1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 #define DEBUG_TYPE "iroutliner" 33 34 using namespace llvm; 35 using namespace IRSimilarity; 36 37 // A command flag to be used for debugging to exclude branches from similarity 38 // matching and outlining. 39 namespace llvm { 40 extern cl::opt<bool> DisableBranches; 41 42 // A command flag to be used for debugging to indirect calls from similarity 43 // matching and outlining. 44 extern cl::opt<bool> DisableIndirectCalls; 45 46 // A command flag to be used for debugging to exclude intrinsics from similarity 47 // matching and outlining. 48 extern cl::opt<bool> DisableIntrinsics; 49 50 } // namespace llvm 51 52 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 53 // functions. This is false by default because the linker can dedupe linkonceodr 54 // functions. Since the outliner is confined to a single module (modulo LTO), 55 // this is off by default. It should, however, be the default behavior in 56 // LTO. 57 static cl::opt<bool> EnableLinkOnceODRIROutlining( 58 "enable-linkonceodr-ir-outlining", cl::Hidden, 59 cl::desc("Enable the IR outliner on linkonceodr functions"), 60 cl::init(false)); 61 62 // This is a debug option to test small pieces of code to ensure that outlining 63 // works correctly. 64 static cl::opt<bool> NoCostModel( 65 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 66 cl::desc("Debug option to outline greedily, without restriction that " 67 "calculated benefit outweighs cost")); 68 69 /// The OutlinableGroup holds all the overarching information for outlining 70 /// a set of regions that are structurally similar to one another, such as the 71 /// types of the overall function, the output blocks, the sets of stores needed 72 /// and a list of the different regions. This information is used in the 73 /// deduplication of extracted regions with the same structure. 74 struct OutlinableGroup { 75 /// The sections that could be outlined 76 std::vector<OutlinableRegion *> Regions; 77 78 /// The argument types for the function created as the overall function to 79 /// replace the extracted function for each region. 80 std::vector<Type *> ArgumentTypes; 81 /// The FunctionType for the overall function. 82 FunctionType *OutlinedFunctionType = nullptr; 83 /// The Function for the collective overall function. 84 Function *OutlinedFunction = nullptr; 85 86 /// Flag for whether we should not consider this group of OutlinableRegions 87 /// for extraction. 88 bool IgnoreGroup = false; 89 90 /// The return blocks for the overall function. 91 DenseMap<Value *, BasicBlock *> EndBBs; 92 93 /// The PHIBlocks with their corresponding return block based on the return 94 /// value as the key. 95 DenseMap<Value *, BasicBlock *> PHIBlocks; 96 97 /// A set containing the different GVN store sets needed. Each array contains 98 /// a sorted list of the different values that need to be stored into output 99 /// registers. 100 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 101 102 /// Flag for whether the \ref ArgumentTypes have been defined after the 103 /// extraction of the first region. 104 bool InputTypesSet = false; 105 106 /// The number of input values in \ref ArgumentTypes. Anything after this 107 /// index in ArgumentTypes is an output argument. 108 unsigned NumAggregateInputs = 0; 109 110 /// The mapping of the canonical numbering of the values in outlined sections 111 /// to specific arguments. 112 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 113 114 /// The number of branches in the region target a basic block that is outside 115 /// of the region. 116 unsigned BranchesToOutside = 0; 117 118 /// Tracker counting backwards from the highest unsigned value possible to 119 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 120 /// -2 and -1 are assigned by the DenseMap. 121 unsigned PHINodeGVNTracker = -3; 122 123 DenseMap<unsigned, 124 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 125 PHINodeGVNToGVNs; 126 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 127 128 /// The number of instructions that will be outlined by extracting \ref 129 /// Regions. 130 InstructionCost Benefit = 0; 131 /// The number of added instructions needed for the outlining of the \ref 132 /// Regions. 133 InstructionCost Cost = 0; 134 135 /// The argument that needs to be marked with the swifterr attribute. If not 136 /// needed, there is no value. 137 Optional<unsigned> SwiftErrorArgument; 138 139 /// For the \ref Regions, we look at every Value. If it is a constant, 140 /// we check whether it is the same in Region. 141 /// 142 /// \param [in,out] NotSame contains the global value numbers where the 143 /// constant is not always the same, and must be passed in as an argument. 144 void findSameConstants(DenseSet<unsigned> &NotSame); 145 146 /// For the regions, look at each set of GVN stores needed and account for 147 /// each combination. Add an argument to the argument types if there is 148 /// more than one combination. 149 /// 150 /// \param [in] M - The module we are outlining from. 151 void collectGVNStoreSets(Module &M); 152 }; 153 154 /// Move the contents of \p SourceBB to before the last instruction of \p 155 /// TargetBB. 156 /// \param SourceBB - the BasicBlock to pull Instructions from. 157 /// \param TargetBB - the BasicBlock to put Instruction into. 158 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 159 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 160 I.moveBefore(TargetBB, TargetBB.end()); 161 } 162 163 /// A function to sort the keys of \p Map, which must be a mapping of constant 164 /// values to basic blocks and return it in \p SortedKeys 165 /// 166 /// \param SortedKeys - The vector the keys will be return in and sorted. 167 /// \param Map - The DenseMap containing keys to sort. 168 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 169 DenseMap<Value *, BasicBlock *> &Map) { 170 for (auto &VtoBB : Map) 171 SortedKeys.push_back(VtoBB.first); 172 173 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 174 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 175 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 176 assert(RHSC && "Not a constant integer in return value?"); 177 assert(LHSC && "Not a constant integer in return value?"); 178 179 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 180 }); 181 } 182 183 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 184 Value *V) { 185 Optional<unsigned> GVN = Candidate->getGVN(V); 186 assert(GVN.hasValue() && "No GVN for incoming value"); 187 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 188 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 189 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 190 return FoundValueOpt.getValueOr(nullptr); 191 } 192 193 BasicBlock * 194 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other, 195 BasicBlock *BB) { 196 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 197 assert(FirstNonPHI && "block is empty?"); 198 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI); 199 if (!CorrespondingVal) 200 return nullptr; 201 BasicBlock *CorrespondingBlock = 202 cast<Instruction>(CorrespondingVal)->getParent(); 203 return CorrespondingBlock; 204 } 205 206 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 207 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 208 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 209 /// when PHINodes are included in outlined regions. 210 /// 211 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 212 /// checked. 213 /// \param Find - The successor block to be replaced. 214 /// \param Replace - The new succesor block to branch to. 215 /// \param Included - The set of blocks about to be outlined. 216 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 217 BasicBlock *Replace, 218 DenseSet<BasicBlock *> &Included) { 219 for (PHINode &PN : PHIBlock->phis()) { 220 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 221 ++Idx) { 222 // Check if the incoming block is included in the set of blocks being 223 // outlined. 224 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 225 if (!Included.contains(Incoming)) 226 continue; 227 228 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 229 assert(BI && "Not a branch instruction?"); 230 // Look over the branching instructions into this block to see if we 231 // used to branch to Find in this outlined block. 232 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 233 Succ++) { 234 // If we have found the block to replace, we do so here. 235 if (BI->getSuccessor(Succ) != Find) 236 continue; 237 BI->setSuccessor(Succ, Replace); 238 } 239 } 240 } 241 } 242 243 244 void OutlinableRegion::splitCandidate() { 245 assert(!CandidateSplit && "Candidate already split!"); 246 247 Instruction *BackInst = Candidate->backInstruction(); 248 249 Instruction *EndInst = nullptr; 250 // Check whether the last instruction is a terminator, if it is, we do 251 // not split on the following instruction. We leave the block as it is. We 252 // also check that this is not the last instruction in the Module, otherwise 253 // the check for whether the current following instruction matches the 254 // previously recorded instruction will be incorrect. 255 if (!BackInst->isTerminator() || 256 BackInst->getParent() != &BackInst->getFunction()->back()) { 257 EndInst = Candidate->end()->Inst; 258 assert(EndInst && "Expected an end instruction?"); 259 } 260 261 // We check if the current instruction following the last instruction in the 262 // region is the same as the recorded instruction following the last 263 // instruction. If they do not match, there could be problems in rewriting 264 // the program after outlining, so we ignore it. 265 if (!BackInst->isTerminator() && 266 EndInst != BackInst->getNextNonDebugInstruction()) 267 return; 268 269 Instruction *StartInst = (*Candidate->begin()).Inst; 270 assert(StartInst && "Expected a start instruction?"); 271 StartBB = StartInst->getParent(); 272 PrevBB = StartBB; 273 274 DenseSet<BasicBlock *> BBSet; 275 Candidate->getBasicBlocks(BBSet); 276 277 // We iterate over the instructions in the region, if we find a PHINode, we 278 // check if there are predecessors outside of the region, if there are, 279 // we ignore this region since we are unable to handle the severing of the 280 // phi node right now. 281 BasicBlock::iterator It = StartInst->getIterator(); 282 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 283 unsigned NumPredsOutsideRegion = 0; 284 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 285 if (!BBSet.contains(PN->getIncomingBlock(i))) 286 ++NumPredsOutsideRegion; 287 288 if (NumPredsOutsideRegion > 1) 289 return; 290 291 It++; 292 } 293 294 // If the region starts with a PHINode, but is not the initial instruction of 295 // the BasicBlock, we ignore this region for now. 296 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 297 return; 298 299 // If the region ends with a PHINode, but does not contain all of the phi node 300 // instructions of the region, we ignore it for now. 301 if (isa<PHINode>(BackInst)) { 302 EndBB = BackInst->getParent(); 303 if (BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 304 return; 305 } 306 307 // The basic block gets split like so: 308 // block: block: 309 // inst1 inst1 310 // inst2 inst2 311 // region1 br block_to_outline 312 // region2 block_to_outline: 313 // region3 -> region1 314 // region4 region2 315 // inst3 region3 316 // inst4 region4 317 // br block_after_outline 318 // block_after_outline: 319 // inst3 320 // inst4 321 322 std::string OriginalName = PrevBB->getName().str(); 323 324 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 325 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 326 327 CandidateSplit = true; 328 if (!BackInst->isTerminator()) { 329 EndBB = EndInst->getParent(); 330 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 331 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 332 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 333 } else { 334 EndBB = BackInst->getParent(); 335 EndsInBranch = true; 336 FollowBB = nullptr; 337 } 338 339 // Refind the basic block set. 340 BBSet.clear(); 341 Candidate->getBasicBlocks(BBSet); 342 // For the phi nodes in the new starting basic block of the region, we 343 // reassign the targets of the basic blocks branching instructions. 344 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 345 if (FollowBB) 346 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 347 } 348 349 void OutlinableRegion::reattachCandidate() { 350 assert(CandidateSplit && "Candidate is not split!"); 351 352 // The basic block gets reattached like so: 353 // block: block: 354 // inst1 inst1 355 // inst2 inst2 356 // br block_to_outline region1 357 // block_to_outline: -> region2 358 // region1 region3 359 // region2 region4 360 // region3 inst3 361 // region4 inst4 362 // br block_after_outline 363 // block_after_outline: 364 // inst3 365 // inst4 366 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 367 368 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 369 PrevBB->getTerminator()->eraseFromParent(); 370 371 // If we reattaching after outlining, we iterate over the phi nodes to 372 // the initial block, and reassign the branch instructions of the incoming 373 // blocks to the block we are remerging into. 374 if (!ExtractedFunction) { 375 DenseSet<BasicBlock *> BBSet; 376 Candidate->getBasicBlocks(BBSet); 377 378 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 379 if (!EndsInBranch) 380 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 381 } 382 383 moveBBContents(*StartBB, *PrevBB); 384 385 BasicBlock *PlacementBB = PrevBB; 386 if (StartBB != EndBB) 387 PlacementBB = EndBB; 388 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 389 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 390 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 391 PlacementBB->getTerminator()->eraseFromParent(); 392 moveBBContents(*FollowBB, *PlacementBB); 393 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 394 FollowBB->eraseFromParent(); 395 } 396 397 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 398 StartBB->eraseFromParent(); 399 400 // Make sure to save changes back to the StartBB. 401 StartBB = PrevBB; 402 EndBB = nullptr; 403 PrevBB = nullptr; 404 FollowBB = nullptr; 405 406 CandidateSplit = false; 407 } 408 409 /// Find whether \p V matches the Constants previously found for the \p GVN. 410 /// 411 /// \param V - The value to check for consistency. 412 /// \param GVN - The global value number assigned to \p V. 413 /// \param GVNToConstant - The mapping of global value number to Constants. 414 /// \returns true if the Value matches the Constant mapped to by V and false if 415 /// it \p V is a Constant but does not match. 416 /// \returns None if \p V is not a Constant. 417 static Optional<bool> 418 constantMatches(Value *V, unsigned GVN, 419 DenseMap<unsigned, Constant *> &GVNToConstant) { 420 // See if we have a constants 421 Constant *CST = dyn_cast<Constant>(V); 422 if (!CST) 423 return None; 424 425 // Holds a mapping from a global value number to a Constant. 