1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10 // It also ensures that globals are properly laid out for the
11 // llvm.icall.branch.funnel intrinsic.
12 // See http://llvm.org/docs/TypeMetadata.html for more information.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/LowerTypeTests.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/EquivalenceClasses.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/ModuleSummaryIndex.h"
51 #include "llvm/IR/ModuleSummaryIndexYAML.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Allocator.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/Error.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/FileSystem.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/TrailingObjects.h"
70 #include "llvm/Support/YAMLTraits.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/IPO.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/ModuleUtils.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <memory>
79 #include <set>
80 #include <string>
81 #include <system_error>
82 #include <utility>
83 #include <vector>
84
85 using namespace llvm;
86 using namespace lowertypetests;
87
88 #define DEBUG_TYPE "lowertypetests"
89
90 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
91 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
92 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
93 STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
94 STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
95
96 static cl::opt<bool> AvoidReuse(
97 "lowertypetests-avoid-reuse",
98 cl::desc("Try to avoid reuse of byte array addresses using aliases"),
99 cl::Hidden, cl::init(true));
100
101 static cl::opt<PassSummaryAction> ClSummaryAction(
102 "lowertypetests-summary-action",
103 cl::desc("What to do with the summary when running this pass"),
104 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
105 clEnumValN(PassSummaryAction::Import, "import",
106 "Import typeid resolutions from summary and globals"),
107 clEnumValN(PassSummaryAction::Export, "export",
108 "Export typeid resolutions to summary and globals")),
109 cl::Hidden);
110
111 static cl::opt<std::string> ClReadSummary(
112 "lowertypetests-read-summary",
113 cl::desc("Read summary from given YAML file before running pass"),
114 cl::Hidden);
115
116 static cl::opt<std::string> ClWriteSummary(
117 "lowertypetests-write-summary",
118 cl::desc("Write summary to given YAML file after running pass"),
119 cl::Hidden);
120
121 static cl::opt<bool>
122 ClDropTypeTests("lowertypetests-drop-type-tests",
123 cl::desc("Simply drop type test assume sequences"),
124 cl::Hidden, cl::init(false));
125
containsGlobalOffset(uint64_t Offset) const126 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
127 if (Offset < ByteOffset)
128 return false;
129
130 if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
131 return false;
132
133 uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
134 if (BitOffset >= BitSize)
135 return false;
136
137 return Bits.count(BitOffset);
138 }
139
print(raw_ostream & OS) const140 void BitSetInfo::print(raw_ostream &OS) const {
141 OS << "offset " << ByteOffset << " size " << BitSize << " align "
142 << (1 << AlignLog2);
143
144 if (isAllOnes()) {
145 OS << " all-ones\n";
146 return;
147 }
148
149 OS << " { ";
150 for (uint64_t B : Bits)
151 OS << B << ' ';
152 OS << "}\n";
153 }
154
build()155 BitSetInfo BitSetBuilder::build() {
156 if (Min > Max)
157 Min = 0;
158
159 // Normalize each offset against the minimum observed offset, and compute
160 // the bitwise OR of each of the offsets. The number of trailing zeros
161 // in the mask gives us the log2 of the alignment of all offsets, which
162 // allows us to compress the bitset by only storing one bit per aligned
163 // address.
164 uint64_t Mask = 0;
165 for (uint64_t &Offset : Offsets) {
166 Offset -= Min;
167 Mask |= Offset;
168 }
169
170 BitSetInfo BSI;
171 BSI.ByteOffset = Min;
172
173 BSI.AlignLog2 = 0;
174 if (Mask != 0)
175 BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
176
177 // Build the compressed bitset while normalizing the offsets against the
178 // computed alignment.
179 BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
180 for (uint64_t Offset : Offsets) {
181 Offset >>= BSI.AlignLog2;
182 BSI.Bits.insert(Offset);
183 }
184
185 return BSI;
186 }
187
addFragment(const std::set<uint64_t> & F)188 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
189 // Create a new fragment to hold the layout for F.
190 Fragments.emplace_back();
191 std::vector<uint64_t> &Fragment = Fragments.back();
192 uint64_t FragmentIndex = Fragments.size() - 1;
193
194 for (auto ObjIndex : F) {
195 uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
196 if (OldFragmentIndex == 0) {
197 // We haven't seen this object index before, so just add it to the current
198 // fragment.
199 Fragment.push_back(ObjIndex);
200 } else {
201 // This index belongs to an existing fragment. Copy the elements of the
202 // old fragment into this one and clear the old fragment. We don't update
203 // the fragment map just yet, this ensures that any further references to
204 // indices from the old fragment in this fragment do not insert any more
205 // indices.
206 std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
207 llvm::append_range(Fragment, OldFragment);
208 OldFragment.clear();
209 }
210 }
211
212 // Update the fragment map to point our object indices to this fragment.
213 for (uint64_t ObjIndex : Fragment)
214 FragmentMap[ObjIndex] = FragmentIndex;
215 }
216
allocate(const std::set<uint64_t> & Bits,uint64_t BitSize,uint64_t & AllocByteOffset,uint8_t & AllocMask)217 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
218 uint64_t BitSize, uint64_t &AllocByteOffset,
219 uint8_t &AllocMask) {
220 // Find the smallest current allocation.
221 unsigned Bit = 0;
222 for (unsigned I = 1; I != BitsPerByte; ++I)
223 if (BitAllocs[I] < BitAllocs[Bit])
224 Bit = I;
225
226 AllocByteOffset = BitAllocs[Bit];
227
228 // Add our size to it.
229 unsigned ReqSize = AllocByteOffset + BitSize;
230 BitAllocs[Bit] = ReqSize;
231 if (Bytes.size() < ReqSize)
232 Bytes.resize(ReqSize);
233
234 // Set our bits.
235 AllocMask = 1 << Bit;
236 for (uint64_t B : Bits)
237 Bytes[AllocByteOffset + B] |= AllocMask;
238 }
239
isJumpTableCanonical(Function * F)240 bool lowertypetests::isJumpTableCanonical(Function *F) {
241 if (F->isDeclarationForLinker())
242 return false;
243 auto *CI = mdconst::extract_or_null<ConstantInt>(
244 F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
245 if (!CI || CI->getZExtValue() != 0)
246 return true;
247 return F->hasFnAttribute("cfi-canonical-jump-table");
248 }
249
250 namespace {
251
252 struct ByteArrayInfo {
253 std::set<uint64_t> Bits;
254 uint64_t BitSize;
255 GlobalVariable *ByteArray;
256 GlobalVariable *MaskGlobal;
257 uint8_t *MaskPtr = nullptr;
258 };
259
260 /// A POD-like structure that we use to store a global reference together with
261 /// its metadata types. In this pass we frequently need to query the set of
262 /// metadata types referenced by a global, which at the IR level is an expensive
263 /// operation involving a map lookup; this data structure helps to reduce the
264 /// number of times we need to do this lookup.
265 class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
266 friend TrailingObjects;
267
268 GlobalObject *GO;
269 size_t NTypes;
270
271 // For functions: true if the jump table is canonical. This essentially means
272 // whether the canonical address (i.e. the symbol table entry) of the function
273 // is provided by the local jump table. This is normally the same as whether
274 // the function is defined locally, but if canonical jump tables are disabled
275 // by the user then the jump table never provides a canonical definition.
276 bool IsJumpTableCanonical;
277
278 // For functions: true if this function is either defined or used in a thinlto
279 // module and its jumptable entry needs to be exported to thinlto backends.
280 bool IsExported;
281
numTrailingObjects(OverloadToken<MDNode * >) const282 size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
283
284 public:
create(BumpPtrAllocator & Alloc,GlobalObject * GO,bool IsJumpTableCanonical,bool IsExported,ArrayRef<MDNode * > Types)285 static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
286 bool IsJumpTableCanonical, bool IsExported,
287 ArrayRef<MDNode *> Types) {
288 auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
289 totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
290 GTM->GO = GO;
291 GTM->NTypes = Types.size();
292 GTM->IsJumpTableCanonical = IsJumpTableCanonical;
293 GTM->IsExported = IsExported;
294 std::uninitialized_copy(Types.begin(), Types.end(),
295 GTM->getTrailingObjects<MDNode *>());
296 return GTM;
297 }
298
getGlobal() const299 GlobalObject *getGlobal() const {
300 return GO;
301 }
302
isJumpTableCanonical() const303 bool isJumpTableCanonical() const {
304 return IsJumpTableCanonical;
305 }
306
isExported() const307 bool isExported() const {
308 return IsExported;
309 }
310
types() const311 ArrayRef<MDNode *> types() const {
312 return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
313 }
314 };
315
316 struct ICallBranchFunnel final
317 : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
create__anon131d77d30111::ICallBranchFunnel318 static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
319 ArrayRef<GlobalTypeMember *> Targets,
320 unsigned UniqueId) {
321 auto *Call = static_cast<ICallBranchFunnel *>(
322 Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
323 alignof(ICallBranchFunnel)));
324 Call->CI = CI;
325 Call->UniqueId = UniqueId;
326 Call->NTargets = Targets.size();
327 std::uninitialized_copy(Targets.begin(), Targets.end(),
328 Call->getTrailingObjects<GlobalTypeMember *>());
329 return Call;
330 }
331
332 CallInst *CI;
targets__anon131d77d30111::ICallBranchFunnel333 ArrayRef<GlobalTypeMember *> targets() const {
334 return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
335 }
336
337 unsigned UniqueId;
338
339 private:
340 size_t NTargets;
341 };
342
343 struct ScopedSaveAliaseesAndUsed {
344 Module &M;
345 SmallVector<GlobalValue *, 4> Used, CompilerUsed;
346 std::vector<std::pair<GlobalAlias *, Function *>> FunctionAliases;
347 std::vector<std::pair<GlobalIFunc *, Function *>> ResolverIFuncs;
348
ScopedSaveAliaseesAndUsed__anon131d77d30111::ScopedSaveAliaseesAndUsed349 ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
350 // The users of this class want to replace all function references except
351 // for aliases and llvm.used/llvm.compiler.used with references to a jump
352 // table. We avoid replacing aliases in order to avoid introducing a double
353 // indirection (or an alias pointing to a declaration in ThinLTO mode), and
354 // we avoid replacing llvm.used/llvm.compiler.used because these global
355 // variables describe properties of the global, not the jump table (besides,
356 // offseted references to the jump table in llvm.used are invalid).
