1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Mangler.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include <map> 28 #include <set> 29 #include <vector> 30 31 #define DEBUG_TYPE "iroutliner" 32 33 using namespace llvm; 34 using namespace IRSimilarity; 35 36 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 37 // functions. This is false by default because the linker can dedupe linkonceodr 38 // functions. Since the outliner is confined to a single module (modulo LTO), 39 // this is off by default. It should, however, be the default behavior in 40 // LTO. 41 static cl::opt<bool> EnableLinkOnceODRIROutlining( 42 "enable-linkonceodr-ir-outlining", cl::Hidden, 43 cl::desc("Enable the IR outliner on linkonceodr functions"), 44 cl::init(false)); 45 46 // This is a debug option to test small pieces of code to ensure that outlining 47 // works correctly. 48 static cl::opt<bool> NoCostModel( 49 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 50 cl::desc("Debug option to outline greedily, without restriction that " 51 "calculated benefit outweighs cost")); 52 53 /// The OutlinableGroup holds all the overarching information for outlining 54 /// a set of regions that are structurally similar to one another, such as the 55 /// types of the overall function, the output blocks, the sets of stores needed 56 /// and a list of the different regions. This information is used in the 57 /// deduplication of extracted regions with the same structure. 58 struct OutlinableGroup { 59 /// The sections that could be outlined 60 std::vector<OutlinableRegion *> Regions; 61 62 /// The argument types for the function created as the overall function to 63 /// replace the extracted function for each region. 64 std::vector<Type *> ArgumentTypes; 65 /// The FunctionType for the overall function. 66 FunctionType *OutlinedFunctionType = nullptr; 67 /// The Function for the collective overall function. 68 Function *OutlinedFunction = nullptr; 69 70 /// Flag for whether we should not consider this group of OutlinableRegions 71 /// for extraction. 72 bool IgnoreGroup = false; 73 74 /// The return block for the overall function. 75 BasicBlock *EndBB = nullptr; 76 77 /// A set containing the different GVN store sets needed. Each array contains 78 /// a sorted list of the different values that need to be stored into output 79 /// registers. 80 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 81 82 /// Flag for whether the \ref ArgumentTypes have been defined after the 83 /// extraction of the first region. 84 bool InputTypesSet = false; 85 86 /// The number of input values in \ref ArgumentTypes. Anything after this 87 /// index in ArgumentTypes is an output argument. 88 unsigned NumAggregateInputs = 0; 89 90 /// The mapping of the canonical numbering of the values in outlined sections 91 /// to specific arguments. 92 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 93 94 /// The number of instructions that will be outlined by extracting \ref 95 /// Regions. 96 InstructionCost Benefit = 0; 97 /// The number of added instructions needed for the outlining of the \ref 98 /// Regions. 99 InstructionCost Cost = 0; 100 101 /// The argument that needs to be marked with the swifterr attribute. If not 102 /// needed, there is no value. 103 Optional<unsigned> SwiftErrorArgument; 104 105 /// For the \ref Regions, we look at every Value. If it is a constant, 106 /// we check whether it is the same in Region. 107 /// 108 /// \param [in,out] NotSame contains the global value numbers where the 109 /// constant is not always the same, and must be passed in as an argument. 110 void findSameConstants(DenseSet<unsigned> &NotSame); 111 112 /// For the regions, look at each set of GVN stores needed and account for 113 /// each combination. Add an argument to the argument types if there is 114 /// more than one combination. 115 /// 116 /// \param [in] M - The module we are outlining from. 117 void collectGVNStoreSets(Module &M); 118 }; 119 120 /// Move the contents of \p SourceBB to before the last instruction of \p 121 /// TargetBB. 122 /// \param SourceBB - the BasicBlock to pull Instructions from. 123 /// \param TargetBB - the BasicBlock to put Instruction into. 124 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 125 BasicBlock::iterator BBCurr, BBEnd, BBNext; 126 for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd; 127 BBCurr = BBNext) { 128 BBNext = std::next(BBCurr); 129 BBCurr->moveBefore(TargetBB, TargetBB.end()); 130 } 131 } 132 133 void OutlinableRegion::splitCandidate() { 134 assert(!CandidateSplit && "Candidate already split!"); 135 136 Instruction *EndInst = (*Candidate->end()).Inst; 137 assert(EndInst && "Expected an end instruction?"); 138 139 // We check if the current instruction following the last instruction in the 140 // region is the same as the recorded instruction following the last 141 // instruction. If they do not match, there could be problems in rewriting 142 // the program after outlining, so we ignore it. 143 if (EndInst != Candidate->backInstruction()->getNextNonDebugInstruction()) 144 return; 145 146 Instruction *StartInst = (*Candidate->begin()).Inst; 147 assert(StartInst && "Expected a start instruction?"); 148 StartBB = StartInst->getParent(); 149 PrevBB = StartBB; 150 151 // The basic block gets split like so: 152 // block: block: 153 // inst1 inst1 154 // inst2 inst2 155 // region1 br block_to_outline 156 // region2 block_to_outline: 157 // region3 -> region1 158 // region4 region2 159 // inst3 region3 160 // inst4 region4 161 // br block_after_outline 162 // block_after_outline: 163 // inst3 164 // inst4 165 166 std::string OriginalName = PrevBB->getName().str(); 167 168 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 169 170 // This is the case for the inner block since we do not have to include 171 // multiple blocks. 172 EndBB = StartBB; 173 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 174 175 CandidateSplit = true; 176 } 177 178 void OutlinableRegion::reattachCandidate() { 179 assert(CandidateSplit && "Candidate is not split!"); 180 181 // The basic block gets reattached like so: 182 // block: block: 183 // inst1 inst1 184 // inst2 inst2 185 // br block_to_outline region1 186 // block_to_outline: -> region2 187 // region1 region3 188 // region2 region4 189 // region3 inst3 190 // region4 inst4 191 // br block_after_outline 192 // block_after_outline: 193 // inst3 194 // inst4 195 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 196 assert(FollowBB != nullptr && "StartBB for Candidate is not defined!"); 197 198 // StartBB should only have one predecessor since we put an unconditional 199 // branch at the end of PrevBB when we split the BasicBlock. 200 PrevBB = StartBB->getSinglePredecessor(); 201 assert(PrevBB != nullptr && 202 "No Predecessor for the region start basic block!"); 203 204 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 205 assert(EndBB->getTerminator() && "Terminator removed from EndBB!"); 206 PrevBB->getTerminator()->eraseFromParent(); 207 EndBB->getTerminator()->eraseFromParent(); 208 209 moveBBContents(*StartBB, *PrevBB); 210 211 BasicBlock *PlacementBB = PrevBB; 212 if (StartBB != EndBB) 213 PlacementBB = EndBB; 214 moveBBContents(*FollowBB, *PlacementBB); 215 216 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 217 PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 218 StartBB->eraseFromParent(); 219 FollowBB->eraseFromParent(); 220 221 // Make sure to save changes back to the StartBB. 222 StartBB = PrevBB; 223 EndBB = nullptr; 224 PrevBB = nullptr; 225 FollowBB = nullptr; 226 227 CandidateSplit = false; 228 } 229 230 /// Find whether \p V matches the Constants previously found for the \p GVN. 231 /// 232 /// \param V - The value to check for consistency. 233 /// \param GVN - The global value number assigned to \p V. 234 /// \param GVNToConstant - The mapping of global value number to Constants. 235 /// \returns true if the Value matches the Constant mapped to by V and false if 236 /// it \p V is a Constant but does not match. 237 /// \returns None if \p V is not a Constant. 238 static Optional<bool> 239 constantMatches(Value *V, unsigned GVN, 240 DenseMap<unsigned, Constant *> &GVNToConstant) { 241 // See if we have a constants 242 Constant *CST = dyn_cast<Constant>(V); 243 if (!CST) 244 return None; 245 246 // Holds a mapping from a global value number to a Constant. 247 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 248 bool Inserted; 249 250 251 // If we have a constant, try to make a new entry in the GVNToConstant. 252 std::tie(GVNToConstantIt, Inserted) = 253 GVNToConstant.insert(std::make_pair(GVN, CST)); 254 // If it was found and is not equal, it is not the same. We do not 255 // handle this case yet, and exit early. 256 if (Inserted || (GVNToConstantIt->second == CST)) 257 return true; 258 259 return false; 260 } 261 262 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 263 InstructionCost Benefit = 0; 264 265 // Estimate the benefit of outlining a specific sections of the program. We 266 // delegate mostly this task to the TargetTransformInfo so that if the target 267 // has specific changes, we can have a more accurate estimate. 268 269 // However, getInstructionCost delegates the code size calculation for 270 // arithmetic instructions to getArithmeticInstrCost in 271 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 272 // code size for a division and remainder instruction to be equal to 4, and 273 // everything else to 1. This is not an accurate representation of the 274 // division instruction for targets that have a native division instruction. 