1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include <map>
30 #include <set>
31 #include <vector>
32 
33 #define DEBUG_TYPE "iroutliner"
34 
35 using namespace llvm;
36 using namespace IRSimilarity;
37 
38 // A command flag to be used for debugging to exclude branches from similarity
39 // matching and outlining.
40 namespace llvm {
41 extern cl::opt<bool> DisableBranches;
42 
43 // A command flag to be used for debugging to indirect calls from similarity
44 // matching and outlining.
45 extern cl::opt<bool> DisableIndirectCalls;
46 
47 // A command flag to be used for debugging to exclude intrinsics from similarity
48 // matching and outlining.
49 extern cl::opt<bool> DisableIntrinsics;
50 
51 } // namespace llvm
52 
53 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
54 // functions. This is false by default because the linker can dedupe linkonceodr
55 // functions. Since the outliner is confined to a single module (modulo LTO),
56 // this is off by default. It should, however, be the default behavior in
57 // LTO.
58 static cl::opt<bool> EnableLinkOnceODRIROutlining(
59     "enable-linkonceodr-ir-outlining", cl::Hidden,
60     cl::desc("Enable the IR outliner on linkonceodr functions"),
61     cl::init(false));
62 
63 // This is a debug option to test small pieces of code to ensure that outlining
64 // works correctly.
65 static cl::opt<bool> NoCostModel(
66     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
67     cl::desc("Debug option to outline greedily, without restriction that "
68              "calculated benefit outweighs cost"));
69 
70 /// The OutlinableGroup holds all the overarching information for outlining
71 /// a set of regions that are structurally similar to one another, such as the
72 /// types of the overall function, the output blocks, the sets of stores needed
73 /// and a list of the different regions. This information is used in the
74 /// deduplication of extracted regions with the same structure.
75 struct OutlinableGroup {
76   /// The sections that could be outlined
77   std::vector<OutlinableRegion *> Regions;
78 
79   /// The argument types for the function created as the overall function to
80   /// replace the extracted function for each region.
81   std::vector<Type *> ArgumentTypes;
82   /// The FunctionType for the overall function.
83   FunctionType *OutlinedFunctionType = nullptr;
84   /// The Function for the collective overall function.
85   Function *OutlinedFunction = nullptr;
86 
87   /// Flag for whether we should not consider this group of OutlinableRegions
88   /// for extraction.
89   bool IgnoreGroup = false;
90 
91   /// The return blocks for the overall function.
92   DenseMap<Value *, BasicBlock *> EndBBs;
93 
94   /// The PHIBlocks with their corresponding return block based on the return
95   /// value as the key.
96   DenseMap<Value *, BasicBlock *> PHIBlocks;
97 
98   /// A set containing the different GVN store sets needed. Each array contains
99   /// a sorted list of the different values that need to be stored into output
100   /// registers.
101   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
102 
103   /// Flag for whether the \ref ArgumentTypes have been defined after the
104   /// extraction of the first region.
105   bool InputTypesSet = false;
106 
107   /// The number of input values in \ref ArgumentTypes.  Anything after this
108   /// index in ArgumentTypes is an output argument.
109   unsigned NumAggregateInputs = 0;
110 
111   /// The mapping of the canonical numbering of the values in outlined sections
112   /// to specific arguments.
113   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
114 
115   /// The number of branches in the region target a basic block that is outside
116   /// of the region.
117   unsigned BranchesToOutside = 0;
118 
119   /// Tracker counting backwards from the highest unsigned value possible to
120   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
121   /// -2 and -1 are assigned by the DenseMap.
122   unsigned PHINodeGVNTracker = -3;
123 
124   DenseMap<unsigned,
125            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
126       PHINodeGVNToGVNs;
127   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
128 
129   /// The number of instructions that will be outlined by extracting \ref
130   /// Regions.
131   InstructionCost Benefit = 0;
132   /// The number of added instructions needed for the outlining of the \ref
133   /// Regions.
134   InstructionCost Cost = 0;
135 
136   /// The argument that needs to be marked with the swifterr attribute.  If not
137   /// needed, there is no value.
138   Optional<unsigned> SwiftErrorArgument;
139 
140   /// For the \ref Regions, we look at every Value.  If it is a constant,
141   /// we check whether it is the same in Region.
142   ///
143   /// \param [in,out] NotSame contains the global value numbers where the
144   /// constant is not always the same, and must be passed in as an argument.
145   void findSameConstants(DenseSet<unsigned> &NotSame);
146 
147   /// For the regions, look at each set of GVN stores needed and account for
148   /// each combination.  Add an argument to the argument types if there is
149   /// more than one combination.
150   ///
151   /// \param [in] M - The module we are outlining from.
152   void collectGVNStoreSets(Module &M);
153 };
154 
155 /// Move the contents of \p SourceBB to before the last instruction of \p
156 /// TargetBB.
157 /// \param SourceBB - the BasicBlock to pull Instructions from.
158 /// \param TargetBB - the BasicBlock to put Instruction into.
159 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
160   for (Instruction &I : llvm::make_early_inc_range(SourceBB))
161     I.moveBefore(TargetBB, TargetBB.end());
162 }
163 
164 /// A function to sort the keys of \p Map, which must be a mapping of constant
165 /// values to basic blocks and return it in \p SortedKeys
166 ///
167 /// \param SortedKeys - The vector the keys will be return in and sorted.
168 /// \param Map - The DenseMap containing keys to sort.
169 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
170                                   DenseMap<Value *, BasicBlock *> &Map) {
171   for (auto &VtoBB : Map)
172     SortedKeys.push_back(VtoBB.first);
173 
174   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
175     const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
176     const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
177     assert(RHSC && "Not a constant integer in return value?");
178     assert(LHSC && "Not a constant integer in return value?");
179 
180     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
181   });
182 }
183 
184 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
185                                                   Value *V) {
186   Optional<unsigned> GVN = Candidate->getGVN(V);
187   assert(GVN.hasValue() && "No GVN for incoming value");
188   Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
189   Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
190   Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
191   return FoundValueOpt.getValueOr(nullptr);
192 }
193 
194 BasicBlock *
195 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
196                                            BasicBlock *BB) {
197   Instruction *FirstNonPHI = BB->getFirstNonPHI();
198   assert(FirstNonPHI && "block is empty?");
199   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
200   if (!CorrespondingVal)
201     return nullptr;
202   BasicBlock *CorrespondingBlock =
203       cast<Instruction>(CorrespondingVal)->getParent();
204   return CorrespondingBlock;
205 }
206 
207 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
208 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
209 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
210 /// when PHINodes are included in outlined regions.
211 ///
212 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
213 /// checked.
214 /// \param Find - The successor block to be replaced.
215 /// \param Replace - The new succesor block to branch to.
216 /// \param Included - The set of blocks about to be outlined.
217 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
218                                       BasicBlock *Replace,
219                                       DenseSet<BasicBlock *> &Included) {
220   for (PHINode &PN : PHIBlock->phis()) {
221     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
222          ++Idx) {
223       // Check if the incoming block is included in the set of blocks being
224       // outlined.
225       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
226       if (!Included.contains(Incoming))
227         continue;
228 
229       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
230       assert(BI && "Not a branch instruction?");
231       // Look over the branching instructions into this block to see if we
232       // used to branch to Find in this outlined block.
233       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
234            Succ++) {
235         // If we have found the block to replace, we do so here.
236         if (BI->getSuccessor(Succ) != Find)
237           continue;
238         BI->setSuccessor(Succ, Replace);
239       }
240     }
241   }
242 }
243 
244 
245 void OutlinableRegion::splitCandidate() {
246   assert(!CandidateSplit && "Candidate already split!");
247 
248   Instruction *BackInst = Candidate->backInstruction();
249 
250   Instruction *EndInst = nullptr;
251   // Check whether the last instruction is a terminator, if it is, we do
252   // not split on the following instruction. We leave the block as it is.  We
253   // also check that this is not the last instruction in the Module, otherwise
254   // the check for whether the current following instruction matches the
255   // previously recorded instruction will be incorrect.
256   if (!BackInst->isTerminator() ||
257       BackInst->getParent() != &BackInst->getFunction()->back()) {
258     EndInst = Candidate->end()->Inst;
259     assert(EndInst && "Expected an end instruction?");
260   }
261 
262   // We check if the current instruction following the last instruction in the
263   // region is the same as the recorded instruction following the last
264   // instruction. If they do not match, there could be problems in rewriting
265   // the program after outlining, so we ignore it.
266   if (!BackInst->isTerminator() &&
267       EndInst != BackInst->getNextNonDebugInstruction())
268     return;
269 
270   Instruction *StartInst = (*Candidate->begin()).Inst;
271   assert(StartInst && "Expected a start instruction?");
272   StartBB = StartInst->getParent();
273   PrevBB = StartBB;
274 
275   DenseSet<BasicBlock *> BBSet;
276   Candidate->getBasicBlocks(BBSet);
277 
278   // We iterate over the instructions in the region, if we find a PHINode, we
279   // check if there are predecessors outside of the region, if there are,
280   // we ignore this region since we are unable to handle the severing of the
281   // phi node right now.
282 
283   // TODO: Handle extraneous inputs for PHINodes through variable number of
284   // inputs, similar to how outputs are handled.
285   BasicBlock::iterator It = StartInst->getIterator();
286   EndBB = BackInst->getParent();
287   BasicBlock *IBlock;
288   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
289   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
290     unsigned NumPredsOutsideRegion = 0;
291     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
292       if (!BBSet.contains(PN->getIncomingBlock(i))) {
293         ++NumPredsOutsideRegion;
294         continue;
295       }
296 
297       // We must consider the case there the incoming block to the PHINode is
298       // the same as the final block of the OutlinableRegion.  If this is the
299       // case, the branch from this block must also be outlined to be valid.
300       IBlock = PN->getIncomingBlock(i);
301       if (IBlock == EndBB && EndBBTermAndBackInstDifferent)
302         ++NumPredsOutsideRegion;
303     }
304 
305     if (NumPredsOutsideRegion > 1)
306       return;
307 
308     It++;
309   }
310 
311   // If the region starts with a PHINode, but is not the initial instruction of
312   // the BasicBlock, we ignore this region for now.
313   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
314     return;
315 
316   // If the region ends with a PHINode, but does not contain all of the phi node
317   // instructions of the region, we ignore it for now.
318   if (isa<PHINode>(BackInst) &&
319       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
320     return;
321 
322   // The basic block gets split like so:
323   // block:                 block:
324   //   inst1                  inst1
325   //   inst2                  inst2
326   //   region1               br block_to_outline
327   //   region2              block_to_outline:
328   //   region3          ->    region1
329   //   region4                region2
330   //   inst3                  region3
331   //   inst4                  region4
332   //                          br block_after_outline
333   //                        block_after_outline:
334   //                          inst3
335   //                          inst4
336 
337   std::string OriginalName = PrevBB->getName().str();
338 
339   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
340   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
341 
342   CandidateSplit = true;
343   if (!BackInst->isTerminator()) {
344     EndBB = EndInst->getParent();
345     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
346     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
347     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
348   } else {
349     EndBB = BackInst->getParent();
350     EndsInBranch = true;
351     FollowBB = nullptr;
352   }
353 
354   // Refind the basic block set.
355   BBSet.clear();
356   Candidate->getBasicBlocks(BBSet);
357   // For the phi nodes in the new starting basic block of the region, we
358   // reassign the targets of the basic blocks branching instructions.
359   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
360   if (FollowBB)
361     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
362 }
363 
364 void OutlinableRegion::reattachCandidate() {
365   assert(CandidateSplit && "Candidate is not split!");
366 
367   // The basic block gets reattached like so:
368   // block:                        block:
369   //   inst1                         inst1
370   //   inst2                         inst2
371   //   br block_to_outline           region1
372   // block_to_outline:        ->     region2
373   //   region1                       region3
374   //   region2                       region4
375   //   region3                       inst3
376   //   region4                       inst4
377   //   br block_after_outline
378   // block_after_outline:
379   //   inst3
380   //   inst4
381   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
382 
383   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
384   PrevBB->getTerminator()->eraseFromParent();
385 
386   // If we reattaching after outlining, we iterate over the phi nodes to
387   // the initial block, and reassign the branch instructions of the incoming
388   // blocks to the block we are remerging into.
389   if (!ExtractedFunction) {
390     DenseSet<BasicBlock *> BBSet;
391     Candidate->getBasicBlocks(BBSet);
392 
393     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
394     if (!EndsInBranch)
395       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
396   }
397 
398   moveBBContents(*StartBB, *PrevBB);
399 
400   BasicBlock *PlacementBB = PrevBB;
401   if (StartBB != EndBB)
402     PlacementBB = EndBB;
403   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
404     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
405     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
406     PlacementBB->getTerminator()->eraseFromParent();
407     moveBBContents(*FollowBB, *PlacementBB);
408     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
409     FollowBB->eraseFromParent();
410   }
411 
412   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
413   StartBB->eraseFromParent();
414 
415   // Make sure to save changes back to the StartBB.