357 // Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
358 // indirect) users", so what we do is save the list of globals referenced by
359 // llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
360 // replace the aliasees and then set them back to their original values at
361 // the end.
362 if (GlobalVariable *GV = collectUsedGlobalVariables(M, Used, false))
363 GV->eraseFromParent();
364 if (GlobalVariable *GV = collectUsedGlobalVariables(M, CompilerUsed, true))
365 GV->eraseFromParent();
366
367 for (auto &GA : M.aliases()) {
368 // FIXME: This should look past all aliases not just interposable ones,
369 // see discussion on D65118.
370 if (auto *F = dyn_cast<Function>(GA.getAliasee()->stripPointerCasts()))
371 FunctionAliases.push_back({&GA, F});
372 }
373
374 for (auto &GI : M.ifuncs())
375 if (auto *F = dyn_cast<Function>(GI.getResolver()->stripPointerCasts()))
376 ResolverIFuncs.push_back({&GI, F});
377 }
378
~ScopedSaveAliaseesAndUsed__anon131d77d30111::ScopedSaveAliaseesAndUsed379 ~ScopedSaveAliaseesAndUsed() {
380 appendToUsed(M, Used);
381 appendToCompilerUsed(M, CompilerUsed);
382
383 for (auto P : FunctionAliases)
384 P.first->setAliasee(
385 ConstantExpr::getBitCast(P.second, P.first->getType()));
386
387 for (auto P : ResolverIFuncs) {
388 // This does not preserve pointer casts that may have been stripped by the
389 // constructor, but the resolver's type is different from that of the
390 // ifunc anyway.
391 P.first->setResolver(P.second);
392 }
393 }
394 };
395
396 class LowerTypeTestsModule {
397 Module &M;
398
399 ModuleSummaryIndex *ExportSummary;
400 const ModuleSummaryIndex *ImportSummary;
401 // Set when the client has invoked this to simply drop all type test assume
402 // sequences.
403 bool DropTypeTests;
404
405 Triple::ArchType Arch;
406 Triple::OSType OS;
407 Triple::ObjectFormatType ObjectFormat;
408
409 IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
410 IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
411 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
412 ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
413 IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
414 PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
415 IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
416 IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
417
418 // Indirect function call index assignment counter for WebAssembly
419 uint64_t IndirectIndex = 1;
420
421 // Mapping from type identifiers to the call sites that test them, as well as
422 // whether the type identifier needs to be exported to ThinLTO backends as
423 // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
424 struct TypeIdUserInfo {
425 std::vector<CallInst *> CallSites;
426 bool IsExported = false;
427 };
428 DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
429
430 /// This structure describes how to lower type tests for a particular type
431 /// identifier. It is either built directly from the global analysis (during
432 /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
433 /// identifier summaries and external symbol references (in ThinLTO backends).
434 struct TypeIdLowering {
435 TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
436
437 /// All except Unsat: the start address within the combined global.
438 Constant *OffsetedGlobal;
439
440 /// ByteArray, Inline, AllOnes: log2 of the required global alignment
441 /// relative to the start address.
442 Constant *AlignLog2;
443
444 /// ByteArray, Inline, AllOnes: one less than the size of the memory region
445 /// covering members of this type identifier as a multiple of 2^AlignLog2.
446 Constant *SizeM1;
447
448 /// ByteArray: the byte array to test the address against.
449 Constant *TheByteArray;
450
451 /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
452 Constant *BitMask;
453
454 /// Inline: the bit mask to test the address against.
455 Constant *InlineBits;
456 };
457
458 std::vector<ByteArrayInfo> ByteArrayInfos;
459
460 Function *WeakInitializerFn = nullptr;
461
462 bool shouldExportConstantsAsAbsoluteSymbols();
463 uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
464 TypeIdLowering importTypeId(StringRef TypeId);
465 void importTypeTest(CallInst *CI);
466 void importFunction(Function *F, bool isJumpTableCanonical,
467 std::vector<GlobalAlias *> &AliasesToErase);
468
469 BitSetInfo
470 buildBitSet(Metadata *TypeId,
471 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
472 ByteArrayInfo *createByteArray(BitSetInfo &BSI);
473 void allocateByteArrays();
474 Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
475 Value *BitOffset);
476 void lowerTypeTestCalls(
477 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
478 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
479 Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
480 const TypeIdLowering &TIL);
481
482 void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
483 ArrayRef<GlobalTypeMember *> Globals);
484 unsigned getJumpTableEntrySize();
485 Type *getJumpTableEntryType();
486 void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
487 Triple::ArchType JumpTableArch,
488 SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
489 void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
490 void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
491 ArrayRef<GlobalTypeMember *> Functions);
492 void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
493 ArrayRef<GlobalTypeMember *> Functions);
494 void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
495 ArrayRef<GlobalTypeMember *> Functions);
496 void
497 buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
498 ArrayRef<GlobalTypeMember *> Globals,
499 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
500
501 void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
502 bool IsJumpTableCanonical);
503 void moveInitializerToModuleConstructor(GlobalVariable *GV);
504 void findGlobalVariableUsersOf(Constant *C,
505 SmallSetVector<GlobalVariable *, 8> &Out);
506
507 void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
508
509 /// replaceCfiUses - Go through the uses list for this definition
510 /// and make each use point to "V" instead of "this" when the use is outside
511 /// the block. 'This's use list is expected to have at least one element.
512 /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
513 /// uses.
514 void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
515
516 /// replaceDirectCalls - Go through the uses list for this definition and
517 /// replace each use, which is a direct function call.
518 void replaceDirectCalls(Value *Old, Value *New);
519
520 public:
521 LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
522 const ModuleSummaryIndex *ImportSummary,
523 bool DropTypeTests);
524
525 bool lower();
526
527 // Lower the module using the action and summary passed as command line
528 // arguments. For testing purposes only.
529 static bool runForTesting(Module &M);
530 };
531 } // end anonymous namespace
532
533 /// Build a bit set for TypeId using the object layouts in
534 /// GlobalLayout.
buildBitSet(Metadata * TypeId,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)535 BitSetInfo LowerTypeTestsModule::buildBitSet(
536 Metadata *TypeId,
537 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
538 BitSetBuilder BSB;
539
540 // Compute the byte offset of each address associated with this type
541 // identifier.
542 for (auto &GlobalAndOffset : GlobalLayout) {
543 for (MDNode *Type : GlobalAndOffset.first->types()) {
544 if (Type->getOperand(1) != TypeId)
545 continue;
546 uint64_t Offset =
547 cast<ConstantInt>(
548 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
549 ->getZExtValue();
550 BSB.addOffset(GlobalAndOffset.second + Offset);
551 }
552 }
553
554 return BSB.build();
555 }
556
557 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
558 /// Bits. This pattern matches to the bt instruction on x86.
createMaskedBitTest(IRBuilder<> & B,Value * Bits,Value * BitOffset)559 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
560 Value *BitOffset) {
561 auto BitsType = cast<IntegerType>(Bits->getType());
562 unsigned BitWidth = BitsType->getBitWidth();
563
564 BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
565 Value *BitIndex =
566 B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
567 Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
568 Value *MaskedBits = B.CreateAnd(Bits, BitMask);
569 return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
570 }
571
createByteArray(BitSetInfo & BSI)572 ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
573 // Create globals to stand in for byte arrays and masks. These never actually
574 // get initialized, we RAUW and erase them later in allocateByteArrays() once
575 // we know the offset and mask to use.
576 auto ByteArrayGlobal = new GlobalVariable(
577 M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
578 auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
579 GlobalValue::PrivateLinkage, nullptr);
580
581 ByteArrayInfos.emplace_back();
582 ByteArrayInfo *BAI = &ByteArrayInfos.back();
583
584 BAI->Bits = BSI.Bits;
585 BAI->BitSize = BSI.BitSize;
586 BAI->ByteArray = ByteArrayGlobal;
587 BAI->MaskGlobal = MaskGlobal;
588 return BAI;
589 }
590
allocateByteArrays()591 void LowerTypeTestsModule::allocateByteArrays() {
592 llvm::stable_sort(ByteArrayInfos,
593 [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
594 return BAI1.BitSize > BAI2.BitSize;
595 });
596
597 std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
598
599 ByteArrayBuilder BAB;
600 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
601 ByteArrayInfo *BAI = &ByteArrayInfos[I];
602
603 uint8_t Mask;
604 BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
605
606 BAI->MaskGlobal->replaceAllUsesWith(
607 ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
608 BAI->MaskGlobal->eraseFromParent();
609 if (BAI->MaskPtr)
610 *BAI->MaskPtr = Mask;
611 }
612
613 Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
614 auto ByteArray =
615 new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
616 GlobalValue::PrivateLinkage, ByteArrayConst);
617
618 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
619 ByteArrayInfo *BAI = &ByteArrayInfos[I];
620
621 Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
622 ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
623 Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
624 ByteArrayConst->getType(), ByteArray, Idxs);
625
626 // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
627 // that the pc-relative displacement is folded into the lea instead of the
628 // test instruction getting another displacement.
629 GlobalAlias *Alias = GlobalAlias::create(
630 Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
631 BAI->ByteArray->replaceAllUsesWith(Alias);
632 BAI->ByteArray->eraseFromParent();
633 }
634
635 ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
636 BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
637 BAB.BitAllocs[6] + BAB.BitAllocs[7];
638 ByteArraySizeBytes = BAB.Bytes.size();
639 }
640
641 /// Build a test that bit BitOffset is set in the type identifier that was
642 /// lowered to TIL, which must be either an Inline or a ByteArray.
createBitSetTest(IRBuilder<> & B,const TypeIdLowering & TIL,Value * BitOffset)643 Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
644 const TypeIdLowering &TIL,
645 Value *BitOffset) {
646 if (TIL.TheKind == TypeTestResolution::Inline) {
647 // If the bit set is sufficiently small, we can avoid a load by bit testing
648 // a constant.
