate() {
313   if (isInt())
314     IntVal = 0 - IntVal;
315   else
316     getFpVal().changeSign();
317 }
318 
319 Value *FAddendCoef::getValue(Type *Ty) const {
320   return isInt() ?
321     ConstantFP::get(Ty, float(IntVal)) :
322     ConstantFP::get(Ty->getContext(), getFpVal());
323 }
324 
325 // The definition of <Val>     Addends
326 // =========================================
327 //  A + B                     <1, A>, <1,B>
328 //  A - B                     <1, A>, <1,B>
329 //  0 - B                     <-1, B>
330 //  C * A,                    <C, A>
331 //  A + C                     <1, A> <C, NULL>
332 //  0 +/- 0                   <0, NULL> (corner case)
333 //
334 // Legend: A and B are not constant, C is constant
335 //
336 unsigned FAddend::drillValueDownOneStep
337   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
338   Instruction *I = nullptr;
339   if (!Val || !(I = dyn_cast<Instruction>(Val)))
340     return 0;
341 
342   unsigned Opcode = I->getOpcode();
343 
344   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
345     ConstantFP *C0, *C1;
346     Value *Opnd0 = I->getOperand(0);
347     Value *Opnd1 = I->getOperand(1);
348     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
349       Opnd0 = nullptr;
350 
351     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
352       Opnd1 = nullptr;
353 
354     if (Opnd0) {
355       if (!C0)
356         Addend0.set(1, Opnd0);
357       else
358         Addend0.set(C0, nullptr);
359     }
360 
361     if (Opnd1) {
362       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
363       if (!C1)
364         Addend.set(1, Opnd1);
365       else
366         Addend.set(C1, nullptr);
367       if (Opcode == Instruction::FSub)
368         Addend.negate();
369     }
370 
371     if (Opnd0 || Opnd1)
372       return Opnd0 && Opnd1 ? 2 : 1;
373 
374     // Both operands are zero. Weird!
375     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
376     return 1;
377   }
378 
379   if (I->getOpcode() == Instruction::FMul) {
380     Value *V0 = I->getOperand(0);
381     Value *V1 = I->getOperand(1);
382     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
383       Addend0.set(C, V1);
384       return 1;
385     }
386 
387     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
388       Addend0.set(C, V0);
389       return 1;
390     }
391   }
392 
393   return 0;
394 }
395 
396 // Try to break *this* addend into two addends. e.g. Suppose this addend is
397 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
398 // i.e. <2.3, X> and <2.3, Y>.
399 //
400 unsigned FAddend::drillAddendDownOneStep
401   (FAddend &Addend0, FAddend &Addend1) const {
402   if (isConstant())
403     return 0;
404 
405   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
406   if (!BreakNum || Coeff.isOne())
407     return BreakNum;
408 
409   Addend0.Scale(Coeff);
410 
411   if (BreakNum == 2)
412     Addend1.Scale(Coeff);
413 
414   return BreakNum;
415 }
416 
417 // Try to perform following optimization on the input instruction I. Return the
418 // simplified expression if was successful; otherwise, return 0.
419 //
420 //   Instruction "I" is                Simplified into
421 // -------------------------------------------------------
422 //   (x * y) +/- (x * z)               x * (y +/- z)
423 //   (y / x) +/- (z / x)               (y +/- z) / x
424 //
425 Value *FAddCombine::performFactorization(Instruction *I) {
426   assert((I->getOpcode() == Instruction::FAdd ||
427           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
428 
429   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
430   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
431 
432   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
433     return nullptr;
434 
435   bool isMpy = false;
436   if (I0->getOpcode() == Instruction::FMul)
437     isMpy = true;
438   else if (I0->getOpcode() != Instruction::FDiv)
439     return nullptr;
440 
441   Value *Opnd0_0 = I0->getOperand(0);
442   Value *Opnd0_1 = I0->getOperand(1);
443   Value *Opnd1_0 = I1->getOperand(0);
444   Value *Opnd1_1 = I1->getOperand(1);
445 
446   //  Input Instr I       Factor   AddSub0  AddSub1
447   //  ----------------------------------------------
448   // (x*y) +/- (x*z)        x        y         z
449   // (y/x) +/- (z/x)        x        y         z
450   //
451   Value *Factor = nullptr;
452   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
453 
454   if (isMpy) {
455     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
456       Factor = Opnd0_0;
457     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
458       Factor = Opnd0_1;
459 
460     if (Factor) {
461       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
462       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
463     }
464   } else if (Opnd0_1 == Opnd1_1) {
465     Factor = Opnd0_1;
466     AddSub0 = Opnd0_0;
467     AddSub1 = Opnd1_0;
468   }
469 
470   if (!Factor)
471     return nullptr;
472 
473   FastMathFlags Flags;
474   Flags.setUnsafeAlgebra();
475   if (I0) Flags &= I->getFastMathFlags();
476   if (I1) Flags &= I->getFastMathFlags();
477 
478   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
479   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
480                       createFAdd(AddSub0, AddSub1) :
481                       createFSub(AddSub0, AddSub1);
482   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
483     const APFloat &F = CFP->getValueAPF();
484     if (!F.isNormal())
485       return nullptr;
486   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
487     II->setFastMathFlags(Flags);
488 
489   if (isMpy) {
490     Value *RI = createFMul(Factor, NewAddSub);
491     if (Instruction *II = dyn_cast<Instruction>(RI))
492       II->setFastMathFlags(Flags);
493     return RI;
494   }
495 
496   Value *RI = createFDiv(NewAddSub, Factor);
497   if (Instruction *II = dyn_cast<Instruction>(RI))
498     II->setFastMathFlags(Flags);
499   return RI;
500 }
501 
502 Value *FAddCombine::simplify(Instruction *I) {
503   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
504 
505   // Currently we are not able to handle vector type.
