1 //===- InstCombineAddSub.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/GetElementPtrTypeIterator.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// AddOne - Add one to a ConstantInt. 23 static Constant *AddOne(Constant *C) { 24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 25 } 26 /// SubOne - Subtract one from a ConstantInt. 27 static Constant *SubOne(ConstantInt *C) { 28 return ConstantInt::get(C->getContext(), C->getValue()-1); 29 } 30 31 32 // dyn_castFoldableMul - If this value is a multiply that can be folded into 33 // other computations (because it has a constant operand), return the 34 // non-constant operand of the multiply, and set CST to point to the multiplier. 35 // Otherwise, return null. 36 // 37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { 38 if (!V->hasOneUse() || !V->getType()->isIntegerTy()) 39 return 0; 40 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (I == 0) return 0; 43 44 if (I->getOpcode() == Instruction::Mul) 45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) 46 return I->getOperand(0); 47 if (I->getOpcode() == Instruction::Shl) 48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { 49 // The multiplier is really 1 << CST. 50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 51 uint32_t CSTVal = CST->getLimitedValue(BitWidth); 52 CST = ConstantInt::get(V->getType()->getContext(), 53 APInt(BitWidth, 1).shl(CSTVal)); 54 return I->getOperand(0); 55 } 56 return 0; 57 } 58 59 60 /// WillNotOverflowSignedAdd - Return true if we can prove that: 61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 62 /// This basically requires proving that the add in the original type would not 63 /// overflow to change the sign bit or have a carry out. 64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { 65 // There are different heuristics we can use for this. Here are some simple 66 // ones. 67 68 // Add has the property that adding any two 2's complement numbers can only 69 // have one carry bit which can change a sign. As such, if LHS and RHS each 70 // have at least two sign bits, we know that the addition of the two values 71 // will sign extend fine. 72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) 73 return true; 74 75 76 // If one of the operands only has one non-zero bit, and if the other operand 77 // has a known-zero bit in a more significant place than it (not including the 78 // sign bit) the ripple may go up to and fill the zero, but won't change the 79 // sign. For example, (X & ~4) + 1. 80 81 // TODO: Implement. 82 83 return false; 84 } 85 86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 87 bool Changed = SimplifyAssociativeOrCommutative(I); 88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 89 90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 91 I.hasNoUnsignedWrap(), TD)) 92 return ReplaceInstUsesWith(I, V); 93 94 // (A*B)+(A*C) -> A*(B+C) etc 95 if (Value *V = SimplifyUsingDistributiveLaws(I)) 96 return ReplaceInstUsesWith(I, V); 97 98 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 99 // X + (signbit) --> X ^ signbit 100 const APInt &Val = CI->getValue(); 101 if (Val.isSignBit()) 102 return BinaryOperator::CreateXor(LHS, RHS); 103 104 // See if SimplifyDemandedBits can simplify this. This handles stuff like 105 // (X & 254)+1 -> (X&254)|1 106 if (SimplifyDemandedInstructionBits(I)) 107 return &I; 108 109 // zext(bool) + C -> bool ? C + 1 : C 110 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 111 if (ZI->getSrcTy()->isIntegerTy(1)) 112 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 113 114 Value *XorLHS = 0; ConstantInt *XorRHS = 0; 115 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 116 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 117 const APInt &RHSVal = CI->getValue(); 118 unsigned ExtendAmt = 0; 119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 121 if (XorRHS->getValue() == -RHSVal) { 122 if (RHSVal.isPowerOf2()) 123 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 124 else if (XorRHS->getValue().isPowerOf2()) 125 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 126 } 127 128 if (ExtendAmt) { 129 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 130 if (!MaskedValueIsZero(XorLHS, Mask)) 131 ExtendAmt = 0; 132 } 133 134 if (ExtendAmt) { 135 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 136 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 137 return BinaryOperator::CreateAShr(NewShl, ShAmt); 138 } 139 140 // If this is a xor that was canonicalized from a sub, turn it back into 141 // a sub and fuse this add with it. 142 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 143 IntegerType *IT = cast<IntegerType>(I.getType()); 144 APInt LHSKnownOne(IT->getBitWidth(), 0); 145 APInt LHSKnownZero(IT->getBitWidth(), 0); 146 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne); 147 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 148 