1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 /// AddOne - Add one to a ConstantInt.
23 static Constant *AddOne(Constant *C) {
24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25 }
26 /// SubOne - Subtract one from a ConstantInt.
27 static Constant *SubOne(ConstantInt *C) {
28   return ConstantInt::get(C->getContext(), C->getValue()-1);
29 }
30 
31 
32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
33 // other computations (because it has a constant operand), return the
34 // non-constant operand of the multiply, and set CST to point to the multiplier.
35 // Otherwise, return null.
36 //
37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39     return 0;
40 
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (I == 0) return 0;
43 
44   if (I->getOpcode() == Instruction::Mul)
45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46       return I->getOperand(0);
47   if (I->getOpcode() == Instruction::Shl)
48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49       // The multiplier is really 1 << CST.
50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52       CST = ConstantInt::get(V->getType()->getContext(),
53                              APInt(BitWidth, 1).shl(CSTVal));
54       return I->getOperand(0);
55     }
56   return 0;
57 }
58 
59 
60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
62 /// This basically requires proving that the add in the original type would not
63 /// overflow to change the sign bit or have a carry out.
64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65   // There are different heuristics we can use for this.  Here are some simple
66   // ones.
67 
68   // Add has the property that adding any two 2's complement numbers can only
69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
70   // have at least two sign bits, we know that the addition of the two values
71   // will sign extend fine.
72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73     return true;
74 
75 
76   // If one of the operands only has one non-zero bit, and if the other operand
77   // has a known-zero bit in a more significant place than it (not including the
78   // sign bit) the ripple may go up to and fill the zero, but won't change the
79   // sign.  For example, (X & ~4) + 1.
80 
81   // TODO: Implement.
82 
83   return false;
84 }
85 
86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87   bool Changed = SimplifyAssociativeOrCommutative(I);
88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89 
90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91                                  I.hasNoUnsignedWrap(), TD))
92     return ReplaceInstUsesWith(I, V);
93 
94   // (A*B)+(A*C) -> A*(B+C) etc
95   if (Value *V = SimplifyUsingDistributiveLaws(I))
96     return ReplaceInstUsesWith(I, V);
97 
98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
99     // X + (signbit) --> X ^ signbit
100     const APInt &Val = CI->getValue();
101     if (Val.isSignBit())
102       return BinaryOperator::CreateXor(LHS, RHS);
103 
104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
105     // (X & 254)+1 -> (X&254)|1
106     if (SimplifyDemandedInstructionBits(I))
107       return &I;
108 
109     // zext(bool) + C -> bool ? C + 1 : C
110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
111       if (ZI->getSrcTy()->isIntegerTy(1))
112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
113 
114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
117       const APInt &RHSVal = CI->getValue();
118       unsigned ExtendAmt = 0;
119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121       if (XorRHS->getValue() == -RHSVal) {
122         if (RHSVal.isPowerOf2())
123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
124         else if (XorRHS->getValue().isPowerOf2())
125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
126       }
127 
128       if (ExtendAmt) {
129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
130         if (!MaskedValueIsZero(XorLHS, Mask))
131           ExtendAmt = 0;
132       }
133 
134       if (ExtendAmt) {
135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
138       }
139 
140       // If this is a xor that was canonicalized from a sub, turn it back into
141       // a sub and fuse this add with it.