506   if (I->getType()->isVectorTy())
507     return nullptr;
508 
509   assert((I->getOpcode() == Instruction::FAdd ||
510           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
511 
512   // Save the instruction before calling other member-functions.
513   Instr = I;
514 
515   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
516 
517   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
518 
519   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
520   unsigned Opnd0_ExpNum = 0;
521   unsigned Opnd1_ExpNum = 0;
522 
523   if (!Opnd0.isConstant())
524     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
525 
526   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
527   if (OpndNum == 2 && !Opnd1.isConstant())
528     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
529 
530   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
531   if (Opnd0_ExpNum && Opnd1_ExpNum) {
532     AddendVect AllOpnds;
533     AllOpnds.push_back(&Opnd0_0);
534     AllOpnds.push_back(&Opnd1_0);
535     if (Opnd0_ExpNum == 2)
536       AllOpnds.push_back(&Opnd0_1);
537     if (Opnd1_ExpNum == 2)
538       AllOpnds.push_back(&Opnd1_1);
539 
540     // Compute instruction quota. We should save at least one instruction.
541     unsigned InstQuota = 0;
542 
543     Value *V0 = I->getOperand(0);
544     Value *V1 = I->getOperand(1);
545     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
546                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
547 
548     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
549       return R;
550   }
551 
552   if (OpndNum != 2) {
553     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
554     // splitted into two addends, say "V = X - Y", the instruction would have
555     // been optimized into "I = Y - X" in the previous steps.
556     //
557     const FAddendCoef &CE = Opnd0.getCoef();
558     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
559   }
560 
561   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
562   if (Opnd1_ExpNum) {
563     AddendVect AllOpnds;
564     AllOpnds.push_back(&Opnd0);
565     AllOpnds.push_back(&Opnd1_0);
566     if (Opnd1_ExpNum == 2)
567       AllOpnds.push_back(&Opnd1_1);
568 
569     if (Value *R = simplifyFAdd(AllOpnds, 1))
570       return R;
571   }
572 
573   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
574   if (Opnd0_ExpNum) {
575     AddendVect AllOpnds;
576     AllOpnds.push_back(&Opnd1);
577     AllOpnds.push_back(&Opnd0_0);
578     if (Opnd0_ExpNum == 2)
579       AllOpnds.push_back(&Opnd0_1);
580 
581     if (Value *R = simplifyFAdd(AllOpnds, 1))
582       return R;
583   }
584 
585   // step 6: Try factorization as the last resort,
586   return performFactorization(I);
587 }
588 
589 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
590   unsigned AddendNum = Addends.size();
591   assert(AddendNum <= 4 && "Too many addends");
592 
593   // For saving intermediate results;
594   unsigned NextTmpIdx = 0;
595   FAddend TmpResult[3];
596 
597   // Points to the constant addend of the resulting simplified expression.
598   // If the resulting expr has constant-addend, this constant-addend is
599   // desirable to reside at the top of the resulting expression tree. Placing
600   // constant close to supper-expr(s) will potentially reveal some optimization
601   // opportunities in super-expr(s).
602   //
603   const FAddend *ConstAdd = nullptr;
604 
605   // Simplified addends are placed <SimpVect>.
606   AddendVect SimpVect;
607 
608   // The outer loop works on one symbolic-value at a time. Suppose the input
609   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
610   // The symbolic-values will be processed in this order: x, y, z.
611   //
612   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
613 
614     const FAddend *ThisAddend = Addends[SymIdx];
615     if (!ThisAddend) {
616       // This addend was processed before.
617       continue;
618     }
619 
620     Value *Val = ThisAddend->getSymVal();
621     unsigned StartIdx = SimpVect.size();
622     SimpVect.push_back(ThisAddend);
623 
624     // The inner loop collects addends sharing same symbolic-value, and these
625     // addends will be later on folded into a single addend. Following above
626     // example, if the symbolic value "y" is being processed, the inner loop
627     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
628     // be later on folded into "<b1+b2, y>".
629     //
630     for (unsigned SameSymIdx = SymIdx + 1;
631          SameSymIdx < AddendNum; SameSymIdx++) {
632       const FAddend *T = Addends[SameSymIdx];
633       if (T && T->getSymVal() == Val) {
634         // Set null such that next iteration of the outer loop will not process
635         // this addend again.
636         Addends[SameSymIdx] = nullptr;
637         SimpVect.push_back(T);
638       }
639     }
640 
641     // If multiple addends share same symbolic value, fold them together.
642     if (StartIdx + 1 != SimpVect.size()) {
643       FAddend &R = TmpResult[NextTmpIdx ++];
644       R = *SimpVect[StartIdx];
645       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
646         R += *SimpVect[Idx];
647 
648       // Pop all addends being folded and push the resulting folded addend.
649       SimpVect.resize(StartIdx);
650       if (Val) {
651         if (!R.isZero()) {
652           SimpVect.push_back(&R);
653         }
654       } else {
655         // Don't push constant addend at this time. It will be the last element
656         // of <SimpVect>.
657         ConstAdd = &R;
658       }
659     }
660   }
661 
662   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
663          "out-of-bound access");
664 
665   if (ConstAdd)
666     SimpVect.push_back(ConstAdd);
667 
668   Value *Result;
669   if (!SimpVect.empty())
670     Result = createNaryFAdd(SimpVect, InstrQuota);
671   else {
672     // The addition is folded to 0.0.