426 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 427 bool Inserted; 428 429 430 // If we have a constant, try to make a new entry in the GVNToConstant. 431 std::tie(GVNToConstantIt, Inserted) = 432 GVNToConstant.insert(std::make_pair(GVN, CST)); 433 // If it was found and is not equal, it is not the same. We do not 434 // handle this case yet, and exit early. 435 if (Inserted || (GVNToConstantIt->second == CST)) 436 return true; 437 438 return false; 439 } 440 441 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 442 InstructionCost Benefit = 0; 443 444 // Estimate the benefit of outlining a specific sections of the program. We 445 // delegate mostly this task to the TargetTransformInfo so that if the target 446 // has specific changes, we can have a more accurate estimate. 447 448 // However, getInstructionCost delegates the code size calculation for 449 // arithmetic instructions to getArithmeticInstrCost in 450 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 451 // code size for a division and remainder instruction to be equal to 4, and 452 // everything else to 1. This is not an accurate representation of the 453 // division instruction for targets that have a native division instruction. 454 // To be overly conservative, we only add 1 to the number of instructions for 455 // each division instruction. 456 for (IRInstructionData &ID : *Candidate) { 457 Instruction *I = ID.Inst; 458 switch (I->getOpcode()) { 459 case Instruction::FDiv: 460 case Instruction::FRem: 461 case Instruction::SDiv: 462 case Instruction::SRem: 463 case Instruction::UDiv: 464 case Instruction::URem: 465 Benefit += 1; 466 break; 467 default: 468 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 469 break; 470 } 471 } 472 473 return Benefit; 474 } 475 476 /// Check the \p OutputMappings structure for value \p Input, if it exists 477 /// it has been used as an output for outlining, and has been renamed, and we 478 /// return the new value, otherwise, we return the same value. 479 /// 480 /// \param OutputMappings [in] - The mapping of values to their renamed value 481 /// after being used as an output for an outlined region. 482 /// \param Input [in] - The value to find the remapped value of, if it exists. 483 /// \return The remapped value if it has been renamed, and the same value if has 484 /// not. 485 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 486 Value *Input) { 487 DenseMap<Value *, Value *>::const_iterator OutputMapping = 488 OutputMappings.find(Input); 489 if (OutputMapping != OutputMappings.end()) 490 return OutputMapping->second; 491 return Input; 492 } 493 494 /// Find whether \p Region matches the global value numbering to Constant 495 /// mapping found so far. 496 /// 497 /// \param Region - The OutlinableRegion we are checking for constants 498 /// \param GVNToConstant - The mapping of global value number to Constants. 499 /// \param NotSame - The set of global value numbers that do not have the same 500 /// constant in each region. 501 /// \returns true if all Constants are the same in every use of a Constant in \p 502 /// Region and false if not 503 static bool 504 collectRegionsConstants(OutlinableRegion &Region, 505 DenseMap<unsigned, Constant *> &GVNToConstant, 506 DenseSet<unsigned> &NotSame) { 507 bool ConstantsTheSame = true; 508 509 IRSimilarityCandidate &C = *Region.Candidate; 510 for (IRInstructionData &ID : C) { 511 512 // Iterate over the operands in an instruction. If the global value number, 513 // assigned by the IRSimilarityCandidate, has been seen before, we check if 514 // the the number has been found to be not the same value in each instance. 515 for (Value *V : ID.OperVals) { 516 Optional<unsigned> GVNOpt = C.getGVN(V); 517 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 518 unsigned GVN = GVNOpt.getValue(); 519 520 // Check if this global value has been found to not be the same already. 521 if (NotSame.contains(GVN)) { 522 if (isa<Constant>(V)) 523 ConstantsTheSame = false; 524 continue; 525 } 526 527 // If it has been the same so far, we check the value for if the 528 // associated Constant value match the previous instances of the same 529 // global value number. If the global value does not map to a Constant, 530 // it is considered to not be the same value. 531 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 532 if (ConstantMatches.hasValue()) { 533 if (ConstantMatches.getValue()) 534 continue; 535 else 536 ConstantsTheSame = false; 537 } 538 539 // While this value is a register, it might not have been previously, 540 // make sure we don't already have a constant mapped to this global value 541 // number. 542 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 543 ConstantsTheSame = false; 544 545 NotSame.insert(GVN); 546 } 547 } 548 549 return ConstantsTheSame; 550 } 551 552 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 553 DenseMap<unsigned, Constant *> GVNToConstant; 554 555 for (OutlinableRegion *Region : Regions) 556 collectRegionsConstants(*Region, GVNToConstant, NotSame); 557 } 558 559 void OutlinableGroup::collectGVNStoreSets(Module &M) { 560 for (OutlinableRegion *OS : Regions) 561 OutputGVNCombinations.insert(OS->GVNStores); 562 563 // We are adding an extracted argument to decide between which output path 564 // to use in the basic block. It is used in a switch statement and only 565 // needs to be an integer. 566 if (OutputGVNCombinations.size() > 1) 567 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 568 } 569 570 /// Get the subprogram if it exists for one of the outlined regions. 571 /// 572 /// \param [in] Group - The set of regions to find a subprogram for. 573 /// \returns the subprogram if it exists, or nullptr. 574 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 575 for (OutlinableRegion *OS : Group.Regions) 576 if (Function *F = OS->Call->getFunction()) 577 if (DISubprogram *SP = F->getSubprogram()) 578 return SP; 579 580 return nullptr; 581 } 582 583 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 584 unsigned FunctionNameSuffix) { 585 assert(!Group.OutlinedFunction && "Function is already defined!"); 586 587 Type *RetTy = Type::getVoidTy(M.getContext()); 588 // All extracted functions _should_ have the same return type at this point 589 // since the similarity identifier ensures that all branches outside of the 590 // region occur in the same place. 591 592 // NOTE: Should we ever move to the model that uses a switch at every point 593 // needed, meaning that we could branch within the region or out, it is 594 // possible that we will need to switch to using the most general case all of 595 // the time. 596 for (OutlinableRegion *R : Group.Regions) { 597 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 598 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 599 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 600 RetTy = ExtractedFuncType; 601 } 602 603 Group.OutlinedFunctionType = FunctionType::get( 604 RetTy, Group.ArgumentTypes, false); 605 606 // These functions will only be called from within the same module, so 607 // we can set an internal linkage. 608 Group.OutlinedFunction = Function::Create( 609 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 610 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 611 612 // Transfer the swifterr attribute to the correct function parameter. 613 if (Group.SwiftErrorArgument.hasValue()) 614 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 615 Attribute::SwiftError); 616 617 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 618 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 619 620 // If there's a DISubprogram associated with this outlined function, then 621 // emit debug info for the outlined function. 622 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 623 Function *F = Group.OutlinedFunction; 624 // We have a DISubprogram. Get its DICompileUnit. 625 DICompileUnit *CU = SP->getUnit(); 626 DIBuilder DB(M, true, CU); 627 DIFile *Unit = SP->getFile(); 628 Mangler Mg; 629 // Get the mangled name of the function for the linkage name. 630 std::string Dummy; 631 llvm::raw_string_ostream MangledNameStream(Dummy); 632 Mg.getNameWithPrefix(MangledNameStream, F, false); 633 634 DISubprogram *OutlinedSP = DB.createFunction( 635 Unit /* Context */, F->getName(), MangledNameStream.str(), 636 Unit /* File */, 637 0 /* Line 0 is reserved for compiler-generated code. */, 638 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 639 0, /* Line 0 is reserved for compiler-generated code. */ 640 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 641 /* Outlined code is optimized code by definition. */ 642 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 643 644 // Don't add any new variables to the subprogram. 645 DB.finalizeSubprogram(OutlinedSP); 646 647 // Attach subprogram to the function. 648 F->setSubprogram(OutlinedSP); 649 // We're done with the DIBuilder. 650 DB.finalize(); 651 } 652 653 return Group.OutlinedFunction; 654 } 655 656 /// Move each BasicBlock in \p Old to \p New. 657 /// 658 /// \param [in] Old - The function to move the basic blocks from. 659 /// \param [in] New - The function to move the basic blocks to. 660 /// \param [out] NewEnds - The return blocks of the new overall function. 661 static void moveFunctionData(Function &Old, Function &New, 662 DenseMap<Value *, BasicBlock *> &NewEnds) { 663 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 664 CurrBB.removeFromParent(); 665 CurrBB.insertInto(&New); 666 Instruction *I = CurrBB.getTerminator(); 667 668 // For each block we find a return instruction is, it is a potential exit 669 // path for the function. We keep track of each block based on the return 670 // value here. 671 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 672 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 673 674 std::vector<Instruction *> DebugInsts; 675 676 for (Instruction &Val : CurrBB) { 677 // We must handle the scoping of called functions differently than 678 // other outlined instructions. 679 if (!isa<CallInst>(&Val)) { 680 // Remove the debug information for outlined functions. 681 Val.setDebugLoc(DebugLoc()); 682 continue; 683 } 684 685 // From this point we are only handling call instructions. 686 CallInst *CI = cast<CallInst>(&Val); 687 688 // We add any debug statements here, to be removed after. Since the 689 // instructions originate from many different locations in the program, 690 // it will cause incorrect reporting from a debugger if we keep the 691 // same debug instructions. 692 if (isa<DbgInfoIntrinsic>(CI)) { 693 DebugInsts.push_back(&Val); 694 continue; 695 } 696 697 // Edit the scope of called functions inside of outlined functions. 698 if (DISubprogram *SP = New.getSubprogram()) { 699 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 700 Val.setDebugLoc(DI); 701 } 702 } 703 704 for (Instruction *I : DebugInsts) 705 I->eraseFromParent(); 706 } 707 } 708 709 /// Find the the constants that will need to be lifted into arguments 710 /// as they are not the same in each instance of the region. 711 /// 712 /// \param [in] C - The IRSimilarityCandidate containing the region we are 713 /// analyzing. 714 /// \param [in] NotSame - The set of global value numbers that do not have a 715 /// single Constant across all OutlinableRegions similar to \p C. 716 /// \param [out] Inputs - The list containing the global value numbers of the 717 /// arguments needed for the region of code. 718 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 719 std::vector<unsigned> &Inputs) { 720 DenseSet<unsigned> Seen; 721 // Iterate over the instructions, and find what constants will need to be 722 // extracted into arguments. 723 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 724 IDIt != EndIDIt; IDIt++) { 725 for (Value *V : (*IDIt).OperVals) { 726 // Since these are stored before any outlining, they will be in the 727 // global value numbering. 728 unsigned GVN = C.getGVN(V).getValue(); 729 if (isa<Constant>(V)) 730 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 731 Inputs.push_back(GVN); 732 Seen.insert(GVN); 733 } 734 } 735 } 736 } 737 738 /// Find the GVN for the inputs that have been found by the CodeExtractor. 739 /// 740 /// \param [in] C - The IRSimilarityCandidate containing the region we are 741 /// analyzing. 742 /// \param [in] CurrentInputs - The set of inputs found by the 743 /// CodeExtractor. 744 /// \param [in] OutputMappings - The mapping of values that have been replaced 745 /// by a new output value. 746 /// \param [out] EndInputNumbers - The global value numbers for the extracted 747 /// arguments. 748 static void mapInputsToGVNs(IRSimilarityCandidate &C, 749 SetVector<Value *> &CurrentInputs, 750 const DenseMap<Value *, Value *> &OutputMappings, 751 std::vector<unsigned> &EndInputNumbers) { 752 // Get the Global Value Number for each input. We check if the Value has been 753 // replaced by a different value at output, and use the original value before 754 // replacement. 755 for (Value *Input : CurrentInputs) { 756 assert(Input && "Have a nullptr as an input"); 757 if (OutputMappings.find(Input) != OutputMappings.end()) 758 Input = OutputMappings.find(Input)->second; 759 assert(C.getGVN(Input).hasValue() && 760 "Could not find a numbering for the given input"); 761 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 762 } 763 } 764 765 /// Find the original value for the \p ArgInput values if any one of them was 766 /// replaced during a previous extraction. 767 /// 768 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 769 /// \param [in] OutputMappings - The mapping of values that have been replaced 770 /// by a new output value. 771 /// \param [out] RemappedArgInputs - The remapped values according to 772 /// \p OutputMappings that will be extracted. 773 static void 774 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 775 const DenseMap<Value *, Value *> &OutputMappings, 776 SetVector<Value *> &RemappedArgInputs) { 777 // Get the global value number for each input that will be extracted as an 778 // argument by the code extractor, remapping if needed for reloaded values. 779 for (Value *Input : ArgInputs) { 780 if (OutputMappings.find(Input) != OutputMappings.end()) 781 Input = OutputMappings.find(Input)->second; 782 RemappedArgInputs.insert(Input); 783 } 784 } 785 786 /// Find the input GVNs and the output values for a region of Instructions. 787 /// Using the code extractor, we collect the inputs to the extracted function. 788 /// 789 /// The \p Region can be identified as needing to be ignored in this function. 790 /// It should be checked whether it should be ignored after a call to this 791 /// function. 792 /// 793 /// \param [in,out] Region - The region of code to be analyzed. 794 /// \param [out] InputGVNs - The global value numbers for the extracted 795 /// arguments. 796 /// \param [in] NotSame - The global value numbers in the region that do not 797 /// have the same constant value in the regions structurally similar to 798 /// \p Region. 