1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include <vector>
30 
31 #define DEBUG_TYPE "iroutliner"
32 
33 using namespace llvm;
34 using namespace IRSimilarity;
35 
36 // A command flag to be used for debugging to exclude branches from similarity
37 // matching and outlining.
38 namespace llvm {
39 extern cl::opt<bool> DisableBranches;
40 
41 // A command flag to be used for debugging to indirect calls from similarity
42 // matching and outlining.
43 extern cl::opt<bool> DisableIndirectCalls;
44 
45 // A command flag to be used for debugging to exclude intrinsics from similarity
46 // matching and outlining.
47 extern cl::opt<bool> DisableIntrinsics;
48 
49 } // namespace llvm
50 
51 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
52 // functions. This is false by default because the linker can dedupe linkonceodr
53 // functions. Since the outliner is confined to a single module (modulo LTO),
54 // this is off by default. It should, however, be the default behavior in
55 // LTO.
56 static cl::opt<bool> EnableLinkOnceODRIROutlining(
57     "enable-linkonceodr-ir-outlining", cl::Hidden,
58     cl::desc("Enable the IR outliner on linkonceodr functions"),
59     cl::init(false));
60 
61 // This is a debug option to test small pieces of code to ensure that outlining
62 // works correctly.
63 static cl::opt<bool> NoCostModel(
64     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
65     cl::desc("Debug option to outline greedily, without restriction that "
66              "calculated benefit outweighs cost"));
67 
68 /// The OutlinableGroup holds all the overarching information for outlining
69 /// a set of regions that are structurally similar to one another, such as the
70 /// types of the overall function, the output blocks, the sets of stores needed
71 /// and a list of the different regions. This information is used in the
72 /// deduplication of extracted regions with the same structure.
73 struct OutlinableGroup {
74   /// The sections that could be outlined
75   std::vector<OutlinableRegion *> Regions;
76 
77   /// The argument types for the function created as the overall function to
78   /// replace the extracted function for each region.
79   std::vector<Type *> ArgumentTypes;
80   /// The FunctionType for the overall function.
81   FunctionType *OutlinedFunctionType = nullptr;
82   /// The Function for the collective overall function.
83   Function *OutlinedFunction = nullptr;
84 
85   /// Flag for whether we should not consider this group of OutlinableRegions
86   /// for extraction.
87   bool IgnoreGroup = false;
88 
89   /// The return blocks for the overall function.
90   DenseMap<Value *, BasicBlock *> EndBBs;
91 
92   /// The PHIBlocks with their corresponding return block based on the return
93   /// value as the key.
94   DenseMap<Value *, BasicBlock *> PHIBlocks;
95 
96   /// A set containing the different GVN store sets needed. Each array contains
97   /// a sorted list of the different values that need to be stored into output
98   /// registers.
99   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
100 
101   /// Flag for whether the \ref ArgumentTypes have been defined after the
102   /// extraction of the first region.
103   bool InputTypesSet = false;
104 
105   /// The number of input values in \ref ArgumentTypes.  Anything after this
106   /// index in ArgumentTypes is an output argument.
107   unsigned NumAggregateInputs = 0;
108 
109   /// The mapping of the canonical numbering of the values in outlined sections
110   /// to specific arguments.
111   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
112 
113   /// The number of branches in the region target a basic block that is outside
114   /// of the region.
115   unsigned BranchesToOutside = 0;
116 
117   /// Tracker counting backwards from the highest unsigned value possible to
118   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
119   /// -2 and -1 are assigned by the DenseMap.
120   unsigned PHINodeGVNTracker = -3;
121 
122   DenseMap<unsigned,
123            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
124       PHINodeGVNToGVNs;
125   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
126 
127   /// The number of instructions that will be outlined by extracting \ref
128   /// Regions.
129   InstructionCost Benefit = 0;
130   /// The number of added instructions needed for the outlining of the \ref
131   /// Regions.
132   InstructionCost Cost = 0;
133 
134   /// The argument that needs to be marked with the swifterr attribute.  If not
135   /// needed, there is no value.
136   Optional<unsigned> SwiftErrorArgument;
137 
138   /// For the \ref Regions, we look at every Value.  If it is a constant,
139   /// we check whether it is the same in Region.
140   ///
141   /// \param [in,out] NotSame contains the global value numbers where the
142   /// constant is not always the same, and must be passed in as an argument.
143   void findSameConstants(DenseSet<unsigned> &NotSame);
144 
145   /// For the regions, look at each set of GVN stores needed and account for
146   /// each combination.  Add an argument to the argument types if there is
147   /// more than one combination.
148   ///
149   /// \param [in] M - The module we are outlining from.
150   void collectGVNStoreSets(Module &M);
151 };
152 
153 /// Move the contents of \p SourceBB to before the last instruction of \p
154 /// TargetBB.
155 /// \param SourceBB - the BasicBlock to pull Instructions from.
156 /// \param TargetBB - the BasicBlock to put Instruction into.
157 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
158   for (Instruction &I : llvm::make_early_inc_range(SourceBB))
159     I.moveBefore(TargetBB, TargetBB.end());
160 }
161 
162 /// A function to sort the keys of \p Map, which must be a mapping of constant
163 /// values to basic blocks and return it in \p SortedKeys
164 ///
165 /// \param SortedKeys - The vector the keys will be return in and sorted.
166 /// \param Map - The DenseMap containing keys to sort.
167 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
168                                   DenseMap<Value *, BasicBlock *> &Map) {
169   for (auto &VtoBB : Map)
170     SortedKeys.push_back(VtoBB.first);
171 
172   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
173     const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
174     const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
175     assert(RHSC && "Not a constant integer in return value?");
176     assert(LHSC && "Not a constant integer in return value?");
177 
178     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
179   });
180 }
181 
182 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
183                                                   Value *V) {
184   Optional<unsigned> GVN = Candidate->getGVN(V);
185   assert(GVN.hasValue() && "No GVN for incoming value");
186   Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
187   Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
188   Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
189   return FoundValueOpt.getValueOr(nullptr);
190 }
191 
192 BasicBlock *
193 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
194                                            BasicBlock *BB) {
195   Instruction *FirstNonPHI = BB->getFirstNonPHI();
196   assert(FirstNonPHI && "block is empty?");
197   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
198   if (!CorrespondingVal)
199     return nullptr;
200   BasicBlock *CorrespondingBlock =
201       cast<Instruction>(CorrespondingVal)->getParent();
202   return CorrespondingBlock;
203 }
204 
205 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
206 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
207 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
208 /// when PHINodes are included in outlined regions.
209 ///
210 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
211 /// checked.
212 /// \param Find - The successor block to be replaced.
213 /// \param Replace - The new succesor block to branch to.
214 /// \param Included - The set of blocks about to be outlined.
215 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
216                                       BasicBlock *Replace,
217                                       DenseSet<BasicBlock *> &Included) {
218   for (PHINode &PN : PHIBlock->phis()) {
219     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
220          ++Idx) {
221       // Check if the incoming block is included in the set of blocks being
222       // outlined.
223       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
224       if (!Included.contains(Incoming))
225         continue;
226 
227       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
228       assert(BI && "Not a branch instruction?");
229       // Look over the branching instructions into this block to see if we
230       // used to branch to Find in this outlined block.
231       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
232            Succ++) {
233         // If we have found the block to replace, we do so here.
234         if (BI->getSuccessor(Succ) != Find)
235           continue;
236         BI->setSuccessor(Succ, Replace);
237       }
238     }
239   }
240 }
241 
242 
243 void OutlinableRegion::splitCandidate() {
244   assert(!CandidateSplit && "Candidate already split!");
245 
246   Instruction *BackInst = Candidate->backInstruction();
247 
248   Instruction *EndInst = nullptr;
249   // Check whether the last instruction is a terminator, if it is, we do
250   // not split on the following instruction. We leave the block as it is.  We
251   // also check that this is not the last instruction in the Module, otherwise
252   // the check for whether the current following instruction matches the
253   // previously recorded instruction will be incorrect.
254   if (!BackInst->isTerminator() ||
255       BackInst->getParent() != &BackInst->getFunction()->back()) {
256     EndInst = Candidate->end()->Inst;
257     assert(EndInst && "Expected an end instruction?");
258   }
259 
260   // We check if the current instruction following the last instruction in the
261   // region is the same as the recorded instruction following the last
262   // instruction. If they do not match, there could be problems in rewriting
263   // the program after outlining, so we ignore it.
264   if (!BackInst->isTerminator() &&
265       EndInst != BackInst->getNextNonDebugInstruction())
266     return;
267 
268   Instruction *StartInst = (*Candidate->begin()).Inst;
269   assert(StartInst && "Expected a start instruction?");
270   StartBB = StartInst->getParent();
271   PrevBB = StartBB;
272 
273   DenseSet<BasicBlock *> BBSet;
274   Candidate->getBasicBlocks(BBSet);
275 
276   // We iterate over the instructions in the region, if we find a PHINode, we
277   // check if there are predecessors outside of the region, if there are,
278   // we ignore this region since we are unable to handle the severing of the
279   // phi node right now.
280 
281   // TODO: Handle extraneous inputs for PHINodes through variable number of
282   // inputs, similar to how outputs are handled.
283   BasicBlock::iterator It = StartInst->getIterator();
284   EndBB = BackInst->getParent();
285   BasicBlock *IBlock;
286   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
287   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
288     unsigned NumPredsOutsideRegion = 0;
289     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
290       if (!BBSet.contains(PN->getIncomingBlock(i))) {
291         ++NumPredsOutsideRegion;
292         continue;
293       }
294 
295       // We must consider the case there the incoming block to the PHINode is
296       // the same as the final block of the OutlinableRegion.  If this is the
297       // case, the branch from this block must also be outlined to be valid.
298       IBlock = PN->getIncomingBlock(i);
299       if (IBlock == EndBB && EndBBTermAndBackInstDifferent)
300         ++NumPredsOutsideRegion;
301     }
302 
303     if (NumPredsOutsideRegion > 1)
304       return;
305 
306     It++;
307   }
308 
309   // If the region starts with a PHINode, but is not the initial instruction of
310   // the BasicBlock, we ignore this region for now.
311   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
312     return;
313 
314   // If the region ends with a PHINode, but does not contain all of the phi node
315   // instructions of the region, we ignore it for now.
316   if (isa<PHINode>(BackInst) &&
317       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
318     return;
319 
320   // The basic block gets split like so:
321   // block:                 block:
322   //   inst1                  inst1
323   //   inst2                  inst2
324   //   region1               br block_to_outline
325   //   region2              block_to_outline:
326   //   region3          ->    region1
327   //   region4                region2
328   //   inst3                  region3
329   //   inst4                  region4
330   //                          br block_after_outline
331   //                        block_after_outline:
332   //                          inst3
333   //                          inst4
334 
335   std::string OriginalName = PrevBB->getName().str();
336 
337   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
338   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
339 
340   CandidateSplit = true;
341   if (!BackInst->isTerminator()) {
342     EndBB = EndInst->getParent();
343     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
344     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
345     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
346   } else {
347     EndBB = BackInst->getParent();
348     EndsInBranch = true;
349     FollowBB = nullptr;
350   }
351 
352   // Refind the basic block set.
353   BBSet.clear();
354   Candidate->getBasicBlocks(BBSet);
355   // For the phi nodes in the new starting basic block of the region, we
356   // reassign the targets of the basic blocks branching instructions.
357   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
358   if (FollowBB)
359     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
360 }
361 
362 void OutlinableRegion::reattachCandidate() {
363   assert(CandidateSplit && "Candidate is not split!");
364 
365   // The basic block gets reattached like so:
366   // block:                        block:
367   //   inst1                         inst1
368   //   inst2                         inst2
369   //   br block_to_outline           region1
370   // block_to_outline:        ->     region2
371   //   region1                       region3
372   //   region2                       region4
373   //   region3                       inst3
374   //   region4                       inst4
375   //   br block_after_outline
376   // block_after_outline:
377   //   inst3
378   //   inst4
379   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
380 
381   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
382   PrevBB->getTerminator()->eraseFromParent();
383 
384   // If we reattaching after outlining, we iterate over the phi nodes to
385   // the initial block, and reassign the branch instructions of the incoming
386   // blocks to the block we are remerging into.
387   if (!ExtractedFunction) {
388     DenseSet<BasicBlock *> BBSet;
389     Candidate->getBasicBlocks(BBSet);
390 
391     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
392     if (!EndsInBranch)
393       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
394   }
395 
396   moveBBContents(*StartBB, *PrevBB);
397 
398   BasicBlock *PlacementBB = PrevBB;
399   if (StartBB != EndBB)
400     PlacementBB = EndBB;
401   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
402     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
403     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
404     PlacementBB->getTerminator()->eraseFromParent();
405     moveBBContents(*FollowBB, *PlacementBB);
406     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
407     FollowBB->eraseFromParent();
408   }
409 
410   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
411   StartBB->eraseFromParent();
412 
413   // Make sure to save changes back to the StartBB.
414   StartBB = PrevBB;
415   EndBB = nullptr;
416   PrevBB = nullptr;
417   FollowBB = nullptr;
418 
419   CandidateSplit = false;
420 }
421 
422 /// Find whether \p V matches the Constants previously found for the \p GVN.