673     Result = ConstantFP::get(Instr->getType(), 0.0);
674   }
675 
676   return Result;
677 }
678 
679 Value *FAddCombine::createNaryFAdd
680   (const AddendVect &Opnds, unsigned InstrQuota) {
681   assert(!Opnds.empty() && "Expect at least one addend");
682 
683   // Step 1: Check if the # of instructions needed exceeds the quota.
684   //
685   unsigned InstrNeeded = calcInstrNumber(Opnds);
686   if (InstrNeeded > InstrQuota)
687     return nullptr;
688 
689   initCreateInstNum();
690 
691   // step 2: Emit the N-ary addition.
692   // Note that at most three instructions are involved in Fadd-InstCombine: the
693   // addition in question, and at most two neighboring instructions.
694   // The resulting optimized addition should have at least one less instruction
695   // than the original addition expression tree. This implies that the resulting
696   // N-ary addition has at most two instructions, and we don't need to worry
697   // about tree-height when constructing the N-ary addition.
698 
699   Value *LastVal = nullptr;
700   bool LastValNeedNeg = false;
701 
702   // Iterate the addends, creating fadd/fsub using adjacent two addends.
703   for (const FAddend *Opnd : Opnds) {
704     bool NeedNeg;
705     Value *V = createAddendVal(*Opnd, NeedNeg);
706     if (!LastVal) {
707       LastVal = V;
708       LastValNeedNeg = NeedNeg;
709       continue;
710     }
711 
712     if (LastValNeedNeg == NeedNeg) {
713       LastVal = createFAdd(LastVal, V);
714       continue;
715     }
716 
717     if (LastValNeedNeg)
718       LastVal = createFSub(V, LastVal);
719     else
720       LastVal = createFSub(LastVal, V);
721 
722     LastValNeedNeg = false;
723   }
724 
725   if (LastValNeedNeg) {
726     LastVal = createFNeg(LastVal);
727   }
728 
729   #ifndef NDEBUG
730     assert(CreateInstrNum == InstrNeeded &&
731            "Inconsistent in instruction numbers");
732   #endif
733 
734   return LastVal;
735 }
736 
737 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
738   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
739   if (Instruction *I = dyn_cast<Instruction>(V))
740     createInstPostProc(I);
741   return V;
742 }
743 
744 Value *FAddCombine::createFNeg(Value *V) {
745   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
746   Value *NewV = createFSub(Zero, V);
747   if (Instruction *I = dyn_cast<Instruction>(NewV))
748     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
749   return NewV;
750 }
751 
752 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
753   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
754   if (Instruction *I = dyn_cast<Instruction>(V))
755     createInstPostProc(I);
756   return V;
757 }
758 
759 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
760   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
761   if (Instruction *I = dyn_cast<Instruction>(V))
762     createInstPostProc(I);
763   return V;
764 }
765 
766 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
767   Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
768   if (Instruction *I = dyn_cast<Instruction>(V))
769     createInstPostProc(I);
770   return V;
771 }
772 
773 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
774   NewInstr->setDebugLoc(Instr->getDebugLoc());
775 
776   // Keep track of the number of instruction created.
777   if (!NoNumber)
778     incCreateInstNum();
779 
780   // Propagate fast-math flags
781   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
782 }
783 
784 // Return the number of instruction needed to emit the N-ary addition.
785 // NOTE: Keep this function in sync with createAddendVal().
786 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
787   unsigned OpndNum = Opnds.size();
788   unsigned InstrNeeded = OpndNum - 1;
789 
790   // The number of addends in the form of "(-1)*x".
791   unsigned NegOpndNum = 0;
792 
793   // Adjust the number of instructions needed to emit the N-ary add.
794   for (const FAddend *Opnd : Opnds) {
795     if (Opnd->isConstant())
796       continue;
797 
798     // The constant check above is really for a few special constant
799     // coefficients.
800     if (isa<UndefValue>(Opnd->getSymVal()))
801       continue;
802 
803     const FAddendCoef &CE = Opnd->getCoef();
804     if (CE.isMinusOne() || CE.isMinusTwo())
805       NegOpndNum++;
806 
807     // Let the addend be "c * x". If "c == +/-1", the value of the addend
808     // is immediately available; otherwise, it needs exactly one instruction
809     // to evaluate the value.
810     if (!CE.isMinusOne() && !CE.isOne())
811       InstrNeeded++;
812   }
813   if (NegOpndNum == OpndNum)
814     InstrNeeded++;
815   return InstrNeeded;
816 }
817 
818 // Input Addend        Value           NeedNeg(output)
819 // ================================================================
820 // Constant C          C               false
821 // <+/-1, V>           V               coefficient is -1
822 // <2/-2, V>          "fadd V, V"      coefficient is -2
823 // <C, V>             "fmul V, C"      false
824 //
825 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
826 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
827   const FAddendCoef &Coeff = Opnd.getCoef();
828 
829   if (Opnd.isConstant()) {
830     NeedNeg = false;
831     return Coeff.getValue(Instr->getType());
832   }
833 
834   Value *OpndVal = Opnd.getSymVal();
835 
836   if (Coeff.isMinusOne() || Coeff.isOne()) {
837     NeedNeg = Coeff.isMinusOne();
838     return OpndVal;
839   }
840 
841   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
842     NeedNeg = Coeff.isMinusTwo();
843     return createFAdd(OpndVal, OpndVal);
844   }
845 
846   NeedNeg = false;
847   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
848 }
849 
850 /// \brief Return true if we can prove that:
851 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
852 /// This basically requires proving that the add in the original type would not
853 /// overflow to change the sign bit or have a carry out.
