1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include <vector>
30
31 #define DEBUG_TYPE "iroutliner"
32
33 using namespace llvm;
34 using namespace IRSimilarity;
35
36 // A command flag to be used for debugging to exclude branches from similarity
37 // matching and outlining.
38 namespace llvm {
39 extern cl::opt<bool> DisableBranches;
40
41 // A command flag to be used for debugging to indirect calls from similarity
42 // matching and outlining.
43 extern cl::opt<bool> DisableIndirectCalls;
44
45 // A command flag to be used for debugging to exclude intrinsics from similarity
46 // matching and outlining.
47 extern cl::opt<bool> DisableIntrinsics;
48
49 } // namespace llvm
50
51 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
52 // functions. This is false by default because the linker can dedupe linkonceodr
53 // functions. Since the outliner is confined to a single module (modulo LTO),
54 // this is off by default. It should, however, be the default behavior in
55 // LTO.
56 static cl::opt<bool> EnableLinkOnceODRIROutlining(
57 "enable-linkonceodr-ir-outlining", cl::Hidden,
58 cl::desc("Enable the IR outliner on linkonceodr functions"),
59 cl::init(false));
60
61 // This is a debug option to test small pieces of code to ensure that outlining
62 // works correctly.
63 static cl::opt<bool> NoCostModel(
64 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
65 cl::desc("Debug option to outline greedily, without restriction that "
66 "calculated benefit outweighs cost"));
67
68 /// The OutlinableGroup holds all the overarching information for outlining
69 /// a set of regions that are structurally similar to one another, such as the
70 /// types of the overall function, the output blocks, the sets of stores needed
71 /// and a list of the different regions. This information is used in the
72 /// deduplication of extracted regions with the same structure.
73 struct OutlinableGroup {
74 /// The sections that could be outlined
75 std::vector<OutlinableRegion *> Regions;
76
77 /// The argument types for the function created as the overall function to
78 /// replace the extracted function for each region.
79 std::vector<Type *> ArgumentTypes;
80 /// The FunctionType for the overall function.
81 FunctionType *OutlinedFunctionType = nullptr;
82 /// The Function for the collective overall function.
83 Function *OutlinedFunction = nullptr;
84
85 /// Flag for whether we should not consider this group of OutlinableRegions
86 /// for extraction.
87 bool IgnoreGroup = false;
88
89 /// The return blocks for the overall function.
90 DenseMap<Value *, BasicBlock *> EndBBs;
91
92 /// The PHIBlocks with their corresponding return block based on the return
93 /// value as the key.
94 DenseMap<Value *, BasicBlock *> PHIBlocks;
95
96 /// A set containing the different GVN store sets needed. Each array contains
97 /// a sorted list of the different values that need to be stored into output
98 /// registers.
99 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
100
101 /// Flag for whether the \ref ArgumentTypes have been defined after the
102 /// extraction of the first region.
103 bool InputTypesSet = false;
104
105 /// The number of input values in \ref ArgumentTypes. Anything after this
106 /// index in ArgumentTypes is an output argument.
107 unsigned NumAggregateInputs = 0;
108
109 /// The mapping of the canonical numbering of the values in outlined sections
110 /// to specific arguments.
111 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
112
113 /// The number of branches in the region target a basic block that is outside
114 /// of the region.
115 unsigned BranchesToOutside = 0;
116
117 /// Tracker counting backwards from the highest unsigned value possible to
118 /// avoid conflicting with the GVNs of assigned values. We start at -3 since
119 /// -2 and -1 are assigned by the DenseMap.
120 unsigned PHINodeGVNTracker = -3;
121
122 DenseMap<unsigned,
123 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
124 PHINodeGVNToGVNs;
125 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
126
127 /// The number of instructions that will be outlined by extracting \ref
128 /// Regions.
129 InstructionCost Benefit = 0;
130 /// The number of added instructions needed for the outlining of the \ref
131 /// Regions.
132 InstructionCost Cost = 0;
133
134 /// The argument that needs to be marked with the swifterr attribute. If not
135 /// needed, there is no value.
136 Optional<unsigned> SwiftErrorArgument;
137
138 /// For the \ref Regions, we look at every Value. If it is a constant,
139 /// we check whether it is the same in Region.
140 ///
141 /// \param [in,out] NotSame contains the global value numbers where the
142 /// constant is not always the same, and must be passed in as an argument.
143 void findSameConstants(DenseSet<unsigned> &NotSame);
144
145 /// For the regions, look at each set of GVN stores needed and account for
146 /// each combination. Add an argument to the argument types if there is
147 /// more than one combination.
148 ///
149 /// \param [in] M - The module we are outlining from.
150 void collectGVNStoreSets(Module &M);
151 };
152
153 /// Move the contents of \p SourceBB to before the last instruction of \p
154 /// TargetBB.
155 /// \param SourceBB - the BasicBlock to pull Instructions from.
156 /// \param TargetBB - the BasicBlock to put Instruction into.
moveBBContents(BasicBlock & SourceBB,BasicBlock & TargetBB)157 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
158 for (Instruction &I : llvm::make_early_inc_range(SourceBB))
159 I.moveBefore(TargetBB, TargetBB.end());
160 }
161
162 /// A function to sort the keys of \p Map, which must be a mapping of constant
163 /// values to basic blocks and return it in \p SortedKeys
164 ///
165 /// \param SortedKeys - The vector the keys will be return in and sorted.
166 /// \param Map - The DenseMap containing keys to sort.
getSortedConstantKeys(std::vector<Value * > & SortedKeys,DenseMap<Value *,BasicBlock * > & Map)167 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
168 DenseMap<Value *, BasicBlock *> &Map) {
169 for (auto &VtoBB : Map)
170 SortedKeys.push_back(VtoBB.first);
171
172 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
173 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
174 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
175 assert(RHSC && "Not a constant integer in return value?");
176 assert(LHSC && "Not a constant integer in return value?");
177
178 return LHSC->getLimitedValue() < RHSC->getLimitedValue();
179 });
180 }
181
findCorrespondingValueIn(const OutlinableRegion & Other,Value * V)182 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
183 Value *V) {
184 Optional<unsigned> GVN = Candidate->getGVN(V);
185 assert(GVN && "No GVN for incoming value");
186 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
187 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
188 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
189 return FoundValueOpt.value_or(nullptr);
190 }
191
192 BasicBlock *
findCorrespondingBlockIn(const OutlinableRegion & Other,BasicBlock * BB)193 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
194 BasicBlock *BB) {
195 Instruction *FirstNonPHI = BB->getFirstNonPHI();
196 assert(FirstNonPHI && "block is empty?");
197 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
198 if (!CorrespondingVal)
199 return nullptr;
200 BasicBlock *CorrespondingBlock =
201 cast<Instruction>(CorrespondingVal)->getParent();
202 return CorrespondingBlock;
203 }
204
205 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
206 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
207 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
208 /// when PHINodes are included in outlined regions.
209 ///
210 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
211 /// checked.
212 /// \param Find - The successor block to be replaced.
213 /// \param Replace - The new succesor block to branch to.
214 /// \param Included - The set of blocks about to be outlined.
replaceTargetsFromPHINode(BasicBlock * PHIBlock,BasicBlock * Find,BasicBlock * Replace,DenseSet<BasicBlock * > & Included)215 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
216 BasicBlock *Replace,
217 DenseSet<BasicBlock *> &Included) {
218 for (PHINode &PN : PHIBlock->phis()) {
219 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
220 ++Idx) {
221 // Check if the incoming block is included in the set of blocks being
222 // outlined.
223 BasicBlock *Incoming = PN.getIncomingBlock(Idx);
224 if (!Included.contains(Incoming))
225 continue;
226
227 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
228 assert(BI && "Not a branch instruction?");
229 // Look over the branching instructions into this block to see if we
230 // used to branch to Find in this outlined block.
231 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
232 Succ++) {
233 // If we have found the block to replace, we do so here.
234 if (BI->getSuccessor(Succ) != Find)
235 continue;
236 BI->setSuccessor(Succ, Replace);
237 }
238 }
239 }
240 }
241
242
splitCandidate()243 void OutlinableRegion::splitCandidate() {
244 assert(!CandidateSplit && "Candidate already split!");
245
246 Instruction *BackInst = Candidate->backInstruction();
247
248 Instruction *EndInst = nullptr;
249 // Check whether the last instruction is a terminator, if it is, we do
250 // not split on the following instruction. We leave the block as it is. We
251 // also check that this is not the last instruction in the Module, otherwise
252 // the check for whether the current following instruction matches the
253 // previously recorded instruction will be incorrect.
254 if (!BackInst->isTerminator() ||
255 BackInst->getParent() != &BackInst->getFunction()->back()) {
256 EndInst = Candidate->end()->Inst;
257 assert(EndInst && "Expected an end instruction?");
258 }
259
260 // We check if the current instruction following the last instruction in the
261 // region is the same as the recorded instruction following the last
262 // instruction. If they do not match, there could be problems in rewriting
263 // the program after outlining, so we ignore it.
264 if (!BackInst->isTerminator() &&
265 EndInst != BackInst->getNextNonDebugInstruction())
266 return;
267
268 Instruction *StartInst = (*Candidate->begin()).Inst;
269 assert(StartInst && "Expected a start instruction?");
270 StartBB = StartInst->getParent();
271 PrevBB = StartBB;
272
273 DenseSet<BasicBlock *> BBSet;
274 Candidate->getBasicBlocks(BBSet);
275
276 // We iterate over the instructions in the region, if we find a PHINode, we
277 // check if there are predecessors outside of the region, if there are,
278 // we ignore this region since we are unable to handle the severing of the
279 // phi node right now.
280
281 // TODO: Handle extraneous inputs for PHINodes through variable number of
282 // inputs, similar to how outputs are handled.
283 BasicBlock::iterator It = StartInst->getIterator();
284 EndBB = BackInst->getParent();
285 BasicBlock *IBlock;
286 BasicBlock *PHIPredBlock = nullptr;
287 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
288 while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
289 unsigned NumPredsOutsideRegion = 0;
290 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
291 if (!BBSet.contains(PN->getIncomingBlock(i))) {
292 PHIPredBlock = PN->getIncomingBlock(i);
293 ++NumPredsOutsideRegion;
294 continue;
295 }
296
297 // We must consider the case there the incoming block to the PHINode is
298 // the same as the final block of the OutlinableRegion. If this is the
299 // case, the branch from this block must also be outlined to be valid.
300 IBlock = PN->getIncomingBlock(i);
301 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
302 PHIPredBlock = PN->getIncomingBlock(i);
303 ++NumPredsOutsideRegion;
304 }
305 }
306
307 if (NumPredsOutsideRegion > 1)
308 return;
309
310 It++;
311 }
312
313 // If the region starts with a PHINode, but is not the initial instruction of
314 // the BasicBlock, we ignore this region for now.
315 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
316 return;
317
318 // If the region ends with a PHINode, but does not contain all of the phi node
319 // instructions of the region, we ignore it for now.
320 if (isa<PHINode>(BackInst) &&
321 BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
322 return;
323
324 // The basic block gets split like so:
325 // block: block:
326 // inst1 inst1
327 // inst2 inst2
328 // region1 br block_to_outline
329 // region2 block_to_outline:
330 // region3 -> region1
331 // region4 region2
332 // inst3 region3
333 // inst4 region4
334 // br block_after_outline
335 // block_after_outline:
336 // inst3
337 // inst4
338
339 std::string OriginalName = PrevBB->getName().str();
340
341 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
342 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
343 // If there was a PHINode with an incoming block outside the region,
344 // make sure is correctly updated in the newly split block.
345 if (PHIPredBlock)
346 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
347
348 CandidateSplit = true;
349 if (!BackInst->isTerminator()) {
350 EndBB = EndInst->getParent();
351 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
352 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
353 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
354 } else {
355 EndBB = BackInst->getParent();
356 EndsInBranch = true;
357 FollowBB = nullptr;
358 }
359
360 // Refind the basic block set.
361 BBSet.clear();
362 Candidate->getBasicBlocks(BBSet);
363 // For the phi nodes in the new starting basic block of the region, we
364 // reassign the targets of the basic blocks branching instructions.
365 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
366 if (FollowBB)
367 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
368 }
369
reattachCandidate()370 void OutlinableRegion::reattachCandidate() {
371 assert(CandidateSplit && "Candidate is not split!");
372
373 // The basic block gets reattached like so:
374 // block: block:
375 // inst1 inst1
376 // inst2 inst2
377 // br block_to_outline region1
378 // block_to_outline: -> region2
379 // region1 region3
380 // region2 region4
381 // region3 inst3
382 // region4 inst4
383 // br block_after_outline
384 // block_after_outline:
385 // inst3
386 // inst4
387 assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
388
389 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
390 // Make sure PHINode references to the block we are merging into are
391 // updated to be incoming blocks from the predecessor to the current block.
392
393 // NOTE: If this is updated such that the outlined block can have more than
394 // one incoming block to a PHINode, this logic will have to updated
395 // to handle multiple precessors instead.
396
397 // We only need to update this if the outlined section contains a PHINode, if
398 // it does not, then the incoming block was never changed in the first place.
399 // On the other hand, if PrevBB has no predecessors, it means that all
400 // incoming blocks to the first block are contained in the region, and there
401 // will be nothing to update.
402 Instruction *StartInst = (*Candidate->begin()).Inst;
403 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
404 assert(!PrevBB->hasNPredecessorsOrMore(2) &&
405 "PrevBB has more than one predecessor. Should be 0 or 1.");
406 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
407 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
408 }
409 PrevBB->getTerminator()->eraseFromParent();
410
411 // If we reattaching after outlining, we iterate over the phi nodes to
412 // the initial block, and reassign the branch instructions of the incoming
413 // blocks to the block we are remerging into.
414 if (!ExtractedFunction) {
415 DenseSet<BasicBlock *> BBSet;
416 Candidate->getBasicBlocks(BBSet);
417
418 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
419 if (!EndsInBranch)
420 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
421 }
422
423 moveBBContents(*StartBB, *PrevBB);
424
425 BasicBlock *PlacementBB = PrevBB;
426 if (StartBB != EndBB)
427 PlacementBB = EndBB;
428 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
429 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
430 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
431 PlacementBB->getTerminator()->eraseFromParent();
432 moveBBContents(*FollowBB, *PlacementBB);
433 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
434 FollowBB->eraseFromParent();
435 }
436
437 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
438 StartBB->eraseFromParent();
439
440 // Make sure to save changes back to the StartBB.
