1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 #define DEBUG_TYPE "iroutliner" 33 34 using namespace llvm; 35 using namespace IRSimilarity; 36 37 // A command flag to be used for debugging to exclude branches from similarity 38 // matching and outlining. 39 namespace llvm { 40 extern cl::opt<bool> DisableBranches; 41 42 // A command flag to be used for debugging to indirect calls from similarity 43 // matching and outlining. 44 extern cl::opt<bool> DisableIndirectCalls; 45 46 // A command flag to be used for debugging to exclude intrinsics from similarity 47 // matching and outlining. 48 extern cl::opt<bool> DisableIntrinsics; 49 50 } // namespace llvm 51 52 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 53 // functions. This is false by default because the linker can dedupe linkonceodr 54 // functions. Since the outliner is confined to a single module (modulo LTO), 55 // this is off by default. It should, however, be the default behavior in 56 // LTO. 57 static cl::opt<bool> EnableLinkOnceODRIROutlining( 58 "enable-linkonceodr-ir-outlining", cl::Hidden, 59 cl::desc("Enable the IR outliner on linkonceodr functions"), 60 cl::init(false)); 61 62 // This is a debug option to test small pieces of code to ensure that outlining 63 // works correctly. 64 static cl::opt<bool> NoCostModel( 65 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 66 cl::desc("Debug option to outline greedily, without restriction that " 67 "calculated benefit outweighs cost")); 68 69 /// The OutlinableGroup holds all the overarching information for outlining 70 /// a set of regions that are structurally similar to one another, such as the 71 /// types of the overall function, the output blocks, the sets of stores needed 72 /// and a list of the different regions. This information is used in the 73 /// deduplication of extracted regions with the same structure. 74 struct OutlinableGroup { 75 /// The sections that could be outlined 76 std::vector<OutlinableRegion *> Regions; 77 78 /// The argument types for the function created as the overall function to 79 /// replace the extracted function for each region. 80 std::vector<Type *> ArgumentTypes; 81 /// The FunctionType for the overall function. 82 FunctionType *OutlinedFunctionType = nullptr; 83 /// The Function for the collective overall function. 84 Function *OutlinedFunction = nullptr; 85 86 /// Flag for whether we should not consider this group of OutlinableRegions 87 /// for extraction. 88 bool IgnoreGroup = false; 89 90 /// The return blocks for the overall function. 91 DenseMap<Value *, BasicBlock *> EndBBs; 92 93 /// The PHIBlocks with their corresponding return block based on the return 94 /// value as the key. 95 DenseMap<Value *, BasicBlock *> PHIBlocks; 96 97 /// A set containing the different GVN store sets needed. Each array contains 98 /// a sorted list of the different values that need to be stored into output 99 /// registers. 100 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 101 102 /// Flag for whether the \ref ArgumentTypes have been defined after the 103 /// extraction of the first region. 104 bool InputTypesSet = false; 105 106 /// The number of input values in \ref ArgumentTypes. Anything after this 107 /// index in ArgumentTypes is an output argument. 108 unsigned NumAggregateInputs = 0; 109 110 /// The mapping of the canonical numbering of the values in outlined sections 111 /// to specific arguments. 112 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 113 114 /// The number of branches in the region target a basic block that is outside 115 /// of the region. 116 unsigned BranchesToOutside = 0; 117 118 /// Tracker counting backwards from the highest unsigned value possible to 119 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 120 /// -2 and -1 are assigned by the DenseMap. 121 unsigned PHINodeGVNTracker = -3; 122 123 DenseMap<unsigned, 124 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 125 PHINodeGVNToGVNs; 126 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 127 128 /// The number of instructions that will be outlined by extracting \ref 129 /// Regions. 130 InstructionCost Benefit = 0; 131 /// The number of added instructions needed for the outlining of the \ref 132 /// Regions. 133 InstructionCost Cost = 0; 134 135 /// The argument that needs to be marked with the swifterr attribute. If not 136 /// needed, there is no value. 137 Optional<unsigned> SwiftErrorArgument; 138 139 /// For the \ref Regions, we look at every Value. If it is a constant, 140 /// we check whether it is the same in Region. 141 /// 142 /// \param [in,out] NotSame contains the global value numbers where the 143 /// constant is not always the same, and must be passed in as an argument. 144 void findSameConstants(DenseSet<unsigned> &NotSame); 145 146 /// For the regions, look at each set of GVN stores needed and account for 147 /// each combination. Add an argument to the argument types if there is 148 /// more than one combination. 149 /// 150 /// \param [in] M - The module we are outlining from. 151 void collectGVNStoreSets(Module &M); 152 }; 153 154 /// Move the contents of \p SourceBB to before the last instruction of \p 155 /// TargetBB. 156 /// \param SourceBB - the BasicBlock to pull Instructions from. 157 /// \param TargetBB - the BasicBlock to put Instruction into. 158 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 159 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 160 I.moveBefore(TargetBB, TargetBB.end()); 161 } 162 163 /// A function to sort the keys of \p Map, which must be a mapping of constant 164 /// values to basic blocks and return it in \p SortedKeys 165 /// 166 /// \param SortedKeys - The vector the keys will be return in and sorted. 167 /// \param Map - The DenseMap containing keys to sort. 168 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 169 DenseMap<Value *, BasicBlock *> &Map) { 170 for (auto &VtoBB : Map) 171 SortedKeys.push_back(VtoBB.first); 172 173 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 174 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 175 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 176 assert(RHSC && "Not a constant integer in return value?"); 177 assert(LHSC && "Not a constant integer in return value?"); 178 179 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 180 }); 181 } 182 183 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 184 Value *V) { 185 Optional<unsigned> GVN = Candidate->getGVN(V); 186 assert(GVN.hasValue() && "No GVN for incoming value"); 187 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 188 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 189 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 190 return FoundValueOpt.getValueOr(nullptr); 191 } 192 193 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 194 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 195 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 196 /// when PHINodes are included in outlined regions. 197 /// 198 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 199 /// checked. 200 /// \param Find - The successor block to be replaced. 201 /// \param Replace - The new succesor block to branch to. 202 /// \param Included - The set of blocks about to be outlined. 203 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 204 BasicBlock *Replace, 205 DenseSet<BasicBlock *> &Included) { 206 for (PHINode &PN : PHIBlock->phis()) { 207 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 208 ++Idx) { 209 // Check if the incoming block is included in the set of blocks being 210 // outlined. 211 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 212 if (!Included.contains(Incoming)) 213 continue; 214 215 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 216 assert(BI && "Not a branch instruction?"); 217 // Look over the branching instructions into this block to see if we 218 // used to branch to Find in this outlined block. 219 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 220 Succ++) { 221 // If we have found the block to replace, we do so here. 222 if (BI->getSuccessor(Succ) != Find) 223 continue; 224 BI->setSuccessor(Succ, Replace); 225 } 226 } 227 } 228 } 229 230 231 void OutlinableRegion::splitCandidate() { 232 assert(!CandidateSplit && "Candidate already split!"); 233 234 Instruction *BackInst = Candidate->backInstruction(); 235 236 Instruction *EndInst = nullptr; 237 // Check whether the last instruction is a terminator, if it is, we do 238 // not split on the following instruction. We leave the block as it is. We 239 // also check that this is not the last instruction in the Module, otherwise 240 // the check for whether the current following instruction matches the 241 // previously recorded instruction will be incorrect. 242 if (!BackInst->isTerminator() || 243 BackInst->getParent() != &BackInst->getFunction()->back()) { 244 EndInst = Candidate->end()->Inst; 245 assert(EndInst && "Expected an end instruction?"); 246 } 247 248 // We check if the current instruction following the last instruction in the 249 // region is the same as the recorded instruction following the last 250 // instruction. If they do not match, there could be problems in rewriting 251 // the program after outlining, so we ignore it. 252 if (!BackInst->isTerminator() && 253 EndInst != BackInst->getNextNonDebugInstruction()) 254 return; 255 256 Instruction *StartInst = (*Candidate->begin()).Inst; 257 assert(StartInst && "Expected a start instruction?"); 258 StartBB = StartInst->getParent(); 259 PrevBB = StartBB; 260 261 DenseSet<BasicBlock *> BBSet; 262 Candidate->getBasicBlocks(BBSet); 263 264 // We iterate over the instructions in the region, if we find a PHINode, we 265 // check if there are predecessors outside of the region, if there are, 266 // we ignore this region since we are unable to handle the severing of the 267 // phi node right now. 268 BasicBlock::iterator It = StartInst->getIterator(); 269 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 270 unsigned NumPredsOutsideRegion = 0; 271 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 272 if (!BBSet.contains(PN->getIncomingBlock(i))) 273 ++NumPredsOutsideRegion; 274 275 if (NumPredsOutsideRegion > 1) 276 return; 277 278 It++; 279 } 280 281 // If the region starts with a PHINode, but is not the initial instruction of 282 // the BasicBlock, we ignore this region for now. 283 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 284 return; 285 286 // If the region ends with a PHINode, but does not contain all of the phi node 287 // instructions of the region, we ignore it for now. 288 if (isa<PHINode>(BackInst)) { 289 EndBB = BackInst->getParent(); 290 if (BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 291 return; 292 } 293 294 // The basic block gets split like so: 295 // block: block: 296 // inst1 inst1 297 // inst2 inst2 298 // region1 br block_to_outline 299 // region2 block_to_outline: 300 // region3 -> region1 301 // region4 region2 302 // inst3 region3 303 // inst4 region4 304 // br block_after_outline 305 // block_after_outline: 306 // inst3 307 // inst4 308 309 std::string OriginalName = PrevBB->getName().str(); 310 311 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 312 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 313 314 CandidateSplit = true; 315 if (!BackInst->isTerminator()) { 316 EndBB = EndInst->getParent(); 317 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 318 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 319 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 320 } else { 321 EndBB = BackInst->getParent(); 322 EndsInBranch = true; 323 FollowBB = nullptr; 324 } 325 326 // Refind the basic block set. 327 BBSet.clear(); 328 Candidate->getBasicBlocks(BBSet); 329 // For the phi nodes in the new starting basic block of the region, we 330 // reassign the targets of the basic blocks branching instructions. 331 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 332 if (FollowBB) 333 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 334 } 335 336 void OutlinableRegion::reattachCandidate() { 337 assert(CandidateSplit && "Candidate is not split!"); 338 339 // The basic block gets reattached like so: 340 // block: block: 341 // inst1 inst1 342 // inst2 inst2 343 // br block_to_outline region1 344 // block_to_outline: -> region2 345 // region1 region3 346 // region2 region4 347 // region3 inst3 348 // region4 inst4 349 // br block_after_outline 350 // block_after_outline: 351 // inst3 352 // inst4 353 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 354 355 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 356 PrevBB->getTerminator()->eraseFromParent(); 357 358 // If we reattaching after outlining, we iterate over the phi nodes to 359 // the initial block, and reassign the branch instructions of the incoming 360 // blocks to the block we are remerging into. 361 if (!ExtractedFunction) { 362 DenseSet<BasicBlock *> BBSet; 363 Candidate->getBasicBlocks(BBSet); 364 365 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 366 if (!EndsInBranch) 367 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 368 } 369 370 moveBBContents(*StartBB, *PrevBB); 371 372 BasicBlock *PlacementBB = PrevBB; 373 if (StartBB != EndBB) 374 PlacementBB = EndBB; 375 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 376 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 377 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 378 PlacementBB->getTerminator()->eraseFromParent(); 379 moveBBContents(*FollowBB, *PlacementBB); 380 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 381 FollowBB->eraseFromParent(); 382 } 383 384 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 385 StartBB->eraseFromParent(); 386 387 // Make sure to save changes back to the StartBB. 388 StartBB = PrevBB; 389 EndBB = nullptr; 390 PrevBB = nullptr; 391 FollowBB = nullptr; 392 393 CandidateSplit = false; 394 } 395 396 /// Find whether \p V matches the Constants previously found for the \p GVN. 397 /// 398 /// \param V - The value to check for consistency. 399 /// \param GVN - The global value number assigned to \p V. 400 /// \param GVNToConstant - The mapping of global value number to Constants. 401 /// \returns true if the Value matches the Constant mapped to by V and false if 402 /// it \p V is a Constant but does not match. 403 /// \returns None if \p V is not a Constant. 404 static Optional<bool> 405 constantMatches(Value *V, unsigned GVN, 406 DenseMap<unsigned, Constant *> &GVNToConstant) { 407 // See if we have a constants 408 Constant *CST = dyn_cast<Constant>(V); 409 if (!CST) 410 return None; 411 412 // Holds a mapping from a global value number to a Constant. 