854 /// TODO: Handle this for Vectors.
855 bool InstCombiner::willNotOverflowSignedSub(const Value *LHS,
856                                             const Value *RHS,
857                                             const Instruction &CxtI) const {
858   // If LHS and RHS each have at least two sign bits, the subtraction
859   // cannot overflow.
860   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
861       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
862     return true;
863 
864   KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI);
865 
866   KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI);
867 
868   // Subtraction of two 2's complement numbers having identical signs will
869   // never overflow.
870   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
871       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
872     return true;
873 
874   // TODO: implement logic similar to checkRippleForAdd
875   return false;
876 }
877 
878 /// \brief Return true if we can prove that:
879 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
880 bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS,
881                                               const Value *RHS,
882                                               const Instruction &CxtI) const {
883   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
884   KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
885   KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
886   if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
887     return true;
888 
889   return false;
890 }
891 
892 // Checks if any operand is negative and we can convert add to sub.
893 // This function checks for following negative patterns
894 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
895 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
896 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
897 static Value *checkForNegativeOperand(BinaryOperator &I,
898                                       InstCombiner::BuilderTy &Builder) {
899   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
900 
901   // This function creates 2 instructions to replace ADD, we need at least one
902   // of LHS or RHS to have one use to ensure benefit in transform.
903   if (!LHS->hasOneUse() && !RHS->hasOneUse())
904     return nullptr;
905 
906   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
907   const APInt *C1 = nullptr, *C2 = nullptr;
908 
909   // if ONE is on other side, swap
910   if (match(RHS, m_Add(m_Value(X), m_One())))
911     std::swap(LHS, RHS);
912 
913   if (match(LHS, m_Add(m_Value(X), m_One()))) {
914     // if XOR on other side, swap
915     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
916       std::swap(X, RHS);
917 
918     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
919       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
920       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
921       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
922         Value *NewAnd = Builder.CreateAnd(Z, *C1);
923         return Builder.CreateSub(RHS, NewAnd, "sub");
924       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
925         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
926         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
927         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
928         return Builder.CreateSub(RHS, NewOr, "sub");
929       }
930     }
931   }
932 
933   // Restore LHS and RHS
934   LHS = I.getOperand(0);
935   RHS = I.getOperand(1);
936 
937   // if XOR is on other side, swap
938   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
939     std::swap(LHS, RHS);
940 
941   // C2 is ODD
942   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
943   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
944   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
945     if (C1->countTrailingZeros() == 0)
946       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
947         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
948         return Builder.CreateSub(RHS, NewOr, "sub");
949       }
950   return nullptr;
951 }
952 
953 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
954   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
955   Constant *Op1C;
956   if (!match(Op1, m_Constant(Op1C)))
957     return nullptr;
958 
959   if (Instruction *NV = foldOpWithConstantIntoOperand(Add))
960     return NV;
961 
962   Value *X;
963   // zext(bool) + C -> bool ? C + 1 : C
964   if (match(Op0, m_ZExt(m_Value(X))) &&
965       X->getType()->getScalarSizeInBits() == 1)
966     return SelectInst::Create(X, AddOne(Op1C), Op1);
967 
968   // ~X + C --> (C-1) - X
969   if (match(Op0, m_Not(m_Value(X))))
970     return BinaryOperator::CreateSub(SubOne(Op1C), X);
971 
972   const APInt *C;
973   if (!match(Op1, m_APInt(C)))
974     return nullptr;
975 
976   if (C->isSignMask()) {
977     // If wrapping is not allowed, then the addition must set the sign bit:
978     // X + (signmask) --> X | signmask
979     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
980       return BinaryOperator::CreateOr(Op0, Op1);
981 
982     // If wrapping is allowed, then the addition flips the sign bit of LHS:
983     // X + (signmask) --> X ^ signmask
984     return BinaryOperator::CreateXor(Op0, Op1);
985   }
986 
987   // Is this add the last step in a convoluted sext?
988   // add(zext(xor i16 X, -32768), -32768) --> sext X
989   Type *Ty = Add.getType();
990   const APInt *C2;
991   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
992       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
993     return CastInst::Create(Instruction::SExt, X, Ty);
994 
995   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
996   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
997       C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) {
998     Constant *NewC =
999         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
1000     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
1001   }
1002 
1003   if (C->isOneValue() && Op0->hasOneUse()) {
1004     // add (sext i1 X), 1 --> zext (not X)
1005     // TODO: The smallest IR representation is (select X, 0, 1), and that would
1006     // not require the one-use check. But we need to remove a transform in
1007     // visitSelect and make sure that IR value tracking for select is equal or
1008     // better than for these ops.
1009     if (match(Op0, m_SExt(m_Value(X))) &&
1010         X->getType()->getScalarSizeInBits() == 1)
1011       return new ZExtInst(Builder.CreateNot(X), Ty);
1012 
1013     // Shifts and add used to flip and mask off the low bit:
1014     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
1015     const APInt *C3;
1016     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
1017         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
1018       Value *NotX = Builder.CreateNot(X);
1019       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1020     }
1021   }
1022 
1023   return nullptr;
1024 }
1025 
1026 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1027   bool Changed = SimplifyAssociativeOrCommutative(I);
1028   if (Value *V = SimplifyVectorOp(I))
1029     return replaceInstUsesWith(I, V);
1030 
1031   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1032   if (Value *V =
1033           SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1034                           SQ.getWithInstruction(&I)))
1035     return replaceInstUsesWith(I, V);
1036 
1037    // (A*B)+(A*C) -> A*(B+C) etc
1038   if (Value *V = SimplifyUsingDistributiveLaws(I))
1039     return replaceInstUsesWith(I, V);
1040 
1041   if (Instruction *X = foldAddWithConstant(I))
1042     return X;
1043 
1044   // FIXME: This should be moved into the above helper function to allow these
1045   // transforms for general constant or constant splat vectors.