142       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
143         IntegerType *IT = cast<IntegerType>(I.getType());
144         APInt LHSKnownOne(IT->getBitWidth(), 0);
145         APInt LHSKnownZero(IT->getBitWidth(), 0);
146         ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
147         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
148           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
149                                            XorLHS);
150       }
151     }
152   }
153 
154   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
155     if (Instruction *NV = FoldOpIntoPhi(I))
156       return NV;
157 
158   if (I.getType()->isIntegerTy(1))
159     return BinaryOperator::CreateXor(LHS, RHS);
160 
161   // X + X --> X << 1
162   if (LHS == RHS) {
163     BinaryOperator *New =
164       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
165     New->setHasNoSignedWrap(I.hasNoSignedWrap());
166     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
167     return New;
168   }
169 
170   // -A + B  -->  B - A
171   // -A + -B  -->  -(A + B)
172   if (Value *LHSV = dyn_castNegVal(LHS)) {
173     if (Value *RHSV = dyn_castNegVal(RHS)) {
174       Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
175       return BinaryOperator::CreateNeg(NewAdd);
176     }
177 
178     return BinaryOperator::CreateSub(RHS, LHSV);
179   }
180 
181   // A + -B  -->  A - B
182   if (!isa<Constant>(RHS))
183     if (Value *V = dyn_castNegVal(RHS))
184       return BinaryOperator::CreateSub(LHS, V);
185 
186 
187   ConstantInt *C2;
188   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
189     if (X == RHS)   // X*C + X --> X * (C+1)
190       return BinaryOperator::CreateMul(RHS, AddOne(C2));
191 
192     // X*C1 + X*C2 --> X * (C1+C2)
193     ConstantInt *C1;
194     if (X == dyn_castFoldableMul(RHS, C1))
195       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
196   }
197 
198   // X + X*C --> X * (C+1)
199   if (dyn_castFoldableMul(RHS, C2) == LHS)
200     return BinaryOperator::CreateMul(LHS, AddOne(C2));
201 
202   // A+B --> A|B iff A and B have no bits set in common.
203   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
204     APInt LHSKnownOne(IT->getBitWidth(), 0);
205     APInt LHSKnownZero(IT->getBitWidth(), 0);
206     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
207     if (LHSKnownZero != 0) {
208       APInt RHSKnownOne(IT->getBitWidth(), 0);
209       APInt RHSKnownZero(IT->getBitWidth(), 0);
210       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
211 
212       // No bits in common -> bitwise or.
213       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
214         return BinaryOperator::CreateOr(LHS, RHS);
215     }
216   }
217 
218   // W*X + Y*Z --> W * (X+Z)  iff W == Y
219   {
220     Value *W, *X, *Y, *Z;
221     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
222         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
223       if (W != Y) {
224         if (W == Z) {
225           std::swap(Y, Z);
226         } else if (Y == X) {
227           std::swap(W, X);
228         } else if (X == Z) {
229           std::swap(Y, Z);
230           std::swap(W, X);
231         }
232       }
233 
234       if (W == Y) {
235         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
236         return BinaryOperator::CreateMul(W, NewAdd);
237       }
238     }
239   }
240 
241   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
242     Value *X = 0;
243     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
244       return BinaryOperator::CreateSub(SubOne(CRHS), X);
245 
246     // (X & FF00) + xx00  -> (X+xx00) & FF00
247     if (LHS->hasOneUse() &&
248         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
249         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
250       // See if all bits from the first bit set in the Add RHS up are included
251       // in the mask.  First, get the rightmost bit.
252       const APInt &AddRHSV = CRHS->getValue();
253 
254       // Form a mask of all bits from the lowest bit added through the top.
255       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
256 
257       // See if the and mask includes all of these bits.
258       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
259 
260       if (AddRHSHighBits == AddRHSHighBitsAnd) {
261         // Okay, the xform is safe.  Insert the new add pronto.
262         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
263         return BinaryOperator::CreateAnd(NewAdd, C2);
264       }
265     }
266 
267     // Try to fold constant add into select arguments.
268     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
269       if (Instruction *R = FoldOpIntoSelect(I, SI))
270         return R;
271   }
272 
273   // add (select X 0 (sub n A)) A  -->  select X A n
274   {
275     SelectInst *SI = dyn_cast<SelectInst>(LHS);
276     Value *A = RHS;
277     if (!SI) {
278       SI = dyn_cast<SelectInst>(RHS);
279       A = LHS;
280     }
281     if (SI && SI->hasOneUse()) {
282       Value *TV = SI->getTrueValue();
283       Value *FV = SI->getFalseValue();
284       Value *N;
285 
286       // Can we fold the add into the argument of the select?
287       // We check both true and false select arguments for a matching subtract.
288       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
289         // Fold the add into the true select value.
290         return SelectInst::Create(SI->getCondition(), N, A);
291 
292       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
293         // Fold the add into the false select value.