441 StartBB = PrevBB;
442 EndBB = nullptr;
443 PrevBB = nullptr;
444 FollowBB = nullptr;
445
446 CandidateSplit = false;
447 }
448
449 /// Find whether \p V matches the Constants previously found for the \p GVN.
450 ///
451 /// \param V - The value to check for consistency.
452 /// \param GVN - The global value number assigned to \p V.
453 /// \param GVNToConstant - The mapping of global value number to Constants.
454 /// \returns true if the Value matches the Constant mapped to by V and false if
455 /// it \p V is a Constant but does not match.
456 /// \returns None if \p V is not a Constant.
457 static Optional<bool>
constantMatches(Value * V,unsigned GVN,DenseMap<unsigned,Constant * > & GVNToConstant)458 constantMatches(Value *V, unsigned GVN,
459 DenseMap<unsigned, Constant *> &GVNToConstant) {
460 // See if we have a constants
461 Constant *CST = dyn_cast<Constant>(V);
462 if (!CST)
463 return None;
464
465 // Holds a mapping from a global value number to a Constant.
466 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
467 bool Inserted;
468
469
470 // If we have a constant, try to make a new entry in the GVNToConstant.
471 std::tie(GVNToConstantIt, Inserted) =
472 GVNToConstant.insert(std::make_pair(GVN, CST));
473 // If it was found and is not equal, it is not the same. We do not
474 // handle this case yet, and exit early.
475 if (Inserted || (GVNToConstantIt->second == CST))
476 return true;
477
478 return false;
479 }
480
getBenefit(TargetTransformInfo & TTI)481 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
482 InstructionCost Benefit = 0;
483
484 // Estimate the benefit of outlining a specific sections of the program. We
485 // delegate mostly this task to the TargetTransformInfo so that if the target
486 // has specific changes, we can have a more accurate estimate.
487
488 // However, getInstructionCost delegates the code size calculation for
489 // arithmetic instructions to getArithmeticInstrCost in
490 // include/Analysis/TargetTransformImpl.h, where it always estimates that the
491 // code size for a division and remainder instruction to be equal to 4, and
492 // everything else to 1. This is not an accurate representation of the
493 // division instruction for targets that have a native division instruction.
494 // To be overly conservative, we only add 1 to the number of instructions for
495 // each division instruction.
496 for (IRInstructionData &ID : *Candidate) {
497 Instruction *I = ID.Inst;
498 switch (I->getOpcode()) {
499 case Instruction::FDiv:
500 case Instruction::FRem:
501 case Instruction::SDiv:
502 case Instruction::SRem:
503 case Instruction::UDiv:
504 case Instruction::URem:
505 Benefit += 1;
506 break;
507 default:
508 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
509 break;
510 }
511 }
512
513 return Benefit;
514 }
515
516 /// Check the \p OutputMappings structure for value \p Input, if it exists
517 /// it has been used as an output for outlining, and has been renamed, and we
518 /// return the new value, otherwise, we return the same value.
519 ///
520 /// \param OutputMappings [in] - The mapping of values to their renamed value
521 /// after being used as an output for an outlined region.
522 /// \param Input [in] - The value to find the remapped value of, if it exists.
523 /// \return The remapped value if it has been renamed, and the same value if has
524 /// not.
findOutputMapping(const DenseMap<Value *,Value * > OutputMappings,Value * Input)525 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
526 Value *Input) {
527 DenseMap<Value *, Value *>::const_iterator OutputMapping =
528 OutputMappings.find(Input);
529 if (OutputMapping != OutputMappings.end())
530 return OutputMapping->second;
531 return Input;
532 }
533
534 /// Find whether \p Region matches the global value numbering to Constant
535 /// mapping found so far.
536 ///
537 /// \param Region - The OutlinableRegion we are checking for constants
538 /// \param GVNToConstant - The mapping of global value number to Constants.
539 /// \param NotSame - The set of global value numbers that do not have the same
540 /// constant in each region.
541 /// \returns true if all Constants are the same in every use of a Constant in \p
542 /// Region and false if not
543 static bool
collectRegionsConstants(OutlinableRegion & Region,DenseMap<unsigned,Constant * > & GVNToConstant,DenseSet<unsigned> & NotSame)544 collectRegionsConstants(OutlinableRegion &Region,
545 DenseMap<unsigned, Constant *> &GVNToConstant,
546 DenseSet<unsigned> &NotSame) {
547 bool ConstantsTheSame = true;
548
549 IRSimilarityCandidate &C = *Region.Candidate;
550 for (IRInstructionData &ID : C) {
551
552 // Iterate over the operands in an instruction. If the global value number,
553 // assigned by the IRSimilarityCandidate, has been seen before, we check if
554 // the the number has been found to be not the same value in each instance.
555 for (Value *V : ID.OperVals) {
556 Optional<unsigned> GVNOpt = C.getGVN(V);
557 assert(GVNOpt && "Expected a GVN for operand?");
558 unsigned GVN = GVNOpt.value();
559
560 // Check if this global value has been found to not be the same already.
561 if (NotSame.contains(GVN)) {
562 if (isa<Constant>(V))
563 ConstantsTheSame = false;
564 continue;
565 }
566
567 // If it has been the same so far, we check the value for if the
568 // associated Constant value match the previous instances of the same
569 // global value number. If the global value does not map to a Constant,
570 // it is considered to not be the same value.
571 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
572 if (ConstantMatches) {
573 if (ConstantMatches.value())
574 continue;
575 else
576 ConstantsTheSame = false;
577 }
578
579 // While this value is a register, it might not have been previously,
580 // make sure we don't already have a constant mapped to this global value
581 // number.
582 if (GVNToConstant.find(GVN) != GVNToConstant.end())
583 ConstantsTheSame = false;
584
585 NotSame.insert(GVN);
586 }
587 }
588
589 return ConstantsTheSame;
590 }
591
findSameConstants(DenseSet<unsigned> & NotSame)592 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
593 DenseMap<unsigned, Constant *> GVNToConstant;
594
595 for (OutlinableRegion *Region : Regions)
596 collectRegionsConstants(*Region, GVNToConstant, NotSame);
597 }
598
collectGVNStoreSets(Module & M)599 void OutlinableGroup::collectGVNStoreSets(Module &M) {
600 for (OutlinableRegion *OS : Regions)
601 OutputGVNCombinations.insert(OS->GVNStores);
602
603 // We are adding an extracted argument to decide between which output path
604 // to use in the basic block. It is used in a switch statement and only
605 // needs to be an integer.
606 if (OutputGVNCombinations.size() > 1)
607 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
608 }
609
610 /// Get the subprogram if it exists for one of the outlined regions.
611 ///
612 /// \param [in] Group - The set of regions to find a subprogram for.
613 /// \returns the subprogram if it exists, or nullptr.
getSubprogramOrNull(OutlinableGroup & Group)614 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
615 for (OutlinableRegion *OS : Group.Regions)
616 if (Function *F = OS->Call->getFunction())
617 if (DISubprogram *SP = F->getSubprogram())
618 return SP;
619
620 return nullptr;
621 }
622
createFunction(Module & M,OutlinableGroup & Group,unsigned FunctionNameSuffix)623 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
624 unsigned FunctionNameSuffix) {
625 assert(!Group.OutlinedFunction && "Function is already defined!");
626
627 Type *RetTy = Type::getVoidTy(M.getContext());
628 // All extracted functions _should_ have the same return type at this point
629 // since the similarity identifier ensures that all branches outside of the
630 // region occur in the same place.
631
632 // NOTE: Should we ever move to the model that uses a switch at every point
633 // needed, meaning that we could branch within the region or out, it is
634 // possible that we will need to switch to using the most general case all of
635 // the time.
636 for (OutlinableRegion *R : Group.Regions) {
637 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
638 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
639 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
640 RetTy = ExtractedFuncType;
641 }
642
643 Group.OutlinedFunctionType = FunctionType::get(
644 RetTy, Group.ArgumentTypes, false);
645
646 // These functions will only be called from within the same module, so
647 // we can set an internal linkage.
648 Group.OutlinedFunction = Function::Create(
649 Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
650 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
651
652 // Transfer the swifterr attribute to the correct function parameter.
653 if (Group.SwiftErrorArgument)
654 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.value(),
655 Attribute::SwiftError);
656
657 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
658 Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
659
660 // If there's a DISubprogram associated with this outlined function, then
661 // emit debug info for the outlined function.
662 if (DISubprogram *SP = getSubprogramOrNull(Group)) {
663 Function *F = Group.OutlinedFunction;
664 // We have a DISubprogram. Get its DICompileUnit.
665 DICompileUnit *CU = SP->getUnit();
666 DIBuilder DB(M, true, CU);
667 DIFile *Unit = SP->getFile();
668 Mangler Mg;
669 // Get the mangled name of the function for the linkage name.
670 std::string Dummy;
671 llvm::raw_string_ostream MangledNameStream(Dummy);
672 Mg.getNameWithPrefix(MangledNameStream, F, false);
673
674 DISubprogram *OutlinedSP = DB.createFunction(
675 Unit /* Context */, F->getName(), MangledNameStream.str(),
676 Unit /* File */,
677 0 /* Line 0 is reserved for compiler-generated code. */,
678 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
679 0, /* Line 0 is reserved for compiler-generated code. */
680 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
681 /* Outlined code is optimized code by definition. */
682 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
683
684 // Don't add any new variables to the subprogram.
685 DB.finalizeSubprogram(OutlinedSP);
686
687 // Attach subprogram to the function.
688 F->setSubprogram(OutlinedSP);
689 // We're done with the DIBuilder.
690 DB.finalize();
691 }
692
693 return Group.OutlinedFunction;
694 }
695
696 /// Move each BasicBlock in \p Old to \p New.
697 ///
698 /// \param [in] Old - The function to move the basic blocks from.
699 /// \param [in] New - The function to move the basic blocks to.
700 /// \param [out] NewEnds - The return blocks of the new overall function.
moveFunctionData(Function & Old,Function & New,DenseMap<Value *,BasicBlock * > & NewEnds)701 static void moveFunctionData(Function &Old, Function &New,
702 DenseMap<Value *, BasicBlock *> &NewEnds) {
703 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
704 CurrBB.removeFromParent();
705 CurrBB.insertInto(&New);
706 Instruction *I = CurrBB.getTerminator();
707
708 // For each block we find a return instruction is, it is a potential exit
709 // path for the function. We keep track of each block based on the return
710 // value here.
711 if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
712 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
713
714 std::vector<Instruction *> DebugInsts;
715
716 for (Instruction &Val : CurrBB) {
717 // We must handle the scoping of called functions differently than
718 // other outlined instructions.
719 if (!isa<CallInst>(&Val)) {
720 // Remove the debug information for outlined functions.
721 Val.setDebugLoc(DebugLoc());
722
723 // Loop info metadata may contain line locations. Update them to have no
724 // value in the new subprogram since the outlined code could be from
725 // several locations.
726 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
727 if (DISubprogram *SP = New.getSubprogram())
728 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
729 return DILocation::get(New.getContext(), Loc->getLine(),
730 Loc->getColumn(), SP, nullptr);
731 return MD;
732 };
733 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
734 continue;
735 }
736
737 // From this point we are only handling call instructions.
738 CallInst *CI = cast<CallInst>(&Val);
739
740 // We add any debug statements here, to be removed after. Since the
741 // instructions originate from many different locations in the program,
742 // it will cause incorrect reporting from a debugger if we keep the
743 // same debug instructions.
744 if (isa<DbgInfoIntrinsic>(CI)) {
745 DebugInsts.push_back(&Val);
746 continue;
747 }
748
749 // Edit the scope of called functions inside of outlined functions.
750 if (DISubprogram *SP = New.getSubprogram()) {
751 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
752 Val.setDebugLoc(DI);
753 }
754 }
755
756 for (Instruction *I : DebugInsts)
757 I->eraseFromParent();
758 }
759 }
760
761 /// Find the the constants that will need to be lifted into arguments
762 /// as they are not the same in each instance of the region.
763 ///
764 /// \param [in] C - The IRSimilarityCandidate containing the region we are
765 /// analyzing.
766 /// \param [in] NotSame - The set of global value numbers that do not have a
767 /// single Constant across all OutlinableRegions similar to \p C.
768 /// \param [out] Inputs - The list containing the global value numbers of the
769 /// arguments needed for the region of code.
findConstants(IRSimilarityCandidate & C,DenseSet<unsigned> & NotSame,std::vector<unsigned> & Inputs)770 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
771 std::vector<unsigned> &Inputs) {
772 DenseSet<unsigned> Seen;
773 // Iterate over the instructions, and find what constants will need to be
774 // extracted into arguments.
775 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
776 IDIt != EndIDIt; IDIt++) {
777 for (Value *V : (*IDIt).OperVals) {
778 // Since these are stored before any outlining, they will be in the
779 // global value numbering.
780 unsigned GVN = *C.getGVN(V);
781 if (isa<Constant>(V))
782 if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
783 Inputs.push_back(GVN);
784 Seen.insert(GVN);
785 }
786 }
787 }
788 }
789
790 /// Find the GVN for the inputs that have been found by the CodeExtractor.
791 ///
792 /// \param [in] C - The IRSimilarityCandidate containing the region we are
793 /// analyzing.
794 /// \param [in] CurrentInputs - The set of inputs found by the
795 /// CodeExtractor.
796 /// \param [in] OutputMappings - The mapping of values that have been replaced
797 /// by a new output value.
798 /// \param [out] EndInputNumbers - The global value numbers for the extracted
799 /// arguments.
mapInputsToGVNs(IRSimilarityCandidate & C,SetVector<Value * > & CurrentInputs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<unsigned> & EndInputNumbers)800 static void mapInputsToGVNs(IRSimilarityCandidate &C,
801 SetVector<Value *> &CurrentInputs,
802 const DenseMap<Value *, Value *> &OutputMappings,
803 std::vector<unsigned> &EndInputNumbers) {
804 // Get the Global Value Number for each input. We check if the Value has been
805 // replaced by a different value at output, and use the original value before
806 // replacement.