1046   Type *Ty = I.getType();
1047   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1048     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1049     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1050       unsigned TySizeBits = Ty->getScalarSizeInBits();
1051       const APInt &RHSVal = CI->getValue();
1052       unsigned ExtendAmt = 0;
1053       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1054       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1055       if (XorRHS->getValue() == -RHSVal) {
1056         if (RHSVal.isPowerOf2())
1057           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1058         else if (XorRHS->getValue().isPowerOf2())
1059           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1060       }
1061 
1062       if (ExtendAmt) {
1063         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1064         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1065           ExtendAmt = 0;
1066       }
1067 
1068       if (ExtendAmt) {
1069         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1070         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1071         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1072       }
1073 
1074       // If this is a xor that was canonicalized from a sub, turn it back into
1075       // a sub and fuse this add with it.
1076       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1077         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1078         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1079           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1080                                            XorLHS);
1081       }
1082       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1083       // transform them into (X + (signmask ^ C))
1084       if (XorRHS->getValue().isSignMask())
1085         return BinaryOperator::CreateAdd(XorLHS,
1086                                          ConstantExpr::getXor(XorRHS, CI));
1087     }
1088   }
1089 
1090   if (Ty->isIntOrIntVectorTy(1))
1091     return BinaryOperator::CreateXor(LHS, RHS);
1092 
1093   // X + X --> X << 1
1094   if (LHS == RHS) {
1095     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1096     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1097     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1098     return Shl;
1099   }
1100 
1101   Value *A, *B;
1102   if (match(LHS, m_Neg(m_Value(A)))) {
1103     // -A + -B --> -(A + B)
1104     if (match(RHS, m_Neg(m_Value(B))))
1105       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1106 
1107     // -A + B --> B - A
1108     return BinaryOperator::CreateSub(RHS, A);
1109   }
1110 
1111   // A + -B  -->  A - B
1112   if (match(RHS, m_Neg(m_Value(B))))
1113     return BinaryOperator::CreateSub(LHS, B);
1114 
1115   if (Value *V = checkForNegativeOperand(I, Builder))
1116     return replaceInstUsesWith(I, V);
1117 
1118   // A+B --> A|B iff A and B have no bits set in common.
1119   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1120     return BinaryOperator::CreateOr(LHS, RHS);
1121 
1122   // FIXME: We already did a check for ConstantInt RHS above this.
1123   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1124   // removal.
1125   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1126     // (X & FF00) + xx00  -> (X+xx00) & FF00
1127     Value *X;
1128     ConstantInt *C2;
1129     if (LHS->hasOneUse() &&
1130         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1131         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1132       // See if all bits from the first bit set in the Add RHS up are included
1133       // in the mask.  First, get the rightmost bit.
1134       const APInt &AddRHSV = CRHS->getValue();
1135 
1136       // Form a mask of all bits from the lowest bit added through the top.
1137       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1138 
1139       // See if the and mask includes all of these bits.
1140       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1141 
1142       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1143         // Okay, the xform is safe.  Insert the new add pronto.
1144         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1145         return BinaryOperator::CreateAnd(NewAdd, C2);
1146       }
1147     }
1148   }
1149 
1150   // add (select X 0 (sub n A)) A  -->  select X A n
1151   {
1152     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1153     Value *A = RHS;
1154     if (!SI) {
1155       SI = dyn_cast<SelectInst>(RHS);
1156       A = LHS;
1157     }
1158     if (SI && SI->hasOneUse()) {
1159       Value *TV = SI->getTrueValue();
1160       Value *FV = SI->getFalseValue();
1161       Value *N;
1162 
1163       // Can we fold the add into the argument of the select?
1164       // We check both true and false select arguments for a matching subtract.
1165       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1166         // Fold the add into the true select value.
1167         return SelectInst::Create(SI->getCondition(), N, A);
1168 
1169       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1170         // Fold the add into the false select value.
1171         return SelectInst::Create(SI->getCondition(), A, N);
1172     }
1173   }
1174 
1175   // Check for (add (sext x), y), see if we can merge this into an
1176   // integer add followed by a sext.
1177   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1178     // (add (sext x), cst) --> (sext (add x, cst'))
1179     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1180       if (LHSConv->hasOneUse()) {
1181         Constant *CI =
1182             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1183         if (ConstantExpr::getSExt(CI, Ty) == RHSC &&
1184             willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1185           // Insert the new, smaller add.
1186           Value *NewAdd =
1187               Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1188           return new SExtInst(NewAdd, Ty);
1189         }
1190       }
1191     }
1192 
1193     // (add (sext x), (sext y)) --> (sext (add int x, y))
1194     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1195       // Only do this if x/y have the same type, if at least one of them has a
1196       // single use (so we don't increase the number of sexts), and if the
1197       // integer add will not overflow.
1198       if (LHSConv->getOperand(0)->getType() ==
1199               RHSConv->getOperand(0)->getType() &&
1200           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1201           willNotOverflowSignedAdd(LHSConv->getOperand(0),
1202                                    RHSConv->getOperand(0), I)) {
1203         // Insert the new integer add.