799 /// \param [in] OutputMappings - The mapping of values that have been replaced 800 /// by a new output value after extraction. 801 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 802 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 803 /// as outputs. 804 static void getCodeExtractorArguments( 805 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 806 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 807 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 808 IRSimilarityCandidate &C = *Region.Candidate; 809 810 // OverallInputs are the inputs to the region found by the CodeExtractor, 811 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 812 // allocas of values whose lifetimes are contained completely within the 813 // outlined region. PremappedInputs are the arguments found by the 814 // CodeExtractor, removing conditions such as sunken allocas, but that 815 // may need to be remapped due to the extracted output values replacing 816 // the original values. We use DummyOutputs for this first run of finding 817 // inputs and outputs since the outputs could change during findAllocas, 818 // the correct set of extracted outputs will be in the final Outputs ValueSet. 819 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 820 DummyOutputs; 821 822 // Use the code extractor to get the inputs and outputs, without sunken 823 // allocas or removing llvm.assumes. 824 CodeExtractor *CE = Region.CE; 825 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 826 assert(Region.StartBB && "Region must have a start BasicBlock!"); 827 Function *OrigF = Region.StartBB->getParent(); 828 CodeExtractorAnalysisCache CEAC(*OrigF); 829 BasicBlock *Dummy = nullptr; 830 831 // The region may be ineligible due to VarArgs in the parent function. In this 832 // case we ignore the region. 833 if (!CE->isEligible()) { 834 Region.IgnoreRegion = true; 835 return; 836 } 837 838 // Find if any values are going to be sunk into the function when extracted 839 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 840 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 841 842 // TODO: Support regions with sunken allocas: values whose lifetimes are 843 // contained completely within the outlined region. These are not guaranteed 844 // to be the same in every region, so we must elevate them all to arguments 845 // when they appear. If these values are not equal, it means there is some 846 // Input in OverallInputs that was removed for ArgInputs. 847 if (OverallInputs.size() != PremappedInputs.size()) { 848 Region.IgnoreRegion = true; 849 return; 850 } 851 852 findConstants(C, NotSame, InputGVNs); 853 854 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 855 856 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 857 ArgInputs); 858 859 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 860 // we need to make sure they are in a deterministic order. 861 stable_sort(InputGVNs); 862 } 863 864 /// Look over the inputs and map each input argument to an argument in the 865 /// overall function for the OutlinableRegions. This creates a way to replace 866 /// the arguments of the extracted function with the arguments of the new 867 /// overall function. 868 /// 869 /// \param [in,out] Region - The region of code to be analyzed. 870 /// \param [in] InputGVNs - The global value numbering of the input values 871 /// collected. 872 /// \param [in] ArgInputs - The values of the arguments to the extracted 873 /// function. 874 static void 875 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 876 std::vector<unsigned> &InputGVNs, 877 SetVector<Value *> &ArgInputs) { 878 879 IRSimilarityCandidate &C = *Region.Candidate; 880 OutlinableGroup &Group = *Region.Parent; 881 882 // This counts the argument number in the overall function. 883 unsigned TypeIndex = 0; 884 885 // This counts the argument number in the extracted function. 886 unsigned OriginalIndex = 0; 887 888 // Find the mapping of the extracted arguments to the arguments for the 889 // overall function. Since there may be extra arguments in the overall 890 // function to account for the extracted constants, we have two different 891 // counters as we find extracted arguments, and as we come across overall 892 // arguments. 893 894 // Additionally, in our first pass, for the first extracted function, 895 // we find argument locations for the canonical value numbering. This 896 // numbering overrides any discovered location for the extracted code. 897 for (unsigned InputVal : InputGVNs) { 898 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 899 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 900 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 901 902 Optional<Value *> InputOpt = C.fromGVN(InputVal); 903 assert(InputOpt.hasValue() && "Global value number not found?"); 904 Value *Input = InputOpt.getValue(); 905 906 DenseMap<unsigned, unsigned>::iterator AggArgIt = 907 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 908 909 if (!Group.InputTypesSet) { 910 Group.ArgumentTypes.push_back(Input->getType()); 911 // If the input value has a swifterr attribute, make sure to mark the 912 // argument in the overall function. 913 if (Input->isSwiftError()) { 914 assert( 915 !Group.SwiftErrorArgument.hasValue() && 916 "Argument already marked with swifterr for this OutlinableGroup!"); 917 Group.SwiftErrorArgument = TypeIndex; 918 } 919 } 920 921 // Check if we have a constant. If we do add it to the overall argument 922 // number to Constant map for the region, and continue to the next input. 923 if (Constant *CST = dyn_cast<Constant>(Input)) { 924 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 925 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 926 else { 927 Group.CanonicalNumberToAggArg.insert( 928 std::make_pair(CanonicalNumber, TypeIndex)); 929 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 930 } 931 TypeIndex++; 932 continue; 933 } 934 935 // It is not a constant, we create the mapping from extracted argument list 936 // to the overall argument list, using the canonical location, if it exists. 937 assert(ArgInputs.count(Input) && "Input cannot be found!"); 938 939 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 940 if (OriginalIndex != AggArgIt->second) 941 Region.ChangedArgOrder = true; 942 Region.ExtractedArgToAgg.insert( 943 std::make_pair(OriginalIndex, AggArgIt->second)); 944 Region.AggArgToExtracted.insert( 945 std::make_pair(AggArgIt->second, OriginalIndex)); 946 } else { 947 Group.CanonicalNumberToAggArg.insert( 948 std::make_pair(CanonicalNumber, TypeIndex)); 949 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 950 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 951 } 952 OriginalIndex++; 953 TypeIndex++; 954 } 955 956 // If the function type definitions for the OutlinableGroup holding the region 957 // have not been set, set the length of the inputs here. We should have the 958 // same inputs for all of the different regions contained in the 959 // OutlinableGroup since they are all structurally similar to one another. 960 if (!Group.InputTypesSet) { 961 Group.NumAggregateInputs = TypeIndex; 962 Group.InputTypesSet = true; 963 } 964 965 Region.NumExtractedInputs = OriginalIndex; 966 } 967 968 /// Check if the \p V has any uses outside of the region other than \p PN. 969 /// 970 /// \param V [in] - The value to check. 971 /// \param PHILoc [in] - The location in the PHINode of \p V. 972 /// \param PN [in] - The PHINode using \p V. 973 /// \param Exits [in] - The potential blocks we exit to from the outlined 974 /// region. 975 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 976 /// \returns true if \p V has any use soutside its region other than \p PN. 977 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 978 SmallPtrSet<BasicBlock *, 1> &Exits, 979 DenseSet<BasicBlock *> &BlocksInRegion) { 980 // We check to see if the value is used by the PHINode from some other 981 // predecessor not included in the region. If it is, we make sure 982 // to keep it as an output. 983 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 984 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 985 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 986 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 987 })) 988 return true; 989 990 // Check if the value is used by any other instructions outside the region. 991 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 992 Instruction *I = dyn_cast<Instruction>(U); 993 if (!I) 994 return false; 995 996 // If the use of the item is inside the region, we skip it. Uses 997 // inside the region give us useful information about how the item could be 998 // used as an output. 999 BasicBlock *Parent = I->getParent(); 1000 if (BlocksInRegion.contains(Parent)) 1001 return false; 1002 1003 // If it's not a PHINode then we definitely know the use matters. This 1004 // output value will not completely combined with another item in a PHINode 1005 // as it is directly reference by another non-phi instruction 1006 if (!isa<PHINode>(I)) 1007 return true; 1008 1009 // If we have a PHINode outside one of the exit locations, then it 1010 // can be considered an outside use as well. If there is a PHINode 1011 // contained in the Exit where this values use matters, it will be 1012 // caught when we analyze that PHINode. 1013 if (!Exits.contains(Parent)) 1014 return true; 1015 1016 return false; 1017 }); 1018 } 1019 1020 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1021 /// considered outputs. A PHINodes is an output when more than one incoming 1022 /// value has been marked by the CodeExtractor as an output. 1023 /// 1024 /// \param CurrentExitFromRegion [in] - The block to analyze. 1025 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1026 /// region. 1027 /// \param RegionBlocks [in] - The basic blocks in the region. 1028 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1029 /// PHINodes to this as we find that they replace output values. 1030 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1031 /// totally replaced by a PHINode. 1032 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1033 /// in PHINodes, but have other uses, and should still be considered outputs. 1034 static void analyzeExitPHIsForOutputUses( 1035 BasicBlock *CurrentExitFromRegion, 1036 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1037 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1038 DenseSet<Value *> &OutputsReplacedByPHINode, 1039 DenseSet<Value *> &OutputsWithNonPhiUses) { 1040 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1041 // Find all incoming values from the outlining region. 1042 SmallVector<unsigned, 2> IncomingVals; 1043 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1044 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1045 IncomingVals.push_back(I); 1046 1047 // Do not process PHI if there are no predecessors from region. 1048 unsigned NumIncomingVals = IncomingVals.size(); 1049 if (NumIncomingVals == 0) 1050 continue; 1051 1052 // If there is one predecessor, we mark it as a value that needs to be kept 1053 // as an output. 1054 if (NumIncomingVals == 1) { 1055 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1056 OutputsWithNonPhiUses.insert(V); 1057 OutputsReplacedByPHINode.erase(V); 1058 continue; 1059 } 1060 1061 // This PHINode will be used as an output value, so we add it to our list. 1062 Outputs.insert(&PN); 1063 1064 // Not all of the incoming values should be ignored as other inputs and 1065 // outputs may have uses in outlined region. If they have other uses 1066 // outside of the single PHINode we should not skip over it. 1067 for (unsigned Idx : IncomingVals) { 1068 Value *V = PN.getIncomingValue(Idx); 1069 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1070 OutputsWithNonPhiUses.insert(V); 1071 OutputsReplacedByPHINode.erase(V); 1072 continue; 1073 } 1074 if (!OutputsWithNonPhiUses.contains(V)) 1075 OutputsReplacedByPHINode.insert(V); 1076 } 1077 } 1078 } 1079 1080 // Represents the type for the unsigned number denoting the output number for 1081 // phi node, along with the canonical number for the exit block. 1082 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1083 // The list of canonical numbers for the incoming values to a PHINode. 1084 using CanonList = SmallVector<unsigned, 2>; 1085 // The pair type representing the set of canonical values being combined in the 1086 // PHINode, along with the location data for the PHINode. 1087 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1088 1089 /// Encode \p PND as an integer for easy lookup based on the argument location, 1090 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1091 /// the values stored in the PHINode. 1092 /// 1093 /// \param PND - The data to hash. 1094 /// \returns The hash code of \p PND. 1095 static hash_code encodePHINodeData(PHINodeData &PND) { 1096 return llvm::hash_combine( 1097 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1098 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1099 } 1100 1101 /// Create a special GVN for PHINodes that will be used outside of 1102 /// the region. We create a hash code based on the Canonical number of the 1103 /// parent BasicBlock, the canonical numbering of the values stored in the 1104 /// PHINode and the aggregate argument location. This is used to find whether 1105 /// this PHINode type has been given a canonical numbering already. If not, we 1106 /// assign it a value and store it for later use. The value is returned to 1107 /// identify different output schemes for the set of regions. 1108 /// 1109 /// \param Region - The region that \p PN is an output for. 1110 /// \param PN - The PHINode we are analyzing. 1111 /// \param Blocks - The blocks for the region we are analyzing. 1112 /// \param AggArgIdx - The argument \p PN will be stored into. 1113 /// \returns An optional holding the assigned canonical number, or None if 1114 /// there is some attribute of the PHINode blocking it from being used. 1115 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1116 PHINode *PN, 1117 DenseSet<BasicBlock *> &Blocks, 1118 unsigned AggArgIdx) { 1119 OutlinableGroup &Group = *Region.Parent; 1120 IRSimilarityCandidate &Cand = *Region.Candidate; 1121 BasicBlock *PHIBB = PN->getParent(); 1122 CanonList PHIGVNs; 1123 Value *Incoming; 1124 BasicBlock *IncomingBlock; 1125 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1126 Incoming = PN->getIncomingValue(Idx); 1127 IncomingBlock = PN->getIncomingBlock(Idx); 1128 // If we cannot find a GVN, and the incoming block is included in the region 1129 // this means that the input to the PHINode is not included in the region we 1130 // are trying to analyze, meaning, that if it was outlined, we would be 1131 // adding an extra input. We ignore this case for now, and so ignore the 1132 // region. 