413 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 414 bool Inserted; 415 416 417 // If we have a constant, try to make a new entry in the GVNToConstant. 418 std::tie(GVNToConstantIt, Inserted) = 419 GVNToConstant.insert(std::make_pair(GVN, CST)); 420 // If it was found and is not equal, it is not the same. We do not 421 // handle this case yet, and exit early. 422 if (Inserted || (GVNToConstantIt->second == CST)) 423 return true; 424 425 return false; 426 } 427 428 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 429 InstructionCost Benefit = 0; 430 431 // Estimate the benefit of outlining a specific sections of the program. We 432 // delegate mostly this task to the TargetTransformInfo so that if the target 433 // has specific changes, we can have a more accurate estimate. 434 435 // However, getInstructionCost delegates the code size calculation for 436 // arithmetic instructions to getArithmeticInstrCost in 437 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 438 // code size for a division and remainder instruction to be equal to 4, and 439 // everything else to 1. This is not an accurate representation of the 440 // division instruction for targets that have a native division instruction. 441 // To be overly conservative, we only add 1 to the number of instructions for 442 // each division instruction. 443 for (IRInstructionData &ID : *Candidate) { 444 Instruction *I = ID.Inst; 445 switch (I->getOpcode()) { 446 case Instruction::FDiv: 447 case Instruction::FRem: 448 case Instruction::SDiv: 449 case Instruction::SRem: 450 case Instruction::UDiv: 451 case Instruction::URem: 452 Benefit += 1; 453 break; 454 default: 455 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 456 break; 457 } 458 } 459 460 return Benefit; 461 } 462 463 /// Check the \p OutputMappings structure for value \p Input, if it exists 464 /// it has been used as an output for outlining, and has been renamed, and we 465 /// return the new value, otherwise, we return the same value. 466 /// 467 /// \param OutputMappings [in] - The mapping of values to their renamed value 468 /// after being used as an output for an outlined region. 469 /// \param Input [in] - The value to find the remapped value of, if it exists. 470 /// \return The remapped value if it has been renamed, and the same value if has 471 /// not. 472 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 473 Value *Input) { 474 DenseMap<Value *, Value *>::const_iterator OutputMapping = 475 OutputMappings.find(Input); 476 if (OutputMapping != OutputMappings.end()) 477 return OutputMapping->second; 478 return Input; 479 } 480 481 /// Find whether \p Region matches the global value numbering to Constant 482 /// mapping found so far. 483 /// 484 /// \param Region - The OutlinableRegion we are checking for constants 485 /// \param GVNToConstant - The mapping of global value number to Constants. 486 /// \param NotSame - The set of global value numbers that do not have the same 487 /// constant in each region. 488 /// \returns true if all Constants are the same in every use of a Constant in \p 489 /// Region and false if not 490 static bool 491 collectRegionsConstants(OutlinableRegion &Region, 492 DenseMap<unsigned, Constant *> &GVNToConstant, 493 DenseSet<unsigned> &NotSame) { 494 bool ConstantsTheSame = true; 495 496 IRSimilarityCandidate &C = *Region.Candidate; 497 for (IRInstructionData &ID : C) { 498 499 // Iterate over the operands in an instruction. If the global value number, 500 // assigned by the IRSimilarityCandidate, has been seen before, we check if 501 // the the number has been found to be not the same value in each instance. 502 for (Value *V : ID.OperVals) { 503 Optional<unsigned> GVNOpt = C.getGVN(V); 504 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 505 unsigned GVN = GVNOpt.getValue(); 506 507 // Check if this global value has been found to not be the same already. 508 if (NotSame.contains(GVN)) { 509 if (isa<Constant>(V)) 510 ConstantsTheSame = false; 511 continue; 512 } 513 514 // If it has been the same so far, we check the value for if the 515 // associated Constant value match the previous instances of the same 516 // global value number. If the global value does not map to a Constant, 517 // it is considered to not be the same value. 518 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 519 if (ConstantMatches.hasValue()) { 520 if (ConstantMatches.getValue()) 521 continue; 522 else 523 ConstantsTheSame = false; 524 } 525 526 // While this value is a register, it might not have been previously, 527 // make sure we don't already have a constant mapped to this global value 528 // number. 529 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 530 ConstantsTheSame = false; 531 532 NotSame.insert(GVN); 533 } 534 } 535 536 return ConstantsTheSame; 537 } 538 539 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 540 DenseMap<unsigned, Constant *> GVNToConstant; 541 542 for (OutlinableRegion *Region : Regions) 543 collectRegionsConstants(*Region, GVNToConstant, NotSame); 544 } 545 546 void OutlinableGroup::collectGVNStoreSets(Module &M) { 547 for (OutlinableRegion *OS : Regions) 548 OutputGVNCombinations.insert(OS->GVNStores); 549 550 // We are adding an extracted argument to decide between which output path 551 // to use in the basic block. It is used in a switch statement and only 552 // needs to be an integer. 553 if (OutputGVNCombinations.size() > 1) 554 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 555 } 556 557 /// Get the subprogram if it exists for one of the outlined regions. 558 /// 559 /// \param [in] Group - The set of regions to find a subprogram for. 560 /// \returns the subprogram if it exists, or nullptr. 561 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 562 for (OutlinableRegion *OS : Group.Regions) 563 if (Function *F = OS->Call->getFunction()) 564 if (DISubprogram *SP = F->getSubprogram()) 565 return SP; 566 567 return nullptr; 568 } 569 570 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 571 unsigned FunctionNameSuffix) { 572 assert(!Group.OutlinedFunction && "Function is already defined!"); 573 574 Type *RetTy = Type::getVoidTy(M.getContext()); 575 // All extracted functions _should_ have the same return type at this point 576 // since the similarity identifier ensures that all branches outside of the 577 // region occur in the same place. 578 579 // NOTE: Should we ever move to the model that uses a switch at every point 580 // needed, meaning that we could branch within the region or out, it is 581 // possible that we will need to switch to using the most general case all of 582 // the time. 583 for (OutlinableRegion *R : Group.Regions) { 584 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 585 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 586 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 587 RetTy = ExtractedFuncType; 588 } 589 590 Group.OutlinedFunctionType = FunctionType::get( 591 RetTy, Group.ArgumentTypes, false); 592 593 // These functions will only be called from within the same module, so 594 // we can set an internal linkage. 595 Group.OutlinedFunction = Function::Create( 596 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 597 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 598 599 // Transfer the swifterr attribute to the correct function parameter. 600 if (Group.SwiftErrorArgument.hasValue()) 601 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 602 Attribute::SwiftError); 603 604 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 605 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 606 607 // If there's a DISubprogram associated with this outlined function, then 608 // emit debug info for the outlined function. 609 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 610 Function *F = Group.OutlinedFunction; 611 // We have a DISubprogram. Get its DICompileUnit. 612 DICompileUnit *CU = SP->getUnit(); 613 DIBuilder DB(M, true, CU); 614 DIFile *Unit = SP->getFile(); 615 Mangler Mg; 616 // Get the mangled name of the function for the linkage name. 617 std::string Dummy; 618 llvm::raw_string_ostream MangledNameStream(Dummy); 619 Mg.getNameWithPrefix(MangledNameStream, F, false); 620 621 DISubprogram *OutlinedSP = DB.createFunction( 622 Unit /* Context */, F->getName(), MangledNameStream.str(), 623 Unit /* File */, 624 0 /* Line 0 is reserved for compiler-generated code. */, 625 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 626 0, /* Line 0 is reserved for compiler-generated code. */ 627 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 628 /* Outlined code is optimized code by definition. */ 629 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 630 631 // Don't add any new variables to the subprogram. 632 DB.finalizeSubprogram(OutlinedSP); 633 634 // Attach subprogram to the function. 635 F->setSubprogram(OutlinedSP); 636 // We're done with the DIBuilder. 637 DB.finalize(); 638 } 639 640 return Group.OutlinedFunction; 641 } 642 643 /// Move each BasicBlock in \p Old to \p New. 644 /// 645 /// \param [in] Old - The function to move the basic blocks from. 646 /// \param [in] New - The function to move the basic blocks to. 647 /// \param [out] NewEnds - The return blocks of the new overall function. 648 static void moveFunctionData(Function &Old, Function &New, 649 DenseMap<Value *, BasicBlock *> &NewEnds) { 650 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 651 CurrBB.removeFromParent(); 652 CurrBB.insertInto(&New); 653 Instruction *I = CurrBB.getTerminator(); 654 655 // For each block we find a return instruction is, it is a potential exit 656 // path for the function. We keep track of each block based on the return 657 // value here. 658 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 659 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 660 661 std::vector<Instruction *> DebugInsts; 662 663 for (Instruction &Val : CurrBB) { 664 // We must handle the scoping of called functions differently than 665 // other outlined instructions. 666 if (!isa<CallInst>(&Val)) { 667 // Remove the debug information for outlined functions. 668 Val.setDebugLoc(DebugLoc()); 669 continue; 670 } 671 672 // From this point we are only handling call instructions. 673 CallInst *CI = cast<CallInst>(&Val); 674 675 // We add any debug statements here, to be removed after. Since the 676 // instructions originate from many different locations in the program, 677 // it will cause incorrect reporting from a debugger if we keep the 678 // same debug instructions. 679 if (isa<DbgInfoIntrinsic>(CI)) { 680 DebugInsts.push_back(&Val); 681 continue; 682 } 683 684 // Edit the scope of called functions inside of outlined functions. 685 if (DISubprogram *SP = New.getSubprogram()) { 686 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 687 Val.setDebugLoc(DI); 688 } 689 } 690 691 for (Instruction *I : DebugInsts) 692 I->eraseFromParent(); 693 } 694 695 assert(NewEnds.size() > 0 && "No return instruction for new function?"); 696 } 697 698 /// Find the the constants that will need to be lifted into arguments 699 /// as they are not the same in each instance of the region. 700 /// 701 /// \param [in] C - The IRSimilarityCandidate containing the region we are 702 /// analyzing. 703 /// \param [in] NotSame - The set of global value numbers that do not have a 704 /// single Constant across all OutlinableRegions similar to \p C. 705 /// \param [out] Inputs - The list containing the global value numbers of the 706 /// arguments needed for the region of code. 707 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 708 std::vector<unsigned> &Inputs) { 709 DenseSet<unsigned> Seen; 710 // Iterate over the instructions, and find what constants will need to be 711 // extracted into arguments. 712 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 713 IDIt != EndIDIt; IDIt++) { 714 for (Value *V : (*IDIt).OperVals) { 715 // Since these are stored before any outlining, they will be in the 716 // global value numbering. 717 unsigned GVN = C.getGVN(V).getValue(); 718 if (isa<Constant>(V)) 719 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 720 Inputs.push_back(GVN); 721 Seen.insert(GVN); 722 } 723 } 724 } 725 } 726 727 /// Find the GVN for the inputs that have been found by the CodeExtractor. 728 /// 729 /// \param [in] C - The IRSimilarityCandidate containing the region we are 730 /// analyzing. 731 /// \param [in] CurrentInputs - The set of inputs found by the 732 /// CodeExtractor. 733 /// \param [in] OutputMappings - The mapping of values that have been replaced 734 /// by a new output value. 735 /// \param [out] EndInputNumbers - The global value numbers for the extracted 736 /// arguments. 737 static void mapInputsToGVNs(IRSimilarityCandidate &C, 738 SetVector<Value *> &CurrentInputs, 739 const DenseMap<Value *, Value *> &OutputMappings, 740 std::vector<unsigned> &EndInputNumbers) { 741 // Get the Global Value Number for each input. We check if the Value has been 742 // replaced by a different value at output, and use the original value before 743 // replacement. 744 for (Value *Input : CurrentInputs) { 745 assert(Input && "Have a nullptr as an input"); 746 if (OutputMappings.find(Input) != OutputMappings.end()) 747 Input = OutputMappings.find(Input)->second; 748 assert(C.getGVN(Input).hasValue() && 749 "Could not find a numbering for the given input"); 750 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 751 } 752 } 753 754 /// Find the original value for the \p ArgInput values if any one of them was 755 /// replaced during a previous extraction. 756 /// 757 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 758 /// \param [in] OutputMappings - The mapping of values that have been replaced 759 /// by a new output value. 760 /// \param [out] RemappedArgInputs - The remapped values according to 761 /// \p OutputMappings that will be extracted. 762 static void 763 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 764 const DenseMap<Value *, Value *> &OutputMappings, 765 SetVector<Value *> &RemappedArgInputs) { 766 // Get the global value number for each input that will be extracted as an 767 // argument by the code extractor, remapping if needed for reloaded values. 768 for (Value *Input : ArgInputs) { 769 if (OutputMappings.find(Input) != OutputMappings.end()) 770 Input = OutputMappings.find(Input)->second; 771 RemappedArgInputs.insert(Input); 772 } 773 } 774 775 /// Find the input GVNs and the output values for a region of Instructions. 776 /// Using the code extractor, we collect the inputs to the extracted function. 777 /// 778 /// The \p Region can be identified as needing to be ignored in this function. 