807 for (Value *Input : CurrentInputs) {
808 assert(Input && "Have a nullptr as an input");
809 if (OutputMappings.find(Input) != OutputMappings.end())
810 Input = OutputMappings.find(Input)->second;
811 assert(C.getGVN(Input) && "Could not find a numbering for the given input");
812 EndInputNumbers.push_back(C.getGVN(Input).value());
813 }
814 }
815
816 /// Find the original value for the \p ArgInput values if any one of them was
817 /// replaced during a previous extraction.
818 ///
819 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
820 /// \param [in] OutputMappings - The mapping of values that have been replaced
821 /// by a new output value.
822 /// \param [out] RemappedArgInputs - The remapped values according to
823 /// \p OutputMappings that will be extracted.
824 static void
remapExtractedInputs(const ArrayRef<Value * > ArgInputs,const DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & RemappedArgInputs)825 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
826 const DenseMap<Value *, Value *> &OutputMappings,
827 SetVector<Value *> &RemappedArgInputs) {
828 // Get the global value number for each input that will be extracted as an
829 // argument by the code extractor, remapping if needed for reloaded values.
830 for (Value *Input : ArgInputs) {
831 if (OutputMappings.find(Input) != OutputMappings.end())
832 Input = OutputMappings.find(Input)->second;
833 RemappedArgInputs.insert(Input);
834 }
835 }
836
837 /// Find the input GVNs and the output values for a region of Instructions.
838 /// Using the code extractor, we collect the inputs to the extracted function.
839 ///
840 /// The \p Region can be identified as needing to be ignored in this function.
841 /// It should be checked whether it should be ignored after a call to this
842 /// function.
843 ///
844 /// \param [in,out] Region - The region of code to be analyzed.
845 /// \param [out] InputGVNs - The global value numbers for the extracted
846 /// arguments.
847 /// \param [in] NotSame - The global value numbers in the region that do not
848 /// have the same constant value in the regions structurally similar to
849 /// \p Region.
850 /// \param [in] OutputMappings - The mapping of values that have been replaced
851 /// by a new output value after extraction.
852 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
853 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
854 /// as outputs.
getCodeExtractorArguments(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,DenseSet<unsigned> & NotSame,DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & ArgInputs,SetVector<Value * > & Outputs)855 static void getCodeExtractorArguments(
856 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
857 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
858 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
859 IRSimilarityCandidate &C = *Region.Candidate;
860
861 // OverallInputs are the inputs to the region found by the CodeExtractor,
862 // SinkCands and HoistCands are used by the CodeExtractor to find sunken
863 // allocas of values whose lifetimes are contained completely within the
864 // outlined region. PremappedInputs are the arguments found by the
865 // CodeExtractor, removing conditions such as sunken allocas, but that
866 // may need to be remapped due to the extracted output values replacing
867 // the original values. We use DummyOutputs for this first run of finding
868 // inputs and outputs since the outputs could change during findAllocas,
869 // the correct set of extracted outputs will be in the final Outputs ValueSet.
870 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
871 DummyOutputs;
872
873 // Use the code extractor to get the inputs and outputs, without sunken
874 // allocas or removing llvm.assumes.
875 CodeExtractor *CE = Region.CE;
876 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
877 assert(Region.StartBB && "Region must have a start BasicBlock!");
878 Function *OrigF = Region.StartBB->getParent();
879 CodeExtractorAnalysisCache CEAC(*OrigF);
880 BasicBlock *Dummy = nullptr;
881
882 // The region may be ineligible due to VarArgs in the parent function. In this
883 // case we ignore the region.
884 if (!CE->isEligible()) {
885 Region.IgnoreRegion = true;
886 return;
887 }
888
889 // Find if any values are going to be sunk into the function when extracted
890 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
891 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
892
893 // TODO: Support regions with sunken allocas: values whose lifetimes are
894 // contained completely within the outlined region. These are not guaranteed
895 // to be the same in every region, so we must elevate them all to arguments
896 // when they appear. If these values are not equal, it means there is some
897 // Input in OverallInputs that was removed for ArgInputs.
898 if (OverallInputs.size() != PremappedInputs.size()) {
899 Region.IgnoreRegion = true;
900 return;
901 }
902
903 findConstants(C, NotSame, InputGVNs);
904
905 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
906
907 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
908 ArgInputs);
909
910 // Sort the GVNs, since we now have constants included in the \ref InputGVNs
911 // we need to make sure they are in a deterministic order.
912 stable_sort(InputGVNs);
913 }
914
915 /// Look over the inputs and map each input argument to an argument in the
916 /// overall function for the OutlinableRegions. This creates a way to replace
917 /// the arguments of the extracted function with the arguments of the new
918 /// overall function.
919 ///
920 /// \param [in,out] Region - The region of code to be analyzed.
921 /// \param [in] InputGVNs - The global value numbering of the input values
922 /// collected.
923 /// \param [in] ArgInputs - The values of the arguments to the extracted
924 /// function.
925 static void
findExtractedInputToOverallInputMapping(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,SetVector<Value * > & ArgInputs)926 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
927 std::vector<unsigned> &InputGVNs,
928 SetVector<Value *> &ArgInputs) {
929
930 IRSimilarityCandidate &C = *Region.Candidate;
931 OutlinableGroup &Group = *Region.Parent;
932
933 // This counts the argument number in the overall function.
934 unsigned TypeIndex = 0;
935
936 // This counts the argument number in the extracted function.
937 unsigned OriginalIndex = 0;
938
939 // Find the mapping of the extracted arguments to the arguments for the
940 // overall function. Since there may be extra arguments in the overall
941 // function to account for the extracted constants, we have two different
942 // counters as we find extracted arguments, and as we come across overall
943 // arguments.
944
945 // Additionally, in our first pass, for the first extracted function,
946 // we find argument locations for the canonical value numbering. This
947 // numbering overrides any discovered location for the extracted code.
948 for (unsigned InputVal : InputGVNs) {
949 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
950 assert(CanonicalNumberOpt && "Canonical number not found?");
951 unsigned CanonicalNumber = CanonicalNumberOpt.value();
952
953 Optional<Value *> InputOpt = C.fromGVN(InputVal);
954 assert(InputOpt && "Global value number not found?");
955 Value *Input = InputOpt.value();
956
957 DenseMap<unsigned, unsigned>::iterator AggArgIt =
958 Group.CanonicalNumberToAggArg.find(CanonicalNumber);
959
960 if (!Group.InputTypesSet) {
961 Group.ArgumentTypes.push_back(Input->getType());
962 // If the input value has a swifterr attribute, make sure to mark the
963 // argument in the overall function.
964 if (Input->isSwiftError()) {
965 assert(
966 !Group.SwiftErrorArgument &&
967 "Argument already marked with swifterr for this OutlinableGroup!");
968 Group.SwiftErrorArgument = TypeIndex;
969 }
970 }
971
972 // Check if we have a constant. If we do add it to the overall argument
973 // number to Constant map for the region, and continue to the next input.
974 if (Constant *CST = dyn_cast<Constant>(Input)) {
975 if (AggArgIt != Group.CanonicalNumberToAggArg.end())
976 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
977 else {
978 Group.CanonicalNumberToAggArg.insert(
979 std::make_pair(CanonicalNumber, TypeIndex));
980 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
981 }
982 TypeIndex++;
983 continue;
984 }
985
986 // It is not a constant, we create the mapping from extracted argument list
987 // to the overall argument list, using the canonical location, if it exists.
988 assert(ArgInputs.count(Input) && "Input cannot be found!");
989
990 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
991 if (OriginalIndex != AggArgIt->second)
992 Region.ChangedArgOrder = true;
993 Region.ExtractedArgToAgg.insert(
994 std::make_pair(OriginalIndex, AggArgIt->second));
995 Region.AggArgToExtracted.insert(
996 std::make_pair(AggArgIt->second, OriginalIndex));
997 } else {
998 Group.CanonicalNumberToAggArg.insert(
999 std::make_pair(CanonicalNumber, TypeIndex));
1000 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1001 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1002 }
1003 OriginalIndex++;
1004 TypeIndex++;
1005 }
1006
1007 // If the function type definitions for the OutlinableGroup holding the region
1008 // have not been set, set the length of the inputs here. We should have the
1009 // same inputs for all of the different regions contained in the
1010 // OutlinableGroup since they are all structurally similar to one another.
1011 if (!Group.InputTypesSet) {
1012 Group.NumAggregateInputs = TypeIndex;
1013 Group.InputTypesSet = true;
1014 }
1015
1016 Region.NumExtractedInputs = OriginalIndex;
1017 }
1018
1019 /// Check if the \p V has any uses outside of the region other than \p PN.
1020 ///
1021 /// \param V [in] - The value to check.
1022 /// \param PHILoc [in] - The location in the PHINode of \p V.
1023 /// \param PN [in] - The PHINode using \p V.
1024 /// \param Exits [in] - The potential blocks we exit to from the outlined
1025 /// region.
1026 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1027 /// \returns true if \p V has any use soutside its region other than \p PN.
outputHasNonPHI(Value * V,unsigned PHILoc,PHINode & PN,SmallPtrSet<BasicBlock *,1> & Exits,DenseSet<BasicBlock * > & BlocksInRegion)1028 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1029 SmallPtrSet<BasicBlock *, 1> &Exits,
1030 DenseSet<BasicBlock *> &BlocksInRegion) {
1031 // We check to see if the value is used by the PHINode from some other
1032 // predecessor not included in the region. If it is, we make sure
1033 // to keep it as an output.
1034 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1035 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1036 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1037 !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1038 }))
1039 return true;
1040
1041 // Check if the value is used by any other instructions outside the region.
1042 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1043 Instruction *I = dyn_cast<Instruction>(U);
1044 if (!I)
1045 return false;
1046
1047 // If the use of the item is inside the region, we skip it. Uses
1048 // inside the region give us useful information about how the item could be
1049 // used as an output.
1050 BasicBlock *Parent = I->getParent();
1051 if (BlocksInRegion.contains(Parent))
1052 return false;
1053
1054 // If it's not a PHINode then we definitely know the use matters. This
1055 // output value will not completely combined with another item in a PHINode
1056 // as it is directly reference by another non-phi instruction
1057 if (!isa<PHINode>(I))
1058 return true;
1059
1060 // If we have a PHINode outside one of the exit locations, then it
1061 // can be considered an outside use as well. If there is a PHINode
1062 // contained in the Exit where this values use matters, it will be
1063 // caught when we analyze that PHINode.
1064 if (!Exits.contains(Parent))
1065 return true;
1066
1067 return false;
1068 });
1069 }
1070
1071 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1072 /// considered outputs. A PHINodes is an output when more than one incoming
1073 /// value has been marked by the CodeExtractor as an output.
1074 ///
1075 /// \param CurrentExitFromRegion [in] - The block to analyze.
1076 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1077 /// region.
1078 /// \param RegionBlocks [in] - The basic blocks in the region.
1079 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1080 /// PHINodes to this as we find that they replace output values.
1081 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1082 /// totally replaced by a PHINode.
1083 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1084 /// in PHINodes, but have other uses, and should still be considered outputs.
analyzeExitPHIsForOutputUses(BasicBlock * CurrentExitFromRegion,SmallPtrSet<BasicBlock *,1> & PotentialExitsFromRegion,DenseSet<BasicBlock * > & RegionBlocks,SetVector<Value * > & Outputs,DenseSet<Value * > & OutputsReplacedByPHINode,DenseSet<Value * > & OutputsWithNonPhiUses)1085 static void analyzeExitPHIsForOutputUses(
1086 BasicBlock *CurrentExitFromRegion,
1087 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1088 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1089 DenseSet<Value *> &OutputsReplacedByPHINode,
1090 DenseSet<Value *> &OutputsWithNonPhiUses) {
1091 for (PHINode &PN : CurrentExitFromRegion->phis()) {
1092 // Find all incoming values from the outlining region.
1093 SmallVector<unsigned, 2> IncomingVals;
1094 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1095 if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1096 IncomingVals.push_back(I);
1097
1098 // Do not process PHI if there are no predecessors from region.
1099 unsigned NumIncomingVals = IncomingVals.size();
1100 if (NumIncomingVals == 0)
1101 continue;
1102
1103 // If there is one predecessor, we mark it as a value that needs to be kept
1104 // as an output.
1105 if (NumIncomingVals == 1) {
1106 Value *V = PN.getIncomingValue(*IncomingVals.begin());
1107 OutputsWithNonPhiUses.insert(V);
1108 OutputsReplacedByPHINode.erase(V);
1109 continue;
1110 }
1111
1112 // This PHINode will be used as an output value, so we add it to our list.
1113 Outputs.insert(&PN);
1114
1115 // Not all of the incoming values should be ignored as other inputs and
1116 // outputs may have uses in outlined region. If they have other uses
1117 // outside of the single PHINode we should not skip over it.
1118 for (unsigned Idx : IncomingVals) {
1119 Value *V = PN.getIncomingValue(Idx);
1120 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1121 OutputsWithNonPhiUses.insert(V);
1122 OutputsReplacedByPHINode.erase(V);
1123 continue;
1124 }
1125 if (!OutputsWithNonPhiUses.contains(V))
1126 OutputsReplacedByPHINode.insert(V);
1127 }
1128 }
1129 }
1130
1131 // Represents the type for the unsigned number denoting the output number for
1132 // phi node, along with the canonical number for the exit block.
1133 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1134 // The list of canonical numbers for the incoming values to a PHINode.
1135 using CanonList = SmallVector<unsigned, 2>;
1136 // The pair type representing the set of canonical values being combined in the
1137 // PHINode, along with the location data for the PHINode.
1138 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1139
1140 /// Encode \p PND as an integer for easy lookup based on the argument location,
1141 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1142 /// the values stored in the PHINode.
1143 ///
1144 /// \param PND - The data to hash.
1145 /// \returns The hash code of \p PND.
encodePHINodeData(PHINodeData & PND)1146 static hash_code encodePHINodeData(PHINodeData &PND) {
1147 return llvm::hash_combine(
1148 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1149 llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1150 }
1151
1152 /// Create a special GVN for PHINodes that will be used outside of
1153 /// the region. We create a hash code based on the Canonical number of the
1154 /// parent BasicBlock, the canonical numbering of the values stored in the
1155 /// PHINode and the aggregate argument location. This is used to find whether
1156 /// this PHINode type has been given a canonical numbering already. If not, we
1157 /// assign it a value and store it for later use. The value is returned to
1158 /// identify different output schemes for the set of regions.