1133 Optional<unsigned> OGVN = Cand.getGVN(Incoming); 1134 if (!OGVN.hasValue() && (Blocks.find(IncomingBlock) != Blocks.end())) { 1135 Region.IgnoreRegion = true; 1136 return None; 1137 } 1138 1139 // If the incoming block isn't in the region, we don't have to worry about 1140 // this incoming value. 1141 if (Blocks.find(IncomingBlock) == Blocks.end()) 1142 continue; 1143 1144 // Collect the canonical numbers of the values in the PHINode. 1145 unsigned GVN = OGVN.getValue(); 1146 OGVN = Cand.getCanonicalNum(GVN); 1147 assert(OGVN.hasValue() && "No GVN found for incoming value?"); 1148 PHIGVNs.push_back(*OGVN); 1149 } 1150 1151 // Now that we have the GVNs for the incoming values, we are going to combine 1152 // them with the GVN of the incoming bock, and the output location of the 1153 // PHINode to generate a hash value representing this instance of the PHINode. 1154 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1155 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1156 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1157 assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!"); 1158 1159 BBGVN = Cand.getCanonicalNum(BBGVN.getValue()); 1160 assert(BBGVN.hasValue() && 1161 "Could not find canonical number for the incoming block!"); 1162 // Create a pair of the exit block canonical value, and the aggregate 1163 // argument location, connected to the canonical numbers stored in the 1164 // PHINode. 1165 PHINodeData TemporaryPair = 1166 std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs); 1167 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1168 1169 // Look for and create a new entry in our connection between canonical 1170 // numbers for PHINodes, and the set of objects we just created. 1171 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1172 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1173 bool Inserted = false; 1174 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1175 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1176 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1177 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1178 } 1179 1180 return GVNToPHIIt->second; 1181 } 1182 1183 /// Create a mapping of the output arguments for the \p Region to the output 1184 /// arguments of the overall outlined function. 1185 /// 1186 /// \param [in,out] Region - The region of code to be analyzed. 1187 /// \param [in] Outputs - The values found by the code extractor. 1188 static void 1189 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 1190 SetVector<Value *> &Outputs) { 1191 OutlinableGroup &Group = *Region.Parent; 1192 IRSimilarityCandidate &C = *Region.Candidate; 1193 1194 SmallVector<BasicBlock *> BE; 1195 DenseSet<BasicBlock *> BlocksInRegion; 1196 C.getBasicBlocks(BlocksInRegion, BE); 1197 1198 // Find the exits to the region. 1199 SmallPtrSet<BasicBlock *, 1> Exits; 1200 for (BasicBlock *Block : BE) 1201 for (BasicBlock *Succ : successors(Block)) 1202 if (!BlocksInRegion.contains(Succ)) 1203 Exits.insert(Succ); 1204 1205 // After determining which blocks exit to PHINodes, we add these PHINodes to 1206 // the set of outputs to be processed. We also check the incoming values of 1207 // the PHINodes for whether they should no longer be considered outputs. 1208 DenseSet<Value *> OutputsReplacedByPHINode; 1209 DenseSet<Value *> OutputsWithNonPhiUses; 1210 for (BasicBlock *ExitBB : Exits) 1211 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1212 OutputsReplacedByPHINode, 1213 OutputsWithNonPhiUses); 1214 1215 // This counts the argument number in the extracted function. 1216 unsigned OriginalIndex = Region.NumExtractedInputs; 1217 1218 // This counts the argument number in the overall function. 1219 unsigned TypeIndex = Group.NumAggregateInputs; 1220 bool TypeFound; 1221 DenseSet<unsigned> AggArgsUsed; 1222 1223 // Iterate over the output types and identify if there is an aggregate pointer 1224 // type whose base type matches the current output type. If there is, we mark 1225 // that we will use this output register for this value. If not we add another 1226 // type to the overall argument type list. We also store the GVNs used for 1227 // stores to identify which values will need to be moved into an special 1228 // block that holds the stores to the output registers. 1229 for (Value *Output : Outputs) { 1230 TypeFound = false; 1231 // We can do this since it is a result value, and will have a number 1232 // that is necessarily the same. BUT if in the future, the instructions 1233 // do not have to be in same order, but are functionally the same, we will 1234 // have to use a different scheme, as one-to-one correspondence is not 1235 // guaranteed. 1236 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1237 1238 // If the output is combined in a PHINode, we make sure to skip over it. 1239 if (OutputsReplacedByPHINode.contains(Output)) 1240 continue; 1241 1242 unsigned AggArgIdx = 0; 1243 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1244 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 1245 continue; 1246 1247 if (AggArgsUsed.contains(Jdx)) 1248 continue; 1249 1250 TypeFound = true; 1251 AggArgsUsed.insert(Jdx); 1252 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1253 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1254 AggArgIdx = Jdx; 1255 break; 1256 } 1257 1258 // We were unable to find an unused type in the output type set that matches 1259 // the output, so we add a pointer type to the argument types of the overall 1260 // function to handle this output and create a mapping to it. 1261 if (!TypeFound) { 1262 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 1263 // Mark the new pointer type as the last value in the aggregate argument 1264 // list. 1265 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1266 AggArgsUsed.insert(ArgTypeIdx); 1267 Region.ExtractedArgToAgg.insert( 1268 std::make_pair(OriginalIndex, ArgTypeIdx)); 1269 Region.AggArgToExtracted.insert( 1270 std::make_pair(ArgTypeIdx, OriginalIndex)); 1271 AggArgIdx = ArgTypeIdx; 1272 } 1273 1274 // TODO: Adapt to the extra input from the PHINode. 1275 PHINode *PN = dyn_cast<PHINode>(Output); 1276 1277 Optional<unsigned> GVN; 1278 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1279 // Values outside the region can be combined into PHINode when we 1280 // have multiple exits. We collect both of these into a list to identify 1281 // which values are being used in the PHINode. Each list identifies a 1282 // different PHINode, and a different output. We store the PHINode as it's 1283 // own canonical value. These canonical values are also dependent on the 1284 // output argument it is saved to. 1285 1286 // If two PHINodes have the same canonical values, but different aggregate 1287 // argument locations, then they will have distinct Canonical Values. 1288 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx); 1289 if (!GVN.hasValue()) 1290 return; 1291 } else { 1292 // If we do not have a PHINode we use the global value numbering for the 1293 // output value, to find the canonical number to add to the set of stored 1294 // values. 1295 GVN = C.getGVN(Output); 1296 GVN = C.getCanonicalNum(*GVN); 1297 } 1298 1299 // Each region has a potentially unique set of outputs. We save which 1300 // values are output in a list of canonical values so we can differentiate 1301 // among the different store schemes. 1302 Region.GVNStores.push_back(*GVN); 1303 1304 OriginalIndex++; 1305 TypeIndex++; 1306 } 1307 1308 // We sort the stored values to make sure that we are not affected by analysis 1309 // order when determining what combination of items were stored. 1310 stable_sort(Region.GVNStores); 1311 } 1312 1313 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1314 DenseSet<unsigned> &NotSame) { 1315 std::vector<unsigned> Inputs; 1316 SetVector<Value *> ArgInputs, Outputs; 1317 1318 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1319 Outputs); 1320 1321 if (Region.IgnoreRegion) 1322 return; 1323 1324 // Map the inputs found by the CodeExtractor to the arguments found for 1325 // the overall function. 1326 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1327 1328 // Map the outputs found by the CodeExtractor to the arguments found for 1329 // the overall function. 1330 findExtractedOutputToOverallOutputMapping(Region, Outputs); 1331 } 1332 1333 /// Replace the extracted function in the Region with a call to the overall 1334 /// function constructed from the deduplicated similar regions, replacing and 1335 /// remapping the values passed to the extracted function as arguments to the 1336 /// new arguments of the overall function. 1337 /// 1338 /// \param [in] M - The module to outline from. 1339 /// \param [in] Region - The regions of extracted code to be replaced with a new 1340 /// function. 1341 /// \returns a call instruction with the replaced function. 1342 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1343 std::vector<Value *> NewCallArgs; 1344 DenseMap<unsigned, unsigned>::iterator ArgPair; 1345 1346 OutlinableGroup &Group = *Region.Parent; 1347 CallInst *Call = Region.Call; 1348 assert(Call && "Call to replace is nullptr?"); 1349 Function *AggFunc = Group.OutlinedFunction; 1350 assert(AggFunc && "Function to replace with is nullptr?"); 1351 1352 // If the arguments are the same size, there are not values that need to be 1353 // made into an argument, the argument ordering has not been change, or 1354 // different output registers to handle. We can simply replace the called 1355 // function in this case. 1356 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1357 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1358 << *AggFunc << " with same number of arguments\n"); 1359 Call->setCalledFunction(AggFunc); 1360 return Call; 1361 } 1362 1363 // We have a different number of arguments than the new function, so 1364 // we need to use our previously mappings off extracted argument to overall 1365 // function argument, and constants to overall function argument to create the 1366 // new argument list. 1367 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1368 1369 if (AggArgIdx == AggFunc->arg_size() - 1 && 1370 Group.OutputGVNCombinations.size() > 1) { 1371 // If we are on the last argument, and we need to differentiate between 1372 // output blocks, add an integer to the argument list to determine 1373 // what block to take 1374 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1375 << Region.OutputBlockNum << "\n"); 1376 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1377 Region.OutputBlockNum)); 1378 continue; 1379 } 1380 1381 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1382 if (ArgPair != Region.AggArgToExtracted.end()) { 1383 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1384 // If we found the mapping from the extracted function to the overall 1385 // function, we simply add it to the argument list. We use the same 1386 // value, it just needs to honor the new order of arguments. 1387 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1388 << *ArgumentValue << "\n"); 1389 NewCallArgs.push_back(ArgumentValue); 1390 continue; 1391 } 1392 1393 // If it is a constant, we simply add it to the argument list as a value. 1394 if (Region.AggArgToConstant.find(AggArgIdx) != 1395 Region.AggArgToConstant.end()) { 1396 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1397 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1398 << *CST << "\n"); 1399 NewCallArgs.push_back(CST); 1400 continue; 1401 } 1402 1403 // Add a nullptr value if the argument is not found in the extracted 1404 // function. If we cannot find a value, it means it is not in use 1405 // for the region, so we should not pass anything to it. 1406 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1407 NewCallArgs.push_back(ConstantPointerNull::get( 1408 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1409 } 1410 1411 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1412 << *AggFunc << " with new set of arguments\n"); 1413 // Create the new call instruction and erase the old one. 1414 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1415 Call); 1416 1417 // It is possible that the call to the outlined function is either the first 1418 // instruction is in the new block, the last instruction, or both. If either 1419 // of these is the case, we need to make sure that we replace the instruction 1420 // in the IRInstructionData struct with the new call. 1421 CallInst *OldCall = Region.Call; 1422 if (Region.NewFront->Inst == OldCall) 1423 Region.NewFront->Inst = Call; 1424 if (Region.NewBack->Inst == OldCall) 1425 Region.NewBack->Inst = Call; 1426 1427 // Transfer any debug information. 1428 Call->setDebugLoc(Region.Call->getDebugLoc()); 1429 // Since our output may determine which branch we go to, we make sure to 1430 // propogate this new call value through the module. 1431 OldCall->replaceAllUsesWith(Call); 1432 1433 // Remove the old instruction. 1434 OldCall->eraseFromParent(); 1435 Region.Call = Call; 1436 1437 // Make sure that the argument in the new function has the SwiftError 1438 // argument. 1439 if (Group.SwiftErrorArgument.hasValue()) 1440 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1441 Attribute::SwiftError); 1442 1443 return Call; 1444 } 1445 1446 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1447 /// for \p RetVal. 1448 /// 1449 /// \param Group - The OutlinableGroup containing the information about the 1450 /// overall outlined function. 1451 /// \param RetVal - The return value or exit option that we are currently 1452 /// evaluating. 1453 /// \returns The found or newly created BasicBlock to contain the needed 1454 /// PHINodes to be used as outputs. 1455 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1456 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1457 ReturnBlockForRetVal; 1458 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1459 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1460 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1461 "Could not find output value!"); 1462 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1463 1464 // Find if a PHIBlock exists for this return value already. If it is 1465 // the first time we are analyzing this, we will not, so we record it. 1466 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1467 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1468 return PhiBlockForRetVal->second; 1469 1470 // If we did not find a block, we create one, and insert it into the 1471 // overall function and record it. 1472 bool Inserted = false; 1473 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1474 ReturnBB->getParent()); 1475 std::tie(PhiBlockForRetVal, Inserted) = 1476 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1477 1478 // We find the predecessors of the return block in the newly created outlined 1479 // function in order to point them to the new PHIBlock rather than the already 1480 // existing return block. 1481 SmallVector<BranchInst *, 2> BranchesToChange; 1482 for (BasicBlock *Pred : predecessors(ReturnBB)) 1483 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1484 1485 // Now we mark the branch instructions found, and change the references of the 1486 // return block to the newly created PHIBlock. 