1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 namespace {
28 
29   /// Class representing coefficient of floating-point addend.
30   /// This class needs to be highly efficient, which is especially true for
31   /// the constructor. As of I write this comment, the cost of the default
32   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
33   /// perform write-merging).
34   ///
35   class FAddendCoef {
36   public:
37     // The constructor has to initialize a APFloat, which is unnecessary for
38     // most addends which have coefficient either 1 or -1. So, the constructor
39     // is expensive. In order to avoid the cost of the constructor, we should
40     // reuse some instances whenever possible. The pre-created instances
41     // FAddCombine::Add[0-5] embodies this idea.
42     //
43     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
44     ~FAddendCoef();
45 
46     void set(short C) {
47       assert(!insaneIntVal(C) && "Insane coefficient");
48       IsFp = false; IntVal = C;
49     }
50 
51     void set(const APFloat& C);
52 
53     void negate();
54 
55     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
56     Value *getValue(Type *) const;
57 
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     bool isOne() const { return isInt() && IntVal == 1; }
65     bool isTwo() const { return isInt() && IntVal == 2; }
66     bool isMinusOne() const { return isInt() && IntVal == -1; }
67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
68 
69   private:
70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
71     APFloat *getFpValPtr()
72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
73     const APFloat *getFpValPtr() const
74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
75 
76     const APFloat &getFpVal() const {
77       assert(IsFp && BufHasFpVal && "Incorret state");
78       return *getFpValPtr();
79     }
80 
81     APFloat &getFpVal() {
82       assert(IsFp && BufHasFpVal && "Incorret state");
83       return *getFpValPtr();
84     }
85 
86     bool isInt() const { return !IsFp; }
87 
88     // If the coefficient is represented by an integer, promote it to a
89     // floating point.
90     void convertToFpType(const fltSemantics &Sem);
91 
92     // Construct an APFloat from a signed integer.
93     // TODO: We should get rid of this function when APFloat can be constructed
94     //       from an *SIGNED* integer.
95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
96 
97   private:
98     bool IsFp;
99 
100     // True iff FpValBuf contains an instance of APFloat.
101     bool BufHasFpVal;
102 
103     // The integer coefficient of an individual addend is either 1 or -1,
104     // and we try to simplify at most 4 addends from neighboring at most
105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
106     // is overkill of this end.
107     short IntVal;
108 
109     AlignedCharArrayUnion<APFloat> FpValBuf;
110   };
111 
112   /// FAddend is used to represent floating-point addend. An addend is
113   /// represented as <C, V>, where the V is a symbolic value, and C is a
114   /// constant coefficient. A constant addend is represented as <C, 0>.
115   ///
116   class FAddend {
117   public:
118     FAddend() : Val(nullptr) {}
119 
120     Value *getSymVal() const { return Val; }
121     const FAddendCoef &getCoef() const { return Coeff; }
122 
123     bool isConstant() const { return Val == nullptr; }
124     bool isZero() const { return Coeff.isZero(); }
125 
126     void set(short Coefficient, Value *V) {
127       Coeff.set(Coefficient);
128       Val = V;
129     }
130     void set(const APFloat &Coefficient, Value *V) {
131       Coeff.set(Coefficient);
132       Val = V;
133     }
134     void set(const ConstantFP *Coefficient, Value *V) {
135       Coeff.set(Coefficient->getValueAPF());
136       Val = V;
137     }
138 
139     void negate() { Coeff.negate(); }
140 
141     /// Drill down the U-D chain one step to find the definition of V, and
142     /// try to break the definition into one or two addends.
143     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
144 
145     /// Similar to FAddend::drillDownOneStep() except that the value being
146     /// splitted is the addend itself.
147     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
148 
149     void operator+=(const FAddend &T) {
150       assert((Val == T.Val) && "Symbolic-values disagree");
151       Coeff += T.Coeff;
152     }
153 
154   private:
155     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
156 
157     // This addend has the value of "Coeff * Val".
158     Value *Val;
159     FAddendCoef Coeff;
160   };
161 
162   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
163   /// with its neighboring at most two instructions.
164   ///
165   class FAddCombine {
166   public:
167     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B), Instr(nullptr) {}
168     Value *simplify(Instruction *FAdd);
169 
170   private:
171     typedef SmallVector<const FAddend*, 4> AddendVect;
172 
173     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
174 
175     Value *performFactorization(Instruction *I);
176 
177     /// Convert given addend to a Value
178     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
179 
180     /// Return the number of instructions needed to emit the N-ary addition.
181     unsigned calcInstrNumber(const AddendVect& Vect);
182     Value *createFSub(Value *Opnd0, Value *Opnd1);
183     Value *createFAdd(Value *Opnd0, Value *Opnd1);
184     Value *createFMul(Value *Opnd0, Value *Opnd1);
185     Value *createFDiv(Value *Opnd0, Value *Opnd1);
186     Value *createFNeg(Value *V);
187     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
188     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
189 
190     InstCombiner::BuilderTy &Builder;
191     Instruction *Instr;
192 
193      // Debugging stuff are clustered here.
194     #ifndef NDEBUG
195       unsigned CreateInstrNum;
196       void initCreateInstNum() { CreateInstrNum = 0; }
197       void incCreateInstNum() { CreateInstrNum++; }
198     #else
199       void initCreateInstNum() {}
200       void incCreateInstNum() {}
201     #endif
202   };
203 
204 } // anonymous namespace
205 
206 //===----------------------------------------------------------------------===//
207 //
208 // Implementation of
209 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
210 //
211 //===----------------------------------------------------------------------===//
212 FAddendCoef::~FAddendCoef() {
213   if (BufHasFpVal)
214     getFpValPtr()->~APFloat();
215 }
216 
217 void FAddendCoef::set(const APFloat& C) {
218   APFloat *P = getFpValPtr();
219 
220   if (isInt()) {
221     // As the buffer is meanless byte stream, we cannot call
222     // APFloat::operator=().