423 ///
424 /// \param V - The value to check for consistency.
425 /// \param GVN - The global value number assigned to \p V.
426 /// \param GVNToConstant - The mapping of global value number to Constants.
427 /// \returns true if the Value matches the Constant mapped to by V and false if
428 /// it \p V is a Constant but does not match.
429 /// \returns None if \p V is not a Constant.
430 static Optional<bool>
431 constantMatches(Value *V, unsigned GVN,
432                 DenseMap<unsigned, Constant *> &GVNToConstant) {
433   // See if we have a constants
434   Constant *CST = dyn_cast<Constant>(V);
435   if (!CST)
436     return None;
437 
438   // Holds a mapping from a global value number to a Constant.
439   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
440   bool Inserted;
441 
442 
443   // If we have a constant, try to make a new entry in the GVNToConstant.
444   std::tie(GVNToConstantIt, Inserted) =
445       GVNToConstant.insert(std::make_pair(GVN, CST));
446   // If it was found and is not equal, it is not the same. We do not
447   // handle this case yet, and exit early.
448   if (Inserted || (GVNToConstantIt->second == CST))
449     return true;
450 
451   return false;
452 }
453 
454 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
455   InstructionCost Benefit = 0;
456 
457   // Estimate the benefit of outlining a specific sections of the program.  We
458   // delegate mostly this task to the TargetTransformInfo so that if the target
459   // has specific changes, we can have a more accurate estimate.
460 
461   // However, getInstructionCost delegates the code size calculation for
462   // arithmetic instructions to getArithmeticInstrCost in
463   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
464   // code size for a division and remainder instruction to be equal to 4, and
465   // everything else to 1.  This is not an accurate representation of the
466   // division instruction for targets that have a native division instruction.
467   // To be overly conservative, we only add 1 to the number of instructions for
468   // each division instruction.
469   for (IRInstructionData &ID : *Candidate) {
470     Instruction *I = ID.Inst;
471     switch (I->getOpcode()) {
472     case Instruction::FDiv:
473     case Instruction::FRem:
474     case Instruction::SDiv:
475     case Instruction::SRem:
476     case Instruction::UDiv:
477     case Instruction::URem:
478       Benefit += 1;
479       break;
480     default:
481       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
482       break;
483     }
484   }
485 
486   return Benefit;
487 }
488 
489 /// Check the \p OutputMappings structure for value \p Input, if it exists
490 /// it has been used as an output for outlining, and has been renamed, and we
491 /// return the new value, otherwise, we return the same value.
492 ///
493 /// \param OutputMappings [in] - The mapping of values to their renamed value
494 /// after being used as an output for an outlined region.
495 /// \param Input [in] - The value to find the remapped value of, if it exists.
496 /// \return The remapped value if it has been renamed, and the same value if has
497 /// not.
498 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
499                                 Value *Input) {
500   DenseMap<Value *, Value *>::const_iterator OutputMapping =
501       OutputMappings.find(Input);
502   if (OutputMapping != OutputMappings.end())
503     return OutputMapping->second;
504   return Input;
505 }
506 
507 /// Find whether \p Region matches the global value numbering to Constant
508 /// mapping found so far.
509 ///
510 /// \param Region - The OutlinableRegion we are checking for constants
511 /// \param GVNToConstant - The mapping of global value number to Constants.
512 /// \param NotSame - The set of global value numbers that do not have the same
513 /// constant in each region.
514 /// \returns true if all Constants are the same in every use of a Constant in \p
515 /// Region and false if not
516 static bool
517 collectRegionsConstants(OutlinableRegion &Region,
518                         DenseMap<unsigned, Constant *> &GVNToConstant,
519                         DenseSet<unsigned> &NotSame) {
520   bool ConstantsTheSame = true;
521 
522   IRSimilarityCandidate &C = *Region.Candidate;
523   for (IRInstructionData &ID : C) {
524 
525     // Iterate over the operands in an instruction. If the global value number,
526     // assigned by the IRSimilarityCandidate, has been seen before, we check if
527     // the the number has been found to be not the same value in each instance.
528     for (Value *V : ID.OperVals) {
529       Optional<unsigned> GVNOpt = C.getGVN(V);
530       assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
531       unsigned GVN = GVNOpt.getValue();
532 
533       // Check if this global value has been found to not be the same already.
534       if (NotSame.contains(GVN)) {
535         if (isa<Constant>(V))
536           ConstantsTheSame = false;
537         continue;
538       }
539 
540       // If it has been the same so far, we check the value for if the
541       // associated Constant value match the previous instances of the same
542       // global value number.  If the global value does not map to a Constant,
543       // it is considered to not be the same value.
544       Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
545       if (ConstantMatches.hasValue()) {
546         if (ConstantMatches.getValue())
547           continue;
548         else
549           ConstantsTheSame = false;
550       }
551 
552       // While this value is a register, it might not have been previously,
553       // make sure we don't already have a constant mapped to this global value
554       // number.
555       if (GVNToConstant.find(GVN) != GVNToConstant.end())
556         ConstantsTheSame = false;
557 
558       NotSame.insert(GVN);
559     }
560   }
561 
562   return ConstantsTheSame;
563 }
564 
565 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
566   DenseMap<unsigned, Constant *> GVNToConstant;
567 
568   for (OutlinableRegion *Region : Regions)
569     collectRegionsConstants(*Region, GVNToConstant, NotSame);
570 }
571 
572 void OutlinableGroup::collectGVNStoreSets(Module &M) {
573   for (OutlinableRegion *OS : Regions)
574     OutputGVNCombinations.insert(OS->GVNStores);
575 
576   // We are adding an extracted argument to decide between which output path
577   // to use in the basic block.  It is used in a switch statement and only
578   // needs to be an integer.
579   if (OutputGVNCombinations.size() > 1)
580     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
581 }
582 
583 /// Get the subprogram if it exists for one of the outlined regions.
584 ///
585 /// \param [in] Group - The set of regions to find a subprogram for.
586 /// \returns the subprogram if it exists, or nullptr.
587 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
588   for (OutlinableRegion *OS : Group.Regions)
589     if (Function *F = OS->Call->getFunction())
590       if (DISubprogram *SP = F->getSubprogram())
591         return SP;
592 
593   return nullptr;
594 }
595 
596 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
597                                      unsigned FunctionNameSuffix) {
598   assert(!Group.OutlinedFunction && "Function is already defined!");
599 
600   Type *RetTy = Type::getVoidTy(M.getContext());
601   // All extracted functions _should_ have the same return type at this point
602   // since the similarity identifier ensures that all branches outside of the
603   // region occur in the same place.
604 
605   // NOTE: Should we ever move to the model that uses a switch at every point
606   // needed, meaning that we could branch within the region or out, it is
607   // possible that we will need to switch to using the most general case all of
608   // the time.
609   for (OutlinableRegion *R : Group.Regions) {
610     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
611     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
612         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
613       RetTy = ExtractedFuncType;
614   }
615 
616   Group.OutlinedFunctionType = FunctionType::get(
617       RetTy, Group.ArgumentTypes, false);
618 
619   // These functions will only be called from within the same module, so
620   // we can set an internal linkage.
621   Group.OutlinedFunction = Function::Create(
622       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
623       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
624 
625   // Transfer the swifterr attribute to the correct function parameter.
626   if (Group.SwiftErrorArgument.hasValue())
627     Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
628                                          Attribute::SwiftError);
629 
630   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
631   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
632 
633   // If there's a DISubprogram associated with this outlined function, then
634   // emit debug info for the outlined function.
635   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
636     Function *F = Group.OutlinedFunction;
637     // We have a DISubprogram. Get its DICompileUnit.
638     DICompileUnit *CU = SP->getUnit();
639     DIBuilder DB(M, true, CU);
640     DIFile *Unit = SP->getFile();
641     Mangler Mg;
642     // Get the mangled name of the function for the linkage name.
643     std::string Dummy;
644     llvm::raw_string_ostream MangledNameStream(Dummy);
645     Mg.getNameWithPrefix(MangledNameStream, F, false);
646 
647     DISubprogram *OutlinedSP = DB.createFunction(
648         Unit /* Context */, F->getName(), MangledNameStream.str(),
649         Unit /* File */,
650         0 /* Line 0 is reserved for compiler-generated code. */,
651         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
652         0, /* Line 0 is reserved for compiler-generated code. */
653         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
654         /* Outlined code is optimized code by definition. */
655         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
656 
657     // Don't add any new variables to the subprogram.
658     DB.finalizeSubprogram(OutlinedSP);
659 
660     // Attach subprogram to the function.
661     F->setSubprogram(OutlinedSP);
662     // We're done with the DIBuilder.
663     DB.finalize();
664   }
665 
666   return Group.OutlinedFunction;
667 }
668 
669 /// Move each BasicBlock in \p Old to \p New.
670 ///
671 /// \param [in] Old - The function to move the basic blocks from.
672 /// \param [in] New - The function to move the basic blocks to.
673 /// \param [out] NewEnds - The return blocks of the new overall function.
674 static void moveFunctionData(Function &Old, Function &New,
675                              DenseMap<Value *, BasicBlock *> &NewEnds) {
676   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
677     CurrBB.removeFromParent();
678     CurrBB.insertInto(&New);
679     Instruction *I = CurrBB.getTerminator();
680 
681     // For each block we find a return instruction is, it is a potential exit
682     // path for the function.  We keep track of each block based on the return
683     // value here.
684     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
685       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
686 
687     std::vector<Instruction *> DebugInsts;
688 
689     for (Instruction &Val : CurrBB) {
690       // We must handle the scoping of called functions differently than
691       // other outlined instructions.
692       if (!isa<CallInst>(&Val)) {
693         // Remove the debug information for outlined functions.
694         Val.setDebugLoc(DebugLoc());
695 
696         // Loop info metadata may contain line locations. Update them to have no
697         // value in the new subprogram since the outlined code could be from
698         // several locations.
699         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
700           if (DISubprogram *SP = New.getSubprogram())
701             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
702               return DILocation::get(New.getContext(), Loc->getLine(),
703                                      Loc->getColumn(), SP, nullptr);
704           return MD;
705         };
706         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
707         continue;
708       }
709 
710       // From this point we are only handling call instructions.
711       CallInst *CI = cast<CallInst>(&Val);
712 
713       // We add any debug statements here, to be removed after.  Since the
714       // instructions originate from many different locations in the program,
715       // it will cause incorrect reporting from a debugger if we keep the
716       // same debug instructions.
717       if (isa<DbgInfoIntrinsic>(CI)) {
718         DebugInsts.push_back(&Val);
719         continue;
720       }
721 
722       // Edit the scope of called functions inside of outlined functions.
723       if (DISubprogram *SP = New.getSubprogram()) {
724         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
725         Val.setDebugLoc(DI);
726       }
727     }
728 
729     for (Instruction *I : DebugInsts)
730       I->eraseFromParent();
731   }
732 }
733 
734 /// Find the the constants that will need to be lifted into arguments
735 /// as they are not the same in each instance of the region.
736 ///
737 /// \param [in] C - The IRSimilarityCandidate containing the region we are
738 /// analyzing.
739 /// \param [in] NotSame - The set of global value numbers that do not have a
740 /// single Constant across all OutlinableRegions similar to \p C.
741 /// \param [out] Inputs - The list containing the global value numbers of the
742 /// arguments needed for the region of code.
743 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
744                           std::vector<unsigned> &Inputs) {
745   DenseSet<unsigned> Seen;
746   // Iterate over the instructions, and find what constants will need to be
747   // extracted into arguments.
748   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
749        IDIt != EndIDIt; IDIt++) {
750     for (Value *V : (*IDIt).OperVals) {
751       // Since these are stored before any outlining, they will be in the
752       // global value numbering.
753       unsigned GVN = C.getGVN(V).getValue();
754       if (isa<Constant>(V))
755         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
756           Inputs.push_back(GVN);
757           Seen.insert(GVN);
758         }
759     }
760   }
761 }
762 
763 /// Find the GVN for the inputs that have been found by the CodeExtractor.
764 ///
765 /// \param [in] C - The IRSimilarityCandidate containing the region we are
766 /// analyzing.
767 /// \param [in] CurrentInputs - The set of inputs found by the
768 /// CodeExtractor.
769 /// \param [in] OutputMappings - The mapping of values that have been replaced
770 /// by a new output value.
771 /// \param [out] EndInputNumbers - The global value numbers for the extracted
772 /// arguments.
773 static void mapInputsToGVNs(IRSimilarityCandidate &C,
774                             SetVector<Value *> &CurrentInputs,
775                             const DenseMap<Value *, Value *> &OutputMappings,
776                             std::vector<unsigned> &EndInputNumbers) {
777   // Get the Global Value Number for each input.  We check if the Value has been
778   // replaced by a different value at output, and use the original value before
779   // replacement.
780   for (Value *Input : CurrentInputs) {
781     assert(Input && "Have a nullptr as an input");
782     if (OutputMappings.find(Input) != OutputMappings.end())
783       Input = OutputMappings.find(Input)->second;
784     assert(C.getGVN(Input).hasValue() &&
785            "Could not find a numbering for the given input");
786     EndInputNumbers.push_back(C.getGVN(Input).getValue());
787   }
788 }
789 
790 /// Find the original value for the \p ArgInput values if any one of them was
791 /// replaced during a previous extraction.