649 return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
650 } else {
651 Constant *ByteArray = TIL.TheByteArray;
652 if (AvoidReuse && !ImportSummary) {
653 // Each use of the byte array uses a different alias. This makes the
654 // backend less likely to reuse previously computed byte array addresses,
655 // improving the security of the CFI mechanism based on this pass.
656 // This won't work when importing because TheByteArray is external.
657 ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
658 "bits_use", ByteArray, &M);
659 }
660
661 Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
662 Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
663
664 Value *ByteAndMask =
665 B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
666 return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
667 }
668 }
669
isKnownTypeIdMember(Metadata * TypeId,const DataLayout & DL,Value * V,uint64_t COffset)670 static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
671 Value *V, uint64_t COffset) {
672 if (auto GV = dyn_cast<GlobalObject>(V)) {
673 SmallVector<MDNode *, 2> Types;
674 GV->getMetadata(LLVMContext::MD_type, Types);
675 for (MDNode *Type : Types) {
676 if (Type->getOperand(1) != TypeId)
677 continue;
678 uint64_t Offset =
679 cast<ConstantInt>(
680 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
681 ->getZExtValue();
682 if (COffset == Offset)
683 return true;
684 }
685 return false;
686 }
687
688 if (auto GEP = dyn_cast<GEPOperator>(V)) {
689 APInt APOffset(DL.getPointerSizeInBits(0), 0);
690 bool Result = GEP->accumulateConstantOffset(DL, APOffset);
691 if (!Result)
692 return false;
693 COffset += APOffset.getZExtValue();
694 return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
695 }
696
697 if (auto Op = dyn_cast<Operator>(V)) {
698 if (Op->getOpcode() == Instruction::BitCast)
699 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
700
701 if (Op->getOpcode() == Instruction::Select)
702 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
703 isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
704 }
705
706 return false;
707 }
708
709 /// Lower a llvm.type.test call to its implementation. Returns the value to
710 /// replace the call with.
lowerTypeTestCall(Metadata * TypeId,CallInst * CI,const TypeIdLowering & TIL)711 Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
712 const TypeIdLowering &TIL) {
713 // Delay lowering if the resolution is currently unknown.
714 if (TIL.TheKind == TypeTestResolution::Unknown)
715 return nullptr;
716 if (TIL.TheKind == TypeTestResolution::Unsat)
717 return ConstantInt::getFalse(M.getContext());
718
719 Value *Ptr = CI->getArgOperand(0);
720 const DataLayout &DL = M.getDataLayout();
721 if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
722 return ConstantInt::getTrue(M.getContext());
723
724 BasicBlock *InitialBB = CI->getParent();
725
726 IRBuilder<> B(CI);
727
728 Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
729
730 Constant *OffsetedGlobalAsInt =
731 ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
732 if (TIL.TheKind == TypeTestResolution::Single)
733 return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
734
735 Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
736
737 // We need to check that the offset both falls within our range and is
738 // suitably aligned. We can check both properties at the same time by
739 // performing a right rotate by log2(alignment) followed by an integer
740 // comparison against the bitset size. The rotate will move the lower
741 // order bits that need to be zero into the higher order bits of the
742 // result, causing the comparison to fail if they are nonzero. The rotate
743 // also conveniently gives us a bit offset to use during the load from
744 // the bitset.
745 Value *OffsetSHR =
746 B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
747 Value *OffsetSHL = B.CreateShl(
748 PtrOffset, ConstantExpr::getZExt(
749 ConstantExpr::getSub(
750 ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
751 TIL.AlignLog2),
752 IntPtrTy));
753 Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
754
755 Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
756
757 // If the bit set is all ones, testing against it is unnecessary.
758 if (TIL.TheKind == TypeTestResolution::AllOnes)
759 return OffsetInRange;
760
761 // See if the intrinsic is used in the following common pattern:
762 // br(llvm.type.test(...), thenbb, elsebb)
763 // where nothing happens between the type test and the br.
764 // If so, create slightly simpler IR.
765 if (CI->hasOneUse())
766 if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
767 if (CI->getNextNode() == Br) {
768 BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
769 BasicBlock *Else = Br->getSuccessor(1);
770 BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
771 NewBr->setMetadata(LLVMContext::MD_prof,
772 Br->getMetadata(LLVMContext::MD_prof));
773 ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
774
775 // Update phis in Else resulting from InitialBB being split
776 for (auto &Phi : Else->phis())
777 Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
778
779 IRBuilder<> ThenB(CI);
780 return createBitSetTest(ThenB, TIL, BitOffset);
781 }
782
783 IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
784
785 // Now that we know that the offset is in range and aligned, load the
786 // appropriate bit from the bitset.
787 Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
788
789 // The value we want is 0 if we came directly from the initial block
790 // (having failed the range or alignment checks), or the loaded bit if
791 // we came from the block in which we loaded it.
792 B.SetInsertPoint(CI);
793 PHINode *P = B.CreatePHI(Int1Ty, 2);
794 P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
795 P->addIncoming(Bit, ThenB.GetInsertBlock());
796 return P;
797 }
798
799 /// Given a disjoint set of type identifiers and globals, lay out the globals,
800 /// build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromGlobalVariables(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals)801 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
802 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
803 // Build a new global with the combined contents of the referenced globals.
804 // This global is a struct whose even-indexed elements contain the original
805 // contents of the referenced globals and whose odd-indexed elements contain
806 // any padding required to align the next element to the next power of 2 plus
807 // any additional padding required to meet its alignment requirements.
808 std::vector<Constant *> GlobalInits;
809 const DataLayout &DL = M.getDataLayout();
810 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
811 Align MaxAlign;
812 uint64_t CurOffset = 0;
813 uint64_t DesiredPadding = 0;
814 for (GlobalTypeMember *G : Globals) {
815 auto *GV = cast<GlobalVariable>(G->getGlobal());
816 Align Alignment =
817 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
818 MaxAlign = std::max(MaxAlign, Alignment);
819 uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, Alignment);
820 GlobalLayout[G] = GVOffset;
821 if (GVOffset != 0) {
822 uint64_t Padding = GVOffset - CurOffset;
823 GlobalInits.push_back(
824 ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
825 }
826
827 GlobalInits.push_back(GV->getInitializer());
828 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
829 CurOffset = GVOffset + InitSize;
830
831 // Compute the amount of padding that we'd like for the next element.
832 DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
833
834 // Experiments of different caps with Chromium on both x64 and ARM64
835 // have shown that the 32-byte cap generates the smallest binary on
836 // both platforms while different caps yield similar performance.
837 // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
838 if (DesiredPadding > 32)
839 DesiredPadding = alignTo(InitSize, 32) - InitSize;
840 }
841
842 Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
843 auto *CombinedGlobal =
844 new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
845 GlobalValue::PrivateLinkage, NewInit);
846 CombinedGlobal->setAlignment(MaxAlign);
847
848 StructType *NewTy = cast<StructType>(NewInit->getType());
849 lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
850
851 // Build aliases pointing to offsets into the combined global for each
852 // global from which we built the combined global, and replace references
853 // to the original globals with references to the aliases.
854 for (unsigned I = 0; I != Globals.size(); ++I) {
855 GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
856
857 // Multiply by 2 to account for padding elements.
858 Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
859 ConstantInt::get(Int32Ty, I * 2)};
860 Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
861 NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
862 assert(GV->getType()->getAddressSpace() == 0);
863 GlobalAlias *GAlias =
864 GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
865 "", CombinedGlobalElemPtr, &M);
866 GAlias->setVisibility(GV->getVisibility());
867 GAlias->takeName(GV);
868 GV->replaceAllUsesWith(GAlias);
869 GV->eraseFromParent();
870 }
871 }
872
shouldExportConstantsAsAbsoluteSymbols()873 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
874 return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
875 ObjectFormat == Triple::ELF;
876 }
877
878 /// Export the given type identifier so that ThinLTO backends may import it.
879 /// Type identifiers are exported by adding coarse-grained information about how
880 /// to test the type identifier to the summary, and creating symbols in the
881 /// object file (aliases and absolute symbols) containing fine-grained
882 /// information about the type identifier.
883 ///
884 /// Returns a pointer to the location in which to store the bitmask, if
885 /// applicable.
exportTypeId(StringRef TypeId,const TypeIdLowering & TIL)886 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
887 const TypeIdLowering &TIL) {
888 TypeTestResolution &TTRes =
889 ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
890 TTRes.TheKind = TIL.TheKind;
891
892 auto ExportGlobal = [&](StringRef Name, Constant *C) {
893 GlobalAlias *GA =
894 GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
895 "__typeid_" + TypeId + "_" + Name, C, &M);
896 GA->setVisibility(GlobalValue::HiddenVisibility);
897 };
898
899 auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
900 if (shouldExportConstantsAsAbsoluteSymbols())
901 ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
902 else
903 Storage = cast<ConstantInt>(C)->getZExtValue();
904 };
905
906 if (TIL.TheKind != TypeTestResolution::Unsat)
907 ExportGlobal("global_addr", TIL.OffsetedGlobal);
908
909 if (TIL.TheKind == TypeTestResolution::ByteArray ||
910 TIL.TheKind == TypeTestResolution::Inline ||
911 TIL.TheKind == TypeTestResolution::AllOnes) {
912 ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
913 ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
914
915 uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
916 if (TIL.TheKind == TypeTestResolution::Inline)
917 TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
918 else
919 TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
920 }
921
922 if (TIL.TheKind == TypeTestResolution::ByteArray) {
923 ExportGlobal("byte_array", TIL.TheByteArray);
924 if (shouldExportConstantsAsAbsoluteSymbols())
925 ExportGlobal("bit_mask", TIL.BitMask);
926 else
927 return &TTRes.BitMask;
928 }
929
930 if (TIL.TheKind == TypeTestResolution::Inline)
931 ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
932
933 return nullptr;
934 }
935
936 LowerTypeTestsModule::TypeIdLowering
importTypeId(StringRef TypeId)937 LowerTypeTestsModule::importTypeId(StringRef TypeId) {
938 const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
939 if (!TidSummary)
940 return {}; // Unsat: no globals match this type id.