223     new(P) APFloat(C);
224   } else
225     *P = C;
226 
227   IsFp = BufHasFpVal = true;
228 }
229 
230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
231   if (!isInt())
232     return;
233 
234   APFloat *P = getFpValPtr();
235   if (IntVal > 0)
236     new(P) APFloat(Sem, IntVal);
237   else {
238     new(P) APFloat(Sem, 0 - IntVal);
239     P->changeSign();
240   }
241   IsFp = BufHasFpVal = true;
242 }
243 
244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
245   if (Val >= 0)
246     return APFloat(Sem, Val);
247 
248   APFloat T(Sem, 0 - Val);
249   T.changeSign();
250 
251   return T;
252 }
253 
254 void FAddendCoef::operator=(const FAddendCoef &That) {
255   if (That.isInt())
256     set(That.IntVal);
257   else
258     set(That.getFpVal());
259 }
260 
261 void FAddendCoef::operator+=(const FAddendCoef &That) {
262   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
263   if (isInt() == That.isInt()) {
264     if (isInt())
265       IntVal += That.IntVal;
266     else
267       getFpVal().add(That.getFpVal(), RndMode);
268     return;
269   }
270 
271   if (isInt()) {
272     const APFloat &T = That.getFpVal();
273     convertToFpType(T.getSemantics());
274     getFpVal().add(T, RndMode);
275     return;
276   }
277 
278   APFloat &T = getFpVal();
279   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
280 }
281 
282 void FAddendCoef::operator*=(const FAddendCoef &That) {
283   if (That.isOne())
284     return;
285 
286   if (That.isMinusOne()) {
287     negate();
288     return;
289   }
290 
291   if (isInt() && That.isInt()) {
292     int Res = IntVal * (int)That.IntVal;
293     assert(!insaneIntVal(Res) && "Insane int value");
294     IntVal = Res;
295     return;
296   }
297 
298   const fltSemantics &Semantic =
299     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
300 
301   if (isInt())
302     convertToFpType(Semantic);
303   APFloat &F0 = getFpVal();
304 
305   if (That.isInt())
306     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
307                 APFloat::rmNearestTiesToEven);
308   else
309     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
310 }
311 
312 void FAddendCoef::negate() {
313   if (isInt())
314     IntVal = 0 - IntVal;
315   else
316     getFpVal().changeSign();
317 }
318 
319 Value *FAddendCoef::getValue(Type *Ty) const {
320   return isInt() ?
321     ConstantFP::get(Ty, float(IntVal)) :
322     ConstantFP::get(Ty->getContext(), getFpVal());
323 }
324 
325 // The definition of <Val>     Addends
326 // =========================================
327 //  A + B                     <1, A>, <1,B>
328 //  A - B                     <1, A>, <1,B>
329 //  0 - B                     <-1, B>
330 //  C * A,                    <C, A>
331 //  A + C                     <1, A> <C, NULL>
332 //  0 +/- 0                   <0, NULL> (corner case)
333 //
334 // Legend: A and B are not constant, C is constant
335 //
336 unsigned FAddend::drillValueDownOneStep
337   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
338   Instruction *I = nullptr;
339   if (!Val || !(I = dyn_cast<Instruction>(Val)))
340     return 0;
341 
342   unsigned Opcode = I->getOpcode();
343 
344   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
345     ConstantFP *C0, *C1;
346     Value *Opnd0 = I->getOperand(0);
347     Value *Opnd1 = I->getOperand(1);
348     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
349       Opnd0 = nullptr;
350 
351     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
352       Opnd1 = nullptr;
353 
354     if (Opnd0) {
355       if (!C0)
356         Addend0.set(1, Opnd0);
357       else
358         Addend0.set(C0, nullptr);
359     }
360 
361     if (Opnd1) {
362       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
363       if (!C1)
364         Addend.set(1, Opnd1);
365       else
366         Addend.set(C1, nullptr);
367       if (Opcode == Instruction::FSub)
368         Addend.negate();
369     }
370 
371     if (Opnd0 || Opnd1)
372       return Opnd0 && Opnd1 ? 2 : 1;
373 
374     // Both operands are zero. Weird!
375     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
376     return 1;
377   }
378 
379   if (I->getOpcode() == Instruction::FMul) {
380     Value *V0 = I->getOperand(0);
381     Value *V1 = I->getOperand(1);
382     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
383       Addend0.set(C, V1);
384       return 1;
385     }
386 
387     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
388       Addend0.set(C, V0);
389       return 1;
390     }
391   }
392 
393   return 0;
394 }
395 
396 // Try to break *this* addend into two addends. e.g. Suppose this addend is
397 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
398 // i.e. <2.3, X> and <2.3, Y>.
399 //
400 unsigned FAddend::drillAddendDownOneStep
401   (FAddend &Addend0, FAddend &Addend1) const {
402   if (isConstant())
403     return 0;
404 
405   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
406   if (!BreakNum || Coeff.isOne())
407     return BreakNum;
408 
409   Addend0.Scale(Coeff);
410 
411   if (BreakNum == 2)
412     Addend1.Scale(Coeff);
413 
414   return BreakNum;
415 }
416 
417 // Try to perform following optimization on the input instruction I. Return the
418 // simplified expression if was successful; otherwise, return 0.
419 //
420 //   Instruction "I" is                Simplified into
421 // -------------------------------------------------------
422 //   (x * y) +/- (x * z)               x * (y +/- z)
423 //   (y / x) +/- (z / x)               (y +/- z) / x
424 //
425 Value *FAddCombine::performFactorization(Instruction *I) {
426   assert((I->getOpcode() == Instruction::FAdd ||
427           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
428 
429   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
430   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
431 
432   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
433     return nullptr;
434 
435   bool isMpy = false;
436   if (I0->getOpcode() == Instruction::FMul)
437     isMpy = true;
438   else if (I0->getOpcode() != Instruction::FDiv)
439     return nullptr;
440 
441   Value *Opnd0_0 = I0->getOperand(0);
442   Value *Opnd0_1 = I0->getOperand(1);
443   Value *Opnd1_0 = I1->getOperand(0);
444   Value *Opnd1_1 = I1->getOperand(1);
445 
446   //  Input Instr I       Factor   AddSub0  AddSub1
447   //  ----------------------------------------------
448   // (x*y) +/- (x*z)        x        y         z
449   // (y/x) +/- (z/x)        x        y         z
450   //
451   Value *Factor = nullptr;
452   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
453 
454   if (isMpy) {
455     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
456       Factor = Opnd0_0;
457     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
458       Factor = Opnd0_1;
459 
460     if (Factor) {
461       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
462       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
463     }
464   } else if (Opnd0_1 == Opnd1_1) {
465     Factor = Opnd0_1;
466     AddSub0 = Opnd0_0;
467     AddSub1 = Opnd1_0;
468   }
469 
470   if (!Factor)
471     return nullptr;
472 
473   FastMathFlags Flags;
474   Flags.setUnsafeAlgebra();
475   if (I0) Flags &= I->getFastMathFlags();
476   if (I1) Flags &= I->getFastMathFlags();
477 
478   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
479   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
480                       createFAdd(AddSub0, AddSub1) :
481                       createFSub(AddSub0, AddSub1);
482   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
483     const APFloat &F = CFP->getValueAPF();
484     if (!F.isNormal())
485       return nullptr;
486   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
487     II->setFastMathFlags(Flags);
488 
489   if (isMpy) {
490     Value *RI = createFMul(Factor, NewAddSub);
491     if (Instruction *II = dyn_cast<Instruction>(RI))
492       II->setFastMathFlags(Flags);
493     return RI;
494   }
495 
496   Value *RI = createFDiv(NewAddSub, Factor);
497   if (Instruction *II = dyn_cast<Instruction>(RI))
498     II->setFastMathFlags(Flags);
499   return RI;
500 }
501 
502 Value *FAddCombine::simplify(Instruction *I) {
503   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
504 
505   // Currently we are not able to handle vector type.