275 // To be overly conservative, we only add 1 to the number of instructions for 276 // each division instruction. 277 for (IRInstructionData &ID : *Candidate) { 278 Instruction *I = ID.Inst; 279 switch (I->getOpcode()) { 280 case Instruction::FDiv: 281 case Instruction::FRem: 282 case Instruction::SDiv: 283 case Instruction::SRem: 284 case Instruction::UDiv: 285 case Instruction::URem: 286 Benefit += 1; 287 break; 288 default: 289 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 290 break; 291 } 292 } 293 294 return Benefit; 295 } 296 297 /// Find whether \p Region matches the global value numbering to Constant 298 /// mapping found so far. 299 /// 300 /// \param Region - The OutlinableRegion we are checking for constants 301 /// \param GVNToConstant - The mapping of global value number to Constants. 302 /// \param NotSame - The set of global value numbers that do not have the same 303 /// constant in each region. 304 /// \returns true if all Constants are the same in every use of a Constant in \p 305 /// Region and false if not 306 static bool 307 collectRegionsConstants(OutlinableRegion &Region, 308 DenseMap<unsigned, Constant *> &GVNToConstant, 309 DenseSet<unsigned> &NotSame) { 310 bool ConstantsTheSame = true; 311 312 IRSimilarityCandidate &C = *Region.Candidate; 313 for (IRInstructionData &ID : C) { 314 315 // Iterate over the operands in an instruction. If the global value number, 316 // assigned by the IRSimilarityCandidate, has been seen before, we check if 317 // the the number has been found to be not the same value in each instance. 318 for (Value *V : ID.OperVals) { 319 Optional<unsigned> GVNOpt = C.getGVN(V); 320 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 321 unsigned GVN = GVNOpt.getValue(); 322 323 // Check if this global value has been found to not be the same already. 324 if (NotSame.contains(GVN)) { 325 if (isa<Constant>(V)) 326 ConstantsTheSame = false; 327 continue; 328 } 329 330 // If it has been the same so far, we check the value for if the 331 // associated Constant value match the previous instances of the same 332 // global value number. If the global value does not map to a Constant, 333 // it is considered to not be the same value. 334 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 335 if (ConstantMatches.hasValue()) { 336 if (ConstantMatches.getValue()) 337 continue; 338 else 339 ConstantsTheSame = false; 340 } 341 342 // While this value is a register, it might not have been previously, 343 // make sure we don't already have a constant mapped to this global value 344 // number. 345 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 346 ConstantsTheSame = false; 347 348 NotSame.insert(GVN); 349 } 350 } 351 352 return ConstantsTheSame; 353 } 354 355 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 356 DenseMap<unsigned, Constant *> GVNToConstant; 357 358 for (OutlinableRegion *Region : Regions) 359 collectRegionsConstants(*Region, GVNToConstant, NotSame); 360 } 361 362 void OutlinableGroup::collectGVNStoreSets(Module &M) { 363 for (OutlinableRegion *OS : Regions) 364 OutputGVNCombinations.insert(OS->GVNStores); 365 366 // We are adding an extracted argument to decide between which output path 367 // to use in the basic block. It is used in a switch statement and only 368 // needs to be an integer. 369 if (OutputGVNCombinations.size() > 1) 370 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 371 } 372 373 /// Get the subprogram if it exists for one of the outlined regions. 374 /// 375 /// \param [in] Group - The set of regions to find a subprogram for. 376 /// \returns the subprogram if it exists, or nullptr. 377 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 378 for (OutlinableRegion *OS : Group.Regions) 379 if (Function *F = OS->Call->getFunction()) 380 if (DISubprogram *SP = F->getSubprogram()) 381 return SP; 382 383 return nullptr; 384 } 385 386 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 387 unsigned FunctionNameSuffix) { 388 assert(!Group.OutlinedFunction && "Function is already defined!"); 389 390 Group.OutlinedFunctionType = FunctionType::get( 391 Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false); 392 393 // These functions will only be called from within the same module, so 394 // we can set an internal linkage. 395 Group.OutlinedFunction = Function::Create( 396 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 397 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 398 399 // Transfer the swifterr attribute to the correct function parameter. 400 if (Group.SwiftErrorArgument.hasValue()) 401 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 402 Attribute::SwiftError); 403 404 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 405 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 406 407 // If there's a DISubprogram associated with this outlined function, then 408 // emit debug info for the outlined function. 409 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 410 Function *F = Group.OutlinedFunction; 411 // We have a DISubprogram. Get its DICompileUnit. 412 DICompileUnit *CU = SP->getUnit(); 413 DIBuilder DB(M, true, CU); 414 DIFile *Unit = SP->getFile(); 415 Mangler Mg; 416 // Get the mangled name of the function for the linkage name. 417 std::string Dummy; 418 llvm::raw_string_ostream MangledNameStream(Dummy); 419 Mg.getNameWithPrefix(MangledNameStream, F, false); 420 421 DISubprogram *OutlinedSP = DB.createFunction( 422 Unit /* Context */, F->getName(), MangledNameStream.str(), 423 Unit /* File */, 424 0 /* Line 0 is reserved for compiler-generated code. */, 425 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 426 0, /* Line 0 is reserved for compiler-generated code. */ 427 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 428 /* Outlined code is optimized code by definition. */ 429 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 430 431 // Don't add any new variables to the subprogram. 432 DB.finalizeSubprogram(OutlinedSP); 433 434 // Attach subprogram to the function. 435 F->setSubprogram(OutlinedSP); 436 // We're done with the DIBuilder. 437 DB.finalize(); 438 } 439 440 return Group.OutlinedFunction; 441 } 442 443 /// Move each BasicBlock in \p Old to \p New. 444 /// 445 /// \param [in] Old - The function to move the basic blocks from. 446 /// \param [in] New - The function to move the basic blocks to. 447 /// \returns the first return block for the function in New. 448 static BasicBlock *moveFunctionData(Function &Old, Function &New) { 449 Function::iterator CurrBB, NextBB, FinalBB; 450 BasicBlock *NewEnd = nullptr; 451 for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB; 452 CurrBB = NextBB) { 453 NextBB = std::next(CurrBB); 454 CurrBB->removeFromParent(); 455 CurrBB->insertInto(&New); 456 Instruction *I = CurrBB->getTerminator(); 457 if (isa<ReturnInst>(I)) 458 NewEnd = &(*CurrBB); 459 460 std::vector<Instruction *> DebugInsts; 461 462 for (Instruction &Val : *CurrBB) { 463 // We must handle the scoping of called functions differently than 464 // other outlined instructions. 465 if (!isa<CallInst>(&Val)) { 466 // Remove the debug information for outlined functions. 467 Val.setDebugLoc(DebugLoc()); 468 continue; 469 } 470 471 // From this point we are only handling call instructions. 472 CallInst *CI = cast<CallInst>(&Val); 473 474 // We add any debug statements here, to be removed after. Since the 475 // instructions originate from many different locations in the program, 476 // it will cause incorrect reporting from a debugger if we keep the 477 // same debug instructions. 478 if (isa<DbgInfoIntrinsic>(CI)) { 479 DebugInsts.push_back(&Val); 480 continue; 481 } 482 483 // Edit the scope of called functions inside of outlined functions. 484 if (DISubprogram *SP = New.getSubprogram()) { 485 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 486 Val.setDebugLoc(DI); 487 } 488 } 489 490 for (Instruction *I : DebugInsts) 491 I->eraseFromParent(); 492 } 493 494 assert(NewEnd && "No return instruction for new function?"); 495 return NewEnd; 496 } 497 498 /// Find the the constants that will need to be lifted into arguments 499 /// as they are not the same in each instance of the region. 500 /// 501 /// \param [in] C - The IRSimilarityCandidate containing the region we are 502 /// analyzing. 503 /// \param [in] NotSame - The set of global value numbers that do not have a 504 /// single Constant across all OutlinableRegions similar to \p C. 505 /// \param [out] Inputs - The list containing the global value numbers of the 506 /// arguments needed for the region of code. 507 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 508 std::vector<unsigned> &Inputs) { 509 DenseSet<unsigned> Seen; 510 // Iterate over the instructions, and find what constants will need to be 511 // extracted into arguments. 512 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 513 IDIt != EndIDIt; IDIt++) { 514 for (Value *V : (*IDIt).OperVals) { 515 // Since these are stored before any outlining, they will be in the 516 // global value numbering. 517 unsigned GVN = C.getGVN(V).getValue(); 518 if (isa<Constant>(V)) 519 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 520 Inputs.push_back(GVN); 521 Seen.insert(GVN); 522 } 523 } 524 } 525 } 526 527 /// Find the GVN for the inputs that have been found by the CodeExtractor. 528 /// 529 /// \param [in] C - The IRSimilarityCandidate containing the region we are 530 /// analyzing. 531 /// \param [in] CurrentInputs - The set of inputs found by the 532 /// CodeExtractor. 533 /// \param [in] OutputMappings - The mapping of values that have been replaced 534 /// by a new output value. 535 /// \param [out] EndInputNumbers - The global value numbers for the extracted 536 /// arguments. 