941 const TypeTestResolution &TTRes = TidSummary->TTRes;
942
943 TypeIdLowering TIL;
944 TIL.TheKind = TTRes.TheKind;
945
946 auto ImportGlobal = [&](StringRef Name) {
947 // Give the global a type of length 0 so that it is not assumed not to alias
948 // with any other global.
949 Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
950 Int8Arr0Ty);
951 if (auto *GV = dyn_cast<GlobalVariable>(C))
952 GV->setVisibility(GlobalValue::HiddenVisibility);
953 C = ConstantExpr::getBitCast(C, Int8PtrTy);
954 return C;
955 };
956
957 auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
958 Type *Ty) {
959 if (!shouldExportConstantsAsAbsoluteSymbols()) {
960 Constant *C =
961 ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
962 if (!isa<IntegerType>(Ty))
963 C = ConstantExpr::getIntToPtr(C, Ty);
964 return C;
965 }
966
967 Constant *C = ImportGlobal(Name);
968 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
969 if (isa<IntegerType>(Ty))
970 C = ConstantExpr::getPtrToInt(C, Ty);
971 if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
972 return C;
973
974 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
975 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
976 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
977 GV->setMetadata(LLVMContext::MD_absolute_symbol,
978 MDNode::get(M.getContext(), {MinC, MaxC}));
979 };
980 if (AbsWidth == IntPtrTy->getBitWidth())
981 SetAbsRange(~0ull, ~0ull); // Full set.
982 else
983 SetAbsRange(0, 1ull << AbsWidth);
984 return C;
985 };
986
987 if (TIL.TheKind != TypeTestResolution::Unsat)
988 TIL.OffsetedGlobal = ImportGlobal("global_addr");
989
990 if (TIL.TheKind == TypeTestResolution::ByteArray ||
991 TIL.TheKind == TypeTestResolution::Inline ||
992 TIL.TheKind == TypeTestResolution::AllOnes) {
993 TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
994 TIL.SizeM1 =
995 ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
996 }
997
998 if (TIL.TheKind == TypeTestResolution::ByteArray) {
999 TIL.TheByteArray = ImportGlobal("byte_array");
1000 TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
1001 }
1002
1003 if (TIL.TheKind == TypeTestResolution::Inline)
1004 TIL.InlineBits = ImportConstant(
1005 "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
1006 TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
1007
1008 return TIL;
1009 }
1010
importTypeTest(CallInst * CI)1011 void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
1012 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1013 if (!TypeIdMDVal)
1014 report_fatal_error("Second argument of llvm.type.test must be metadata");
1015
1016 auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
1017 // If this is a local unpromoted type, which doesn't have a metadata string,
1018 // treat as Unknown and delay lowering, so that we can still utilize it for
1019 // later optimizations.
1020 if (!TypeIdStr)
1021 return;
1022
1023 TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
1024 Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
1025 if (Lowered) {
1026 CI->replaceAllUsesWith(Lowered);
1027 CI->eraseFromParent();
1028 }
1029 }
1030
1031 // ThinLTO backend: the function F has a jump table entry; update this module
1032 // accordingly. isJumpTableCanonical describes the type of the jump table entry.
importFunction(Function * F,bool isJumpTableCanonical,std::vector<GlobalAlias * > & AliasesToErase)1033 void LowerTypeTestsModule::importFunction(
1034 Function *F, bool isJumpTableCanonical,
1035 std::vector<GlobalAlias *> &AliasesToErase) {
1036 assert(F->getType()->getAddressSpace() == 0);
1037
1038 GlobalValue::VisibilityTypes Visibility = F->getVisibility();
1039 std::string Name = std::string(F->getName());
1040
1041 if (F->isDeclarationForLinker() && isJumpTableCanonical) {
1042 // Non-dso_local functions may be overriden at run time,
1043 // don't short curcuit them
1044 if (F->isDSOLocal()) {
1045 Function *RealF = Function::Create(F->getFunctionType(),
1046 GlobalValue::ExternalLinkage,
1047 F->getAddressSpace(),
1048 Name + ".cfi", &M);
1049 RealF->setVisibility(GlobalVariable::HiddenVisibility);
1050 replaceDirectCalls(F, RealF);
1051 }
1052 return;
1053 }
1054
1055 Function *FDecl;
1056 if (!isJumpTableCanonical) {
1057 // Either a declaration of an external function or a reference to a locally
1058 // defined jump table.
1059 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1060 F->getAddressSpace(), Name + ".cfi_jt", &M);
1061 FDecl->setVisibility(GlobalValue::HiddenVisibility);
1062 } else {
1063 F->setName(Name + ".cfi");
1064 F->setLinkage(GlobalValue::ExternalLinkage);
1065 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1066 F->getAddressSpace(), Name, &M);
1067 FDecl->setVisibility(Visibility);
1068 Visibility = GlobalValue::HiddenVisibility;
1069
1070 // Delete aliases pointing to this function, they'll be re-created in the
1071 // merged output. Don't do it yet though because ScopedSaveAliaseesAndUsed
1072 // will want to reset the aliasees first.
1073 for (auto &U : F->uses()) {
1074 if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1075 Function *AliasDecl = Function::Create(
1076 F->getFunctionType(), GlobalValue::ExternalLinkage,
1077 F->getAddressSpace(), "", &M);
1078 AliasDecl->takeName(A);
1079 A->replaceAllUsesWith(AliasDecl);
1080 AliasesToErase.push_back(A);
1081 }
1082 }
1083 }
1084
1085 if (F->hasExternalWeakLinkage())
1086 replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
1087 else
1088 replaceCfiUses(F, FDecl, isJumpTableCanonical);
1089
1090 // Set visibility late because it's used in replaceCfiUses() to determine
1091 // whether uses need to to be replaced.
1092 F->setVisibility(Visibility);
1093 }
1094
lowerTypeTestCalls(ArrayRef<Metadata * > TypeIds,Constant * CombinedGlobalAddr,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)1095 void LowerTypeTestsModule::lowerTypeTestCalls(
1096 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1097 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1098 CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1099
1100 // For each type identifier in this disjoint set...
1101 for (Metadata *TypeId : TypeIds) {
1102 // Build the bitset.
1103 BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1104 LLVM_DEBUG({
1105 if (auto MDS = dyn_cast<MDString>(TypeId))
1106 dbgs() << MDS->getString() << ": ";
1107 else
1108 dbgs() << "<unnamed>: ";
1109 BSI.print(dbgs());
1110 });
1111
1112 ByteArrayInfo *BAI = nullptr;
1113 TypeIdLowering TIL;
1114 TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1115 Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1116 TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1117 TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1118 if (BSI.isAllOnes()) {
1119 TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1120 : TypeTestResolution::AllOnes;
1121 } else if (BSI.BitSize <= 64) {
1122 TIL.TheKind = TypeTestResolution::Inline;
1123 uint64_t InlineBits = 0;
1124 for (auto Bit : BSI.Bits)
1125 InlineBits |= uint64_t(1) << Bit;
1126 if (InlineBits == 0)
1127 TIL.TheKind = TypeTestResolution::Unsat;
1128 else
1129 TIL.InlineBits = ConstantInt::get(
1130 (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1131 } else {
1132 TIL.TheKind = TypeTestResolution::ByteArray;
1133 ++NumByteArraysCreated;
1134 BAI = createByteArray(BSI);
1135 TIL.TheByteArray = BAI->ByteArray;
1136 TIL.BitMask = BAI->MaskGlobal;
1137 }
1138
1139 TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1140
1141 if (TIUI.IsExported) {
1142 uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1143 if (BAI)
1144 BAI->MaskPtr = MaskPtr;
1145 }
1146
1147 // Lower each call to llvm.type.test for this type identifier.
1148 for (CallInst *CI : TIUI.CallSites) {
1149 ++NumTypeTestCallsLowered;
1150 Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1151 if (Lowered) {
1152 CI->replaceAllUsesWith(Lowered);
1153 CI->eraseFromParent();
1154 }
1155 }
1156 }
1157 }
1158
verifyTypeMDNode(GlobalObject * GO,MDNode * Type)1159 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1160 if (Type->getNumOperands() != 2)
1161 report_fatal_error("All operands of type metadata must have 2 elements");
1162
1163 if (GO->isThreadLocal())
1164 report_fatal_error("Bit set element may not be thread-local");
1165 if (isa<GlobalVariable>(GO) && GO->hasSection())
1166 report_fatal_error(
1167 "A member of a type identifier may not have an explicit section");
1168
1169 // FIXME: We previously checked that global var member of a type identifier
1170 // must be a definition, but the IR linker may leave type metadata on
1171 // declarations. We should restore this check after fixing PR31759.