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 149 XorLHS); 150 } 151 } 152 } 153 154 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 155 if (Instruction *NV = FoldOpIntoPhi(I)) 156 return NV; 157 158 if (I.getType()->isIntegerTy(1)) 159 return BinaryOperator::CreateXor(LHS, RHS); 160 161 // X + X --> X << 1 162 if (LHS == RHS) { 163 BinaryOperator *New = 164 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 165 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 166 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 167 return New; 168 } 169 170 // -A + B --> B - A 171 // -A + -B --> -(A + B) 172 if (Value *LHSV = dyn_castNegVal(LHS)) { 173 if (Value *RHSV = dyn_castNegVal(RHS)) { 174 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 175 return BinaryOperator::CreateNeg(NewAdd); 176 } 177 178 return BinaryOperator::CreateSub(RHS, LHSV); 179 } 180 181 // A + -B --> A - B 182 if (!isa<Constant>(RHS)) 183 if (Value *V = dyn_castNegVal(RHS)) 184 return BinaryOperator::CreateSub(LHS, V); 185 186 187 ConstantInt *C2; 188 if (Value *X = dyn_castFoldableMul(LHS, C2)) { 189 if (X == RHS) // X*C + X --> X * (C+1) 190 return BinaryOperator::CreateMul(RHS, AddOne(C2)); 191 192 // X*C1 + X*C2 --> X * (C1+C2) 193 ConstantInt *C1; 194 if (X == dyn_castFoldableMul(RHS, C1)) 195 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); 196 } 197 198 // X + X*C --> X * (C+1) 199 if (dyn_castFoldableMul(RHS, C2) == LHS) 200 return BinaryOperator::CreateMul(LHS, AddOne(C2)); 201 202 // A+B --> A|B iff A and B have no bits set in common. 203 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 204 APInt LHSKnownOne(IT->getBitWidth(), 0); 205 APInt LHSKnownZero(IT->getBitWidth(), 0); 206 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne); 207 if (LHSKnownZero != 0) { 208 APInt RHSKnownOne(IT->getBitWidth(), 0); 209 APInt RHSKnownZero(IT->getBitWidth(), 0); 210 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne); 211 212 // No bits in common -> bitwise or. 213 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 214 return BinaryOperator::CreateOr(LHS, RHS); 215 } 216 } 217 218 // W*X + Y*Z --> W * (X+Z) iff W == Y 219 { 220 Value *W, *X, *Y, *Z; 221 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && 222 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { 223 if (W != Y) { 224 if (W == Z) { 225 std::swap(Y, Z); 226 } else if (Y == X) { 227 std::swap(W, X); 228 } else if (X == Z) { 229 std::swap(Y, Z); 230 std::swap(W, X); 231 } 232 } 233 234 if (W == Y) { 235 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); 236 return BinaryOperator::CreateMul(W, NewAdd); 237 } 238 } 239 } 240 241 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 242 Value *X = 0; 243 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 244 return BinaryOperator::CreateSub(SubOne(CRHS), X); 245 246 // (X & FF00) + xx00 -> (X+xx00) & FF00 247 if (LHS->hasOneUse() && 248 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 249 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 250 // See if all bits from the first bit set in the Add RHS up are included 251 // in the mask. First, get the rightmost bit. 252 const APInt &AddRHSV = CRHS->getValue(); 253 254 // Form a mask of all bits from the lowest bit added through the top. 255 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 256 257 // See if the and mask includes all of these bits. 258 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 259 260 if (AddRHSHighBits == AddRHSHighBitsAnd) { 261 // Okay, the xform is safe. Insert the new add pronto. 262 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 263 return BinaryOperator::CreateAnd(NewAdd, C2); 264 } 265 } 266 267 // Try to fold constant add into select arguments. 268 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 269 if (Instruction *R = FoldOpIntoSelect(I, SI)) 270 return R; 271 } 272 273 // add (select X 0 (sub n A)) A --> select X A n 274 { 275 SelectInst *SI = dyn_cast<SelectInst>(LHS); 276 Value *A = RHS; 277 if (!SI) { 278 SI = dyn_cast<SelectInst>(RHS); 279 A = LHS; 280 } 281 if (SI && SI->hasOneUse()) { 282 Value *TV = SI->getTrueValue(); 283 Value *FV = SI->getFalseValue(); 284 Value *N; 285 286 // Can we fold the add into the argument of the select? 287 // We check both true and false select arguments for a matching subtract. 288 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 289 // Fold the add into the true select value. 290 return SelectInst::Create(SI->getCondition(), N, A); 291 292 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 293 // Fold the add into the false select value. 