792 ///
793 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
794 /// \param [in] OutputMappings - The mapping of values that have been replaced
795 /// by a new output value.
796 /// \param [out] RemappedArgInputs - The remapped values according to
797 /// \p OutputMappings that will be extracted.
798 static void
799 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
800                      const DenseMap<Value *, Value *> &OutputMappings,
801                      SetVector<Value *> &RemappedArgInputs) {
802   // Get the global value number for each input that will be extracted as an
803   // argument by the code extractor, remapping if needed for reloaded values.
804   for (Value *Input : ArgInputs) {
805     if (OutputMappings.find(Input) != OutputMappings.end())
806       Input = OutputMappings.find(Input)->second;
807     RemappedArgInputs.insert(Input);
808   }
809 }
810 
811 /// Find the input GVNs and the output values for a region of Instructions.
812 /// Using the code extractor, we collect the inputs to the extracted function.
813 ///
814 /// The \p Region can be identified as needing to be ignored in this function.
815 /// It should be checked whether it should be ignored after a call to this
816 /// function.
817 ///
818 /// \param [in,out] Region - The region of code to be analyzed.
819 /// \param [out] InputGVNs - The global value numbers for the extracted
820 /// arguments.
821 /// \param [in] NotSame - The global value numbers in the region that do not
822 /// have the same constant value in the regions structurally similar to
823 /// \p Region.
824 /// \param [in] OutputMappings - The mapping of values that have been replaced
825 /// by a new output value after extraction.
826 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
827 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
828 /// as outputs.
829 static void getCodeExtractorArguments(
830     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
831     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
832     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
833   IRSimilarityCandidate &C = *Region.Candidate;
834 
835   // OverallInputs are the inputs to the region found by the CodeExtractor,
836   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
837   // allocas of values whose lifetimes are contained completely within the
838   // outlined region. PremappedInputs are the arguments found by the
839   // CodeExtractor, removing conditions such as sunken allocas, but that
840   // may need to be remapped due to the extracted output values replacing
841   // the original values. We use DummyOutputs for this first run of finding
842   // inputs and outputs since the outputs could change during findAllocas,
843   // the correct set of extracted outputs will be in the final Outputs ValueSet.
844   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
845       DummyOutputs;
846 
847   // Use the code extractor to get the inputs and outputs, without sunken
848   // allocas or removing llvm.assumes.
849   CodeExtractor *CE = Region.CE;
850   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
851   assert(Region.StartBB && "Region must have a start BasicBlock!");
852   Function *OrigF = Region.StartBB->getParent();
853   CodeExtractorAnalysisCache CEAC(*OrigF);
854   BasicBlock *Dummy = nullptr;
855 
856   // The region may be ineligible due to VarArgs in the parent function. In this
857   // case we ignore the region.
858   if (!CE->isEligible()) {
859     Region.IgnoreRegion = true;
860     return;
861   }
862 
863   // Find if any values are going to be sunk into the function when extracted
864   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
865   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
866 
867   // TODO: Support regions with sunken allocas: values whose lifetimes are
868   // contained completely within the outlined region.  These are not guaranteed
869   // to be the same in every region, so we must elevate them all to arguments
870   // when they appear.  If these values are not equal, it means there is some
871   // Input in OverallInputs that was removed for ArgInputs.
872   if (OverallInputs.size() != PremappedInputs.size()) {
873     Region.IgnoreRegion = true;
874     return;
875   }
876 
877   findConstants(C, NotSame, InputGVNs);
878 
879   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
880 
881   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
882                        ArgInputs);
883 
884   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
885   // we need to make sure they are in a deterministic order.
886   stable_sort(InputGVNs);
887 }
888 
889 /// Look over the inputs and map each input argument to an argument in the
890 /// overall function for the OutlinableRegions.  This creates a way to replace
891 /// the arguments of the extracted function with the arguments of the new
892 /// overall function.
893 ///
894 /// \param [in,out] Region - The region of code to be analyzed.
895 /// \param [in] InputGVNs - The global value numbering of the input values
896 /// collected.
897 /// \param [in] ArgInputs - The values of the arguments to the extracted
898 /// function.
899 static void
900 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
901                                         std::vector<unsigned> &InputGVNs,
902                                         SetVector<Value *> &ArgInputs) {
903 
904   IRSimilarityCandidate &C = *Region.Candidate;
905   OutlinableGroup &Group = *Region.Parent;
906 
907   // This counts the argument number in the overall function.
908   unsigned TypeIndex = 0;
909 
910   // This counts the argument number in the extracted function.
911   unsigned OriginalIndex = 0;
912 
913   // Find the mapping of the extracted arguments to the arguments for the
914   // overall function. Since there may be extra arguments in the overall
915   // function to account for the extracted constants, we have two different
916   // counters as we find extracted arguments, and as we come across overall
917   // arguments.
918 
919   // Additionally, in our first pass, for the first extracted function,
920   // we find argument locations for the canonical value numbering.  This
921   // numbering overrides any discovered location for the extracted code.
922   for (unsigned InputVal : InputGVNs) {
923     Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
924     assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?");
925     unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
926 
927     Optional<Value *> InputOpt = C.fromGVN(InputVal);
928     assert(InputOpt.hasValue() && "Global value number not found?");
929     Value *Input = InputOpt.getValue();
930 
931     DenseMap<unsigned, unsigned>::iterator AggArgIt =
932         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
933 
934     if (!Group.InputTypesSet) {
935       Group.ArgumentTypes.push_back(Input->getType());
936       // If the input value has a swifterr attribute, make sure to mark the
937       // argument in the overall function.
938       if (Input->isSwiftError()) {
939         assert(
940             !Group.SwiftErrorArgument.hasValue() &&
941             "Argument already marked with swifterr for this OutlinableGroup!");
942         Group.SwiftErrorArgument = TypeIndex;
943       }
944     }
945 
946     // Check if we have a constant. If we do add it to the overall argument
947     // number to Constant map for the region, and continue to the next input.
948     if (Constant *CST = dyn_cast<Constant>(Input)) {
949       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
950         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
951       else {
952         Group.CanonicalNumberToAggArg.insert(
953             std::make_pair(CanonicalNumber, TypeIndex));
954         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
955       }
956       TypeIndex++;
957       continue;
958     }
959 
960     // It is not a constant, we create the mapping from extracted argument list
961     // to the overall argument list, using the canonical location, if it exists.
962     assert(ArgInputs.count(Input) && "Input cannot be found!");
963 
964     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
965       if (OriginalIndex != AggArgIt->second)
966         Region.ChangedArgOrder = true;
967       Region.ExtractedArgToAgg.insert(
968           std::make_pair(OriginalIndex, AggArgIt->second));
969       Region.AggArgToExtracted.insert(
970           std::make_pair(AggArgIt->second, OriginalIndex));
971     } else {
972       Group.CanonicalNumberToAggArg.insert(
973           std::make_pair(CanonicalNumber, TypeIndex));
974       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
975       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
976     }
977     OriginalIndex++;
978     TypeIndex++;
979   }
980 
981   // If the function type definitions for the OutlinableGroup holding the region
982   // have not been set, set the length of the inputs here.  We should have the
983   // same inputs for all of the different regions contained in the
984   // OutlinableGroup since they are all structurally similar to one another.
985   if (!Group.InputTypesSet) {
986     Group.NumAggregateInputs = TypeIndex;
987     Group.InputTypesSet = true;
988   }
989 
990   Region.NumExtractedInputs = OriginalIndex;
991 }
992 
993 /// Check if the \p V has any uses outside of the region other than \p PN.
994 ///
995 /// \param V [in] - The value to check.
996 /// \param PHILoc [in] - The location in the PHINode of \p V.
997 /// \param PN [in] - The PHINode using \p V.
998 /// \param Exits [in] - The potential blocks we exit to from the outlined
999 /// region.
1000 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1001 /// \returns true if \p V has any use soutside its region other than \p PN.
1002 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1003                             SmallPtrSet<BasicBlock *, 1> &Exits,
1004                             DenseSet<BasicBlock *> &BlocksInRegion) {
1005   // We check to see if the value is used by the PHINode from some other
1006   // predecessor not included in the region.  If it is, we make sure
1007   // to keep it as an output.
1008   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1009              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1010                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1011                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1012              }))
1013     return true;
1014 
1015   // Check if the value is used by any other instructions outside the region.
1016   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1017     Instruction *I = dyn_cast<Instruction>(U);
1018     if (!I)
1019       return false;
1020 
1021     // If the use of the item is inside the region, we skip it.  Uses
1022     // inside the region give us useful information about how the item could be
1023     // used as an output.
1024     BasicBlock *Parent = I->getParent();
1025     if (BlocksInRegion.contains(Parent))
1026       return false;
1027 
1028     // If it's not a PHINode then we definitely know the use matters.  This
1029     // output value will not completely combined with another item in a PHINode
1030     // as it is directly reference by another non-phi instruction
1031     if (!isa<PHINode>(I))
1032       return true;
1033 
1034     // If we have a PHINode outside one of the exit locations, then it
1035     // can be considered an outside use as well.  If there is a PHINode
1036     // contained in the Exit where this values use matters, it will be
1037     // caught when we analyze that PHINode.
1038     if (!Exits.contains(Parent))
1039       return true;
1040 
1041     return false;
1042   });
1043 }
1044 
1045 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1046 /// considered outputs. A PHINodes is an output when more than one incoming
1047 /// value has been marked by the CodeExtractor as an output.
1048 ///
1049 /// \param CurrentExitFromRegion [in] - The block to analyze.
1050 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1051 /// region.
1052 /// \param RegionBlocks [in] - The basic blocks in the region.
1053 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1054 /// PHINodes to this as we find that they replace output values.
1055 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1056 /// totally replaced  by a PHINode.
1057 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1058 /// in PHINodes, but have other uses, and should still be considered outputs.
1059 static void analyzeExitPHIsForOutputUses(
1060     BasicBlock *CurrentExitFromRegion,
1061     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1062     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1063     DenseSet<Value *> &OutputsReplacedByPHINode,
1064     DenseSet<Value *> &OutputsWithNonPhiUses) {
1065   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1066     // Find all incoming values from the outlining region.
1067     SmallVector<unsigned, 2> IncomingVals;
1068     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1069       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1070         IncomingVals.push_back(I);
1071 
1072     // Do not process PHI if there are no predecessors from region.
1073     unsigned NumIncomingVals = IncomingVals.size();
1074     if (NumIncomingVals == 0)
1075       continue;
1076 
1077     // If there is one predecessor, we mark it as a value that needs to be kept
1078     // as an output.
1079     if (NumIncomingVals == 1) {
1080       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1081       OutputsWithNonPhiUses.insert(V);
1082       OutputsReplacedByPHINode.erase(V);
1083       continue;
1084     }
1085 
1086     // This PHINode will be used as an output value, so we add it to our list.
1087     Outputs.insert(&PN);
1088 
1089     // Not all of the incoming values should be ignored as other inputs and
1090     // outputs may have uses in outlined region.  If they have other uses
1091     // outside of the single PHINode we should not skip over it.
1092     for (unsigned Idx : IncomingVals) {
1093       Value *V = PN.getIncomingValue(Idx);
1094       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1095         OutputsWithNonPhiUses.insert(V);
1096         OutputsReplacedByPHINode.erase(V);
1097         continue;
1098       }
1099       if (!OutputsWithNonPhiUses.contains(V))
1100         OutputsReplacedByPHINode.insert(V);
1101     }
1102   }
1103 }
1104 
1105 // Represents the type for the unsigned number denoting the output number for
1106 // phi node, along with the canonical number for the exit block.
1107 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1108 // The list of canonical numbers for the incoming values to a PHINode.
1109 using CanonList = SmallVector<unsigned, 2>;
1110 // The pair type representing the set of canonical values being combined in the
1111 // PHINode, along with the location data for the PHINode.
1112 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1113 
1114 /// Encode \p PND as an integer for easy lookup based on the argument location,
1115 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1116 /// the values stored in the PHINode.
1117 ///
1118 /// \param PND - The data to hash.
1119 /// \returns The hash code of \p PND.
1120 static hash_code encodePHINodeData(PHINodeData &PND) {
1121   return llvm::hash_combine(
1122       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1123       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1124 }
1125 
1126 /// Create a special GVN for PHINodes that will be used outside of
1127 /// the region.  We create a hash code based on the Canonical number of the
1128 /// parent BasicBlock, the canonical numbering of the values stored in the
1129 /// PHINode and the aggregate argument location.  This is used to find whether
1130 /// this PHINode type has been given a canonical numbering already.  If not, we
1131 /// assign it a value and store it for later use.  The value is returned to
1132 /// identify different output schemes for the set of regions.
1133 ///
1134 /// \param Region - The region that \p PN is an output for.
1135 /// \param PN - The PHINode we are analyzing.
1136 /// \param Blocks - The blocks for the region we are analyzing.
1137 /// \param AggArgIdx - The argument \p PN will be stored into.