537 static void mapInputsToGVNs(IRSimilarityCandidate &C, 538 SetVector<Value *> &CurrentInputs, 539 const DenseMap<Value *, Value *> &OutputMappings, 540 std::vector<unsigned> &EndInputNumbers) { 541 // Get the Global Value Number for each input. We check if the Value has been 542 // replaced by a different value at output, and use the original value before 543 // replacement. 544 for (Value *Input : CurrentInputs) { 545 assert(Input && "Have a nullptr as an input"); 546 if (OutputMappings.find(Input) != OutputMappings.end()) 547 Input = OutputMappings.find(Input)->second; 548 assert(C.getGVN(Input).hasValue() && 549 "Could not find a numbering for the given input"); 550 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 551 } 552 } 553 554 /// Find the original value for the \p ArgInput values if any one of them was 555 /// replaced during a previous extraction. 556 /// 557 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 558 /// \param [in] OutputMappings - The mapping of values that have been replaced 559 /// by a new output value. 560 /// \param [out] RemappedArgInputs - The remapped values according to 561 /// \p OutputMappings that will be extracted. 562 static void 563 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 564 const DenseMap<Value *, Value *> &OutputMappings, 565 SetVector<Value *> &RemappedArgInputs) { 566 // Get the global value number for each input that will be extracted as an 567 // argument by the code extractor, remapping if needed for reloaded values. 568 for (Value *Input : ArgInputs) { 569 if (OutputMappings.find(Input) != OutputMappings.end()) 570 Input = OutputMappings.find(Input)->second; 571 RemappedArgInputs.insert(Input); 572 } 573 } 574 575 /// Find the input GVNs and the output values for a region of Instructions. 576 /// Using the code extractor, we collect the inputs to the extracted function. 577 /// 578 /// The \p Region can be identified as needing to be ignored in this function. 579 /// It should be checked whether it should be ignored after a call to this 580 /// function. 581 /// 582 /// \param [in,out] Region - The region of code to be analyzed. 583 /// \param [out] InputGVNs - The global value numbers for the extracted 584 /// arguments. 585 /// \param [in] NotSame - The global value numbers in the region that do not 586 /// have the same constant value in the regions structurally similar to 587 /// \p Region. 588 /// \param [in] OutputMappings - The mapping of values that have been replaced 589 /// by a new output value after extraction. 590 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 591 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 592 /// as outputs. 593 static void getCodeExtractorArguments( 594 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 595 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 596 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 597 IRSimilarityCandidate &C = *Region.Candidate; 598 599 // OverallInputs are the inputs to the region found by the CodeExtractor, 600 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 601 // allocas of values whose lifetimes are contained completely within the 602 // outlined region. PremappedInputs are the arguments found by the 603 // CodeExtractor, removing conditions such as sunken allocas, but that 604 // may need to be remapped due to the extracted output values replacing 605 // the original values. We use DummyOutputs for this first run of finding 606 // inputs and outputs since the outputs could change during findAllocas, 607 // the correct set of extracted outputs will be in the final Outputs ValueSet. 608 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 609 DummyOutputs; 610 611 // Use the code extractor to get the inputs and outputs, without sunken 612 // allocas or removing llvm.assumes. 613 CodeExtractor *CE = Region.CE; 614 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 615 assert(Region.StartBB && "Region must have a start BasicBlock!"); 616 Function *OrigF = Region.StartBB->getParent(); 617 CodeExtractorAnalysisCache CEAC(*OrigF); 618 BasicBlock *Dummy = nullptr; 619 620 // The region may be ineligible due to VarArgs in the parent function. In this 621 // case we ignore the region. 622 if (!CE->isEligible()) { 623 Region.IgnoreRegion = true; 624 return; 625 } 626 627 // Find if any values are going to be sunk into the function when extracted 628 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 629 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 630 631 // TODO: Support regions with sunken allocas: values whose lifetimes are 632 // contained completely within the outlined region. These are not guaranteed 633 // to be the same in every region, so we must elevate them all to arguments 634 // when they appear. If these values are not equal, it means there is some 635 // Input in OverallInputs that was removed for ArgInputs. 636 if (OverallInputs.size() != PremappedInputs.size()) { 637 Region.IgnoreRegion = true; 638 return; 639 } 640 641 findConstants(C, NotSame, InputGVNs); 642 643 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 644 645 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 646 ArgInputs); 647 648 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 649 // we need to make sure they are in a deterministic order. 650 stable_sort(InputGVNs); 651 } 652 653 /// Look over the inputs and map each input argument to an argument in the 654 /// overall function for the OutlinableRegions. This creates a way to replace 655 /// the arguments of the extracted function with the arguments of the new 656 /// overall function. 657 /// 658 /// \param [in,out] Region - The region of code to be analyzed. 659 /// \param [in] InputGVNs - The global value numbering of the input values 660 /// collected. 661 /// \param [in] ArgInputs - The values of the arguments to the extracted 662 /// function. 663 static void 664 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 665 std::vector<unsigned> &InputGVNs, 666 SetVector<Value *> &ArgInputs) { 667 668 IRSimilarityCandidate &C = *Region.Candidate; 669 OutlinableGroup &Group = *Region.Parent; 670 671 // This counts the argument number in the overall function. 672 unsigned TypeIndex = 0; 673 674 // This counts the argument number in the extracted function. 675 unsigned OriginalIndex = 0; 676 677 // Find the mapping of the extracted arguments to the arguments for the 678 // overall function. Since there may be extra arguments in the overall 679 // function to account for the extracted constants, we have two different 680 // counters as we find extracted arguments, and as we come across overall 681 // arguments. 682 683 // Additionally, in our first pass, for the first extracted function, 684 // we find argument locations for the canonical value numbering. This 685 // numbering overrides any discovered location for the extracted code. 686 for (unsigned InputVal : InputGVNs) { 687 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 688 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 689 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 690 691 Optional<Value *> InputOpt = C.fromGVN(InputVal); 692 assert(InputOpt.hasValue() && "Global value number not found?"); 693 Value *Input = InputOpt.getValue(); 694 695 DenseMap<unsigned, unsigned>::iterator AggArgIt = 696 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 697 698 if (!Group.InputTypesSet) { 699 Group.ArgumentTypes.push_back(Input->getType()); 700 // If the input value has a swifterr attribute, make sure to mark the 701 // argument in the overall function. 702 if (Input->isSwiftError()) { 703 assert( 704 !Group.SwiftErrorArgument.hasValue() && 705 "Argument already marked with swifterr for this OutlinableGroup!"); 706 Group.SwiftErrorArgument = TypeIndex; 707 } 708 } 709 710 // Check if we have a constant. If we do add it to the overall argument 711 // number to Constant map for the region, and continue to the next input. 712 if (Constant *CST = dyn_cast<Constant>(Input)) { 713 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 714 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 715 else { 716 Group.CanonicalNumberToAggArg.insert( 717 std::make_pair(CanonicalNumber, TypeIndex)); 718 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 719 } 720 TypeIndex++; 721 continue; 722 } 723 724 // It is not a constant, we create the mapping from extracted argument list 725 // to the overall argument list, using the canonical location, if it exists. 726 assert(ArgInputs.count(Input) && "Input cannot be found!"); 727 728 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 729 if (OriginalIndex != AggArgIt->second) 730 Region.ChangedArgOrder = true; 731 Region.ExtractedArgToAgg.insert( 732 std::make_pair(OriginalIndex, AggArgIt->second)); 733 Region.AggArgToExtracted.insert( 734 std::make_pair(AggArgIt->second, OriginalIndex)); 735 } else { 736 Group.CanonicalNumberToAggArg.insert( 737 std::make_pair(CanonicalNumber, TypeIndex)); 738 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 739 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 740 } 741 OriginalIndex++; 742 TypeIndex++; 743 } 744 745 // If the function type definitions for the OutlinableGroup holding the region 746 // have not been set, set the length of the inputs here. We should have the 747 // same inputs for all of the different regions contained in the 748 // OutlinableGroup since they are all structurally similar to one another. 749 if (!Group.InputTypesSet) { 750 Group.NumAggregateInputs = TypeIndex; 751 Group.InputTypesSet = true; 752 } 753 754 Region.NumExtractedInputs = OriginalIndex; 755 } 756 757 /// Create a mapping of the output arguments for the \p Region to the output 758 /// arguments of the overall outlined function. 