1159 ///
1160 /// \param Region - The region that \p PN is an output for.
1161 /// \param PN - The PHINode we are analyzing.
1162 /// \param Blocks - The blocks for the region we are analyzing.
1163 /// \param AggArgIdx - The argument \p PN will be stored into.
1164 /// \returns An optional holding the assigned canonical number, or None if
1165 /// there is some attribute of the PHINode blocking it from being used.
getGVNForPHINode(OutlinableRegion & Region,PHINode * PN,DenseSet<BasicBlock * > & Blocks,unsigned AggArgIdx)1166 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1167 PHINode *PN,
1168 DenseSet<BasicBlock *> &Blocks,
1169 unsigned AggArgIdx) {
1170 OutlinableGroup &Group = *Region.Parent;
1171 IRSimilarityCandidate &Cand = *Region.Candidate;
1172 BasicBlock *PHIBB = PN->getParent();
1173 CanonList PHIGVNs;
1174 Value *Incoming;
1175 BasicBlock *IncomingBlock;
1176 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1177 Incoming = PN->getIncomingValue(Idx);
1178 IncomingBlock = PN->getIncomingBlock(Idx);
1179 // If we cannot find a GVN, and the incoming block is included in the region
1180 // this means that the input to the PHINode is not included in the region we
1181 // are trying to analyze, meaning, that if it was outlined, we would be
1182 // adding an extra input. We ignore this case for now, and so ignore the
1183 // region.
1184 Optional<unsigned> OGVN = Cand.getGVN(Incoming);
1185 if (!OGVN && Blocks.contains(IncomingBlock)) {
1186 Region.IgnoreRegion = true;
1187 return None;
1188 }
1189
1190 // If the incoming block isn't in the region, we don't have to worry about
1191 // this incoming value.
1192 if (!Blocks.contains(IncomingBlock))
1193 continue;
1194
1195 // Collect the canonical numbers of the values in the PHINode.
1196 unsigned GVN = *OGVN;
1197 OGVN = Cand.getCanonicalNum(GVN);
1198 assert(OGVN && "No GVN found for incoming value?");
1199 PHIGVNs.push_back(*OGVN);
1200
1201 // Find the incoming block and use the canonical numbering as well to define
1202 // the hash for the PHINode.
1203 OGVN = Cand.getGVN(IncomingBlock);
1204
1205 // If there is no number for the incoming block, it is becaause we have
1206 // split the candidate basic blocks. So we use the previous block that it
1207 // was split from to find the valid global value numbering for the PHINode.
1208 if (!OGVN) {
1209 assert(Cand.getStartBB() == IncomingBlock &&
1210 "Unknown basic block used in exit path PHINode.");
1211
1212 BasicBlock *PrevBlock = nullptr;
1213 // Iterate over the predecessors to the incoming block of the
1214 // PHINode, when we find a block that is not contained in the region
1215 // we know that this is the first block that we split from, and should
1216 // have a valid global value numbering.
1217 for (BasicBlock *Pred : predecessors(IncomingBlock))
1218 if (!Blocks.contains(Pred)) {
1219 PrevBlock = Pred;
1220 break;
1221 }
1222 assert(PrevBlock && "Expected a predecessor not in the reigon!");
1223 OGVN = Cand.getGVN(PrevBlock);
1224 }
1225 GVN = *OGVN;
1226 OGVN = Cand.getCanonicalNum(GVN);
1227 assert(OGVN && "No GVN found for incoming block?");
1228 PHIGVNs.push_back(*OGVN);
1229 }
1230
1231 // Now that we have the GVNs for the incoming values, we are going to combine
1232 // them with the GVN of the incoming bock, and the output location of the
1233 // PHINode to generate a hash value representing this instance of the PHINode.
1234 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1235 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1236 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1237 assert(BBGVN && "Could not find GVN for the incoming block!");
1238
1239 BBGVN = Cand.getCanonicalNum(BBGVN.value());
1240 assert(BBGVN && "Could not find canonical number for the incoming block!");
1241 // Create a pair of the exit block canonical value, and the aggregate
1242 // argument location, connected to the canonical numbers stored in the
1243 // PHINode.
1244 PHINodeData TemporaryPair =
1245 std::make_pair(std::make_pair(BBGVN.value(), AggArgIdx), PHIGVNs);
1246 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1247
1248 // Look for and create a new entry in our connection between canonical
1249 // numbers for PHINodes, and the set of objects we just created.
1250 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1251 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1252 bool Inserted = false;
1253 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1254 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1255 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1256 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1257 }
1258
1259 return GVNToPHIIt->second;
1260 }
1261
1262 /// Create a mapping of the output arguments for the \p Region to the output
1263 /// arguments of the overall outlined function.
1264 ///
1265 /// \param [in,out] Region - The region of code to be analyzed.
1266 /// \param [in] Outputs - The values found by the code extractor.
1267 static void
findExtractedOutputToOverallOutputMapping(OutlinableRegion & Region,SetVector<Value * > & Outputs)1268 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
1269 SetVector<Value *> &Outputs) {
1270 OutlinableGroup &Group = *Region.Parent;
1271 IRSimilarityCandidate &C = *Region.Candidate;
1272
1273 SmallVector<BasicBlock *> BE;
1274 DenseSet<BasicBlock *> BlocksInRegion;
1275 C.getBasicBlocks(BlocksInRegion, BE);
1276
1277 // Find the exits to the region.
1278 SmallPtrSet<BasicBlock *, 1> Exits;
1279 for (BasicBlock *Block : BE)
1280 for (BasicBlock *Succ : successors(Block))
1281 if (!BlocksInRegion.contains(Succ))
1282 Exits.insert(Succ);
1283
1284 // After determining which blocks exit to PHINodes, we add these PHINodes to
1285 // the set of outputs to be processed. We also check the incoming values of
1286 // the PHINodes for whether they should no longer be considered outputs.
1287 DenseSet<Value *> OutputsReplacedByPHINode;
1288 DenseSet<Value *> OutputsWithNonPhiUses;
1289 for (BasicBlock *ExitBB : Exits)
1290 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1291 OutputsReplacedByPHINode,
1292 OutputsWithNonPhiUses);
1293
1294 // This counts the argument number in the extracted function.
1295 unsigned OriginalIndex = Region.NumExtractedInputs;
1296
1297 // This counts the argument number in the overall function.
1298 unsigned TypeIndex = Group.NumAggregateInputs;
1299 bool TypeFound;
1300 DenseSet<unsigned> AggArgsUsed;
1301
1302 // Iterate over the output types and identify if there is an aggregate pointer
1303 // type whose base type matches the current output type. If there is, we mark
1304 // that we will use this output register for this value. If not we add another
1305 // type to the overall argument type list. We also store the GVNs used for
1306 // stores to identify which values will need to be moved into an special
1307 // block that holds the stores to the output registers.
1308 for (Value *Output : Outputs) {
1309 TypeFound = false;
1310 // We can do this since it is a result value, and will have a number
1311 // that is necessarily the same. BUT if in the future, the instructions
1312 // do not have to be in same order, but are functionally the same, we will
1313 // have to use a different scheme, as one-to-one correspondence is not
1314 // guaranteed.
1315 unsigned ArgumentSize = Group.ArgumentTypes.size();
1316
1317 // If the output is combined in a PHINode, we make sure to skip over it.
1318 if (OutputsReplacedByPHINode.contains(Output))
1319 continue;
1320
1321 unsigned AggArgIdx = 0;
1322 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1323 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
1324 continue;
1325
1326 if (AggArgsUsed.contains(Jdx))
1327 continue;
1328
1329 TypeFound = true;
1330 AggArgsUsed.insert(Jdx);
1331 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1332 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1333 AggArgIdx = Jdx;
1334 break;
1335 }
1336
1337 // We were unable to find an unused type in the output type set that matches
1338 // the output, so we add a pointer type to the argument types of the overall
1339 // function to handle this output and create a mapping to it.
1340 if (!TypeFound) {
1341 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
1342 // Mark the new pointer type as the last value in the aggregate argument
1343 // list.
1344 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1345 AggArgsUsed.insert(ArgTypeIdx);
1346 Region.ExtractedArgToAgg.insert(
1347 std::make_pair(OriginalIndex, ArgTypeIdx));
1348 Region.AggArgToExtracted.insert(
1349 std::make_pair(ArgTypeIdx, OriginalIndex));
1350 AggArgIdx = ArgTypeIdx;
1351 }
1352
1353 // TODO: Adapt to the extra input from the PHINode.
1354 PHINode *PN = dyn_cast<PHINode>(Output);
1355
1356 Optional<unsigned> GVN;
1357 if (PN && !BlocksInRegion.contains(PN->getParent())) {
1358 // Values outside the region can be combined into PHINode when we
1359 // have multiple exits. We collect both of these into a list to identify
1360 // which values are being used in the PHINode. Each list identifies a
1361 // different PHINode, and a different output. We store the PHINode as it's
1362 // own canonical value. These canonical values are also dependent on the
1363 // output argument it is saved to.
1364
1365 // If two PHINodes have the same canonical values, but different aggregate
1366 // argument locations, then they will have distinct Canonical Values.
1367 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1368 if (!GVN)
1369 return;
1370 } else {
1371 // If we do not have a PHINode we use the global value numbering for the
1372 // output value, to find the canonical number to add to the set of stored
1373 // values.
1374 GVN = C.getGVN(Output);
1375 GVN = C.getCanonicalNum(*GVN);
1376 }
1377
1378 // Each region has a potentially unique set of outputs. We save which
1379 // values are output in a list of canonical values so we can differentiate
1380 // among the different store schemes.
1381 Region.GVNStores.push_back(*GVN);
1382
1383 OriginalIndex++;
1384 TypeIndex++;
1385 }
1386
1387 // We sort the stored values to make sure that we are not affected by analysis
1388 // order when determining what combination of items were stored.
1389 stable_sort(Region.GVNStores);
1390 }
1391
findAddInputsOutputs(Module & M,OutlinableRegion & Region,DenseSet<unsigned> & NotSame)1392 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1393 DenseSet<unsigned> &NotSame) {
1394 std::vector<unsigned> Inputs;
1395 SetVector<Value *> ArgInputs, Outputs;
1396
1397 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1398 Outputs);
1399
1400 if (Region.IgnoreRegion)
1401 return;
1402
1403 // Map the inputs found by the CodeExtractor to the arguments found for
1404 // the overall function.
1405 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1406
1407 // Map the outputs found by the CodeExtractor to the arguments found for
1408 // the overall function.
1409 findExtractedOutputToOverallOutputMapping(Region, Outputs);
1410 }
1411
1412 /// Replace the extracted function in the Region with a call to the overall
1413 /// function constructed from the deduplicated similar regions, replacing and
1414 /// remapping the values passed to the extracted function as arguments to the
1415 /// new arguments of the overall function.
1416 ///
1417 /// \param [in] M - The module to outline from.
1418 /// \param [in] Region - The regions of extracted code to be replaced with a new
1419 /// function.
1420 /// \returns a call instruction with the replaced function.
replaceCalledFunction(Module & M,OutlinableRegion & Region)1421 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1422 std::vector<Value *> NewCallArgs;
1423 DenseMap<unsigned, unsigned>::iterator ArgPair;
1424
1425 OutlinableGroup &Group = *Region.Parent;
1426 CallInst *Call = Region.Call;
1427 assert(Call && "Call to replace is nullptr?");
1428 Function *AggFunc = Group.OutlinedFunction;
1429 assert(AggFunc && "Function to replace with is nullptr?");
1430
1431 // If the arguments are the same size, there are not values that need to be
1432 // made into an argument, the argument ordering has not been change, or
1433 // different output registers to handle. We can simply replace the called
1434 // function in this case.
1435 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1436 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1437 << *AggFunc << " with same number of arguments\n");
1438 Call->setCalledFunction(AggFunc);
1439 return Call;
1440 }
1441
1442 // We have a different number of arguments than the new function, so
1443 // we need to use our previously mappings off extracted argument to overall
1444 // function argument, and constants to overall function argument to create the
1445 // new argument list.
1446 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1447
1448 if (AggArgIdx == AggFunc->arg_size() - 1 &&
1449 Group.OutputGVNCombinations.size() > 1) {
1450 // If we are on the last argument, and we need to differentiate between
1451 // output blocks, add an integer to the argument list to determine
1452 // what block to take
1453 LLVM_DEBUG(dbgs() << "Set switch block argument to "
1454 << Region.OutputBlockNum << "\n");
1455 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1456 Region.OutputBlockNum));
1457 continue;
1458 }
1459
1460 ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1461 if (ArgPair != Region.AggArgToExtracted.end()) {
1462 Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1463 // If we found the mapping from the extracted function to the overall
1464 // function, we simply add it to the argument list. We use the same
1465 // value, it just needs to honor the new order of arguments.
1466 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1467 << *ArgumentValue << "\n");
1468 NewCallArgs.push_back(ArgumentValue);
1469 continue;
1470 }
1471
1472 // If it is a constant, we simply add it to the argument list as a value.
1473 if (Region.AggArgToConstant.find(AggArgIdx) !=
1474 Region.AggArgToConstant.end()) {
1475 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1476 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1477 << *CST << "\n");
1478 NewCallArgs.push_back(CST);
1479 continue;
1480 }
1481
1482 // Add a nullptr value if the argument is not found in the extracted
1483 // function. If we cannot find a value, it means it is not in use
1484 // for the region, so we should not pass anything to it.
1485 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1486 NewCallArgs.push_back(ConstantPointerNull::get(
1487 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1488 }
1489
1490 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1491 << *AggFunc << " with new set of arguments\n");
1492 // Create the new call instruction and erase the old one.
1493 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1494 Call);
1495
1496 // It is possible that the call to the outlined function is either the first
1497 // instruction is in the new block, the last instruction, or both. If either
1498 // of these is the case, we need to make sure that we replace the instruction
1499 // in the IRInstructionData struct with the new call.