506   if (I->getType()->isVectorTy())
507     return nullptr;
508 
509   assert((I->getOpcode() == Instruction::FAdd ||
510           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
511 
512   // Save the instruction before calling other member-functions.
513   Instr = I;
514 
515   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
516 
517   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
518 
519   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
520   unsigned Opnd0_ExpNum = 0;
521   unsigned Opnd1_ExpNum = 0;
522 
523   if (!Opnd0.isConstant())
524     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
525 
526   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
527   if (OpndNum == 2 && !Opnd1.isConstant())
528     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
529 
530   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
531   if (Opnd0_ExpNum && Opnd1_ExpNum) {
532     AddendVect AllOpnds;
533     AllOpnds.push_back(&Opnd0_0);
534     AllOpnds.push_back(&Opnd1_0);
535     if (Opnd0_ExpNum == 2)
536       AllOpnds.push_back(&Opnd0_1);
537     if (Opnd1_ExpNum == 2)
538       AllOpnds.push_back(&Opnd1_1);
539 
540     // Compute instruction quota. We should save at least one instruction.
541     unsigned InstQuota = 0;
542 
543     Value *V0 = I->getOperand(0);
544     Value *V1 = I->getOperand(1);
545     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
546                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
547 
548     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
549       return R;
550   }
551 
552   if (OpndNum != 2) {
553     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
554     // splitted into two addends, say "V = X - Y", the instruction would have
555     // been optimized into "I = Y - X" in the previous steps.
556     //
557     const FAddendCoef &CE = Opnd0.getCoef();
558     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
559   }
560 
561   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
562   if (Opnd1_ExpNum) {
563     AddendVect AllOpnds;
564     AllOpnds.push_back(&Opnd0);
565     AllOpnds.push_back(&Opnd1_0);
566     if (Opnd1_ExpNum == 2)
567       AllOpnds.push_back(&Opnd1_1);
568 
569     if (Value *R = simplifyFAdd(AllOpnds, 1))
570       return R;
571   }
572 
573   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
574   if (Opnd0_ExpNum) {
575     AddendVect AllOpnds;
576     AllOpnds.push_back(&Opnd1);
577     AllOpnds.push_back(&Opnd0_0);
578     if (Opnd0_ExpNum == 2)
579       AllOpnds.push_back(&Opnd0_1);
580 
581     if (Value *R = simplifyFAdd(AllOpnds, 1))
582       return R;
583   }
584 
585   // step 6: Try factorization as the last resort,
586   return performFactorization(I);
587 }
588 
589 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
590   unsigned AddendNum = Addends.size();
591   assert(AddendNum <= 4 && "Too many addends");
592 
593   // For saving intermediate results;
594   unsigned NextTmpIdx = 0;
595   FAddend TmpResult[3];
596 
597   // Points to the constant addend of the resulting simplified expression.
598   // If the resulting expr has constant-addend, this constant-addend is
599   // desirable to reside at the top of the resulting expression tree. Placing
600   // constant close to supper-expr(s) will potentially reveal some optimization
601   // opportunities in super-expr(s).
602   //
603   const FAddend *ConstAdd = nullptr;
604 
605   // Simplified addends are placed <SimpVect>.
606   AddendVect SimpVect;
607 
608   // The outer loop works on one symbolic-value at a time. Suppose the input
609   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
610   // The symbolic-values will be processed in this order: x, y, z.
611   //
612   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
613 
614     const FAddend *ThisAddend = Addends[SymIdx];
615     if (!ThisAddend) {
616       // This addend was processed before.
617       continue;
618     }
619 
620     Value *Val = ThisAddend->getSymVal();
621     unsigned StartIdx = SimpVect.size();
622     SimpVect.push_back(ThisAddend);
623 
624     // The inner loop collects addends sharing same symbolic-value, and these
625     // addends will be later on folded into a single addend. Following above
626     // example, if the symbolic value "y" is being processed, the inner loop
627     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
628     // be later on folded into "<b1+b2, y>".
629     //
630     for (unsigned SameSymIdx = SymIdx + 1;
631          SameSymIdx < AddendNum; SameSymIdx++) {
632       const FAddend *T = Addends[SameSymIdx];
633       if (T && T->getSymVal() == Val) {
634         // Set null such that next iteration of the outer loop will not process
635         // this addend again.
636         Addends[SameSymIdx] = nullptr;
637         SimpVect.push_back(T);
638       }
639     }
640 
641     // If multiple addends share same symbolic value, fold them together.
642     if (StartIdx + 1 != SimpVect.size()) {
643       FAddend &R = TmpResult[NextTmpIdx ++];
644       R = *SimpVect[StartIdx];
645       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
646         R += *SimpVect[Idx];
647 
648       // Pop all addends being folded and push the resulting folded addend.
649       SimpVect.resize(StartIdx);
650       if (Val) {
651         if (!R.isZero()) {
652           SimpVect.push_back(&R);
653         }
654       } else {
655         // Don't push constant addend at this time. It will be the last element
656         // of <SimpVect>.
657         ConstAdd = &R;
658       }
659     }
660   }
661 
662   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
663          "out-of-bound access");
664 
665   if (ConstAdd)
666     SimpVect.push_back(ConstAdd);
667 
668   Value *Result;
669   if (!SimpVect.empty())
670     Result = createNaryFAdd(SimpVect, InstrQuota);
671   else {
672     // The addition is folded to 0.0.
673     Result = ConstantFP::get(Instr->getType(), 0.0);
674   }
675 
676   return Result;
677 }
678 
679 Value *FAddCombine::createNaryFAdd
680   (const AddendVect &Opnds, unsigned InstrQuota) {
681   assert(!Opnds.empty() && "Expect at least one addend");
682 
683   // Step 1: Check if the # of instructions needed exceeds the quota.
684   //
685   unsigned InstrNeeded = calcInstrNumber(Opnds);
686   if (InstrNeeded > InstrQuota)
687     return nullptr;
688 
689   initCreateInstNum();
690 
691   // step 2: Emit the N-ary addition.