416   StartBB = PrevBB;
417   EndBB = nullptr;
418   PrevBB = nullptr;
419   FollowBB = nullptr;
420 
421   CandidateSplit = false;
422 }
423 
424 /// Find whether \p V matches the Constants previously found for the \p GVN.
425 ///
426 /// \param V - The value to check for consistency.
427 /// \param GVN - The global value number assigned to \p V.
428 /// \param GVNToConstant - The mapping of global value number to Constants.
429 /// \returns true if the Value matches the Constant mapped to by V and false if
430 /// it \p V is a Constant but does not match.
431 /// \returns None if \p V is not a Constant.
432 static Optional<bool>
433 constantMatches(Value *V, unsigned GVN,
434                 DenseMap<unsigned, Constant *> &GVNToConstant) {
435   // See if we have a constants
436   Constant *CST = dyn_cast<Constant>(V);
437   if (!CST)
438     return None;
439 
440   // Holds a mapping from a global value number to a Constant.
441   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
442   bool Inserted;
443 
444 
445   // If we have a constant, try to make a new entry in the GVNToConstant.
446   std::tie(GVNToConstantIt, Inserted) =
447       GVNToConstant.insert(std::make_pair(GVN, CST));
448   // If it was found and is not equal, it is not the same. We do not
449   // handle this case yet, and exit early.
450   if (Inserted || (GVNToConstantIt->second == CST))
451     return true;
452 
453   return false;
454 }
455 
456 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
457   InstructionCost Benefit = 0;
458 
459   // Estimate the benefit of outlining a specific sections of the program.  We
460   // delegate mostly this task to the TargetTransformInfo so that if the target
461   // has specific changes, we can have a more accurate estimate.
462 
463   // However, getInstructionCost delegates the code size calculation for
464   // arithmetic instructions to getArithmeticInstrCost in
465   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
466   // code size for a division and remainder instruction to be equal to 4, and
467   // everything else to 1.  This is not an accurate representation of the
468   // division instruction for targets that have a native division instruction.
469   // To be overly conservative, we only add 1 to the number of instructions for
470   // each division instruction.
471   for (IRInstructionData &ID : *Candidate) {
472     Instruction *I = ID.Inst;
473     switch (I->getOpcode()) {
474     case Instruction::FDiv:
475     case Instruction::FRem:
476     case Instruction::SDiv:
477     case Instruction::SRem:
478     case Instruction::UDiv:
479     case Instruction::URem:
480       Benefit += 1;
481       break;
482     default:
483       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
484       break;
485     }
486   }
487 
488   return Benefit;
489 }
490 
491 /// Check the \p OutputMappings structure for value \p Input, if it exists
492 /// it has been used as an output for outlining, and has been renamed, and we
493 /// return the new value, otherwise, we return the same value.
494 ///
495 /// \param OutputMappings [in] - The mapping of values to their renamed value
496 /// after being used as an output for an outlined region.
497 /// \param Input [in] - The value to find the remapped value of, if it exists.
498 /// \return The remapped value if it has been renamed, and the same value if has
499 /// not.
500 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
501                                 Value *Input) {
502   DenseMap<Value *, Value *>::const_iterator OutputMapping =
503       OutputMappings.find(Input);
504   if (OutputMapping != OutputMappings.end())
505     return OutputMapping->second;
506   return Input;
507 }
508 
509 /// Find whether \p Region matches the global value numbering to Constant
510 /// mapping found so far.
511 ///
512 /// \param Region - The OutlinableRegion we are checking for constants
513 /// \param GVNToConstant - The mapping of global value number to Constants.
514 /// \param NotSame - The set of global value numbers that do not have the same
515 /// constant in each region.
516 /// \returns true if all Constants are the same in every use of a Constant in \p
517 /// Region and false if not
518 static bool
519 collectRegionsConstants(OutlinableRegion &Region,
520                         DenseMap<unsigned, Constant *> &GVNToConstant,
521                         DenseSet<unsigned> &NotSame) {
522   bool ConstantsTheSame = true;
523 
524   IRSimilarityCandidate &C = *Region.Candidate;
525   for (IRInstructionData &ID : C) {
526 
527     // Iterate over the operands in an instruction. If the global value number,
528     // assigned by the IRSimilarityCandidate, has been seen before, we check if
529     // the the number has been found to be not the same value in each instance.
530     for (Value *V : ID.OperVals) {
531       Optional<unsigned> GVNOpt = C.getGVN(V);
532       assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
533       unsigned GVN = GVNOpt.getValue();
534 
535       // Check if this global value has been found to not be the same already.
536       if (NotSame.contains(GVN)) {
537         if (isa<Constant>(V))
538           ConstantsTheSame = false;
539         continue;
540       }
541 
542       // If it has been the same so far, we check the value for if the
543       // associated Constant value match the previous instances of the same
544       // global value number.  If the global value does not map to a Constant,
545       // it is considered to not be the same value.
546       Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
547       if (ConstantMatches.hasValue()) {
548         if (ConstantMatches.getValue())
549           continue;
550         else
551           ConstantsTheSame = false;
552       }
553 
554       // While this value is a register, it might not have been previously,
555       // make sure we don't already have a constant mapped to this global value
556       // number.
557       if (GVNToConstant.find(GVN) != GVNToConstant.end())
558         ConstantsTheSame = false;
559 
560       NotSame.insert(GVN);
561     }
562   }
563 
564   return ConstantsTheSame;
565 }
566 
567 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
568   DenseMap<unsigned, Constant *> GVNToConstant;
569 
570   for (OutlinableRegion *Region : Regions)
571     collectRegionsConstants(*Region, GVNToConstant, NotSame);
572 }
573 
574 void OutlinableGroup::collectGVNStoreSets(Module &M) {
575   for (OutlinableRegion *OS : Regions)
576     OutputGVNCombinations.insert(OS->GVNStores);
577 
578   // We are adding an extracted argument to decide between which output path
579   // to use in the basic block.  It is used in a switch statement and only
580   // needs to be an integer.
581   if (OutputGVNCombinations.size() > 1)
582     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
583 }
584 
585 /// Get the subprogram if it exists for one of the outlined regions.
586 ///
587 /// \param [in] Group - The set of regions to find a subprogram for.
588 /// \returns the subprogram if it exists, or nullptr.
589 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
590   for (OutlinableRegion *OS : Group.Regions)
591     if (Function *F = OS->Call->getFunction())
592       if (DISubprogram *SP = F->getSubprogram())
593         return SP;
594 
595   return nullptr;
596 }
597 
598 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
599                                      unsigned FunctionNameSuffix) {
600   assert(!Group.OutlinedFunction && "Function is already defined!");
601 
602   Type *RetTy = Type::getVoidTy(M.getContext());
603   // All extracted functions _should_ have the same return type at this point
604   // since the similarity identifier ensures that all branches outside of the
605   // region occur in the same place.
606 
607   // NOTE: Should we ever move to the model that uses a switch at every point
608   // needed, meaning that we could branch within the region or out, it is
609   // possible that we will need to switch to using the most general case all of
610   // the time.
611   for (OutlinableRegion *R : Group.Regions) {
612     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
613     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
614         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
615       RetTy = ExtractedFuncType;
616   }
617 
618   Group.OutlinedFunctionType = FunctionType::get(
619       RetTy, Group.ArgumentTypes, false);
620 
621   // These functions will only be called from within the same module, so
622   // we can set an internal linkage.
623   Group.OutlinedFunction = Function::Create(
624       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
625       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
626 
627   // Transfer the swifterr attribute to the correct function parameter.
628   if (Group.SwiftErrorArgument.hasValue())
629     Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
630                                          Attribute::SwiftError);
631 
632   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
633   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
634 
635   // If there's a DISubprogram associated with this outlined function, then
636   // emit debug info for the outlined function.
637   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
638     Function *F = Group.OutlinedFunction;
639     // We have a DISubprogram. Get its DICompileUnit.
640     DICompileUnit *CU = SP->getUnit();
641     DIBuilder DB(M, true, CU);
642     DIFile *Unit = SP->getFile();
643     Mangler Mg;
644     // Get the mangled name of the function for the linkage name.
645     std::string Dummy;
646     llvm::raw_string_ostream MangledNameStream(Dummy);
647     Mg.getNameWithPrefix(MangledNameStream, F, false);
648 
649     DISubprogram *OutlinedSP = DB.createFunction(
650         Unit /* Context */, F->getName(), MangledNameStream.str(),
651         Unit /* File */,
652         0 /* Line 0 is reserved for compiler-generated code. */,
653         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
654         0, /* Line 0 is reserved for compiler-generated code. */
655         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
656         /* Outlined code is optimized code by definition. */
657         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
658 
659     // Don't add any new variables to the subprogram.
660     DB.finalizeSubprogram(OutlinedSP);
661 
662     // Attach subprogram to the function.
663     F->setSubprogram(OutlinedSP);
664     // We're done with the DIBuilder.
665     DB.finalize();
666   }
667 
668   return Group.OutlinedFunction;
669 }
670 
671 /// Move each BasicBlock in \p Old to \p New.
672 ///
673 /// \param [in] Old - The function to move the basic blocks from.
674 /// \param [in] New - The function to move the basic blocks to.
675 /// \param [out] NewEnds - The return blocks of the new overall function.
676 static void moveFunctionData(Function &Old, Function &New,
677                              DenseMap<Value *, BasicBlock *> &NewEnds) {
678   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
679     CurrBB.removeFromParent();
680     CurrBB.insertInto(&New);
681     Instruction *I = CurrBB.getTerminator();
682 
683     // For each block we find a return instruction is, it is a potential exit
684     // path for the function.  We keep track of each block based on the return
685     // value here.
686     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
687       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
688 
689     std::vector<Instruction *> DebugInsts;
690 
691     for (Instruction &Val : CurrBB) {
692       // We must handle the scoping of called functions differently than
693       // other outlined instructions.
694       if (!isa<CallInst>(&Val)) {
695         // Remove the debug information for outlined functions.
696         Val.setDebugLoc(DebugLoc());
697 
698         // Loop info metadata may contain line locations. Update them to have no
699         // value in the new subprogram since the outlined code could be from
700         // several locations.
701         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
702           if (DISubprogram *SP = New.getSubprogram())
703             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
704               return DILocation::get(New.getContext(), Loc->getLine(),
705                                      Loc->getColumn(), SP, nullptr);
706           return MD;
707         };
708         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
709         continue;
710       }
711 
712       // From this point we are only handling call instructions.
713       CallInst *CI = cast<CallInst>(&Val);
714 
715       // We add any debug statements here, to be removed after.  Since the
716       // instructions originate from many different locations in the program,
717       // it will cause incorrect reporting from a debugger if we keep the
718       // same debug instructions.
719       if (isa<DbgInfoIntrinsic>(CI)) {
720         DebugInsts.push_back(&Val);
721         continue;
722       }
723 
724       // Edit the scope of called functions inside of outlined functions.
725       if (DISubprogram *SP = New.getSubprogram()) {
726         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
727         Val.setDebugLoc(DI);
728       }
729     }
730 
731     for (Instruction *I : DebugInsts)
732       I->eraseFromParent();
733   }
734 }
735 
736 /// Find the the constants that will need to be lifted into arguments
737 /// as they are not the same in each instance of the region.
738 ///
739 /// \param [in] C - The IRSimilarityCandidate containing the region we are
740 /// analyzing.
741 /// \param [in] NotSame - The set of global value numbers that do not have a
742 /// single Constant across all OutlinableRegions similar to \p C.
743 /// \param [out] Inputs - The list containing the global value numbers of the
744 /// arguments needed for the region of code.
745 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
746                           std::vector<unsigned> &Inputs) {
747   DenseSet<unsigned> Seen;
748   // Iterate over the instructions, and find what constants will need to be
749   // extracted into arguments.
750   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
751        IDIt != EndIDIt; IDIt++) {
752     for (Value *V : (*IDIt).OperVals) {
753       // Since these are stored before any outlining, they will be in the
754       // global value numbering.
755       unsigned GVN = C.getGVN(V).getValue();
756       if (isa<Constant>(V))
757         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
758           Inputs.push_back(GVN);
759           Seen.insert(GVN);
760         }
761     }
762   }
763 }
764 
765 /// Find the GVN for the inputs that have been found by the CodeExtractor.
766 ///
767 /// \param [in] C - The IRSimilarityCandidate containing the region we are
768 /// analyzing.
769 /// \param [in] CurrentInputs - The set of inputs found by the
770 /// CodeExtractor.
771 /// \param [in] OutputMappings - The mapping of values that have been replaced
772 /// by a new output value.
773 /// \param [out] EndInputNumbers - The global value numbers for the extracted
774 /// arguments.
775 static void mapInputsToGVNs(IRSimilarityCandidate &C,
776                             SetVector<Value *> &CurrentInputs,
777                             const DenseMap<Value *, Value *> &OutputMappings,
778                             std::vector<unsigned> &EndInputNumbers) {
779   // Get the Global Value Number for each input.  We check if the Value has been
780   // replaced by a different value at output, and use the original value before
781   // replacement.