1172
1173 auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1174 if (!OffsetConstMD)
1175 report_fatal_error("Type offset must be a constant");
1176 auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1177 if (!OffsetInt)
1178 report_fatal_error("Type offset must be an integer constant");
1179 }
1180
1181 static const unsigned kX86JumpTableEntrySize = 8;
1182 static const unsigned kARMJumpTableEntrySize = 4;
1183 static const unsigned kARMBTIJumpTableEntrySize = 8;
1184 static const unsigned kRISCVJumpTableEntrySize = 8;
1185
getJumpTableEntrySize()1186 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1187 switch (Arch) {
1188 case Triple::x86:
1189 case Triple::x86_64:
1190 return kX86JumpTableEntrySize;
1191 case Triple::arm:
1192 case Triple::thumb:
1193 return kARMJumpTableEntrySize;
1194 case Triple::aarch64:
1195 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>(
1196 M.getModuleFlag("branch-target-enforcement")))
1197 if (BTE->getZExtValue())
1198 return kARMBTIJumpTableEntrySize;
1199 return kARMJumpTableEntrySize;
1200 case Triple::riscv32:
1201 case Triple::riscv64:
1202 return kRISCVJumpTableEntrySize;
1203 default:
1204 report_fatal_error("Unsupported architecture for jump tables");
1205 }
1206 }
1207
1208 // Create a jump table entry for the target. This consists of an instruction
1209 // sequence containing a relative branch to Dest. Appends inline asm text,
1210 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
createJumpTableEntry(raw_ostream & AsmOS,raw_ostream & ConstraintOS,Triple::ArchType JumpTableArch,SmallVectorImpl<Value * > & AsmArgs,Function * Dest)1211 void LowerTypeTestsModule::createJumpTableEntry(
1212 raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1213 Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1214 Function *Dest) {
1215 unsigned ArgIndex = AsmArgs.size();
1216
1217 if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1218 AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1219 AsmOS << "int3\nint3\nint3\n";
1220 } else if (JumpTableArch == Triple::arm) {
1221 AsmOS << "b $" << ArgIndex << "\n";
1222 } else if (JumpTableArch == Triple::aarch64) {
1223 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>(
1224 Dest->getParent()->getModuleFlag("branch-target-enforcement")))
1225 if (BTE->getZExtValue())
1226 AsmOS << "bti c\n";
1227 AsmOS << "b $" << ArgIndex << "\n";
1228 } else if (JumpTableArch == Triple::thumb) {
1229 AsmOS << "b.w $" << ArgIndex << "\n";
1230 } else if (JumpTableArch == Triple::riscv32 ||
1231 JumpTableArch == Triple::riscv64) {
1232 AsmOS << "tail $" << ArgIndex << "@plt\n";
1233 } else {
1234 report_fatal_error("Unsupported architecture for jump tables");
1235 }
1236
1237 ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1238 AsmArgs.push_back(Dest);
1239 }
1240
getJumpTableEntryType()1241 Type *LowerTypeTestsModule::getJumpTableEntryType() {
1242 return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1243 }
1244
1245 /// Given a disjoint set of type identifiers and functions, build the bit sets
1246 /// and lower the llvm.type.test calls, architecture dependently.
buildBitSetsFromFunctions(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1247 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1248 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1249 if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1250 Arch == Triple::thumb || Arch == Triple::aarch64 ||
1251 Arch == Triple::riscv32 || Arch == Triple::riscv64)
1252 buildBitSetsFromFunctionsNative(TypeIds, Functions);
1253 else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1254 buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1255 else
1256 report_fatal_error("Unsupported architecture for jump tables");
1257 }
1258
moveInitializerToModuleConstructor(GlobalVariable * GV)1259 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1260 GlobalVariable *GV) {
1261 if (WeakInitializerFn == nullptr) {
1262 WeakInitializerFn = Function::Create(
1263 FunctionType::get(Type::getVoidTy(M.getContext()),
1264 /* IsVarArg */ false),
1265 GlobalValue::InternalLinkage,
1266 M.getDataLayout().getProgramAddressSpace(),
1267 "__cfi_global_var_init", &M);
1268 BasicBlock *BB =
1269 BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1270 ReturnInst::Create(M.getContext(), BB);
1271 WeakInitializerFn->setSection(
1272 ObjectFormat == Triple::MachO
1273 ? "__TEXT,__StaticInit,regular,pure_instructions"
1274 : ".text.startup");
1275 // This code is equivalent to relocation application, and should run at the
1276 // earliest possible time (i.e. with the highest priority).
1277 appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1278 }
1279
1280 IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1281 GV->setConstant(false);
1282 IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlign());
1283 GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1284 }
1285
findGlobalVariableUsersOf(Constant * C,SmallSetVector<GlobalVariable *,8> & Out)1286 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1287 Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1288 for (auto *U : C->users()){
1289 if (auto *GV = dyn_cast<GlobalVariable>(U))
1290 Out.insert(GV);
1291 else if (auto *C2 = dyn_cast<Constant>(U))
1292 findGlobalVariableUsersOf(C2, Out);
1293 }
1294 }
1295
1296 // Replace all uses of F with (F ? JT : 0).
replaceWeakDeclarationWithJumpTablePtr(Function * F,Constant * JT,bool IsJumpTableCanonical)1297 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1298 Function *F, Constant *JT, bool IsJumpTableCanonical) {
1299 // The target expression can not appear in a constant initializer on most
1300 // (all?) targets. Switch to a runtime initializer.
1301 SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1302 findGlobalVariableUsersOf(F, GlobalVarUsers);
1303 for (auto GV : GlobalVarUsers)
1304 moveInitializerToModuleConstructor(GV);
1305
1306 // Can not RAUW F with an expression that uses F. Replace with a temporary
1307 // placeholder first.
1308 Function *PlaceholderFn =
1309 Function::Create(cast<FunctionType>(F->getValueType()),
1310 GlobalValue::ExternalWeakLinkage,
1311 F->getAddressSpace(), "", &M);
1312 replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
1313
1314 Constant *Target = ConstantExpr::getSelect(
1315 ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1316 Constant::getNullValue(F->getType())),
1317 JT, Constant::getNullValue(F->getType()));
1318 PlaceholderFn->replaceAllUsesWith(Target);
1319 PlaceholderFn->eraseFromParent();
1320 }
1321
isThumbFunction(Function * F,Triple::ArchType ModuleArch)1322 static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1323 Attribute TFAttr = F->getFnAttribute("target-features");
1324 if (TFAttr.isValid()) {
1325 SmallVector<StringRef, 6> Features;
1326 TFAttr.getValueAsString().split(Features, ',');
1327 for (StringRef Feature : Features) {
1328 if (Feature == "-thumb-mode")
1329 return false;
1330 else if (Feature == "+thumb-mode")
1331 return true;
1332 }
1333 }
1334
1335 return ModuleArch == Triple::thumb;
1336 }
1337
1338 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1339 // to work. Pick one that matches the majority of members to minimize interop
1340 // veneers inserted by the linker.
1341 static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember * > Functions,Triple::ArchType ModuleArch)1342 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1343 Triple::ArchType ModuleArch) {
1344 if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1345 return ModuleArch;
1346
1347 unsigned ArmCount = 0, ThumbCount = 0;
1348 for (const auto GTM : Functions) {
1349 if (!GTM->isJumpTableCanonical()) {
1350 // PLT stubs are always ARM.
1351 // FIXME: This is the wrong heuristic for non-canonical jump tables.
1352 ++ArmCount;
1353 continue;
1354 }
1355
1356 Function *F = cast<Function>(GTM->getGlobal());
1357 ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1358 }
1359
1360 return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1361 }
1362
createJumpTable(Function * F,ArrayRef<GlobalTypeMember * > Functions)1363 void LowerTypeTestsModule::createJumpTable(
1364 Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1365 std::string AsmStr, ConstraintStr;
1366 raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1367 SmallVector<Value *, 16> AsmArgs;
1368 AsmArgs.reserve(Functions.size() * 2);
1369
1370 Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1371
1372 for (unsigned I = 0; I != Functions.size(); ++I)
1373 createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1374 cast<Function>(Functions[I]->getGlobal()));
1375
1376 // Align the whole table by entry size.
1377 F->setAlignment(Align(getJumpTableEntrySize()));
1378 // Skip prologue.
1379 // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1380 // Luckily, this function does not get any prologue even without the
1381 // attribute.
1382 if (OS != Triple::Win32)
1383 F->addFnAttr(Attribute::Naked);
1384 if (JumpTableArch == Triple::arm)
1385 F->addFnAttr("target-features", "-thumb-mode");
1386 if (JumpTableArch == Triple::thumb) {
1387 F->addFnAttr("target-features", "+thumb-mode");
1388 // Thumb jump table assembly needs Thumb2. The following attribute is added
1389 // by Clang for -march=armv7.
1390 F->addFnAttr("target-cpu", "cortex-a8");
1391 }
1392 if (JumpTableArch == Triple::aarch64) {
1393 F->addFnAttr("branch-target-enforcement", "false");
1394 F->addFnAttr("sign-return-address", "none");
1395 }
1396 if (JumpTableArch == Triple::riscv32 || JumpTableArch == Triple::riscv64) {
1397 // Make sure the jump table assembly is not modified by the assembler or
1398 // the linker.
1399 F->addFnAttr("target-features", "-c,-relax");
1400 }
1401 // Make sure we don't emit .eh_frame for this function.
1402 F->addFnAttr(Attribute::NoUnwind);
1403
1404 BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1405 IRBuilder<> IRB(BB);
1406
1407 SmallVector<Type *, 16> ArgTypes;
1408 ArgTypes.reserve(AsmArgs.size());
1409 for (const auto &Arg : AsmArgs)
1410 ArgTypes.push_back(Arg->getType());
1411 InlineAsm *JumpTableAsm =
1412 InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1413 AsmOS.str(), ConstraintOS.str(),
1414 /*hasSideEffects=*/true);
1415
1416 IRB.CreateCall(JumpTableAsm, AsmArgs);
1417 IRB.CreateUnreachable();
1418 }
1419
1420 /// Given a disjoint set of type identifiers and functions, build a jump table
1421 /// for the functions, build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromFunctionsNative(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1422 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1423 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1424 // Unlike the global bitset builder, the function bitset builder cannot
1425 // re-arrange functions in a particular order and base its calculations on the
1426 // layout of the functions' entry points, as we have no idea how large a
1427 // particular function will end up being (the size could even depend on what
1428 // this pass does!) Instead, we build a jump table, which is a block of code
1429 // consisting of one branch instruction for each of the functions in the bit
1430 // set that branches to the target function, and redirect any taken function
1431 // addresses to the corresponding jump table entry. In the object file's
1432 // symbol table, the symbols for the target functions also refer to the jump
1433 // table entries, so that addresses taken outside the module will pass any
1434 // verification done inside the module.