692   // Note that at most three instructions are involved in Fadd-InstCombine: the
693   // addition in question, and at most two neighboring instructions.
694   // The resulting optimized addition should have at least one less instruction
695   // than the original addition expression tree. This implies that the resulting
696   // N-ary addition has at most two instructions, and we don't need to worry
697   // about tree-height when constructing the N-ary addition.
698 
699   Value *LastVal = nullptr;
700   bool LastValNeedNeg = false;
701 
702   // Iterate the addends, creating fadd/fsub using adjacent two addends.
703   for (const FAddend *Opnd : Opnds) {
704     bool NeedNeg;
705     Value *V = createAddendVal(*Opnd, NeedNeg);
706     if (!LastVal) {
707       LastVal = V;
708       LastValNeedNeg = NeedNeg;
709       continue;
710     }
711 
712     if (LastValNeedNeg == NeedNeg) {
713       LastVal = createFAdd(LastVal, V);
714       continue;
715     }
716 
717     if (LastValNeedNeg)
718       LastVal = createFSub(V, LastVal);
719     else
720       LastVal = createFSub(LastVal, V);
721 
722     LastValNeedNeg = false;
723   }
724 
725   if (LastValNeedNeg) {
726     LastVal = createFNeg(LastVal);
727   }
728 
729   #ifndef NDEBUG
730     assert(CreateInstrNum == InstrNeeded &&
731            "Inconsistent in instruction numbers");
732   #endif
733 
734   return LastVal;
735 }
736 
737 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
738   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
739   if (Instruction *I = dyn_cast<Instruction>(V))
740     createInstPostProc(I);
741   return V;
742 }
743 
744 Value *FAddCombine::createFNeg(Value *V) {
745   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
746   Value *NewV = createFSub(Zero, V);
747   if (Instruction *I = dyn_cast<Instruction>(NewV))
748     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
749   return NewV;
750 }
751 
752 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
753   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
754   if (Instruction *I = dyn_cast<Instruction>(V))
755     createInstPostProc(I);
756   return V;
757 }
758 
759 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
760   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
761   if (Instruction *I = dyn_cast<Instruction>(V))
762     createInstPostProc(I);
763   return V;
764 }
765 
766 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
767   Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
768   if (Instruction *I = dyn_cast<Instruction>(V))
769     createInstPostProc(I);
770   return V;
771 }
772 
773 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
774   NewInstr->setDebugLoc(Instr->getDebugLoc());
775 
776   // Keep track of the number of instruction created.
777   if (!NoNumber)
778     incCreateInstNum();
779 
780   // Propagate fast-math flags
781   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
782 }
783 
784 // Return the number of instruction needed to emit the N-ary addition.
785 // NOTE: Keep this function in sync with createAddendVal().
786 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
787   unsigned OpndNum = Opnds.size();
788   unsigned InstrNeeded = OpndNum - 1;
789 
790   // The number of addends in the form of "(-1)*x".
791   unsigned NegOpndNum = 0;
792 
793   // Adjust the number of instructions needed to emit the N-ary add.
794   for (const FAddend *Opnd : Opnds) {
795     if (Opnd->isConstant())
796       continue;
797 
798     // The constant check above is really for a few special constant
799     // coefficients.
800     if (isa<UndefValue>(Opnd->getSymVal()))
801       continue;
802 
803     const FAddendCoef &CE = Opnd->getCoef();
804     if (CE.isMinusOne() || CE.isMinusTwo())
805       NegOpndNum++;
806 
807     // Let the addend be "c * x". If "c == +/-1", the value of the addend
808     // is immediately available; otherwise, it needs exactly one instruction
809     // to evaluate the value.
810     if (!CE.isMinusOne() && !CE.isOne())
811       InstrNeeded++;
812   }
813   if (NegOpndNum == OpndNum)
814     InstrNeeded++;
815   return InstrNeeded;
816 }
817 
818 // Input Addend        Value           NeedNeg(output)
819 // ================================================================
820 // Constant C          C               false
821 // <+/-1, V>           V               coefficient is -1
822 // <2/-2, V>          "fadd V, V"      coefficient is -2
823 // <C, V>             "fmul V, C"      false
824 //
825 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
826 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
827   const FAddendCoef &Coeff = Opnd.getCoef();
828 
829   if (Opnd.isConstant()) {
830     NeedNeg = false;
831     return Coeff.getValue(Instr->getType());
832   }
833 
834   Value *OpndVal = Opnd.getSymVal();
835 
836   if (Coeff.isMinusOne() || Coeff.isOne()) {
837     NeedNeg = Coeff.isMinusOne();
838     return OpndVal;
839   }
840 
841   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
842     NeedNeg = Coeff.isMinusTwo();
843     return createFAdd(OpndVal, OpndVal);
844   }
845 
846   NeedNeg = false;
847   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
848 }
849 
850 /// \brief Return true if we can prove that:
851 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
852 /// This basically requires proving that the add in the original type would not
853 /// overflow to change the sign bit or have a carry out.
854 /// TODO: Handle this for Vectors.
855 bool InstCombiner::willNotOverflowSignedSub(const Value *LHS,
856                                             const Value *RHS,
857                                             const Instruction &CxtI) const {
858   // If LHS and RHS each have at least two sign bits, the subtraction
859   // cannot overflow.
860   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
861       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
862     return true;
863 
864   KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI);
865 
866   KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI);
867 
868   // Subtraction of two 2's complement numbers having identical signs will
869   // never overflow.
870   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
871       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
872     return true;
873 
874   // TODO: implement logic similar to checkRippleForAdd
875   return false;
876 }
877 
878 /// \brief Return true if we can prove that:
879 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
880 bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS,
881                                               const Value *RHS,
882                                               const Instruction &CxtI) const {
883   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
884   KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
885   KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
886   if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
887     return true;
888 
889   return false;
890 }
891 
892 // Checks if any operand is negative and we can convert add to sub.
893 // This function checks for following negative patterns
894 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
895 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
896 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
897 static Value *checkForNegativeOperand(BinaryOperator &I,
898                                       InstCombiner::BuilderTy &Builder) {
899   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
900 
901   // This function creates 2 instructions to replace ADD, we need at least one
902   // of LHS or RHS to have one use to ensure benefit in transform.