782   for (Value *Input : CurrentInputs) {
783     assert(Input && "Have a nullptr as an input");
784     if (OutputMappings.find(Input) != OutputMappings.end())
785       Input = OutputMappings.find(Input)->second;
786     assert(C.getGVN(Input).hasValue() &&
787            "Could not find a numbering for the given input");
788     EndInputNumbers.push_back(C.getGVN(Input).getValue());
789   }
790 }
791 
792 /// Find the original value for the \p ArgInput values if any one of them was
793 /// replaced during a previous extraction.
794 ///
795 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
796 /// \param [in] OutputMappings - The mapping of values that have been replaced
797 /// by a new output value.
798 /// \param [out] RemappedArgInputs - The remapped values according to
799 /// \p OutputMappings that will be extracted.
800 static void
801 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
802                      const DenseMap<Value *, Value *> &OutputMappings,
803                      SetVector<Value *> &RemappedArgInputs) {
804   // Get the global value number for each input that will be extracted as an
805   // argument by the code extractor, remapping if needed for reloaded values.
806   for (Value *Input : ArgInputs) {
807     if (OutputMappings.find(Input) != OutputMappings.end())
808       Input = OutputMappings.find(Input)->second;
809     RemappedArgInputs.insert(Input);
810   }
811 }
812 
813 /// Find the input GVNs and the output values for a region of Instructions.
814 /// Using the code extractor, we collect the inputs to the extracted function.
815 ///
816 /// The \p Region can be identified as needing to be ignored in this function.
817 /// It should be checked whether it should be ignored after a call to this
818 /// function.
819 ///
820 /// \param [in,out] Region - The region of code to be analyzed.
821 /// \param [out] InputGVNs - The global value numbers for the extracted
822 /// arguments.
823 /// \param [in] NotSame - The global value numbers in the region that do not
824 /// have the same constant value in the regions structurally similar to
825 /// \p Region.
826 /// \param [in] OutputMappings - The mapping of values that have been replaced
827 /// by a new output value after extraction.
828 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
829 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
830 /// as outputs.
831 static void getCodeExtractorArguments(
832     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
833     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
834     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
835   IRSimilarityCandidate &C = *Region.Candidate;
836 
837   // OverallInputs are the inputs to the region found by the CodeExtractor,
838   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
839   // allocas of values whose lifetimes are contained completely within the
840   // outlined region. PremappedInputs are the arguments found by the
841   // CodeExtractor, removing conditions such as sunken allocas, but that
842   // may need to be remapped due to the extracted output values replacing
843   // the original values. We use DummyOutputs for this first run of finding
844   // inputs and outputs since the outputs could change during findAllocas,
845   // the correct set of extracted outputs will be in the final Outputs ValueSet.
846   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
847       DummyOutputs;
848 
849   // Use the code extractor to get the inputs and outputs, without sunken
850   // allocas or removing llvm.assumes.
851   CodeExtractor *CE = Region.CE;
852   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
853   assert(Region.StartBB && "Region must have a start BasicBlock!");
854   Function *OrigF = Region.StartBB->getParent();
855   CodeExtractorAnalysisCache CEAC(*OrigF);
856   BasicBlock *Dummy = nullptr;
857 
858   // The region may be ineligible due to VarArgs in the parent function. In this
859   // case we ignore the region.
860   if (!CE->isEligible()) {
861     Region.IgnoreRegion = true;
862     return;
863   }
864 
865   // Find if any values are going to be sunk into the function when extracted
866   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
867   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
868 
869   // TODO: Support regions with sunken allocas: values whose lifetimes are
870   // contained completely within the outlined region.  These are not guaranteed
871   // to be the same in every region, so we must elevate them all to arguments
872   // when they appear.  If these values are not equal, it means there is some
873   // Input in OverallInputs that was removed for ArgInputs.
874   if (OverallInputs.size() != PremappedInputs.size()) {
875     Region.IgnoreRegion = true;
876     return;
877   }
878 
879   findConstants(C, NotSame, InputGVNs);
880 
881   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
882 
883   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
884                        ArgInputs);
885 
886   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
887   // we need to make sure they are in a deterministic order.
888   stable_sort(InputGVNs);
889 }
890 
891 /// Look over the inputs and map each input argument to an argument in the
892 /// overall function for the OutlinableRegions.  This creates a way to replace
893 /// the arguments of the extracted function with the arguments of the new
894 /// overall function.
895 ///
896 /// \param [in,out] Region - The region of code to be analyzed.
897 /// \param [in] InputGVNs - The global value numbering of the input values
898 /// collected.
899 /// \param [in] ArgInputs - The values of the arguments to the extracted
900 /// function.
901 static void
902 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
903                                         std::vector<unsigned> &InputGVNs,
904                                         SetVector<Value *> &ArgInputs) {
905 
906   IRSimilarityCandidate &C = *Region.Candidate;
907   OutlinableGroup &Group = *Region.Parent;
908 
909   // This counts the argument number in the overall function.
910   unsigned TypeIndex = 0;
911 
912   // This counts the argument number in the extracted function.
913   unsigned OriginalIndex = 0;
914 
915   // Find the mapping of the extracted arguments to the arguments for the
916   // overall function. Since there may be extra arguments in the overall
917   // function to account for the extracted constants, we have two different
918   // counters as we find extracted arguments, and as we come across overall
919   // arguments.
920 
921   // Additionally, in our first pass, for the first extracted function,
922   // we find argument locations for the canonical value numbering.  This
923   // numbering overrides any discovered location for the extracted code.
924   for (unsigned InputVal : InputGVNs) {
925     Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
926     assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?");
927     unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
928 
929     Optional<Value *> InputOpt = C.fromGVN(InputVal);
930     assert(InputOpt.hasValue() && "Global value number not found?");
931     Value *Input = InputOpt.getValue();
932 
933     DenseMap<unsigned, unsigned>::iterator AggArgIt =
934         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
935 
936     if (!Group.InputTypesSet) {
937       Group.ArgumentTypes.push_back(Input->getType());
938       // If the input value has a swifterr attribute, make sure to mark the
939       // argument in the overall function.
940       if (Input->isSwiftError()) {
941         assert(
942             !Group.SwiftErrorArgument.hasValue() &&
943             "Argument already marked with swifterr for this OutlinableGroup!");
944         Group.SwiftErrorArgument = TypeIndex;
945       }
946     }
947 
948     // Check if we have a constant. If we do add it to the overall argument
949     // number to Constant map for the region, and continue to the next input.
950     if (Constant *CST = dyn_cast<Constant>(Input)) {
951       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
952         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
953       else {
954         Group.CanonicalNumberToAggArg.insert(
955             std::make_pair(CanonicalNumber, TypeIndex));
956         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
957       }
958       TypeIndex++;
959       continue;
960     }
961 
962     // It is not a constant, we create the mapping from extracted argument list
963     // to the overall argument list, using the canonical location, if it exists.
964     assert(ArgInputs.count(Input) && "Input cannot be found!");
965 
966     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
967       if (OriginalIndex != AggArgIt->second)
968         Region.ChangedArgOrder = true;
969       Region.ExtractedArgToAgg.insert(
970           std::make_pair(OriginalIndex, AggArgIt->second));
971       Region.AggArgToExtracted.insert(
972           std::make_pair(AggArgIt->second, OriginalIndex));
973     } else {
974       Group.CanonicalNumberToAggArg.insert(
975           std::make_pair(CanonicalNumber, TypeIndex));
976       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
977       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
978     }
979     OriginalIndex++;
980     TypeIndex++;
981   }
982 
983   // If the function type definitions for the OutlinableGroup holding the region
984   // have not been set, set the length of the inputs here.  We should have the
985   // same inputs for all of the different regions contained in the
986   // OutlinableGroup since they are all structurally similar to one another.
987   if (!Group.InputTypesSet) {
988     Group.NumAggregateInputs = TypeIndex;
989     Group.InputTypesSet = true;
990   }
991 
992   Region.NumExtractedInputs = OriginalIndex;
993 }
994 
995 /// Check if the \p V has any uses outside of the region other than \p PN.
996 ///
997 /// \param V [in] - The value to check.
998 /// \param PHILoc [in] - The location in the PHINode of \p V.
999 /// \param PN [in] - The PHINode using \p V.
1000 /// \param Exits [in] - The potential blocks we exit to from the outlined
1001 /// region.
1002 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1003 /// \returns true if \p V has any use soutside its region other than \p PN.
1004 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1005                             SmallPtrSet<BasicBlock *, 1> &Exits,
1006                             DenseSet<BasicBlock *> &BlocksInRegion) {
1007   // We check to see if the value is used by the PHINode from some other
1008   // predecessor not included in the region.  If it is, we make sure
1009   // to keep it as an output.
1010   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1011              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1012                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1013                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1014              }))
1015     return true;
1016 
1017   // Check if the value is used by any other instructions outside the region.
1018   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1019     Instruction *I = dyn_cast<Instruction>(U);
1020     if (!I)
1021       return false;
1022 
1023     // If the use of the item is inside the region, we skip it.  Uses
1024     // inside the region give us useful information about how the item could be
1025     // used as an output.
1026     BasicBlock *Parent = I->getParent();
1027     if (BlocksInRegion.contains(Parent))
1028       return false;
1029 
1030     // If it's not a PHINode then we definitely know the use matters.  This
1031     // output value will not completely combined with another item in a PHINode
1032     // as it is directly reference by another non-phi instruction
1033     if (!isa<PHINode>(I))
1034       return true;
1035 
1036     // If we have a PHINode outside one of the exit locations, then it
1037     // can be considered an outside use as well.  If there is a PHINode
1038     // contained in the Exit where this values use matters, it will be
1039     // caught when we analyze that PHINode.
1040     if (!Exits.contains(Parent))
1041       return true;
1042 
1043     return false;
1044   });
1045 }
1046 
1047 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1048 /// considered outputs. A PHINodes is an output when more than one incoming
1049 /// value has been marked by the CodeExtractor as an output.
1050 ///
1051 /// \param CurrentExitFromRegion [in] - The block to analyze.
1052 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1053 /// region.
1054 /// \param RegionBlocks [in] - The basic blocks in the region.
1055 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1056 /// PHINodes to this as we find that they replace output values.
1057 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1058 /// totally replaced  by a PHINode.
1059 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1060 /// in PHINodes, but have other uses, and should still be considered outputs.
1061 static void analyzeExitPHIsForOutputUses(
1062     BasicBlock *CurrentExitFromRegion,
1063     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1064     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1065     DenseSet<Value *> &OutputsReplacedByPHINode,
1066     DenseSet<Value *> &OutputsWithNonPhiUses) {
1067   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1068     // Find all incoming values from the outlining region.
1069     SmallVector<unsigned, 2> IncomingVals;
1070     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1071       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1072         IncomingVals.push_back(I);
1073 
1074     // Do not process PHI if there are no predecessors from region.
1075     unsigned NumIncomingVals = IncomingVals.size();
1076     if (NumIncomingVals == 0)
1077       continue;
1078 
1079     // If there is one predecessor, we mark it as a value that needs to be kept
1080     // as an output.
1081     if (NumIncomingVals == 1) {
1082       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1083       OutputsWithNonPhiUses.insert(V);
1084       OutputsReplacedByPHINode.erase(V);
1085       continue;
1086     }
1087 
1088     // This PHINode will be used as an output value, so we add it to our list.
1089     Outputs.insert(&PN);
1090 
1091     // Not all of the incoming values should be ignored as other inputs and
1092     // outputs may have uses in outlined region.  If they have other uses
1093     // outside of the single PHINode we should not skip over it.
1094     for (unsigned Idx : IncomingVals) {
1095       Value *V = PN.getIncomingValue(Idx);
1096       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1097         OutputsWithNonPhiUses.insert(V);
1098         OutputsReplacedByPHINode.erase(V);
1099         continue;
1100       }
1101       if (!OutputsWithNonPhiUses.contains(V))
1102         OutputsReplacedByPHINode.insert(V);
1103     }
1104   }
1105 }
1106 
1107 // Represents the type for the unsigned number denoting the output number for
1108 // phi node, along with the canonical number for the exit block.
1109 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1110 // The list of canonical numbers for the incoming values to a PHINode.
1111 using CanonList = SmallVector<unsigned, 2>;
1112 // The pair type representing the set of canonical values being combined in the
1113 // PHINode, along with the location data for the PHINode.
1114 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1115 
1116 /// Encode \p PND as an integer for easy lookup based on the argument location,
1117 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1118 /// the values stored in the PHINode.
1119 ///
1120 /// \param PND - The data to hash.
1121 /// \returns The hash code of \p PND.
1122 static hash_code encodePHINodeData(PHINodeData &PND) {
1123   return llvm::hash_combine(
1124       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1125       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1126 }
1127 
1128 /// Create a special GVN for PHINodes that will be used outside of
1129 /// the region.  We create a hash code based on the Canonical number of the
1130 /// parent BasicBlock, the canonical numbering of the values stored in the
1131 /// PHINode and the aggregate argument location.  This is used to find whether
1132 /// this PHINode type has been given a canonical numbering already.  If not, we
1133 /// assign it a value and store it for later use.  The value is returned to
1134 /// identify different output schemes for the set of regions.