294 return SelectInst::Create(SI->getCondition(), A, N); 295 } 296 } 297 298 // Check for (add (sext x), y), see if we can merge this into an 299 // integer add followed by a sext. 300 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 301 // (add (sext x), cst) --> (sext (add x, cst')) 302 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 303 Constant *CI = 304 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 305 if (LHSConv->hasOneUse() && 306 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 307 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 308 // Insert the new, smaller add. 309 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 310 CI, "addconv"); 311 return new SExtInst(NewAdd, I.getType()); 312 } 313 } 314 315 // (add (sext x), (sext y)) --> (sext (add int x, y)) 316 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 317 // Only do this if x/y have the same type, if at last one of them has a 318 // single use (so we don't increase the number of sexts), and if the 319 // integer add will not overflow. 320 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 321 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 322 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 323 RHSConv->getOperand(0))) { 324 // Insert the new integer add. 325 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 326 RHSConv->getOperand(0), "addconv"); 327 return new SExtInst(NewAdd, I.getType()); 328 } 329 } 330 } 331 332 // Check for (x & y) + (x ^ y) 333 { 334 Value *A = 0, *B = 0; 335 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 336 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 337 match(LHS, m_And(m_Specific(B), m_Specific(A))))) 338 return BinaryOperator::CreateOr(A, B); 339 340 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 341 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 342 match(RHS, m_And(m_Specific(B), m_Specific(A))))) 343 return BinaryOperator::CreateOr(A, B); 344 } 345 346 return Changed ? &I : 0; 347 } 348 349 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 350 bool Changed = SimplifyAssociativeOrCommutative(I); 351 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 352 353 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 354 // X + 0 --> X 355 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 356 if (CFP->isExactlyValue(ConstantFP::getNegativeZero 357 (I.getType())->getValueAPF())) 358 return ReplaceInstUsesWith(I, LHS); 359 } 360 361 if (isa<PHINode>(LHS)) 362 if (Instruction *NV = FoldOpIntoPhi(I)) 363 return NV; 364 } 365 366 // -A + B --> B - A 367 // -A + -B --> -(A + B) 368 if (Value *LHSV = dyn_castFNegVal(LHS)) 369 return BinaryOperator::CreateFSub(RHS, LHSV); 370 371 // A + -B --> A - B 372 if (!isa<Constant>(RHS)) 373 if (Value *V = dyn_castFNegVal(RHS)) 374 return BinaryOperator::CreateFSub(LHS, V); 375 376 // Check for X+0.0. Simplify it to X if we know X is not -0.0. 377 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 378 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) 379 return ReplaceInstUsesWith(I, LHS); 380 381 // Check for (fadd double (sitofp x), y), see if we can merge this into an 382 // integer add followed by a promotion. 383 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 384 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 385 // ... if the constant fits in the integer value. This is useful for things 386 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 387 // requires a constant pool load, and generally allows the add to be better 388 // instcombined. 389 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 390 Constant *CI = 391 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 392 if (LHSConv->hasOneUse() && 393 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 394 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 395 // Insert the new integer add. 396 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 397 CI, "addconv"); 398 return new SIToFPInst(NewAdd, I.getType()); 399 } 400 } 401 402 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 403 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 404 // Only do this if x/y have the same type, if at last one of them has a 405 // single use (so we don't increase the number of int->fp conversions), 406 // and if the integer add will not overflow. 407 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 408 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 409 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 410 RHSConv->getOperand(0))) { 411 // Insert the new integer add. 412 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 413 RHSConv->getOperand(0),"addconv"); 414 return new SIToFPInst(NewAdd, I.getType()); 415 } 416 } 417 } 418 419 return Changed ? &I : 0; 420 } 421 422 423 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the 424 /// code necessary to compute the offset from the base pointer (without adding 425 /// in the base pointer). Return the result as a signed integer of intptr size. 426 Value *InstCombiner::EmitGEPOffset(User *GEP) { 427 TargetData &TD = *getTargetData(); 428 gep_type_iterator GTI = gep_type_begin(GEP); 429 Type *IntPtrTy = TD.getIntPtrType(GEP->getContext()); 430 Value *Result = Constant::getNullValue(IntPtrTy); 431 432 // If the GEP is inbounds, we know that none of the addressing operations will 433 // overflow in an unsigned sense. 