779 /// It should be checked whether it should be ignored after a call to this 780 /// function. 781 /// 782 /// \param [in,out] Region - The region of code to be analyzed. 783 /// \param [out] InputGVNs - The global value numbers for the extracted 784 /// arguments. 785 /// \param [in] NotSame - The global value numbers in the region that do not 786 /// have the same constant value in the regions structurally similar to 787 /// \p Region. 788 /// \param [in] OutputMappings - The mapping of values that have been replaced 789 /// by a new output value after extraction. 790 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 791 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 792 /// as outputs. 793 static void getCodeExtractorArguments( 794 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 795 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 796 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 797 IRSimilarityCandidate &C = *Region.Candidate; 798 799 // OverallInputs are the inputs to the region found by the CodeExtractor, 800 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 801 // allocas of values whose lifetimes are contained completely within the 802 // outlined region. PremappedInputs are the arguments found by the 803 // CodeExtractor, removing conditions such as sunken allocas, but that 804 // may need to be remapped due to the extracted output values replacing 805 // the original values. We use DummyOutputs for this first run of finding 806 // inputs and outputs since the outputs could change during findAllocas, 807 // the correct set of extracted outputs will be in the final Outputs ValueSet. 808 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 809 DummyOutputs; 810 811 // Use the code extractor to get the inputs and outputs, without sunken 812 // allocas or removing llvm.assumes. 813 CodeExtractor *CE = Region.CE; 814 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 815 assert(Region.StartBB && "Region must have a start BasicBlock!"); 816 Function *OrigF = Region.StartBB->getParent(); 817 CodeExtractorAnalysisCache CEAC(*OrigF); 818 BasicBlock *Dummy = nullptr; 819 820 // The region may be ineligible due to VarArgs in the parent function. In this 821 // case we ignore the region. 822 if (!CE->isEligible()) { 823 Region.IgnoreRegion = true; 824 return; 825 } 826 827 // Find if any values are going to be sunk into the function when extracted 828 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 829 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 830 831 // TODO: Support regions with sunken allocas: values whose lifetimes are 832 // contained completely within the outlined region. These are not guaranteed 833 // to be the same in every region, so we must elevate them all to arguments 834 // when they appear. If these values are not equal, it means there is some 835 // Input in OverallInputs that was removed for ArgInputs. 836 if (OverallInputs.size() != PremappedInputs.size()) { 837 Region.IgnoreRegion = true; 838 return; 839 } 840 841 findConstants(C, NotSame, InputGVNs); 842 843 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 844 845 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 846 ArgInputs); 847 848 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 849 // we need to make sure they are in a deterministic order. 850 stable_sort(InputGVNs); 851 } 852 853 /// Look over the inputs and map each input argument to an argument in the 854 /// overall function for the OutlinableRegions. This creates a way to replace 855 /// the arguments of the extracted function with the arguments of the new 856 /// overall function. 857 /// 858 /// \param [in,out] Region - The region of code to be analyzed. 859 /// \param [in] InputGVNs - The global value numbering of the input values 860 /// collected. 861 /// \param [in] ArgInputs - The values of the arguments to the extracted 862 /// function. 863 static void 864 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 865 std::vector<unsigned> &InputGVNs, 866 SetVector<Value *> &ArgInputs) { 867 868 IRSimilarityCandidate &C = *Region.Candidate; 869 OutlinableGroup &Group = *Region.Parent; 870 871 // This counts the argument number in the overall function. 872 unsigned TypeIndex = 0; 873 874 // This counts the argument number in the extracted function. 875 unsigned OriginalIndex = 0; 876 877 // Find the mapping of the extracted arguments to the arguments for the 878 // overall function. Since there may be extra arguments in the overall 879 // function to account for the extracted constants, we have two different 880 // counters as we find extracted arguments, and as we come across overall 881 // arguments. 882 883 // Additionally, in our first pass, for the first extracted function, 884 // we find argument locations for the canonical value numbering. This 885 // numbering overrides any discovered location for the extracted code. 886 for (unsigned InputVal : InputGVNs) { 887 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 888 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 889 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 890 891 Optional<Value *> InputOpt = C.fromGVN(InputVal); 892 assert(InputOpt.hasValue() && "Global value number not found?"); 893 Value *Input = InputOpt.getValue(); 894 895 DenseMap<unsigned, unsigned>::iterator AggArgIt = 896 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 897 898 if (!Group.InputTypesSet) { 899 Group.ArgumentTypes.push_back(Input->getType()); 900 // If the input value has a swifterr attribute, make sure to mark the 901 // argument in the overall function. 902 if (Input->isSwiftError()) { 903 assert( 904 !Group.SwiftErrorArgument.hasValue() && 905 "Argument already marked with swifterr for this OutlinableGroup!"); 906 Group.SwiftErrorArgument = TypeIndex; 907 } 908 } 909 910 // Check if we have a constant. If we do add it to the overall argument 911 // number to Constant map for the region, and continue to the next input. 912 if (Constant *CST = dyn_cast<Constant>(Input)) { 913 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 914 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 915 else { 916 Group.CanonicalNumberToAggArg.insert( 917 std::make_pair(CanonicalNumber, TypeIndex)); 918 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 919 } 920 TypeIndex++; 921 continue; 922 } 923 924 // It is not a constant, we create the mapping from extracted argument list 925 // to the overall argument list, using the canonical location, if it exists. 926 assert(ArgInputs.count(Input) && "Input cannot be found!"); 927 928 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 929 if (OriginalIndex != AggArgIt->second) 930 Region.ChangedArgOrder = true; 931 Region.ExtractedArgToAgg.insert( 932 std::make_pair(OriginalIndex, AggArgIt->second)); 933 Region.AggArgToExtracted.insert( 934 std::make_pair(AggArgIt->second, OriginalIndex)); 935 } else { 936 Group.CanonicalNumberToAggArg.insert( 937 std::make_pair(CanonicalNumber, TypeIndex)); 938 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 939 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 940 } 941 OriginalIndex++; 942 TypeIndex++; 943 } 944 945 // If the function type definitions for the OutlinableGroup holding the region 946 // have not been set, set the length of the inputs here. We should have the 947 // same inputs for all of the different regions contained in the 948 // OutlinableGroup since they are all structurally similar to one another. 949 if (!Group.InputTypesSet) { 950 Group.NumAggregateInputs = TypeIndex; 951 Group.InputTypesSet = true; 952 } 953 954 Region.NumExtractedInputs = OriginalIndex; 955 } 956 957 /// Check if the \p V has any uses outside of the region other than \p PN. 958 /// 959 /// \param V [in] - The value to check. 960 /// \param PHILoc [in] - The location in the PHINode of \p V. 961 /// \param PN [in] - The PHINode using \p V. 962 /// \param Exits [in] - The potential blocks we exit to from the outlined 963 /// region. 964 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 965 /// \returns true if \p V has any use soutside its region other than \p PN. 966 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 967 SmallPtrSet<BasicBlock *, 1> &Exits, 968 DenseSet<BasicBlock *> &BlocksInRegion) { 969 // We check to see if the value is used by the PHINode from some other 970 // predecessor not included in the region. If it is, we make sure 971 // to keep it as an output. 972 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 973 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 974 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 975 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 976 })) 977 return true; 978 979 // Check if the value is used by any other instructions outside the region. 980 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 981 Instruction *I = dyn_cast<Instruction>(U); 982 if (!I) 983 return false; 984 985 // If the use of the item is inside the region, we skip it. Uses 986 // inside the region give us useful information about how the item could be 987 // used as an output. 988 BasicBlock *Parent = I->getParent(); 989 if (BlocksInRegion.contains(Parent)) 990 return false; 991 992 // If it's not a PHINode then we definitely know the use matters. This 993 // output value will not completely combined with another item in a PHINode 994 // as it is directly reference by another non-phi instruction 995 if (!isa<PHINode>(I)) 996 return true; 997 998 // If we have a PHINode outside one of the exit locations, then it 999 // can be considered an outside use as well. If there is a PHINode 1000 // contained in the Exit where this values use matters, it will be 1001 // caught when we analyze that PHINode. 1002 if (!Exits.contains(Parent)) 1003 return true; 1004 1005 return false; 1006 }); 1007 } 1008 1009 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1010 /// considered outputs. A PHINodes is an output when more than one incoming 1011 /// value has been marked by the CodeExtractor as an output. 1012 /// 1013 /// \param CurrentExitFromRegion [in] - The block to analyze. 1014 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1015 /// region. 1016 /// \param RegionBlocks [in] - The basic blocks in the region. 1017 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1018 /// PHINodes to this as we find that they replace output values. 1019 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1020 /// totally replaced by a PHINode. 1021 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1022 /// in PHINodes, but have other uses, and should still be considered outputs. 1023 static void analyzeExitPHIsForOutputUses( 1024 BasicBlock *CurrentExitFromRegion, 1025 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1026 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1027 DenseSet<Value *> &OutputsReplacedByPHINode, 1028 DenseSet<Value *> &OutputsWithNonPhiUses) { 1029 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1030 // Find all incoming values from the outlining region. 1031 SmallVector<unsigned, 2> IncomingVals; 1032 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1033 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1034 IncomingVals.push_back(I); 1035 1036 // Do not process PHI if there are no predecessors from region. 1037 unsigned NumIncomingVals = IncomingVals.size(); 1038 if (NumIncomingVals == 0) 1039 continue; 1040 1041 // If there is one predecessor, we mark it as a value that needs to be kept 1042 // as an output. 1043 if (NumIncomingVals == 1) { 1044 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1045 OutputsWithNonPhiUses.insert(V); 1046 OutputsReplacedByPHINode.erase(V); 1047 continue; 1048 } 1049 1050 // This PHINode will be used as an output value, so we add it to our list. 1051 Outputs.insert(&PN); 1052 1053 // Not all of the incoming values should be ignored as other inputs and 1054 // outputs may have uses in outlined region. If they have other uses 1055 // outside of the single PHINode we should not skip over it. 1056 for (unsigned Idx : IncomingVals) { 1057 Value *V = PN.getIncomingValue(Idx); 1058 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1059 OutputsWithNonPhiUses.insert(V); 1060 OutputsReplacedByPHINode.erase(V); 1061 continue; 1062 } 1063 if (!OutputsWithNonPhiUses.contains(V)) 1064 OutputsReplacedByPHINode.insert(V); 1065 } 1066 } 1067 } 1068 1069 // Represents the type for the unsigned number denoting the output number for 1070 // phi node, along with the canonical number for the exit block. 1071 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1072 // The list of canonical numbers for the incoming values to a PHINode. 1073 using CanonList = SmallVector<unsigned, 2>; 1074 // The pair type representing the set of canonical values being combined in the 1075 // PHINode, along with the location data for the PHINode. 1076 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1077 1078 /// Encode \p PND as an integer for easy lookup based on the argument location, 1079 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1080 /// the values stored in the PHINode. 1081 /// 1082 /// \param PND - The data to hash. 1083 /// \returns The hash code of \p PND. 1084 static hash_code encodePHINodeData(PHINodeData &PND) { 1085 return llvm::hash_combine( 1086 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1087 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1088 } 1089 1090 /// Create a special GVN for PHINodes that will be used outside of 1091 /// the region. We create a hash code based on the Canonical number of the 1092 /// parent BasicBlock, the canonical numbering of the values stored in the 1093 /// PHINode and the aggregate argument location. This is used to find whether 1094 /// this PHINode type has been given a canonical numbering already. If not, we 1095 /// assign it a value and store it for later use. The value is returned to 1096 /// identify different output schemes for the set of regions. 1097 /// 1098 /// \param Region - The region that \p PN is an output for. 1099 /// \param PN - The PHINode we are analyzing. 1100 /// \param AggArgIdx - The argument \p PN will be stored into. 1101 /// \returns An optional holding the assigned canonical number, or None if 1102 /// there is some attribute of the PHINode blocking it from being used. 1103 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1104 PHINode *PN, unsigned AggArgIdx) { 1105 OutlinableGroup &Group = *Region.Parent; 1106 IRSimilarityCandidate &Cand = *Region.Candidate; 1107 BasicBlock *PHIBB = PN->getParent(); 1108 CanonList PHIGVNs; 1109 for (Value *Incoming : PN->incoming_values()) { 1110 // If we cannot find a GVN, this means that the input to the PHINode is 1111 // not included in the region we are trying to analyze, meaning, that if 1112 // it was outlined, we would be adding an extra input. We ignore this 1113 // case for now, and so ignore the region. 