1135 ///
1136 /// \param Region - The region that \p PN is an output for.
1137 /// \param PN - The PHINode we are analyzing.
1138 /// \param Blocks - The blocks for the region we are analyzing.
1139 /// \param AggArgIdx - The argument \p PN will be stored into.
1140 /// \returns An optional holding the assigned canonical number, or None if
1141 /// there is some attribute of the PHINode blocking it from being used.
1142 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1143                                            PHINode *PN,
1144                                            DenseSet<BasicBlock *> &Blocks,
1145                                            unsigned AggArgIdx) {
1146   OutlinableGroup &Group = *Region.Parent;
1147   IRSimilarityCandidate &Cand = *Region.Candidate;
1148   BasicBlock *PHIBB = PN->getParent();
1149   CanonList PHIGVNs;
1150   Value *Incoming;
1151   BasicBlock *IncomingBlock;
1152   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1153     Incoming = PN->getIncomingValue(Idx);
1154     IncomingBlock = PN->getIncomingBlock(Idx);
1155     // If we cannot find a GVN, and the incoming block is included in the region
1156     // this means that the input to the PHINode is not included in the region we
1157     // are trying to analyze, meaning, that if it was outlined, we would be
1158     // adding an extra input.  We ignore this case for now, and so ignore the
1159     // region.
1160     Optional<unsigned> OGVN = Cand.getGVN(Incoming);
1161     if (!OGVN.hasValue() && (Blocks.find(IncomingBlock) != Blocks.end())) {
1162       Region.IgnoreRegion = true;
1163       return None;
1164     }
1165 
1166     // If the incoming block isn't in the region, we don't have to worry about
1167     // this incoming value.
1168     if (Blocks.find(IncomingBlock) == Blocks.end())
1169       continue;
1170 
1171     // Collect the canonical numbers of the values in the PHINode.
1172     unsigned GVN = OGVN.getValue();
1173     OGVN = Cand.getCanonicalNum(GVN);
1174     assert(OGVN.hasValue() && "No GVN found for incoming value?");
1175     PHIGVNs.push_back(*OGVN);
1176   }
1177 
1178   // Now that we have the GVNs for the incoming values, we are going to combine
1179   // them with the GVN of the incoming bock, and the output location of the
1180   // PHINode to generate a hash value representing this instance of the PHINode.
1181   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1182   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1183   Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1184   assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!");
1185 
1186   BBGVN = Cand.getCanonicalNum(BBGVN.getValue());
1187   assert(BBGVN.hasValue() &&
1188          "Could not find canonical number for the incoming block!");
1189   // Create a pair of the exit block canonical value, and the aggregate
1190   // argument location, connected to the canonical numbers stored in the
1191   // PHINode.
1192   PHINodeData TemporaryPair =
1193       std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs);
1194   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1195 
1196   // Look for and create a new entry in our connection between canonical
1197   // numbers for PHINodes, and the set of objects we just created.
1198   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1199   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1200     bool Inserted = false;
1201     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1202         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1203     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1204         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1205   }
1206 
1207   return GVNToPHIIt->second;
1208 }
1209 
1210 /// Create a mapping of the output arguments for the \p Region to the output
1211 /// arguments of the overall outlined function.
1212 ///
1213 /// \param [in,out] Region - The region of code to be analyzed.
1214 /// \param [in] Outputs - The values found by the code extractor.
1215 static void
1216 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
1217                                           SetVector<Value *> &Outputs) {
1218   OutlinableGroup &Group = *Region.Parent;
1219   IRSimilarityCandidate &C = *Region.Candidate;
1220 
1221   SmallVector<BasicBlock *> BE;
1222   DenseSet<BasicBlock *> BlocksInRegion;
1223   C.getBasicBlocks(BlocksInRegion, BE);
1224 
1225   // Find the exits to the region.
1226   SmallPtrSet<BasicBlock *, 1> Exits;
1227   for (BasicBlock *Block : BE)
1228     for (BasicBlock *Succ : successors(Block))
1229       if (!BlocksInRegion.contains(Succ))
1230         Exits.insert(Succ);
1231 
1232   // After determining which blocks exit to PHINodes, we add these PHINodes to
1233   // the set of outputs to be processed.  We also check the incoming values of
1234   // the PHINodes for whether they should no longer be considered outputs.
1235   DenseSet<Value *> OutputsReplacedByPHINode;
1236   DenseSet<Value *> OutputsWithNonPhiUses;
1237   for (BasicBlock *ExitBB : Exits)
1238     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1239                                  OutputsReplacedByPHINode,
1240                                  OutputsWithNonPhiUses);
1241 
1242   // This counts the argument number in the extracted function.
1243   unsigned OriginalIndex = Region.NumExtractedInputs;
1244 
1245   // This counts the argument number in the overall function.
1246   unsigned TypeIndex = Group.NumAggregateInputs;
1247   bool TypeFound;
1248   DenseSet<unsigned> AggArgsUsed;
1249 
1250   // Iterate over the output types and identify if there is an aggregate pointer
1251   // type whose base type matches the current output type. If there is, we mark
1252   // that we will use this output register for this value. If not we add another
1253   // type to the overall argument type list. We also store the GVNs used for
1254   // stores to identify which values will need to be moved into an special
1255   // block that holds the stores to the output registers.
1256   for (Value *Output : Outputs) {
1257     TypeFound = false;
1258     // We can do this since it is a result value, and will have a number
1259     // that is necessarily the same. BUT if in the future, the instructions
1260     // do not have to be in same order, but are functionally the same, we will
1261     // have to use a different scheme, as one-to-one correspondence is not
1262     // guaranteed.
1263     unsigned ArgumentSize = Group.ArgumentTypes.size();
1264 
1265     // If the output is combined in a PHINode, we make sure to skip over it.
1266     if (OutputsReplacedByPHINode.contains(Output))
1267       continue;
1268 
1269     unsigned AggArgIdx = 0;
1270     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1271       if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
1272         continue;
1273 
1274       if (AggArgsUsed.contains(Jdx))
1275         continue;
1276 
1277       TypeFound = true;
1278       AggArgsUsed.insert(Jdx);
1279       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1280       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1281       AggArgIdx = Jdx;
1282       break;
1283     }
1284 
1285     // We were unable to find an unused type in the output type set that matches
1286     // the output, so we add a pointer type to the argument types of the overall
1287     // function to handle this output and create a mapping to it.
1288     if (!TypeFound) {
1289       Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
1290       // Mark the new pointer type as the last value in the aggregate argument
1291       // list.
1292       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1293       AggArgsUsed.insert(ArgTypeIdx);
1294       Region.ExtractedArgToAgg.insert(
1295           std::make_pair(OriginalIndex, ArgTypeIdx));
1296       Region.AggArgToExtracted.insert(
1297           std::make_pair(ArgTypeIdx, OriginalIndex));
1298       AggArgIdx = ArgTypeIdx;
1299     }
1300 
1301     // TODO: Adapt to the extra input from the PHINode.
1302     PHINode *PN = dyn_cast<PHINode>(Output);
1303 
1304     Optional<unsigned> GVN;
1305     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1306       // Values outside the region can be combined into PHINode when we
1307       // have multiple exits. We collect both of these into a list to identify
1308       // which values are being used in the PHINode. Each list identifies a
1309       // different PHINode, and a different output. We store the PHINode as it's
1310       // own canonical value.  These canonical values are also dependent on the
1311       // output argument it is saved to.
1312 
1313       // If two PHINodes have the same canonical values, but different aggregate
1314       // argument locations, then they will have distinct Canonical Values.
1315       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1316       if (!GVN.hasValue())
1317         return;
1318     } else {
1319       // If we do not have a PHINode we use the global value numbering for the
1320       // output value, to find the canonical number to add to the set of stored
1321       // values.
1322       GVN = C.getGVN(Output);
1323       GVN = C.getCanonicalNum(*GVN);
1324     }
1325 
1326     // Each region has a potentially unique set of outputs.  We save which
1327     // values are output in a list of canonical values so we can differentiate
1328     // among the different store schemes.
1329     Region.GVNStores.push_back(*GVN);
1330 
1331     OriginalIndex++;
1332     TypeIndex++;
1333   }
1334 
1335   // We sort the stored values to make sure that we are not affected by analysis
1336   // order when determining what combination of items were stored.
1337   stable_sort(Region.GVNStores);
1338 }
1339 
1340 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1341                                       DenseSet<unsigned> &NotSame) {
1342   std::vector<unsigned> Inputs;
1343   SetVector<Value *> ArgInputs, Outputs;
1344 
1345   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1346                             Outputs);
1347 
1348   if (Region.IgnoreRegion)
1349     return;
1350 
1351   // Map the inputs found by the CodeExtractor to the arguments found for
1352   // the overall function.
1353   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1354 
1355   // Map the outputs found by the CodeExtractor to the arguments found for
1356   // the overall function.
1357   findExtractedOutputToOverallOutputMapping(Region, Outputs);
1358 }
1359 
1360 /// Replace the extracted function in the Region with a call to the overall
1361 /// function constructed from the deduplicated similar regions, replacing and
1362 /// remapping the values passed to the extracted function as arguments to the
1363 /// new arguments of the overall function.
1364 ///
1365 /// \param [in] M - The module to outline from.
1366 /// \param [in] Region - The regions of extracted code to be replaced with a new
1367 /// function.
1368 /// \returns a call instruction with the replaced function.
1369 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1370   std::vector<Value *> NewCallArgs;
1371   DenseMap<unsigned, unsigned>::iterator ArgPair;
1372 
1373   OutlinableGroup &Group = *Region.Parent;
1374   CallInst *Call = Region.Call;
1375   assert(Call && "Call to replace is nullptr?");
1376   Function *AggFunc = Group.OutlinedFunction;
1377   assert(AggFunc && "Function to replace with is nullptr?");
1378 
1379   // If the arguments are the same size, there are not values that need to be
1380   // made into an argument, the argument ordering has not been change, or
1381   // different output registers to handle.  We can simply replace the called
1382   // function in this case.
1383   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1384     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1385                       << *AggFunc << " with same number of arguments\n");
1386     Call->setCalledFunction(AggFunc);
1387     return Call;
1388   }
1389 
1390   // We have a different number of arguments than the new function, so
1391   // we need to use our previously mappings off extracted argument to overall
1392   // function argument, and constants to overall function argument to create the
1393   // new argument list.
1394   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1395 
1396     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1397         Group.OutputGVNCombinations.size() > 1) {
1398       // If we are on the last argument, and we need to differentiate between
1399       // output blocks, add an integer to the argument list to determine
1400       // what block to take
1401       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1402                         << Region.OutputBlockNum << "\n");
1403       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1404                                              Region.OutputBlockNum));
1405       continue;
1406     }
1407 
1408     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1409     if (ArgPair != Region.AggArgToExtracted.end()) {
1410       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1411       // If we found the mapping from the extracted function to the overall
1412       // function, we simply add it to the argument list.  We use the same
1413       // value, it just needs to honor the new order of arguments.
1414       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1415                         << *ArgumentValue << "\n");
1416       NewCallArgs.push_back(ArgumentValue);
1417       continue;
1418     }
1419 
1420     // If it is a constant, we simply add it to the argument list as a value.
1421     if (Region.AggArgToConstant.find(AggArgIdx) !=
1422         Region.AggArgToConstant.end()) {
1423       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1424       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1425                         << *CST << "\n");
1426       NewCallArgs.push_back(CST);
1427       continue;
1428     }
1429 
1430     // Add a nullptr value if the argument is not found in the extracted
1431     // function.  If we cannot find a value, it means it is not in use
1432     // for the region, so we should not pass anything to it.
1433     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1434     NewCallArgs.push_back(ConstantPointerNull::get(
1435         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1436   }
1437 
1438   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1439                     << *AggFunc << " with new set of arguments\n");
1440   // Create the new call instruction and erase the old one.
1441   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1442                           Call);
1443 
1444   // It is possible that the call to the outlined function is either the first
1445   // instruction is in the new block, the last instruction, or both.  If either
1446   // of these is the case, we need to make sure that we replace the instruction
1447   // in the IRInstructionData struct with the new call.
1448   CallInst *OldCall = Region.Call;
1449   if (Region.NewFront->Inst == OldCall)
1450     Region.NewFront->Inst = Call;
1451   if (Region.NewBack->Inst == OldCall)
1452     Region.NewBack->Inst = Call;
1453 
1454   // Transfer any debug information.
1455   Call->setDebugLoc(Region.Call->getDebugLoc());
1456   // Since our output may determine which branch we go to, we make sure to
1457   // propogate this new call value through the module.
1458   OldCall->replaceAllUsesWith(Call);
1459 
1460   // Remove the old instruction.
1461   OldCall->eraseFromParent();
1462   Region.Call = Call;
1463 
1464   // Make sure that the argument in the new function has the SwiftError
1465   // argument.