1500 CallInst *OldCall = Region.Call;
1501 if (Region.NewFront->Inst == OldCall)
1502 Region.NewFront->Inst = Call;
1503 if (Region.NewBack->Inst == OldCall)
1504 Region.NewBack->Inst = Call;
1505
1506 // Transfer any debug information.
1507 Call->setDebugLoc(Region.Call->getDebugLoc());
1508 // Since our output may determine which branch we go to, we make sure to
1509 // propogate this new call value through the module.
1510 OldCall->replaceAllUsesWith(Call);
1511
1512 // Remove the old instruction.
1513 OldCall->eraseFromParent();
1514 Region.Call = Call;
1515
1516 // Make sure that the argument in the new function has the SwiftError
1517 // argument.
1518 if (Group.SwiftErrorArgument)
1519 Call->addParamAttr(Group.SwiftErrorArgument.value(), Attribute::SwiftError);
1520
1521 return Call;
1522 }
1523
1524 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1525 /// for \p RetVal.
1526 ///
1527 /// \param Group - The OutlinableGroup containing the information about the
1528 /// overall outlined function.
1529 /// \param RetVal - The return value or exit option that we are currently
1530 /// evaluating.
1531 /// \returns The found or newly created BasicBlock to contain the needed
1532 /// PHINodes to be used as outputs.
findOrCreatePHIBlock(OutlinableGroup & Group,Value * RetVal)1533 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1534 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1535 ReturnBlockForRetVal;
1536 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1537 ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1538 assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1539 "Could not find output value!");
1540 BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1541
1542 // Find if a PHIBlock exists for this return value already. If it is
1543 // the first time we are analyzing this, we will not, so we record it.
1544 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1545 if (PhiBlockForRetVal != Group.PHIBlocks.end())
1546 return PhiBlockForRetVal->second;
1547
1548 // If we did not find a block, we create one, and insert it into the
1549 // overall function and record it.
1550 bool Inserted = false;
1551 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1552 ReturnBB->getParent());
1553 std::tie(PhiBlockForRetVal, Inserted) =
1554 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1555
1556 // We find the predecessors of the return block in the newly created outlined
1557 // function in order to point them to the new PHIBlock rather than the already
1558 // existing return block.
1559 SmallVector<BranchInst *, 2> BranchesToChange;
1560 for (BasicBlock *Pred : predecessors(ReturnBB))
1561 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1562
1563 // Now we mark the branch instructions found, and change the references of the
1564 // return block to the newly created PHIBlock.
1565 for (BranchInst *BI : BranchesToChange)
1566 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1567 if (BI->getSuccessor(Succ) != ReturnBB)
1568 continue;
1569 BI->setSuccessor(Succ, PHIBlock);
1570 }
1571
1572 BranchInst::Create(ReturnBB, PHIBlock);
1573
1574 return PhiBlockForRetVal->second;
1575 }
1576
1577 /// For the function call now representing the \p Region, find the passed value
1578 /// to that call that represents Argument \p A at the call location if the
1579 /// call has already been replaced with a call to the overall, aggregate
1580 /// function.
1581 ///
1582 /// \param A - The Argument to get the passed value for.
1583 /// \param Region - The extracted Region corresponding to the outlined function.
1584 /// \returns The Value representing \p A at the call site.
1585 static Value *
getPassedArgumentInAlreadyOutlinedFunction(const Argument * A,const OutlinableRegion & Region)1586 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1587 const OutlinableRegion &Region) {
1588 // If we don't need to adjust the argument number at all (since the call
1589 // has already been replaced by a call to the overall outlined function)
1590 // we can just get the specified argument.
1591 return Region.Call->getArgOperand(A->getArgNo());
1592 }
1593
1594 /// For the function call now representing the \p Region, find the passed value
1595 /// to that call that represents Argument \p A at the call location if the
1596 /// call has only been replaced by the call to the aggregate function.
1597 ///
1598 /// \param A - The Argument to get the passed value for.
1599 /// \param Region - The extracted Region corresponding to the outlined function.
1600 /// \returns The Value representing \p A at the call site.
1601 static Value *
getPassedArgumentAndAdjustArgumentLocation(const Argument * A,const OutlinableRegion & Region)1602 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1603 const OutlinableRegion &Region) {
1604 unsigned ArgNum = A->getArgNo();
1605
1606 // If it is a constant, we can look at our mapping from when we created
1607 // the outputs to figure out what the constant value is.
1608 if (Region.AggArgToConstant.count(ArgNum))
1609 return Region.AggArgToConstant.find(ArgNum)->second;
1610
1611 // If it is not a constant, and we are not looking at the overall function, we
1612 // need to adjust which argument we are looking at.
1613 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1614 return Region.Call->getArgOperand(ArgNum);
1615 }
1616
1617 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1618 ///
1619 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1620 /// \param Region [in] - The OutlinableRegion containing \p PN.
1621 /// \param OutputMappings [in] - The mapping of output values from outlined
1622 /// region to their original values.
1623 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1624 /// \p PN paired with their incoming block.
1625 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1626 /// of \p Region rather than the overall function's call.
findCanonNumsForPHI(PHINode * PN,OutlinableRegion & Region,const DenseMap<Value *,Value * > & OutputMappings,SmallVector<std::pair<unsigned,BasicBlock * >> & CanonNums,bool ReplacedWithOutlinedCall=true)1627 static void findCanonNumsForPHI(
1628 PHINode *PN, OutlinableRegion &Region,
1629 const DenseMap<Value *, Value *> &OutputMappings,
1630 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1631 bool ReplacedWithOutlinedCall = true) {
1632 // Iterate over the incoming values.
1633 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1634 Value *IVal = PN->getIncomingValue(Idx);
1635 BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1636 // If we have an argument as incoming value, we need to grab the passed
1637 // value from the call itself.
1638 if (Argument *A = dyn_cast<Argument>(IVal)) {
1639 if (ReplacedWithOutlinedCall)
1640 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1641 else
1642 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1643 }
1644
1645 // Get the original value if it has been replaced by an output value.
1646 IVal = findOutputMapping(OutputMappings, IVal);
1647
1648 // Find and add the canonical number for the incoming value.
1649 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1650 assert(GVN && "No GVN for incoming value");
1651 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1652 assert(CanonNum && "No Canonical Number for GVN");
1653 CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1654 }
1655 }
1656
1657 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1658 /// in order to condense the number of instructions added to the outlined
1659 /// function.
1660 ///
1661 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1662 /// \param Region [in] - The OutlinableRegion containing \p PN.
1663 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1664 /// \p PN in.
1665 /// \param OutputMappings [in] - The mapping of output values from outlined
1666 /// region to their original values.
1667 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1668 /// matched.
1669 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1670 static PHINode*
findOrCreatePHIInBlock(PHINode & PN,OutlinableRegion & Region,BasicBlock * OverallPhiBlock,const DenseMap<Value *,Value * > & OutputMappings,DenseSet<PHINode * > & UsedPHIs)1671 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1672 BasicBlock *OverallPhiBlock,
1673 const DenseMap<Value *, Value *> &OutputMappings,
1674 DenseSet<PHINode *> &UsedPHIs) {
1675 OutlinableGroup &Group = *Region.Parent;
1676
1677
1678 // A list of the canonical numbering assigned to each incoming value, paired
1679 // with the incoming block for the PHINode passed into this function.
1680 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1681
1682 // We have to use the extracted function since we have merged this region into
1683 // the overall function yet. We make sure to reassign the argument numbering
1684 // since it is possible that the argument ordering is different between the
1685 // functions.
1686 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1687 /* ReplacedWithOutlinedCall = */ false);
1688
1689 OutlinableRegion *FirstRegion = Group.Regions[0];
1690
1691 // A list of the canonical numbering assigned to each incoming value, paired
1692 // with the incoming block for the PHINode that we are currently comparing
1693 // the passed PHINode to.
1694 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1695
1696 // Find the Canonical Numbering for each PHINode, if it matches, we replace
1697 // the uses of the PHINode we are searching for, with the found PHINode.
1698 for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1699 // If this PHINode has already been matched to another PHINode to be merged,
1700 // we skip it.
1701 if (UsedPHIs.contains(&CurrPN))
1702 continue;
1703
1704 CurrentCanonNums.clear();
1705 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1706 /* ReplacedWithOutlinedCall = */ true);
1707
1708 // If the list of incoming values is not the same length, then they cannot
1709 // match since there is not an analogue for each incoming value.
1710 if (PNCanonNums.size() != CurrentCanonNums.size())
1711 continue;
1712
1713 bool FoundMatch = true;
1714
1715 // We compare the canonical value for each incoming value in the passed
1716 // in PHINode to one already present in the outlined region. If the
1717 // incoming values do not match, then the PHINodes do not match.
1718
1719 // We also check to make sure that the incoming block matches as well by
1720 // finding the corresponding incoming block in the combined outlined region
1721 // for the current outlined region.
1722 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1723 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1724 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1725 if (ToCompareTo.first != ToAdd.first) {
1726 FoundMatch = false;
1727 break;
1728 }
1729
1730 BasicBlock *CorrespondingBlock =
1731 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1732 assert(CorrespondingBlock && "Found block is nullptr");
1733 if (CorrespondingBlock != ToCompareTo.second) {
1734 FoundMatch = false;
1735 break;
1736 }
1737 }
1738
1739 // If all incoming values and branches matched, then we can merge
1740 // into the found PHINode.
1741 if (FoundMatch) {
1742 UsedPHIs.insert(&CurrPN);
1743 return &CurrPN;
1744 }
1745 }
1746
1747 // If we've made it here, it means we weren't able to replace the PHINode, so
1748 // we must insert it ourselves.
1749 PHINode *NewPN = cast<PHINode>(PN.clone());
1750 NewPN->insertBefore(&*OverallPhiBlock->begin());
1751 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1752 Idx++) {
1753 Value *IncomingVal = NewPN->getIncomingValue(Idx);
1754 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1755
1756 // Find corresponding basic block in the overall function for the incoming
1757 // block.
1758 BasicBlock *BlockToUse =
1759 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1760 NewPN->setIncomingBlock(Idx, BlockToUse);
1761
1762 // If we have an argument we make sure we replace using the argument from
1763 // the correct function.
1764 if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1765 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1766 NewPN->setIncomingValue(Idx, Val);
1767 continue;
1768 }
1769
1770 // Find the corresponding value in the overall function.
1771 IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1772 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1773 assert(Val && "Value is nullptr?");
1774 DenseMap<Value *, Value *>::iterator RemappedIt =
1775 FirstRegion->RemappedArguments.find(Val);
1776 if (RemappedIt != FirstRegion->RemappedArguments.end())
1777 Val = RemappedIt->second;
1778 NewPN->setIncomingValue(Idx, Val);
1779 }
1780 return NewPN;
1781 }
1782
1783 // Within an extracted function, replace the argument uses of the extracted
1784 // region with the arguments of the function for an OutlinableGroup.
1785 //
1786 /// \param [in] Region - The region of extracted code to be changed.
1787 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1788 /// region.
1789 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1790 /// function to define the overall outlined function for all the regions, or
1791 /// if we are operating on one of the following regions.
1792 static void
replaceArgumentUses(OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,const DenseMap<Value *,Value * > & OutputMappings,bool FirstFunction=false)1793 replaceArgumentUses(OutlinableRegion &Region,
1794 DenseMap<Value *, BasicBlock *> &OutputBBs,
1795 const DenseMap<Value *, Value *> &OutputMappings,
1796 bool FirstFunction = false) {
1797 OutlinableGroup &Group = *Region.Parent;
1798 assert(Region.ExtractedFunction && "Region has no extracted function?");
1799
1800 Function *DominatingFunction = Region.ExtractedFunction;
1801 if (FirstFunction)
1802 DominatingFunction = Group.OutlinedFunction;
1803 DominatorTree DT(*DominatingFunction);
1804 DenseSet<PHINode *> UsedPHIs;
1805
1806 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1807 ArgIdx++) {
1808 assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
1809 Region.ExtractedArgToAgg.end() &&
1810 "No mapping from extracted to outlined?");
1811 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1812 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1813 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1814 // The argument is an input, so we can simply replace it with the overall
1815 // argument value
1816 if (ArgIdx < Region.NumExtractedInputs) {
1817 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1818 << *Region.ExtractedFunction << " with " << *AggArg
1819 << " in function " << *Group.OutlinedFunction << "\n");
1820 Arg->replaceAllUsesWith(AggArg);
1821 Value *V = Region.Call->getArgOperand(ArgIdx);
1822 Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1823 continue;
1824 }
1825
1826 // If we are replacing an output, we place the store value in its own
1827 // block inside the overall function before replacing the use of the output
1828 // in the function.
1829 assert(Arg->hasOneUse() && "Output argument can only have one use");
1830 User *InstAsUser = Arg->user_back();
1831 assert(InstAsUser && "User is nullptr!");
1832
1833 Instruction *I = cast<Instruction>(InstAsUser);
1834 BasicBlock *BB = I->getParent();
1835 SmallVector<BasicBlock *, 4> Descendants;
1836 DT.getDescendants(BB, Descendants);
1837 bool EdgeAdded = false;
1838 if (Descendants.size() == 0) {
1839 EdgeAdded = true;
1840 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1841 DT.getDescendants(BB, Descendants);
1842 }
1843
1844 // Iterate over the following blocks, looking for return instructions,
1845 // if we find one, find the corresponding output block for the return value
1846 // and move our store instruction there.
1847 for (BasicBlock *DescendBB : Descendants) {
1848 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1849 if (!RI)
1850 continue;
1851 Value *RetVal = RI->getReturnValue();
1852 auto VBBIt = OutputBBs.find(RetVal);
1853 assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1854
1855 // If this is storing a PHINode, we must make sure it is included in the
1856 // overall function.
1857 StoreInst *SI = cast<StoreInst>(I);
1858
1859 Value *ValueOperand = SI->getValueOperand();
1860
1861 StoreInst *NewI = cast<StoreInst>(I->clone());
1862 NewI->setDebugLoc(DebugLoc());
1863 BasicBlock *OutputBB = VBBIt->second;
1864 OutputBB->getInstList().push_back(NewI);
1865 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1866 << *OutputBB << "\n");
1867
1868 // If this is storing a PHINode, we must make sure it is included in the
1869 // overall function.