759 /// 760 /// \param [in,out] Region - The region of code to be analyzed. 761 /// \param [in] Outputs - The values found by the code extractor. 762 static void 763 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 764 ArrayRef<Value *> Outputs) { 765 OutlinableGroup &Group = *Region.Parent; 766 IRSimilarityCandidate &C = *Region.Candidate; 767 768 // This counts the argument number in the extracted function. 769 unsigned OriginalIndex = Region.NumExtractedInputs; 770 771 // This counts the argument number in the overall function. 772 unsigned TypeIndex = Group.NumAggregateInputs; 773 bool TypeFound; 774 DenseSet<unsigned> AggArgsUsed; 775 776 // Iterate over the output types and identify if there is an aggregate pointer 777 // type whose base type matches the current output type. If there is, we mark 778 // that we will use this output register for this value. If not we add another 779 // type to the overall argument type list. We also store the GVNs used for 780 // stores to identify which values will need to be moved into an special 781 // block that holds the stores to the output registers. 782 for (Value *Output : Outputs) { 783 TypeFound = false; 784 // We can do this since it is a result value, and will have a number 785 // that is necessarily the same. BUT if in the future, the instructions 786 // do not have to be in same order, but are functionally the same, we will 787 // have to use a different scheme, as one-to-one correspondence is not 788 // guaranteed. 789 unsigned GlobalValue = C.getGVN(Output).getValue(); 790 unsigned ArgumentSize = Group.ArgumentTypes.size(); 791 792 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 793 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 794 continue; 795 796 if (AggArgsUsed.contains(Jdx)) 797 continue; 798 799 TypeFound = true; 800 AggArgsUsed.insert(Jdx); 801 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 802 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 803 Region.GVNStores.push_back(GlobalValue); 804 break; 805 } 806 807 // We were unable to find an unused type in the output type set that matches 808 // the output, so we add a pointer type to the argument types of the overall 809 // function to handle this output and create a mapping to it. 810 if (!TypeFound) { 811 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 812 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); 813 Region.ExtractedArgToAgg.insert( 814 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); 815 Region.AggArgToExtracted.insert( 816 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); 817 Region.GVNStores.push_back(GlobalValue); 818 } 819 820 stable_sort(Region.GVNStores); 821 OriginalIndex++; 822 TypeIndex++; 823 } 824 } 825 826 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 827 DenseSet<unsigned> &NotSame) { 828 std::vector<unsigned> Inputs; 829 SetVector<Value *> ArgInputs, Outputs; 830 831 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 832 Outputs); 833 834 if (Region.IgnoreRegion) 835 return; 836 837 // Map the inputs found by the CodeExtractor to the arguments found for 838 // the overall function. 839 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 840 841 // Map the outputs found by the CodeExtractor to the arguments found for 842 // the overall function. 843 findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef()); 844 } 845 846 /// Replace the extracted function in the Region with a call to the overall 847 /// function constructed from the deduplicated similar regions, replacing and 848 /// remapping the values passed to the extracted function as arguments to the 849 /// new arguments of the overall function. 850 /// 851 /// \param [in] M - The module to outline from. 852 /// \param [in] Region - The regions of extracted code to be replaced with a new 853 /// function. 854 /// \returns a call instruction with the replaced function. 855 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 856 std::vector<Value *> NewCallArgs; 857 DenseMap<unsigned, unsigned>::iterator ArgPair; 858 859 OutlinableGroup &Group = *Region.Parent; 860 CallInst *Call = Region.Call; 861 assert(Call && "Call to replace is nullptr?"); 862 Function *AggFunc = Group.OutlinedFunction; 863 assert(AggFunc && "Function to replace with is nullptr?"); 864 865 // If the arguments are the same size, there are not values that need to be 866 // made into an argument, the argument ordering has not been change, or 867 // different output registers to handle. We can simply replace the called 868 // function in this case. 869 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 870 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 871 << *AggFunc << " with same number of arguments\n"); 872 Call->setCalledFunction(AggFunc); 873 return Call; 874 } 875 876 // We have a different number of arguments than the new function, so 877 // we need to use our previously mappings off extracted argument to overall 878 // function argument, and constants to overall function argument to create the 879 // new argument list. 880 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 881 882 if (AggArgIdx == AggFunc->arg_size() - 1 && 883 Group.OutputGVNCombinations.size() > 1) { 884 // If we are on the last argument, and we need to differentiate between 885 // output blocks, add an integer to the argument list to determine 886 // what block to take 887 LLVM_DEBUG(dbgs() << "Set switch block argument to " 888 << Region.OutputBlockNum << "\n"); 889 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 890 Region.OutputBlockNum)); 891 continue; 892 } 893 894 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 895 if (ArgPair != Region.AggArgToExtracted.end()) { 896 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 897 // If we found the mapping from the extracted function to the overall 898 // function, we simply add it to the argument list. We use the same 899 // value, it just needs to honor the new order of arguments. 900 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 901 << *ArgumentValue << "\n"); 902 NewCallArgs.push_back(ArgumentValue); 903 continue; 904 } 905 906 // If it is a constant, we simply add it to the argument list as a value. 907 if (Region.AggArgToConstant.find(AggArgIdx) != 908 Region.AggArgToConstant.end()) { 909 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 910 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 911 << *CST << "\n"); 912 NewCallArgs.push_back(CST); 913 continue; 914 } 915 916 // Add a nullptr value if the argument is not found in the extracted 917 // function. If we cannot find a value, it means it is not in use 918 // for the region, so we should not pass anything to it. 919 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 920 NewCallArgs.push_back(ConstantPointerNull::get( 921 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 922 } 923 924 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 925 << *AggFunc << " with new set of arguments\n"); 926 // Create the new call instruction and erase the old one. 927 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 928 Call); 929 930 // It is possible that the call to the outlined function is either the first 931 // instruction is in the new block, the last instruction, or both. If either 932 // of these is the case, we need to make sure that we replace the instruction 933 // in the IRInstructionData struct with the new call. 934 CallInst *OldCall = Region.Call; 935 if (Region.NewFront->Inst == OldCall) 936 Region.NewFront->Inst = Call; 937 if (Region.NewBack->Inst == OldCall) 938 Region.NewBack->Inst = Call; 939 940 // Transfer any debug information. 941 Call->setDebugLoc(Region.Call->getDebugLoc()); 942 943 // Remove the old instruction. 944 OldCall->eraseFromParent(); 945 Region.Call = Call; 946 947 // Make sure that the argument in the new function has the SwiftError 948 // argument. 949 if (Group.SwiftErrorArgument.hasValue()) 950 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 951 Attribute::SwiftError); 952 953 return Call; 954 } 955 956 // Within an extracted function, replace the argument uses of the extracted 957 // region with the arguments of the function for an OutlinableGroup. 958 // 959 /// \param [in] Region - The region of extracted code to be changed. 960 /// \param [in,out] OutputBB - The BasicBlock for the output stores for this 961 /// region. 962 static void replaceArgumentUses(OutlinableRegion &Region, 963 BasicBlock *OutputBB) { 964 OutlinableGroup &Group = *Region.Parent; 965 assert(Region.ExtractedFunction && "Region has no extracted function?"); 966 967 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 968 ArgIdx++) { 969 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 970 Region.ExtractedArgToAgg.end() && 971 "No mapping from extracted to outlined?"); 972 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 973 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 974 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 975 // The argument is an input, so we can simply replace it with the overall 976 // argument value 977 if (ArgIdx < Region.NumExtractedInputs) { 978 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 979 << *Region.ExtractedFunction << " with " << *AggArg 980 << " in function " << *Group.OutlinedFunction << "\n"); 981 Arg->replaceAllUsesWith(AggArg); 982 continue; 983 } 984 985 // If we are replacing an output, we place the store value in its own 986 // block inside the overall function before replacing the use of the output 987 // in the function. 