1466   if (Group.SwiftErrorArgument.hasValue())
1467     Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
1468                        Attribute::SwiftError);
1469 
1470   return Call;
1471 }
1472 
1473 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1474 /// for \p RetVal.
1475 ///
1476 /// \param Group - The OutlinableGroup containing the information about the
1477 /// overall outlined function.
1478 /// \param RetVal - The return value or exit option that we are currently
1479 /// evaluating.
1480 /// \returns The found or newly created BasicBlock to contain the needed
1481 /// PHINodes to be used as outputs.
1482 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1483   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1484       ReturnBlockForRetVal;
1485   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1486   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1487   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1488          "Could not find output value!");
1489   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1490 
1491   // Find if a PHIBlock exists for this return value already.  If it is
1492   // the first time we are analyzing this, we will not, so we record it.
1493   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1494   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1495     return PhiBlockForRetVal->second;
1496 
1497   // If we did not find a block, we create one, and insert it into the
1498   // overall function and record it.
1499   bool Inserted = false;
1500   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1501                                             ReturnBB->getParent());
1502   std::tie(PhiBlockForRetVal, Inserted) =
1503       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1504 
1505   // We find the predecessors of the return block in the newly created outlined
1506   // function in order to point them to the new PHIBlock rather than the already
1507   // existing return block.
1508   SmallVector<BranchInst *, 2> BranchesToChange;
1509   for (BasicBlock *Pred : predecessors(ReturnBB))
1510     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1511 
1512   // Now we mark the branch instructions found, and change the references of the
1513   // return block to the newly created PHIBlock.
1514   for (BranchInst *BI : BranchesToChange)
1515     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1516       if (BI->getSuccessor(Succ) != ReturnBB)
1517         continue;
1518       BI->setSuccessor(Succ, PHIBlock);
1519     }
1520 
1521   BranchInst::Create(ReturnBB, PHIBlock);
1522 
1523   return PhiBlockForRetVal->second;
1524 }
1525 
1526 /// For the function call now representing the \p Region, find the passed value
1527 /// to that call that represents Argument \p A at the call location if the
1528 /// call has already been replaced with a call to the  overall, aggregate
1529 /// function.
1530 ///
1531 /// \param A - The Argument to get the passed value for.
1532 /// \param Region - The extracted Region corresponding to the outlined function.
1533 /// \returns The Value representing \p A at the call site.
1534 static Value *
1535 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1536                                            const OutlinableRegion &Region) {
1537   // If we don't need to adjust the argument number at all (since the call
1538   // has already been replaced by a call to the overall outlined function)
1539   // we can just get the specified argument.
1540   return Region.Call->getArgOperand(A->getArgNo());
1541 }
1542 
1543 /// For the function call now representing the \p Region, find the passed value
1544 /// to that call that represents Argument \p A at the call location if the
1545 /// call has only been replaced by the call to the aggregate function.
1546 ///
1547 /// \param A - The Argument to get the passed value for.
1548 /// \param Region - The extracted Region corresponding to the outlined function.
1549 /// \returns The Value representing \p A at the call site.
1550 static Value *
1551 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1552                                            const OutlinableRegion &Region) {
1553   unsigned ArgNum = A->getArgNo();
1554 
1555   // If it is a constant, we can look at our mapping from when we created
1556   // the outputs to figure out what the constant value is.
1557   if (Region.AggArgToConstant.count(ArgNum))
1558     return Region.AggArgToConstant.find(ArgNum)->second;
1559 
1560   // If it is not a constant, and we are not looking at the overall function, we
1561   // need to adjust which argument we are looking at.
1562   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1563   return Region.Call->getArgOperand(ArgNum);
1564 }
1565 
1566 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1567 ///
1568 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1569 /// \param Region [in] - The OutlinableRegion containing \p PN.
1570 /// \param OutputMappings [in] - The mapping of output values from outlined
1571 /// region to their original values.
1572 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1573 /// \p PN paired with their incoming block.
1574 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1575 /// of \p Region rather than the overall function's call.
1576 static void findCanonNumsForPHI(
1577     PHINode *PN, OutlinableRegion &Region,
1578     const DenseMap<Value *, Value *> &OutputMappings,
1579     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1580     bool ReplacedWithOutlinedCall = true) {
1581   // Iterate over the incoming values.
1582   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1583     Value *IVal = PN->getIncomingValue(Idx);
1584     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1585     // If we have an argument as incoming value, we need to grab the passed
1586     // value from the call itself.
1587     if (Argument *A = dyn_cast<Argument>(IVal)) {
1588       if (ReplacedWithOutlinedCall)
1589         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1590       else
1591         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1592     }
1593 
1594     // Get the original value if it has been replaced by an output value.
1595     IVal = findOutputMapping(OutputMappings, IVal);
1596 
1597     // Find and add the canonical number for the incoming value.
1598     Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1599     assert(GVN.hasValue() && "No GVN for incoming value");
1600     Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1601     assert(CanonNum.hasValue() && "No Canonical Number for GVN");
1602     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1603   }
1604 }
1605 
1606 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1607 /// in order to condense the number of instructions added to the outlined
1608 /// function.
1609 ///
1610 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1611 /// \param Region [in] - The OutlinableRegion containing \p PN.
1612 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1613 /// \p PN in.
1614 /// \param OutputMappings [in] - The mapping of output values from outlined
1615 /// region to their original values.
1616 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1617 /// matched.
1618 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1619 static PHINode*
1620 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1621                        BasicBlock *OverallPhiBlock,
1622                        const DenseMap<Value *, Value *> &OutputMappings,
1623                        DenseSet<PHINode *> &UsedPHIs) {
1624   OutlinableGroup &Group = *Region.Parent;
1625 
1626 
1627   // A list of the canonical numbering assigned to each incoming value, paired
1628   // with the incoming block for the PHINode passed into this function.
1629   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1630 
1631   // We have to use the extracted function since we have merged this region into
1632   // the overall function yet.  We make sure to reassign the argument numbering
1633   // since it is possible that the argument ordering is different between the
1634   // functions.
1635   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1636                       /* ReplacedWithOutlinedCall = */ false);
1637 
1638   OutlinableRegion *FirstRegion = Group.Regions[0];
1639 
1640   // A list of the canonical numbering assigned to each incoming value, paired
1641   // with the incoming block for the PHINode that we are currently comparing
1642   // the passed PHINode to.
1643   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1644 
1645   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1646   // the uses of the PHINode we are searching for, with the found PHINode.
1647   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1648     // If this PHINode has already been matched to another PHINode to be merged,
1649     // we skip it.
1650     if (UsedPHIs.find(&CurrPN) != UsedPHIs.end())
1651       continue;
1652 
1653     CurrentCanonNums.clear();
1654     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1655                         /* ReplacedWithOutlinedCall = */ true);
1656 
1657     // If the list of incoming values is not the same length, then they cannot
1658     // match since there is not an analogue for each incoming value.
1659     if (PNCanonNums.size() != CurrentCanonNums.size())
1660       continue;
1661 
1662     bool FoundMatch = true;
1663 
1664     // We compare the canonical value for each incoming value in the passed
1665     // in PHINode to one already present in the outlined region.  If the
1666     // incoming values do not match, then the PHINodes do not match.
1667 
1668     // We also check to make sure that the incoming block matches as well by
1669     // finding the corresponding incoming block in the combined outlined region
1670     // for the current outlined region.
1671     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1672       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1673       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1674       if (ToCompareTo.first != ToAdd.first) {
1675         FoundMatch = false;
1676         break;
1677       }
1678 
1679       BasicBlock *CorrespondingBlock =
1680           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1681       assert(CorrespondingBlock && "Found block is nullptr");
1682       if (CorrespondingBlock != ToCompareTo.second) {
1683         FoundMatch = false;
1684         break;
1685       }
1686     }
1687 
1688     // If all incoming values and branches matched, then we can merge
1689     // into the found PHINode.
1690     if (FoundMatch) {
1691       UsedPHIs.insert(&CurrPN);
1692       return &CurrPN;
1693     }
1694   }
1695 
1696   // If we've made it here, it means we weren't able to replace the PHINode, so
1697   // we must insert it ourselves.
1698   PHINode *NewPN = cast<PHINode>(PN.clone());
1699   NewPN->insertBefore(&*OverallPhiBlock->begin());
1700   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1701        Idx++) {
1702     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1703     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1704 
1705     // Find corresponding basic block in the overall function for the incoming
1706     // block.
1707     BasicBlock *BlockToUse =
1708         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1709     NewPN->setIncomingBlock(Idx, BlockToUse);
1710 
1711     // If we have an argument we make sure we replace using the argument from
1712     // the correct function.
1713     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1714       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1715       NewPN->setIncomingValue(Idx, Val);
1716       continue;
1717     }
1718 
1719     // Find the corresponding value in the overall function.
1720     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1721     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1722     assert(Val && "Value is nullptr?");
1723     NewPN->setIncomingValue(Idx, Val);
1724   }
1725   return NewPN;
1726 }
1727 
1728 // Within an extracted function, replace the argument uses of the extracted
1729 // region with the arguments of the function for an OutlinableGroup.
1730 //
1731 /// \param [in] Region - The region of extracted code to be changed.
1732 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1733 /// region.
1734 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1735 /// function to define the overall outlined function for all the regions, or
1736 /// if we are operating on one of the following regions.
1737 static void
1738 replaceArgumentUses(OutlinableRegion &Region,
1739                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1740                     const DenseMap<Value *, Value *> &OutputMappings,
1741                     bool FirstFunction = false) {
1742   OutlinableGroup &Group = *Region.Parent;
1743   assert(Region.ExtractedFunction && "Region has no extracted function?");
1744 
1745   Function *DominatingFunction = Region.ExtractedFunction;
1746   if (FirstFunction)
1747     DominatingFunction = Group.OutlinedFunction;
1748   DominatorTree DT(*DominatingFunction);
1749   DenseSet<PHINode *> UsedPHIs;
1750 
1751   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1752        ArgIdx++) {
1753     assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
1754                Region.ExtractedArgToAgg.end() &&
1755            "No mapping from extracted to outlined?");
1756     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1757     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1758     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1759     // The argument is an input, so we can simply replace it with the overall
1760     // argument value
1761     if (ArgIdx < Region.NumExtractedInputs) {
1762       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1763                         << *Region.ExtractedFunction << " with " << *AggArg
1764                         << " in function " << *Group.OutlinedFunction << "\n");
1765       Arg->replaceAllUsesWith(AggArg);
1766       continue;
1767     }
1768 
1769     // If we are replacing an output, we place the store value in its own
1770     // block inside the overall function before replacing the use of the output
1771     // in the function.
1772     assert(Arg->hasOneUse() && "Output argument can only have one use");
1773     User *InstAsUser = Arg->user_back();
1774     assert(InstAsUser && "User is nullptr!");
1775 
1776     Instruction *I = cast<Instruction>(InstAsUser);
1777     BasicBlock *BB = I->getParent();
1778     SmallVector<BasicBlock *, 4> Descendants;
1779     DT.getDescendants(BB, Descendants);
1780     bool EdgeAdded = false;
1781     if (Descendants.size() == 0) {
1782       EdgeAdded = true;
1783       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1784       DT.getDescendants(BB, Descendants);
1785     }
1786 
1787     // Iterate over the following blocks, looking for return instructions,
1788     // if we find one, find the corresponding output block for the return value
1789     // and move our store instruction there.
1790     for (BasicBlock *DescendBB : Descendants) {
1791       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1792       if (!RI)
1793         continue;
1794       Value *RetVal = RI->getReturnValue();
1795       auto VBBIt = OutputBBs.find(RetVal);
1796       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1797 
1798       // If this is storing a PHINode, we must make sure it is included in the
1799       // overall function.
1800       StoreInst *SI = cast<StoreInst>(I);
1801 
1802       Value *ValueOperand = SI->getValueOperand();
1803 
1804       StoreInst *NewI = cast<StoreInst>(I->clone());
1805       NewI->setDebugLoc(DebugLoc());
1806       BasicBlock *OutputBB = VBBIt->second;
1807       OutputBB->getInstList().push_back(NewI);
1808       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1809                         << *OutputBB << "\n");
1810 
1811       // If this is storing a PHINode, we must make sure it is included in the
1812       // overall function.
1813       if (!isa<PHINode>(ValueOperand) ||
1814           Region.Candidate->getGVN(ValueOperand).hasValue()) {
1815         if (FirstFunction)
1816           continue;
1817         Value *CorrVal =
1818             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1819         assert(CorrVal && "Value is nullptr?");
1820         NewI->setOperand(0, CorrVal);
1821         continue;
1822       }
1823       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1824       // If it has a value, it was not split by the code extractor, which
1825       // is what we are looking for.
1826       if (Region.Candidate->getGVN(PN).hasValue())
1827         continue;
1828 
1829       // We record the parent block for the PHINode in the Region so that
1830       // we can exclude it from checks later on.