1435 //
1436 // In more concrete terms, suppose we have three functions f, g, h which are
1437 // of the same type, and a function foo that returns their addresses:
1438 //
1439 // f:
1440 // mov 0, %eax
1441 // ret
1442 //
1443 // g:
1444 // mov 1, %eax
1445 // ret
1446 //
1447 // h:
1448 // mov 2, %eax
1449 // ret
1450 //
1451 // foo:
1452 // mov f, %eax
1453 // mov g, %edx
1454 // mov h, %ecx
1455 // ret
1456 //
1457 // We output the jump table as module-level inline asm string. The end result
1458 // will (conceptually) look like this:
1459 //
1460 // f = .cfi.jumptable
1461 // g = .cfi.jumptable + 4
1462 // h = .cfi.jumptable + 8
1463 // .cfi.jumptable:
1464 // jmp f.cfi ; 5 bytes
1465 // int3 ; 1 byte
1466 // int3 ; 1 byte
1467 // int3 ; 1 byte
1468 // jmp g.cfi ; 5 bytes
1469 // int3 ; 1 byte
1470 // int3 ; 1 byte
1471 // int3 ; 1 byte
1472 // jmp h.cfi ; 5 bytes
1473 // int3 ; 1 byte
1474 // int3 ; 1 byte
1475 // int3 ; 1 byte
1476 //
1477 // f.cfi:
1478 // mov 0, %eax
1479 // ret
1480 //
1481 // g.cfi:
1482 // mov 1, %eax
1483 // ret
1484 //
1485 // h.cfi:
1486 // mov 2, %eax
1487 // ret
1488 //
1489 // foo:
1490 // mov f, %eax
1491 // mov g, %edx
1492 // mov h, %ecx
1493 // ret
1494 //
1495 // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1496 // normal case the check can be carried out using the same kind of simple
1497 // arithmetic that we normally use for globals.
1498
1499 // FIXME: find a better way to represent the jumptable in the IR.
1500 assert(!Functions.empty());
1501
1502 // Build a simple layout based on the regular layout of jump tables.
1503 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1504 unsigned EntrySize = getJumpTableEntrySize();
1505 for (unsigned I = 0; I != Functions.size(); ++I)
1506 GlobalLayout[Functions[I]] = I * EntrySize;
1507
1508 Function *JumpTableFn =
1509 Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1510 /* IsVarArg */ false),
1511 GlobalValue::PrivateLinkage,
1512 M.getDataLayout().getProgramAddressSpace(),
1513 ".cfi.jumptable", &M);
1514 ArrayType *JumpTableType =
1515 ArrayType::get(getJumpTableEntryType(), Functions.size());
1516 auto JumpTable =
1517 ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1518
1519 lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1520
1521 {
1522 ScopedSaveAliaseesAndUsed S(M);
1523
1524 // Build aliases pointing to offsets into the jump table, and replace
1525 // references to the original functions with references to the aliases.
1526 for (unsigned I = 0; I != Functions.size(); ++I) {
1527 Function *F = cast<Function>(Functions[I]->getGlobal());
1528 bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
1529
1530 Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1531 ConstantExpr::getInBoundsGetElementPtr(
1532 JumpTableType, JumpTable,
1533 ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1534 ConstantInt::get(IntPtrTy, I)}),
1535 F->getType());
1536
1537 const bool IsExported = Functions[I]->isExported();
1538 if (!IsJumpTableCanonical) {
1539 GlobalValue::LinkageTypes LT = IsExported
1540 ? GlobalValue::ExternalLinkage
1541 : GlobalValue::InternalLinkage;
1542 GlobalAlias *JtAlias = GlobalAlias::create(F->getValueType(), 0, LT,
1543 F->getName() + ".cfi_jt",
1544 CombinedGlobalElemPtr, &M);
1545 if (IsExported)
1546 JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1547 else
1548 appendToUsed(M, {JtAlias});
1549 }
1550
1551 if (IsExported) {
1552 if (IsJumpTableCanonical)
1553 ExportSummary->cfiFunctionDefs().insert(std::string(F->getName()));
1554 else
1555 ExportSummary->cfiFunctionDecls().insert(std::string(F->getName()));
1556 }
1557
1558 if (!IsJumpTableCanonical) {
1559 if (F->hasExternalWeakLinkage())
1560 replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
1561 IsJumpTableCanonical);
1562 else
1563 replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
1564 } else {
1565 assert(F->getType()->getAddressSpace() == 0);
1566
1567 GlobalAlias *FAlias =
1568 GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "",
1569 CombinedGlobalElemPtr, &M);
1570 FAlias->setVisibility(F->getVisibility());
1571 FAlias->takeName(F);
1572 if (FAlias->hasName())
1573 F->setName(FAlias->getName() + ".cfi");
1574 replaceCfiUses(F, FAlias, IsJumpTableCanonical);
1575 if (!F->hasLocalLinkage())
1576 F->setVisibility(GlobalVariable::HiddenVisibility);
1577 }
1578 }
1579 }
1580
1581 createJumpTable(JumpTableFn, Functions);
1582 }
1583
1584 /// Assign a dummy layout using an incrementing counter, tag each function
1585 /// with its index represented as metadata, and lower each type test to an
1586 /// integer range comparison. During generation of the indirect function call
1587 /// table in the backend, it will assign the given indexes.
1588 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1589 /// been finalized.
buildBitSetsFromFunctionsWASM(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1590 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1591 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1592 assert(!Functions.empty());
1593
1594 // Build consecutive monotonic integer ranges for each call target set
1595 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1596
1597 for (GlobalTypeMember *GTM : Functions) {
1598 Function *F = cast<Function>(GTM->getGlobal());
1599
1600 // Skip functions that are not address taken, to avoid bloating the table
1601 if (!F->hasAddressTaken())
1602 continue;
1603
1604 // Store metadata with the index for each function
1605 MDNode *MD = MDNode::get(F->getContext(),
1606 ArrayRef<Metadata *>(ConstantAsMetadata::get(
1607 ConstantInt::get(Int64Ty, IndirectIndex))));
1608 F->setMetadata("wasm.index", MD);
1609
1610 // Assign the counter value
1611 GlobalLayout[GTM] = IndirectIndex++;
1612 }
1613
1614 // The indirect function table index space starts at zero, so pass a NULL
1615 // pointer as the subtracted "jump table" offset.
1616 lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1617 GlobalLayout);
1618 }
1619
buildBitSetsFromDisjointSet(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals,ArrayRef<ICallBranchFunnel * > ICallBranchFunnels)1620 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1621 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1622 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1623 DenseMap<Metadata *, uint64_t> TypeIdIndices;
1624 for (unsigned I = 0; I != TypeIds.size(); ++I)
1625 TypeIdIndices[TypeIds[I]] = I;
1626
1627 // For each type identifier, build a set of indices that refer to members of
1628 // the type identifier.
1629 std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1630 unsigned GlobalIndex = 0;
1631 DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1632 for (GlobalTypeMember *GTM : Globals) {
1633 for (MDNode *Type : GTM->types()) {
1634 // Type = { offset, type identifier }
1635 auto I = TypeIdIndices.find(Type->getOperand(1));
1636 if (I != TypeIdIndices.end())
1637 TypeMembers[I->second].insert(GlobalIndex);
1638 }
1639 GlobalIndices[GTM] = GlobalIndex;
1640 GlobalIndex++;
1641 }
1642
1643 for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1644 TypeMembers.emplace_back();
1645 std::set<uint64_t> &TMSet = TypeMembers.back();
1646 for (GlobalTypeMember *T : JT->targets())
1647 TMSet.insert(GlobalIndices[T]);
1648 }
1649
1650 // Order the sets of indices by size. The GlobalLayoutBuilder works best
1651 // when given small index sets first.
1652 llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
1653 const std::set<uint64_t> &O2) {
1654 return O1.size() < O2.size();
1655 });
1656
1657 // Create a GlobalLayoutBuilder and provide it with index sets as layout
1658 // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1659 // close together as possible.
1660 GlobalLayoutBuilder GLB(Globals.size());
1661 for (auto &&MemSet : TypeMembers)
1662 GLB.addFragment(MemSet);
1663
1664 // Build a vector of globals with the computed layout.
1665 bool IsGlobalSet =
1666 Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1667 std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1668 auto OGTMI = OrderedGTMs.begin();
1669 for (auto &&F : GLB.Fragments) {
1670 for (auto &&Offset : F) {
1671 if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1672 report_fatal_error("Type identifier may not contain both global "
1673 "variables and functions");
1674 *OGTMI++ = Globals[Offset];
1675 }
1676 }
1677
1678 // Build the bitsets from this disjoint set.
1679 if (IsGlobalSet)
1680 buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1681 else
1682 buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1683 }
1684
1685 /// Lower all type tests in this module.
LowerTypeTestsModule(Module & M,ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary,bool DropTypeTests)1686 LowerTypeTestsModule::LowerTypeTestsModule(
1687 Module &M, ModuleSummaryIndex *ExportSummary,
1688 const ModuleSummaryIndex *ImportSummary, bool DropTypeTests)
1689 : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary),
1690 DropTypeTests(DropTypeTests || ClDropTypeTests) {
1691 assert(!(ExportSummary && ImportSummary));
1692 Triple TargetTriple(M.getTargetTriple());
1693 Arch = TargetTriple.getArch();
1694 OS = TargetTriple.getOS();
1695 ObjectFormat = TargetTriple.getObjectFormat();
1696 }
1697
runForTesting(Module & M)1698 bool LowerTypeTestsModule::runForTesting(Module &M) {
1699 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1700
1701 // Handle the command-line summary arguments. This code is for testing
1702 // purposes only, so we handle errors directly.
1703 if (!ClReadSummary.empty()) {
1704 ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1705 ": ");
1706 auto ReadSummaryFile =
1707 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1708
1709 yaml::Input In(ReadSummaryFile->getBuffer());
1710 In >> Summary;
1711 ExitOnErr(errorCodeToError(In.error()));
1712 }
1713
1714 bool Changed =
1715 LowerTypeTestsModule(
1716 M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1717 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr,
1718 /*DropTypeTests*/ false)
1719 .lower();
1720
1721 if (!ClWriteSummary.empty()) {
1722 ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1723 ": ");
1724 std::error_code EC;
1725 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1726 ExitOnErr(errorCodeToError(EC));
1727
1728 yaml::Output Out(OS);
1729 Out << Summary;
1730 }
1731
1732 return Changed;
1733 }
1734
isDirectCall(Use & U)1735 static bool isDirectCall(Use& U) {
1736 auto *Usr = dyn_cast<CallInst>(U.getUser());
1737 if (Usr) {
1738 auto *CB = dyn_cast<CallBase>(Usr);
1739 if (CB && CB->isCallee(&U))
1740 return true;
1741 }
1742 return false;
1743 }
1744
replaceCfiUses(Function * Old,Value * New,bool IsJumpTableCanonical)1745 void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
1746 bool IsJumpTableCanonical) {
1747 SmallSetVector<Constant *, 4> Constants;
1748 for (Use &U : llvm::make_early_inc_range(Old->uses())) {
1749 // Skip block addresses and no_cfi values, which refer to the function
1750 // body instead of the jump table.