1204         Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
1205                                              RHSConv->getOperand(0), "addconv");
1206         return new SExtInst(NewAdd, Ty);
1207       }
1208     }
1209   }
1210 
1211   // Check for (add (zext x), y), see if we can merge this into an
1212   // integer add followed by a zext.
1213   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1214     // (add (zext x), cst) --> (zext (add x, cst'))
1215     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1216       if (LHSConv->hasOneUse()) {
1217         Constant *CI =
1218             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1219         if (ConstantExpr::getZExt(CI, Ty) == RHSC &&
1220             willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
1221           // Insert the new, smaller add.
1222           Value *NewAdd =
1223               Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1224           return new ZExtInst(NewAdd, Ty);
1225         }
1226       }
1227     }
1228 
1229     // (add (zext x), (zext y)) --> (zext (add int x, y))
1230     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1231       // Only do this if x/y have the same type, if at least one of them has a
1232       // single use (so we don't increase the number of zexts), and if the
1233       // integer add will not overflow.
1234       if (LHSConv->getOperand(0)->getType() ==
1235               RHSConv->getOperand(0)->getType() &&
1236           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1237           willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
1238                                      RHSConv->getOperand(0), I)) {
1239         // Insert the new integer add.
1240         Value *NewAdd = Builder.CreateNUWAdd(
1241             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1242         return new ZExtInst(NewAdd, Ty);
1243       }
1244     }
1245   }
1246 
1247   // (add (xor A, B) (and A, B)) --> (or A, B)
1248   if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1249       match(RHS, m_c_And(m_Specific(A), m_Specific(B))))
1250     return BinaryOperator::CreateOr(A, B);
1251 
1252   // (add (and A, B) (xor A, B)) --> (or A, B)
1253   if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1254       match(LHS, m_c_And(m_Specific(A), m_Specific(B))))
1255     return BinaryOperator::CreateOr(A, B);
1256 
1257   // (add (or A, B) (and A, B)) --> (add A, B)
1258   if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1259       match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1260     I.setOperand(0, A);
1261     I.setOperand(1, B);
1262     return &I;
1263   }
1264 
1265   // (add (and A, B) (or A, B)) --> (add A, B)
1266   if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1267       match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1268     I.setOperand(0, A);
1269     I.setOperand(1, B);
1270     return &I;
1271   }
1272 
1273   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1274   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1275   // computeKnownBits.
1276   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1277     Changed = true;
1278     I.setHasNoSignedWrap(true);
1279   }
1280   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1281     Changed = true;
1282     I.setHasNoUnsignedWrap(true);
1283   }
1284 
1285   return Changed ? &I : nullptr;
1286 }
1287 
1288 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1289   bool Changed = SimplifyAssociativeOrCommutative(I);
1290   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1291 
1292   if (Value *V = SimplifyVectorOp(I))
1293     return replaceInstUsesWith(I, V);
1294 
1295   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(),
1296                                   SQ.getWithInstruction(&I)))
1297     return replaceInstUsesWith(I, V);
1298 
1299   if (isa<Constant>(RHS))
1300     if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I))
1301       return FoldedFAdd;
1302 
1303   // -A + B  -->  B - A
1304   // -A + -B  -->  -(A + B)
1305   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1306     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1307     RI->copyFastMathFlags(&I);
1308     return RI;
1309   }
1310 
1311   // A + -B  -->  A - B
1312   if (!isa<Constant>(RHS))
1313     if (Value *V = dyn_castFNegVal(RHS)) {
1314       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1315       RI->copyFastMathFlags(&I);
1316       return RI;
1317     }
1318 
1319   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1320   // integer add followed by a promotion.
1321   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1322     Value *LHSIntVal = LHSConv->getOperand(0);
1323     Type *FPType = LHSConv->getType();
1324 
1325     // TODO: This check is overly conservative. In many cases known bits
1326     // analysis can tell us that the result of the addition has less significant
1327     // bits than the integer type can hold.
1328     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1329       Type *FScalarTy = FTy->getScalarType();
1330       Type *IScalarTy = ITy->getScalarType();
1331 
1332       // Do we have enough bits in the significand to represent the result of
1333       // the integer addition?
1334       unsigned MaxRepresentableBits =
1335           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1336       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1337     };
1338 
1339     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1340     // ... if the constant fits in the integer value.  This is useful for things
1341     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1342     // requires a constant pool load, and generally allows the add to be better
1343     // instcombined.
1344     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1345       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1346         Constant *CI =
1347           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1348         if (LHSConv->hasOneUse() &&
1349             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1350             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1351           // Insert the new integer add.
1352           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1353           return new SIToFPInst(NewAdd, I.getType());
1354         }
1355       }
1356 
1357     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1358     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1359       Value *RHSIntVal = RHSConv->getOperand(0);
1360       // It's enough to check LHS types only because we require int types to
1361       // be the same for this transform.
1362       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1363         // Only do this if x/y have the same type, if at least one of them has a
1364         // single use (so we don't increase the number of int->fp conversions),
1365         // and if the integer add will not overflow.
1366         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1367             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1368             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1369           // Insert the new integer add.