1831       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1832 
1833       // If this is the first function, we do not need to worry about mergiing
1834       // this with any other block in the overall outlined function, so we can
1835       // just continue.
1836       if (FirstFunction) {
1837         BasicBlock *PHIBlock = PN->getParent();
1838         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1839         continue;
1840       }
1841 
1842       // We look for the aggregate block that contains the PHINodes leading into
1843       // this exit path. If we can't find one, we create one.
1844       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1845 
1846       // For our PHINode, we find the combined canonical numbering, and
1847       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1848       // cannot, we copy the PHINode and move it into this new block.
1849       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1850                                               OutputMappings, UsedPHIs);
1851       NewI->setOperand(0, NewPN);
1852     }
1853 
1854     // If we added an edge for basic blocks without a predecessor, we remove it
1855     // here.
1856     if (EdgeAdded)
1857       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1858     I->eraseFromParent();
1859 
1860     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1861                       << *Region.ExtractedFunction << " with " << *AggArg
1862                       << " in function " << *Group.OutlinedFunction << "\n");
1863     Arg->replaceAllUsesWith(AggArg);
1864   }
1865 }
1866 
1867 /// Within an extracted function, replace the constants that need to be lifted
1868 /// into arguments with the actual argument.
1869 ///
1870 /// \param Region [in] - The region of extracted code to be changed.
1871 void replaceConstants(OutlinableRegion &Region) {
1872   OutlinableGroup &Group = *Region.Parent;
1873   // Iterate over the constants that need to be elevated into arguments
1874   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1875     unsigned AggArgIdx = Const.first;
1876     Function *OutlinedFunction = Group.OutlinedFunction;
1877     assert(OutlinedFunction && "Overall Function is not defined?");
1878     Constant *CST = Const.second;
1879     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1880     // Identify the argument it will be elevated to, and replace instances of
1881     // that constant in the function.
1882 
1883     // TODO: If in the future constants do not have one global value number,
1884     // i.e. a constant 1 could be mapped to several values, this check will
1885     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1886 
1887     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1888                       << " in function " << *OutlinedFunction << " with "
1889                       << *Arg << "\n");
1890     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1891       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1892         return I->getFunction() == OutlinedFunction;
1893       return false;
1894     });
1895   }
1896 }
1897 
1898 /// It is possible that there is a basic block that already performs the same
1899 /// stores. This returns a duplicate block, if it exists
1900 ///
1901 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1902 /// \param OutputStoreBBs [in] The existing output blocks.
1903 /// \returns an optional value with the number output block if there is a match.
1904 Optional<unsigned> findDuplicateOutputBlock(
1905     DenseMap<Value *, BasicBlock *> &OutputBBs,
1906     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1907 
1908   bool Mismatch = false;
1909   unsigned MatchingNum = 0;
1910   // We compare the new set output blocks to the other sets of output blocks.
1911   // If they are the same number, and have identical instructions, they are
1912   // considered to be the same.
1913   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1914     Mismatch = false;
1915     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1916       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1917           OutputBBs.find(VToB.first);
1918       if (OutputBBIt == OutputBBs.end()) {
1919         Mismatch = true;
1920         break;
1921       }
1922 
1923       BasicBlock *CompBB = VToB.second;
1924       BasicBlock *OutputBB = OutputBBIt->second;
1925       if (CompBB->size() - 1 != OutputBB->size()) {
1926         Mismatch = true;
1927         break;
1928       }
1929 
1930       BasicBlock::iterator NIt = OutputBB->begin();
1931       for (Instruction &I : *CompBB) {
1932         if (isa<BranchInst>(&I))
1933           continue;
1934 
1935         if (!I.isIdenticalTo(&(*NIt))) {
1936           Mismatch = true;
1937           break;
1938         }
1939 
1940         NIt++;
1941       }
1942     }
1943 
1944     if (!Mismatch)
1945       return MatchingNum;
1946 
1947     MatchingNum++;
1948   }
1949 
1950   return None;
1951 }
1952 
1953 /// Remove empty output blocks from the outlined region.
1954 ///
1955 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
1956 /// Region.
1957 /// \param Region - The OutlinableRegion we are analyzing.
1958 static bool
1959 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
1960                             OutlinableRegion &Region) {
1961   bool AllRemoved = true;
1962   Value *RetValueForBB;
1963   BasicBlock *NewBB;
1964   SmallVector<Value *, 4> ToRemove;
1965   // Iterate over the output blocks created in the outlined section.
1966   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
1967     RetValueForBB = VtoBB.first;
1968     NewBB = VtoBB.second;
1969 
1970     // If there are no instructions, we remove it from the module, and also
1971     // mark the value for removal from the return value to output block mapping.
1972     if (NewBB->size() == 0) {
1973       NewBB->eraseFromParent();
1974       ToRemove.push_back(RetValueForBB);
1975       continue;
1976     }
1977 
1978     // Mark that we could not remove all the blocks since they were not all
1979     // empty.
1980     AllRemoved = false;
1981   }
1982 
1983   // Remove the return value from the mapping.
1984   for (Value *V : ToRemove)
1985     BlocksToPrune.erase(V);
1986 
1987   // Mark the region as having the no output scheme.
1988   if (AllRemoved)
1989     Region.OutputBlockNum = -1;
1990 
1991   return AllRemoved;
1992 }
1993 
1994 /// For the outlined section, move needed the StoreInsts for the output
1995 /// registers into their own block. Then, determine if there is a duplicate
1996 /// output block already created.
1997 ///
1998 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
1999 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2000 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2001 /// placed in.
2002 /// \param [in] EndBBs - the final blocks of the extracted function.
2003 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2004 /// been replaced by a new output value.
2005 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2006 static void alignOutputBlockWithAggFunc(
2007     OutlinableGroup &OG, OutlinableRegion &Region,
2008     DenseMap<Value *, BasicBlock *> &OutputBBs,
2009     DenseMap<Value *, BasicBlock *> &EndBBs,
2010     const DenseMap<Value *, Value *> &OutputMappings,
2011     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2012   // If none of the output blocks have any instructions, this means that we do
2013   // not have to determine if it matches any of the other output schemes, and we
2014   // don't have to do anything else.
2015   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2016     return;
2017 
2018   // Determine is there is a duplicate set of blocks.
2019   Optional<unsigned> MatchingBB =
2020       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2021 
2022   // If there is, we remove the new output blocks.  If it does not,
2023   // we add it to our list of sets of output blocks.
2024   if (MatchingBB.hasValue()) {
2025     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2026                       << Region.ExtractedFunction << " to "
2027                       << MatchingBB.getValue());
2028 
2029     Region.OutputBlockNum = MatchingBB.getValue();
2030     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2031       VtoBB.second->eraseFromParent();
2032     return;
2033   }
2034 
2035   Region.OutputBlockNum = OutputStoreBBs.size();
2036 
2037   Value *RetValueForBB;
2038   BasicBlock *NewBB;
2039   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2040   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2041     RetValueForBB = VtoBB.first;
2042     NewBB = VtoBB.second;
2043     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2044         EndBBs.find(RetValueForBB);
2045     LLVM_DEBUG(dbgs() << "Create output block for region in"
2046                       << Region.ExtractedFunction << " to "
2047                       << *NewBB);
2048     BranchInst::Create(VBBIt->second, NewBB);
2049     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2050   }
2051 }
2052 
2053 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2054 /// before creating a basic block for each \p NewMap, and inserting into the new
2055 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2056 ///
2057 /// \param OldMap [in] - The mapping to base the new mapping off of.
2058 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2059 /// \param ParentFunc [in] - The function to put the new basic block in.
2060 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2061 /// by an index value.
2062 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2063                                        DenseMap<Value *, BasicBlock *> &NewMap,
2064                                        Function *ParentFunc, Twine BaseName) {
2065   unsigned Idx = 0;
2066   std::vector<Value *> SortedKeys;
2067 
2068   getSortedConstantKeys(SortedKeys, OldMap);
2069 
2070   for (Value *RetVal : SortedKeys) {
2071     BasicBlock *NewBB = BasicBlock::Create(
2072         ParentFunc->getContext(),
2073         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2074         ParentFunc);
2075     NewMap.insert(std::make_pair(RetVal, NewBB));
2076   }
2077 }
2078 
2079 /// Create the switch statement for outlined function to differentiate between
2080 /// all the output blocks.
2081 ///
2082 /// For the outlined section, determine if an outlined block already exists that
2083 /// matches the needed stores for the extracted section.
2084 /// \param [in] M - The module we are outlining from.
2085 /// \param [in] OG - The group of regions to be outlined.
2086 /// \param [in] EndBBs - The final blocks of the extracted function.
2087 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2088 void createSwitchStatement(
2089     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2090     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2091   // We only need the switch statement if there is more than one store
2092   // combination, or there is more than one set of output blocks.  The first
2093   // will occur when we store different sets of values for two different
2094   // regions.  The second will occur when we have two outputs that are combined
2095   // in a PHINode outside of the region in one outlined instance, and are used
2096   // seaparately in another. This will create the same set of OutputGVNs, but
2097   // will generate two different output schemes.
2098   if (OG.OutputGVNCombinations.size() > 1) {
2099     Function *AggFunc = OG.OutlinedFunction;
2100     // Create a final block for each different return block.
2101     DenseMap<Value *, BasicBlock *> ReturnBBs;
2102     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2103 
2104     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2105       std::pair<Value *, BasicBlock *> &OutputBlock =
2106           *OG.EndBBs.find(RetBlockPair.first);
2107       BasicBlock *ReturnBlock = RetBlockPair.second;
2108       BasicBlock *EndBB = OutputBlock.second;
2109       Instruction *Term = EndBB->getTerminator();
2110       // Move the return value to the final block instead of the original exit
2111       // stub.
2112       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2113       // Put the switch statement in the old end basic block for the function
2114       // with a fall through to the new return block.
2115       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2116                         << OutputStoreBBs.size() << "\n");
2117       SwitchInst *SwitchI =
2118           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2119                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2120 
2121       unsigned Idx = 0;
2122       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2123         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2124             OutputStoreBB.find(OutputBlock.first);
2125 
2126         if (OSBBIt == OutputStoreBB.end())
2127           continue;
2128 
2129         BasicBlock *BB = OSBBIt->second;
2130         SwitchI->addCase(
2131             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2132         Term = BB->getTerminator();
2133         Term->setSuccessor(0, ReturnBlock);
2134         Idx++;
2135       }
2136     }
2137     return;
2138   }
2139 
2140   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2141 
2142   // If there needs to be stores, move them from the output blocks to their
2143   // corresponding ending block.  We do not check that the OutputGVNCombinations
2144   // is equal to 1 here since that could just been the case where there are 0
2145   // outputs. Instead, we check whether there is more than one set of output
2146   // blocks since this is the only case where we would have to move the
2147   // stores, and erase the extraneous blocks.
2148   if (OutputStoreBBs.size() == 1) {
2149     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2150                       << *OG.OutlinedFunction << "\n");
2151     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2152     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2153       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2154           EndBBs.find(VBPair.first);
2155       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2156       BasicBlock *EndBB = EndBBIt->second;
2157       BasicBlock *OutputBB = VBPair.second;
2158       Instruction *Term = OutputBB->getTerminator();
2159       Term->eraseFromParent();
2160       Term = EndBB->getTerminator();
2161       moveBBContents(*OutputBB, *EndBB);
2162       Term->moveBefore(*EndBB, EndBB->end());
2163       OutputBB->eraseFromParent();
2164     }
2165   }
2166 }
2167 
2168 /// Fill the new function that will serve as the replacement function for all of
2169 /// the extracted regions of a certain structure from the first region in the
2170 /// list of regions.  Replace this first region's extracted function with the
2171 /// new overall function.
2172 ///
2173 /// \param [in] M - The module we are outlining from.
2174 /// \param [in] CurrentGroup - The group of regions to be outlined.
2175 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2176 /// set of stores needed for the different functions.
2177 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2178 /// once outlining is complete.
2179 /// \param [in] OutputMappings - Extracted functions to erase from module
2180 /// once outlining is complete.
2181 static void fillOverallFunction(
2182     Module &M, OutlinableGroup &CurrentGroup,
2183     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2184     std::vector<Function *> &FuncsToRemove,
2185     const DenseMap<Value *, Value *> &OutputMappings) {
2186   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2187 
2188   // Move first extracted function's instructions into new function.
2189   LLVM_DEBUG(dbgs() << "Move instructions from "
2190                     << *CurrentOS->ExtractedFunction << " to instruction "
2191                     << *CurrentGroup.OutlinedFunction << "\n");
2192   moveFunctionData(*CurrentOS->ExtractedFunction,
2193                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2194 
2195   // Transfer the attributes from the function to the new function.
2196   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2197     CurrentGroup.OutlinedFunction->addFnAttr(A);
2198 
2199   // Create a new set of output blocks for the first extracted function.