1138 /// \returns An optional holding the assigned canonical number, or None if
1139 /// there is some attribute of the PHINode blocking it from being used.
1140 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1141                                            PHINode *PN,
1142                                            DenseSet<BasicBlock *> &Blocks,
1143                                            unsigned AggArgIdx) {
1144   OutlinableGroup &Group = *Region.Parent;
1145   IRSimilarityCandidate &Cand = *Region.Candidate;
1146   BasicBlock *PHIBB = PN->getParent();
1147   CanonList PHIGVNs;
1148   Value *Incoming;
1149   BasicBlock *IncomingBlock;
1150   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1151     Incoming = PN->getIncomingValue(Idx);
1152     IncomingBlock = PN->getIncomingBlock(Idx);
1153     // If we cannot find a GVN, and the incoming block is included in the region
1154     // this means that the input to the PHINode is not included in the region we
1155     // are trying to analyze, meaning, that if it was outlined, we would be
1156     // adding an extra input.  We ignore this case for now, and so ignore the
1157     // region.
1158     Optional<unsigned> OGVN = Cand.getGVN(Incoming);
1159     if (!OGVN.hasValue() && (Blocks.find(IncomingBlock) != Blocks.end())) {
1160       Region.IgnoreRegion = true;
1161       return None;
1162     }
1163 
1164     // If the incoming block isn't in the region, we don't have to worry about
1165     // this incoming value.
1166     if (Blocks.find(IncomingBlock) == Blocks.end())
1167       continue;
1168 
1169     // Collect the canonical numbers of the values in the PHINode.
1170     unsigned GVN = OGVN.getValue();
1171     OGVN = Cand.getCanonicalNum(GVN);
1172     assert(OGVN.hasValue() && "No GVN found for incoming value?");
1173     PHIGVNs.push_back(*OGVN);
1174 
1175     // Find the incoming block and use the canonical numbering as well to define
1176     // the hash for the PHINode.
1177     OGVN = Cand.getGVN(IncomingBlock);
1178 
1179     // If there is no number for the incoming block, it is becaause we have
1180     // split the candidate basic blocks.  So we use the previous block that it
1181     // was split from to find the valid global value numbering for the PHINode.
1182     if (!OGVN.hasValue()) {
1183       assert(Cand.getStartBB() == IncomingBlock &&
1184              "Unknown basic block used in exit path PHINode.");
1185 
1186       BasicBlock *PrevBlock = IncomingBlock->getSinglePredecessor();
1187       OGVN = Cand.getGVN(PrevBlock);
1188     }
1189     GVN = OGVN.getValue();
1190     OGVN = Cand.getCanonicalNum(GVN);
1191     assert(OGVN.hasValue() && "No GVN found for incoming block?");
1192     PHIGVNs.push_back(*OGVN);
1193   }
1194 
1195   // Now that we have the GVNs for the incoming values, we are going to combine
1196   // them with the GVN of the incoming bock, and the output location of the
1197   // PHINode to generate a hash value representing this instance of the PHINode.
1198   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1199   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1200   Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1201   assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!");
1202 
1203   BBGVN = Cand.getCanonicalNum(BBGVN.getValue());
1204   assert(BBGVN.hasValue() &&
1205          "Could not find canonical number for the incoming block!");
1206   // Create a pair of the exit block canonical value, and the aggregate
1207   // argument location, connected to the canonical numbers stored in the
1208   // PHINode.
1209   PHINodeData TemporaryPair =
1210       std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs);
1211   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1212 
1213   // Look for and create a new entry in our connection between canonical
1214   // numbers for PHINodes, and the set of objects we just created.
1215   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1216   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1217     bool Inserted = false;
1218     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1219         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1220     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1221         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1222   }
1223 
1224   return GVNToPHIIt->second;
1225 }
1226 
1227 /// Create a mapping of the output arguments for the \p Region to the output
1228 /// arguments of the overall outlined function.
1229 ///
1230 /// \param [in,out] Region - The region of code to be analyzed.
1231 /// \param [in] Outputs - The values found by the code extractor.
1232 static void
1233 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
1234                                           SetVector<Value *> &Outputs) {
1235   OutlinableGroup &Group = *Region.Parent;
1236   IRSimilarityCandidate &C = *Region.Candidate;
1237 
1238   SmallVector<BasicBlock *> BE;
1239   DenseSet<BasicBlock *> BlocksInRegion;
1240   C.getBasicBlocks(BlocksInRegion, BE);
1241 
1242   // Find the exits to the region.
1243   SmallPtrSet<BasicBlock *, 1> Exits;
1244   for (BasicBlock *Block : BE)
1245     for (BasicBlock *Succ : successors(Block))
1246       if (!BlocksInRegion.contains(Succ))
1247         Exits.insert(Succ);
1248 
1249   // After determining which blocks exit to PHINodes, we add these PHINodes to
1250   // the set of outputs to be processed.  We also check the incoming values of
1251   // the PHINodes for whether they should no longer be considered outputs.
1252   DenseSet<Value *> OutputsReplacedByPHINode;
1253   DenseSet<Value *> OutputsWithNonPhiUses;
1254   for (BasicBlock *ExitBB : Exits)
1255     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1256                                  OutputsReplacedByPHINode,
1257                                  OutputsWithNonPhiUses);
1258 
1259   // This counts the argument number in the extracted function.
1260   unsigned OriginalIndex = Region.NumExtractedInputs;
1261 
1262   // This counts the argument number in the overall function.
1263   unsigned TypeIndex = Group.NumAggregateInputs;
1264   bool TypeFound;
1265   DenseSet<unsigned> AggArgsUsed;
1266 
1267   // Iterate over the output types and identify if there is an aggregate pointer
1268   // type whose base type matches the current output type. If there is, we mark
1269   // that we will use this output register for this value. If not we add another
1270   // type to the overall argument type list. We also store the GVNs used for
1271   // stores to identify which values will need to be moved into an special
1272   // block that holds the stores to the output registers.
1273   for (Value *Output : Outputs) {
1274     TypeFound = false;
1275     // We can do this since it is a result value, and will have a number
1276     // that is necessarily the same. BUT if in the future, the instructions
1277     // do not have to be in same order, but are functionally the same, we will
1278     // have to use a different scheme, as one-to-one correspondence is not
1279     // guaranteed.
1280     unsigned ArgumentSize = Group.ArgumentTypes.size();
1281 
1282     // If the output is combined in a PHINode, we make sure to skip over it.
1283     if (OutputsReplacedByPHINode.contains(Output))
1284       continue;
1285 
1286     unsigned AggArgIdx = 0;
1287     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1288       if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
1289         continue;
1290 
1291       if (AggArgsUsed.contains(Jdx))
1292         continue;
1293 
1294       TypeFound = true;
1295       AggArgsUsed.insert(Jdx);
1296       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1297       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1298       AggArgIdx = Jdx;
1299       break;
1300     }
1301 
1302     // We were unable to find an unused type in the output type set that matches
1303     // the output, so we add a pointer type to the argument types of the overall
1304     // function to handle this output and create a mapping to it.
1305     if (!TypeFound) {
1306       Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
1307       // Mark the new pointer type as the last value in the aggregate argument
1308       // list.
1309       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1310       AggArgsUsed.insert(ArgTypeIdx);
1311       Region.ExtractedArgToAgg.insert(
1312           std::make_pair(OriginalIndex, ArgTypeIdx));
1313       Region.AggArgToExtracted.insert(
1314           std::make_pair(ArgTypeIdx, OriginalIndex));
1315       AggArgIdx = ArgTypeIdx;
1316     }
1317 
1318     // TODO: Adapt to the extra input from the PHINode.
1319     PHINode *PN = dyn_cast<PHINode>(Output);
1320 
1321     Optional<unsigned> GVN;
1322     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1323       // Values outside the region can be combined into PHINode when we
1324       // have multiple exits. We collect both of these into a list to identify
1325       // which values are being used in the PHINode. Each list identifies a
1326       // different PHINode, and a different output. We store the PHINode as it's
1327       // own canonical value.  These canonical values are also dependent on the
1328       // output argument it is saved to.
1329 
1330       // If two PHINodes have the same canonical values, but different aggregate
1331       // argument locations, then they will have distinct Canonical Values.
1332       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1333       if (!GVN.hasValue())
1334         return;
1335     } else {
1336       // If we do not have a PHINode we use the global value numbering for the
1337       // output value, to find the canonical number to add to the set of stored
1338       // values.
1339       GVN = C.getGVN(Output);
1340       GVN = C.getCanonicalNum(*GVN);
1341     }
1342 
1343     // Each region has a potentially unique set of outputs.  We save which
1344     // values are output in a list of canonical values so we can differentiate
1345     // among the different store schemes.
1346     Region.GVNStores.push_back(*GVN);
1347 
1348     OriginalIndex++;
1349     TypeIndex++;
1350   }
1351 
1352   // We sort the stored values to make sure that we are not affected by analysis
1353   // order when determining what combination of items were stored.
1354   stable_sort(Region.GVNStores);
1355 }
1356 
1357 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1358                                       DenseSet<unsigned> &NotSame) {
1359   std::vector<unsigned> Inputs;
1360   SetVector<Value *> ArgInputs, Outputs;
1361 
1362   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1363                             Outputs);
1364 
1365   if (Region.IgnoreRegion)
1366     return;
1367 
1368   // Map the inputs found by the CodeExtractor to the arguments found for
1369   // the overall function.
1370   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1371 
1372   // Map the outputs found by the CodeExtractor to the arguments found for
1373   // the overall function.
1374   findExtractedOutputToOverallOutputMapping(Region, Outputs);
1375 }
1376 
1377 /// Replace the extracted function in the Region with a call to the overall
1378 /// function constructed from the deduplicated similar regions, replacing and
1379 /// remapping the values passed to the extracted function as arguments to the
1380 /// new arguments of the overall function.
1381 ///
1382 /// \param [in] M - The module to outline from.
1383 /// \param [in] Region - The regions of extracted code to be replaced with a new
1384 /// function.
1385 /// \returns a call instruction with the replaced function.
1386 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1387   std::vector<Value *> NewCallArgs;
1388   DenseMap<unsigned, unsigned>::iterator ArgPair;
1389 
1390   OutlinableGroup &Group = *Region.Parent;
1391   CallInst *Call = Region.Call;
1392   assert(Call && "Call to replace is nullptr?");
1393   Function *AggFunc = Group.OutlinedFunction;
1394   assert(AggFunc && "Function to replace with is nullptr?");
1395 
1396   // If the arguments are the same size, there are not values that need to be
1397   // made into an argument, the argument ordering has not been change, or
1398   // different output registers to handle.  We can simply replace the called
1399   // function in this case.
1400   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1401     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1402                       << *AggFunc << " with same number of arguments\n");
1403     Call->setCalledFunction(AggFunc);
1404     return Call;
1405   }
1406 
1407   // We have a different number of arguments than the new function, so
1408   // we need to use our previously mappings off extracted argument to overall
1409   // function argument, and constants to overall function argument to create the
1410   // new argument list.
1411   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1412 
1413     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1414         Group.OutputGVNCombinations.size() > 1) {
1415       // If we are on the last argument, and we need to differentiate between
1416       // output blocks, add an integer to the argument list to determine
1417       // what block to take
1418       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1419                         << Region.OutputBlockNum << "\n");
1420       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1421                                              Region.OutputBlockNum));
1422       continue;
1423     }
1424 
1425     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1426     if (ArgPair != Region.AggArgToExtracted.end()) {
1427       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1428       // If we found the mapping from the extracted function to the overall
1429       // function, we simply add it to the argument list.  We use the same
1430       // value, it just needs to honor the new order of arguments.
1431       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1432                         << *ArgumentValue << "\n");
1433       NewCallArgs.push_back(ArgumentValue);
1434       continue;
1435     }
1436 
1437     // If it is a constant, we simply add it to the argument list as a value.
1438     if (Region.AggArgToConstant.find(AggArgIdx) !=
1439         Region.AggArgToConstant.end()) {
1440       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1441       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1442                         << *CST << "\n");
1443       NewCallArgs.push_back(CST);
1444       continue;
1445     }
1446 
1447     // Add a nullptr value if the argument is not found in the extracted
1448     // function.  If we cannot find a value, it means it is not in use
1449     // for the region, so we should not pass anything to it.
1450     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1451     NewCallArgs.push_back(ConstantPointerNull::get(
1452         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1453   }
1454 
1455   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1456                     << *AggFunc << " with new set of arguments\n");
1457   // Create the new call instruction and erase the old one.
1458   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1459                           Call);
1460 
1461   // It is possible that the call to the outlined function is either the first
1462   // instruction is in the new block, the last instruction, or both.  If either
1463   // of these is the case, we need to make sure that we replace the instruction
1464   // in the IRInstructionData struct with the new call.
1465   CallInst *OldCall = Region.Call;
1466   if (Region.NewFront->Inst == OldCall)
1467     Region.NewFront->Inst = Call;
1468   if (Region.NewBack->Inst == OldCall)
1469     Region.NewBack->Inst = Call;
1470 
1471   // Transfer any debug information.