434 bool isInBounds = cast<GEPOperator>(GEP)->isInBounds(); 435 436 // Build a mask for high order bits. 437 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 438 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 439 440 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; 441 ++i, ++GTI) { 442 Value *Op = *i; 443 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; 444 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { 445 if (OpC->isZero()) continue; 446 447 // Handle a struct index, which adds its field offset to the pointer. 448 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 449 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 450 451 if (Size) 452 Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size), 453 GEP->getName()+".offs"); 454 continue; 455 } 456 457 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 458 Constant *OC = 459 ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); 460 Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/); 461 // Emit an add instruction. 462 Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); 463 continue; 464 } 465 // Convert to correct type. 466 if (Op->getType() != IntPtrTy) 467 Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); 468 if (Size != 1) { 469 // We'll let instcombine(mul) convert this to a shl if possible. 470 Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size), 471 GEP->getName()+".idx", isInBounds /*NUW*/); 472 } 473 474 // Emit an add instruction. 475 Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); 476 } 477 return Result; 478 } 479 480 481 482 483 /// Optimize pointer differences into the same array into a size. Consider: 484 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 485 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 486 /// 487 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 488 Type *Ty) { 489 assert(TD && "Must have target data info for this"); 490 491 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 492 // this. 493 bool Swapped = false; 494 GEPOperator *GEP1 = 0, *GEP2 = 0; 495 496 // For now we require one side to be the base pointer "A" or a constant 497 // GEP derived from it. 498 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 499 // (gep X, ...) - X 500 if (LHSGEP->getOperand(0) == RHS) { 501 GEP1 = LHSGEP; 502 Swapped = false; 503 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 504 // (gep X, ...) - (gep X, ...) 505 if (LHSGEP->getOperand(0)->stripPointerCasts() == 506 RHSGEP->getOperand(0)->stripPointerCasts()) { 507 GEP2 = RHSGEP; 508 GEP1 = LHSGEP; 509 Swapped = false; 510 } 511 } 512 } 513 514 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 515 // X - (gep X, ...) 516 if (RHSGEP->getOperand(0) == LHS) { 517 GEP1 = RHSGEP; 518 Swapped = true; 519 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 520 // (gep X, ...) - (gep X, ...) 521 if (RHSGEP->getOperand(0)->stripPointerCasts() == 522 LHSGEP->getOperand(0)->stripPointerCasts()) { 523 GEP2 = LHSGEP; 524 GEP1 = RHSGEP; 525 Swapped = true; 526 } 527 } 528 } 529 530 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 531 // multiple users. 532 if (GEP1 == 0 || 533 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 534 return 0; 535 536 // Emit the offset of the GEP and an intptr_t. 537 Value *Result = EmitGEPOffset(GEP1); 538 539 // If we had a constant expression GEP on the other side offsetting the 540 // pointer, subtract it from the offset we have. 541 if (GEP2) { 542 Value *Offset = EmitGEPOffset(GEP2); 543 Result = Builder->CreateSub(Result, Offset); 544 } 545 546 // If we have p - gep(p, ...) then we have to negate the result. 547 if (Swapped) 548 Result = Builder->CreateNeg(Result, "diff.neg"); 549 550 return Builder->CreateIntCast(Result, Ty, true); 551 } 552 553 554 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 555 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 556 557 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 558 I.hasNoUnsignedWrap(), TD)) 559 return ReplaceInstUsesWith(I, V); 560 561 // (A*B)-(A*C) -> A*(B-C) etc 562 if (Value *V = SimplifyUsingDistributiveLaws(I)) 563 return ReplaceInstUsesWith(I, V); 564 565 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. 566 if (Value *V = dyn_castNegVal(Op1)) { 567 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 568 Res->setHasNoSignedWrap(I.hasNoSignedWrap()); 569 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 570 return Res; 571 } 572 573 if (I.getType()->isIntegerTy(1)) 574 return BinaryOperator::CreateXor(Op0, Op1); 575 576 // Replace (-1 - A) with (~A). 