1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include <vector>
30 
31 #define DEBUG_TYPE "iroutliner"
32 
33 using namespace llvm;
34 using namespace IRSimilarity;
35 
36 // A command flag to be used for debugging to exclude branches from similarity
37 // matching and outlining.
38 namespace llvm {
39 extern cl::opt<bool> DisableBranches;
40 
41 // A command flag to be used for debugging to indirect calls from similarity
42 // matching and outlining.
43 extern cl::opt<bool> DisableIndirectCalls;
44 
45 // A command flag to be used for debugging to exclude intrinsics from similarity
46 // matching and outlining.
47 extern cl::opt<bool> DisableIntrinsics;
48 
49 } // namespace llvm
50 
51 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
52 // functions. This is false by default because the linker can dedupe linkonceodr
53 // functions. Since the outliner is confined to a single module (modulo LTO),
54 // this is off by default. It should, however, be the default behavior in
55 // LTO.
56 static cl::opt<bool> EnableLinkOnceODRIROutlining(
57     "enable-linkonceodr-ir-outlining", cl::Hidden,
58     cl::desc("Enable the IR outliner on linkonceodr functions"),
59     cl::init(false));
60 
61 // This is a debug option to test small pieces of code to ensure that outlining
62 // works correctly.
63 static cl::opt<bool> NoCostModel(
64     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
65     cl::desc("Debug option to outline greedily, without restriction that "
66              "calculated benefit outweighs cost"));
67 
68 /// The OutlinableGroup holds all the overarching information for outlining
69 /// a set of regions that are structurally similar to one another, such as the
70 /// types of the overall function, the output blocks, the sets of stores needed
71 /// and a list of the different regions. This information is used in the
72 /// deduplication of extracted regions with the same structure.
73 struct OutlinableGroup {
74   /// The sections that could be outlined
75   std::vector<OutlinableRegion *> Regions;
76 
77   /// The argument types for the function created as the overall function to
78   /// replace the extracted function for each region.
79   std::vector<Type *> ArgumentTypes;
80   /// The FunctionType for the overall function.
81   FunctionType *OutlinedFunctionType = nullptr;
82   /// The Function for the collective overall function.
83   Function *OutlinedFunction = nullptr;
84 
85   /// Flag for whether we should not consider this group of OutlinableRegions
86   /// for extraction.
87   bool IgnoreGroup = false;
88 
89   /// The return blocks for the overall function.
90   DenseMap<Value *, BasicBlock *> EndBBs;
91 
92   /// The PHIBlocks with their corresponding return block based on the return
93   /// value as the key.
94   DenseMap<Value *, BasicBlock *> PHIBlocks;
95 
96   /// A set containing the different GVN store sets needed. Each array contains
97   /// a sorted list of the different values that need to be stored into output
98   /// registers.
99   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
100 
101   /// Flag for whether the \ref ArgumentTypes have been defined after the
102   /// extraction of the first region.
103   bool InputTypesSet = false;
104 
105   /// The number of input values in \ref ArgumentTypes.  Anything after this
106   /// index in ArgumentTypes is an output argument.
107   unsigned NumAggregateInputs = 0;
108 
109   /// The mapping of the canonical numbering of the values in outlined sections
110   /// to specific arguments.
111   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
112 
113   /// The number of branches in the region target a basic block that is outside
114   /// of the region.
115   unsigned BranchesToOutside = 0;
116 
117   /// Tracker counting backwards from the highest unsigned value possible to
118   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
119   /// -2 and -1 are assigned by the DenseMap.
120   unsigned PHINodeGVNTracker = -3;
121 
122   DenseMap<unsigned,
123            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
124       PHINodeGVNToGVNs;
125   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
126 
127   /// The number of instructions that will be outlined by extracting \ref
128   /// Regions.
129   InstructionCost Benefit = 0;
130   /// The number of added instructions needed for the outlining of the \ref
131   /// Regions.
132   InstructionCost Cost = 0;
133 
134   /// The argument that needs to be marked with the swifterr attribute.  If not
135   /// needed, there is no value.
136   Optional<unsigned> SwiftErrorArgument;
137 
138   /// For the \ref Regions, we look at every Value.  If it is a constant,
139   /// we check whether it is the same in Region.
140   ///
141   /// \param [in,out] NotSame contains the global value numbers where the
142   /// constant is not always the same, and must be passed in as an argument.
143   void findSameConstants(DenseSet<unsigned> &NotSame);
144 
145   /// For the regions, look at each set of GVN stores needed and account for
146   /// each combination.  Add an argument to the argument types if there is
147   /// more than one combination.