1472   Call->setDebugLoc(Region.Call->getDebugLoc());
1473   // Since our output may determine which branch we go to, we make sure to
1474   // propogate this new call value through the module.
1475   OldCall->replaceAllUsesWith(Call);
1476 
1477   // Remove the old instruction.
1478   OldCall->eraseFromParent();
1479   Region.Call = Call;
1480 
1481   // Make sure that the argument in the new function has the SwiftError
1482   // argument.
1483   if (Group.SwiftErrorArgument.hasValue())
1484     Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
1485                        Attribute::SwiftError);
1486 
1487   return Call;
1488 }
1489 
1490 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1491 /// for \p RetVal.
1492 ///
1493 /// \param Group - The OutlinableGroup containing the information about the
1494 /// overall outlined function.
1495 /// \param RetVal - The return value or exit option that we are currently
1496 /// evaluating.
1497 /// \returns The found or newly created BasicBlock to contain the needed
1498 /// PHINodes to be used as outputs.
1499 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1500   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1501       ReturnBlockForRetVal;
1502   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1503   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1504   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1505          "Could not find output value!");
1506   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1507 
1508   // Find if a PHIBlock exists for this return value already.  If it is
1509   // the first time we are analyzing this, we will not, so we record it.
1510   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1511   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1512     return PhiBlockForRetVal->second;
1513 
1514   // If we did not find a block, we create one, and insert it into the
1515   // overall function and record it.
1516   bool Inserted = false;
1517   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1518                                             ReturnBB->getParent());
1519   std::tie(PhiBlockForRetVal, Inserted) =
1520       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1521 
1522   // We find the predecessors of the return block in the newly created outlined
1523   // function in order to point them to the new PHIBlock rather than the already
1524   // existing return block.
1525   SmallVector<BranchInst *, 2> BranchesToChange;
1526   for (BasicBlock *Pred : predecessors(ReturnBB))
1527     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1528 
1529   // Now we mark the branch instructions found, and change the references of the
1530   // return block to the newly created PHIBlock.
1531   for (BranchInst *BI : BranchesToChange)
1532     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1533       if (BI->getSuccessor(Succ) != ReturnBB)
1534         continue;
1535       BI->setSuccessor(Succ, PHIBlock);
1536     }
1537 
1538   BranchInst::Create(ReturnBB, PHIBlock);
1539 
1540   return PhiBlockForRetVal->second;
1541 }
1542 
1543 /// For the function call now representing the \p Region, find the passed value
1544 /// to that call that represents Argument \p A at the call location if the
1545 /// call has already been replaced with a call to the  overall, aggregate
1546 /// function.
1547 ///
1548 /// \param A - The Argument to get the passed value for.
1549 /// \param Region - The extracted Region corresponding to the outlined function.
1550 /// \returns The Value representing \p A at the call site.
1551 static Value *
1552 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1553                                            const OutlinableRegion &Region) {
1554   // If we don't need to adjust the argument number at all (since the call
1555   // has already been replaced by a call to the overall outlined function)
1556   // we can just get the specified argument.
1557   return Region.Call->getArgOperand(A->getArgNo());
1558 }
1559 
1560 /// For the function call now representing the \p Region, find the passed value
1561 /// to that call that represents Argument \p A at the call location if the
1562 /// call has only been replaced by the call to the aggregate function.
1563 ///
1564 /// \param A - The Argument to get the passed value for.
1565 /// \param Region - The extracted Region corresponding to the outlined function.
1566 /// \returns The Value representing \p A at the call site.
1567 static Value *
1568 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1569                                            const OutlinableRegion &Region) {
1570   unsigned ArgNum = A->getArgNo();
1571 
1572   // If it is a constant, we can look at our mapping from when we created
1573   // the outputs to figure out what the constant value is.
1574   if (Region.AggArgToConstant.count(ArgNum))
1575     return Region.AggArgToConstant.find(ArgNum)->second;
1576 
1577   // If it is not a constant, and we are not looking at the overall function, we
1578   // need to adjust which argument we are looking at.
1579   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1580   return Region.Call->getArgOperand(ArgNum);
1581 }
1582 
1583 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1584 ///
1585 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1586 /// \param Region [in] - The OutlinableRegion containing \p PN.
1587 /// \param OutputMappings [in] - The mapping of output values from outlined
1588 /// region to their original values.
1589 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1590 /// \p PN paired with their incoming block.
1591 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1592 /// of \p Region rather than the overall function's call.
1593 static void findCanonNumsForPHI(
1594     PHINode *PN, OutlinableRegion &Region,
1595     const DenseMap<Value *, Value *> &OutputMappings,
1596     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1597     bool ReplacedWithOutlinedCall = true) {
1598   // Iterate over the incoming values.
1599   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1600     Value *IVal = PN->getIncomingValue(Idx);
1601     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1602     // If we have an argument as incoming value, we need to grab the passed
1603     // value from the call itself.
1604     if (Argument *A = dyn_cast<Argument>(IVal)) {
1605       if (ReplacedWithOutlinedCall)
1606         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1607       else
1608         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1609     }
1610 
1611     // Get the original value if it has been replaced by an output value.
1612     IVal = findOutputMapping(OutputMappings, IVal);
1613 
1614     // Find and add the canonical number for the incoming value.
1615     Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1616     assert(GVN.hasValue() && "No GVN for incoming value");
1617     Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1618     assert(CanonNum.hasValue() && "No Canonical Number for GVN");
1619     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1620   }
1621 }
1622 
1623 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1624 /// in order to condense the number of instructions added to the outlined
1625 /// function.
1626 ///
1627 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1628 /// \param Region [in] - The OutlinableRegion containing \p PN.
1629 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1630 /// \p PN in.
1631 /// \param OutputMappings [in] - The mapping of output values from outlined
1632 /// region to their original values.
1633 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1634 /// matched.
1635 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1636 static PHINode*
1637 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1638                        BasicBlock *OverallPhiBlock,
1639                        const DenseMap<Value *, Value *> &OutputMappings,
1640                        DenseSet<PHINode *> &UsedPHIs) {
1641   OutlinableGroup &Group = *Region.Parent;
1642 
1643 
1644   // A list of the canonical numbering assigned to each incoming value, paired
1645   // with the incoming block for the PHINode passed into this function.
1646   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1647 
1648   // We have to use the extracted function since we have merged this region into
1649   // the overall function yet.  We make sure to reassign the argument numbering
1650   // since it is possible that the argument ordering is different between the
1651   // functions.
1652   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1653                       /* ReplacedWithOutlinedCall = */ false);
1654 
1655   OutlinableRegion *FirstRegion = Group.Regions[0];
1656 
1657   // A list of the canonical numbering assigned to each incoming value, paired
1658   // with the incoming block for the PHINode that we are currently comparing
1659   // the passed PHINode to.
1660   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1661 
1662   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1663   // the uses of the PHINode we are searching for, with the found PHINode.
1664   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1665     // If this PHINode has already been matched to another PHINode to be merged,
1666     // we skip it.
1667     if (UsedPHIs.find(&CurrPN) != UsedPHIs.end())
1668       continue;
1669 
1670     CurrentCanonNums.clear();
1671     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1672                         /* ReplacedWithOutlinedCall = */ true);
1673 
1674     // If the list of incoming values is not the same length, then they cannot
1675     // match since there is not an analogue for each incoming value.
1676     if (PNCanonNums.size() != CurrentCanonNums.size())
1677       continue;
1678 
1679     bool FoundMatch = true;
1680 
1681     // We compare the canonical value for each incoming value in the passed
1682     // in PHINode to one already present in the outlined region.  If the
1683     // incoming values do not match, then the PHINodes do not match.
1684 
1685     // We also check to make sure that the incoming block matches as well by
1686     // finding the corresponding incoming block in the combined outlined region
1687     // for the current outlined region.
1688     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1689       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1690       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1691       if (ToCompareTo.first != ToAdd.first) {
1692         FoundMatch = false;
1693         break;
1694       }
1695 
1696       BasicBlock *CorrespondingBlock =
1697           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1698       assert(CorrespondingBlock && "Found block is nullptr");
1699       if (CorrespondingBlock != ToCompareTo.second) {
1700         FoundMatch = false;
1701         break;
1702       }
1703     }
1704 
1705     // If all incoming values and branches matched, then we can merge
1706     // into the found PHINode.
1707     if (FoundMatch) {
1708       UsedPHIs.insert(&CurrPN);
1709       return &CurrPN;
1710     }
1711   }
1712 
1713   // If we've made it here, it means we weren't able to replace the PHINode, so
1714   // we must insert it ourselves.
1715   PHINode *NewPN = cast<PHINode>(PN.clone());
1716   NewPN->insertBefore(&*OverallPhiBlock->begin());
1717   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1718        Idx++) {
1719     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1720     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1721 
1722     // Find corresponding basic block in the overall function for the incoming
1723     // block.
1724     BasicBlock *BlockToUse =
1725         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1726     NewPN->setIncomingBlock(Idx, BlockToUse);
1727 
1728     // If we have an argument we make sure we replace using the argument from
1729     // the correct function.
1730     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1731       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1732       NewPN->setIncomingValue(Idx, Val);
1733       continue;
1734     }
1735 
1736     // Find the corresponding value in the overall function.
1737     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1738     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1739     assert(Val && "Value is nullptr?");
1740     DenseMap<Value *, Value *>::iterator RemappedIt =
1741         FirstRegion->RemappedArguments.find(Val);
1742     if (RemappedIt != FirstRegion->RemappedArguments.end())
1743       Val = RemappedIt->second;
1744     NewPN->setIncomingValue(Idx, Val);
1745   }
1746   return NewPN;
1747 }
1748 
1749 // Within an extracted function, replace the argument uses of the extracted
1750 // region with the arguments of the function for an OutlinableGroup.
1751 //
1752 /// \param [in] Region - The region of extracted code to be changed.
1753 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1754 /// region.
1755 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1756 /// function to define the overall outlined function for all the regions, or
1757 /// if we are operating on one of the following regions.
1758 static void
1759 replaceArgumentUses(OutlinableRegion &Region,
1760                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1761                     const DenseMap<Value *, Value *> &OutputMappings,
1762                     bool FirstFunction = false) {
1763   OutlinableGroup &Group = *Region.Parent;
1764   assert(Region.ExtractedFunction && "Region has no extracted function?");
1765 
1766   Function *DominatingFunction = Region.ExtractedFunction;
1767   if (FirstFunction)
1768     DominatingFunction = Group.OutlinedFunction;
1769   DominatorTree DT(*DominatingFunction);
1770   DenseSet<PHINode *> UsedPHIs;
1771 
1772   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1773        ArgIdx++) {
1774     assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
1775                Region.ExtractedArgToAgg.end() &&
1776            "No mapping from extracted to outlined?");
1777     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1778     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1779     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1780     // The argument is an input, so we can simply replace it with the overall
1781     // argument value
1782     if (ArgIdx < Region.NumExtractedInputs) {
1783       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1784                         << *Region.ExtractedFunction << " with " << *AggArg
1785                         << " in function " << *Group.OutlinedFunction << "\n");
1786       Arg->replaceAllUsesWith(AggArg);
1787       Value *V = Region.Call->getArgOperand(ArgIdx);
1788       Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1789       continue;
1790     }
1791 
1792     // If we are replacing an output, we place the store value in its own
1793     // block inside the overall function before replacing the use of the output
1794     // in the function.
1795     assert(Arg->hasOneUse() && "Output argument can only have one use");
1796     User *InstAsUser = Arg->user_back();
1797     assert(InstAsUser && "User is nullptr!");
1798 
1799     Instruction *I = cast<Instruction>(InstAsUser);
1800     BasicBlock *BB = I->getParent();
1801     SmallVector<BasicBlock *, 4> Descendants;
1802     DT.getDescendants(BB, Descendants);
1803     bool EdgeAdded = false;
1804     if (Descendants.size() == 0) {
1805       EdgeAdded = true;
1806       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1807       DT.getDescendants(BB, Descendants);
1808     }
1809 
1810     // Iterate over the following blocks, looking for return instructions,
1811     // if we find one, find the corresponding output block for the return value
1812     // and move our store instruction there.
1813     for (BasicBlock *DescendBB : Descendants) {
1814       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1815       if (!RI)
1816         continue;
1817       Value *RetVal = RI->getReturnValue();
1818       auto VBBIt = OutputBBs.find(RetVal);
1819       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1820 
1821       // If this is storing a PHINode, we must make sure it is included in the
1822       // overall function.
1823       StoreInst *SI = cast<StoreInst>(I);
1824 
1825       Value *ValueOperand = SI->getValueOperand();
1826 
1827       StoreInst *NewI = cast<StoreInst>(I->clone());
1828       NewI->setDebugLoc(DebugLoc());
1829       BasicBlock *OutputBB = VBBIt->second;
1830       OutputBB->getInstList().push_back(NewI);
1831       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1832                         << *OutputBB << "\n");
1833 
1834       // If this is storing a PHINode, we must make sure it is included in the
1835       // overall function.
1836       if (!isa<PHINode>(ValueOperand) ||
1837           Region.Candidate->getGVN(ValueOperand).hasValue()) {
1838         if (FirstFunction)
1839           continue;
1840         Value *CorrVal =
1841             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1842         assert(CorrVal && "Value is nullptr?");
1843         NewI->setOperand(0, CorrVal);
1844         continue;
1845       }
1846       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1847       // If it has a value, it was not split by the code extractor, which
1848       // is what we are looking for.