903   if (!LHS->hasOneUse() && !RHS->hasOneUse())
904     return nullptr;
905 
906   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
907   const APInt *C1 = nullptr, *C2 = nullptr;
908 
909   // if ONE is on other side, swap
910   if (match(RHS, m_Add(m_Value(X), m_One())))
911     std::swap(LHS, RHS);
912 
913   if (match(LHS, m_Add(m_Value(X), m_One()))) {
914     // if XOR on other side, swap
915     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
916       std::swap(X, RHS);
917 
918     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
919       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
920       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
921       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
922         Value *NewAnd = Builder.CreateAnd(Z, *C1);
923         return Builder.CreateSub(RHS, NewAnd, "sub");
924       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
925         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
926         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
927         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
928         return Builder.CreateSub(RHS, NewOr, "sub");
929       }
930     }
931   }
932 
933   // Restore LHS and RHS
934   LHS = I.getOperand(0);
935   RHS = I.getOperand(1);
936 
937   // if XOR is on other side, swap
938   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
939     std::swap(LHS, RHS);
940 
941   // C2 is ODD
942   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
943   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
944   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
945     if (C1->countTrailingZeros() == 0)
946       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
947         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
948         return Builder.CreateSub(RHS, NewOr, "sub");
949       }
950   return nullptr;
951 }
952 
953 static Instruction *foldAddWithConstant(BinaryOperator &Add,
954                                         InstCombiner::BuilderTy &Builder) {
955   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
956   const APInt *C;
957   if (!match(Op1, m_APInt(C)))
958     return nullptr;
959 
960   if (C->isSignMask()) {
961     // If wrapping is not allowed, then the addition must set the sign bit:
962     // X + (signmask) --> X | signmask
963     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
964       return BinaryOperator::CreateOr(Op0, Op1);
965 
966     // If wrapping is allowed, then the addition flips the sign bit of LHS:
967     // X + (signmask) --> X ^ signmask
968     return BinaryOperator::CreateXor(Op0, Op1);
969   }
970 
971   Value *X;
972   const APInt *C2;
973   Type *Ty = Add.getType();
974 
975   // Is this add the last step in a convoluted sext?
976   // add(zext(xor i16 X, -32768), -32768) --> sext X
977   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
978       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
979     return CastInst::Create(Instruction::SExt, X, Ty);
980 
981   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
982   // FIXME: This should check hasOneUse to not increase the instruction count?
983   if (C->isNegative() &&
984       match(Op0, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2)))) &&
985       C->sge(-C2->sext(C->getBitWidth()))) {
986     Constant *NewC =
987         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
988     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
989   }
990 
991   if (C->isOneValue() && Op0->hasOneUse()) {
992     // add (sext i1 X), 1 --> zext (not X)
993     // TODO: The smallest IR representation is (select X, 0, 1), and that would
994     // not require the one-use check. But we need to remove a transform in
995     // visitSelect and make sure that IR value tracking for select is equal or
996     // better than for these ops.
997     if (match(Op0, m_SExt(m_Value(X))) &&
998         X->getType()->getScalarSizeInBits() == 1)
999       return new ZExtInst(Builder.CreateNot(X), Ty);
1000 
1001     // Shifts and add used to flip and mask off the low bit:
1002     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
1003     const APInt *C3;
1004     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
1005         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
1006       Value *NotX = Builder.CreateNot(X);
1007       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1008     }
1009   }
1010 
1011   return nullptr;
1012 }
1013 
1014 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1015   bool Changed = SimplifyAssociativeOrCommutative(I);
1016   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1017 
1018   if (Value *V = SimplifyVectorOp(I))
1019     return replaceInstUsesWith(I, V);
1020 
1021   if (Value *V =
1022           SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1023                           SQ.getWithInstruction(&I)))
1024     return replaceInstUsesWith(I, V);
1025 
1026    // (A*B)+(A*C) -> A*(B+C) etc
1027   if (Value *V = SimplifyUsingDistributiveLaws(I))
1028     return replaceInstUsesWith(I, V);
1029 
1030   if (Instruction *X = foldAddWithConstant(I, Builder))
1031     return X;
1032 
1033   // FIXME: This should be moved into the above helper function to allow these
1034   // transforms for splat vectors.
1035   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1036     // zext(bool) + C -> bool ? C + 1 : C
1037     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1038       if (ZI->getSrcTy()->isIntegerTy(1))
1039         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1040 
1041     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1042     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1043       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1044       const APInt &RHSVal = CI->getValue();
1045       unsigned ExtendAmt = 0;
1046       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1047       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1048       if (XorRHS->getValue() == -RHSVal) {
1049         if (RHSVal.isPowerOf2())
1050           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1051         else if (XorRHS->getValue().isPowerOf2())
1052           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1053       }
1054 
1055       if (ExtendAmt) {
1056         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1057         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1058           ExtendAmt = 0;
1059       }
1060 
1061       if (ExtendAmt) {
1062         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1063         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1064         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1065       }
1066 
1067       // If this is a xor that was canonicalized from a sub, turn it back into
1068       // a sub and fuse this add with it.
1069       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1070         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1071         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1072           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1073                                            XorLHS);
1074       }
1075       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1076       // transform them into (X + (signmask ^ C))
1077       if (XorRHS->getValue().isSignMask())
1078         return BinaryOperator::CreateAdd(XorLHS,
1079                                          ConstantExpr::getXor(XorRHS, CI));
1080     }
1081   }
1082 
1083   if (isa<Constant>(RHS))
1084     if (Instruction *NV = foldOpWithConstantIntoOperand(I))
1085       return NV;
1086 
1087   if (I.getType()->isIntOrIntVectorTy(1))
1088     return BinaryOperator::CreateXor(LHS, RHS);
1089 
1090   // X + X --> X << 1
1091   if (LHS == RHS) {
1092     BinaryOperator *New =
1093       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1094     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1095     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1096     return New;
1097   }
1098 
1099   // -A + B  -->  B - A
1100   // -A + -B  -->  -(A + B)
1101   if (Value *LHSV = dyn_castNegVal(LHS)) {
1102     if (!isa<Constant>(RHS))
1103       if (Value *RHSV = dyn_castNegVal(RHS)) {
1104         Value *NewAdd = Builder.CreateAdd(LHSV, RHSV, "sum");
1105         return BinaryOperator::CreateNeg(NewAdd);
1106       }
1107 
1108     return BinaryOperator::CreateSub(RHS, LHSV);
1109   }
1110 
1111   // A + -B  -->  A - B
1112   if (!isa<Constant>(RHS))
1113     if (Value *V = dyn_castNegVal(RHS))
1114       return BinaryOperator::CreateSub(LHS, V);
1115 
1116   if (Value *V = checkForNegativeOperand(I, Builder))
1117     return replaceInstUsesWith(I, V);
1118 
1119   // A+B --> A|B iff A and B have no bits set in common.