1487 for (BranchInst *BI : BranchesToChange) 1488 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1489 if (BI->getSuccessor(Succ) != ReturnBB) 1490 continue; 1491 BI->setSuccessor(Succ, PHIBlock); 1492 } 1493 1494 BranchInst::Create(ReturnBB, PHIBlock); 1495 1496 return PhiBlockForRetVal->second; 1497 } 1498 1499 /// For the function call now representing the \p Region, find the passed value 1500 /// to that call that represents Argument \p A at the call location if the 1501 /// call has already been replaced with a call to the overall, aggregate 1502 /// function. 1503 /// 1504 /// \param A - The Argument to get the passed value for. 1505 /// \param Region - The extracted Region corresponding to the outlined function. 1506 /// \returns The Value representing \p A at the call site. 1507 static Value * 1508 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1509 const OutlinableRegion &Region) { 1510 // If we don't need to adjust the argument number at all (since the call 1511 // has already been replaced by a call to the overall outlined function) 1512 // we can just get the specified argument. 1513 return Region.Call->getArgOperand(A->getArgNo()); 1514 } 1515 1516 /// For the function call now representing the \p Region, find the passed value 1517 /// to that call that represents Argument \p A at the call location if the 1518 /// call has only been replaced by the call to the aggregate function. 1519 /// 1520 /// \param A - The Argument to get the passed value for. 1521 /// \param Region - The extracted Region corresponding to the outlined function. 1522 /// \returns The Value representing \p A at the call site. 1523 static Value * 1524 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1525 const OutlinableRegion &Region) { 1526 unsigned ArgNum = A->getArgNo(); 1527 1528 // If it is a constant, we can look at our mapping from when we created 1529 // the outputs to figure out what the constant value is. 1530 if (Region.AggArgToConstant.count(ArgNum)) 1531 return Region.AggArgToConstant.find(ArgNum)->second; 1532 1533 // If it is not a constant, and we are not looking at the overall function, we 1534 // need to adjust which argument we are looking at. 1535 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1536 return Region.Call->getArgOperand(ArgNum); 1537 } 1538 1539 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1540 /// 1541 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1542 /// \param Region [in] - The OutlinableRegion containing \p PN. 1543 /// \param OutputMappings [in] - The mapping of output values from outlined 1544 /// region to their original values. 1545 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1546 /// \p PN paired with their incoming block. 1547 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1548 /// of \p Region rather than the overall function's call. 1549 static void findCanonNumsForPHI( 1550 PHINode *PN, OutlinableRegion &Region, 1551 const DenseMap<Value *, Value *> &OutputMappings, 1552 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums, 1553 bool ReplacedWithOutlinedCall = true) { 1554 // Iterate over the incoming values. 1555 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1556 Value *IVal = PN->getIncomingValue(Idx); 1557 BasicBlock *IBlock = PN->getIncomingBlock(Idx); 1558 // If we have an argument as incoming value, we need to grab the passed 1559 // value from the call itself. 1560 if (Argument *A = dyn_cast<Argument>(IVal)) { 1561 if (ReplacedWithOutlinedCall) 1562 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1563 else 1564 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1565 } 1566 1567 // Get the original value if it has been replaced by an output value. 1568 IVal = findOutputMapping(OutputMappings, IVal); 1569 1570 // Find and add the canonical number for the incoming value. 1571 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1572 assert(GVN.hasValue() && "No GVN for incoming value"); 1573 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1574 assert(CanonNum.hasValue() && "No Canonical Number for GVN"); 1575 CanonNums.push_back(std::make_pair(*CanonNum, IBlock)); 1576 } 1577 } 1578 1579 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1580 /// in order to condense the number of instructions added to the outlined 1581 /// function. 1582 /// 1583 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1584 /// \param Region [in] - The OutlinableRegion containing \p PN. 1585 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1586 /// \p PN in. 1587 /// \param OutputMappings [in] - The mapping of output values from outlined 1588 /// region to their original values. 1589 /// \param UsedPhis [in, out] - The PHINodes in the block that have already been 1590 /// matched. 1591 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1592 static PHINode* 1593 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1594 BasicBlock *OverallPhiBlock, 1595 const DenseMap<Value *, Value *> &OutputMappings, 1596 DenseSet<PHINode *> &UsedPHIs) { 1597 OutlinableGroup &Group = *Region.Parent; 1598 1599 1600 // A list of the canonical numbering assigned to each incoming value, paired 1601 // with the incoming block for the PHINode passed into this function. 1602 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums; 1603 1604 // We have to use the extracted function since we have merged this region into 1605 // the overall function yet. We make sure to reassign the argument numbering 1606 // since it is possible that the argument ordering is different between the 1607 // functions. 1608 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1609 /* ReplacedWithOutlinedCall = */ false); 1610 1611 OutlinableRegion *FirstRegion = Group.Regions[0]; 1612 1613 // A list of the canonical numbering assigned to each incoming value, paired 1614 // with the incoming block for the PHINode that we are currently comparing 1615 // the passed PHINode to. 1616 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums; 1617 1618 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1619 // the uses of the PHINode we are searching for, with the found PHINode. 1620 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1621 // If this PHINode has already been matched to another PHINode to be merged, 1622 // we skip it. 1623 if (UsedPHIs.find(&CurrPN) != UsedPHIs.end()) 1624 continue; 1625 1626 CurrentCanonNums.clear(); 1627 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1628 /* ReplacedWithOutlinedCall = */ true); 1629 1630 // If the list of incoming values is not the same length, then they cannot 1631 // match since there is not an analogue for each incoming value. 1632 if (PNCanonNums.size() != CurrentCanonNums.size()) 1633 continue; 1634 1635 bool FoundMatch = true; 1636 1637 // We compare the canonical value for each incoming value in the passed 1638 // in PHINode to one already present in the outlined region. If the 1639 // incoming values do not match, then the PHINodes do not match. 1640 1641 // We also check to make sure that the incoming block matches as well by 1642 // finding the corresponding incoming block in the combined outlined region 1643 // for the current outlined region. 1644 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) { 1645 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx]; 1646 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx]; 1647 if (ToCompareTo.first != ToAdd.first) { 1648 FoundMatch = false; 1649 break; 1650 } 1651 1652 BasicBlock *CorrespondingBlock = 1653 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second); 1654 assert(CorrespondingBlock && "Found block is nullptr"); 1655 if (CorrespondingBlock != ToCompareTo.second) { 1656 FoundMatch = false; 1657 break; 1658 } 1659 } 1660 1661 // If all incoming values and branches matched, then we can merge 1662 // into the found PHINode. 1663 if (FoundMatch) { 1664 UsedPHIs.insert(&CurrPN); 1665 return &CurrPN; 1666 } 1667 } 1668 1669 // If we've made it here, it means we weren't able to replace the PHINode, so 1670 // we must insert it ourselves. 1671 PHINode *NewPN = cast<PHINode>(PN.clone()); 1672 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1673 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1674 Idx++) { 1675 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1676 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1677 1678 // Find corresponding basic block in the overall function for the incoming 1679 // block. 1680 BasicBlock *BlockToUse = 1681 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock); 1682 NewPN->setIncomingBlock(Idx, BlockToUse); 1683 1684 // If we have an argument we make sure we replace using the argument from 1685 // the correct function. 1686 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1687 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1688 NewPN->setIncomingValue(Idx, Val); 1689 continue; 1690 } 1691 1692 // Find the corresponding value in the overall function. 1693 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1694 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1695 assert(Val && "Value is nullptr?"); 1696 NewPN->setIncomingValue(Idx, Val); 1697 } 1698 return NewPN; 1699 } 1700 1701 // Within an extracted function, replace the argument uses of the extracted 1702 // region with the arguments of the function for an OutlinableGroup. 1703 // 1704 /// \param [in] Region - The region of extracted code to be changed. 1705 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1706 /// region. 1707 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1708 /// function to define the overall outlined function for all the regions, or 1709 /// if we are operating on one of the following regions. 1710 static void 1711 replaceArgumentUses(OutlinableRegion &Region, 1712 DenseMap<Value *, BasicBlock *> &OutputBBs, 1713 const DenseMap<Value *, Value *> &OutputMappings, 1714 bool FirstFunction = false) { 1715 OutlinableGroup &Group = *Region.Parent; 1716 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1717 1718 Function *DominatingFunction = Region.ExtractedFunction; 1719 if (FirstFunction) 1720 DominatingFunction = Group.OutlinedFunction; 1721 DominatorTree DT(*DominatingFunction); 1722 DenseSet<PHINode *> UsedPHIs; 1723 1724 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1725 ArgIdx++) { 1726 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1727 Region.ExtractedArgToAgg.end() && 1728 "No mapping from extracted to outlined?"); 1729 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1730 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1731 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1732 // The argument is an input, so we can simply replace it with the overall 1733 // argument value 1734 if (ArgIdx < Region.NumExtractedInputs) { 1735 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1736 << *Region.ExtractedFunction << " with " << *AggArg 1737 << " in function " << *Group.OutlinedFunction << "\n"); 1738 Arg->replaceAllUsesWith(AggArg); 1739 continue; 1740 } 1741 1742 // If we are replacing an output, we place the store value in its own 1743 // block inside the overall function before replacing the use of the output 1744 // in the function. 1745 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1746 User *InstAsUser = Arg->user_back(); 1747 assert(InstAsUser && "User is nullptr!"); 1748 1749 Instruction *I = cast<Instruction>(InstAsUser); 1750 BasicBlock *BB = I->getParent(); 1751 SmallVector<BasicBlock *, 4> Descendants; 1752 DT.getDescendants(BB, Descendants); 1753 bool EdgeAdded = false; 1754 if (Descendants.size() == 0) { 1755 EdgeAdded = true; 1756 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1757 DT.getDescendants(BB, Descendants); 1758 } 1759 1760 // Iterate over the following blocks, looking for return instructions, 1761 // if we find one, find the corresponding output block for the return value 1762 // and move our store instruction there. 1763 for (BasicBlock *DescendBB : Descendants) { 1764 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1765 if (!RI) 1766 continue; 1767 Value *RetVal = RI->getReturnValue(); 1768 auto VBBIt = OutputBBs.find(RetVal); 1769 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1770 1771 // If this is storing a PHINode, we must make sure it is included in the 1772 // overall function. 1773 StoreInst *SI = cast<StoreInst>(I); 1774 1775 Value *ValueOperand = SI->getValueOperand(); 1776 1777 StoreInst *NewI = cast<StoreInst>(I->clone()); 1778 NewI->setDebugLoc(DebugLoc()); 1779 BasicBlock *OutputBB = VBBIt->second; 1780 OutputBB->getInstList().push_back(NewI); 1781 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1782 << *OutputBB << "\n"); 1783 1784 // If this is storing a PHINode, we must make sure it is included in the 1785 // overall function. 1786 if (!isa<PHINode>(ValueOperand) || 1787 Region.Candidate->getGVN(ValueOperand).hasValue()) { 1788 if (FirstFunction) 1789 continue; 1790 Value *CorrVal = 1791 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1792 assert(CorrVal && "Value is nullptr?"); 1793 NewI->setOperand(0, CorrVal); 1794 continue; 1795 } 1796 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1797 // If it has a value, it was not split by the code extractor, which 1798 // is what we are looking for. 1799 if (Region.Candidate->getGVN(PN).hasValue()) 1800 continue; 1801 1802 // We record the parent block for the PHINode in the Region so that 1803 // we can exclude it from checks later on. 1804 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1805 1806 // If this is the first function, we do not need to worry about mergiing 1807 // this with any other block in the overall outlined function, so we can 1808 // just continue. 1809 if (FirstFunction) { 1810 BasicBlock *PHIBlock = PN->getParent(); 1811 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1812 continue; 1813 } 1814 1815 // We look for the aggregate block that contains the PHINodes leading into 1816 // this exit path. If we can't find one, we create one. 1817 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1818 1819 // For our PHINode, we find the combined canonical numbering, and 1820 // attempt to find a matching PHINode in the overall PHIBlock. If we 1821 // cannot, we copy the PHINode and move it into this new block. 1822 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, 1823 OutputMappings, UsedPHIs); 1824 NewI->setOperand(0, NewPN); 1825 } 1826 1827 // If we added an edge for basic blocks without a predecessor, we remove it 1828 // here. 1829 if (EdgeAdded) 1830 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1831 I->eraseFromParent(); 1832 1833 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1834 << *Region.ExtractedFunction << " with " << *AggArg 1835 << " in function " << *Group.OutlinedFunction << "\n"); 1836 Arg->replaceAllUsesWith(AggArg); 1837 } 1838 } 1839 1840 /// Within an extracted function, replace the constants that need to be lifted 1841 /// into arguments with the actual argument. 