1751 if (isa<BlockAddress, NoCFIValue>(U.getUser()))
1752 continue;
1753
1754 // Skip direct calls to externally defined or non-dso_local functions
1755 if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
1756 continue;
1757
1758 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1759 // constant because they are uniqued.
1760 if (auto *C = dyn_cast<Constant>(U.getUser())) {
1761 if (!isa<GlobalValue>(C)) {
1762 // Save unique users to avoid processing operand replacement
1763 // more than once.
1764 Constants.insert(C);
1765 continue;
1766 }
1767 }
1768
1769 U.set(New);
1770 }
1771
1772 // Process operand replacement of saved constants.
1773 for (auto *C : Constants)
1774 C->handleOperandChange(Old, New);
1775 }
1776
replaceDirectCalls(Value * Old,Value * New)1777 void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1778 Old->replaceUsesWithIf(New, isDirectCall);
1779 }
1780
dropTypeTests(Module & M,Function & TypeTestFunc)1781 static void dropTypeTests(Module &M, Function &TypeTestFunc) {
1782 for (Use &U : llvm::make_early_inc_range(TypeTestFunc.uses())) {
1783 auto *CI = cast<CallInst>(U.getUser());
1784 // Find and erase llvm.assume intrinsics for this llvm.type.test call.
1785 for (Use &CIU : llvm::make_early_inc_range(CI->uses()))
1786 if (auto *Assume = dyn_cast<AssumeInst>(CIU.getUser()))
1787 Assume->eraseFromParent();
1788 // If the assume was merged with another assume, we might have a use on a
1789 // phi (which will feed the assume). Simply replace the use on the phi
1790 // with "true" and leave the merged assume.
1791 if (!CI->use_empty()) {
1792 assert(
1793 all_of(CI->users(), [](User *U) -> bool { return isa<PHINode>(U); }));
1794 CI->replaceAllUsesWith(ConstantInt::getTrue(M.getContext()));
1795 }
1796 CI->eraseFromParent();
1797 }
1798 }
1799
lower()1800 bool LowerTypeTestsModule::lower() {
1801 Function *TypeTestFunc =
1802 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1803
1804 if (DropTypeTests) {
1805 if (TypeTestFunc)
1806 dropTypeTests(M, *TypeTestFunc);
1807 // Normally we'd have already removed all @llvm.public.type.test calls,
1808 // except for in the case where we originally were performing ThinLTO but
1809 // decided not to in the backend.
1810 Function *PublicTypeTestFunc =
1811 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
1812 if (PublicTypeTestFunc)
1813 dropTypeTests(M, *PublicTypeTestFunc);
1814 if (TypeTestFunc || PublicTypeTestFunc) {
1815 // We have deleted the type intrinsics, so we no longer have enough
1816 // information to reason about the liveness of virtual function pointers
1817 // in GlobalDCE.
1818 for (GlobalVariable &GV : M.globals())
1819 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1820 return true;
1821 }
1822 return false;
1823 }
1824
1825 // If only some of the modules were split, we cannot correctly perform
1826 // this transformation. We already checked for the presense of type tests
1827 // with partially split modules during the thin link, and would have emitted
1828 // an error if any were found, so here we can simply return.
1829 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1830 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1831 return false;
1832
1833 Function *ICallBranchFunnelFunc =
1834 M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1835 if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1836 (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1837 !ExportSummary && !ImportSummary)
1838 return false;
1839
1840 if (ImportSummary) {
1841 if (TypeTestFunc)
1842 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses()))
1843 importTypeTest(cast<CallInst>(U.getUser()));
1844
1845 if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1846 report_fatal_error(
1847 "unexpected call to llvm.icall.branch.funnel during import phase");
1848
1849 SmallVector<Function *, 8> Defs;
1850 SmallVector<Function *, 8> Decls;
1851 for (auto &F : M) {
1852 // CFI functions are either external, or promoted. A local function may
1853 // have the same name, but it's not the one we are looking for.
1854 if (F.hasLocalLinkage())
1855 continue;
1856 if (ImportSummary->cfiFunctionDefs().count(std::string(F.getName())))
1857 Defs.push_back(&F);
1858 else if (ImportSummary->cfiFunctionDecls().count(
1859 std::string(F.getName())))
1860 Decls.push_back(&F);
1861 }
1862
1863 std::vector<GlobalAlias *> AliasesToErase;
1864 {
1865 ScopedSaveAliaseesAndUsed S(M);
1866 for (auto F : Defs)
1867 importFunction(F, /*isJumpTableCanonical*/ true, AliasesToErase);
1868 for (auto F : Decls)
1869 importFunction(F, /*isJumpTableCanonical*/ false, AliasesToErase);
1870 }
1871 for (GlobalAlias *GA : AliasesToErase)
1872 GA->eraseFromParent();
1873
1874 return true;
1875 }
1876
1877 // Equivalence class set containing type identifiers and the globals that
1878 // reference them. This is used to partition the set of type identifiers in
1879 // the module into disjoint sets.
1880 using GlobalClassesTy = EquivalenceClasses<
1881 PointerUnion<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1882 GlobalClassesTy GlobalClasses;
1883
1884 // Verify the type metadata and build a few data structures to let us
1885 // efficiently enumerate the type identifiers associated with a global:
1886 // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1887 // of associated type metadata) and a mapping from type identifiers to their
1888 // list of GlobalTypeMembers and last observed index in the list of globals.
1889 // The indices will be used later to deterministically order the list of type
1890 // identifiers.
1891 BumpPtrAllocator Alloc;
1892 struct TIInfo {
1893 unsigned UniqueId;
1894 std::vector<GlobalTypeMember *> RefGlobals;
1895 };
1896 DenseMap<Metadata *, TIInfo> TypeIdInfo;
1897 unsigned CurUniqueId = 0;
1898 SmallVector<MDNode *, 2> Types;
1899
1900 // Cross-DSO CFI emits jumptable entries for exported functions as well as
1901 // address taken functions in case they are address taken in other modules.
1902 const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1903
1904 struct ExportedFunctionInfo {
1905 CfiFunctionLinkage Linkage;
1906 MDNode *FuncMD; // {name, linkage, type[, type...]}
1907 };
1908 DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1909 if (ExportSummary) {
1910 // A set of all functions that are address taken by a live global object.
1911 DenseSet<GlobalValue::GUID> AddressTaken;
1912 for (auto &I : *ExportSummary)
1913 for (auto &GVS : I.second.SummaryList)
1914 if (GVS->isLive())
1915 for (auto &Ref : GVS->refs())
1916 AddressTaken.insert(Ref.getGUID());
1917
1918 NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1919 if (CfiFunctionsMD) {
1920 for (auto FuncMD : CfiFunctionsMD->operands()) {
1921 assert(FuncMD->getNumOperands() >= 2);
1922 StringRef FunctionName =
1923 cast<MDString>(FuncMD->getOperand(0))->getString();
1924 CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1925 cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1926 ->getValue()
1927 ->getUniqueInteger()
1928 .getZExtValue());
1929 const GlobalValue::GUID GUID = GlobalValue::getGUID(
1930 GlobalValue::dropLLVMManglingEscape(FunctionName));
1931 // Do not emit jumptable entries for functions that are not-live and
1932 // have no live references (and are not exported with cross-DSO CFI.)
1933 if (!ExportSummary->isGUIDLive(GUID))
1934 continue;
1935 if (!AddressTaken.count(GUID)) {
1936 if (!CrossDsoCfi || Linkage != CFL_Definition)
1937 continue;
1938
1939 bool Exported = false;
1940 if (auto VI = ExportSummary->getValueInfo(GUID))
1941 for (auto &GVS : VI.getSummaryList())
1942 if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1943 Exported = true;
1944
1945 if (!Exported)
1946 continue;
1947 }
1948 auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1949 if (!P.second && P.first->second.Linkage != CFL_Definition)
1950 P.first->second = {Linkage, FuncMD};
1951 }
1952
1953 for (const auto &P : ExportedFunctions) {
1954 StringRef FunctionName = P.first;
1955 CfiFunctionLinkage Linkage = P.second.Linkage;
1956 MDNode *FuncMD = P.second.FuncMD;
1957 Function *F = M.getFunction(FunctionName);
1958 if (F && F->hasLocalLinkage()) {
1959 // Locally defined function that happens to have the same name as a
1960 // function defined in a ThinLTO module. Rename it to move it out of
1961 // the way of the external reference that we're about to create.
1962 // Note that setName will find a unique name for the function, so even
1963 // if there is an existing function with the suffix there won't be a
1964 // name collision.
1965 F->setName(F->getName() + ".1");
1966 F = nullptr;
1967 }
1968
1969 if (!F)
1970 F = Function::Create(
1971 FunctionType::get(Type::getVoidTy(M.getContext()), false),
1972 GlobalVariable::ExternalLinkage,
1973 M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
1974
1975 // If the function is available_externally, remove its definition so
1976 // that it is handled the same way as a declaration. Later we will try
1977 // to create an alias using this function's linkage, which will fail if
1978 // the linkage is available_externally. This will also result in us
1979 // following the code path below to replace the type metadata.
1980 if (F->hasAvailableExternallyLinkage()) {
1981 F->setLinkage(GlobalValue::ExternalLinkage);
1982 F->deleteBody();
1983 F->setComdat(nullptr);
1984 F->clearMetadata();
1985 }
1986
1987 // Update the linkage for extern_weak declarations when a definition
1988 // exists.
1989 if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1990 F->setLinkage(GlobalValue::ExternalLinkage);
1991
1992 // If the function in the full LTO module is a declaration, replace its
1993 // type metadata with the type metadata we found in cfi.functions. That
1994 // metadata is presumed to be more accurate than the metadata attached
1995 // to the declaration.