1114 Optional<unsigned> OGVN = Cand.getGVN(Incoming); 1115 if (!OGVN.hasValue()) { 1116 Region.IgnoreRegion = true; 1117 return None; 1118 } 1119 1120 // Collect the canonical numbers of the values in the PHINode. 1121 unsigned GVN = OGVN.getValue(); 1122 OGVN = Cand.getCanonicalNum(GVN); 1123 assert(OGVN.hasValue() && "No GVN found for incoming value?"); 1124 PHIGVNs.push_back(*OGVN); 1125 } 1126 1127 // Now that we have the GVNs for the incoming values, we are going to combine 1128 // them with the GVN of the incoming bock, and the output location of the 1129 // PHINode to generate a hash value representing this instance of the PHINode. 1130 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1131 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1132 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1133 assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!"); 1134 1135 BBGVN = Cand.getCanonicalNum(BBGVN.getValue()); 1136 assert(BBGVN.hasValue() && 1137 "Could not find canonical number for the incoming block!"); 1138 // Create a pair of the exit block canonical value, and the aggregate 1139 // argument location, connected to the canonical numbers stored in the 1140 // PHINode. 1141 PHINodeData TemporaryPair = 1142 std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs); 1143 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1144 1145 // Look for and create a new entry in our connection between canonical 1146 // numbers for PHINodes, and the set of objects we just created. 1147 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1148 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1149 bool Inserted = false; 1150 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1151 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1152 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1153 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1154 } 1155 1156 return GVNToPHIIt->second; 1157 } 1158 1159 /// Create a mapping of the output arguments for the \p Region to the output 1160 /// arguments of the overall outlined function. 1161 /// 1162 /// \param [in,out] Region - The region of code to be analyzed. 1163 /// \param [in] Outputs - The values found by the code extractor. 1164 static void 1165 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 1166 SetVector<Value *> &Outputs) { 1167 OutlinableGroup &Group = *Region.Parent; 1168 IRSimilarityCandidate &C = *Region.Candidate; 1169 1170 SmallVector<BasicBlock *> BE; 1171 DenseSet<BasicBlock *> BlocksInRegion; 1172 C.getBasicBlocks(BlocksInRegion, BE); 1173 1174 // Find the exits to the region. 1175 SmallPtrSet<BasicBlock *, 1> Exits; 1176 for (BasicBlock *Block : BE) 1177 for (BasicBlock *Succ : successors(Block)) 1178 if (!BlocksInRegion.contains(Succ)) 1179 Exits.insert(Succ); 1180 1181 // After determining which blocks exit to PHINodes, we add these PHINodes to 1182 // the set of outputs to be processed. We also check the incoming values of 1183 // the PHINodes for whether they should no longer be considered outputs. 1184 DenseSet<Value *> OutputsReplacedByPHINode; 1185 DenseSet<Value *> OutputsWithNonPhiUses; 1186 for (BasicBlock *ExitBB : Exits) 1187 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1188 OutputsReplacedByPHINode, 1189 OutputsWithNonPhiUses); 1190 1191 // This counts the argument number in the extracted function. 1192 unsigned OriginalIndex = Region.NumExtractedInputs; 1193 1194 // This counts the argument number in the overall function. 1195 unsigned TypeIndex = Group.NumAggregateInputs; 1196 bool TypeFound; 1197 DenseSet<unsigned> AggArgsUsed; 1198 1199 // Iterate over the output types and identify if there is an aggregate pointer 1200 // type whose base type matches the current output type. If there is, we mark 1201 // that we will use this output register for this value. If not we add another 1202 // type to the overall argument type list. We also store the GVNs used for 1203 // stores to identify which values will need to be moved into an special 1204 // block that holds the stores to the output registers. 1205 for (Value *Output : Outputs) { 1206 TypeFound = false; 1207 // We can do this since it is a result value, and will have a number 1208 // that is necessarily the same. BUT if in the future, the instructions 1209 // do not have to be in same order, but are functionally the same, we will 1210 // have to use a different scheme, as one-to-one correspondence is not 1211 // guaranteed. 1212 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1213 1214 // If the output is combined in a PHINode, we make sure to skip over it. 1215 if (OutputsReplacedByPHINode.contains(Output)) 1216 continue; 1217 1218 unsigned AggArgIdx = 0; 1219 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1220 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 1221 continue; 1222 1223 if (AggArgsUsed.contains(Jdx)) 1224 continue; 1225 1226 TypeFound = true; 1227 AggArgsUsed.insert(Jdx); 1228 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1229 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1230 AggArgIdx = Jdx; 1231 break; 1232 } 1233 1234 // We were unable to find an unused type in the output type set that matches 1235 // the output, so we add a pointer type to the argument types of the overall 1236 // function to handle this output and create a mapping to it. 1237 if (!TypeFound) { 1238 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 1239 // Mark the new pointer type as the last value in the aggregate argument 1240 // list. 1241 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1242 AggArgsUsed.insert(ArgTypeIdx); 1243 Region.ExtractedArgToAgg.insert( 1244 std::make_pair(OriginalIndex, ArgTypeIdx)); 1245 Region.AggArgToExtracted.insert( 1246 std::make_pair(ArgTypeIdx, OriginalIndex)); 1247 AggArgIdx = ArgTypeIdx; 1248 } 1249 1250 // TODO: Adapt to the extra input from the PHINode. 1251 PHINode *PN = dyn_cast<PHINode>(Output); 1252 1253 Optional<unsigned> GVN; 1254 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1255 // Values outside the region can be combined into PHINode when we 1256 // have multiple exits. We collect both of these into a list to identify 1257 // which values are being used in the PHINode. Each list identifies a 1258 // different PHINode, and a different output. We store the PHINode as it's 1259 // own canonical value. These canonical values are also dependent on the 1260 // output argument it is saved to. 1261 1262 // If two PHINodes have the same canonical values, but different aggregate 1263 // argument locations, then they will have distinct Canonical Values. 1264 GVN = getGVNForPHINode(Region, PN, AggArgIdx); 1265 if (!GVN.hasValue()) 1266 return; 1267 } else { 1268 // If we do not have a PHINode we use the global value numbering for the 1269 // output value, to find the canonical number to add to the set of stored 1270 // values. 1271 GVN = C.getGVN(Output); 1272 GVN = C.getCanonicalNum(*GVN); 1273 } 1274 1275 // Each region has a potentially unique set of outputs. We save which 1276 // values are output in a list of canonical values so we can differentiate 1277 // among the different store schemes. 1278 Region.GVNStores.push_back(*GVN); 1279 1280 OriginalIndex++; 1281 TypeIndex++; 1282 } 1283 1284 // We sort the stored values to make sure that we are not affected by analysis 1285 // order when determining what combination of items were stored. 1286 stable_sort(Region.GVNStores); 1287 } 1288 1289 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1290 DenseSet<unsigned> &NotSame) { 1291 std::vector<unsigned> Inputs; 1292 SetVector<Value *> ArgInputs, Outputs; 1293 1294 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1295 Outputs); 1296 1297 if (Region.IgnoreRegion) 1298 return; 1299 1300 // Map the inputs found by the CodeExtractor to the arguments found for 1301 // the overall function. 1302 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1303 1304 // Map the outputs found by the CodeExtractor to the arguments found for 1305 // the overall function. 1306 findExtractedOutputToOverallOutputMapping(Region, Outputs); 1307 } 1308 1309 /// Replace the extracted function in the Region with a call to the overall 1310 /// function constructed from the deduplicated similar regions, replacing and 1311 /// remapping the values passed to the extracted function as arguments to the 1312 /// new arguments of the overall function. 1313 /// 1314 /// \param [in] M - The module to outline from. 1315 /// \param [in] Region - The regions of extracted code to be replaced with a new 1316 /// function. 1317 /// \returns a call instruction with the replaced function. 1318 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1319 std::vector<Value *> NewCallArgs; 1320 DenseMap<unsigned, unsigned>::iterator ArgPair; 1321 1322 OutlinableGroup &Group = *Region.Parent; 1323 CallInst *Call = Region.Call; 1324 assert(Call && "Call to replace is nullptr?"); 1325 Function *AggFunc = Group.OutlinedFunction; 1326 assert(AggFunc && "Function to replace with is nullptr?"); 1327 1328 // If the arguments are the same size, there are not values that need to be 1329 // made into an argument, the argument ordering has not been change, or 1330 // different output registers to handle. We can simply replace the called 1331 // function in this case. 1332 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1333 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1334 << *AggFunc << " with same number of arguments\n"); 1335 Call->setCalledFunction(AggFunc); 1336 return Call; 1337 } 1338 1339 // We have a different number of arguments than the new function, so 1340 // we need to use our previously mappings off extracted argument to overall 1341 // function argument, and constants to overall function argument to create the 1342 // new argument list. 1343 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1344 1345 if (AggArgIdx == AggFunc->arg_size() - 1 && 1346 Group.OutputGVNCombinations.size() > 1) { 1347 // If we are on the last argument, and we need to differentiate between 1348 // output blocks, add an integer to the argument list to determine 1349 // what block to take 1350 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1351 << Region.OutputBlockNum << "\n"); 1352 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1353 Region.OutputBlockNum)); 1354 continue; 1355 } 1356 1357 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1358 if (ArgPair != Region.AggArgToExtracted.end()) { 1359 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1360 // If we found the mapping from the extracted function to the overall 1361 // function, we simply add it to the argument list. We use the same 1362 // value, it just needs to honor the new order of arguments. 1363 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1364 << *ArgumentValue << "\n"); 1365 NewCallArgs.push_back(ArgumentValue); 1366 continue; 1367 } 1368 1369 // If it is a constant, we simply add it to the argument list as a value. 1370 if (Region.AggArgToConstant.find(AggArgIdx) != 1371 Region.AggArgToConstant.end()) { 1372 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1373 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1374 << *CST << "\n"); 1375 NewCallArgs.push_back(CST); 1376 continue; 1377 } 1378 1379 // Add a nullptr value if the argument is not found in the extracted 1380 // function. If we cannot find a value, it means it is not in use 1381 // for the region, so we should not pass anything to it. 1382 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1383 NewCallArgs.push_back(ConstantPointerNull::get( 1384 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1385 } 1386 1387 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1388 << *AggFunc << " with new set of arguments\n"); 1389 // Create the new call instruction and erase the old one. 1390 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1391 Call); 1392 1393 // It is possible that the call to the outlined function is either the first 1394 // instruction is in the new block, the last instruction, or both. If either 1395 // of these is the case, we need to make sure that we replace the instruction 1396 // in the IRInstructionData struct with the new call. 1397 CallInst *OldCall = Region.Call; 1398 if (Region.NewFront->Inst == OldCall) 1399 Region.NewFront->Inst = Call; 1400 if (Region.NewBack->Inst == OldCall) 1401 Region.NewBack->Inst = Call; 1402 1403 // Transfer any debug information. 1404 Call->setDebugLoc(Region.Call->getDebugLoc()); 1405 // Since our output may determine which branch we go to, we make sure to 1406 // propogate this new call value through the module. 1407 OldCall->replaceAllUsesWith(Call); 1408 1409 // Remove the old instruction. 1410 OldCall->eraseFromParent(); 1411 Region.Call = Call; 1412 1413 // Make sure that the argument in the new function has the SwiftError 1414 // argument. 1415 if (Group.SwiftErrorArgument.hasValue()) 1416 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1417 Attribute::SwiftError); 1418 1419 return Call; 1420 } 1421 1422 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1423 /// for \p RetVal. 1424 /// 1425 /// \param Group - The OutlinableGroup containing the information about the 1426 /// overall outlined function. 1427 /// \param RetVal - The return value or exit option that we are currently 1428 /// evaluating. 1429 /// \returns The found or newly created BasicBlock to contain the needed 1430 /// PHINodes to be used as outputs. 1431 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1432 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1433 ReturnBlockForRetVal; 1434 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1435 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1436 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1437 "Could not find output value!"); 1438 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1439 1440 // Find if a PHIBlock exists for this return value already. If it is 1441 // the first time we are analyzing this, we will not, so we record it. 1442 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1443 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1444 return PhiBlockForRetVal->second; 1445 1446 // If we did not find a block, we create one, and insert it into the 1447 // overall function and record it. 1448 bool Inserted = false; 1449 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1450 ReturnBB->getParent()); 1451 std::tie(PhiBlockForRetVal, Inserted) = 1452 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1453 1454 // We find the predecessors of the return block in the newly created outlined 1455 // function in order to point them to the new PHIBlock rather than the already 1456 // existing return block. 