1870 if (!isa<PHINode>(ValueOperand) ||
1871 Region.Candidate->getGVN(ValueOperand).has_value()) {
1872 if (FirstFunction)
1873 continue;
1874 Value *CorrVal =
1875 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1876 assert(CorrVal && "Value is nullptr?");
1877 NewI->setOperand(0, CorrVal);
1878 continue;
1879 }
1880 PHINode *PN = cast<PHINode>(SI->getValueOperand());
1881 // If it has a value, it was not split by the code extractor, which
1882 // is what we are looking for.
1883 if (Region.Candidate->getGVN(PN))
1884 continue;
1885
1886 // We record the parent block for the PHINode in the Region so that
1887 // we can exclude it from checks later on.
1888 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1889
1890 // If this is the first function, we do not need to worry about mergiing
1891 // this with any other block in the overall outlined function, so we can
1892 // just continue.
1893 if (FirstFunction) {
1894 BasicBlock *PHIBlock = PN->getParent();
1895 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1896 continue;
1897 }
1898
1899 // We look for the aggregate block that contains the PHINodes leading into
1900 // this exit path. If we can't find one, we create one.
1901 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1902
1903 // For our PHINode, we find the combined canonical numbering, and
1904 // attempt to find a matching PHINode in the overall PHIBlock. If we
1905 // cannot, we copy the PHINode and move it into this new block.
1906 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1907 OutputMappings, UsedPHIs);
1908 NewI->setOperand(0, NewPN);
1909 }
1910
1911 // If we added an edge for basic blocks without a predecessor, we remove it
1912 // here.
1913 if (EdgeAdded)
1914 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1915 I->eraseFromParent();
1916
1917 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1918 << *Region.ExtractedFunction << " with " << *AggArg
1919 << " in function " << *Group.OutlinedFunction << "\n");
1920 Arg->replaceAllUsesWith(AggArg);
1921 }
1922 }
1923
1924 /// Within an extracted function, replace the constants that need to be lifted
1925 /// into arguments with the actual argument.
1926 ///
1927 /// \param Region [in] - The region of extracted code to be changed.
replaceConstants(OutlinableRegion & Region)1928 void replaceConstants(OutlinableRegion &Region) {
1929 OutlinableGroup &Group = *Region.Parent;
1930 // Iterate over the constants that need to be elevated into arguments
1931 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1932 unsigned AggArgIdx = Const.first;
1933 Function *OutlinedFunction = Group.OutlinedFunction;
1934 assert(OutlinedFunction && "Overall Function is not defined?");
1935 Constant *CST = Const.second;
1936 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1937 // Identify the argument it will be elevated to, and replace instances of
1938 // that constant in the function.
1939
1940 // TODO: If in the future constants do not have one global value number,
1941 // i.e. a constant 1 could be mapped to several values, this check will
1942 // have to be more strict. It cannot be using only replaceUsesWithIf.
1943
1944 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1945 << " in function " << *OutlinedFunction << " with "
1946 << *Arg << "\n");
1947 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1948 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1949 return I->getFunction() == OutlinedFunction;
1950 return false;
1951 });
1952 }
1953 }
1954
1955 /// It is possible that there is a basic block that already performs the same
1956 /// stores. This returns a duplicate block, if it exists
1957 ///
1958 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1959 /// \param OutputStoreBBs [in] The existing output blocks.
1960 /// \returns an optional value with the number output block if there is a match.
findDuplicateOutputBlock(DenseMap<Value *,BasicBlock * > & OutputBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)1961 Optional<unsigned> findDuplicateOutputBlock(
1962 DenseMap<Value *, BasicBlock *> &OutputBBs,
1963 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1964
1965 bool Mismatch = false;
1966 unsigned MatchingNum = 0;
1967 // We compare the new set output blocks to the other sets of output blocks.
1968 // If they are the same number, and have identical instructions, they are
1969 // considered to be the same.
1970 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1971 Mismatch = false;
1972 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1973 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1974 OutputBBs.find(VToB.first);
1975 if (OutputBBIt == OutputBBs.end()) {
1976 Mismatch = true;
1977 break;
1978 }
1979
1980 BasicBlock *CompBB = VToB.second;
1981 BasicBlock *OutputBB = OutputBBIt->second;
1982 if (CompBB->size() - 1 != OutputBB->size()) {
1983 Mismatch = true;
1984 break;
1985 }
1986
1987 BasicBlock::iterator NIt = OutputBB->begin();
1988 for (Instruction &I : *CompBB) {
1989 if (isa<BranchInst>(&I))
1990 continue;
1991
1992 if (!I.isIdenticalTo(&(*NIt))) {
1993 Mismatch = true;
1994 break;
1995 }
1996
1997 NIt++;
1998 }
1999 }
2000
2001 if (!Mismatch)
2002 return MatchingNum;
2003
2004 MatchingNum++;
2005 }
2006
2007 return None;
2008 }
2009
2010 /// Remove empty output blocks from the outlined region.
2011 ///
2012 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2013 /// Region.
2014 /// \param Region - The OutlinableRegion we are analyzing.
2015 static bool
analyzeAndPruneOutputBlocks(DenseMap<Value *,BasicBlock * > & BlocksToPrune,OutlinableRegion & Region)2016 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2017 OutlinableRegion &Region) {
2018 bool AllRemoved = true;
2019 Value *RetValueForBB;
2020 BasicBlock *NewBB;
2021 SmallVector<Value *, 4> ToRemove;
2022 // Iterate over the output blocks created in the outlined section.
2023 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2024 RetValueForBB = VtoBB.first;
2025 NewBB = VtoBB.second;
2026
2027 // If there are no instructions, we remove it from the module, and also
2028 // mark the value for removal from the return value to output block mapping.
2029 if (NewBB->size() == 0) {
2030 NewBB->eraseFromParent();
2031 ToRemove.push_back(RetValueForBB);
2032 continue;
2033 }
2034
2035 // Mark that we could not remove all the blocks since they were not all
2036 // empty.
2037 AllRemoved = false;
2038 }
2039
2040 // Remove the return value from the mapping.
2041 for (Value *V : ToRemove)
2042 BlocksToPrune.erase(V);
2043
2044 // Mark the region as having the no output scheme.
2045 if (AllRemoved)
2046 Region.OutputBlockNum = -1;
2047
2048 return AllRemoved;
2049 }
2050
2051 /// For the outlined section, move needed the StoreInsts for the output
2052 /// registers into their own block. Then, determine if there is a duplicate
2053 /// output block already created.
2054 ///
2055 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2056 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2057 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2058 /// placed in.
2059 /// \param [in] EndBBs - the final blocks of the extracted function.
2060 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2061 /// been replaced by a new output value.
2062 /// \param [in,out] OutputStoreBBs - The existing output blocks.
alignOutputBlockWithAggFunc(OutlinableGroup & OG,OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,DenseMap<Value *,BasicBlock * > & EndBBs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2063 static void alignOutputBlockWithAggFunc(
2064 OutlinableGroup &OG, OutlinableRegion &Region,
2065 DenseMap<Value *, BasicBlock *> &OutputBBs,
2066 DenseMap<Value *, BasicBlock *> &EndBBs,
2067 const DenseMap<Value *, Value *> &OutputMappings,
2068 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2069 // If none of the output blocks have any instructions, this means that we do
2070 // not have to determine if it matches any of the other output schemes, and we
2071 // don't have to do anything else.
2072 if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2073 return;
2074
2075 // Determine is there is a duplicate set of blocks.
2076 Optional<unsigned> MatchingBB =
2077 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2078
2079 // If there is, we remove the new output blocks. If it does not,
2080 // we add it to our list of sets of output blocks.
2081 if (MatchingBB) {
2082 LLVM_DEBUG(dbgs() << "Set output block for region in function"
2083 << Region.ExtractedFunction << " to "
2084 << MatchingBB.value());
2085
2086 Region.OutputBlockNum = MatchingBB.value();
2087 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2088 VtoBB.second->eraseFromParent();
2089 return;
2090 }
2091
2092 Region.OutputBlockNum = OutputStoreBBs.size();
2093
2094 Value *RetValueForBB;
2095 BasicBlock *NewBB;
2096 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2097 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2098 RetValueForBB = VtoBB.first;
2099 NewBB = VtoBB.second;
2100 DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2101 EndBBs.find(RetValueForBB);
2102 LLVM_DEBUG(dbgs() << "Create output block for region in"
2103 << Region.ExtractedFunction << " to "
2104 << *NewBB);
2105 BranchInst::Create(VBBIt->second, NewBB);
2106 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2107 }
2108 }
2109
2110 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2111 /// before creating a basic block for each \p NewMap, and inserting into the new
2112 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2113 ///
2114 /// \param OldMap [in] - The mapping to base the new mapping off of.
2115 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2116 /// \param ParentFunc [in] - The function to put the new basic block in.
2117 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2118 /// by an index value.
createAndInsertBasicBlocks(DenseMap<Value *,BasicBlock * > & OldMap,DenseMap<Value *,BasicBlock * > & NewMap,Function * ParentFunc,Twine BaseName)2119 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2120 DenseMap<Value *, BasicBlock *> &NewMap,
2121 Function *ParentFunc, Twine BaseName) {
2122 unsigned Idx = 0;
2123 std::vector<Value *> SortedKeys;
2124
2125 getSortedConstantKeys(SortedKeys, OldMap);
2126
2127 for (Value *RetVal : SortedKeys) {
2128 BasicBlock *NewBB = BasicBlock::Create(
2129 ParentFunc->getContext(),
2130 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2131 ParentFunc);
2132 NewMap.insert(std::make_pair(RetVal, NewBB));
2133 }
2134 }
2135
2136 /// Create the switch statement for outlined function to differentiate between
2137 /// all the output blocks.
2138 ///
2139 /// For the outlined section, determine if an outlined block already exists that
2140 /// matches the needed stores for the extracted section.
2141 /// \param [in] M - The module we are outlining from.
2142 /// \param [in] OG - The group of regions to be outlined.
2143 /// \param [in] EndBBs - The final blocks of the extracted function.
2144 /// \param [in,out] OutputStoreBBs - The existing output blocks.
createSwitchStatement(Module & M,OutlinableGroup & OG,DenseMap<Value *,BasicBlock * > & EndBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2145 void createSwitchStatement(
2146 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2147 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2148 // We only need the switch statement if there is more than one store
2149 // combination, or there is more than one set of output blocks. The first
2150 // will occur when we store different sets of values for two different
2151 // regions. The second will occur when we have two outputs that are combined
2152 // in a PHINode outside of the region in one outlined instance, and are used
2153 // seaparately in another. This will create the same set of OutputGVNs, but
2154 // will generate two different output schemes.
2155 if (OG.OutputGVNCombinations.size() > 1) {
2156 Function *AggFunc = OG.OutlinedFunction;
2157 // Create a final block for each different return block.
2158 DenseMap<Value *, BasicBlock *> ReturnBBs;
2159 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2160
2161 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2162 std::pair<Value *, BasicBlock *> &OutputBlock =
2163 *OG.EndBBs.find(RetBlockPair.first);
2164 BasicBlock *ReturnBlock = RetBlockPair.second;
2165 BasicBlock *EndBB = OutputBlock.second;
2166 Instruction *Term = EndBB->getTerminator();
2167 // Move the return value to the final block instead of the original exit
2168 // stub.
2169 Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2170 // Put the switch statement in the old end basic block for the function
2171 // with a fall through to the new return block.
2172 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2173 << OutputStoreBBs.size() << "\n");
2174 SwitchInst *SwitchI =
2175 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2176 ReturnBlock, OutputStoreBBs.size(), EndBB);
2177
2178 unsigned Idx = 0;
2179 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2180 DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2181 OutputStoreBB.find(OutputBlock.first);
2182
2183 if (OSBBIt == OutputStoreBB.end())
2184 continue;
2185
2186 BasicBlock *BB = OSBBIt->second;
2187 SwitchI->addCase(
2188 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2189 Term = BB->getTerminator();
2190 Term->setSuccessor(0, ReturnBlock);
2191 Idx++;
2192 }
2193 }
2194 return;
2195 }
2196
2197 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2198
2199 // If there needs to be stores, move them from the output blocks to their
2200 // corresponding ending block. We do not check that the OutputGVNCombinations
2201 // is equal to 1 here since that could just been the case where there are 0
2202 // outputs. Instead, we check whether there is more than one set of output
2203 // blocks since this is the only case where we would have to move the
2204 // stores, and erase the extraneous blocks.
2205 if (OutputStoreBBs.size() == 1) {
2206 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2207 << *OG.OutlinedFunction << "\n");
2208 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2209 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2210 DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2211 EndBBs.find(VBPair.first);
2212 assert(EndBBIt != EndBBs.end() && "Could not find end block");
2213 BasicBlock *EndBB = EndBBIt->second;
2214 BasicBlock *OutputBB = VBPair.second;
2215 Instruction *Term = OutputBB->getTerminator();
2216 Term->eraseFromParent();
2217 Term = EndBB->getTerminator();
2218 moveBBContents(*OutputBB, *EndBB);
2219 Term->moveBefore(*EndBB, EndBB->end());
2220 OutputBB->eraseFromParent();
2221 }
2222 }
2223 }
2224
2225 /// Fill the new function that will serve as the replacement function for all of
2226 /// the extracted regions of a certain structure from the first region in the
2227 /// list of regions. Replace this first region's extracted function with the
2228 /// new overall function.
2229 ///
2230 /// \param [in] M - The module we are outlining from.
2231 /// \param [in] CurrentGroup - The group of regions to be outlined.
2232 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2233 /// set of stores needed for the different functions.
2234 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2235 /// once outlining is complete.
2236 /// \param [in] OutputMappings - Extracted functions to erase from module
2237 /// once outlining is complete.
fillOverallFunction(Module & M,OutlinableGroup & CurrentGroup,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs,std::vector<Function * > & FuncsToRemove,const DenseMap<Value *,Value * > & OutputMappings)2238 static void fillOverallFunction(
2239 Module &M, OutlinableGroup &CurrentGroup,
2240 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2241 std::vector<Function *> &FuncsToRemove,
2242 const DenseMap<Value *, Value *> &OutputMappings) {
2243 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2244
2245 // Move first extracted function's instructions into new function.