1849       if (Region.Candidate->getGVN(PN).hasValue())
1850         continue;
1851 
1852       // We record the parent block for the PHINode in the Region so that
1853       // we can exclude it from checks later on.
1854       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1855 
1856       // If this is the first function, we do not need to worry about mergiing
1857       // this with any other block in the overall outlined function, so we can
1858       // just continue.
1859       if (FirstFunction) {
1860         BasicBlock *PHIBlock = PN->getParent();
1861         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1862         continue;
1863       }
1864 
1865       // We look for the aggregate block that contains the PHINodes leading into
1866       // this exit path. If we can't find one, we create one.
1867       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1868 
1869       // For our PHINode, we find the combined canonical numbering, and
1870       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1871       // cannot, we copy the PHINode and move it into this new block.
1872       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1873                                               OutputMappings, UsedPHIs);
1874       NewI->setOperand(0, NewPN);
1875     }
1876 
1877     // If we added an edge for basic blocks without a predecessor, we remove it
1878     // here.
1879     if (EdgeAdded)
1880       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1881     I->eraseFromParent();
1882 
1883     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1884                       << *Region.ExtractedFunction << " with " << *AggArg
1885                       << " in function " << *Group.OutlinedFunction << "\n");
1886     Arg->replaceAllUsesWith(AggArg);
1887   }
1888 }
1889 
1890 /// Within an extracted function, replace the constants that need to be lifted
1891 /// into arguments with the actual argument.
1892 ///
1893 /// \param Region [in] - The region of extracted code to be changed.
1894 void replaceConstants(OutlinableRegion &Region) {
1895   OutlinableGroup &Group = *Region.Parent;
1896   // Iterate over the constants that need to be elevated into arguments
1897   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1898     unsigned AggArgIdx = Const.first;
1899     Function *OutlinedFunction = Group.OutlinedFunction;
1900     assert(OutlinedFunction && "Overall Function is not defined?");
1901     Constant *CST = Const.second;
1902     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1903     // Identify the argument it will be elevated to, and replace instances of
1904     // that constant in the function.
1905 
1906     // TODO: If in the future constants do not have one global value number,
1907     // i.e. a constant 1 could be mapped to several values, this check will
1908     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1909 
1910     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1911                       << " in function " << *OutlinedFunction << " with "
1912                       << *Arg << "\n");
1913     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1914       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1915         return I->getFunction() == OutlinedFunction;
1916       return false;
1917     });
1918   }
1919 }
1920 
1921 /// It is possible that there is a basic block that already performs the same
1922 /// stores. This returns a duplicate block, if it exists
1923 ///
1924 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1925 /// \param OutputStoreBBs [in] The existing output blocks.
1926 /// \returns an optional value with the number output block if there is a match.
1927 Optional<unsigned> findDuplicateOutputBlock(
1928     DenseMap<Value *, BasicBlock *> &OutputBBs,
1929     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1930 
1931   bool Mismatch = false;
1932   unsigned MatchingNum = 0;
1933   // We compare the new set output blocks to the other sets of output blocks.
1934   // If they are the same number, and have identical instructions, they are
1935   // considered to be the same.
1936   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1937     Mismatch = false;
1938     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1939       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1940           OutputBBs.find(VToB.first);
1941       if (OutputBBIt == OutputBBs.end()) {
1942         Mismatch = true;
1943         break;
1944       }
1945 
1946       BasicBlock *CompBB = VToB.second;
1947       BasicBlock *OutputBB = OutputBBIt->second;
1948       if (CompBB->size() - 1 != OutputBB->size()) {
1949         Mismatch = true;
1950         break;
1951       }
1952 
1953       BasicBlock::iterator NIt = OutputBB->begin();
1954       for (Instruction &I : *CompBB) {
1955         if (isa<BranchInst>(&I))
1956           continue;
1957 
1958         if (!I.isIdenticalTo(&(*NIt))) {
1959           Mismatch = true;
1960           break;
1961         }
1962 
1963         NIt++;
1964       }
1965     }
1966 
1967     if (!Mismatch)
1968       return MatchingNum;
1969 
1970     MatchingNum++;
1971   }
1972 
1973   return None;
1974 }
1975 
1976 /// Remove empty output blocks from the outlined region.
1977 ///
1978 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
1979 /// Region.
1980 /// \param Region - The OutlinableRegion we are analyzing.
1981 static bool
1982 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
1983                             OutlinableRegion &Region) {
1984   bool AllRemoved = true;
1985   Value *RetValueForBB;
1986   BasicBlock *NewBB;
1987   SmallVector<Value *, 4> ToRemove;
1988   // Iterate over the output blocks created in the outlined section.
1989   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
1990     RetValueForBB = VtoBB.first;
1991     NewBB = VtoBB.second;
1992 
1993     // If there are no instructions, we remove it from the module, and also
1994     // mark the value for removal from the return value to output block mapping.
1995     if (NewBB->size() == 0) {
1996       NewBB->eraseFromParent();
1997       ToRemove.push_back(RetValueForBB);
1998       continue;
1999     }
2000 
2001     // Mark that we could not remove all the blocks since they were not all
2002     // empty.
2003     AllRemoved = false;
2004   }
2005 
2006   // Remove the return value from the mapping.
2007   for (Value *V : ToRemove)
2008     BlocksToPrune.erase(V);
2009 
2010   // Mark the region as having the no output scheme.
2011   if (AllRemoved)
2012     Region.OutputBlockNum = -1;
2013 
2014   return AllRemoved;
2015 }
2016 
2017 /// For the outlined section, move needed the StoreInsts for the output
2018 /// registers into their own block. Then, determine if there is a duplicate
2019 /// output block already created.
2020 ///
2021 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2022 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2023 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2024 /// placed in.
2025 /// \param [in] EndBBs - the final blocks of the extracted function.
2026 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2027 /// been replaced by a new output value.
2028 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2029 static void alignOutputBlockWithAggFunc(
2030     OutlinableGroup &OG, OutlinableRegion &Region,
2031     DenseMap<Value *, BasicBlock *> &OutputBBs,
2032     DenseMap<Value *, BasicBlock *> &EndBBs,
2033     const DenseMap<Value *, Value *> &OutputMappings,
2034     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2035   // If none of the output blocks have any instructions, this means that we do
2036   // not have to determine if it matches any of the other output schemes, and we
2037   // don't have to do anything else.
2038   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2039     return;
2040 
2041   // Determine is there is a duplicate set of blocks.
2042   Optional<unsigned> MatchingBB =
2043       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2044 
2045   // If there is, we remove the new output blocks.  If it does not,
2046   // we add it to our list of sets of output blocks.
2047   if (MatchingBB.hasValue()) {
2048     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2049                       << Region.ExtractedFunction << " to "
2050                       << MatchingBB.getValue());
2051 
2052     Region.OutputBlockNum = MatchingBB.getValue();
2053     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2054       VtoBB.second->eraseFromParent();
2055     return;
2056   }
2057 
2058   Region.OutputBlockNum = OutputStoreBBs.size();
2059 
2060   Value *RetValueForBB;
2061   BasicBlock *NewBB;
2062   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2063   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2064     RetValueForBB = VtoBB.first;
2065     NewBB = VtoBB.second;
2066     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2067         EndBBs.find(RetValueForBB);
2068     LLVM_DEBUG(dbgs() << "Create output block for region in"
2069                       << Region.ExtractedFunction << " to "
2070                       << *NewBB);
2071     BranchInst::Create(VBBIt->second, NewBB);
2072     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2073   }
2074 }
2075 
2076 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2077 /// before creating a basic block for each \p NewMap, and inserting into the new
2078 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2079 ///
2080 /// \param OldMap [in] - The mapping to base the new mapping off of.
2081 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2082 /// \param ParentFunc [in] - The function to put the new basic block in.
2083 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2084 /// by an index value.
2085 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2086                                        DenseMap<Value *, BasicBlock *> &NewMap,
2087                                        Function *ParentFunc, Twine BaseName) {
2088   unsigned Idx = 0;
2089   std::vector<Value *> SortedKeys;
2090 
2091   getSortedConstantKeys(SortedKeys, OldMap);
2092 
2093   for (Value *RetVal : SortedKeys) {
2094     BasicBlock *NewBB = BasicBlock::Create(
2095         ParentFunc->getContext(),
2096         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2097         ParentFunc);
2098     NewMap.insert(std::make_pair(RetVal, NewBB));
2099   }
2100 }
2101 
2102 /// Create the switch statement for outlined function to differentiate between
2103 /// all the output blocks.
2104 ///
2105 /// For the outlined section, determine if an outlined block already exists that
2106 /// matches the needed stores for the extracted section.
2107 /// \param [in] M - The module we are outlining from.
2108 /// \param [in] OG - The group of regions to be outlined.
2109 /// \param [in] EndBBs - The final blocks of the extracted function.
2110 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2111 void createSwitchStatement(
2112     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2113     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2114   // We only need the switch statement if there is more than one store
2115   // combination, or there is more than one set of output blocks.  The first
2116   // will occur when we store different sets of values for two different
2117   // regions.  The second will occur when we have two outputs that are combined
2118   // in a PHINode outside of the region in one outlined instance, and are used
2119   // seaparately in another. This will create the same set of OutputGVNs, but
2120   // will generate two different output schemes.
2121   if (OG.OutputGVNCombinations.size() > 1) {
2122     Function *AggFunc = OG.OutlinedFunction;
2123     // Create a final block for each different return block.
2124     DenseMap<Value *, BasicBlock *> ReturnBBs;
2125     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2126 
2127     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2128       std::pair<Value *, BasicBlock *> &OutputBlock =
2129           *OG.EndBBs.find(RetBlockPair.first);
2130       BasicBlock *ReturnBlock = RetBlockPair.second;
2131       BasicBlock *EndBB = OutputBlock.second;
2132       Instruction *Term = EndBB->getTerminator();
2133       // Move the return value to the final block instead of the original exit
2134       // stub.
2135       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2136       // Put the switch statement in the old end basic block for the function
2137       // with a fall through to the new return block.
2138       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2139                         << OutputStoreBBs.size() << "\n");
2140       SwitchInst *SwitchI =
2141           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2142                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2143 
2144       unsigned Idx = 0;
2145       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2146         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2147             OutputStoreBB.find(OutputBlock.first);
2148 
2149         if (OSBBIt == OutputStoreBB.end())
2150           continue;
2151 
2152         BasicBlock *BB = OSBBIt->second;
2153         SwitchI->addCase(
2154             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2155         Term = BB->getTerminator();
2156         Term->setSuccessor(0, ReturnBlock);
2157         Idx++;
2158       }
2159     }
2160     return;
2161   }
2162 
2163   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2164 
2165   // If there needs to be stores, move them from the output blocks to their
2166   // corresponding ending block.  We do not check that the OutputGVNCombinations
2167   // is equal to 1 here since that could just been the case where there are 0
2168   // outputs. Instead, we check whether there is more than one set of output
2169   // blocks since this is the only case where we would have to move the
2170   // stores, and erase the extraneous blocks.
2171   if (OutputStoreBBs.size() == 1) {
2172     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2173                       << *OG.OutlinedFunction << "\n");
2174     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2175     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2176       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2177           EndBBs.find(VBPair.first);
2178       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2179       BasicBlock *EndBB = EndBBIt->second;
2180       BasicBlock *OutputBB = VBPair.second;
2181       Instruction *Term = OutputBB->getTerminator();
2182       Term->eraseFromParent();
2183       Term = EndBB->getTerminator();
2184       moveBBContents(*OutputBB, *EndBB);
2185       Term->moveBefore(*EndBB, EndBB->end());
2186       OutputBB->eraseFromParent();
2187     }
2188   }
2189 }
2190 
2191 /// Fill the new function that will serve as the replacement function for all of
2192 /// the extracted regions of a certain structure from the first region in the
2193 /// list of regions.  Replace this first region's extracted function with the
2194 /// new overall function.
2195 ///
2196 /// \param [in] M - The module we are outlining from.
2197 /// \param [in] CurrentGroup - The group of regions to be outlined.
2198 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2199 /// set of stores needed for the different functions.
2200 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2201 /// once outlining is complete.
2202 /// \param [in] OutputMappings - Extracted functions to erase from module
2203 /// once outlining is complete.
2204 static void fillOverallFunction(
2205     Module &M, OutlinableGroup &CurrentGroup,
2206     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2207     std::vector<Function *> &FuncsToRemove,
2208     const DenseMap<Value *, Value *> &OutputMappings) {
2209   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2210 
2211   // Move first extracted function's instructions into new function.
2212   LLVM_DEBUG(dbgs() << "Move instructions from "
2213                     << *CurrentOS->ExtractedFunction << " to instruction "
2214                     << *CurrentGroup.OutlinedFunction << "\n");
2215   moveFunctionData(*CurrentOS->ExtractedFunction,
2216                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2217 
2218   // Transfer the attributes from the function to the new function.