988 assert(Arg->hasOneUse() && "Output argument can only have one use"); 989 User *InstAsUser = Arg->user_back(); 990 assert(InstAsUser && "User is nullptr!"); 991 992 Instruction *I = cast<Instruction>(InstAsUser); 993 I->setDebugLoc(DebugLoc()); 994 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 995 << *OutputBB << "\n"); 996 997 I->moveBefore(*OutputBB, OutputBB->end()); 998 999 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1000 << *Region.ExtractedFunction << " with " << *AggArg 1001 << " in function " << *Group.OutlinedFunction << "\n"); 1002 Arg->replaceAllUsesWith(AggArg); 1003 } 1004 } 1005 1006 /// Within an extracted function, replace the constants that need to be lifted 1007 /// into arguments with the actual argument. 1008 /// 1009 /// \param Region [in] - The region of extracted code to be changed. 1010 void replaceConstants(OutlinableRegion &Region) { 1011 OutlinableGroup &Group = *Region.Parent; 1012 // Iterate over the constants that need to be elevated into arguments 1013 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1014 unsigned AggArgIdx = Const.first; 1015 Function *OutlinedFunction = Group.OutlinedFunction; 1016 assert(OutlinedFunction && "Overall Function is not defined?"); 1017 Constant *CST = Const.second; 1018 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1019 // Identify the argument it will be elevated to, and replace instances of 1020 // that constant in the function. 1021 1022 // TODO: If in the future constants do not have one global value number, 1023 // i.e. a constant 1 could be mapped to several values, this check will 1024 // have to be more strict. It cannot be using only replaceUsesWithIf. 1025 1026 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1027 << " in function " << *OutlinedFunction << " with " 1028 << *Arg << "\n"); 1029 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1030 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1031 return I->getFunction() == OutlinedFunction; 1032 return false; 1033 }); 1034 } 1035 } 1036 1037 /// For the given function, find all the nondebug or lifetime instructions, 1038 /// and return them as a vector. Exclude any blocks in \p ExludeBlocks. 1039 /// 1040 /// \param [in] F - The function we collect the instructions from. 1041 /// \param [in] ExcludeBlocks - BasicBlocks to ignore. 1042 /// \returns the list of instructions extracted. 1043 static std::vector<Instruction *> 1044 collectRelevantInstructions(Function &F, 1045 DenseSet<BasicBlock *> &ExcludeBlocks) { 1046 std::vector<Instruction *> RelevantInstructions; 1047 1048 for (BasicBlock &BB : F) { 1049 if (ExcludeBlocks.contains(&BB)) 1050 continue; 1051 1052 for (Instruction &Inst : BB) { 1053 if (Inst.isLifetimeStartOrEnd()) 1054 continue; 1055 if (isa<DbgInfoIntrinsic>(Inst)) 1056 continue; 1057 1058 RelevantInstructions.push_back(&Inst); 1059 } 1060 } 1061 1062 return RelevantInstructions; 1063 } 1064 1065 /// It is possible that there is a basic block that already performs the same 1066 /// stores. This returns a duplicate block, if it exists 1067 /// 1068 /// \param OutputBB [in] the block we are looking for a duplicate of. 1069 /// \param OutputStoreBBs [in] The existing output blocks. 1070 /// \returns an optional value with the number output block if there is a match. 1071 Optional<unsigned> 1072 findDuplicateOutputBlock(BasicBlock *OutputBB, 1073 ArrayRef<BasicBlock *> OutputStoreBBs) { 1074 1075 bool WrongInst = false; 1076 bool WrongSize = false; 1077 unsigned MatchingNum = 0; 1078 for (BasicBlock *CompBB : OutputStoreBBs) { 1079 WrongInst = false; 1080 if (CompBB->size() - 1 != OutputBB->size()) { 1081 WrongSize = true; 1082 MatchingNum++; 1083 continue; 1084 } 1085 1086 WrongSize = false; 1087 BasicBlock::iterator NIt = OutputBB->begin(); 1088 for (Instruction &I : *CompBB) { 1089 if (isa<BranchInst>(&I)) 1090 continue; 1091 1092 if (!I.isIdenticalTo(&(*NIt))) { 1093 WrongInst = true; 1094 break; 1095 } 1096 1097 NIt++; 1098 } 1099 if (!WrongInst && !WrongSize) 1100 return MatchingNum; 1101 1102 MatchingNum++; 1103 } 1104 1105 return None; 1106 } 1107 1108 /// For the outlined section, move needed the StoreInsts for the output 1109 /// registers into their own block. Then, determine if there is a duplicate 1110 /// output block already created. 1111 /// 1112 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1113 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1114 /// \param [in,out] OutputBB - the block that stores for this region will be 1115 /// placed in. 1116 /// \param [in] EndBB - the final block of the extracted function. 1117 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1118 /// been replaced by a new output value. 1119 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1120 static void 1121 alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region, 1122 BasicBlock *OutputBB, BasicBlock *EndBB, 1123 const DenseMap<Value *, Value *> &OutputMappings, 1124 std::vector<BasicBlock *> &OutputStoreBBs) { 1125 DenseSet<unsigned> ValuesToFind(Region.GVNStores.begin(), 1126 Region.GVNStores.end()); 1127 1128 // We iterate over the instructions in the extracted function, and find the 1129 // global value number of the instructions. If we find a value that should 1130 // be contained in a store, we replace the uses of the value with the value 1131 // from the overall function, so that the store is storing the correct 1132 // value from the overall function. 1133 DenseSet<BasicBlock *> ExcludeBBs(OutputStoreBBs.begin(), 1134 OutputStoreBBs.end()); 1135 ExcludeBBs.insert(OutputBB); 1136 std::vector<Instruction *> ExtractedFunctionInsts = 1137 collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs); 1138 std::vector<Instruction *> OverallFunctionInsts = 1139 collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs); 1140 1141 assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() && 1142 "Number of relevant instructions not equal!"); 1143 1144 unsigned NumInstructions = ExtractedFunctionInsts.size(); 1145 for (unsigned Idx = 0; Idx < NumInstructions; Idx++) { 1146 Value *V = ExtractedFunctionInsts[Idx]; 1147 1148 if (OutputMappings.find(V) != OutputMappings.end()) 1149 V = OutputMappings.find(V)->second; 1150 Optional<unsigned> GVN = Region.Candidate->getGVN(V); 1151 1152 // If we have found one of the stored values for output, replace the value 1153 // with the corresponding one from the overall function. 1154 if (GVN.hasValue() && ValuesToFind.erase(GVN.getValue())) { 1155 V->replaceAllUsesWith(OverallFunctionInsts[Idx]); 1156 if (ValuesToFind.size() == 0) 1157 break; 1158 } 1159 1160 if (ValuesToFind.size() == 0) 1161 break; 1162 } 1163 1164 assert(ValuesToFind.size() == 0 && "Not all store values were handled!"); 1165 1166 // If the size of the block is 0, then there are no stores, and we do not 1167 // need to save this block. 1168 if (OutputBB->size() == 0) { 1169 Region.OutputBlockNum = -1; 1170 OutputBB->eraseFromParent(); 1171 return; 1172 } 1173 1174 // Determine is there is a duplicate block. 1175 Optional<unsigned> MatchingBB = 1176 findDuplicateOutputBlock(OutputBB, OutputStoreBBs); 1177 1178 // If there is, we remove the new output block. If it does not, 1179 // we add it to our list of output blocks. 1180 if (MatchingBB.hasValue()) { 1181 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1182 << Region.ExtractedFunction << " to " 1183 << MatchingBB.getValue()); 1184 1185 Region.OutputBlockNum = MatchingBB.getValue(); 1186 OutputBB->eraseFromParent(); 1187 return; 1188 } 1189 1190 Region.OutputBlockNum = OutputStoreBBs.size(); 1191 1192 LLVM_DEBUG(dbgs() << "Create output block for region in" 1193 << Region.ExtractedFunction << " to " 1194 << *OutputBB); 1195 OutputStoreBBs.push_back(OutputBB); 1196 BranchInst::Create(EndBB, OutputBB); 1197 } 1198 1199 /// Create the switch statement for outlined function to differentiate between 1200 /// all the output blocks. 1201 /// 1202 /// For the outlined section, determine if an outlined block already exists that 1203 /// matches the needed stores for the extracted section. 1204 /// \param [in] M - The module we are outlining from. 1205 /// \param [in] OG - The group of regions to be outlined. 1206 /// \param [in] EndBB - The final block of the extracted function. 1207 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1208 void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB, 1209 ArrayRef<BasicBlock *> OutputStoreBBs) { 1210 // We only need the switch statement if there is more than one store 1211 // combination. 1212 if (OG.OutputGVNCombinations.size() > 1) { 1213 Function *AggFunc = OG.OutlinedFunction; 1214 // Create a final block 1215 BasicBlock *ReturnBlock = 1216 BasicBlock::Create(M.getContext(), "final_block", AggFunc); 1217 Instruction *Term = EndBB->getTerminator(); 1218 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 1219 // Put the switch statement in the old end basic block for the function with 1220 // a fall through to the new return block 1221 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 1222 << OutputStoreBBs.size() << "\n"); 1223 SwitchInst *SwitchI = 1224 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 1225 ReturnBlock, OutputStoreBBs.size(), EndBB); 1226 1227 unsigned Idx = 0; 1228 for (BasicBlock *BB : OutputStoreBBs) { 1229 SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), 1230 BB); 1231 Term = BB->getTerminator(); 1232 Term->setSuccessor(0, ReturnBlock); 1233 Idx++; 1234 } 1235 return; 1236 } 1237 1238 // If there needs to be stores, move them from the output block to the end 1239 // block to save on branching instructions. 