2200   DenseMap<Value *, BasicBlock *> NewBBs;
2201   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2202                              CurrentGroup.OutlinedFunction, "output_block_0");
2203   CurrentOS->OutputBlockNum = 0;
2204 
2205   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2206   replaceConstants(*CurrentOS);
2207 
2208   // We first identify if any output blocks are empty, if they are we remove
2209   // them. We then create a branch instruction to the basic block to the return
2210   // block for the function for each non empty output block.
2211   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2212     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2213     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2214       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2215           CurrentGroup.EndBBs.find(VToBB.first);
2216       BasicBlock *EndBB = VBBIt->second;
2217       BranchInst::Create(EndBB, VToBB.second);
2218       OutputStoreBBs.back().insert(VToBB);
2219     }
2220   }
2221 
2222   // Replace the call to the extracted function with the outlined function.
2223   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2224 
2225   // We only delete the extracted functions at the end since we may need to
2226   // reference instructions contained in them for mapping purposes.
2227   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2228 }
2229 
2230 void IROutliner::deduplicateExtractedSections(
2231     Module &M, OutlinableGroup &CurrentGroup,
2232     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2233   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2234 
2235   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2236 
2237   OutlinableRegion *CurrentOS;
2238 
2239   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2240                       OutputMappings);
2241 
2242   std::vector<Value *> SortedKeys;
2243   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2244     CurrentOS = CurrentGroup.Regions[Idx];
2245     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2246                                                *CurrentOS->ExtractedFunction);
2247 
2248     // Create a set of BasicBlocks, one for each return block, to hold the
2249     // needed store instructions.
2250     DenseMap<Value *, BasicBlock *> NewBBs;
2251     createAndInsertBasicBlocks(
2252         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2253         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2254     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2255     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2256                                 CurrentGroup.EndBBs, OutputMappings,
2257                                 OutputStoreBBs);
2258 
2259     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2260     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2261   }
2262 
2263   // Create a switch statement to handle the different output schemes.
2264   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2265 
2266   OutlinedFunctionNum++;
2267 }
2268 
2269 /// Checks that the next instruction in the InstructionDataList matches the
2270 /// next instruction in the module.  If they do not, there could be the
2271 /// possibility that extra code has been inserted, and we must ignore it.
2272 ///
2273 /// \param ID - The IRInstructionData to check the next instruction of.
2274 /// \returns true if the InstructionDataList and actual instruction match.
2275 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2276   // We check if there is a discrepancy between the InstructionDataList
2277   // and the actual next instruction in the module.  If there is, it means
2278   // that an extra instruction was added, likely by the CodeExtractor.
2279 
2280   // Since we do not have any similarity data about this particular
2281   // instruction, we cannot confidently outline it, and must discard this
2282   // candidate.
2283   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2284   Instruction *NextIDLInst = NextIDIt->Inst;
2285   Instruction *NextModuleInst = nullptr;
2286   if (!ID.Inst->isTerminator())
2287     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2288   else if (NextIDLInst != nullptr)
2289     NextModuleInst =
2290         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2291 
2292   if (NextIDLInst && NextIDLInst != NextModuleInst)
2293     return false;
2294 
2295   return true;
2296 }
2297 
2298 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2299     const OutlinableRegion &Region) {
2300   IRSimilarityCandidate *IRSC = Region.Candidate;
2301   unsigned StartIdx = IRSC->getStartIdx();
2302   unsigned EndIdx = IRSC->getEndIdx();
2303 
2304   // A check to make sure that we are not about to attempt to outline something
2305   // that has already been outlined.
2306   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2307     if (Outlined.contains(Idx))
2308       return false;
2309 
2310   // We check if the recorded instruction matches the actual next instruction,
2311   // if it does not, we fix it in the InstructionDataList.
2312   if (!Region.Candidate->backInstruction()->isTerminator()) {
2313     Instruction *NewEndInst =
2314         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2315     assert(NewEndInst && "Next instruction is a nullptr?");
2316     if (Region.Candidate->end()->Inst != NewEndInst) {
2317       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2318       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2319           IRInstructionData(*NewEndInst,
2320                             InstructionClassifier.visit(*NewEndInst), *IDL);
2321 
2322       // Insert the first IRInstructionData of the new region after the
2323       // last IRInstructionData of the IRSimilarityCandidate.
2324       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2325     }
2326   }
2327 
2328   return none_of(*IRSC, [this](IRInstructionData &ID) {
2329     if (!nextIRInstructionDataMatchesNextInst(ID))
2330       return true;
2331 
2332     return !this->InstructionClassifier.visit(ID.Inst);
2333   });
2334 }
2335 
2336 void IROutliner::pruneIncompatibleRegions(
2337     std::vector<IRSimilarityCandidate> &CandidateVec,
2338     OutlinableGroup &CurrentGroup) {
2339   bool PreviouslyOutlined;
2340 
2341   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2342   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2343                                const IRSimilarityCandidate &RHS) {
2344     return LHS.getStartIdx() < RHS.getStartIdx();
2345   });
2346 
2347   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2348   // Since outlining a call and a branch instruction will be the same as only
2349   // outlinining a call instruction, we ignore it as a space saving.
2350   if (FirstCandidate.getLength() == 2) {
2351     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2352         isa<BranchInst>(FirstCandidate.back()->Inst))
2353       return;
2354   }
2355 
2356   unsigned CurrentEndIdx = 0;
2357   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2358     PreviouslyOutlined = false;
2359     unsigned StartIdx = IRSC.getStartIdx();
2360     unsigned EndIdx = IRSC.getEndIdx();
2361 
2362     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2363       if (Outlined.contains(Idx)) {
2364         PreviouslyOutlined = true;
2365         break;
2366       }
2367 
2368     if (PreviouslyOutlined)
2369       continue;
2370 
2371     // Check over the instructions, and if the basic block has its address
2372     // taken for use somewhere else, we do not outline that block.
2373     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2374       return ID.Inst->getParent()->hasAddressTaken();
2375     });
2376 
2377     if (BBHasAddressTaken)
2378       continue;
2379 
2380     if (IRSC.getFunction()->hasOptNone())
2381       continue;
2382 
2383     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2384         !OutlineFromLinkODRs)
2385       continue;
2386 
2387     // Greedily prune out any regions that will overlap with already chosen
2388     // regions.
2389     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2390       continue;
2391 
2392     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2393       if (!nextIRInstructionDataMatchesNextInst(ID))
2394         return true;
2395 
2396       return !this->InstructionClassifier.visit(ID.Inst);
2397     });
2398 
2399     if (BadInst)
2400       continue;
2401 
2402     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2403         OutlinableRegion(IRSC, CurrentGroup);
2404     CurrentGroup.Regions.push_back(OS);
2405 
2406     CurrentEndIdx = EndIdx;
2407   }
2408 }
2409 
2410 InstructionCost
2411 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2412   InstructionCost RegionBenefit = 0;
2413   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2414     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2415     // We add the number of instructions in the region to the benefit as an
2416     // estimate as to how much will be removed.
2417     RegionBenefit += Region->getBenefit(TTI);
2418     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2419                       << " saved instructions to overfall benefit.\n");
2420   }
2421 
2422   return RegionBenefit;
2423 }
2424 
2425 /// For the \p OutputCanon number passed in find the value represented by this
2426 /// canonical number. If it is from a PHINode, we pick the first incoming
2427 /// value and return that Value instead.
2428 ///
2429 /// \param Region - The OutlinableRegion to get the Value from.
2430 /// \param OutputCanon - The canonical number to find the Value from.
2431 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2432 /// Region.
2433 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2434                                       unsigned OutputCanon) {
2435   OutlinableGroup &CurrentGroup = *Region.Parent;
2436   // If the value is greater than the value in the tracker, we have a
2437   // PHINode and will instead use one of the incoming values to find the
2438   // type.
2439   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2440     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2441     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2442            "Could not find GVN set for PHINode number!");
2443     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2444     OutputCanon = *It->second.second.begin();
2445   }
2446   Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
2447   assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?");
2448   Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2449   assert(OV.hasValue() && "Could not find value for GVN?");
2450   return *OV;
2451 }
2452 
2453 InstructionCost
2454 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2455   InstructionCost OverallCost = 0;
2456   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2457     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2458 
2459     // Each output incurs a load after the call, so we add that to the cost.
2460     for (unsigned OutputCanon : Region->GVNStores) {
2461       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2462       InstructionCost LoadCost =
2463           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2464                               TargetTransformInfo::TCK_CodeSize);
2465 
2466       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2467                         << " instructions to cost for output of type "
2468                         << *V->getType() << "\n");
2469       OverallCost += LoadCost;
2470     }
2471   }
2472 
2473   return OverallCost;
2474 }
2475 
2476 /// Find the extra instructions needed to handle any output values for the
2477 /// region.
2478 ///
2479 /// \param [in] M - The Module to outline from.
2480 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2481 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2482 /// new instruction costs.
2483 /// \returns the additional cost to handle the outputs.
2484 static InstructionCost findCostForOutputBlocks(Module &M,
2485                                                OutlinableGroup &CurrentGroup,
2486                                                TargetTransformInfo &TTI) {
2487   InstructionCost OutputCost = 0;
2488   unsigned NumOutputBranches = 0;
2489 
2490   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2491   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2492   DenseSet<BasicBlock *> CandidateBlocks;
2493   Candidate.getBasicBlocks(CandidateBlocks);
2494 
2495   // Count the number of different output branches that point to blocks outside
2496   // of the region.
2497   DenseSet<BasicBlock *> FoundBlocks;
2498   for (IRInstructionData &ID : Candidate) {
2499     if (!isa<BranchInst>(ID.Inst))
2500       continue;
2501 
2502     for (Value *V : ID.OperVals) {
2503       BasicBlock *BB = static_cast<BasicBlock *>(V);
2504       DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB);
2505       if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB))
2506         continue;
2507       FoundBlocks.insert(BB);
2508       NumOutputBranches++;
2509     }
2510   }
2511 
2512   CurrentGroup.BranchesToOutside = NumOutputBranches;
2513 
2514   for (const ArrayRef<unsigned> &OutputUse :
2515        CurrentGroup.OutputGVNCombinations) {
2516     for (unsigned OutputCanon : OutputUse) {
2517       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2518       InstructionCost StoreCost =
2519           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2520                               TargetTransformInfo::TCK_CodeSize);
2521 
2522       // An instruction cost is added for each store set that needs to occur for
2523       // various output combinations inside the function, plus a branch to
2524       // return to the exit block.
2525       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2526                         << " instructions to cost for output of type "
2527                         << *V->getType() << "\n");
2528       OutputCost += StoreCost * NumOutputBranches;
2529     }
2530 
2531     InstructionCost BranchCost =
2532         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2533     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2534                       << " a branch instruction\n");
2535     OutputCost += BranchCost * NumOutputBranches;
2536   }
2537 
2538   // If there is more than one output scheme, we must have a comparison and
2539   // branch for each different item in the switch statement.
2540   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2541     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2542         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2543         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2544         TargetTransformInfo::TCK_CodeSize);
2545     InstructionCost BranchCost =
2546         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2547 
2548     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2549     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2550 
2551     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2552                       << " instructions for each switch case for each different"
2553                       << " output path in a function\n");
2554     OutputCost += TotalCost * NumOutputBranches;
2555   }
2556 
2557   return OutputCost;
2558 }
2559 
2560 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2561   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2562   CurrentGroup.Benefit += RegionBenefit;
2563   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2564 
2565   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2566   CurrentGroup.Cost += OutputReloadCost;
2567   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2568 
2569   InstructionCost AverageRegionBenefit =
2570       RegionBenefit / CurrentGroup.Regions.size();
2571   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2572   unsigned NumRegions = CurrentGroup.Regions.size();
2573   TargetTransformInfo &TTI =
2574       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2575 
2576   // We add one region to the cost once, to account for the instructions added
2577   // inside of the newly created function.
2578   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2579                     << " instructions to cost for body of new function.\n");
2580   CurrentGroup.Cost += AverageRegionBenefit;
2581   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2582 
2583   // For each argument, we must add an instruction for loading the argument
2584   // out of the register and into a value inside of the newly outlined function.
2585   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2586                     << " instructions to cost for each argument in the new"
2587                     << " function.\n");
2588   CurrentGroup.Cost +=
2589       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2590   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2591 
2592   // Each argument needs to either be loaded into a register or onto the stack.
2593   // Some arguments will only be loaded into the stack once the argument
2594   // registers are filled.
2595   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2596                     << " instructions to cost for each argument in the new"
2597                     << " function " << NumRegions << " times for the "
2598                     << "needed argument handling at the call site.\n");
2599   CurrentGroup.Cost +=
2600       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2601   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2602 
2603   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2604   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2605 }
2606 
2607 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2608                                      ArrayRef<Value *> Outputs,
2609                                      LoadInst *LI) {
2610   // For and load instructions following the call
2611   Value *Operand = LI->getPointerOperand();
2612   Optional<unsigned> OutputIdx = None;
2613   // Find if the operand it is an output register.
2614   for (unsigned ArgIdx = Region.NumExtractedInputs;
2615        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2616     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2617       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2618       break;
2619     }
2620   }
2621 
2622   // If we found an output register, place a mapping of the new value
2623   // to the original in the mapping.