2219   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2220     CurrentGroup.OutlinedFunction->addFnAttr(A);
2221 
2222   // Create a new set of output blocks for the first extracted function.
2223   DenseMap<Value *, BasicBlock *> NewBBs;
2224   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2225                              CurrentGroup.OutlinedFunction, "output_block_0");
2226   CurrentOS->OutputBlockNum = 0;
2227 
2228   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2229   replaceConstants(*CurrentOS);
2230 
2231   // We first identify if any output blocks are empty, if they are we remove
2232   // them. We then create a branch instruction to the basic block to the return
2233   // block for the function for each non empty output block.
2234   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2235     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2236     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2237       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2238           CurrentGroup.EndBBs.find(VToBB.first);
2239       BasicBlock *EndBB = VBBIt->second;
2240       BranchInst::Create(EndBB, VToBB.second);
2241       OutputStoreBBs.back().insert(VToBB);
2242     }
2243   }
2244 
2245   // Replace the call to the extracted function with the outlined function.
2246   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2247 
2248   // We only delete the extracted functions at the end since we may need to
2249   // reference instructions contained in them for mapping purposes.
2250   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2251 }
2252 
2253 void IROutliner::deduplicateExtractedSections(
2254     Module &M, OutlinableGroup &CurrentGroup,
2255     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2256   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2257 
2258   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2259 
2260   OutlinableRegion *CurrentOS;
2261 
2262   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2263                       OutputMappings);
2264 
2265   std::vector<Value *> SortedKeys;
2266   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2267     CurrentOS = CurrentGroup.Regions[Idx];
2268     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2269                                                *CurrentOS->ExtractedFunction);
2270 
2271     // Create a set of BasicBlocks, one for each return block, to hold the
2272     // needed store instructions.
2273     DenseMap<Value *, BasicBlock *> NewBBs;
2274     createAndInsertBasicBlocks(
2275         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2276         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2277     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2278     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2279                                 CurrentGroup.EndBBs, OutputMappings,
2280                                 OutputStoreBBs);
2281 
2282     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2283     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2284   }
2285 
2286   // Create a switch statement to handle the different output schemes.
2287   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2288 
2289   OutlinedFunctionNum++;
2290 }
2291 
2292 /// Checks that the next instruction in the InstructionDataList matches the
2293 /// next instruction in the module.  If they do not, there could be the
2294 /// possibility that extra code has been inserted, and we must ignore it.
2295 ///
2296 /// \param ID - The IRInstructionData to check the next instruction of.
2297 /// \returns true if the InstructionDataList and actual instruction match.
2298 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2299   // We check if there is a discrepancy between the InstructionDataList
2300   // and the actual next instruction in the module.  If there is, it means
2301   // that an extra instruction was added, likely by the CodeExtractor.
2302 
2303   // Since we do not have any similarity data about this particular
2304   // instruction, we cannot confidently outline it, and must discard this
2305   // candidate.
2306   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2307   Instruction *NextIDLInst = NextIDIt->Inst;
2308   Instruction *NextModuleInst = nullptr;
2309   if (!ID.Inst->isTerminator())
2310     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2311   else if (NextIDLInst != nullptr)
2312     NextModuleInst =
2313         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2314 
2315   if (NextIDLInst && NextIDLInst != NextModuleInst)
2316     return false;
2317 
2318   return true;
2319 }
2320 
2321 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2322     const OutlinableRegion &Region) {
2323   IRSimilarityCandidate *IRSC = Region.Candidate;
2324   unsigned StartIdx = IRSC->getStartIdx();
2325   unsigned EndIdx = IRSC->getEndIdx();
2326 
2327   // A check to make sure that we are not about to attempt to outline something
2328   // that has already been outlined.
2329   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2330     if (Outlined.contains(Idx))
2331       return false;
2332 
2333   // We check if the recorded instruction matches the actual next instruction,
2334   // if it does not, we fix it in the InstructionDataList.
2335   if (!Region.Candidate->backInstruction()->isTerminator()) {
2336     Instruction *NewEndInst =
2337         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2338     assert(NewEndInst && "Next instruction is a nullptr?");
2339     if (Region.Candidate->end()->Inst != NewEndInst) {
2340       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2341       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2342           IRInstructionData(*NewEndInst,
2343                             InstructionClassifier.visit(*NewEndInst), *IDL);
2344 
2345       // Insert the first IRInstructionData of the new region after the
2346       // last IRInstructionData of the IRSimilarityCandidate.
2347       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2348     }
2349   }
2350 
2351   return none_of(*IRSC, [this](IRInstructionData &ID) {
2352     if (!nextIRInstructionDataMatchesNextInst(ID))
2353       return true;
2354 
2355     return !this->InstructionClassifier.visit(ID.Inst);
2356   });
2357 }
2358 
2359 void IROutliner::pruneIncompatibleRegions(
2360     std::vector<IRSimilarityCandidate> &CandidateVec,
2361     OutlinableGroup &CurrentGroup) {
2362   bool PreviouslyOutlined;
2363 
2364   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2365   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2366                                const IRSimilarityCandidate &RHS) {
2367     return LHS.getStartIdx() < RHS.getStartIdx();
2368   });
2369 
2370   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2371   // Since outlining a call and a branch instruction will be the same as only
2372   // outlinining a call instruction, we ignore it as a space saving.
2373   if (FirstCandidate.getLength() == 2) {
2374     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2375         isa<BranchInst>(FirstCandidate.back()->Inst))
2376       return;
2377   }
2378 
2379   unsigned CurrentEndIdx = 0;
2380   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2381     PreviouslyOutlined = false;
2382     unsigned StartIdx = IRSC.getStartIdx();
2383     unsigned EndIdx = IRSC.getEndIdx();
2384 
2385     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2386       if (Outlined.contains(Idx)) {
2387         PreviouslyOutlined = true;
2388         break;
2389       }
2390 
2391     if (PreviouslyOutlined)
2392       continue;
2393 
2394     // Check over the instructions, and if the basic block has its address
2395     // taken for use somewhere else, we do not outline that block.
2396     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2397       return ID.Inst->getParent()->hasAddressTaken();
2398     });
2399 
2400     if (BBHasAddressTaken)
2401       continue;
2402 
2403     if (IRSC.getFunction()->hasOptNone())
2404       continue;
2405 
2406     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2407         !OutlineFromLinkODRs)
2408       continue;
2409 
2410     // Greedily prune out any regions that will overlap with already chosen
2411     // regions.
2412     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2413       continue;
2414 
2415     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2416       if (!nextIRInstructionDataMatchesNextInst(ID))
2417         return true;
2418 
2419       return !this->InstructionClassifier.visit(ID.Inst);
2420     });
2421 
2422     if (BadInst)
2423       continue;
2424 
2425     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2426         OutlinableRegion(IRSC, CurrentGroup);
2427     CurrentGroup.Regions.push_back(OS);
2428 
2429     CurrentEndIdx = EndIdx;
2430   }
2431 }
2432 
2433 InstructionCost
2434 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2435   InstructionCost RegionBenefit = 0;
2436   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2437     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2438     // We add the number of instructions in the region to the benefit as an
2439     // estimate as to how much will be removed.
2440     RegionBenefit += Region->getBenefit(TTI);
2441     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2442                       << " saved instructions to overfall benefit.\n");
2443   }
2444 
2445   return RegionBenefit;
2446 }
2447 
2448 /// For the \p OutputCanon number passed in find the value represented by this
2449 /// canonical number. If it is from a PHINode, we pick the first incoming
2450 /// value and return that Value instead.
2451 ///
2452 /// \param Region - The OutlinableRegion to get the Value from.
2453 /// \param OutputCanon - The canonical number to find the Value from.
2454 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2455 /// Region.
2456 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2457                                       unsigned OutputCanon) {
2458   OutlinableGroup &CurrentGroup = *Region.Parent;
2459   // If the value is greater than the value in the tracker, we have a
2460   // PHINode and will instead use one of the incoming values to find the
2461   // type.
2462   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2463     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2464     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2465            "Could not find GVN set for PHINode number!");
2466     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2467     OutputCanon = *It->second.second.begin();
2468   }
2469   Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
2470   assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?");
2471   Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2472   assert(OV.hasValue() && "Could not find value for GVN?");
2473   return *OV;
2474 }
2475 
2476 InstructionCost
2477 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2478   InstructionCost OverallCost = 0;
2479   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2480     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2481 
2482     // Each output incurs a load after the call, so we add that to the cost.
2483     for (unsigned OutputCanon : Region->GVNStores) {
2484       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2485       InstructionCost LoadCost =
2486           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2487                               TargetTransformInfo::TCK_CodeSize);
2488 
2489       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2490                         << " instructions to cost for output of type "
2491                         << *V->getType() << "\n");
2492       OverallCost += LoadCost;
2493     }
2494   }
2495 
2496   return OverallCost;
2497 }
2498 
2499 /// Find the extra instructions needed to handle any output values for the
2500 /// region.
2501 ///
2502 /// \param [in] M - The Module to outline from.
2503 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2504 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2505 /// new instruction costs.
2506 /// \returns the additional cost to handle the outputs.
2507 static InstructionCost findCostForOutputBlocks(Module &M,
2508                                                OutlinableGroup &CurrentGroup,
2509                                                TargetTransformInfo &TTI) {
2510   InstructionCost OutputCost = 0;
2511   unsigned NumOutputBranches = 0;
2512 
2513   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2514   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2515   DenseSet<BasicBlock *> CandidateBlocks;
2516   Candidate.getBasicBlocks(CandidateBlocks);
2517 
2518   // Count the number of different output branches that point to blocks outside
2519   // of the region.
2520   DenseSet<BasicBlock *> FoundBlocks;
2521   for (IRInstructionData &ID : Candidate) {
2522     if (!isa<BranchInst>(ID.Inst))
2523       continue;
2524 
2525     for (Value *V : ID.OperVals) {
2526       BasicBlock *BB = static_cast<BasicBlock *>(V);
2527       DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB);
2528       if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB))
2529         continue;
2530       FoundBlocks.insert(BB);
2531       NumOutputBranches++;
2532     }
2533   }
2534 
2535   CurrentGroup.BranchesToOutside = NumOutputBranches;
2536 
2537   for (const ArrayRef<unsigned> &OutputUse :
2538        CurrentGroup.OutputGVNCombinations) {
2539     for (unsigned OutputCanon : OutputUse) {
2540       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2541       InstructionCost StoreCost =
2542           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2543                               TargetTransformInfo::TCK_CodeSize);
2544 
2545       // An instruction cost is added for each store set that needs to occur for
2546       // various output combinations inside the function, plus a branch to
2547       // return to the exit block.
2548       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2549                         << " instructions to cost for output of type "
2550                         << *V->getType() << "\n");
2551       OutputCost += StoreCost * NumOutputBranches;
2552     }
2553 
2554     InstructionCost BranchCost =
2555         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2556     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2557                       << " a branch instruction\n");
2558     OutputCost += BranchCost * NumOutputBranches;
2559   }
2560 
2561   // If there is more than one output scheme, we must have a comparison and
2562   // branch for each different item in the switch statement.
2563   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2564     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2565         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2566         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2567         TargetTransformInfo::TCK_CodeSize);
2568     InstructionCost BranchCost =
2569         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2570 
2571     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2572     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2573 
2574     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2575                       << " instructions for each switch case for each different"
2576                       << " output path in a function\n");
2577     OutputCost += TotalCost * NumOutputBranches;
2578   }
2579 
2580   return OutputCost;
2581 }
2582 
2583 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2584   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2585   CurrentGroup.Benefit += RegionBenefit;
2586   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2587 
2588   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2589   CurrentGroup.Cost += OutputReloadCost;
2590   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2591 
2592   InstructionCost AverageRegionBenefit =
2593       RegionBenefit / CurrentGroup.Regions.size();
2594   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2595   unsigned NumRegions = CurrentGroup.Regions.size();
2596   TargetTransformInfo &TTI =
2597       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2598 
2599   // We add one region to the cost once, to account for the instructions added
2600   // inside of the newly created function.
2601   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2602                     << " instructions to cost for body of new function.\n");
2603   CurrentGroup.Cost += AverageRegionBenefit;
2604   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2605 
2606   // For each argument, we must add an instruction for loading the argument
2607   // out of the register and into a value inside of the newly outlined function.
2608   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2609                     << " instructions to cost for each argument in the new"
2610                     << " function.\n");
2611   CurrentGroup.Cost +=
2612       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2613   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2614 
2615   // Each argument needs to either be loaded into a register or onto the stack.
2616   // Some arguments will only be loaded into the stack once the argument
2617   // registers are filled.
2618   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2619                     << " instructions to cost for each argument in the new"
2620                     << " function " << NumRegions << " times for the "
2621                     << "needed argument handling at the call site.\n");
2622   CurrentGroup.Cost +=
2623       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2624   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2625 
2626   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2627   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2628 }
2629 
2630 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2631                                      ArrayRef<Value *> Outputs,
2632                                      LoadInst *LI) {
2633   // For and load instructions following the call
2634   Value *Operand = LI->getPointerOperand();
2635   Optional<unsigned> OutputIdx = None;
2636   // Find if the operand it is an output register.