1457 SmallVector<BranchInst *, 2> BranchesToChange; 1458 for (BasicBlock *Pred : predecessors(ReturnBB)) 1459 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1460 1461 // Now we mark the branch instructions found, and change the references of the 1462 // return block to the newly created PHIBlock. 1463 for (BranchInst *BI : BranchesToChange) 1464 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1465 if (BI->getSuccessor(Succ) != ReturnBB) 1466 continue; 1467 BI->setSuccessor(Succ, PHIBlock); 1468 } 1469 1470 BranchInst::Create(ReturnBB, PHIBlock); 1471 1472 return PhiBlockForRetVal->second; 1473 } 1474 1475 /// For the function call now representing the \p Region, find the passed value 1476 /// to that call that represents Argument \p A at the call location if the 1477 /// call has already been replaced with a call to the overall, aggregate 1478 /// function. 1479 /// 1480 /// \param A - The Argument to get the passed value for. 1481 /// \param Region - The extracted Region corresponding to the outlined function. 1482 /// \returns The Value representing \p A at the call site. 1483 static Value * 1484 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1485 const OutlinableRegion &Region) { 1486 // If we don't need to adjust the argument number at all (since the call 1487 // has already been replaced by a call to the overall outlined function) 1488 // we can just get the specified argument. 1489 return Region.Call->getArgOperand(A->getArgNo()); 1490 } 1491 1492 /// For the function call now representing the \p Region, find the passed value 1493 /// to that call that represents Argument \p A at the call location if the 1494 /// call has only been replaced by the call to the aggregate function. 1495 /// 1496 /// \param A - The Argument to get the passed value for. 1497 /// \param Region - The extracted Region corresponding to the outlined function. 1498 /// \returns The Value representing \p A at the call site. 1499 static Value * 1500 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1501 const OutlinableRegion &Region) { 1502 unsigned ArgNum = A->getArgNo(); 1503 1504 // If it is a constant, we can look at our mapping from when we created 1505 // the outputs to figure out what the constant value is. 1506 if (Region.AggArgToConstant.count(ArgNum)) 1507 return Region.AggArgToConstant.find(ArgNum)->second; 1508 1509 // If it is not a constant, and we are not looking at the overall function, we 1510 // need to adjust which argument we are looking at. 1511 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1512 return Region.Call->getArgOperand(ArgNum); 1513 } 1514 1515 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1516 /// 1517 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1518 /// \param Region [in] - The OutlinableRegion containing \p PN. 1519 /// \param OutputMappings [in] - The mapping of output values from outlined 1520 /// region to their original values. 1521 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1522 /// \p PN. 1523 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1524 /// of \p Region rather than the overall function's call. 1525 static void 1526 findCanonNumsForPHI(PHINode *PN, OutlinableRegion &Region, 1527 const DenseMap<Value *, Value *> &OutputMappings, 1528 DenseSet<unsigned> &CanonNums, 1529 bool ReplacedWithOutlinedCall = true) { 1530 // Iterate over the incoming values. 1531 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1532 Value *IVal = PN->getIncomingValue(Idx); 1533 // If we have an argument as incoming value, we need to grab the passed 1534 // value from the call itself. 1535 if (Argument *A = dyn_cast<Argument>(IVal)) { 1536 if (ReplacedWithOutlinedCall) 1537 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1538 else 1539 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1540 } 1541 1542 // Get the original value if it has been replaced by an output value. 1543 IVal = findOutputMapping(OutputMappings, IVal); 1544 1545 // Find and add the canonical number for the incoming value. 1546 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1547 assert(GVN.hasValue() && "No GVN for incoming value"); 1548 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1549 assert(CanonNum.hasValue() && "No Canonical Number for GVN"); 1550 CanonNums.insert(*CanonNum); 1551 } 1552 } 1553 1554 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1555 /// in order to condense the number of instructions added to the outlined 1556 /// function. 1557 /// 1558 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1559 /// \param Region [in] - The OutlinableRegion containing \p PN. 1560 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1561 /// \p PN in. 1562 /// \param OutputMappings [in] - The mapping of output values from outlined 1563 /// region to their original values. 1564 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1565 static PHINode* 1566 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1567 BasicBlock *OverallPhiBlock, 1568 const DenseMap<Value *, Value *> &OutputMappings) { 1569 OutlinableGroup &Group = *Region.Parent; 1570 1571 DenseSet<unsigned> PNCanonNums; 1572 // We have to use the extracted function since we have merged this region into 1573 // the overall function yet. We make sure to reassign the argument numbering 1574 // since it is possible that the argument ordering is different between the 1575 // functions. 1576 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1577 /* ReplacedWithOutlinedCall = */ false); 1578 1579 OutlinableRegion *FirstRegion = Group.Regions[0]; 1580 DenseSet<unsigned> CurrentCanonNums; 1581 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1582 // the uses of the PHINode we are searching for, with the found PHINode. 1583 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1584 CurrentCanonNums.clear(); 1585 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1586 /* ReplacedWithOutlinedCall = */ true); 1587 1588 if (all_of(PNCanonNums, [&CurrentCanonNums](unsigned CanonNum) { 1589 return CurrentCanonNums.contains(CanonNum); 1590 })) 1591 return &CurrPN; 1592 } 1593 1594 // If we've made it here, it means we weren't able to replace the PHINode, so 1595 // we must insert it ourselves. 1596 PHINode *NewPN = cast<PHINode>(PN.clone()); 1597 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1598 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1599 Idx++) { 1600 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1601 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1602 1603 // Find corresponding basic block in the overall function for the incoming 1604 // block. 1605 Instruction *FirstNonPHI = IncomingBlock->getFirstNonPHI(); 1606 assert(FirstNonPHI && "Incoming block is empty?"); 1607 Value *CorrespondingVal = 1608 Region.findCorrespondingValueIn(*FirstRegion, FirstNonPHI); 1609 assert(CorrespondingVal && "Value is nullptr?"); 1610 BasicBlock *BlockToUse = cast<Instruction>(CorrespondingVal)->getParent(); 1611 NewPN->setIncomingBlock(Idx, BlockToUse); 1612 1613 // If we have an argument we make sure we replace using the argument from 1614 // the correct function. 1615 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1616 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1617 NewPN->setIncomingValue(Idx, Val); 1618 continue; 1619 } 1620 1621 // Find the corresponding value in the overall function. 1622 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1623 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1624 assert(Val && "Value is nullptr?"); 1625 NewPN->setIncomingValue(Idx, Val); 1626 } 1627 return NewPN; 1628 } 1629 1630 // Within an extracted function, replace the argument uses of the extracted 1631 // region with the arguments of the function for an OutlinableGroup. 1632 // 1633 /// \param [in] Region - The region of extracted code to be changed. 1634 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1635 /// region. 1636 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1637 /// function to define the overall outlined function for all the regions, or 1638 /// if we are operating on one of the following regions. 1639 static void 1640 replaceArgumentUses(OutlinableRegion &Region, 1641 DenseMap<Value *, BasicBlock *> &OutputBBs, 1642 const DenseMap<Value *, Value *> &OutputMappings, 1643 bool FirstFunction = false) { 1644 OutlinableGroup &Group = *Region.Parent; 1645 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1646 1647 Function *DominatingFunction = Region.ExtractedFunction; 1648 if (FirstFunction) 1649 DominatingFunction = Group.OutlinedFunction; 1650 DominatorTree DT(*DominatingFunction); 1651 1652 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1653 ArgIdx++) { 1654 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1655 Region.ExtractedArgToAgg.end() && 1656 "No mapping from extracted to outlined?"); 1657 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1658 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1659 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1660 // The argument is an input, so we can simply replace it with the overall 1661 // argument value 1662 if (ArgIdx < Region.NumExtractedInputs) { 1663 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1664 << *Region.ExtractedFunction << " with " << *AggArg 1665 << " in function " << *Group.OutlinedFunction << "\n"); 1666 Arg->replaceAllUsesWith(AggArg); 1667 continue; 1668 } 1669 1670 // If we are replacing an output, we place the store value in its own 1671 // block inside the overall function before replacing the use of the output 1672 // in the function. 1673 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1674 User *InstAsUser = Arg->user_back(); 1675 assert(InstAsUser && "User is nullptr!"); 1676 1677 Instruction *I = cast<Instruction>(InstAsUser); 1678 BasicBlock *BB = I->getParent(); 1679 SmallVector<BasicBlock *, 4> Descendants; 1680 DT.getDescendants(BB, Descendants); 1681 bool EdgeAdded = false; 1682 if (Descendants.size() == 0) { 1683 EdgeAdded = true; 1684 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1685 DT.getDescendants(BB, Descendants); 1686 } 1687 1688 // Iterate over the following blocks, looking for return instructions, 1689 // if we find one, find the corresponding output block for the return value 1690 // and move our store instruction there. 1691 for (BasicBlock *DescendBB : Descendants) { 1692 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1693 if (!RI) 1694 continue; 1695 Value *RetVal = RI->getReturnValue(); 1696 auto VBBIt = OutputBBs.find(RetVal); 1697 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1698 1699 // If this is storing a PHINode, we must make sure it is included in the 1700 // overall function. 1701 StoreInst *SI = cast<StoreInst>(I); 1702 1703 Value *ValueOperand = SI->getValueOperand(); 1704 1705 StoreInst *NewI = cast<StoreInst>(I->clone()); 1706 NewI->setDebugLoc(DebugLoc()); 1707 BasicBlock *OutputBB = VBBIt->second; 1708 OutputBB->getInstList().push_back(NewI); 1709 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1710 << *OutputBB << "\n"); 1711 1712 // If this is storing a PHINode, we must make sure it is included in the 1713 // overall function. 1714 if (!isa<PHINode>(ValueOperand) || 1715 Region.Candidate->getGVN(ValueOperand).hasValue()) { 1716 if (FirstFunction) 1717 continue; 1718 Value *CorrVal = 1719 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1720 assert(CorrVal && "Value is nullptr?"); 1721 NewI->setOperand(0, CorrVal); 1722 continue; 1723 } 1724 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1725 // If it has a value, it was not split by the code extractor, which 1726 // is what we are looking for. 1727 if (Region.Candidate->getGVN(PN).hasValue()) 1728 continue; 1729 1730 // We record the parent block for the PHINode in the Region so that 1731 // we can exclude it from checks later on. 1732 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1733 1734 // If this is the first function, we do not need to worry about mergiing 1735 // this with any other block in the overall outlined function, so we can 1736 // just continue. 1737 if (FirstFunction) { 1738 BasicBlock *PHIBlock = PN->getParent(); 1739 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1740 continue; 1741 } 1742 1743 // We look for the aggregate block that contains the PHINodes leading into 1744 // this exit path. If we can't find one, we create one. 1745 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1746 1747 // For our PHINode, we find the combined canonical numbering, and 1748 // attempt to find a matching PHINode in the overall PHIBlock. If we 1749 // cannot, we copy the PHINode and move it into this new block. 1750 PHINode *NewPN = 1751 findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, OutputMappings); 1752 NewI->setOperand(0, NewPN); 1753 } 1754 1755 // If we added an edge for basic blocks without a predecessor, we remove it 1756 // here. 1757 if (EdgeAdded) 1758 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1759 I->eraseFromParent(); 1760 1761 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1762 << *Region.ExtractedFunction << " with " << *AggArg 1763 << " in function " << *Group.OutlinedFunction << "\n"); 1764 Arg->replaceAllUsesWith(AggArg); 1765 } 1766 } 1767 1768 /// Within an extracted function, replace the constants that need to be lifted 1769 /// into arguments with the actual argument. 1770 /// 1771 /// \param Region [in] - The region of extracted code to be changed. 1772 void replaceConstants(OutlinableRegion &Region) { 1773 OutlinableGroup &Group = *Region.Parent; 1774 // Iterate over the constants that need to be elevated into arguments 1775 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1776 unsigned AggArgIdx = Const.first; 1777 Function *OutlinedFunction = Group.OutlinedFunction; 1778 assert(OutlinedFunction && "Overall Function is not defined?"); 1779 Constant *CST = Const.second; 1780 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1781 // Identify the argument it will be elevated to, and replace instances of 1782 // that constant in the function. 1783 1784 // TODO: If in the future constants do not have one global value number, 1785 // i.e. a constant 1 could be mapped to several values, this check will 1786 // have to be more strict. It cannot be using only replaceUsesWithIf. 