1370           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1371           return new SIToFPInst(NewAdd, I.getType());
1372         }
1373       }
1374     }
1375   }
1376 
1377   // Handle specials cases for FAdd with selects feeding the operation
1378   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1379     return replaceInstUsesWith(I, V);
1380 
1381   if (I.hasUnsafeAlgebra()) {
1382     if (Value *V = FAddCombine(Builder).simplify(&I))
1383       return replaceInstUsesWith(I, V);
1384   }
1385 
1386   return Changed ? &I : nullptr;
1387 }
1388 
1389 /// Optimize pointer differences into the same array into a size.  Consider:
1390 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1391 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1392 ///
1393 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1394                                                Type *Ty) {
1395   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1396   // this.
1397   bool Swapped = false;
1398   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1399 
1400   // For now we require one side to be the base pointer "A" or a constant
1401   // GEP derived from it.
1402   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1403     // (gep X, ...) - X
1404     if (LHSGEP->getOperand(0) == RHS) {
1405       GEP1 = LHSGEP;
1406       Swapped = false;
1407     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1408       // (gep X, ...) - (gep X, ...)
1409       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1410             RHSGEP->getOperand(0)->stripPointerCasts()) {
1411         GEP2 = RHSGEP;
1412         GEP1 = LHSGEP;
1413         Swapped = false;
1414       }
1415     }
1416   }
1417 
1418   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1419     // X - (gep X, ...)
1420     if (RHSGEP->getOperand(0) == LHS) {
1421       GEP1 = RHSGEP;
1422       Swapped = true;
1423     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1424       // (gep X, ...) - (gep X, ...)
1425       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1426             LHSGEP->getOperand(0)->stripPointerCasts()) {
1427         GEP2 = LHSGEP;
1428         GEP1 = RHSGEP;
1429         Swapped = true;
1430       }
1431     }
1432   }
1433 
1434   if (!GEP1)
1435     // No GEP found.
1436     return nullptr;
1437 
1438   if (GEP2) {
1439     // (gep X, ...) - (gep X, ...)
1440     //
1441     // Avoid duplicating the arithmetic if there are more than one non-constant
1442     // indices between the two GEPs and either GEP has a non-constant index and
1443     // multiple users. If zero non-constant index, the result is a constant and
1444     // there is no duplication. If one non-constant index, the result is an add
1445     // or sub with a constant, which is no larger than the original code, and
1446     // there's no duplicated arithmetic, even if either GEP has multiple
1447     // users. If more than one non-constant indices combined, as long as the GEP
1448     // with at least one non-constant index doesn't have multiple users, there
1449     // is no duplication.
1450     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1451     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1452     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1453         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1454          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1455       return nullptr;
1456     }
1457   }
1458 
1459   // Emit the offset of the GEP and an intptr_t.
1460   Value *Result = EmitGEPOffset(GEP1);
1461 
1462   // If we had a constant expression GEP on the other side offsetting the
1463   // pointer, subtract it from the offset we have.
1464   if (GEP2) {
1465     Value *Offset = EmitGEPOffset(GEP2);
1466     Result = Builder.CreateSub(Result, Offset);
1467   }
1468 
1469   // If we have p - gep(p, ...)  then we have to negate the result.
1470   if (Swapped)
1471     Result = Builder.CreateNeg(Result, "diff.neg");
1472 
1473   return Builder.CreateIntCast(Result, Ty, true);
1474 }
1475 
1476 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1477   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1478 
1479   if (Value *V = SimplifyVectorOp(I))
1480     return replaceInstUsesWith(I, V);
1481 
1482   if (Value *V =
1483           SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1484                           SQ.getWithInstruction(&I)))
1485     return replaceInstUsesWith(I, V);
1486 
1487   // (A*B)-(A*C) -> A*(B-C) etc
1488   if (Value *V = SimplifyUsingDistributiveLaws(I))
1489     return replaceInstUsesWith(I, V);
1490 
1491   // If this is a 'B = x-(-A)', change to B = x+A.
1492   if (Value *V = dyn_castNegVal(Op1)) {
1493     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1494 
1495     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1496       assert(BO->getOpcode() == Instruction::Sub &&
1497              "Expected a subtraction operator!");
1498       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1499         Res->setHasNoSignedWrap(true);
1500     } else {
1501       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1502         Res->setHasNoSignedWrap(true);
1503     }
1504 
1505     return Res;
1506   }
1507 
1508   if (I.getType()->isIntOrIntVectorTy(1))
1509     return BinaryOperator::CreateXor(Op0, Op1);
1510 
1511   // Replace (-1 - A) with (~A).
1512   if (match(Op0, m_AllOnes()))
1513     return BinaryOperator::CreateNot(Op1);
1514 
1515   if (Constant *C = dyn_cast<Constant>(Op0)) {
1516     // C - ~X == X + (1+C)
1517     Value *X = nullptr;
1518     if (match(Op1, m_Not(m_Value(X))))
1519       return BinaryOperator::CreateAdd(X, AddOne(C));
1520 
1521     // Try to fold constant sub into select arguments.
1522     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1523       if (Instruction *R = FoldOpIntoSelect(I, SI))
1524         return R;
1525 
1526     // Try to fold constant sub into PHI values.
1527     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1528       if (Instruction *R = foldOpIntoPhi(I, PN))
1529         return R;
1530 
1531     // C-(X+C2) --> (C-C2)-X
1532     Constant *C2;
1533     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1534       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1535 
1536     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1537     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1538       if (X->getType()->isIntOrIntVectorTy(1))
1539         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1540 
1541     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1542     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1543       if (X->getType()->isIntOrIntVectorTy(1))
1544         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1545   }
1546 
1547   const APInt *Op0C;
1548   if (match(Op0, m_APInt(Op0C))) {
1549     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1550 
1551     // -(X >>u 31) -> (X >>s 31)
1552     // -(X >>s 31) -> (X >>u 31)
1553     if (Op0C->isNullValue()) {
1554       Value *X;
1555       const APInt *ShAmt;
1556       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1557           *ShAmt == BitWidth - 1) {
1558         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1559         return BinaryOperator::CreateAShr(X, ShAmtOp);
1560       }
1561       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1562           *ShAmt == BitWidth - 1) {
1563         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1564         return BinaryOperator::CreateLShr(X, ShAmtOp);
1565       }
1566     }
1567 
1568     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1569     // zero.