1996 if (F->isDeclaration()) {
1997 if (Linkage == CFL_WeakDeclaration)
1998 F->setLinkage(GlobalValue::ExternalWeakLinkage);
1999
2000 F->eraseMetadata(LLVMContext::MD_type);
2001 for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
2002 F->addMetadata(LLVMContext::MD_type,
2003 *cast<MDNode>(FuncMD->getOperand(I).get()));
2004 }
2005 }
2006 }
2007 }
2008
2009 DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
2010 for (GlobalObject &GO : M.global_objects()) {
2011 if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
2012 continue;
2013
2014 Types.clear();
2015 GO.getMetadata(LLVMContext::MD_type, Types);
2016
2017 bool IsJumpTableCanonical = false;
2018 bool IsExported = false;
2019 if (Function *F = dyn_cast<Function>(&GO)) {
2020 IsJumpTableCanonical = isJumpTableCanonical(F);
2021 if (ExportedFunctions.count(F->getName())) {
2022 IsJumpTableCanonical |=
2023 ExportedFunctions[F->getName()].Linkage == CFL_Definition;
2024 IsExported = true;
2025 // TODO: The logic here checks only that the function is address taken,
2026 // not that the address takers are live. This can be updated to check
2027 // their liveness and emit fewer jumptable entries once monolithic LTO
2028 // builds also emit summaries.
2029 } else if (!F->hasAddressTaken()) {
2030 if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
2031 continue;
2032 }
2033 }
2034
2035 auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
2036 IsExported, Types);
2037 GlobalTypeMembers[&GO] = GTM;
2038 for (MDNode *Type : Types) {
2039 verifyTypeMDNode(&GO, Type);
2040 auto &Info = TypeIdInfo[Type->getOperand(1)];
2041 Info.UniqueId = ++CurUniqueId;
2042 Info.RefGlobals.push_back(GTM);
2043 }
2044 }
2045
2046 auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
2047 // Add the call site to the list of call sites for this type identifier. We
2048 // also use TypeIdUsers to keep track of whether we have seen this type
2049 // identifier before. If we have, we don't need to re-add the referenced
2050 // globals to the equivalence class.
2051 auto Ins = TypeIdUsers.insert({TypeId, {}});
2052 if (Ins.second) {
2053 // Add the type identifier to the equivalence class.
2054 GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
2055 GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
2056
2057 // Add the referenced globals to the type identifier's equivalence class.
2058 for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
2059 CurSet = GlobalClasses.unionSets(
2060 CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
2061 }
2062
2063 return Ins.first->second;
2064 };
2065
2066 if (TypeTestFunc) {
2067 for (const Use &U : TypeTestFunc->uses()) {
2068 auto CI = cast<CallInst>(U.getUser());
2069 // If this type test is only used by llvm.assume instructions, it
2070 // was used for whole program devirtualization, and is being kept
2071 // for use by other optimization passes. We do not need or want to
2072 // lower it here. We also don't want to rewrite any associated globals
2073 // unnecessarily. These will be removed by a subsequent LTT invocation
2074 // with the DropTypeTests flag set.
2075 bool OnlyAssumeUses = !CI->use_empty();
2076 for (const Use &CIU : CI->uses()) {
2077 if (isa<AssumeInst>(CIU.getUser()))
2078 continue;
2079 OnlyAssumeUses = false;
2080 break;
2081 }
2082 if (OnlyAssumeUses)
2083 continue;
2084
2085 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
2086 if (!TypeIdMDVal)
2087 report_fatal_error("Second argument of llvm.type.test must be metadata");
2088 auto TypeId = TypeIdMDVal->getMetadata();
2089 AddTypeIdUse(TypeId).CallSites.push_back(CI);
2090 }
2091 }
2092
2093 if (ICallBranchFunnelFunc) {
2094 for (const Use &U : ICallBranchFunnelFunc->uses()) {
2095 if (Arch != Triple::x86_64)
2096 report_fatal_error(
2097 "llvm.icall.branch.funnel not supported on this target");
2098
2099 auto CI = cast<CallInst>(U.getUser());
2100
2101 std::vector<GlobalTypeMember *> Targets;
2102 if (CI->arg_size() % 2 != 1)
2103 report_fatal_error("number of arguments should be odd");
2104
2105 GlobalClassesTy::member_iterator CurSet;
2106 for (unsigned I = 1; I != CI->arg_size(); I += 2) {
2107 int64_t Offset;
2108 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
2109 CI->getOperand(I), Offset, M.getDataLayout()));
2110 if (!Base)
2111 report_fatal_error(
2112 "Expected branch funnel operand to be global value");
2113
2114 GlobalTypeMember *GTM = GlobalTypeMembers[Base];
2115 Targets.push_back(GTM);
2116 GlobalClassesTy::member_iterator NewSet =
2117 GlobalClasses.findLeader(GlobalClasses.insert(GTM));
2118 if (I == 1)
2119 CurSet = NewSet;
2120 else
2121 CurSet = GlobalClasses.unionSets(CurSet, NewSet);
2122 }
2123
2124 GlobalClasses.unionSets(
2125 CurSet, GlobalClasses.findLeader(
2126 GlobalClasses.insert(ICallBranchFunnel::create(
2127 Alloc, CI, Targets, ++CurUniqueId))));
2128 }
2129 }
2130
2131 if (ExportSummary) {
2132 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2133 for (auto &P : TypeIdInfo) {
2134 if (auto *TypeId = dyn_cast<MDString>(P.first))
2135 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2136 TypeId);
2137 }
2138
2139 for (auto &P : *ExportSummary) {
2140 for (auto &S : P.second.SummaryList) {
2141 if (!ExportSummary->isGlobalValueLive(S.get()))
2142 continue;
2143 if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
2144 for (GlobalValue::GUID G : FS->type_tests())
2145 for (Metadata *MD : MetadataByGUID[G])
2146 AddTypeIdUse(MD).IsExported = true;
2147 }
2148 }
2149 }
2150
2151 if (GlobalClasses.empty())
2152 return false;
2153
2154 // Build a list of disjoint sets ordered by their maximum global index for
2155 // determinism.
2156 std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
2157 for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
2158 E = GlobalClasses.end();
2159 I != E; ++I) {
2160 if (!I->isLeader())
2161 continue;
2162 ++NumTypeIdDisjointSets;
2163
2164 unsigned MaxUniqueId = 0;
2165 for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
2166 MI != GlobalClasses.member_end(); ++MI) {
2167 if (auto *MD = MI->dyn_cast<Metadata *>())
2168 MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
2169 else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
2170 MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
2171 }
2172 Sets.emplace_back(I, MaxUniqueId);
2173 }
2174 llvm::sort(Sets, llvm::less_second());
2175
2176 // For each disjoint set we found...
2177 for (const auto &S : Sets) {
2178 // Build the list of type identifiers in this disjoint set.
2179 std::vector<Metadata *> TypeIds;
2180 std::vector<GlobalTypeMember *> Globals;
2181 std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2182 for (GlobalClassesTy::member_iterator MI =
2183 GlobalClasses.member_begin(S.first);
2184 MI != GlobalClasses.member_end(); ++MI) {
2185 if (MI->is<Metadata *>())
2186 TypeIds.push_back(MI->get<Metadata *>());
2187 else if (MI->is<GlobalTypeMember *>())
2188 Globals.push_back(MI->get<GlobalTypeMember *>());
2189 else
2190 ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2191 }
2192
2193 // Order type identifiers by unique ID for determinism. This ordering is
2194 // stable as there is a one-to-one mapping between metadata and unique IDs.
2195 llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2196 return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2197 });
2198
2199 // Same for the branch funnels.
2200 llvm::sort(ICallBranchFunnels,
2201 [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2202 return F1->UniqueId < F2->UniqueId;
2203 });
2204
2205 // Build bitsets for this disjoint set.
2206 buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2207 }
2208
2209 allocateByteArrays();
2210
2211 // Parse alias data to replace stand-in function declarations for aliases
2212 // with an alias to the intended target.
2213 if (ExportSummary) {
2214 if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2215 for (auto AliasMD : AliasesMD->operands()) {
2216 assert(AliasMD->getNumOperands() >= 4);
2217 StringRef AliasName =
2218 cast<MDString>(AliasMD->getOperand(0))->getString();
2219 StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2220
2221 if (!ExportedFunctions.count(Aliasee) ||
2222 ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2223 !M.getNamedAlias(Aliasee))
2224 continue;
2225
2226 GlobalValue::VisibilityTypes Visibility =
2227 static_cast<GlobalValue::VisibilityTypes>(
2228 cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2229 ->getValue()
2230 ->getUniqueInteger()
2231 .getZExtValue());
2232 bool Weak =
2233 static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2234 ->getValue()
2235 ->getUniqueInteger()
2236 .getZExtValue());
2237
2238 auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2239 Alias->setVisibility(Visibility);
2240 if (Weak)
2241 Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2242
2243 if (auto *F = M.getFunction(AliasName)) {
2244 Alias->takeName(F);
2245 F->replaceAllUsesWith(Alias);
2246 F->eraseFromParent();
2247 } else {
2248 Alias->setName(AliasName);
2249 }
2250 }
2251 }
2252 }
2253
2254 // Emit .symver directives for exported functions, if they exist.
2255 if (ExportSummary) {
2256 if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2257 for (auto Symver : SymversMD->operands()) {
2258 assert(Symver->getNumOperands() >= 2);
2259 StringRef SymbolName =
2260 cast<MDString>(Symver->getOperand(0))->getString();
2261 StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2262
2263 if (!ExportedFunctions.count(SymbolName))
2264 continue;
2265
2266 M.appendModuleInlineAsm(
2267 (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2268 }
2269 }
2270 }
2271
2272 return true;
2273 }
2274
run(Module & M,ModuleAnalysisManager & AM)2275 PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2276 ModuleAnalysisManager &AM) {
2277 bool Changed;
2278 if (UseCommandLine)
2279 Changed = LowerTypeTestsModule::runForTesting(M);
2280 else
2281 Changed =
2282 LowerTypeTestsModule(M, ExportSummary, ImportSummary, DropTypeTests)
2283 .lower();
2284 if (!Changed)
2285 return PreservedAnalyses::all();
2286 return PreservedAnalyses::none();
2287 }
2288