1787 1788 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1789 << " in function " << *OutlinedFunction << " with " 1790 << *Arg << "\n"); 1791 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1792 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1793 return I->getFunction() == OutlinedFunction; 1794 return false; 1795 }); 1796 } 1797 } 1798 1799 /// It is possible that there is a basic block that already performs the same 1800 /// stores. This returns a duplicate block, if it exists 1801 /// 1802 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1803 /// \param OutputStoreBBs [in] The existing output blocks. 1804 /// \returns an optional value with the number output block if there is a match. 1805 Optional<unsigned> findDuplicateOutputBlock( 1806 DenseMap<Value *, BasicBlock *> &OutputBBs, 1807 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1808 1809 bool Mismatch = false; 1810 unsigned MatchingNum = 0; 1811 // We compare the new set output blocks to the other sets of output blocks. 1812 // If they are the same number, and have identical instructions, they are 1813 // considered to be the same. 1814 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1815 Mismatch = false; 1816 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1817 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1818 OutputBBs.find(VToB.first); 1819 if (OutputBBIt == OutputBBs.end()) { 1820 Mismatch = true; 1821 break; 1822 } 1823 1824 BasicBlock *CompBB = VToB.second; 1825 BasicBlock *OutputBB = OutputBBIt->second; 1826 if (CompBB->size() - 1 != OutputBB->size()) { 1827 Mismatch = true; 1828 break; 1829 } 1830 1831 BasicBlock::iterator NIt = OutputBB->begin(); 1832 for (Instruction &I : *CompBB) { 1833 if (isa<BranchInst>(&I)) 1834 continue; 1835 1836 if (!I.isIdenticalTo(&(*NIt))) { 1837 Mismatch = true; 1838 break; 1839 } 1840 1841 NIt++; 1842 } 1843 } 1844 1845 if (!Mismatch) 1846 return MatchingNum; 1847 1848 MatchingNum++; 1849 } 1850 1851 return None; 1852 } 1853 1854 /// Remove empty output blocks from the outlined region. 1855 /// 1856 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 1857 /// Region. 1858 /// \param Region - The OutlinableRegion we are analyzing. 1859 static bool 1860 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 1861 OutlinableRegion &Region) { 1862 bool AllRemoved = true; 1863 Value *RetValueForBB; 1864 BasicBlock *NewBB; 1865 SmallVector<Value *, 4> ToRemove; 1866 // Iterate over the output blocks created in the outlined section. 1867 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 1868 RetValueForBB = VtoBB.first; 1869 NewBB = VtoBB.second; 1870 1871 // If there are no instructions, we remove it from the module, and also 1872 // mark the value for removal from the return value to output block mapping. 1873 if (NewBB->size() == 0) { 1874 NewBB->eraseFromParent(); 1875 ToRemove.push_back(RetValueForBB); 1876 continue; 1877 } 1878 1879 // Mark that we could not remove all the blocks since they were not all 1880 // empty. 1881 AllRemoved = false; 1882 } 1883 1884 // Remove the return value from the mapping. 1885 for (Value *V : ToRemove) 1886 BlocksToPrune.erase(V); 1887 1888 // Mark the region as having the no output scheme. 1889 if (AllRemoved) 1890 Region.OutputBlockNum = -1; 1891 1892 return AllRemoved; 1893 } 1894 1895 /// For the outlined section, move needed the StoreInsts for the output 1896 /// registers into their own block. Then, determine if there is a duplicate 1897 /// output block already created. 1898 /// 1899 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1900 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1901 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 1902 /// placed in. 1903 /// \param [in] EndBBs - the final blocks of the extracted function. 1904 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1905 /// been replaced by a new output value. 1906 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1907 static void alignOutputBlockWithAggFunc( 1908 OutlinableGroup &OG, OutlinableRegion &Region, 1909 DenseMap<Value *, BasicBlock *> &OutputBBs, 1910 DenseMap<Value *, BasicBlock *> &EndBBs, 1911 const DenseMap<Value *, Value *> &OutputMappings, 1912 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1913 // If none of the output blocks have any instructions, this means that we do 1914 // not have to determine if it matches any of the other output schemes, and we 1915 // don't have to do anything else. 1916 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 1917 return; 1918 1919 // Determine is there is a duplicate set of blocks. 1920 Optional<unsigned> MatchingBB = 1921 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 1922 1923 // If there is, we remove the new output blocks. If it does not, 1924 // we add it to our list of sets of output blocks. 1925 if (MatchingBB.hasValue()) { 1926 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1927 << Region.ExtractedFunction << " to " 1928 << MatchingBB.getValue()); 1929 1930 Region.OutputBlockNum = MatchingBB.getValue(); 1931 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 1932 VtoBB.second->eraseFromParent(); 1933 return; 1934 } 1935 1936 Region.OutputBlockNum = OutputStoreBBs.size(); 1937 1938 Value *RetValueForBB; 1939 BasicBlock *NewBB; 1940 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1941 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 1942 RetValueForBB = VtoBB.first; 1943 NewBB = VtoBB.second; 1944 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1945 EndBBs.find(RetValueForBB); 1946 LLVM_DEBUG(dbgs() << "Create output block for region in" 1947 << Region.ExtractedFunction << " to " 1948 << *NewBB); 1949 BranchInst::Create(VBBIt->second, NewBB); 1950 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 1951 } 1952 } 1953 1954 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 1955 /// before creating a basic block for each \p NewMap, and inserting into the new 1956 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 1957 /// 1958 /// \param OldMap [in] - The mapping to base the new mapping off of. 1959 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 1960 /// \param ParentFunc [in] - The function to put the new basic block in. 1961 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 1962 /// by an index value. 1963 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 1964 DenseMap<Value *, BasicBlock *> &NewMap, 1965 Function *ParentFunc, Twine BaseName) { 1966 unsigned Idx = 0; 1967 std::vector<Value *> SortedKeys; 1968 1969 getSortedConstantKeys(SortedKeys, OldMap); 1970 1971 for (Value *RetVal : SortedKeys) { 1972 BasicBlock *NewBB = BasicBlock::Create( 1973 ParentFunc->getContext(), 1974 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 1975 ParentFunc); 1976 NewMap.insert(std::make_pair(RetVal, NewBB)); 1977 } 1978 } 1979 1980 /// Create the switch statement for outlined function to differentiate between 1981 /// all the output blocks. 1982 /// 1983 /// For the outlined section, determine if an outlined block already exists that 1984 /// matches the needed stores for the extracted section. 1985 /// \param [in] M - The module we are outlining from. 1986 /// \param [in] OG - The group of regions to be outlined. 1987 /// \param [in] EndBBs - The final blocks of the extracted function. 1988 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1989 void createSwitchStatement( 1990 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 1991 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1992 // We only need the switch statement if there is more than one store 1993 // combination, or there is more than one set of output blocks. The first 1994 // will occur when we store different sets of values for two different 1995 // regions. The second will occur when we have two outputs that are combined 1996 // in a PHINode outside of the region in one outlined instance, and are used 1997 // seaparately in another. This will create the same set of OutputGVNs, but 1998 // will generate two different output schemes. 1999 if (OG.OutputGVNCombinations.size() > 1) { 2000 Function *AggFunc = OG.OutlinedFunction; 2001 // Create a final block for each different return block. 2002 DenseMap<Value *, BasicBlock *> ReturnBBs; 2003 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2004 2005 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2006 std::pair<Value *, BasicBlock *> &OutputBlock = 2007 *OG.EndBBs.find(RetBlockPair.first); 2008 BasicBlock *ReturnBlock = RetBlockPair.second; 2009 BasicBlock *EndBB = OutputBlock.second; 2010 Instruction *Term = EndBB->getTerminator(); 2011 // Move the return value to the final block instead of the original exit 2012 // stub. 2013 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2014 // Put the switch statement in the old end basic block for the function 2015 // with a fall through to the new return block. 2016 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2017 << OutputStoreBBs.size() << "\n"); 2018 SwitchInst *SwitchI = 2019 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2020 ReturnBlock, OutputStoreBBs.size(), EndBB); 2021 2022 unsigned Idx = 0; 2023 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2024 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2025 OutputStoreBB.find(OutputBlock.first); 2026 2027 if (OSBBIt == OutputStoreBB.end()) 2028 continue; 2029 2030 BasicBlock *BB = OSBBIt->second; 2031 SwitchI->addCase( 2032 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2033 Term = BB->getTerminator(); 2034 Term->setSuccessor(0, ReturnBlock); 2035 Idx++; 2036 } 2037 } 2038 return; 2039 } 2040 2041 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2042 2043 // If there needs to be stores, move them from the output blocks to their 2044 // corresponding ending block. We do not check that the OutputGVNCombinations 2045 // is equal to 1 here since that could just been the case where there are 0 2046 // outputs. Instead, we check whether there is more than one set of output 2047 // blocks since this is the only case where we would have to move the 2048 // stores, and erase the extraneous blocks. 2049 if (OutputStoreBBs.size() == 1) { 2050 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2051 << *OG.OutlinedFunction << "\n"); 2052 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2053 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2054 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2055 EndBBs.find(VBPair.first); 2056 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2057 BasicBlock *EndBB = EndBBIt->second; 2058 BasicBlock *OutputBB = VBPair.second; 2059 Instruction *Term = OutputBB->getTerminator(); 2060 Term->eraseFromParent(); 2061 Term = EndBB->getTerminator(); 2062 moveBBContents(*OutputBB, *EndBB); 2063 Term->moveBefore(*EndBB, EndBB->end()); 2064 OutputBB->eraseFromParent(); 2065 } 2066 } 2067 } 2068 2069 /// Fill the new function that will serve as the replacement function for all of 2070 /// the extracted regions of a certain structure from the first region in the 2071 /// list of regions. Replace this first region's extracted function with the 2072 /// new overall function. 2073 /// 2074 /// \param [in] M - The module we are outlining from. 2075 /// \param [in] CurrentGroup - The group of regions to be outlined. 2076 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2077 /// set of stores needed for the different functions. 2078 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2079 /// once outlining is complete. 2080 /// \param [in] OutputMappings - Extracted functions to erase from module 2081 /// once outlining is complete. 2082 static void fillOverallFunction( 2083 Module &M, OutlinableGroup &CurrentGroup, 2084 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2085 std::vector<Function *> &FuncsToRemove, 2086 const DenseMap<Value *, Value *> &OutputMappings) { 2087 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2088 2089 // Move first extracted function's instructions into new function. 2090 LLVM_DEBUG(dbgs() << "Move instructions from " 2091 << *CurrentOS->ExtractedFunction << " to instruction " 2092 << *CurrentGroup.OutlinedFunction << "\n"); 2093 moveFunctionData(*CurrentOS->ExtractedFunction, 2094 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2095 2096 // Transfer the attributes from the function to the new function. 2097 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2098 CurrentGroup.OutlinedFunction->addFnAttr(A); 2099 2100 // Create a new set of output blocks for the first extracted function. 2101 DenseMap<Value *, BasicBlock *> NewBBs; 2102 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2103 CurrentGroup.OutlinedFunction, "output_block_0"); 2104 CurrentOS->OutputBlockNum = 0; 2105 2106 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2107 replaceConstants(*CurrentOS); 2108 2109 // We first identify if any output blocks are empty, if they are we remove 2110 // them. We then create a branch instruction to the basic block to the return 2111 // block for the function for each non empty output block. 2112 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2113 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2114 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2115 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2116 CurrentGroup.EndBBs.find(VToBB.first); 2117 BasicBlock *EndBB = VBBIt->second; 2118 BranchInst::Create(EndBB, VToBB.second); 2119 OutputStoreBBs.back().insert(VToBB); 2120 } 2121 } 2122 2123 // Replace the call to the extracted function with the outlined function. 2124 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2125 2126 // We only delete the extracted functions at the end since we may need to 2127 // reference instructions contained in them for mapping purposes. 2128 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2129 } 2130 2131 void IROutliner::deduplicateExtractedSections( 2132 Module &M, OutlinableGroup &CurrentGroup, 2133 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2134 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2135 2136 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2137 2138 OutlinableRegion *CurrentOS; 2139 2140 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2141 OutputMappings); 2142 2143 std::vector<Value *> SortedKeys; 2144 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2145 CurrentOS = CurrentGroup.Regions[Idx]; 2146 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2147 *CurrentOS->ExtractedFunction); 2148 2149 // Create a set of BasicBlocks, one for each return block, to hold the 2150 // needed store instructions. 