2246 LLVM_DEBUG(dbgs() << "Move instructions from "
2247 << *CurrentOS->ExtractedFunction << " to instruction "
2248 << *CurrentGroup.OutlinedFunction << "\n");
2249 moveFunctionData(*CurrentOS->ExtractedFunction,
2250 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2251
2252 // Transfer the attributes from the function to the new function.
2253 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2254 CurrentGroup.OutlinedFunction->addFnAttr(A);
2255
2256 // Create a new set of output blocks for the first extracted function.
2257 DenseMap<Value *, BasicBlock *> NewBBs;
2258 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2259 CurrentGroup.OutlinedFunction, "output_block_0");
2260 CurrentOS->OutputBlockNum = 0;
2261
2262 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2263 replaceConstants(*CurrentOS);
2264
2265 // We first identify if any output blocks are empty, if they are we remove
2266 // them. We then create a branch instruction to the basic block to the return
2267 // block for the function for each non empty output block.
2268 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2269 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2270 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2271 DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2272 CurrentGroup.EndBBs.find(VToBB.first);
2273 BasicBlock *EndBB = VBBIt->second;
2274 BranchInst::Create(EndBB, VToBB.second);
2275 OutputStoreBBs.back().insert(VToBB);
2276 }
2277 }
2278
2279 // Replace the call to the extracted function with the outlined function.
2280 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2281
2282 // We only delete the extracted functions at the end since we may need to
2283 // reference instructions contained in them for mapping purposes.
2284 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2285 }
2286
deduplicateExtractedSections(Module & M,OutlinableGroup & CurrentGroup,std::vector<Function * > & FuncsToRemove,unsigned & OutlinedFunctionNum)2287 void IROutliner::deduplicateExtractedSections(
2288 Module &M, OutlinableGroup &CurrentGroup,
2289 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2290 createFunction(M, CurrentGroup, OutlinedFunctionNum);
2291
2292 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2293
2294 OutlinableRegion *CurrentOS;
2295
2296 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2297 OutputMappings);
2298
2299 std::vector<Value *> SortedKeys;
2300 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2301 CurrentOS = CurrentGroup.Regions[Idx];
2302 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2303 *CurrentOS->ExtractedFunction);
2304
2305 // Create a set of BasicBlocks, one for each return block, to hold the
2306 // needed store instructions.
2307 DenseMap<Value *, BasicBlock *> NewBBs;
2308 createAndInsertBasicBlocks(
2309 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2310 "output_block_" + Twine(static_cast<unsigned>(Idx)));
2311 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2312 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2313 CurrentGroup.EndBBs, OutputMappings,
2314 OutputStoreBBs);
2315
2316 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2317 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2318 }
2319
2320 // Create a switch statement to handle the different output schemes.
2321 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2322
2323 OutlinedFunctionNum++;
2324 }
2325
2326 /// Checks that the next instruction in the InstructionDataList matches the
2327 /// next instruction in the module. If they do not, there could be the
2328 /// possibility that extra code has been inserted, and we must ignore it.
2329 ///
2330 /// \param ID - The IRInstructionData to check the next instruction of.
2331 /// \returns true if the InstructionDataList and actual instruction match.
nextIRInstructionDataMatchesNextInst(IRInstructionData & ID)2332 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2333 // We check if there is a discrepancy between the InstructionDataList
2334 // and the actual next instruction in the module. If there is, it means
2335 // that an extra instruction was added, likely by the CodeExtractor.
2336
2337 // Since we do not have any similarity data about this particular
2338 // instruction, we cannot confidently outline it, and must discard this
2339 // candidate.
2340 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2341 Instruction *NextIDLInst = NextIDIt->Inst;
2342 Instruction *NextModuleInst = nullptr;
2343 if (!ID.Inst->isTerminator())
2344 NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2345 else if (NextIDLInst != nullptr)
2346 NextModuleInst =
2347 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2348
2349 if (NextIDLInst && NextIDLInst != NextModuleInst)
2350 return false;
2351
2352 return true;
2353 }
2354
isCompatibleWithAlreadyOutlinedCode(const OutlinableRegion & Region)2355 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2356 const OutlinableRegion &Region) {
2357 IRSimilarityCandidate *IRSC = Region.Candidate;
2358 unsigned StartIdx = IRSC->getStartIdx();
2359 unsigned EndIdx = IRSC->getEndIdx();
2360
2361 // A check to make sure that we are not about to attempt to outline something
2362 // that has already been outlined.
2363 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2364 if (Outlined.contains(Idx))
2365 return false;
2366
2367 // We check if the recorded instruction matches the actual next instruction,
2368 // if it does not, we fix it in the InstructionDataList.
2369 if (!Region.Candidate->backInstruction()->isTerminator()) {
2370 Instruction *NewEndInst =
2371 Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2372 assert(NewEndInst && "Next instruction is a nullptr?");
2373 if (Region.Candidate->end()->Inst != NewEndInst) {
2374 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2375 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2376 IRInstructionData(*NewEndInst,
2377 InstructionClassifier.visit(*NewEndInst), *IDL);
2378
2379 // Insert the first IRInstructionData of the new region after the
2380 // last IRInstructionData of the IRSimilarityCandidate.
2381 IDL->insert(Region.Candidate->end(), *NewEndIRID);
2382 }
2383 }
2384
2385 return none_of(*IRSC, [this](IRInstructionData &ID) {
2386 if (!nextIRInstructionDataMatchesNextInst(ID))
2387 return true;
2388
2389 return !this->InstructionClassifier.visit(ID.Inst);
2390 });
2391 }
2392
pruneIncompatibleRegions(std::vector<IRSimilarityCandidate> & CandidateVec,OutlinableGroup & CurrentGroup)2393 void IROutliner::pruneIncompatibleRegions(
2394 std::vector<IRSimilarityCandidate> &CandidateVec,
2395 OutlinableGroup &CurrentGroup) {
2396 bool PreviouslyOutlined;
2397
2398 // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2399 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2400 const IRSimilarityCandidate &RHS) {
2401 return LHS.getStartIdx() < RHS.getStartIdx();
2402 });
2403
2404 IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2405 // Since outlining a call and a branch instruction will be the same as only
2406 // outlinining a call instruction, we ignore it as a space saving.
2407 if (FirstCandidate.getLength() == 2) {
2408 if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2409 isa<BranchInst>(FirstCandidate.back()->Inst))
2410 return;
2411 }
2412
2413 unsigned CurrentEndIdx = 0;
2414 for (IRSimilarityCandidate &IRSC : CandidateVec) {
2415 PreviouslyOutlined = false;
2416 unsigned StartIdx = IRSC.getStartIdx();
2417 unsigned EndIdx = IRSC.getEndIdx();
2418
2419 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2420 if (Outlined.contains(Idx)) {
2421 PreviouslyOutlined = true;
2422 break;
2423 }
2424
2425 if (PreviouslyOutlined)
2426 continue;
2427
2428 // Check over the instructions, and if the basic block has its address
2429 // taken for use somewhere else, we do not outline that block.
2430 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2431 return ID.Inst->getParent()->hasAddressTaken();
2432 });
2433
2434 if (BBHasAddressTaken)
2435 continue;
2436
2437 if (IRSC.getFunction()->hasOptNone())
2438 continue;
2439
2440 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2441 !OutlineFromLinkODRs)
2442 continue;
2443
2444 // Greedily prune out any regions that will overlap with already chosen
2445 // regions.
2446 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2447 continue;
2448
2449 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2450 if (!nextIRInstructionDataMatchesNextInst(ID))
2451 return true;
2452
2453 return !this->InstructionClassifier.visit(ID.Inst);
2454 });
2455
2456 if (BadInst)
2457 continue;
2458
2459 OutlinableRegion *OS = new (RegionAllocator.Allocate())
2460 OutlinableRegion(IRSC, CurrentGroup);
2461 CurrentGroup.Regions.push_back(OS);
2462
2463 CurrentEndIdx = EndIdx;
2464 }
2465 }
2466
2467 InstructionCost
findBenefitFromAllRegions(OutlinableGroup & CurrentGroup)2468 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2469 InstructionCost RegionBenefit = 0;
2470 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2471 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2472 // We add the number of instructions in the region to the benefit as an
2473 // estimate as to how much will be removed.
2474 RegionBenefit += Region->getBenefit(TTI);
2475 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2476 << " saved instructions to overfall benefit.\n");
2477 }
2478
2479 return RegionBenefit;
2480 }
2481
2482 /// For the \p OutputCanon number passed in find the value represented by this
2483 /// canonical number. If it is from a PHINode, we pick the first incoming
2484 /// value and return that Value instead.
2485 ///
2486 /// \param Region - The OutlinableRegion to get the Value from.
2487 /// \param OutputCanon - The canonical number to find the Value from.
2488 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2489 /// Region.
findOutputValueInRegion(OutlinableRegion & Region,unsigned OutputCanon)2490 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2491 unsigned OutputCanon) {
2492 OutlinableGroup &CurrentGroup = *Region.Parent;
2493 // If the value is greater than the value in the tracker, we have a
2494 // PHINode and will instead use one of the incoming values to find the
2495 // type.
2496 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2497 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2498 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2499 "Could not find GVN set for PHINode number!");
2500 assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2501 OutputCanon = *It->second.second.begin();
2502 }
2503 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
2504 assert(OGVN && "Could not find GVN for Canonical Number?");
2505 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2506 assert(OV && "Could not find value for GVN?");
2507 return *OV;
2508 }
2509
2510 InstructionCost
findCostOutputReloads(OutlinableGroup & CurrentGroup)2511 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2512 InstructionCost OverallCost = 0;
2513 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2514 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2515
2516 // Each output incurs a load after the call, so we add that to the cost.
2517 for (unsigned OutputCanon : Region->GVNStores) {
2518 Value *V = findOutputValueInRegion(*Region, OutputCanon);
2519 InstructionCost LoadCost =
2520 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2521 TargetTransformInfo::TCK_CodeSize);
2522
2523 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2524 << " instructions to cost for output of type "
2525 << *V->getType() << "\n");
2526 OverallCost += LoadCost;
2527 }
2528 }
2529
2530 return OverallCost;
2531 }
2532
2533 /// Find the extra instructions needed to handle any output values for the
2534 /// region.
2535 ///
2536 /// \param [in] M - The Module to outline from.
2537 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2538 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2539 /// new instruction costs.
2540 /// \returns the additional cost to handle the outputs.
findCostForOutputBlocks(Module & M,OutlinableGroup & CurrentGroup,TargetTransformInfo & TTI)2541 static InstructionCost findCostForOutputBlocks(Module &M,
2542 OutlinableGroup &CurrentGroup,
2543 TargetTransformInfo &TTI) {
2544 InstructionCost OutputCost = 0;
2545 unsigned NumOutputBranches = 0;
2546
2547 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2548 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2549 DenseSet<BasicBlock *> CandidateBlocks;
2550 Candidate.getBasicBlocks(CandidateBlocks);
2551
2552 // Count the number of different output branches that point to blocks outside
2553 // of the region.
2554 DenseSet<BasicBlock *> FoundBlocks;
2555 for (IRInstructionData &ID : Candidate) {
2556 if (!isa<BranchInst>(ID.Inst))
2557 continue;
2558
2559 for (Value *V : ID.OperVals) {
2560 BasicBlock *BB = static_cast<BasicBlock *>(V);
2561 if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2562 NumOutputBranches++;
2563 }
2564 }
2565
2566 CurrentGroup.BranchesToOutside = NumOutputBranches;
2567
2568 for (const ArrayRef<unsigned> &OutputUse :
2569 CurrentGroup.OutputGVNCombinations) {
2570 for (unsigned OutputCanon : OutputUse) {
2571 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2572 InstructionCost StoreCost =
2573 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2574 TargetTransformInfo::TCK_CodeSize);
2575
2576 // An instruction cost is added for each store set that needs to occur for
2577 // various output combinations inside the function, plus a branch to
2578 // return to the exit block.
2579 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2580 << " instructions to cost for output of type "
2581 << *V->getType() << "\n");
2582 OutputCost += StoreCost * NumOutputBranches;
2583 }
2584
2585 InstructionCost BranchCost =
2586 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2587 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2588 << " a branch instruction\n");
2589 OutputCost += BranchCost * NumOutputBranches;
2590 }
2591
2592 // If there is more than one output scheme, we must have a comparison and
2593 // branch for each different item in the switch statement.
2594 if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2595 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2596 Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2597 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2598 TargetTransformInfo::TCK_CodeSize);
2599 InstructionCost BranchCost =
2600 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2601
2602 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2603 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2604
2605 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2606 << " instructions for each switch case for each different"
2607 << " output path in a function\n");
2608 OutputCost += TotalCost * NumOutputBranches;
2609 }
2610
2611 return OutputCost;
2612 }
2613
findCostBenefit(Module & M,OutlinableGroup & CurrentGroup)2614 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2615 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2616 CurrentGroup.Benefit += RegionBenefit;
2617 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2618
2619 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2620 CurrentGroup.Cost += OutputReloadCost;
2621 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2622
2623 InstructionCost AverageRegionBenefit =
2624 RegionBenefit / CurrentGroup.Regions.size();
2625 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2626 unsigned NumRegions = CurrentGroup.Regions.size();
2627 TargetTransformInfo &TTI =
2628 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2629
2630 // We add one region to the cost once, to account for the instructions added
2631 // inside of the newly created function.
2632 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2633 << " instructions to cost for body of new function.\n");
2634 CurrentGroup.Cost += AverageRegionBenefit;
2635 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2636
2637 // For each argument, we must add an instruction for loading the argument
2638 // out of the register and into a value inside of the newly outlined function.
2639 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2640 << " instructions to cost for each argument in the new"
2641 << " function.\n");
2642 CurrentGroup.Cost +=
2643 OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2644 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2645
2646 // Each argument needs to either be loaded into a register or onto the stack.
2647 // Some arguments will only be loaded into the stack once the argument
2648 // registers are filled.
2649 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2650 << " instructions to cost for each argument in the new"
2651 << " function " << NumRegions << " times for the "
2652 << "needed argument handling at the call site.\n");
2653 CurrentGroup.Cost +=
2654 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2655 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2656
2657 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2658 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2659 }
2660
updateOutputMapping(OutlinableRegion & Region,ArrayRef<Value * > Outputs,LoadInst * LI)2661 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2662 ArrayRef<Value *> Outputs,
2663 LoadInst *LI) {
2664 // For and load instructions following the call
2665 Value *Operand = LI->getPointerOperand();
2666 Optional<unsigned> OutputIdx = None;
2667 // Find if the operand it is an output register.