294         return SelectInst::Create(SI->getCondition(), A, N);
295     }
296   }
297 
298   // Check for (add (sext x), y), see if we can merge this into an
299   // integer add followed by a sext.
300   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
301     // (add (sext x), cst) --> (sext (add x, cst'))
302     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
303       Constant *CI =
304         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
305       if (LHSConv->hasOneUse() &&
306           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
307           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
308         // Insert the new, smaller add.
309         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
310                                               CI, "addconv");
311         return new SExtInst(NewAdd, I.getType());
312       }
313     }
314 
315     // (add (sext x), (sext y)) --> (sext (add int x, y))
316     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
317       // Only do this if x/y have the same type, if at last one of them has a
318       // single use (so we don't increase the number of sexts), and if the
319       // integer add will not overflow.
320       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
321           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
322           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
323                                    RHSConv->getOperand(0))) {
324         // Insert the new integer add.
325         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
326                                              RHSConv->getOperand(0), "addconv");
327         return new SExtInst(NewAdd, I.getType());
328       }
329     }
330   }
331 
332   // Check for (x & y) + (x ^ y)
333   {
334     Value *A = 0, *B = 0;
335     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
336         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
337          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
338       return BinaryOperator::CreateOr(A, B);
339 
340     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
341         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
342          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
343       return BinaryOperator::CreateOr(A, B);
344   }
345 
346   return Changed ? &I : 0;
347 }
348 
349 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
350   bool Changed = SimplifyAssociativeOrCommutative(I);
351   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
352 
353   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
354     // X + 0 --> X
355     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
356       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
357                               (I.getType())->getValueAPF()))
358         return ReplaceInstUsesWith(I, LHS);
359     }
360 
361     if (isa<PHINode>(LHS))
362       if (Instruction *NV = FoldOpIntoPhi(I))
363         return NV;
364   }
365 
366   // -A + B  -->  B - A
367   // -A + -B  -->  -(A + B)
368   if (Value *LHSV = dyn_castFNegVal(LHS))
369     return BinaryOperator::CreateFSub(RHS, LHSV);
370 
371   // A + -B  -->  A - B
372   if (!isa<Constant>(RHS))
373     if (Value *V = dyn_castFNegVal(RHS))
374       return BinaryOperator::CreateFSub(LHS, V);
375 
376   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
377   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
378     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
379       return ReplaceInstUsesWith(I, LHS);
380 
381   // Check for (fadd double (sitofp x), y), see if we can merge this into an
382   // integer add followed by a promotion.
383   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
384     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
385     // ... if the constant fits in the integer value.  This is useful for things
386     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
387     // requires a constant pool load, and generally allows the add to be better
388     // instcombined.
389     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
390       Constant *CI =
391       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
392       if (LHSConv->hasOneUse() &&
393           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
394           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
395         // Insert the new integer add.
396         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
397                                               CI, "addconv");
398         return new SIToFPInst(NewAdd, I.getType());
399       }
400     }
401 
402     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
403     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
404       // Only do this if x/y have the same type, if at last one of them has a
405       // single use (so we don't increase the number of int->fp conversions),
406       // and if the integer add will not overflow.
407       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
408           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
409           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
410                                    RHSConv->getOperand(0))) {
411         // Insert the new integer add.
412         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
413                                               RHSConv->getOperand(0),"addconv");
414         return new SIToFPInst(NewAdd, I.getType());
415       }
416     }
417   }
418 
419   return Changed ? &I : 0;
420 }
421 
422 
423 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
424 /// code necessary to compute the offset from the base pointer (without adding
425 /// in the base pointer).  Return the result as a signed integer of intptr size.
426 Value *InstCombiner::EmitGEPOffset(User *GEP) {
427   TargetData &TD = *getTargetData();
428   gep_type_iterator GTI = gep_type_begin(GEP);
429   Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
430   Value *Result = Constant::getNullValue(IntPtrTy);
431 
432   // If the GEP is inbounds, we know that none of the addressing operations will
433   // overflow in an unsigned sense.
434   bool isInBounds = cast<GEPOperator>(GEP)->isInBounds();
435 
436   // Build a mask for high order bits.