2151 DenseMap<Value *, BasicBlock *> NewBBs; 2152 createAndInsertBasicBlocks( 2153 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2154 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2155 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2156 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2157 CurrentGroup.EndBBs, OutputMappings, 2158 OutputStoreBBs); 2159 2160 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2161 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2162 } 2163 2164 // Create a switch statement to handle the different output schemes. 2165 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2166 2167 OutlinedFunctionNum++; 2168 } 2169 2170 /// Checks that the next instruction in the InstructionDataList matches the 2171 /// next instruction in the module. If they do not, there could be the 2172 /// possibility that extra code has been inserted, and we must ignore it. 2173 /// 2174 /// \param ID - The IRInstructionData to check the next instruction of. 2175 /// \returns true if the InstructionDataList and actual instruction match. 2176 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2177 // We check if there is a discrepancy between the InstructionDataList 2178 // and the actual next instruction in the module. If there is, it means 2179 // that an extra instruction was added, likely by the CodeExtractor. 2180 2181 // Since we do not have any similarity data about this particular 2182 // instruction, we cannot confidently outline it, and must discard this 2183 // candidate. 2184 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2185 Instruction *NextIDLInst = NextIDIt->Inst; 2186 Instruction *NextModuleInst = nullptr; 2187 if (!ID.Inst->isTerminator()) 2188 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2189 else if (NextIDLInst != nullptr) 2190 NextModuleInst = 2191 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2192 2193 if (NextIDLInst && NextIDLInst != NextModuleInst) 2194 return false; 2195 2196 return true; 2197 } 2198 2199 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2200 const OutlinableRegion &Region) { 2201 IRSimilarityCandidate *IRSC = Region.Candidate; 2202 unsigned StartIdx = IRSC->getStartIdx(); 2203 unsigned EndIdx = IRSC->getEndIdx(); 2204 2205 // A check to make sure that we are not about to attempt to outline something 2206 // that has already been outlined. 2207 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2208 if (Outlined.contains(Idx)) 2209 return false; 2210 2211 // We check if the recorded instruction matches the actual next instruction, 2212 // if it does not, we fix it in the InstructionDataList. 2213 if (!Region.Candidate->backInstruction()->isTerminator()) { 2214 Instruction *NewEndInst = 2215 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2216 assert(NewEndInst && "Next instruction is a nullptr?"); 2217 if (Region.Candidate->end()->Inst != NewEndInst) { 2218 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2219 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2220 IRInstructionData(*NewEndInst, 2221 InstructionClassifier.visit(*NewEndInst), *IDL); 2222 2223 // Insert the first IRInstructionData of the new region after the 2224 // last IRInstructionData of the IRSimilarityCandidate. 2225 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2226 } 2227 } 2228 2229 return none_of(*IRSC, [this](IRInstructionData &ID) { 2230 if (!nextIRInstructionDataMatchesNextInst(ID)) 2231 return true; 2232 2233 return !this->InstructionClassifier.visit(ID.Inst); 2234 }); 2235 } 2236 2237 void IROutliner::pruneIncompatibleRegions( 2238 std::vector<IRSimilarityCandidate> &CandidateVec, 2239 OutlinableGroup &CurrentGroup) { 2240 bool PreviouslyOutlined; 2241 2242 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2243 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2244 const IRSimilarityCandidate &RHS) { 2245 return LHS.getStartIdx() < RHS.getStartIdx(); 2246 }); 2247 2248 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2249 // Since outlining a call and a branch instruction will be the same as only 2250 // outlinining a call instruction, we ignore it as a space saving. 2251 if (FirstCandidate.getLength() == 2) { 2252 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2253 isa<BranchInst>(FirstCandidate.back()->Inst)) 2254 return; 2255 } 2256 2257 unsigned CurrentEndIdx = 0; 2258 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2259 PreviouslyOutlined = false; 2260 unsigned StartIdx = IRSC.getStartIdx(); 2261 unsigned EndIdx = IRSC.getEndIdx(); 2262 2263 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2264 if (Outlined.contains(Idx)) { 2265 PreviouslyOutlined = true; 2266 break; 2267 } 2268 2269 if (PreviouslyOutlined) 2270 continue; 2271 2272 // Check over the instructions, and if the basic block has its address 2273 // taken for use somewhere else, we do not outline that block. 2274 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2275 return ID.Inst->getParent()->hasAddressTaken(); 2276 }); 2277 2278 if (BBHasAddressTaken) 2279 continue; 2280 2281 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2282 !OutlineFromLinkODRs) 2283 continue; 2284 2285 // Greedily prune out any regions that will overlap with already chosen 2286 // regions. 2287 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2288 continue; 2289 2290 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2291 if (!nextIRInstructionDataMatchesNextInst(ID)) 2292 return true; 2293 2294 return !this->InstructionClassifier.visit(ID.Inst); 2295 }); 2296 2297 if (BadInst) 2298 continue; 2299 2300 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2301 OutlinableRegion(IRSC, CurrentGroup); 2302 CurrentGroup.Regions.push_back(OS); 2303 2304 CurrentEndIdx = EndIdx; 2305 } 2306 } 2307 2308 InstructionCost 2309 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2310 InstructionCost RegionBenefit = 0; 2311 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2312 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2313 // We add the number of instructions in the region to the benefit as an 2314 // estimate as to how much will be removed. 2315 RegionBenefit += Region->getBenefit(TTI); 2316 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2317 << " saved instructions to overfall benefit.\n"); 2318 } 2319 2320 return RegionBenefit; 2321 } 2322 2323 /// For the \p OutputCanon number passed in find the value represented by this 2324 /// canonical number. If it is from a PHINode, we pick the first incoming 2325 /// value and return that Value instead. 2326 /// 2327 /// \param Region - The OutlinableRegion to get the Value from. 2328 /// \param OutputCanon - The canonical number to find the Value from. 2329 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2330 /// Region. 2331 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2332 unsigned OutputCanon) { 2333 OutlinableGroup &CurrentGroup = *Region.Parent; 2334 // If the value is greater than the value in the tracker, we have a 2335 // PHINode and will instead use one of the incoming values to find the 2336 // type. 2337 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2338 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2339 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2340 "Could not find GVN set for PHINode number!"); 2341 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2342 OutputCanon = *It->second.second.begin(); 2343 } 2344 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); 2345 assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?"); 2346 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2347 assert(OV.hasValue() && "Could not find value for GVN?"); 2348 return *OV; 2349 } 2350 2351 InstructionCost 2352 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2353 InstructionCost OverallCost = 0; 2354 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2355 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2356 2357 // Each output incurs a load after the call, so we add that to the cost. 2358 for (unsigned OutputCanon : Region->GVNStores) { 2359 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2360 InstructionCost LoadCost = 2361 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2362 TargetTransformInfo::TCK_CodeSize); 2363 2364 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2365 << " instructions to cost for output of type " 2366 << *V->getType() << "\n"); 2367 OverallCost += LoadCost; 2368 } 2369 } 2370 2371 return OverallCost; 2372 } 2373 2374 /// Find the extra instructions needed to handle any output values for the 2375 /// region. 2376 /// 2377 /// \param [in] M - The Module to outline from. 2378 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2379 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2380 /// new instruction costs. 2381 /// \returns the additional cost to handle the outputs. 2382 static InstructionCost findCostForOutputBlocks(Module &M, 2383 OutlinableGroup &CurrentGroup, 2384 TargetTransformInfo &TTI) { 2385 InstructionCost OutputCost = 0; 2386 unsigned NumOutputBranches = 0; 2387 2388 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2389 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2390 DenseSet<BasicBlock *> CandidateBlocks; 2391 Candidate.getBasicBlocks(CandidateBlocks); 2392 2393 // Count the number of different output branches that point to blocks outside 2394 // of the region. 2395 DenseSet<BasicBlock *> FoundBlocks; 2396 for (IRInstructionData &ID : Candidate) { 2397 if (!isa<BranchInst>(ID.Inst)) 2398 continue; 2399 2400 for (Value *V : ID.OperVals) { 2401 BasicBlock *BB = static_cast<BasicBlock *>(V); 2402 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 2403 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 2404 continue; 2405 FoundBlocks.insert(BB); 2406 NumOutputBranches++; 2407 } 2408 } 2409 2410 CurrentGroup.BranchesToOutside = NumOutputBranches; 2411 2412 for (const ArrayRef<unsigned> &OutputUse : 2413 CurrentGroup.OutputGVNCombinations) { 2414 for (unsigned OutputCanon : OutputUse) { 2415 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2416 InstructionCost StoreCost = 2417 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2418 TargetTransformInfo::TCK_CodeSize); 2419 2420 // An instruction cost is added for each store set that needs to occur for 2421 // various output combinations inside the function, plus a branch to 2422 // return to the exit block. 2423 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2424 << " instructions to cost for output of type " 2425 << *V->getType() << "\n"); 2426 OutputCost += StoreCost * NumOutputBranches; 2427 } 2428 2429 InstructionCost BranchCost = 2430 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2431 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2432 << " a branch instruction\n"); 2433 OutputCost += BranchCost * NumOutputBranches; 2434 } 2435 2436 // If there is more than one output scheme, we must have a comparison and 2437 // branch for each different item in the switch statement. 2438 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2439 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2440 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2441 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2442 TargetTransformInfo::TCK_CodeSize); 2443 InstructionCost BranchCost = 2444 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2445 2446 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2447 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2448 2449 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2450 << " instructions for each switch case for each different" 2451 << " output path in a function\n"); 2452 OutputCost += TotalCost * NumOutputBranches; 2453 } 2454 2455 return OutputCost; 2456 } 2457 2458 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2459 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2460 CurrentGroup.Benefit += RegionBenefit; 2461 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2462 2463 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2464 CurrentGroup.Cost += OutputReloadCost; 2465 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2466 2467 InstructionCost AverageRegionBenefit = 2468 RegionBenefit / CurrentGroup.Regions.size(); 2469 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2470 unsigned NumRegions = CurrentGroup.Regions.size(); 2471 TargetTransformInfo &TTI = 2472 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2473 2474 // We add one region to the cost once, to account for the instructions added 2475 // inside of the newly created function. 2476 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2477 << " instructions to cost for body of new function.\n"); 2478 CurrentGroup.Cost += AverageRegionBenefit; 2479 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2480 2481 // For each argument, we must add an instruction for loading the argument 2482 // out of the register and into a value inside of the newly outlined function. 2483 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2484 << " instructions to cost for each argument in the new" 2485 << " function.\n"); 2486 CurrentGroup.Cost += 2487 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2488 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2489 2490 // Each argument needs to either be loaded into a register or onto the stack. 2491 // Some arguments will only be loaded into the stack once the argument 2492 // registers are filled. 2493 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2494 << " instructions to cost for each argument in the new" 2495 << " function " << NumRegions << " times for the " 2496 << "needed argument handling at the call site.\n"); 2497 CurrentGroup.Cost += 2498 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2499 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2500 2501 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2502 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2503 } 2504 2505 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2506 ArrayRef<Value *> Outputs, 2507 LoadInst *LI) { 2508 // For and load instructions following the call 2509 Value *Operand = LI->getPointerOperand(); 2510 Optional<unsigned> OutputIdx = None; 2511 // Find if the operand it is an output register. 2512 for (unsigned ArgIdx = Region.NumExtractedInputs; 2513 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2514 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2515 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2516 break; 2517 } 2518 } 2519 2520 // If we found an output register, place a mapping of the new value 2521 // to the original in the mapping. 