1120   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1121     return BinaryOperator::CreateOr(LHS, RHS);
1122 
1123   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1124     Value *X;
1125     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1126       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1127   }
1128 
1129   // FIXME: We already did a check for ConstantInt RHS above this.
1130   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1131   // removal.
1132   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1133     // (X & FF00) + xx00  -> (X+xx00) & FF00
1134     Value *X;
1135     ConstantInt *C2;
1136     if (LHS->hasOneUse() &&
1137         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1138         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1139       // See if all bits from the first bit set in the Add RHS up are included
1140       // in the mask.  First, get the rightmost bit.
1141       const APInt &AddRHSV = CRHS->getValue();
1142 
1143       // Form a mask of all bits from the lowest bit added through the top.
1144       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1145 
1146       // See if the and mask includes all of these bits.
1147       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1148 
1149       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1150         // Okay, the xform is safe.  Insert the new add pronto.
1151         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1152         return BinaryOperator::CreateAnd(NewAdd, C2);
1153       }
1154     }
1155   }
1156 
1157   // add (select X 0 (sub n A)) A  -->  select X A n
1158   {
1159     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1160     Value *A = RHS;
1161     if (!SI) {
1162       SI = dyn_cast<SelectInst>(RHS);
1163       A = LHS;
1164     }
1165     if (SI && SI->hasOneUse()) {
1166       Value *TV = SI->getTrueValue();
1167       Value *FV = SI->getFalseValue();
1168       Value *N;
1169 
1170       // Can we fold the add into the argument of the select?
1171       // We check both true and false select arguments for a matching subtract.
1172       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1173         // Fold the add into the true select value.
1174         return SelectInst::Create(SI->getCondition(), N, A);
1175 
1176       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1177         // Fold the add into the false select value.
1178         return SelectInst::Create(SI->getCondition(), A, N);
1179     }
1180   }
1181 
1182   // Check for (add (sext x), y), see if we can merge this into an
1183   // integer add followed by a sext.
1184   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1185     // (add (sext x), cst) --> (sext (add x, cst'))
1186     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1187       if (LHSConv->hasOneUse()) {
1188         Constant *CI =
1189             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1190         if (ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1191             willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1192           // Insert the new, smaller add.
1193           Value *NewAdd =
1194               Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1195           return new SExtInst(NewAdd, I.getType());
1196         }
1197       }
1198     }
1199 
1200     // (add (sext x), (sext y)) --> (sext (add int x, y))
1201     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1202       // Only do this if x/y have the same type, if at least one of them has a
1203       // single use (so we don't increase the number of sexts), and if the
1204       // integer add will not overflow.
1205       if (LHSConv->getOperand(0)->getType() ==
1206               RHSConv->getOperand(0)->getType() &&
1207           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1208           willNotOverflowSignedAdd(LHSConv->getOperand(0),
1209                                    RHSConv->getOperand(0), I)) {
1210         // Insert the new integer add.
1211         Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
1212                                              RHSConv->getOperand(0), "addconv");
1213         return new SExtInst(NewAdd, I.getType());
1214       }
1215     }
1216   }
1217 
1218   // Check for (add (zext x), y), see if we can merge this into an
1219   // integer add followed by a zext.
1220   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1221     // (add (zext x), cst) --> (zext (add x, cst'))
1222     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1223       if (LHSConv->hasOneUse()) {
1224         Constant *CI =
1225             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1226         if (ConstantExpr::getZExt(CI, I.getType()) == RHSC &&
1227             willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
1228           // Insert the new, smaller add.
1229           Value *NewAdd =
1230               Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1231           return new ZExtInst(NewAdd, I.getType());
1232         }
1233       }
1234     }
1235 
1236     // (add (zext x), (zext y)) --> (zext (add int x, y))
1237     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1238       // Only do this if x/y have the same type, if at least one of them has a
1239       // single use (so we don't increase the number of zexts), and if the
1240       // integer add will not overflow.
1241       if (LHSConv->getOperand(0)->getType() ==
1242               RHSConv->getOperand(0)->getType() &&
1243           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1244           willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
1245                                      RHSConv->getOperand(0), I)) {
1246         // Insert the new integer add.
1247         Value *NewAdd = Builder.CreateNUWAdd(
1248             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1249         return new ZExtInst(NewAdd, I.getType());
1250       }
1251     }
1252   }
1253 
1254   // (add (xor A, B) (and A, B)) --> (or A, B)
1255   {
1256     Value *A = nullptr, *B = nullptr;
1257     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1258         match(LHS, m_c_And(m_Specific(A), m_Specific(B))))
1259       return BinaryOperator::CreateOr(A, B);
1260 
1261     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1262         match(RHS, m_c_And(m_Specific(A), m_Specific(B))))
1263       return BinaryOperator::CreateOr(A, B);
1264   }
1265 
1266   // (add (or A, B) (and A, B)) --> (add A, B)
1267   {
1268     Value *A = nullptr, *B = nullptr;
1269     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1270         match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1271       auto *New = BinaryOperator::CreateAdd(A, B);
1272       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1273       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1274       return New;
1275     }
1276 
1277     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1278         match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1279       auto *New = BinaryOperator::CreateAdd(A, B);
1280       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1281       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1282       return New;
1283     }
1284   }
1285 
1286   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1287   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1288   // computeKnownBits.
1289   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1290     Changed = true;
1291     I.setHasNoSignedWrap(true);
1292   }
1293   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1294     Changed = true;
1295     I.setHasNoUnsignedWrap(true);
1296   }
1297 
1298   return Changed ? &I : nullptr;
1299 }
1300 
1301 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1302   bool Changed = SimplifyAssociativeOrCommutative(I);
1303   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1304 
1305   if (Value *V = SimplifyVectorOp(I))
1306     return replaceInstUsesWith(I, V);
1307 
1308   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(),
1309                                   SQ.getWithInstruction(&I)))
1310     return replaceInstUsesWith(I, V);
1311 
1312   if (isa<Constant>(RHS))
1313     if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I))
1314       return FoldedFAdd;
1315 
1316   // -A + B  -->  B - A
1317   // -A + -B  -->  -(A + B)
1318   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1319     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1320     RI->copyFastMathFlags(&I);
1321     return RI;
1322   }
1323 
1324   // A + -B  -->  A - B
1325   if (!isa<Constant>(RHS))
1326     if (Value *V = dyn_castFNegVal(RHS)) {
1327       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1328       RI->copyFastMathFlags(&I);
1329       return RI;
1330     }
1331 
1332   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1333   // integer add followed by a promotion.
1334   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1335     Value *LHSIntVal = LHSConv->getOperand(0);
1336     Type *FPType = LHSConv->getType();
1337 
1338     // TODO: This check is overly conservative. In many cases known bits
1339     // analysis can tell us that the result of the addition has less significant
1340     // bits than the integer type can hold.