2637   for (unsigned ArgIdx = Region.NumExtractedInputs;
2638        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2639     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2640       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2641       break;
2642     }
2643   }
2644 
2645   // If we found an output register, place a mapping of the new value
2646   // to the original in the mapping.
2647   if (!OutputIdx.hasValue())
2648     return;
2649 
2650   if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
2651       OutputMappings.end()) {
2652     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2653                       << *Outputs[OutputIdx.getValue()] << "\n");
2654     OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
2655   } else {
2656     Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
2657     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2658                       << *Outputs[OutputIdx.getValue()] << "\n");
2659     OutputMappings.insert(std::make_pair(LI, Orig));
2660   }
2661 }
2662 
2663 bool IROutliner::extractSection(OutlinableRegion &Region) {
2664   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2665   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2666   BasicBlock *InitialStart = Region.StartBB;
2667   Function *OrigF = Region.StartBB->getParent();
2668   CodeExtractorAnalysisCache CEAC(*OrigF);
2669   Region.ExtractedFunction =
2670       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2671 
2672   // If the extraction was successful, find the BasicBlock, and reassign the
2673   // OutlinableRegion blocks
2674   if (!Region.ExtractedFunction) {
2675     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2676                       << "\n");
2677     Region.reattachCandidate();
2678     return false;
2679   }
2680 
2681   // Get the block containing the called branch, and reassign the blocks as
2682   // necessary.  If the original block still exists, it is because we ended on
2683   // a branch instruction, and so we move the contents into the block before
2684   // and assign the previous block correctly.
2685   User *InstAsUser = Region.ExtractedFunction->user_back();
2686   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2687   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2688   assert(Region.PrevBB && "PrevBB is nullptr?");
2689   if (Region.PrevBB == InitialStart) {
2690     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2691     Instruction *BI = NewPrev->getTerminator();
2692     BI->eraseFromParent();
2693     moveBBContents(*InitialStart, *NewPrev);
2694     Region.PrevBB = NewPrev;
2695     InitialStart->eraseFromParent();
2696   }
2697 
2698   Region.StartBB = RewrittenBB;
2699   Region.EndBB = RewrittenBB;
2700 
2701   // The sequences of outlinable regions has now changed.  We must fix the
2702   // IRInstructionDataList for consistency.  Although they may not be illegal
2703   // instructions, they should not be compared with anything else as they
2704   // should not be outlined in this round.  So marking these as illegal is
2705   // allowed.
2706   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2707   Instruction *BeginRewritten = &*RewrittenBB->begin();
2708   Instruction *EndRewritten = &*RewrittenBB->begin();
2709   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2710       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2711   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2712       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2713 
2714   // Insert the first IRInstructionData of the new region in front of the
2715   // first IRInstructionData of the IRSimilarityCandidate.
2716   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2717   // Insert the first IRInstructionData of the new region after the
2718   // last IRInstructionData of the IRSimilarityCandidate.
2719   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2720   // Remove the IRInstructionData from the IRSimilarityCandidate.
2721   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2722 
2723   assert(RewrittenBB != nullptr &&
2724          "Could not find a predecessor after extraction!");
2725 
2726   // Iterate over the new set of instructions to find the new call
2727   // instruction.
2728   for (Instruction &I : *RewrittenBB)
2729     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2730       if (Region.ExtractedFunction == CI->getCalledFunction())
2731         Region.Call = CI;
2732     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2733       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2734   Region.reattachCandidate();
2735   return true;
2736 }
2737 
2738 unsigned IROutliner::doOutline(Module &M) {
2739   // Find the possible similarity sections.
2740   InstructionClassifier.EnableBranches = !DisableBranches;
2741   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2742   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2743 
2744   IRSimilarityIdentifier &Identifier = getIRSI(M);
2745   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2746 
2747   // Sort them by size of extracted sections
2748   unsigned OutlinedFunctionNum = 0;
2749   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2750   // to sort them by the potential number of instructions to be outlined
2751   if (SimilarityCandidates.size() > 1)
2752     llvm::stable_sort(SimilarityCandidates,
2753                       [](const std::vector<IRSimilarityCandidate> &LHS,
2754                          const std::vector<IRSimilarityCandidate> &RHS) {
2755                         return LHS[0].getLength() * LHS.size() >
2756                                RHS[0].getLength() * RHS.size();
2757                       });
2758   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2759   // each of the following for loops to avoid making an allocator.
2760   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2761 
2762   DenseSet<unsigned> NotSame;
2763   std::vector<OutlinableGroup *> NegativeCostGroups;
2764   std::vector<OutlinableRegion *> OutlinedRegions;
2765   // Iterate over the possible sets of similarity.
2766   unsigned PotentialGroupIdx = 0;
2767   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2768     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2769 
2770     // Remove entries that were previously outlined
2771     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2772 
2773     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2774     // trying to outlined since there is no compatible similar instance of this
2775     // code.
2776     if (CurrentGroup.Regions.size() < 2)
2777       continue;
2778 
2779     // Determine if there are any values that are the same constant throughout
2780     // each section in the set.
2781     NotSame.clear();
2782     CurrentGroup.findSameConstants(NotSame);
2783 
2784     if (CurrentGroup.IgnoreGroup)
2785       continue;
2786 
2787     // Create a CodeExtractor for each outlinable region. Identify inputs and
2788     // outputs for each section using the code extractor and create the argument
2789     // types for the Aggregate Outlining Function.
2790     OutlinedRegions.clear();
2791     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2792       // Break the outlinable region out of its parent BasicBlock into its own
2793       // BasicBlocks (see function implementation).
2794       OS->splitCandidate();
2795 
2796       // There's a chance that when the region is split, extra instructions are
2797       // added to the region. This makes the region no longer viable
2798       // to be split, so we ignore it for outlining.
2799       if (!OS->CandidateSplit)
2800         continue;
2801 
2802       SmallVector<BasicBlock *> BE;
2803       DenseSet<BasicBlock *> BlocksInRegion;
2804       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2805       OS->CE = new (ExtractorAllocator.Allocate())
2806           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2807                         false, nullptr, "outlined");
2808       findAddInputsOutputs(M, *OS, NotSame);
2809       if (!OS->IgnoreRegion)
2810         OutlinedRegions.push_back(OS);
2811 
2812       // We recombine the blocks together now that we have gathered all the
2813       // needed information.
2814       OS->reattachCandidate();
2815     }
2816 
2817     CurrentGroup.Regions = std::move(OutlinedRegions);
2818 
2819     if (CurrentGroup.Regions.empty())
2820       continue;
2821 
2822     CurrentGroup.collectGVNStoreSets(M);
2823 
2824     if (CostModel)
2825       findCostBenefit(M, CurrentGroup);
2826 
2827     // If we are adhering to the cost model, skip those groups where the cost
2828     // outweighs the benefits.
2829     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2830       OptimizationRemarkEmitter &ORE =
2831           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2832       ORE.emit([&]() {
2833         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2834         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2835                                    C->frontInstruction());
2836         R << "did not outline "
2837           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2838           << " regions due to estimated increase of "
2839           << ore::NV("InstructionIncrease",
2840                      CurrentGroup.Cost - CurrentGroup.Benefit)
2841           << " instructions at locations ";
2842         interleave(
2843             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2844             [&R](OutlinableRegion *Region) {
2845               R << ore::NV(
2846                   "DebugLoc",
2847                   Region->Candidate->frontInstruction()->getDebugLoc());
2848             },
2849             [&R]() { R << " "; });
2850         return R;
2851       });
2852       continue;
2853     }
2854 
2855     NegativeCostGroups.push_back(&CurrentGroup);
2856   }
2857 
2858   ExtractorAllocator.DestroyAll();
2859 
2860   if (NegativeCostGroups.size() > 1)
2861     stable_sort(NegativeCostGroups,
2862                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2863                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2864                 });
2865 
2866   std::vector<Function *> FuncsToRemove;
2867   for (OutlinableGroup *CG : NegativeCostGroups) {
2868     OutlinableGroup &CurrentGroup = *CG;
2869 
2870     OutlinedRegions.clear();
2871     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2872       // We check whether our region is compatible with what has already been
2873       // outlined, and whether we need to ignore this item.
2874       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2875         continue;
2876       OutlinedRegions.push_back(Region);
2877     }
2878 
2879     if (OutlinedRegions.size() < 2)
2880       continue;
2881 
2882     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2883     // we are still outlining enough regions to make up for the added cost.
2884     CurrentGroup.Regions = std::move(OutlinedRegions);
2885     if (CostModel) {
2886       CurrentGroup.Benefit = 0;
2887       CurrentGroup.Cost = 0;
2888       findCostBenefit(M, CurrentGroup);
2889       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2890         continue;
2891     }
2892     OutlinedRegions.clear();
2893     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2894       Region->splitCandidate();
2895       if (!Region->CandidateSplit)
2896         continue;
2897       OutlinedRegions.push_back(Region);
2898     }
2899 
2900     CurrentGroup.Regions = std::move(OutlinedRegions);
2901     if (CurrentGroup.Regions.size() < 2) {
2902       for (OutlinableRegion *R : CurrentGroup.Regions)
2903         R->reattachCandidate();
2904       continue;
2905     }
2906 
2907     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2908                       << " and benefit " << CurrentGroup.Benefit << "\n");
2909 
2910     // Create functions out of all the sections, and mark them as outlined.
2911     OutlinedRegions.clear();
2912     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2913       SmallVector<BasicBlock *> BE;
2914       DenseSet<BasicBlock *> BlocksInRegion;
2915       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2916       OS->CE = new (ExtractorAllocator.Allocate())
2917           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2918                         false, nullptr, "outlined");
2919       bool FunctionOutlined = extractSection(*OS);
2920       if (FunctionOutlined) {
2921         unsigned StartIdx = OS->Candidate->getStartIdx();
2922         unsigned EndIdx = OS->Candidate->getEndIdx();
2923         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2924           Outlined.insert(Idx);
2925 
2926         OutlinedRegions.push_back(OS);
2927       }
2928     }
2929 
2930     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2931                       << " with benefit " << CurrentGroup.Benefit
2932                       << " and cost " << CurrentGroup.Cost << "\n");
2933 
2934     CurrentGroup.Regions = std::move(OutlinedRegions);
2935 
2936     if (CurrentGroup.Regions.empty())
2937       continue;
2938 
2939     OptimizationRemarkEmitter &ORE =
2940         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2941     ORE.emit([&]() {
2942       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2943       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2944       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2945         << " regions with decrease of "
2946         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2947         << " instructions at locations ";
2948       interleave(
2949           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2950           [&R](OutlinableRegion *Region) {
2951             R << ore::NV("DebugLoc",
2952                          Region->Candidate->frontInstruction()->getDebugLoc());
2953           },
2954           [&R]() { R << " "; });
2955       return R;
2956     });
2957 
2958     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
2959                                  OutlinedFunctionNum);
2960   }
2961 
2962   for (Function *F : FuncsToRemove)
2963     F->eraseFromParent();
2964 
2965   return OutlinedFunctionNum;
2966 }
2967 
2968 bool IROutliner::run(Module &M) {
2969   CostModel = !NoCostModel;
2970   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
2971 
2972   return doOutline(M) > 0;
2973 }
2974 
2975 // Pass Manager Boilerplate
2976 namespace {
2977 class IROutlinerLegacyPass : public ModulePass {
2978 public:
2979   static char ID;
2980   IROutlinerLegacyPass() : ModulePass(ID) {
2981     initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
2982   }
2983 
2984   void getAnalysisUsage(AnalysisUsage &AU) const override {
2985     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2986     AU.addRequired<TargetTransformInfoWrapperPass>();
2987     AU.addRequired<IRSimilarityIdentifierWrapperPass>();
2988   }
2989 
2990   bool runOnModule(Module &M) override;
2991 };
2992 } // namespace
2993 
2994 bool IROutlinerLegacyPass::runOnModule(Module &M) {
2995   if (skipModule(M))
2996     return false;
2997 
2998   std::unique_ptr<OptimizationRemarkEmitter> ORE;
2999   auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3000     ORE.reset(new OptimizationRemarkEmitter(&F));
3001     return *ORE;
3002   };
3003 
3004   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
3005     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3006   };
3007 
3008   auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
3009     return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
3010   };
3011 
3012   return IROutliner(GTTI, GIRSI, GORE).run(M);
3013 }
3014 
3015 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3016   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3017 
3018   std::function<TargetTransformInfo &(Function &)> GTTI =
3019       [&FAM](Function &F) -> TargetTransformInfo & {
3020     return FAM.getResult<TargetIRAnalysis>(F);
3021   };
3022 
3023   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3024       [&AM](Module &M) -> IRSimilarityIdentifier & {
3025     return AM.getResult<IRSimilarityAnalysis>(M);
3026   };
3027 
3028   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3029   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3030       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3031     ORE.reset(new OptimizationRemarkEmitter(&F));
3032     return *ORE;
3033   };
3034 
3035   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3036     return PreservedAnalyses::none();
3037   return PreservedAnalyses::all();
3038 }
3039 
3040 char IROutlinerLegacyPass::ID = 0;
3041 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3042                       false)
3043 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
3044 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3045 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3046 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3047                     false)
3048 
3049 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
3050