1240 if (OutputStoreBBs.size() == 1) { 1241 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 1242 << *OG.OutlinedFunction << "\n"); 1243 BasicBlock *OutputBlock = OutputStoreBBs[0]; 1244 Instruction *Term = OutputBlock->getTerminator(); 1245 Term->eraseFromParent(); 1246 Term = EndBB->getTerminator(); 1247 moveBBContents(*OutputBlock, *EndBB); 1248 Term->moveBefore(*EndBB, EndBB->end()); 1249 OutputBlock->eraseFromParent(); 1250 } 1251 } 1252 1253 /// Fill the new function that will serve as the replacement function for all of 1254 /// the extracted regions of a certain structure from the first region in the 1255 /// list of regions. Replace this first region's extracted function with the 1256 /// new overall function. 1257 /// 1258 /// \param [in] M - The module we are outlining from. 1259 /// \param [in] CurrentGroup - The group of regions to be outlined. 1260 /// \param [in,out] OutputStoreBBs - The output blocks for each different 1261 /// set of stores needed for the different functions. 1262 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 1263 /// once outlining is complete. 1264 static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup, 1265 std::vector<BasicBlock *> &OutputStoreBBs, 1266 std::vector<Function *> &FuncsToRemove) { 1267 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 1268 1269 // Move first extracted function's instructions into new function. 1270 LLVM_DEBUG(dbgs() << "Move instructions from " 1271 << *CurrentOS->ExtractedFunction << " to instruction " 1272 << *CurrentGroup.OutlinedFunction << "\n"); 1273 1274 CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction, 1275 *CurrentGroup.OutlinedFunction); 1276 1277 // Transfer the attributes from the function to the new function. 1278 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 1279 CurrentGroup.OutlinedFunction->addFnAttr(A); 1280 1281 // Create an output block for the first extracted function. 1282 BasicBlock *NewBB = BasicBlock::Create( 1283 M.getContext(), Twine("output_block_") + Twine(static_cast<unsigned>(0)), 1284 CurrentGroup.OutlinedFunction); 1285 CurrentOS->OutputBlockNum = 0; 1286 1287 replaceArgumentUses(*CurrentOS, NewBB); 1288 replaceConstants(*CurrentOS); 1289 1290 // If the new basic block has no new stores, we can erase it from the module. 1291 // It it does, we create a branch instruction to the last basic block from the 1292 // new one. 1293 if (NewBB->size() == 0) { 1294 CurrentOS->OutputBlockNum = -1; 1295 NewBB->eraseFromParent(); 1296 } else { 1297 BranchInst::Create(CurrentGroup.EndBB, NewBB); 1298 OutputStoreBBs.push_back(NewBB); 1299 } 1300 1301 // Replace the call to the extracted function with the outlined function. 1302 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1303 1304 // We only delete the extracted functions at the end since we may need to 1305 // reference instructions contained in them for mapping purposes. 1306 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1307 } 1308 1309 void IROutliner::deduplicateExtractedSections( 1310 Module &M, OutlinableGroup &CurrentGroup, 1311 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 1312 createFunction(M, CurrentGroup, OutlinedFunctionNum); 1313 1314 std::vector<BasicBlock *> OutputStoreBBs; 1315 1316 OutlinableRegion *CurrentOS; 1317 1318 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); 1319 1320 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 1321 CurrentOS = CurrentGroup.Regions[Idx]; 1322 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 1323 *CurrentOS->ExtractedFunction); 1324 1325 // Create a new BasicBlock to hold the needed store instructions. 1326 BasicBlock *NewBB = BasicBlock::Create( 1327 M.getContext(), "output_block_" + std::to_string(Idx), 1328 CurrentGroup.OutlinedFunction); 1329 replaceArgumentUses(*CurrentOS, NewBB); 1330 1331 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB, 1332 CurrentGroup.EndBB, OutputMappings, 1333 OutputStoreBBs); 1334 1335 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1336 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1337 } 1338 1339 // Create a switch statement to handle the different output schemes. 1340 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs); 1341 1342 OutlinedFunctionNum++; 1343 } 1344 1345 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 1346 const OutlinableRegion &Region) { 1347 IRSimilarityCandidate *IRSC = Region.Candidate; 1348 unsigned StartIdx = IRSC->getStartIdx(); 1349 unsigned EndIdx = IRSC->getEndIdx(); 1350 1351 // A check to make sure that we are not about to attempt to outline something 1352 // that has already been outlined. 1353 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1354 if (Outlined.contains(Idx)) 1355 return false; 1356 1357 // We check if the recorded instruction matches the actual next instruction, 1358 // if it does not, we fix it in the InstructionDataList. 1359 Instruction *RealEndInstruction = 1360 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 1361 1362 assert(RealEndInstruction && "Next instruction is a nullptr?"); 1363 if (Region.Candidate->end()->Inst != RealEndInstruction) { 1364 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1365 Instruction *NewEndInst = RealEndInstruction; 1366 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 1367 IRInstructionData(*NewEndInst, InstructionClassifier.visit(*NewEndInst), 1368 *IDL); 1369 1370 // Insert the first IRInstructionData of the new region after the 1371 // last IRInstructionData of the IRSimilarityCandidate. 1372 IDL->insert(Region.Candidate->end(), *NewEndIRID); 1373 } 1374 1375 return none_of(*IRSC, [this](IRInstructionData &ID) { 1376 // We check if there is a discrepancy between the InstructionDataList 1377 // and the actual next instruction in the module. If there is, it means 1378 // that an extra instruction was added, likely by the CodeExtractor. 1379 1380 // Since we do not have any similarity data about this particular 1381 // instruction, we cannot confidently outline it, and must discard this 1382 // candidate. 1383 if (std::next(ID.getIterator())->Inst != 1384 ID.Inst->getNextNonDebugInstruction()) 1385 return true; 1386 return !InstructionClassifier.visit(ID.Inst); 1387 }); 1388 } 1389 1390 void IROutliner::pruneIncompatibleRegions( 1391 std::vector<IRSimilarityCandidate> &CandidateVec, 1392 OutlinableGroup &CurrentGroup) { 1393 bool PreviouslyOutlined; 1394 1395 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 1396 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 1397 const IRSimilarityCandidate &RHS) { 1398 return LHS.getStartIdx() < RHS.getStartIdx(); 1399 }); 1400 1401 unsigned CurrentEndIdx = 0; 1402 for (IRSimilarityCandidate &IRSC : CandidateVec) { 1403 PreviouslyOutlined = false; 1404 unsigned StartIdx = IRSC.getStartIdx(); 1405 unsigned EndIdx = IRSC.getEndIdx(); 1406 1407 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1408 if (Outlined.contains(Idx)) { 1409 PreviouslyOutlined = true; 1410 break; 1411 } 1412 1413 if (PreviouslyOutlined) 1414 continue; 1415 1416 // TODO: If in the future we can outline across BasicBlocks, we will need to 1417 // check all BasicBlocks contained in the region. 1418 if (IRSC.getStartBB()->hasAddressTaken()) 1419 continue; 1420 1421 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 1422 !OutlineFromLinkODRs) 1423 continue; 1424 1425 // Greedily prune out any regions that will overlap with already chosen 1426 // regions. 1427 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 1428 continue; 1429 1430 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 1431 // We check if there is a discrepancy between the InstructionDataList 1432 // and the actual next instruction in the module. If there is, it means 1433 // that an extra instruction was added, likely by the CodeExtractor. 1434 1435 // Since we do not have any similarity data about this particular 1436 // instruction, we cannot confidently outline it, and must discard this 1437 // candidate. 1438 if (std::next(ID.getIterator())->Inst != 1439 ID.Inst->getNextNonDebugInstruction()) 1440 return true; 1441 return !this->InstructionClassifier.visit(ID.Inst); 1442 }); 1443 1444 if (BadInst) 1445 continue; 1446 1447 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 1448 OutlinableRegion(IRSC, CurrentGroup); 1449 CurrentGroup.Regions.push_back(OS); 1450 1451 CurrentEndIdx = EndIdx; 1452 } 1453 } 1454 1455 InstructionCost 1456 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 1457 InstructionCost RegionBenefit = 0; 1458 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1459 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1460 // We add the number of instructions in the region to the benefit as an 1461 // estimate as to how much will be removed. 1462 RegionBenefit += Region->getBenefit(TTI); 1463 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 1464 << " saved instructions to overfall benefit.\n"); 1465 } 1466 1467 return RegionBenefit; 1468 } 1469 1470 InstructionCost 1471 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 1472 InstructionCost OverallCost = 0; 1473 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1474 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1475 1476 // Each output incurs a load after the call, so we add that to the cost. 1477 for (unsigned OutputGVN : Region->GVNStores) { 1478 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN); 1479 assert(OV.hasValue() && "Could not find value for GVN?"); 1480 Value *V = OV.getValue(); 1481 InstructionCost LoadCost = 1482 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1483 TargetTransformInfo::TCK_CodeSize); 1484 1485 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 1486 << " instructions to cost for output of type " 1487 << *V->getType() << "\n"); 1488 OverallCost += LoadCost; 1489 } 1490 } 1491 1492 return OverallCost; 1493 } 1494 1495 /// Find the extra instructions needed to handle any output values for the 1496 /// region. 