1570     if (Op0C->isMask()) {
1571       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1572       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1573         return BinaryOperator::CreateXor(Op1, Op0);
1574     }
1575   }
1576 
1577   {
1578     Value *Y;
1579     // X-(X+Y) == -Y    X-(Y+X) == -Y
1580     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1581       return BinaryOperator::CreateNeg(Y);
1582 
1583     // (X-Y)-X == -Y
1584     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1585       return BinaryOperator::CreateNeg(Y);
1586   }
1587 
1588   // (sub (or A, B), (xor A, B)) --> (and A, B)
1589   {
1590     Value *A, *B;
1591     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1592         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1593       return BinaryOperator::CreateAnd(A, B);
1594   }
1595 
1596   {
1597     Value *Y;
1598     // ((X | Y) - X) --> (~X & Y)
1599     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1600       return BinaryOperator::CreateAnd(
1601           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1602   }
1603 
1604   if (Op1->hasOneUse()) {
1605     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1606     Constant *C = nullptr;
1607 
1608     // (X - (Y - Z))  -->  (X + (Z - Y)).
1609     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1610       return BinaryOperator::CreateAdd(Op0,
1611                                       Builder.CreateSub(Z, Y, Op1->getName()));
1612 
1613     // (X - (X & Y))   -->   (X & ~Y)
1614     //
1615     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1616       return BinaryOperator::CreateAnd(Op0,
1617                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1618 
1619     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1620     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1621         C->isNotMinSignedValue() && !C->isOneValue())
1622       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1623 
1624     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1625     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1626       if (Value *XNeg = dyn_castNegVal(X))
1627         return BinaryOperator::CreateShl(XNeg, Y);
1628 
1629     // Subtracting -1/0 is the same as adding 1/0:
1630     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1631     // 'nuw' is dropped in favor of the canonical form.
1632     if (match(Op1, m_SExt(m_Value(Y))) &&
1633         Y->getType()->getScalarSizeInBits() == 1) {
1634       Value *Zext = Builder.CreateZExt(Y, I.getType());
1635       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1636       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1637       return Add;
1638     }
1639 
1640     // X - A*-B -> X + A*B
1641     // X - -A*B -> X + A*B
1642     Value *A, *B;
1643     Constant *CI;
1644     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1645       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1646 
1647     // X - A*CI -> X + A*-CI
1648     // No need to handle commuted multiply because multiply handling will
1649     // ensure constant will be move to the right hand side.
1650     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1651       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
1652       return BinaryOperator::CreateAdd(Op0, NewMul);
1653     }
1654   }
1655 
1656   // Optimize pointer differences into the same array into a size.  Consider:
1657   //  &A[10] - &A[0]: we should compile this to "10".
1658   Value *LHSOp, *RHSOp;
1659   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1660       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1661     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1662       return replaceInstUsesWith(I, Res);
1663 
1664   // trunc(p)-trunc(q) -> trunc(p-q)
1665   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1666       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1667     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1668       return replaceInstUsesWith(I, Res);
1669 
1670   bool Changed = false;
1671   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1672     Changed = true;
1673     I.setHasNoSignedWrap(true);
1674   }
1675   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1676     Changed = true;
1677     I.setHasNoUnsignedWrap(true);
1678   }
1679 
1680   return Changed ? &I : nullptr;
1681 }
1682 
1683 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1684   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1685 
1686   if (Value *V = SimplifyVectorOp(I))
1687     return replaceInstUsesWith(I, V);
1688 
1689   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(),
1690                                   SQ.getWithInstruction(&I)))
1691     return replaceInstUsesWith(I, V);
1692 
1693   // fsub nsz 0, X ==> fsub nsz -0.0, X
1694   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1695     // Subtraction from -0.0 is the canonical form of fneg.
1696     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1697     NewI->copyFastMathFlags(&I);
1698     return NewI;
1699   }
1700 
1701   if (isa<Constant>(Op0))
1702     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1703       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1704         return NV;
1705 
1706   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1707   // through FP extensions/truncations along the way.
1708   if (Value *V = dyn_castFNegVal(Op1)) {
1709     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1710     NewI->copyFastMathFlags(&I);
1711     return NewI;
1712   }
1713   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1714     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1715       Value *NewTrunc = Builder.CreateFPTrunc(V, I.getType());
1716       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1717       NewI->copyFastMathFlags(&I);
1718       return NewI;
1719     }
1720   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1721     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1722       Value *NewExt = Builder.CreateFPExt(V, I.getType());
1723       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1724       NewI->copyFastMathFlags(&I);
1725       return NewI;
1726     }
1727   }
1728 
1729   // Handle specials cases for FSub with selects feeding the operation
1730   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1731     return replaceInstUsesWith(I, V);
1732 
1733   if (I.hasUnsafeAlgebra()) {
1734     if (Value *V = FAddCombine(Builder).simplify(&I))
1735       return replaceInstUsesWith(I, V);
1736   }
1737 
1738   return nullptr;
1739 }
1740