1842 /// 1843 /// \param Region [in] - The region of extracted code to be changed. 1844 void replaceConstants(OutlinableRegion &Region) { 1845 OutlinableGroup &Group = *Region.Parent; 1846 // Iterate over the constants that need to be elevated into arguments 1847 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1848 unsigned AggArgIdx = Const.first; 1849 Function *OutlinedFunction = Group.OutlinedFunction; 1850 assert(OutlinedFunction && "Overall Function is not defined?"); 1851 Constant *CST = Const.second; 1852 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1853 // Identify the argument it will be elevated to, and replace instances of 1854 // that constant in the function. 1855 1856 // TODO: If in the future constants do not have one global value number, 1857 // i.e. a constant 1 could be mapped to several values, this check will 1858 // have to be more strict. It cannot be using only replaceUsesWithIf. 1859 1860 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1861 << " in function " << *OutlinedFunction << " with " 1862 << *Arg << "\n"); 1863 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1864 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1865 return I->getFunction() == OutlinedFunction; 1866 return false; 1867 }); 1868 } 1869 } 1870 1871 /// It is possible that there is a basic block that already performs the same 1872 /// stores. This returns a duplicate block, if it exists 1873 /// 1874 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1875 /// \param OutputStoreBBs [in] The existing output blocks. 1876 /// \returns an optional value with the number output block if there is a match. 1877 Optional<unsigned> findDuplicateOutputBlock( 1878 DenseMap<Value *, BasicBlock *> &OutputBBs, 1879 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1880 1881 bool Mismatch = false; 1882 unsigned MatchingNum = 0; 1883 // We compare the new set output blocks to the other sets of output blocks. 1884 // If they are the same number, and have identical instructions, they are 1885 // considered to be the same. 1886 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1887 Mismatch = false; 1888 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1889 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1890 OutputBBs.find(VToB.first); 1891 if (OutputBBIt == OutputBBs.end()) { 1892 Mismatch = true; 1893 break; 1894 } 1895 1896 BasicBlock *CompBB = VToB.second; 1897 BasicBlock *OutputBB = OutputBBIt->second; 1898 if (CompBB->size() - 1 != OutputBB->size()) { 1899 Mismatch = true; 1900 break; 1901 } 1902 1903 BasicBlock::iterator NIt = OutputBB->begin(); 1904 for (Instruction &I : *CompBB) { 1905 if (isa<BranchInst>(&I)) 1906 continue; 1907 1908 if (!I.isIdenticalTo(&(*NIt))) { 1909 Mismatch = true; 1910 break; 1911 } 1912 1913 NIt++; 1914 } 1915 } 1916 1917 if (!Mismatch) 1918 return MatchingNum; 1919 1920 MatchingNum++; 1921 } 1922 1923 return None; 1924 } 1925 1926 /// Remove empty output blocks from the outlined region. 1927 /// 1928 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 1929 /// Region. 1930 /// \param Region - The OutlinableRegion we are analyzing. 1931 static bool 1932 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 1933 OutlinableRegion &Region) { 1934 bool AllRemoved = true; 1935 Value *RetValueForBB; 1936 BasicBlock *NewBB; 1937 SmallVector<Value *, 4> ToRemove; 1938 // Iterate over the output blocks created in the outlined section. 1939 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 1940 RetValueForBB = VtoBB.first; 1941 NewBB = VtoBB.second; 1942 1943 // If there are no instructions, we remove it from the module, and also 1944 // mark the value for removal from the return value to output block mapping. 1945 if (NewBB->size() == 0) { 1946 NewBB->eraseFromParent(); 1947 ToRemove.push_back(RetValueForBB); 1948 continue; 1949 } 1950 1951 // Mark that we could not remove all the blocks since they were not all 1952 // empty. 1953 AllRemoved = false; 1954 } 1955 1956 // Remove the return value from the mapping. 1957 for (Value *V : ToRemove) 1958 BlocksToPrune.erase(V); 1959 1960 // Mark the region as having the no output scheme. 1961 if (AllRemoved) 1962 Region.OutputBlockNum = -1; 1963 1964 return AllRemoved; 1965 } 1966 1967 /// For the outlined section, move needed the StoreInsts for the output 1968 /// registers into their own block. Then, determine if there is a duplicate 1969 /// output block already created. 1970 /// 1971 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1972 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1973 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 1974 /// placed in. 1975 /// \param [in] EndBBs - the final blocks of the extracted function. 1976 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1977 /// been replaced by a new output value. 1978 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1979 static void alignOutputBlockWithAggFunc( 1980 OutlinableGroup &OG, OutlinableRegion &Region, 1981 DenseMap<Value *, BasicBlock *> &OutputBBs, 1982 DenseMap<Value *, BasicBlock *> &EndBBs, 1983 const DenseMap<Value *, Value *> &OutputMappings, 1984 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1985 // If none of the output blocks have any instructions, this means that we do 1986 // not have to determine if it matches any of the other output schemes, and we 1987 // don't have to do anything else. 1988 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 1989 return; 1990 1991 // Determine is there is a duplicate set of blocks. 1992 Optional<unsigned> MatchingBB = 1993 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 1994 1995 // If there is, we remove the new output blocks. If it does not, 1996 // we add it to our list of sets of output blocks. 1997 if (MatchingBB.hasValue()) { 1998 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1999 << Region.ExtractedFunction << " to " 2000 << MatchingBB.getValue()); 2001 2002 Region.OutputBlockNum = MatchingBB.getValue(); 2003 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 2004 VtoBB.second->eraseFromParent(); 2005 return; 2006 } 2007 2008 Region.OutputBlockNum = OutputStoreBBs.size(); 2009 2010 Value *RetValueForBB; 2011 BasicBlock *NewBB; 2012 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2013 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 2014 RetValueForBB = VtoBB.first; 2015 NewBB = VtoBB.second; 2016 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2017 EndBBs.find(RetValueForBB); 2018 LLVM_DEBUG(dbgs() << "Create output block for region in" 2019 << Region.ExtractedFunction << " to " 2020 << *NewBB); 2021 BranchInst::Create(VBBIt->second, NewBB); 2022 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 2023 } 2024 } 2025 2026 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 2027 /// before creating a basic block for each \p NewMap, and inserting into the new 2028 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 2029 /// 2030 /// \param OldMap [in] - The mapping to base the new mapping off of. 2031 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 2032 /// \param ParentFunc [in] - The function to put the new basic block in. 2033 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 2034 /// by an index value. 2035 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 2036 DenseMap<Value *, BasicBlock *> &NewMap, 2037 Function *ParentFunc, Twine BaseName) { 2038 unsigned Idx = 0; 2039 std::vector<Value *> SortedKeys; 2040 2041 getSortedConstantKeys(SortedKeys, OldMap); 2042 2043 for (Value *RetVal : SortedKeys) { 2044 BasicBlock *NewBB = BasicBlock::Create( 2045 ParentFunc->getContext(), 2046 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 2047 ParentFunc); 2048 NewMap.insert(std::make_pair(RetVal, NewBB)); 2049 } 2050 } 2051 2052 /// Create the switch statement for outlined function to differentiate between 2053 /// all the output blocks. 2054 /// 2055 /// For the outlined section, determine if an outlined block already exists that 2056 /// matches the needed stores for the extracted section. 2057 /// \param [in] M - The module we are outlining from. 2058 /// \param [in] OG - The group of regions to be outlined. 2059 /// \param [in] EndBBs - The final blocks of the extracted function. 2060 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2061 void createSwitchStatement( 2062 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 2063 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2064 // We only need the switch statement if there is more than one store 2065 // combination, or there is more than one set of output blocks. The first 2066 // will occur when we store different sets of values for two different 2067 // regions. The second will occur when we have two outputs that are combined 2068 // in a PHINode outside of the region in one outlined instance, and are used 2069 // seaparately in another. This will create the same set of OutputGVNs, but 2070 // will generate two different output schemes. 2071 if (OG.OutputGVNCombinations.size() > 1) { 2072 Function *AggFunc = OG.OutlinedFunction; 2073 // Create a final block for each different return block. 2074 DenseMap<Value *, BasicBlock *> ReturnBBs; 2075 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2076 2077 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2078 std::pair<Value *, BasicBlock *> &OutputBlock = 2079 *OG.EndBBs.find(RetBlockPair.first); 2080 BasicBlock *ReturnBlock = RetBlockPair.second; 2081 BasicBlock *EndBB = OutputBlock.second; 2082 Instruction *Term = EndBB->getTerminator(); 2083 // Move the return value to the final block instead of the original exit 2084 // stub. 2085 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2086 // Put the switch statement in the old end basic block for the function 2087 // with a fall through to the new return block. 2088 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2089 << OutputStoreBBs.size() << "\n"); 2090 SwitchInst *SwitchI = 2091 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2092 ReturnBlock, OutputStoreBBs.size(), EndBB); 2093 2094 unsigned Idx = 0; 2095 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2096 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2097 OutputStoreBB.find(OutputBlock.first); 2098 2099 if (OSBBIt == OutputStoreBB.end()) 2100 continue; 2101 2102 BasicBlock *BB = OSBBIt->second; 2103 SwitchI->addCase( 2104 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2105 Term = BB->getTerminator(); 2106 Term->setSuccessor(0, ReturnBlock); 2107 Idx++; 2108 } 2109 } 2110 return; 2111 } 2112 2113 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2114 2115 // If there needs to be stores, move them from the output blocks to their 2116 // corresponding ending block. We do not check that the OutputGVNCombinations 2117 // is equal to 1 here since that could just been the case where there are 0 2118 // outputs. Instead, we check whether there is more than one set of output 2119 // blocks since this is the only case where we would have to move the 2120 // stores, and erase the extraneous blocks. 2121 if (OutputStoreBBs.size() == 1) { 2122 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2123 << *OG.OutlinedFunction << "\n"); 2124 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2125 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2126 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2127 EndBBs.find(VBPair.first); 2128 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2129 BasicBlock *EndBB = EndBBIt->second; 2130 BasicBlock *OutputBB = VBPair.second; 2131 Instruction *Term = OutputBB->getTerminator(); 2132 Term->eraseFromParent(); 2133 Term = EndBB->getTerminator(); 2134 moveBBContents(*OutputBB, *EndBB); 2135 Term->moveBefore(*EndBB, EndBB->end()); 2136 OutputBB->eraseFromParent(); 2137 } 2138 } 2139 } 2140 2141 /// Fill the new function that will serve as the replacement function for all of 2142 /// the extracted regions of a certain structure from the first region in the 2143 /// list of regions. Replace this first region's extracted function with the 2144 /// new overall function. 2145 /// 2146 /// \param [in] M - The module we are outlining from. 2147 /// \param [in] CurrentGroup - The group of regions to be outlined. 2148 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2149 /// set of stores needed for the different functions. 2150 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2151 /// once outlining is complete. 2152 /// \param [in] OutputMappings - Extracted functions to erase from module 2153 /// once outlining is complete. 2154 static void fillOverallFunction( 2155 Module &M, OutlinableGroup &CurrentGroup, 2156 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2157 std::vector<Function *> &FuncsToRemove, 2158 const DenseMap<Value *, Value *> &OutputMappings) { 2159 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2160 2161 // Move first extracted function's instructions into new function. 2162 LLVM_DEBUG(dbgs() << "Move instructions from " 2163 << *CurrentOS->ExtractedFunction << " to instruction " 2164 << *CurrentGroup.OutlinedFunction << "\n"); 2165 moveFunctionData(*CurrentOS->ExtractedFunction, 2166 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2167 2168 // Transfer the attributes from the function to the new function. 2169 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2170 CurrentGroup.OutlinedFunction->addFnAttr(A); 2171 2172 // Create a new set of output blocks for the first extracted function. 2173 DenseMap<Value *, BasicBlock *> NewBBs; 2174 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2175 CurrentGroup.OutlinedFunction, "output_block_0"); 2176 CurrentOS->OutputBlockNum = 0; 2177 2178 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2179 replaceConstants(*CurrentOS); 2180 2181 // We first identify if any output blocks are empty, if they are we remove 2182 // them. We then create a branch instruction to the basic block to the return 2183 // block for the function for each non empty output block. 2184 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2185 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2186 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2187 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2188 CurrentGroup.EndBBs.find(VToBB.first); 2189 BasicBlock *EndBB = VBBIt->second; 2190 BranchInst::Create(EndBB, VToBB.second); 2191 OutputStoreBBs.back().insert(VToBB); 2192 } 2193 } 2194 2195 // Replace the call to the extracted function with the outlined function. 2196 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2197 2198 // We only delete the extracted functions at the end since we may need to 2199 // reference instructions contained in them for mapping purposes. 