2624   if (!OutputIdx.hasValue())
2625     return;
2626 
2627   if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
2628       OutputMappings.end()) {
2629     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2630                       << *Outputs[OutputIdx.getValue()] << "\n");
2631     OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
2632   } else {
2633     Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
2634     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2635                       << *Outputs[OutputIdx.getValue()] << "\n");
2636     OutputMappings.insert(std::make_pair(LI, Orig));
2637   }
2638 }
2639 
2640 bool IROutliner::extractSection(OutlinableRegion &Region) {
2641   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2642   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2643   BasicBlock *InitialStart = Region.StartBB;
2644   Function *OrigF = Region.StartBB->getParent();
2645   CodeExtractorAnalysisCache CEAC(*OrigF);
2646   Region.ExtractedFunction =
2647       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2648 
2649   // If the extraction was successful, find the BasicBlock, and reassign the
2650   // OutlinableRegion blocks
2651   if (!Region.ExtractedFunction) {
2652     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2653                       << "\n");
2654     Region.reattachCandidate();
2655     return false;
2656   }
2657 
2658   // Get the block containing the called branch, and reassign the blocks as
2659   // necessary.  If the original block still exists, it is because we ended on
2660   // a branch instruction, and so we move the contents into the block before
2661   // and assign the previous block correctly.
2662   User *InstAsUser = Region.ExtractedFunction->user_back();
2663   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2664   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2665   assert(Region.PrevBB && "PrevBB is nullptr?");
2666   if (Region.PrevBB == InitialStart) {
2667     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2668     Instruction *BI = NewPrev->getTerminator();
2669     BI->eraseFromParent();
2670     moveBBContents(*InitialStart, *NewPrev);
2671     Region.PrevBB = NewPrev;
2672     InitialStart->eraseFromParent();
2673   }
2674 
2675   Region.StartBB = RewrittenBB;
2676   Region.EndBB = RewrittenBB;
2677 
2678   // The sequences of outlinable regions has now changed.  We must fix the
2679   // IRInstructionDataList for consistency.  Although they may not be illegal
2680   // instructions, they should not be compared with anything else as they
2681   // should not be outlined in this round.  So marking these as illegal is
2682   // allowed.
2683   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2684   Instruction *BeginRewritten = &*RewrittenBB->begin();
2685   Instruction *EndRewritten = &*RewrittenBB->begin();
2686   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2687       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2688   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2689       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2690 
2691   // Insert the first IRInstructionData of the new region in front of the
2692   // first IRInstructionData of the IRSimilarityCandidate.
2693   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2694   // Insert the first IRInstructionData of the new region after the
2695   // last IRInstructionData of the IRSimilarityCandidate.
2696   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2697   // Remove the IRInstructionData from the IRSimilarityCandidate.
2698   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2699 
2700   assert(RewrittenBB != nullptr &&
2701          "Could not find a predecessor after extraction!");
2702 
2703   // Iterate over the new set of instructions to find the new call
2704   // instruction.
2705   for (Instruction &I : *RewrittenBB)
2706     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2707       if (Region.ExtractedFunction == CI->getCalledFunction())
2708         Region.Call = CI;
2709     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2710       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2711   Region.reattachCandidate();
2712   return true;
2713 }
2714 
2715 unsigned IROutliner::doOutline(Module &M) {
2716   // Find the possible similarity sections.
2717   InstructionClassifier.EnableBranches = !DisableBranches;
2718   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2719   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2720 
2721   IRSimilarityIdentifier &Identifier = getIRSI(M);
2722   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2723 
2724   // Sort them by size of extracted sections
2725   unsigned OutlinedFunctionNum = 0;
2726   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2727   // to sort them by the potential number of instructions to be outlined
2728   if (SimilarityCandidates.size() > 1)
2729     llvm::stable_sort(SimilarityCandidates,
2730                       [](const std::vector<IRSimilarityCandidate> &LHS,
2731                          const std::vector<IRSimilarityCandidate> &RHS) {
2732                         return LHS[0].getLength() * LHS.size() >
2733                                RHS[0].getLength() * RHS.size();
2734                       });
2735   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2736   // each of the following for loops to avoid making an allocator.
2737   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2738 
2739   DenseSet<unsigned> NotSame;
2740   std::vector<OutlinableGroup *> NegativeCostGroups;
2741   std::vector<OutlinableRegion *> OutlinedRegions;
2742   // Iterate over the possible sets of similarity.
2743   unsigned PotentialGroupIdx = 0;
2744   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2745     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2746 
2747     // Remove entries that were previously outlined
2748     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2749 
2750     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2751     // trying to outlined since there is no compatible similar instance of this
2752     // code.
2753     if (CurrentGroup.Regions.size() < 2)
2754       continue;
2755 
2756     // Determine if there are any values that are the same constant throughout
2757     // each section in the set.
2758     NotSame.clear();
2759     CurrentGroup.findSameConstants(NotSame);
2760 
2761     if (CurrentGroup.IgnoreGroup)
2762       continue;
2763 
2764     // Create a CodeExtractor for each outlinable region. Identify inputs and
2765     // outputs for each section using the code extractor and create the argument
2766     // types for the Aggregate Outlining Function.
2767     OutlinedRegions.clear();
2768     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2769       // Break the outlinable region out of its parent BasicBlock into its own
2770       // BasicBlocks (see function implementation).
2771       OS->splitCandidate();
2772 
2773       // There's a chance that when the region is split, extra instructions are
2774       // added to the region. This makes the region no longer viable
2775       // to be split, so we ignore it for outlining.
2776       if (!OS->CandidateSplit)
2777         continue;
2778 
2779       SmallVector<BasicBlock *> BE;
2780       DenseSet<BasicBlock *> BlocksInRegion;
2781       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2782       OS->CE = new (ExtractorAllocator.Allocate())
2783           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2784                         false, nullptr, "outlined");
2785       findAddInputsOutputs(M, *OS, NotSame);
2786       if (!OS->IgnoreRegion)
2787         OutlinedRegions.push_back(OS);
2788 
2789       // We recombine the blocks together now that we have gathered all the
2790       // needed information.
2791       OS->reattachCandidate();
2792     }
2793 
2794     CurrentGroup.Regions = std::move(OutlinedRegions);
2795 
2796     if (CurrentGroup.Regions.empty())
2797       continue;
2798 
2799     CurrentGroup.collectGVNStoreSets(M);
2800 
2801     if (CostModel)
2802       findCostBenefit(M, CurrentGroup);
2803 
2804     // If we are adhering to the cost model, skip those groups where the cost
2805     // outweighs the benefits.
2806     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2807       OptimizationRemarkEmitter &ORE =
2808           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2809       ORE.emit([&]() {
2810         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2811         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2812                                    C->frontInstruction());
2813         R << "did not outline "
2814           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2815           << " regions due to estimated increase of "
2816           << ore::NV("InstructionIncrease",
2817                      CurrentGroup.Cost - CurrentGroup.Benefit)
2818           << " instructions at locations ";
2819         interleave(
2820             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2821             [&R](OutlinableRegion *Region) {
2822               R << ore::NV(
2823                   "DebugLoc",
2824                   Region->Candidate->frontInstruction()->getDebugLoc());
2825             },
2826             [&R]() { R << " "; });
2827         return R;
2828       });
2829       continue;
2830     }
2831 
2832     NegativeCostGroups.push_back(&CurrentGroup);
2833   }
2834 
2835   ExtractorAllocator.DestroyAll();
2836 
2837   if (NegativeCostGroups.size() > 1)
2838     stable_sort(NegativeCostGroups,
2839                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2840                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2841                 });
2842 
2843   std::vector<Function *> FuncsToRemove;
2844   for (OutlinableGroup *CG : NegativeCostGroups) {
2845     OutlinableGroup &CurrentGroup = *CG;
2846 
2847     OutlinedRegions.clear();
2848     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2849       // We check whether our region is compatible with what has already been
2850       // outlined, and whether we need to ignore this item.
2851       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2852         continue;
2853       OutlinedRegions.push_back(Region);
2854     }
2855 
2856     if (OutlinedRegions.size() < 2)
2857       continue;
2858 
2859     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2860     // we are still outlining enough regions to make up for the added cost.
2861     CurrentGroup.Regions = std::move(OutlinedRegions);
2862     if (CostModel) {
2863       CurrentGroup.Benefit = 0;
2864       CurrentGroup.Cost = 0;
2865       findCostBenefit(M, CurrentGroup);
2866       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2867         continue;
2868     }
2869     OutlinedRegions.clear();
2870     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2871       Region->splitCandidate();
2872       if (!Region->CandidateSplit)
2873         continue;
2874       OutlinedRegions.push_back(Region);
2875     }
2876 
2877     CurrentGroup.Regions = std::move(OutlinedRegions);
2878     if (CurrentGroup.Regions.size() < 2) {
2879       for (OutlinableRegion *R : CurrentGroup.Regions)
2880         R->reattachCandidate();
2881       continue;
2882     }
2883 
2884     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2885                       << " and benefit " << CurrentGroup.Benefit << "\n");
2886 
2887     // Create functions out of all the sections, and mark them as outlined.
2888     OutlinedRegions.clear();
2889     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2890       SmallVector<BasicBlock *> BE;
2891       DenseSet<BasicBlock *> BlocksInRegion;
2892       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2893       OS->CE = new (ExtractorAllocator.Allocate())
2894           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2895                         false, nullptr, "outlined");
2896       bool FunctionOutlined = extractSection(*OS);
2897       if (FunctionOutlined) {
2898         unsigned StartIdx = OS->Candidate->getStartIdx();
2899         unsigned EndIdx = OS->Candidate->getEndIdx();
2900         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2901           Outlined.insert(Idx);
2902 
2903         OutlinedRegions.push_back(OS);
2904       }
2905     }
2906 
2907     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2908                       << " with benefit " << CurrentGroup.Benefit
2909                       << " and cost " << CurrentGroup.Cost << "\n");
2910 
2911     CurrentGroup.Regions = std::move(OutlinedRegions);
2912 
2913     if (CurrentGroup.Regions.empty())
2914       continue;
2915 
2916     OptimizationRemarkEmitter &ORE =
2917         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2918     ORE.emit([&]() {
2919       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2920       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2921       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2922         << " regions with decrease of "
2923         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2924         << " instructions at locations ";
2925       interleave(
2926           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2927           [&R](OutlinableRegion *Region) {
2928             R << ore::NV("DebugLoc",
2929                          Region->Candidate->frontInstruction()->getDebugLoc());
2930           },
2931           [&R]() { R << " "; });
2932       return R;
2933     });
2934 
2935     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
2936                                  OutlinedFunctionNum);
2937   }
2938 
2939   for (Function *F : FuncsToRemove)
2940     F->eraseFromParent();
2941 
2942   return OutlinedFunctionNum;
2943 }
2944 
2945 bool IROutliner::run(Module &M) {
2946   CostModel = !NoCostModel;
2947   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
2948 
2949   return doOutline(M) > 0;
2950 }
2951 
2952 // Pass Manager Boilerplate
2953 namespace {
2954 class IROutlinerLegacyPass : public ModulePass {
2955 public:
2956   static char ID;
2957   IROutlinerLegacyPass() : ModulePass(ID) {
2958     initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
2959   }
2960 
2961   void getAnalysisUsage(AnalysisUsage &AU) const override {
2962     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2963     AU.addRequired<TargetTransformInfoWrapperPass>();
2964     AU.addRequired<IRSimilarityIdentifierWrapperPass>();
2965   }
2966 
2967   bool runOnModule(Module &M) override;
2968 };
2969 } // namespace
2970 
2971 bool IROutlinerLegacyPass::runOnModule(Module &M) {
2972   if (skipModule(M))
2973     return false;
2974 
2975   std::unique_ptr<OptimizationRemarkEmitter> ORE;
2976   auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
2977     ORE.reset(new OptimizationRemarkEmitter(&F));
2978     return *ORE;
2979   };
2980 
2981   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
2982     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2983   };
2984 
2985   auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
2986     return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
2987   };
2988 
2989   return IROutliner(GTTI, GIRSI, GORE).run(M);
2990 }
2991 
2992 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
2993   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2994 
2995   std::function<TargetTransformInfo &(Function &)> GTTI =
2996       [&FAM](Function &F) -> TargetTransformInfo & {
2997     return FAM.getResult<TargetIRAnalysis>(F);
2998   };
2999 
3000   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3001       [&AM](Module &M) -> IRSimilarityIdentifier & {
3002     return AM.getResult<IRSimilarityAnalysis>(M);
3003   };
3004 
3005   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3006   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3007       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3008     ORE.reset(new OptimizationRemarkEmitter(&F));
3009     return *ORE;
3010   };
3011 
3012   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3013     return PreservedAnalyses::none();
3014   return PreservedAnalyses::all();
3015 }
3016 
3017 char IROutlinerLegacyPass::ID = 0;
3018 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3019                       false)
3020 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
3021 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3023 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3024                     false)
3025 
3026 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
3027