577 if (match(Op0, m_AllOnes())) 578 return BinaryOperator::CreateNot(Op1); 579 580 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 581 // C - ~X == X + (1+C) 582 Value *X = 0; 583 if (match(Op1, m_Not(m_Value(X)))) 584 return BinaryOperator::CreateAdd(X, AddOne(C)); 585 586 // -(X >>u 31) -> (X >>s 31) 587 // -(X >>s 31) -> (X >>u 31) 588 if (C->isZero()) { 589 Value *X; ConstantInt *CI; 590 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 591 // Verify we are shifting out everything but the sign bit. 592 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 593 return BinaryOperator::CreateAShr(X, CI); 594 595 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 596 // Verify we are shifting out everything but the sign bit. 597 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 598 return BinaryOperator::CreateLShr(X, CI); 599 } 600 601 // Try to fold constant sub into select arguments. 602 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 603 if (Instruction *R = FoldOpIntoSelect(I, SI)) 604 return R; 605 606 // C - zext(bool) -> bool ? C - 1 : C 607 if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) 608 if (ZI->getSrcTy()->isIntegerTy(1)) 609 return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); 610 611 // C-(X+C2) --> (C-C2)-X 612 ConstantInt *C2; 613 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2)))) 614 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 615 616 if (SimplifyDemandedInstructionBits(I)) 617 return &I; 618 } 619 620 621 { Value *Y; 622 // X-(X+Y) == -Y X-(Y+X) == -Y 623 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 624 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 625 return BinaryOperator::CreateNeg(Y); 626 627 // (X-Y)-X == -Y 628 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 629 return BinaryOperator::CreateNeg(Y); 630 } 631 632 if (Op1->hasOneUse()) { 633 Value *X = 0, *Y = 0, *Z = 0; 634 Constant *C = 0; 635 ConstantInt *CI = 0; 636 637 // (X - (Y - Z)) --> (X + (Z - Y)). 638 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 639 return BinaryOperator::CreateAdd(Op0, 640 Builder->CreateSub(Z, Y, Op1->getName())); 641 642 // (X - (X & Y)) --> (X & ~Y) 643 // 644 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 645 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 646 return BinaryOperator::CreateAnd(Op0, 647 Builder->CreateNot(Y, Y->getName() + ".not")); 648 649 // 0 - (X sdiv C) -> (X sdiv -C) 650 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && 651 match(Op0, m_Zero())) 652 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 653 654 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 655 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 656 if (Value *XNeg = dyn_castNegVal(X)) 657 return BinaryOperator::CreateShl(XNeg, Y); 658 659 // X - X*C --> X * (1-C) 660 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) { 661 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); 662 return BinaryOperator::CreateMul(Op0, CP1); 663 } 664 665 // X - X<<C --> X * (1-(1<<C)) 666 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) { 667 Constant *One = ConstantInt::get(I.getType(), 1); 668 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); 669 return BinaryOperator::CreateMul(Op0, C); 670 } 671 672 // X - A*-B -> X + A*B 673 // X - -A*B -> X + A*B 674 Value *A, *B; 675 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 676 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 677 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 678 679 // X - A*CI -> X + A*-CI 680 // X - CI*A -> X + A*-CI 681 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) || 682 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) { 683 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 684 return BinaryOperator::CreateAdd(Op0, NewMul); 685 } 686 } 687 688 ConstantInt *C1; 689 if (Value *X = dyn_castFoldableMul(Op0, C1)) { 690 if (X == Op1) // X*C - X --> X * (C-1) 691 return BinaryOperator::CreateMul(Op1, SubOne(C1)); 692 693 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) 694 if (X == dyn_castFoldableMul(Op1, C2)) 695 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); 696 } 697 698 // Optimize pointer differences into the same array into a size. Consider: 699 // &A[10] - &A[0]: we should compile this to "10". 700 if (TD) { 701 Value *LHSOp, *RHSOp; 702 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 703 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 704 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 705 return ReplaceInstUsesWith(I, Res); 706 707 // trunc(p)-trunc(q) -> trunc(p-q) 708 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 709 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 710 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 711 return ReplaceInstUsesWith(I, Res); 712 } 713 714 return 0; 715 } 716 717 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 718 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 719 720 // If this is a 'B = x-(-A)', change to B = x+A... 721 if (Value *V = dyn_castFNegVal(Op1)) 722 return BinaryOperator::CreateFAdd(Op0, V); 723 724 return 0; 725 } 726