437   unsigned IntPtrWidth = TD.getPointerSizeInBits();
438   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
439 
440   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
441        ++i, ++GTI) {
442     Value *Op = *i;
443     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
444     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
445       if (OpC->isZero()) continue;
446 
447       // Handle a struct index, which adds its field offset to the pointer.
448       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
449         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
450 
451         if (Size)
452           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
453                                       GEP->getName()+".offs");
454         continue;
455       }
456 
457       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
458       Constant *OC =
459               ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
460       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
461       // Emit an add instruction.
462       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
463       continue;
464     }
465     // Convert to correct type.
466     if (Op->getType() != IntPtrTy)
467       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
468     if (Size != 1) {
469       // We'll let instcombine(mul) convert this to a shl if possible.
470       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
471                               GEP->getName()+".idx", isInBounds /*NUW*/);
472     }
473 
474     // Emit an add instruction.
475     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
476   }
477   return Result;
478 }
479 
480 
481 
482 
483 /// Optimize pointer differences into the same array into a size.  Consider:
484 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
485 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
486 ///
487 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
488                                                Type *Ty) {
489   assert(TD && "Must have target data info for this");
490 
491   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
492   // this.
493   bool Swapped = false;
494   GEPOperator *GEP1 = 0, *GEP2 = 0;
495 
496   // For now we require one side to be the base pointer "A" or a constant
497   // GEP derived from it.
498   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
499     // (gep X, ...) - X
500     if (LHSGEP->getOperand(0) == RHS) {
501       GEP1 = LHSGEP;
502       Swapped = false;
503     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
504       // (gep X, ...) - (gep X, ...)
505       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
506             RHSGEP->getOperand(0)->stripPointerCasts()) {
507         GEP2 = RHSGEP;
508         GEP1 = LHSGEP;
509         Swapped = false;
510       }
511     }
512   }
513 
514   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
515     // X - (gep X, ...)
516     if (RHSGEP->getOperand(0) == LHS) {
517       GEP1 = RHSGEP;
518       Swapped = true;
519     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
520       // (gep X, ...) - (gep X, ...)
521       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
522             LHSGEP->getOperand(0)->stripPointerCasts()) {
523         GEP2 = LHSGEP;
524         GEP1 = RHSGEP;
525         Swapped = true;
526       }
527     }
528   }
529 
530   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
531   // multiple users.
532   if (GEP1 == 0 ||
533       (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
534     return 0;
535 
536   // Emit the offset of the GEP and an intptr_t.
537   Value *Result = EmitGEPOffset(GEP1);
538 
539   // If we had a constant expression GEP on the other side offsetting the
540   // pointer, subtract it from the offset we have.
541   if (GEP2) {
542     Value *Offset = EmitGEPOffset(GEP2);
543     Result = Builder->CreateSub(Result, Offset);
544   }
545 
546   // If we have p - gep(p, ...)  then we have to negate the result.
547   if (Swapped)
548     Result = Builder->CreateNeg(Result, "diff.neg");
549 
550   return Builder->CreateIntCast(Result, Ty, true);
551 }
552 
553 
554 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
555   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
556 
557   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
558                                  I.hasNoUnsignedWrap(), TD))
559     return ReplaceInstUsesWith(I, V);
560 
561   // (A*B)-(A*C) -> A*(B-C) etc
562   if (Value *V = SimplifyUsingDistributiveLaws(I))
563     return ReplaceInstUsesWith(I, V);
564 
565   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
566   if (Value *V = dyn_castNegVal(Op1)) {
567     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
568     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
569     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
570     return Res;
571   }
572 
573   if (I.getType()->isIntegerTy(1))
574     return BinaryOperator::CreateXor(Op0, Op1);
575 
576   // Replace (-1 - A) with (~A).
577   if (match(Op0, m_AllOnes()))
578     return BinaryOperator::CreateNot(Op1);
579 
580   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
581     // C - ~X == X + (1+C)
582     Value *X = 0;
583     if (match(Op1, m_Not(m_Value(X))))
584       return BinaryOperator::CreateAdd(X, AddOne(C));
585 
586     // -(X >>u 31) -> (X >>s 31)
587     // -(X >>s 31) -> (X >>u 31)
588     if (C->isZero()) {
589       Value *X; ConstantInt *CI;
590       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
591           // Verify we are shifting out everything but the sign bit.