1341     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1342       Type *FScalarTy = FTy->getScalarType();
1343       Type *IScalarTy = ITy->getScalarType();
1344 
1345       // Do we have enough bits in the significand to represent the result of
1346       // the integer addition?
1347       unsigned MaxRepresentableBits =
1348           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1349       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1350     };
1351 
1352     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1353     // ... if the constant fits in the integer value.  This is useful for things
1354     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1355     // requires a constant pool load, and generally allows the add to be better
1356     // instcombined.
1357     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1358       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1359         Constant *CI =
1360           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1361         if (LHSConv->hasOneUse() &&
1362             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1363             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1364           // Insert the new integer add.
1365           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1366           return new SIToFPInst(NewAdd, I.getType());
1367         }
1368       }
1369 
1370     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1371     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1372       Value *RHSIntVal = RHSConv->getOperand(0);
1373       // It's enough to check LHS types only because we require int types to
1374       // be the same for this transform.
1375       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1376         // Only do this if x/y have the same type, if at least one of them has a
1377         // single use (so we don't increase the number of int->fp conversions),
1378         // and if the integer add will not overflow.
1379         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1380             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1381             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1382           // Insert the new integer add.
1383           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1384           return new SIToFPInst(NewAdd, I.getType());
1385         }
1386       }
1387     }
1388   }
1389 
1390   // select C, 0, B + select C, A, 0 -> select C, A, B
1391   {
1392     Value *A1, *B1, *C1, *A2, *B2, *C2;
1393     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1394         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1395       if (C1 == C2) {
1396         Constant *Z1=nullptr, *Z2=nullptr;
1397         Value *A, *B, *C=C1;
1398         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1399             Z1 = dyn_cast<Constant>(A1); A = A2;
1400             Z2 = dyn_cast<Constant>(B2); B = B1;
1401         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1402             Z1 = dyn_cast<Constant>(B1); B = B2;
1403             Z2 = dyn_cast<Constant>(A2); A = A1;
1404         }
1405 
1406         if (Z1 && Z2 &&
1407             (I.hasNoSignedZeros() ||
1408              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1409           return SelectInst::Create(C, A, B);
1410         }
1411       }
1412     }
1413   }
1414 
1415   if (I.hasUnsafeAlgebra()) {
1416     if (Value *V = FAddCombine(Builder).simplify(&I))
1417       return replaceInstUsesWith(I, V);
1418   }
1419 
1420   return Changed ? &I : nullptr;
1421 }
1422 
1423 /// Optimize pointer differences into the same array into a size.  Consider:
1424 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1425 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1426 ///
1427 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1428                                                Type *Ty) {
1429   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1430   // this.
1431   bool Swapped = false;
1432   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1433 
1434   // For now we require one side to be the base pointer "A" or a constant
1435   // GEP derived from it.
1436   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1437     // (gep X, ...) - X
1438     if (LHSGEP->getOperand(0) == RHS) {
1439       GEP1 = LHSGEP;
1440       Swapped = false;
1441     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1442       // (gep X, ...) - (gep X, ...)
1443       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1444             RHSGEP->getOperand(0)->stripPointerCasts()) {
1445         GEP2 = RHSGEP;
1446         GEP1 = LHSGEP;
1447         Swapped = false;
1448       }
1449     }
1450   }
1451 
1452   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1453     // X - (gep X, ...)
1454     if (RHSGEP->getOperand(0) == LHS) {
1455       GEP1 = RHSGEP;
1456       Swapped = true;
1457     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1458       // (gep X, ...) - (gep X, ...)
1459       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1460             LHSGEP->getOperand(0)->stripPointerCasts()) {
1461         GEP2 = LHSGEP;
1462         GEP1 = RHSGEP;
1463         Swapped = true;
1464       }
1465     }
1466   }
1467 
1468   if (!GEP1)
1469     // No GEP found.
1470     return nullptr;
1471 
1472   if (GEP2) {
1473     // (gep X, ...) - (gep X, ...)
1474     //
1475     // Avoid duplicating the arithmetic if there are more than one non-constant
1476     // indices between the two GEPs and either GEP has a non-constant index and
1477     // multiple users. If zero non-constant index, the result is a constant and
1478     // there is no duplication. If one non-constant index, the result is an add
1479     // or sub with a constant, which is no larger than the original code, and
1480     // there's no duplicated arithmetic, even if either GEP has multiple
1481     // users. If more than one non-constant indices combined, as long as the GEP
1482     // with at least one non-constant index doesn't have multiple users, there
1483     // is no duplication.
1484     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1485     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1486     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1487         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1488          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1489       return nullptr;
1490     }
1491   }
1492 
1493   // Emit the offset of the GEP and an intptr_t.
1494   Value *Result = EmitGEPOffset(GEP1);
1495 
1496   // If we had a constant expression GEP on the other side offsetting the
1497   // pointer, subtract it from the offset we have.
1498   if (GEP2) {
1499     Value *Offset = EmitGEPOffset(GEP2);
1500     Result = Builder.CreateSub(Result, Offset);
1501   }
1502 
1503   // If we have p - gep(p, ...)  then we have to negate the result.
1504   if (Swapped)
1505     Result = Builder.CreateNeg(Result, "diff.neg");
1506 
1507   return Builder.CreateIntCast(Result, Ty, true);
1508 }
1509 
1510 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1511   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1512 
1513   if (Value *V = SimplifyVectorOp(I))
1514     return replaceInstUsesWith(I, V);
1515 
1516   if (Value *V =
1517           SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1518                           SQ.getWithInstruction(&I)))
1519     return replaceInstUsesWith(I, V);
1520 
1521   // (A*B)-(A*C) -> A*(B-C) etc
1522   if (Value *V = SimplifyUsingDistributiveLaws(I))
1523     return replaceInstUsesWith(I, V);
1524 
1525   // If this is a 'B = x-(-A)', change to B = x+A.
1526   if (Value *V = dyn_castNegVal(Op1)) {
1527     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1528 
1529     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1530       assert(BO->getOpcode() == Instruction::Sub &&
1531              "Expected a subtraction operator!");
1532       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1533         Res->setHasNoSignedWrap(true);
1534     } else {
1535       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1536         Res->setHasNoSignedWrap(true);
1537     }
1538 
1539     return Res;
1540   }
1541 
1542   if (I.getType()->isIntOrIntVectorTy(1))
1543     return BinaryOperator::CreateXor(Op0, Op1);
1544 
1545   // Replace (-1 - A) with (~A).