2200 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2201 } 2202 2203 void IROutliner::deduplicateExtractedSections( 2204 Module &M, OutlinableGroup &CurrentGroup, 2205 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2206 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2207 2208 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2209 2210 OutlinableRegion *CurrentOS; 2211 2212 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2213 OutputMappings); 2214 2215 std::vector<Value *> SortedKeys; 2216 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2217 CurrentOS = CurrentGroup.Regions[Idx]; 2218 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2219 *CurrentOS->ExtractedFunction); 2220 2221 // Create a set of BasicBlocks, one for each return block, to hold the 2222 // needed store instructions. 2223 DenseMap<Value *, BasicBlock *> NewBBs; 2224 createAndInsertBasicBlocks( 2225 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2226 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2227 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2228 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2229 CurrentGroup.EndBBs, OutputMappings, 2230 OutputStoreBBs); 2231 2232 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2233 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2234 } 2235 2236 // Create a switch statement to handle the different output schemes. 2237 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2238 2239 OutlinedFunctionNum++; 2240 } 2241 2242 /// Checks that the next instruction in the InstructionDataList matches the 2243 /// next instruction in the module. If they do not, there could be the 2244 /// possibility that extra code has been inserted, and we must ignore it. 2245 /// 2246 /// \param ID - The IRInstructionData to check the next instruction of. 2247 /// \returns true if the InstructionDataList and actual instruction match. 2248 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2249 // We check if there is a discrepancy between the InstructionDataList 2250 // and the actual next instruction in the module. If there is, it means 2251 // that an extra instruction was added, likely by the CodeExtractor. 2252 2253 // Since we do not have any similarity data about this particular 2254 // instruction, we cannot confidently outline it, and must discard this 2255 // candidate. 2256 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2257 Instruction *NextIDLInst = NextIDIt->Inst; 2258 Instruction *NextModuleInst = nullptr; 2259 if (!ID.Inst->isTerminator()) 2260 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2261 else if (NextIDLInst != nullptr) 2262 NextModuleInst = 2263 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2264 2265 if (NextIDLInst && NextIDLInst != NextModuleInst) 2266 return false; 2267 2268 return true; 2269 } 2270 2271 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2272 const OutlinableRegion &Region) { 2273 IRSimilarityCandidate *IRSC = Region.Candidate; 2274 unsigned StartIdx = IRSC->getStartIdx(); 2275 unsigned EndIdx = IRSC->getEndIdx(); 2276 2277 // A check to make sure that we are not about to attempt to outline something 2278 // that has already been outlined. 2279 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2280 if (Outlined.contains(Idx)) 2281 return false; 2282 2283 // We check if the recorded instruction matches the actual next instruction, 2284 // if it does not, we fix it in the InstructionDataList. 2285 if (!Region.Candidate->backInstruction()->isTerminator()) { 2286 Instruction *NewEndInst = 2287 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2288 assert(NewEndInst && "Next instruction is a nullptr?"); 2289 if (Region.Candidate->end()->Inst != NewEndInst) { 2290 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2291 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2292 IRInstructionData(*NewEndInst, 2293 InstructionClassifier.visit(*NewEndInst), *IDL); 2294 2295 // Insert the first IRInstructionData of the new region after the 2296 // last IRInstructionData of the IRSimilarityCandidate. 2297 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2298 } 2299 } 2300 2301 return none_of(*IRSC, [this](IRInstructionData &ID) { 2302 if (!nextIRInstructionDataMatchesNextInst(ID)) 2303 return true; 2304 2305 return !this->InstructionClassifier.visit(ID.Inst); 2306 }); 2307 } 2308 2309 void IROutliner::pruneIncompatibleRegions( 2310 std::vector<IRSimilarityCandidate> &CandidateVec, 2311 OutlinableGroup &CurrentGroup) { 2312 bool PreviouslyOutlined; 2313 2314 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2315 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2316 const IRSimilarityCandidate &RHS) { 2317 return LHS.getStartIdx() < RHS.getStartIdx(); 2318 }); 2319 2320 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2321 // Since outlining a call and a branch instruction will be the same as only 2322 // outlinining a call instruction, we ignore it as a space saving. 2323 if (FirstCandidate.getLength() == 2) { 2324 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2325 isa<BranchInst>(FirstCandidate.back()->Inst)) 2326 return; 2327 } 2328 2329 unsigned CurrentEndIdx = 0; 2330 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2331 PreviouslyOutlined = false; 2332 unsigned StartIdx = IRSC.getStartIdx(); 2333 unsigned EndIdx = IRSC.getEndIdx(); 2334 2335 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2336 if (Outlined.contains(Idx)) { 2337 PreviouslyOutlined = true; 2338 break; 2339 } 2340 2341 if (PreviouslyOutlined) 2342 continue; 2343 2344 // Check over the instructions, and if the basic block has its address 2345 // taken for use somewhere else, we do not outline that block. 2346 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2347 return ID.Inst->getParent()->hasAddressTaken(); 2348 }); 2349 2350 if (BBHasAddressTaken) 2351 continue; 2352 2353 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2354 !OutlineFromLinkODRs) 2355 continue; 2356 2357 // Greedily prune out any regions that will overlap with already chosen 2358 // regions. 2359 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2360 continue; 2361 2362 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2363 if (!nextIRInstructionDataMatchesNextInst(ID)) 2364 return true; 2365 2366 return !this->InstructionClassifier.visit(ID.Inst); 2367 }); 2368 2369 if (BadInst) 2370 continue; 2371 2372 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2373 OutlinableRegion(IRSC, CurrentGroup); 2374 CurrentGroup.Regions.push_back(OS); 2375 2376 CurrentEndIdx = EndIdx; 2377 } 2378 } 2379 2380 InstructionCost 2381 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2382 InstructionCost RegionBenefit = 0; 2383 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2384 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2385 // We add the number of instructions in the region to the benefit as an 2386 // estimate as to how much will be removed. 2387 RegionBenefit += Region->getBenefit(TTI); 2388 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2389 << " saved instructions to overfall benefit.\n"); 2390 } 2391 2392 return RegionBenefit; 2393 } 2394 2395 /// For the \p OutputCanon number passed in find the value represented by this 2396 /// canonical number. If it is from a PHINode, we pick the first incoming 2397 /// value and return that Value instead. 2398 /// 2399 /// \param Region - The OutlinableRegion to get the Value from. 2400 /// \param OutputCanon - The canonical number to find the Value from. 2401 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2402 /// Region. 2403 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2404 unsigned OutputCanon) { 2405 OutlinableGroup &CurrentGroup = *Region.Parent; 2406 // If the value is greater than the value in the tracker, we have a 2407 // PHINode and will instead use one of the incoming values to find the 2408 // type. 2409 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2410 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2411 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2412 "Could not find GVN set for PHINode number!"); 2413 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2414 OutputCanon = *It->second.second.begin(); 2415 } 2416 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); 2417 assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?"); 2418 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2419 assert(OV.hasValue() && "Could not find value for GVN?"); 2420 return *OV; 2421 } 2422 2423 InstructionCost 2424 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2425 InstructionCost OverallCost = 0; 2426 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2427 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2428 2429 // Each output incurs a load after the call, so we add that to the cost. 2430 for (unsigned OutputCanon : Region->GVNStores) { 2431 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2432 InstructionCost LoadCost = 2433 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2434 TargetTransformInfo::TCK_CodeSize); 2435 2436 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2437 << " instructions to cost for output of type " 2438 << *V->getType() << "\n"); 2439 OverallCost += LoadCost; 2440 } 2441 } 2442 2443 return OverallCost; 2444 } 2445 2446 /// Find the extra instructions needed to handle any output values for the 2447 /// region. 2448 /// 2449 /// \param [in] M - The Module to outline from. 2450 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2451 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2452 /// new instruction costs. 2453 /// \returns the additional cost to handle the outputs. 2454 static InstructionCost findCostForOutputBlocks(Module &M, 2455 OutlinableGroup &CurrentGroup, 2456 TargetTransformInfo &TTI) { 2457 InstructionCost OutputCost = 0; 2458 unsigned NumOutputBranches = 0; 2459 2460 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2461 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2462 DenseSet<BasicBlock *> CandidateBlocks; 2463 Candidate.getBasicBlocks(CandidateBlocks); 2464 2465 // Count the number of different output branches that point to blocks outside 2466 // of the region. 2467 DenseSet<BasicBlock *> FoundBlocks; 2468 for (IRInstructionData &ID : Candidate) { 2469 if (!isa<BranchInst>(ID.Inst)) 2470 continue; 2471 2472 for (Value *V : ID.OperVals) { 2473 BasicBlock *BB = static_cast<BasicBlock *>(V); 2474 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 2475 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 2476 continue; 2477 FoundBlocks.insert(BB); 2478 NumOutputBranches++; 2479 } 2480 } 2481 2482 CurrentGroup.BranchesToOutside = NumOutputBranches; 2483 2484 for (const ArrayRef<unsigned> &OutputUse : 2485 CurrentGroup.OutputGVNCombinations) { 2486 for (unsigned OutputCanon : OutputUse) { 2487 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2488 InstructionCost StoreCost = 2489 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2490 TargetTransformInfo::TCK_CodeSize); 2491 2492 // An instruction cost is added for each store set that needs to occur for 2493 // various output combinations inside the function, plus a branch to 2494 // return to the exit block. 2495 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2496 << " instructions to cost for output of type " 2497 << *V->getType() << "\n"); 2498 OutputCost += StoreCost * NumOutputBranches; 2499 } 2500 2501 InstructionCost BranchCost = 2502 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2503 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2504 << " a branch instruction\n"); 2505 OutputCost += BranchCost * NumOutputBranches; 2506 } 2507 2508 // If there is more than one output scheme, we must have a comparison and 2509 // branch for each different item in the switch statement. 2510 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2511 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2512 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2513 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2514 TargetTransformInfo::TCK_CodeSize); 2515 InstructionCost BranchCost = 2516 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2517 2518 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2519 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2520 2521 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2522 << " instructions for each switch case for each different" 2523 << " output path in a function\n"); 2524 OutputCost += TotalCost * NumOutputBranches; 2525 } 2526 2527 return OutputCost; 2528 } 2529 2530 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2531 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2532 CurrentGroup.Benefit += RegionBenefit; 2533 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2534 2535 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2536 CurrentGroup.Cost += OutputReloadCost; 2537 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2538 2539 InstructionCost AverageRegionBenefit = 2540 RegionBenefit / CurrentGroup.Regions.size(); 2541 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2542 unsigned NumRegions = CurrentGroup.Regions.size(); 2543 TargetTransformInfo &TTI = 2544 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2545 2546 // We add one region to the cost once, to account for the instructions added 2547 // inside of the newly created function. 2548 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2549 << " instructions to cost for body of new function.\n"); 2550 CurrentGroup.Cost += AverageRegionBenefit; 2551 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2552 2553 // For each argument, we must add an instruction for loading the argument 2554 // out of the register and into a value inside of the newly outlined function. 2555 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2556 << " instructions to cost for each argument in the new" 2557 << " function.\n"); 2558 CurrentGroup.Cost += 2559 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2560 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2561 2562 // Each argument needs to either be loaded into a register or onto the stack. 2563 // Some arguments will only be loaded into the stack once the argument 2564 // registers are filled. 2565 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2566 << " instructions to cost for each argument in the new" 2567 << " function " << NumRegions << " times for the " 2568 << "needed argument handling at the call site.\n"); 2569 CurrentGroup.Cost += 2570 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2571 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2572 2573 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2574 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2575 } 2576 2577 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2578 ArrayRef<Value *> Outputs, 2579 LoadInst *LI) { 2580 // For and load instructions following the call 2581 Value *Operand = LI->getPointerOperand(); 2582 Optional<unsigned> OutputIdx = None; 2583 // Find if the operand it is an output register. 2584 for (unsigned ArgIdx = Region.NumExtractedInputs; 2585 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2586 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2587 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2588 break; 2589 } 2590 } 2591 2592 // If we found an output register, place a mapping of the new value 2593 // to the original in the mapping. 