1497 /// 1498 /// \param [in] M - The Module to outline from. 1499 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 1500 /// \param [in] TTI - The TargetTransformInfo used to collect information for 1501 /// new instruction costs. 1502 /// \returns the additional cost to handle the outputs. 1503 static InstructionCost findCostForOutputBlocks(Module &M, 1504 OutlinableGroup &CurrentGroup, 1505 TargetTransformInfo &TTI) { 1506 InstructionCost OutputCost = 0; 1507 1508 for (const ArrayRef<unsigned> &OutputUse : 1509 CurrentGroup.OutputGVNCombinations) { 1510 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 1511 for (unsigned GVN : OutputUse) { 1512 Optional<Value *> OV = Candidate.fromGVN(GVN); 1513 assert(OV.hasValue() && "Could not find value for GVN?"); 1514 Value *V = OV.getValue(); 1515 InstructionCost StoreCost = 1516 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1517 TargetTransformInfo::TCK_CodeSize); 1518 1519 // An instruction cost is added for each store set that needs to occur for 1520 // various output combinations inside the function, plus a branch to 1521 // return to the exit block. 1522 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 1523 << " instructions to cost for output of type " 1524 << *V->getType() << "\n"); 1525 OutputCost += StoreCost; 1526 } 1527 1528 InstructionCost BranchCost = 1529 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1530 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 1531 << " a branch instruction\n"); 1532 OutputCost += BranchCost; 1533 } 1534 1535 // If there is more than one output scheme, we must have a comparison and 1536 // branch for each different item in the switch statement. 1537 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 1538 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 1539 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 1540 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 1541 TargetTransformInfo::TCK_CodeSize); 1542 InstructionCost BranchCost = 1543 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1544 1545 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 1546 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 1547 1548 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 1549 << " instructions for each switch case for each different" 1550 << " output path in a function\n"); 1551 OutputCost += TotalCost; 1552 } 1553 1554 return OutputCost; 1555 } 1556 1557 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 1558 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 1559 CurrentGroup.Benefit += RegionBenefit; 1560 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 1561 1562 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 1563 CurrentGroup.Cost += OutputReloadCost; 1564 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1565 1566 InstructionCost AverageRegionBenefit = 1567 RegionBenefit / CurrentGroup.Regions.size(); 1568 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 1569 unsigned NumRegions = CurrentGroup.Regions.size(); 1570 TargetTransformInfo &TTI = 1571 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1572 1573 // We add one region to the cost once, to account for the instructions added 1574 // inside of the newly created function. 1575 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 1576 << " instructions to cost for body of new function.\n"); 1577 CurrentGroup.Cost += AverageRegionBenefit; 1578 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1579 1580 // For each argument, we must add an instruction for loading the argument 1581 // out of the register and into a value inside of the newly outlined function. 1582 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1583 << " instructions to cost for each argument in the new" 1584 << " function.\n"); 1585 CurrentGroup.Cost += 1586 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 1587 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1588 1589 // Each argument needs to either be loaded into a register or onto the stack. 1590 // Some arguments will only be loaded into the stack once the argument 1591 // registers are filled. 1592 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1593 << " instructions to cost for each argument in the new" 1594 << " function " << NumRegions << " times for the " 1595 << "needed argument handling at the call site.\n"); 1596 CurrentGroup.Cost += 1597 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 1598 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1599 1600 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 1601 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1602 } 1603 1604 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 1605 ArrayRef<Value *> Outputs, 1606 LoadInst *LI) { 1607 // For and load instructions following the call 1608 Value *Operand = LI->getPointerOperand(); 1609 Optional<unsigned> OutputIdx = None; 1610 // Find if the operand it is an output register. 1611 for (unsigned ArgIdx = Region.NumExtractedInputs; 1612 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 1613 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 1614 OutputIdx = ArgIdx - Region.NumExtractedInputs; 1615 break; 1616 } 1617 } 1618 1619 // If we found an output register, place a mapping of the new value 1620 // to the original in the mapping. 1621 if (!OutputIdx.hasValue()) 1622 return; 1623 1624 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 1625 OutputMappings.end()) { 1626 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 1627 << *Outputs[OutputIdx.getValue()] << "\n"); 1628 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 1629 } else { 1630 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 1631 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 1632 << *Outputs[OutputIdx.getValue()] << "\n"); 1633 OutputMappings.insert(std::make_pair(LI, Orig)); 1634 } 1635 } 1636 1637 bool IROutliner::extractSection(OutlinableRegion &Region) { 1638 SetVector<Value *> ArgInputs, Outputs, SinkCands; 1639 Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands); 1640 1641 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 1642 assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!"); 1643 Function *OrigF = Region.StartBB->getParent(); 1644 CodeExtractorAnalysisCache CEAC(*OrigF); 1645 Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC); 1646 1647 // If the extraction was successful, find the BasicBlock, and reassign the 1648 // OutlinableRegion blocks 1649 if (!Region.ExtractedFunction) { 1650 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 1651 << "\n"); 1652 Region.reattachCandidate(); 1653 return false; 1654 } 1655 1656 BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor(); 1657 Region.StartBB = RewrittenBB; 1658 Region.EndBB = RewrittenBB; 1659 1660 // The sequences of outlinable regions has now changed. We must fix the 1661 // IRInstructionDataList for consistency. Although they may not be illegal 1662 // instructions, they should not be compared with anything else as they 1663 // should not be outlined in this round. So marking these as illegal is 1664 // allowed. 1665 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1666 Instruction *BeginRewritten = &*RewrittenBB->begin(); 1667 Instruction *EndRewritten = &*RewrittenBB->begin(); 1668 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 1669 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 1670 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 1671 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 1672 1673 // Insert the first IRInstructionData of the new region in front of the 1674 // first IRInstructionData of the IRSimilarityCandidate. 1675 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 1676 // Insert the first IRInstructionData of the new region after the 1677 // last IRInstructionData of the IRSimilarityCandidate. 1678 IDL->insert(Region.Candidate->end(), *Region.NewBack); 1679 // Remove the IRInstructionData from the IRSimilarityCandidate. 1680 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 1681 1682 assert(RewrittenBB != nullptr && 1683 "Could not find a predecessor after extraction!"); 1684 1685 // Iterate over the new set of instructions to find the new call 1686 // instruction. 1687 for (Instruction &I : *RewrittenBB) 1688 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1689 if (Region.ExtractedFunction == CI->getCalledFunction()) 1690 Region.Call = CI; 1691 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 1692 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 1693 Region.reattachCandidate(); 1694 return true; 1695 } 1696 1697 unsigned IROutliner::doOutline(Module &M) { 1698 // Find the possible similarity sections. 1699 IRSimilarityIdentifier &Identifier = getIRSI(M); 1700 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 1701 1702 // Sort them by size of extracted sections 1703 unsigned OutlinedFunctionNum = 0; 1704 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 1705 // to sort them by the potential number of instructions to be outlined 1706 if (SimilarityCandidates.size() > 1) 1707 llvm::stable_sort(SimilarityCandidates, 1708 [](const std::vector<IRSimilarityCandidate> &LHS, 1709 const std::vector<IRSimilarityCandidate> &RHS) { 1710 return LHS[0].getLength() * LHS.size() > 1711 RHS[0].getLength() * RHS.size(); 1712 }); 1713 // Creating OutlinableGroups for each SimilarityCandidate to be used in 1714 // each of the following for loops to avoid making an allocator. 