2522 if (!OutputIdx.hasValue()) 2523 return; 2524 2525 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 2526 OutputMappings.end()) { 2527 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2528 << *Outputs[OutputIdx.getValue()] << "\n"); 2529 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 2530 } else { 2531 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 2532 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2533 << *Outputs[OutputIdx.getValue()] << "\n"); 2534 OutputMappings.insert(std::make_pair(LI, Orig)); 2535 } 2536 } 2537 2538 bool IROutliner::extractSection(OutlinableRegion &Region) { 2539 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2540 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2541 BasicBlock *InitialStart = Region.StartBB; 2542 Function *OrigF = Region.StartBB->getParent(); 2543 CodeExtractorAnalysisCache CEAC(*OrigF); 2544 Region.ExtractedFunction = 2545 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2546 2547 // If the extraction was successful, find the BasicBlock, and reassign the 2548 // OutlinableRegion blocks 2549 if (!Region.ExtractedFunction) { 2550 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2551 << "\n"); 2552 Region.reattachCandidate(); 2553 return false; 2554 } 2555 2556 // Get the block containing the called branch, and reassign the blocks as 2557 // necessary. If the original block still exists, it is because we ended on 2558 // a branch instruction, and so we move the contents into the block before 2559 // and assign the previous block correctly. 2560 User *InstAsUser = Region.ExtractedFunction->user_back(); 2561 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2562 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2563 assert(Region.PrevBB && "PrevBB is nullptr?"); 2564 if (Region.PrevBB == InitialStart) { 2565 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2566 Instruction *BI = NewPrev->getTerminator(); 2567 BI->eraseFromParent(); 2568 moveBBContents(*InitialStart, *NewPrev); 2569 Region.PrevBB = NewPrev; 2570 InitialStart->eraseFromParent(); 2571 } 2572 2573 Region.StartBB = RewrittenBB; 2574 Region.EndBB = RewrittenBB; 2575 2576 // The sequences of outlinable regions has now changed. We must fix the 2577 // IRInstructionDataList for consistency. Although they may not be illegal 2578 // instructions, they should not be compared with anything else as they 2579 // should not be outlined in this round. So marking these as illegal is 2580 // allowed. 2581 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2582 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2583 Instruction *EndRewritten = &*RewrittenBB->begin(); 2584 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2585 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2586 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2587 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2588 2589 // Insert the first IRInstructionData of the new region in front of the 2590 // first IRInstructionData of the IRSimilarityCandidate. 2591 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2592 // Insert the first IRInstructionData of the new region after the 2593 // last IRInstructionData of the IRSimilarityCandidate. 2594 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2595 // Remove the IRInstructionData from the IRSimilarityCandidate. 2596 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2597 2598 assert(RewrittenBB != nullptr && 2599 "Could not find a predecessor after extraction!"); 2600 2601 // Iterate over the new set of instructions to find the new call 2602 // instruction. 2603 for (Instruction &I : *RewrittenBB) 2604 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2605 if (Region.ExtractedFunction == CI->getCalledFunction()) 2606 Region.Call = CI; 2607 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2608 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2609 Region.reattachCandidate(); 2610 return true; 2611 } 2612 2613 unsigned IROutliner::doOutline(Module &M) { 2614 // Find the possible similarity sections. 2615 InstructionClassifier.EnableBranches = !DisableBranches; 2616 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2617 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2618 2619 IRSimilarityIdentifier &Identifier = getIRSI(M); 2620 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2621 2622 // Sort them by size of extracted sections 2623 unsigned OutlinedFunctionNum = 0; 2624 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2625 // to sort them by the potential number of instructions to be outlined 2626 if (SimilarityCandidates.size() > 1) 2627 llvm::stable_sort(SimilarityCandidates, 2628 [](const std::vector<IRSimilarityCandidate> &LHS, 2629 const std::vector<IRSimilarityCandidate> &RHS) { 2630 return LHS[0].getLength() * LHS.size() > 2631 RHS[0].getLength() * RHS.size(); 2632 }); 2633 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2634 // each of the following for loops to avoid making an allocator. 2635 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2636 2637 DenseSet<unsigned> NotSame; 2638 std::vector<OutlinableGroup *> NegativeCostGroups; 2639 std::vector<OutlinableRegion *> OutlinedRegions; 2640 // Iterate over the possible sets of similarity. 2641 unsigned PotentialGroupIdx = 0; 2642 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2643 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2644 2645 // Remove entries that were previously outlined 2646 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2647 2648 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2649 // trying to outlined since there is no compatible similar instance of this 2650 // code. 2651 if (CurrentGroup.Regions.size() < 2) 2652 continue; 2653 2654 // Determine if there are any values that are the same constant throughout 2655 // each section in the set. 2656 NotSame.clear(); 2657 CurrentGroup.findSameConstants(NotSame); 2658 2659 if (CurrentGroup.IgnoreGroup) 2660 continue; 2661 2662 // Create a CodeExtractor for each outlinable region. Identify inputs and 2663 // outputs for each section using the code extractor and create the argument 2664 // types for the Aggregate Outlining Function. 2665 OutlinedRegions.clear(); 2666 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2667 // Break the outlinable region out of its parent BasicBlock into its own 2668 // BasicBlocks (see function implementation). 2669 OS->splitCandidate(); 2670 2671 // There's a chance that when the region is split, extra instructions are 2672 // added to the region. This makes the region no longer viable 2673 // to be split, so we ignore it for outlining. 2674 if (!OS->CandidateSplit) 2675 continue; 2676 2677 SmallVector<BasicBlock *> BE; 2678 DenseSet<BasicBlock *> BlocksInRegion; 2679 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2680 OS->CE = new (ExtractorAllocator.Allocate()) 2681 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2682 false, "outlined"); 2683 findAddInputsOutputs(M, *OS, NotSame); 2684 if (!OS->IgnoreRegion) 2685 OutlinedRegions.push_back(OS); 2686 2687 // We recombine the blocks together now that we have gathered all the 2688 // needed information. 2689 OS->reattachCandidate(); 2690 } 2691 2692 CurrentGroup.Regions = std::move(OutlinedRegions); 2693 2694 if (CurrentGroup.Regions.empty()) 2695 continue; 2696 2697 CurrentGroup.collectGVNStoreSets(M); 2698 2699 if (CostModel) 2700 findCostBenefit(M, CurrentGroup); 2701 2702 // If we are adhering to the cost model, skip those groups where the cost 2703 // outweighs the benefits. 2704 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2705 OptimizationRemarkEmitter &ORE = 2706 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2707 ORE.emit([&]() { 2708 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2709 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2710 C->frontInstruction()); 2711 R << "did not outline " 2712 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2713 << " regions due to estimated increase of " 2714 << ore::NV("InstructionIncrease", 2715 CurrentGroup.Cost - CurrentGroup.Benefit) 2716 << " instructions at locations "; 2717 interleave( 2718 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2719 [&R](OutlinableRegion *Region) { 2720 R << ore::NV( 2721 "DebugLoc", 2722 Region->Candidate->frontInstruction()->getDebugLoc()); 2723 }, 2724 [&R]() { R << " "; }); 2725 return R; 2726 }); 2727 continue; 2728 } 2729 2730 NegativeCostGroups.push_back(&CurrentGroup); 2731 } 2732 2733 ExtractorAllocator.DestroyAll(); 2734 2735 if (NegativeCostGroups.size() > 1) 2736 stable_sort(NegativeCostGroups, 2737 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2738 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2739 }); 2740 2741 std::vector<Function *> FuncsToRemove; 2742 for (OutlinableGroup *CG : NegativeCostGroups) { 2743 OutlinableGroup &CurrentGroup = *CG; 2744 2745 OutlinedRegions.clear(); 2746 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2747 // We check whether our region is compatible with what has already been 2748 // outlined, and whether we need to ignore this item. 2749 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2750 continue; 2751 OutlinedRegions.push_back(Region); 2752 } 2753 2754 if (OutlinedRegions.size() < 2) 2755 continue; 2756 2757 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2758 // we are still outlining enough regions to make up for the added cost. 2759 CurrentGroup.Regions = std::move(OutlinedRegions); 2760 if (CostModel) { 2761 CurrentGroup.Benefit = 0; 2762 CurrentGroup.Cost = 0; 2763 findCostBenefit(M, CurrentGroup); 2764 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2765 continue; 2766 } 2767 OutlinedRegions.clear(); 2768 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2769 Region->splitCandidate(); 2770 if (!Region->CandidateSplit) 2771 continue; 2772 OutlinedRegions.push_back(Region); 2773 } 2774 2775 CurrentGroup.Regions = std::move(OutlinedRegions); 2776 if (CurrentGroup.Regions.size() < 2) { 2777 for (OutlinableRegion *R : CurrentGroup.Regions) 2778 R->reattachCandidate(); 2779 continue; 2780 } 2781 2782 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2783 << " and benefit " << CurrentGroup.Benefit << "\n"); 2784 2785 // Create functions out of all the sections, and mark them as outlined. 2786 OutlinedRegions.clear(); 2787 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2788 SmallVector<BasicBlock *> BE; 2789 DenseSet<BasicBlock *> BlocksInRegion; 2790 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2791 OS->CE = new (ExtractorAllocator.Allocate()) 2792 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2793 false, "outlined"); 2794 bool FunctionOutlined = extractSection(*OS); 2795 if (FunctionOutlined) { 2796 unsigned StartIdx = OS->Candidate->getStartIdx(); 2797 unsigned EndIdx = OS->Candidate->getEndIdx(); 2798 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2799 Outlined.insert(Idx); 2800 2801 OutlinedRegions.push_back(OS); 2802 } 2803 } 2804 2805 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2806 << " with benefit " << CurrentGroup.Benefit 2807 << " and cost " << CurrentGroup.Cost << "\n"); 2808 2809 CurrentGroup.Regions = std::move(OutlinedRegions); 2810 2811 if (CurrentGroup.Regions.empty()) 2812 continue; 2813 2814 OptimizationRemarkEmitter &ORE = 2815 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2816 ORE.emit([&]() { 2817 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2818 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2819 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2820 << " regions with decrease of " 2821 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2822 << " instructions at locations "; 2823 interleave( 2824 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2825 [&R](OutlinableRegion *Region) { 2826 R << ore::NV("DebugLoc", 2827 Region->Candidate->frontInstruction()->getDebugLoc()); 2828 }, 2829 [&R]() { R << " "; }); 2830 return R; 2831 }); 2832 2833 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2834 OutlinedFunctionNum); 2835 } 2836 2837 for (Function *F : FuncsToRemove) 2838 F->eraseFromParent(); 2839 2840 return OutlinedFunctionNum; 2841 } 2842 2843 bool IROutliner::run(Module &M) { 2844 CostModel = !NoCostModel; 2845 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 2846 2847 return doOutline(M) > 0; 2848 } 2849 2850 // Pass Manager Boilerplate 2851 namespace { 2852 class IROutlinerLegacyPass : public ModulePass { 2853 public: 2854 static char ID; 2855 IROutlinerLegacyPass() : ModulePass(ID) { 2856 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 2857 } 2858 2859 void getAnalysisUsage(AnalysisUsage &AU) const override { 2860 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2861 AU.addRequired<TargetTransformInfoWrapperPass>(); 2862 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 2863 } 2864 2865 bool runOnModule(Module &M) override; 2866 }; 2867 } // namespace 2868 2869 bool IROutlinerLegacyPass::runOnModule(Module &M) { 2870 if (skipModule(M)) 2871 return false; 2872 2873 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2874 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2875 ORE.reset(new OptimizationRemarkEmitter(&F)); 2876 return *ORE.get(); 2877 }; 2878 2879 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 2880 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2881 }; 2882 2883 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 2884 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 2885 }; 2886 2887 return IROutliner(GTTI, GIRSI, GORE).run(M); 2888 } 2889 2890 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 2891 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2892 2893 std::function<TargetTransformInfo &(Function &)> GTTI = 2894 [&FAM](Function &F) -> TargetTransformInfo & { 2895 return FAM.getResult<TargetIRAnalysis>(F); 2896 }; 2897 2898 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 2899 [&AM](Module &M) -> IRSimilarityIdentifier & { 2900 return AM.getResult<IRSimilarityAnalysis>(M); 2901 }; 2902 2903 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2904 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 2905 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2906 ORE.reset(new OptimizationRemarkEmitter(&F)); 2907 return *ORE.get(); 2908 }; 2909 2910 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 2911 return PreservedAnalyses::none(); 2912 return PreservedAnalyses::all(); 2913 } 2914 2915 char IROutlinerLegacyPass::ID = 0; 2916 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2917 false) 2918 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 2919 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2920 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2921 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2922 false) 2923 2924 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 2925