1546   if (match(Op0, m_AllOnes()))
1547     return BinaryOperator::CreateNot(Op1);
1548 
1549   if (Constant *C = dyn_cast<Constant>(Op0)) {
1550     // C - ~X == X + (1+C)
1551     Value *X = nullptr;
1552     if (match(Op1, m_Not(m_Value(X))))
1553       return BinaryOperator::CreateAdd(X, AddOne(C));
1554 
1555     // Try to fold constant sub into select arguments.
1556     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1557       if (Instruction *R = FoldOpIntoSelect(I, SI))
1558         return R;
1559 
1560     // Try to fold constant sub into PHI values.
1561     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1562       if (Instruction *R = foldOpIntoPhi(I, PN))
1563         return R;
1564 
1565     // C-(X+C2) --> (C-C2)-X
1566     Constant *C2;
1567     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1568       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1569 
1570     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1571     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1572       if (X->getType()->isIntOrIntVectorTy(1))
1573         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1574 
1575     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1576     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1577       if (X->getType()->isIntOrIntVectorTy(1))
1578         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1579   }
1580 
1581   const APInt *Op0C;
1582   if (match(Op0, m_APInt(Op0C))) {
1583     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1584 
1585     // -(X >>u 31) -> (X >>s 31)
1586     // -(X >>s 31) -> (X >>u 31)
1587     if (Op0C->isNullValue()) {
1588       Value *X;
1589       const APInt *ShAmt;
1590       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1591           *ShAmt == BitWidth - 1) {
1592         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1593         return BinaryOperator::CreateAShr(X, ShAmtOp);
1594       }
1595       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1596           *ShAmt == BitWidth - 1) {
1597         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1598         return BinaryOperator::CreateLShr(X, ShAmtOp);
1599       }
1600     }
1601 
1602     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1603     // zero.
1604     if (Op0C->isMask()) {
1605       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1606       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1607         return BinaryOperator::CreateXor(Op1, Op0);
1608     }
1609   }
1610 
1611   {
1612     Value *Y;
1613     // X-(X+Y) == -Y    X-(Y+X) == -Y
1614     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1615       return BinaryOperator::CreateNeg(Y);
1616 
1617     // (X-Y)-X == -Y
1618     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1619       return BinaryOperator::CreateNeg(Y);
1620   }
1621 
1622   // (sub (or A, B), (xor A, B)) --> (and A, B)
1623   {
1624     Value *A, *B;
1625     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1626         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1627       return BinaryOperator::CreateAnd(A, B);
1628   }
1629 
1630   {
1631     Value *Y;
1632     // ((X | Y) - X) --> (~X & Y)
1633     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1634       return BinaryOperator::CreateAnd(
1635           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1636   }
1637 
1638   if (Op1->hasOneUse()) {
1639     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1640     Constant *C = nullptr;
1641 
1642     // (X - (Y - Z))  -->  (X + (Z - Y)).
1643     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1644       return BinaryOperator::CreateAdd(Op0,
1645                                       Builder.CreateSub(Z, Y, Op1->getName()));
1646 
1647     // (X - (X & Y))   -->   (X & ~Y)
1648     //
1649     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1650       return BinaryOperator::CreateAnd(Op0,
1651                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1652 
1653     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1654     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1655         C->isNotMinSignedValue() && !C->isOneValue())
1656       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1657 
1658     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1659     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1660       if (Value *XNeg = dyn_castNegVal(X))
1661         return BinaryOperator::CreateShl(XNeg, Y);
1662 
1663     // Subtracting -1/0 is the same as adding 1/0:
1664     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1665     // 'nuw' is dropped in favor of the canonical form.
1666     if (match(Op1, m_SExt(m_Value(Y))) &&
1667         Y->getType()->getScalarSizeInBits() == 1) {
1668       Value *Zext = Builder.CreateZExt(Y, I.getType());
1669       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1670       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1671       return Add;
1672     }
1673 
1674     // X - A*-B -> X + A*B
1675     // X - -A*B -> X + A*B
1676     Value *A, *B;
1677     Constant *CI;
1678     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1679       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1680 
1681     // X - A*CI -> X + A*-CI
1682     // No need to handle commuted multiply because multiply handling will
1683     // ensure constant will be move to the right hand side.
1684     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1685       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
1686       return BinaryOperator::CreateAdd(Op0, NewMul);
1687     }
1688   }
1689 
1690   // Optimize pointer differences into the same array into a size.  Consider:
1691   //  &A[10] - &A[0]: we should compile this to "10".
1692   Value *LHSOp, *RHSOp;
1693   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1694       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1695     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1696       return replaceInstUsesWith(I, Res);
1697 
1698   // trunc(p)-trunc(q) -> trunc(p-q)
1699   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1700       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1701     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1702       return replaceInstUsesWith(I, Res);
1703 
1704   bool Changed = false;
1705   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1706     Changed = true;
1707     I.setHasNoSignedWrap(true);
1708   }
1709   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1710     Changed = true;
1711     I.setHasNoUnsignedWrap(true);
1712   }
1713 
1714   return Changed ? &I : nullptr;
1715 }
1716 
1717 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1718   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1719 
1720   if (Value *V = SimplifyVectorOp(I))
1721     return replaceInstUsesWith(I, V);
1722 
1723   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(),
1724                                   SQ.getWithInstruction(&I)))
1725     return replaceInstUsesWith(I, V);
1726 
1727   // fsub nsz 0, X ==> fsub nsz -0.0, X
1728   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1729     // Subtraction from -0.0 is the canonical form of fneg.
1730     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1731     NewI->copyFastMathFlags(&I);
1732     return NewI;
1733   }
1734 
1735   if (isa<Constant>(Op0))
1736     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1737       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1738         return NV;
1739 
1740   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1741   // through FP extensions/truncations along the way.
1742   if (Value *V = dyn_castFNegVal(Op1)) {
1743     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1744     NewI->copyFastMathFlags(&I);
1745     return NewI;
1746   }
1747   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1748     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1749       Value *NewTrunc = Builder.CreateFPTrunc(V, I.getType());
1750       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1751       NewI->copyFastMathFlags(&I);
1752       return NewI;
1753     }
1754   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1755     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1756       Value *NewExt = Builder.CreateFPExt(V, I.getType());
1757       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1758       NewI->copyFastMathFlags(&I);
1759       return NewI;
1760     }
1761   }
1762 
1763   if (I.hasUnsafeAlgebra()) {
1764     if (Value *V = FAddCombine(Builder).simplify(&I))
1765       return replaceInstUsesWith(I, V);
1766   }
1767 
1768   return nullptr;
1769 }
1770