2594 if (!OutputIdx.hasValue()) 2595 return; 2596 2597 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 2598 OutputMappings.end()) { 2599 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2600 << *Outputs[OutputIdx.getValue()] << "\n"); 2601 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 2602 } else { 2603 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 2604 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2605 << *Outputs[OutputIdx.getValue()] << "\n"); 2606 OutputMappings.insert(std::make_pair(LI, Orig)); 2607 } 2608 } 2609 2610 bool IROutliner::extractSection(OutlinableRegion &Region) { 2611 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2612 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2613 BasicBlock *InitialStart = Region.StartBB; 2614 Function *OrigF = Region.StartBB->getParent(); 2615 CodeExtractorAnalysisCache CEAC(*OrigF); 2616 Region.ExtractedFunction = 2617 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2618 2619 // If the extraction was successful, find the BasicBlock, and reassign the 2620 // OutlinableRegion blocks 2621 if (!Region.ExtractedFunction) { 2622 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2623 << "\n"); 2624 Region.reattachCandidate(); 2625 return false; 2626 } 2627 2628 // Get the block containing the called branch, and reassign the blocks as 2629 // necessary. If the original block still exists, it is because we ended on 2630 // a branch instruction, and so we move the contents into the block before 2631 // and assign the previous block correctly. 2632 User *InstAsUser = Region.ExtractedFunction->user_back(); 2633 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2634 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2635 assert(Region.PrevBB && "PrevBB is nullptr?"); 2636 if (Region.PrevBB == InitialStart) { 2637 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2638 Instruction *BI = NewPrev->getTerminator(); 2639 BI->eraseFromParent(); 2640 moveBBContents(*InitialStart, *NewPrev); 2641 Region.PrevBB = NewPrev; 2642 InitialStart->eraseFromParent(); 2643 } 2644 2645 Region.StartBB = RewrittenBB; 2646 Region.EndBB = RewrittenBB; 2647 2648 // The sequences of outlinable regions has now changed. We must fix the 2649 // IRInstructionDataList for consistency. Although they may not be illegal 2650 // instructions, they should not be compared with anything else as they 2651 // should not be outlined in this round. So marking these as illegal is 2652 // allowed. 2653 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2654 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2655 Instruction *EndRewritten = &*RewrittenBB->begin(); 2656 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2657 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2658 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2659 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2660 2661 // Insert the first IRInstructionData of the new region in front of the 2662 // first IRInstructionData of the IRSimilarityCandidate. 2663 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2664 // Insert the first IRInstructionData of the new region after the 2665 // last IRInstructionData of the IRSimilarityCandidate. 2666 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2667 // Remove the IRInstructionData from the IRSimilarityCandidate. 2668 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2669 2670 assert(RewrittenBB != nullptr && 2671 "Could not find a predecessor after extraction!"); 2672 2673 // Iterate over the new set of instructions to find the new call 2674 // instruction. 2675 for (Instruction &I : *RewrittenBB) 2676 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2677 if (Region.ExtractedFunction == CI->getCalledFunction()) 2678 Region.Call = CI; 2679 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2680 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2681 Region.reattachCandidate(); 2682 return true; 2683 } 2684 2685 unsigned IROutliner::doOutline(Module &M) { 2686 // Find the possible similarity sections. 2687 InstructionClassifier.EnableBranches = !DisableBranches; 2688 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2689 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2690 2691 IRSimilarityIdentifier &Identifier = getIRSI(M); 2692 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2693 2694 // Sort them by size of extracted sections 2695 unsigned OutlinedFunctionNum = 0; 2696 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2697 // to sort them by the potential number of instructions to be outlined 2698 if (SimilarityCandidates.size() > 1) 2699 llvm::stable_sort(SimilarityCandidates, 2700 [](const std::vector<IRSimilarityCandidate> &LHS, 2701 const std::vector<IRSimilarityCandidate> &RHS) { 2702 return LHS[0].getLength() * LHS.size() > 2703 RHS[0].getLength() * RHS.size(); 2704 }); 2705 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2706 // each of the following for loops to avoid making an allocator. 2707 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2708 2709 DenseSet<unsigned> NotSame; 2710 std::vector<OutlinableGroup *> NegativeCostGroups; 2711 std::vector<OutlinableRegion *> OutlinedRegions; 2712 // Iterate over the possible sets of similarity. 2713 unsigned PotentialGroupIdx = 0; 2714 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2715 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2716 2717 // Remove entries that were previously outlined 2718 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2719 2720 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2721 // trying to outlined since there is no compatible similar instance of this 2722 // code. 2723 if (CurrentGroup.Regions.size() < 2) 2724 continue; 2725 2726 // Determine if there are any values that are the same constant throughout 2727 // each section in the set. 2728 NotSame.clear(); 2729 CurrentGroup.findSameConstants(NotSame); 2730 2731 if (CurrentGroup.IgnoreGroup) 2732 continue; 2733 2734 // Create a CodeExtractor for each outlinable region. Identify inputs and 2735 // outputs for each section using the code extractor and create the argument 2736 // types for the Aggregate Outlining Function. 2737 OutlinedRegions.clear(); 2738 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2739 // Break the outlinable region out of its parent BasicBlock into its own 2740 // BasicBlocks (see function implementation). 2741 OS->splitCandidate(); 2742 2743 // There's a chance that when the region is split, extra instructions are 2744 // added to the region. This makes the region no longer viable 2745 // to be split, so we ignore it for outlining. 2746 if (!OS->CandidateSplit) 2747 continue; 2748 2749 SmallVector<BasicBlock *> BE; 2750 DenseSet<BasicBlock *> BlocksInRegion; 2751 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2752 OS->CE = new (ExtractorAllocator.Allocate()) 2753 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2754 false, nullptr, "outlined"); 2755 findAddInputsOutputs(M, *OS, NotSame); 2756 if (!OS->IgnoreRegion) 2757 OutlinedRegions.push_back(OS); 2758 2759 // We recombine the blocks together now that we have gathered all the 2760 // needed information. 2761 OS->reattachCandidate(); 2762 } 2763 2764 CurrentGroup.Regions = std::move(OutlinedRegions); 2765 2766 if (CurrentGroup.Regions.empty()) 2767 continue; 2768 2769 CurrentGroup.collectGVNStoreSets(M); 2770 2771 if (CostModel) 2772 findCostBenefit(M, CurrentGroup); 2773 2774 // If we are adhering to the cost model, skip those groups where the cost 2775 // outweighs the benefits. 2776 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2777 OptimizationRemarkEmitter &ORE = 2778 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2779 ORE.emit([&]() { 2780 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2781 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2782 C->frontInstruction()); 2783 R << "did not outline " 2784 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2785 << " regions due to estimated increase of " 2786 << ore::NV("InstructionIncrease", 2787 CurrentGroup.Cost - CurrentGroup.Benefit) 2788 << " instructions at locations "; 2789 interleave( 2790 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2791 [&R](OutlinableRegion *Region) { 2792 R << ore::NV( 2793 "DebugLoc", 2794 Region->Candidate->frontInstruction()->getDebugLoc()); 2795 }, 2796 [&R]() { R << " "; }); 2797 return R; 2798 }); 2799 continue; 2800 } 2801 2802 NegativeCostGroups.push_back(&CurrentGroup); 2803 } 2804 2805 ExtractorAllocator.DestroyAll(); 2806 2807 if (NegativeCostGroups.size() > 1) 2808 stable_sort(NegativeCostGroups, 2809 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2810 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2811 }); 2812 2813 std::vector<Function *> FuncsToRemove; 2814 for (OutlinableGroup *CG : NegativeCostGroups) { 2815 OutlinableGroup &CurrentGroup = *CG; 2816 2817 OutlinedRegions.clear(); 2818 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2819 // We check whether our region is compatible with what has already been 2820 // outlined, and whether we need to ignore this item. 2821 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2822 continue; 2823 OutlinedRegions.push_back(Region); 2824 } 2825 2826 if (OutlinedRegions.size() < 2) 2827 continue; 2828 2829 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2830 // we are still outlining enough regions to make up for the added cost. 2831 CurrentGroup.Regions = std::move(OutlinedRegions); 2832 if (CostModel) { 2833 CurrentGroup.Benefit = 0; 2834 CurrentGroup.Cost = 0; 2835 findCostBenefit(M, CurrentGroup); 2836 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2837 continue; 2838 } 2839 OutlinedRegions.clear(); 2840 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2841 Region->splitCandidate(); 2842 if (!Region->CandidateSplit) 2843 continue; 2844 OutlinedRegions.push_back(Region); 2845 } 2846 2847 CurrentGroup.Regions = std::move(OutlinedRegions); 2848 if (CurrentGroup.Regions.size() < 2) { 2849 for (OutlinableRegion *R : CurrentGroup.Regions) 2850 R->reattachCandidate(); 2851 continue; 2852 } 2853 2854 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2855 << " and benefit " << CurrentGroup.Benefit << "\n"); 2856 2857 // Create functions out of all the sections, and mark them as outlined. 2858 OutlinedRegions.clear(); 2859 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2860 SmallVector<BasicBlock *> BE; 2861 DenseSet<BasicBlock *> BlocksInRegion; 2862 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2863 OS->CE = new (ExtractorAllocator.Allocate()) 2864 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2865 false, nullptr, "outlined"); 2866 bool FunctionOutlined = extractSection(*OS); 2867 if (FunctionOutlined) { 2868 unsigned StartIdx = OS->Candidate->getStartIdx(); 2869 unsigned EndIdx = OS->Candidate->getEndIdx(); 2870 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2871 Outlined.insert(Idx); 2872 2873 OutlinedRegions.push_back(OS); 2874 } 2875 } 2876 2877 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2878 << " with benefit " << CurrentGroup.Benefit 2879 << " and cost " << CurrentGroup.Cost << "\n"); 2880 2881 CurrentGroup.Regions = std::move(OutlinedRegions); 2882 2883 if (CurrentGroup.Regions.empty()) 2884 continue; 2885 2886 OptimizationRemarkEmitter &ORE = 2887 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2888 ORE.emit([&]() { 2889 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2890 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2891 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2892 << " regions with decrease of " 2893 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2894 << " instructions at locations "; 2895 interleave( 2896 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2897 [&R](OutlinableRegion *Region) { 2898 R << ore::NV("DebugLoc", 2899 Region->Candidate->frontInstruction()->getDebugLoc()); 2900 }, 2901 [&R]() { R << " "; }); 2902 return R; 2903 }); 2904 2905 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2906 OutlinedFunctionNum); 2907 } 2908 2909 for (Function *F : FuncsToRemove) 2910 F->eraseFromParent(); 2911 2912 return OutlinedFunctionNum; 2913 } 2914 2915 bool IROutliner::run(Module &M) { 2916 CostModel = !NoCostModel; 2917 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 2918 2919 return doOutline(M) > 0; 2920 } 2921 2922 // Pass Manager Boilerplate 2923 namespace { 2924 class IROutlinerLegacyPass : public ModulePass { 2925 public: 2926 static char ID; 2927 IROutlinerLegacyPass() : ModulePass(ID) { 2928 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 2929 } 2930 2931 void getAnalysisUsage(AnalysisUsage &AU) const override { 2932 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2933 AU.addRequired<TargetTransformInfoWrapperPass>(); 2934 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 2935 } 2936 2937 bool runOnModule(Module &M) override; 2938 }; 2939 } // namespace 2940 2941 bool IROutlinerLegacyPass::runOnModule(Module &M) { 2942 if (skipModule(M)) 2943 return false; 2944 2945 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2946 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2947 ORE.reset(new OptimizationRemarkEmitter(&F)); 2948 return *ORE.get(); 2949 }; 2950 2951 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 2952 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2953 }; 2954 2955 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 2956 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 2957 }; 2958 2959 return IROutliner(GTTI, GIRSI, GORE).run(M); 2960 } 2961 2962 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 2963 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2964 2965 std::function<TargetTransformInfo &(Function &)> GTTI = 2966 [&FAM](Function &F) -> TargetTransformInfo & { 2967 return FAM.getResult<TargetIRAnalysis>(F); 2968 }; 2969 2970 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 2971 [&AM](Module &M) -> IRSimilarityIdentifier & { 2972 return AM.getResult<IRSimilarityAnalysis>(M); 2973 }; 2974 2975 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2976 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 2977 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2978 ORE.reset(new OptimizationRemarkEmitter(&F)); 2979 return *ORE.get(); 2980 }; 2981 2982 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 2983 return PreservedAnalyses::none(); 2984 return PreservedAnalyses::all(); 2985 } 2986 2987 char IROutlinerLegacyPass::ID = 0; 2988 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2989 false) 2990 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 2991 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2992 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2993 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2994 false) 2995 2996 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 2997