1715 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 1716 1717 DenseSet<unsigned> NotSame; 1718 std::vector<OutlinableGroup *> NegativeCostGroups; 1719 std::vector<OutlinableRegion *> OutlinedRegions; 1720 // Iterate over the possible sets of similarity. 1721 unsigned PotentialGroupIdx = 0; 1722 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 1723 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 1724 1725 // Remove entries that were previously outlined 1726 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 1727 1728 // We pruned the number of regions to 0 to 1, meaning that it's not worth 1729 // trying to outlined since there is no compatible similar instance of this 1730 // code. 1731 if (CurrentGroup.Regions.size() < 2) 1732 continue; 1733 1734 // Determine if there are any values that are the same constant throughout 1735 // each section in the set. 1736 NotSame.clear(); 1737 CurrentGroup.findSameConstants(NotSame); 1738 1739 if (CurrentGroup.IgnoreGroup) 1740 continue; 1741 1742 // Create a CodeExtractor for each outlinable region. Identify inputs and 1743 // outputs for each section using the code extractor and create the argument 1744 // types for the Aggregate Outlining Function. 1745 OutlinedRegions.clear(); 1746 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1747 // Break the outlinable region out of its parent BasicBlock into its own 1748 // BasicBlocks (see function implementation). 1749 OS->splitCandidate(); 1750 1751 // There's a chance that when the region is split, extra instructions are 1752 // added to the region. This makes the region no longer viable 1753 // to be split, so we ignore it for outlining. 1754 if (!OS->CandidateSplit) 1755 continue; 1756 1757 std::vector<BasicBlock *> BE = {OS->StartBB}; 1758 OS->CE = new (ExtractorAllocator.Allocate()) 1759 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 1760 false, "outlined"); 1761 findAddInputsOutputs(M, *OS, NotSame); 1762 if (!OS->IgnoreRegion) 1763 OutlinedRegions.push_back(OS); 1764 1765 // We recombine the blocks together now that we have gathered all the 1766 // needed information. 1767 OS->reattachCandidate(); 1768 } 1769 1770 CurrentGroup.Regions = std::move(OutlinedRegions); 1771 1772 if (CurrentGroup.Regions.empty()) 1773 continue; 1774 1775 CurrentGroup.collectGVNStoreSets(M); 1776 1777 if (CostModel) 1778 findCostBenefit(M, CurrentGroup); 1779 1780 // If we are adhering to the cost model, skip those groups where the cost 1781 // outweighs the benefits. 1782 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 1783 OptimizationRemarkEmitter &ORE = 1784 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1785 ORE.emit([&]() { 1786 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1787 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 1788 C->frontInstruction()); 1789 R << "did not outline " 1790 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1791 << " regions due to estimated increase of " 1792 << ore::NV("InstructionIncrease", 1793 CurrentGroup.Cost - CurrentGroup.Benefit) 1794 << " instructions at locations "; 1795 interleave( 1796 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1797 [&R](OutlinableRegion *Region) { 1798 R << ore::NV( 1799 "DebugLoc", 1800 Region->Candidate->frontInstruction()->getDebugLoc()); 1801 }, 1802 [&R]() { R << " "; }); 1803 return R; 1804 }); 1805 continue; 1806 } 1807 1808 NegativeCostGroups.push_back(&CurrentGroup); 1809 } 1810 1811 ExtractorAllocator.DestroyAll(); 1812 1813 if (NegativeCostGroups.size() > 1) 1814 stable_sort(NegativeCostGroups, 1815 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 1816 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 1817 }); 1818 1819 std::vector<Function *> FuncsToRemove; 1820 for (OutlinableGroup *CG : NegativeCostGroups) { 1821 OutlinableGroup &CurrentGroup = *CG; 1822 1823 OutlinedRegions.clear(); 1824 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1825 // We check whether our region is compatible with what has already been 1826 // outlined, and whether we need to ignore this item. 1827 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 1828 continue; 1829 OutlinedRegions.push_back(Region); 1830 } 1831 1832 if (OutlinedRegions.size() < 2) 1833 continue; 1834 1835 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 1836 // we are still outlining enough regions to make up for the added cost. 1837 CurrentGroup.Regions = std::move(OutlinedRegions); 1838 if (CostModel) { 1839 CurrentGroup.Benefit = 0; 1840 CurrentGroup.Cost = 0; 1841 findCostBenefit(M, CurrentGroup); 1842 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 1843 continue; 1844 } 1845 OutlinedRegions.clear(); 1846 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1847 Region->splitCandidate(); 1848 if (!Region->CandidateSplit) 1849 continue; 1850 OutlinedRegions.push_back(Region); 1851 } 1852 1853 CurrentGroup.Regions = std::move(OutlinedRegions); 1854 if (CurrentGroup.Regions.size() < 2) { 1855 for (OutlinableRegion *R : CurrentGroup.Regions) 1856 R->reattachCandidate(); 1857 continue; 1858 } 1859 1860 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 1861 << " and benefit " << CurrentGroup.Benefit << "\n"); 1862 1863 // Create functions out of all the sections, and mark them as outlined. 1864 OutlinedRegions.clear(); 1865 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1866 SmallVector<BasicBlock *> BE = {OS->StartBB}; 1867 OS->CE = new (ExtractorAllocator.Allocate()) 1868 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 1869 false, "outlined"); 1870 bool FunctionOutlined = extractSection(*OS); 1871 if (FunctionOutlined) { 1872 unsigned StartIdx = OS->Candidate->getStartIdx(); 1873 unsigned EndIdx = OS->Candidate->getEndIdx(); 1874 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1875 Outlined.insert(Idx); 1876 1877 OutlinedRegions.push_back(OS); 1878 } 1879 } 1880 1881 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 1882 << " with benefit " << CurrentGroup.Benefit 1883 << " and cost " << CurrentGroup.Cost << "\n"); 1884 1885 CurrentGroup.Regions = std::move(OutlinedRegions); 1886 1887 if (CurrentGroup.Regions.empty()) 1888 continue; 1889 1890 OptimizationRemarkEmitter &ORE = 1891 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 1892 ORE.emit([&]() { 1893 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1894 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 1895 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1896 << " regions with decrease of " 1897 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 1898 << " instructions at locations "; 1899 interleave( 1900 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1901 [&R](OutlinableRegion *Region) { 1902 R << ore::NV("DebugLoc", 1903 Region->Candidate->frontInstruction()->getDebugLoc()); 1904 }, 1905 [&R]() { R << " "; }); 1906 return R; 1907 }); 1908 1909 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 1910 OutlinedFunctionNum); 1911 } 1912 1913 for (Function *F : FuncsToRemove) 1914 F->eraseFromParent(); 1915 1916 return OutlinedFunctionNum; 1917 } 1918 1919 bool IROutliner::run(Module &M) { 1920 CostModel = !NoCostModel; 1921 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 1922 1923 return doOutline(M) > 0; 1924 } 1925 1926 // Pass Manager Boilerplate 1927 class IROutlinerLegacyPass : public ModulePass { 1928 public: 1929 static char ID; 1930 IROutlinerLegacyPass() : ModulePass(ID) { 1931 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 1932 } 1933 1934 void getAnalysisUsage(AnalysisUsage &AU) const override { 1935 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1936 AU.addRequired<TargetTransformInfoWrapperPass>(); 1937 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 1938 } 1939 1940 bool runOnModule(Module &M) override; 1941 }; 1942 1943 bool IROutlinerLegacyPass::runOnModule(Module &M) { 1944 if (skipModule(M)) 1945 return false; 1946 1947 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1948 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1949 ORE.reset(new OptimizationRemarkEmitter(&F)); 1950 return *ORE.get(); 1951 }; 1952 1953 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 1954 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1955 }; 1956 1957 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 1958 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 1959 }; 1960 1961 return IROutliner(GTTI, GIRSI, GORE).run(M); 1962 } 1963 1964 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 1965 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1966 1967 std::function<TargetTransformInfo &(Function &)> GTTI = 1968 [&FAM](Function &F) -> TargetTransformInfo & { 1969 return FAM.getResult<TargetIRAnalysis>(F); 1970 }; 1971 1972 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 1973 [&AM](Module &M) -> IRSimilarityIdentifier & { 1974 return AM.getResult<IRSimilarityAnalysis>(M); 1975 }; 1976 1977 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1978 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 1979 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1980 ORE.reset(new OptimizationRemarkEmitter(&F)); 1981 return *ORE.get(); 1982 }; 1983 1984 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 1985 return PreservedAnalyses::none(); 1986 return PreservedAnalyses::all(); 1987 } 1988 1989 char IROutlinerLegacyPass::ID = 0; 1990 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1991 false) 1992 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 1993 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1994 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1995 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1996 false) 1997 1998 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 1999