2668 for (unsigned ArgIdx = Region.NumExtractedInputs;
2669 ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2670 if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2671 OutputIdx = ArgIdx - Region.NumExtractedInputs;
2672 break;
2673 }
2674 }
2675
2676 // If we found an output register, place a mapping of the new value
2677 // to the original in the mapping.
2678 if (!OutputIdx)
2679 return;
2680
2681 if (OutputMappings.find(Outputs[OutputIdx.value()]) == OutputMappings.end()) {
2682 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2683 << *Outputs[OutputIdx.value()] << "\n");
2684 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.value()]));
2685 } else {
2686 Value *Orig = OutputMappings.find(Outputs[OutputIdx.value()])->second;
2687 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2688 << *Outputs[OutputIdx.value()] << "\n");
2689 OutputMappings.insert(std::make_pair(LI, Orig));
2690 }
2691 }
2692
extractSection(OutlinableRegion & Region)2693 bool IROutliner::extractSection(OutlinableRegion &Region) {
2694 SetVector<Value *> ArgInputs, Outputs, SinkCands;
2695 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2696 BasicBlock *InitialStart = Region.StartBB;
2697 Function *OrigF = Region.StartBB->getParent();
2698 CodeExtractorAnalysisCache CEAC(*OrigF);
2699 Region.ExtractedFunction =
2700 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2701
2702 // If the extraction was successful, find the BasicBlock, and reassign the
2703 // OutlinableRegion blocks
2704 if (!Region.ExtractedFunction) {
2705 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2706 << "\n");
2707 Region.reattachCandidate();
2708 return false;
2709 }
2710
2711 // Get the block containing the called branch, and reassign the blocks as
2712 // necessary. If the original block still exists, it is because we ended on
2713 // a branch instruction, and so we move the contents into the block before
2714 // and assign the previous block correctly.
2715 User *InstAsUser = Region.ExtractedFunction->user_back();
2716 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2717 Region.PrevBB = RewrittenBB->getSinglePredecessor();
2718 assert(Region.PrevBB && "PrevBB is nullptr?");
2719 if (Region.PrevBB == InitialStart) {
2720 BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2721 Instruction *BI = NewPrev->getTerminator();
2722 BI->eraseFromParent();
2723 moveBBContents(*InitialStart, *NewPrev);
2724 Region.PrevBB = NewPrev;
2725 InitialStart->eraseFromParent();
2726 }
2727
2728 Region.StartBB = RewrittenBB;
2729 Region.EndBB = RewrittenBB;
2730
2731 // The sequences of outlinable regions has now changed. We must fix the
2732 // IRInstructionDataList for consistency. Although they may not be illegal
2733 // instructions, they should not be compared with anything else as they
2734 // should not be outlined in this round. So marking these as illegal is
2735 // allowed.
2736 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2737 Instruction *BeginRewritten = &*RewrittenBB->begin();
2738 Instruction *EndRewritten = &*RewrittenBB->begin();
2739 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2740 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2741 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2742 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2743
2744 // Insert the first IRInstructionData of the new region in front of the
2745 // first IRInstructionData of the IRSimilarityCandidate.
2746 IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2747 // Insert the first IRInstructionData of the new region after the
2748 // last IRInstructionData of the IRSimilarityCandidate.
2749 IDL->insert(Region.Candidate->end(), *Region.NewBack);
2750 // Remove the IRInstructionData from the IRSimilarityCandidate.
2751 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2752
2753 assert(RewrittenBB != nullptr &&
2754 "Could not find a predecessor after extraction!");
2755
2756 // Iterate over the new set of instructions to find the new call
2757 // instruction.
2758 for (Instruction &I : *RewrittenBB)
2759 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2760 if (Region.ExtractedFunction == CI->getCalledFunction())
2761 Region.Call = CI;
2762 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2763 updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2764 Region.reattachCandidate();
2765 return true;
2766 }
2767
doOutline(Module & M)2768 unsigned IROutliner::doOutline(Module &M) {
2769 // Find the possible similarity sections.
2770 InstructionClassifier.EnableBranches = !DisableBranches;
2771 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2772 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2773
2774 IRSimilarityIdentifier &Identifier = getIRSI(M);
2775 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2776
2777 // Sort them by size of extracted sections
2778 unsigned OutlinedFunctionNum = 0;
2779 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2780 // to sort them by the potential number of instructions to be outlined
2781 if (SimilarityCandidates.size() > 1)
2782 llvm::stable_sort(SimilarityCandidates,
2783 [](const std::vector<IRSimilarityCandidate> &LHS,
2784 const std::vector<IRSimilarityCandidate> &RHS) {
2785 return LHS[0].getLength() * LHS.size() >
2786 RHS[0].getLength() * RHS.size();
2787 });
2788 // Creating OutlinableGroups for each SimilarityCandidate to be used in
2789 // each of the following for loops to avoid making an allocator.
2790 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2791
2792 DenseSet<unsigned> NotSame;
2793 std::vector<OutlinableGroup *> NegativeCostGroups;
2794 std::vector<OutlinableRegion *> OutlinedRegions;
2795 // Iterate over the possible sets of similarity.
2796 unsigned PotentialGroupIdx = 0;
2797 for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2798 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2799
2800 // Remove entries that were previously outlined
2801 pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2802
2803 // We pruned the number of regions to 0 to 1, meaning that it's not worth
2804 // trying to outlined since there is no compatible similar instance of this
2805 // code.
2806 if (CurrentGroup.Regions.size() < 2)
2807 continue;
2808
2809 // Determine if there are any values that are the same constant throughout
2810 // each section in the set.
2811 NotSame.clear();
2812 CurrentGroup.findSameConstants(NotSame);
2813
2814 if (CurrentGroup.IgnoreGroup)
2815 continue;
2816
2817 // Create a CodeExtractor for each outlinable region. Identify inputs and
2818 // outputs for each section using the code extractor and create the argument
2819 // types for the Aggregate Outlining Function.
2820 OutlinedRegions.clear();
2821 for (OutlinableRegion *OS : CurrentGroup.Regions) {
2822 // Break the outlinable region out of its parent BasicBlock into its own
2823 // BasicBlocks (see function implementation).
2824 OS->splitCandidate();
2825
2826 // There's a chance that when the region is split, extra instructions are
2827 // added to the region. This makes the region no longer viable
2828 // to be split, so we ignore it for outlining.
2829 if (!OS->CandidateSplit)
2830 continue;
2831
2832 SmallVector<BasicBlock *> BE;
2833 DenseSet<BasicBlock *> BlocksInRegion;
2834 OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2835 OS->CE = new (ExtractorAllocator.Allocate())
2836 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2837 false, nullptr, "outlined");
2838 findAddInputsOutputs(M, *OS, NotSame);
2839 if (!OS->IgnoreRegion)
2840 OutlinedRegions.push_back(OS);
2841
2842 // We recombine the blocks together now that we have gathered all the
2843 // needed information.
2844 OS->reattachCandidate();
2845 }
2846
2847 CurrentGroup.Regions = std::move(OutlinedRegions);
2848
2849 if (CurrentGroup.Regions.empty())
2850 continue;
2851
2852 CurrentGroup.collectGVNStoreSets(M);
2853
2854 if (CostModel)
2855 findCostBenefit(M, CurrentGroup);
2856
2857 // If we are adhering to the cost model, skip those groups where the cost
2858 // outweighs the benefits.
2859 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2860 OptimizationRemarkEmitter &ORE =
2861 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2862 ORE.emit([&]() {
2863 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2864 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2865 C->frontInstruction());
2866 R << "did not outline "
2867 << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2868 << " regions due to estimated increase of "
2869 << ore::NV("InstructionIncrease",
2870 CurrentGroup.Cost - CurrentGroup.Benefit)
2871 << " instructions at locations ";
2872 interleave(
2873 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2874 [&R](OutlinableRegion *Region) {
2875 R << ore::NV(
2876 "DebugLoc",
2877 Region->Candidate->frontInstruction()->getDebugLoc());
2878 },
2879 [&R]() { R << " "; });
2880 return R;
2881 });
2882 continue;
2883 }
2884
2885 NegativeCostGroups.push_back(&CurrentGroup);
2886 }
2887
2888 ExtractorAllocator.DestroyAll();
2889
2890 if (NegativeCostGroups.size() > 1)
2891 stable_sort(NegativeCostGroups,
2892 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2893 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2894 });
2895
2896 std::vector<Function *> FuncsToRemove;
2897 for (OutlinableGroup *CG : NegativeCostGroups) {
2898 OutlinableGroup &CurrentGroup = *CG;
2899
2900 OutlinedRegions.clear();
2901 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2902 // We check whether our region is compatible with what has already been
2903 // outlined, and whether we need to ignore this item.
2904 if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2905 continue;
2906 OutlinedRegions.push_back(Region);
2907 }
2908
2909 if (OutlinedRegions.size() < 2)
2910 continue;
2911
2912 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2913 // we are still outlining enough regions to make up for the added cost.
2914 CurrentGroup.Regions = std::move(OutlinedRegions);
2915 if (CostModel) {
2916 CurrentGroup.Benefit = 0;
2917 CurrentGroup.Cost = 0;
2918 findCostBenefit(M, CurrentGroup);
2919 if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2920 continue;
2921 }
2922 OutlinedRegions.clear();
2923 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2924 Region->splitCandidate();
2925 if (!Region->CandidateSplit)
2926 continue;
2927 OutlinedRegions.push_back(Region);
2928 }
2929
2930 CurrentGroup.Regions = std::move(OutlinedRegions);
2931 if (CurrentGroup.Regions.size() < 2) {
2932 for (OutlinableRegion *R : CurrentGroup.Regions)
2933 R->reattachCandidate();
2934 continue;
2935 }
2936
2937 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2938 << " and benefit " << CurrentGroup.Benefit << "\n");
2939
2940 // Create functions out of all the sections, and mark them as outlined.
2941 OutlinedRegions.clear();
2942 for (OutlinableRegion *OS : CurrentGroup.Regions) {
2943 SmallVector<BasicBlock *> BE;
2944 DenseSet<BasicBlock *> BlocksInRegion;
2945 OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2946 OS->CE = new (ExtractorAllocator.Allocate())
2947 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2948 false, nullptr, "outlined");
2949 bool FunctionOutlined = extractSection(*OS);
2950 if (FunctionOutlined) {
2951 unsigned StartIdx = OS->Candidate->getStartIdx();
2952 unsigned EndIdx = OS->Candidate->getEndIdx();
2953 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2954 Outlined.insert(Idx);
2955
2956 OutlinedRegions.push_back(OS);
2957 }
2958 }
2959
2960 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2961 << " with benefit " << CurrentGroup.Benefit
2962 << " and cost " << CurrentGroup.Cost << "\n");
2963
2964 CurrentGroup.Regions = std::move(OutlinedRegions);
2965
2966 if (CurrentGroup.Regions.empty())
2967 continue;
2968
2969 OptimizationRemarkEmitter &ORE =
2970 getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2971 ORE.emit([&]() {
2972 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2973 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2974 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2975 << " regions with decrease of "
2976 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2977 << " instructions at locations ";
2978 interleave(
2979 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2980 [&R](OutlinableRegion *Region) {
2981 R << ore::NV("DebugLoc",
2982 Region->Candidate->frontInstruction()->getDebugLoc());
2983 },
2984 [&R]() { R << " "; });
2985 return R;
2986 });
2987
2988 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
2989 OutlinedFunctionNum);
2990 }
2991
2992 for (Function *F : FuncsToRemove)
2993 F->eraseFromParent();
2994
2995 return OutlinedFunctionNum;
2996 }
2997
run(Module & M)2998 bool IROutliner::run(Module &M) {
2999 CostModel = !NoCostModel;
3000 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3001
3002 return doOutline(M) > 0;
3003 }
3004
3005 // Pass Manager Boilerplate
3006 namespace {
3007 class IROutlinerLegacyPass : public ModulePass {
3008 public:
3009 static char ID;
IROutlinerLegacyPass()3010 IROutlinerLegacyPass() : ModulePass(ID) {
3011 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
3012 }
3013
getAnalysisUsage(AnalysisUsage & AU) const3014 void getAnalysisUsage(AnalysisUsage &AU) const override {
3015 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3016 AU.addRequired<TargetTransformInfoWrapperPass>();
3017 AU.addRequired<IRSimilarityIdentifierWrapperPass>();
3018 }
3019
3020 bool runOnModule(Module &M) override;
3021 };
3022 } // namespace
3023
runOnModule(Module & M)3024 bool IROutlinerLegacyPass::runOnModule(Module &M) {
3025 if (skipModule(M))
3026 return false;
3027
3028 std::unique_ptr<OptimizationRemarkEmitter> ORE;
3029 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3030 ORE.reset(new OptimizationRemarkEmitter(&F));
3031 return *ORE;
3032 };
3033
3034 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
3035 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3036 };
3037
3038 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
3039 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
3040 };
3041
3042 return IROutliner(GTTI, GIRSI, GORE).run(M);
3043 }
3044
run(Module & M,ModuleAnalysisManager & AM)3045 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3046 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3047
3048 std::function<TargetTransformInfo &(Function &)> GTTI =
3049 [&FAM](Function &F) -> TargetTransformInfo & {
3050 return FAM.getResult<TargetIRAnalysis>(F);
3051 };
3052
3053 std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3054 [&AM](Module &M) -> IRSimilarityIdentifier & {
3055 return AM.getResult<IRSimilarityAnalysis>(M);
3056 };
3057
3058 std::unique_ptr<OptimizationRemarkEmitter> ORE;
3059 std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3060 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3061 ORE.reset(new OptimizationRemarkEmitter(&F));
3062 return *ORE;
3063 };
3064
3065 if (IROutliner(GTTI, GIRSI, GORE).run(M))
3066 return PreservedAnalyses::none();
3067 return PreservedAnalyses::all();
3068 }
3069
3070 char IROutlinerLegacyPass::ID = 0;
3071 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3072 false)
INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)3073 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
3074 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3075 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3076 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3077 false)
3078
3079 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
3080