592           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
593         return BinaryOperator::CreateAShr(X, CI);
594 
595       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
596           // Verify we are shifting out everything but the sign bit.
597           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
598         return BinaryOperator::CreateLShr(X, CI);
599     }
600 
601     // Try to fold constant sub into select arguments.
602     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
603       if (Instruction *R = FoldOpIntoSelect(I, SI))
604         return R;
605 
606     // C - zext(bool) -> bool ? C - 1 : C
607     if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
608       if (ZI->getSrcTy()->isIntegerTy(1))
609         return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
610 
611     // C-(X+C2) --> (C-C2)-X
612     ConstantInt *C2;
613     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
614       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
615 
616     if (SimplifyDemandedInstructionBits(I))
617       return &I;
618   }
619 
620 
621   { Value *Y;
622     // X-(X+Y) == -Y    X-(Y+X) == -Y
623     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
624         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
625       return BinaryOperator::CreateNeg(Y);
626 
627     // (X-Y)-X == -Y
628     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
629       return BinaryOperator::CreateNeg(Y);
630   }
631 
632   if (Op1->hasOneUse()) {
633     Value *X = 0, *Y = 0, *Z = 0;
634     Constant *C = 0;
635     ConstantInt *CI = 0;
636 
637     // (X - (Y - Z))  -->  (X + (Z - Y)).
638     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
639       return BinaryOperator::CreateAdd(Op0,
640                                       Builder->CreateSub(Z, Y, Op1->getName()));
641 
642     // (X - (X & Y))   -->   (X & ~Y)
643     //
644     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
645         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
646       return BinaryOperator::CreateAnd(Op0,
647                                   Builder->CreateNot(Y, Y->getName() + ".not"));
648 
649     // 0 - (X sdiv C)  -> (X sdiv -C)
650     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
651         match(Op0, m_Zero()))
652       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
653 
654     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
655     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
656       if (Value *XNeg = dyn_castNegVal(X))
657         return BinaryOperator::CreateShl(XNeg, Y);
658 
659     // X - X*C --> X * (1-C)
660     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
661       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
662       return BinaryOperator::CreateMul(Op0, CP1);
663     }
664 
665     // X - X<<C --> X * (1-(1<<C))
666     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
667       Constant *One = ConstantInt::get(I.getType(), 1);
668       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
669       return BinaryOperator::CreateMul(Op0, C);
670     }
671 
672     // X - A*-B -> X + A*B
673     // X - -A*B -> X + A*B
674     Value *A, *B;
675     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
676         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
677       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
678 
679     // X - A*CI -> X + A*-CI
680     // X - CI*A -> X + A*-CI
681     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
682         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
683       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
684       return BinaryOperator::CreateAdd(Op0, NewMul);
685     }
686   }
687 
688   ConstantInt *C1;
689   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
690     if (X == Op1)  // X*C - X --> X * (C-1)
691       return BinaryOperator::CreateMul(Op1, SubOne(C1));
692 
693     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
694     if (X == dyn_castFoldableMul(Op1, C2))
695       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
696   }
697 
698   // Optimize pointer differences into the same array into a size.  Consider:
699   //  &A[10] - &A[0]: we should compile this to "10".
700   if (TD) {
701     Value *LHSOp, *RHSOp;
702     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
703         match(Op1, m_PtrToInt(m_Value(RHSOp))))
704       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
705         return ReplaceInstUsesWith(I, Res);
706 
707     // trunc(p)-trunc(q) -> trunc(p-q)
708     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
709         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
710       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
711         return ReplaceInstUsesWith(I, Res);
712   }
713 
714   return 0;
715 }
716 
717 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
718   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
719 
720   // If this is a 'B = x-(-A)', change to B = x+A...
721   if (Value *V = dyn_castFNegVal(Op1))
722     return BinaryOperator::CreateFAdd(Op0, V);
723 
724   return 0;
725 }
726