148   ///
149   /// \param [in] M - The module we are outlining from.
150   void collectGVNStoreSets(Module &M);
151 };
152 
153 /// Move the contents of \p SourceBB to before the last instruction of \p
154 /// TargetBB.
155 /// \param SourceBB - the BasicBlock to pull Instructions from.
156 /// \param TargetBB - the BasicBlock to put Instruction into.
157 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
158   for (Instruction &I : llvm::make_early_inc_range(SourceBB))
159     I.moveBefore(TargetBB, TargetBB.end());
160 }
161 
162 /// A function to sort the keys of \p Map, which must be a mapping of constant
163 /// values to basic blocks and return it in \p SortedKeys
164 ///
165 /// \param SortedKeys - The vector the keys will be return in and sorted.
166 /// \param Map - The DenseMap containing keys to sort.
167 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
168                                   DenseMap<Value *, BasicBlock *> &Map) {
169   for (auto &VtoBB : Map)
170     SortedKeys.push_back(VtoBB.first);
171 
172   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
173     const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
174     const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
175     assert(RHSC && "Not a constant integer in return value?");
176     assert(LHSC && "Not a constant integer in return value?");
177 
178     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
179   });
180 }
181 
182 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
183                                                   Value *V) {
184   Optional<unsigned> GVN = Candidate->getGVN(V);
185   assert(GVN.hasValue() && "No GVN for incoming value");
186   Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
187   Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
188   Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
189   return FoundValueOpt.getValueOr(nullptr);
190 }
191 
192 BasicBlock *
193 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
194                                            BasicBlock *BB) {
195   Instruction *FirstNonPHI = BB->getFirstNonPHI();
196   assert(FirstNonPHI && "block is empty?");
197   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
198   if (!CorrespondingVal)
199     return nullptr;
200   BasicBlock *CorrespondingBlock =
201       cast<Instruction>(CorrespondingVal)->getParent();
202   return CorrespondingBlock;
203 }
204 
205 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
206 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
207 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
208 /// when PHINodes are included in outlined regions.
209 ///
210 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
211 /// checked.
212 /// \param Find - The successor block to be replaced.
213 /// \param Replace - The new succesor block to branch to.
214 /// \param Included - The set of blocks about to be outlined.
215 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
216                                       BasicBlock *Replace,
217                                       DenseSet<BasicBlock *> &Included) {
218   for (PHINode &PN : PHIBlock->phis()) {
219     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
220          ++Idx) {
221       // Check if the incoming block is included in the set of blocks being
222       // outlined.
223       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
224       if (!Included.contains(Incoming))
225         continue;
226 
227       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
228       assert(BI && "Not a branch instruction?");
229       // Look over the branching instructions into this block to see if we
230       // used to branch to Find in this outlined block.
231       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
232            Succ++) {
233         // If we have found the block to replace, we do so here.
234         if (BI->getSuccessor(Succ) != Find)
235           continue;
236         BI->setSuccessor(Succ, Replace);
237       }
238     }
239   }
240 }
241 
242 
243 void OutlinableRegion::splitCandidate() {
244   assert(!CandidateSplit && "Candidate already split!");
245 
246   Instruction *BackInst = Candidate->backInstruction();
247 
248   Instruction *EndInst = nullptr;
249   // Check whether the last instruction is a terminator, if it is, we do
250   // not split on the following instruction. We leave the block as it is.  We
251   // also check that this is not the last instruction in the Module, otherwise
252   // the check for whether the current following instruction matches the
253   // previously recorded instruction will be incorrect.
254   if (!BackInst->isTerminator() ||
255       BackInst->getParent() != &BackInst->getFunction()->back()) {
256     EndInst = Candidate->end()->Inst;
257     assert(EndInst && "Expected an end instruction?");
258   }
259 
260   // We check if the current instruction following the last instruction in the
261   // region is the same as the recorded instruction following the last
262   // instruction. If they do not match, there could be problems in rewriting
263   // the program after outlining, so we ignore it.
264   if (!BackInst->isTerminator() &&
265       EndInst != BackInst->getNextNonDebugInstruction())
266     return;
267 
268   Instruction *StartInst = (*Candidate->begin()).Inst;
269   assert(StartInst && "Expected a start instruction?");
270   StartBB = StartInst->getParent();
271   PrevBB = StartBB;
272 
273   DenseSet<BasicBlock *> BBSet;
274   Candidate->getBasicBlocks(BBSet);
275 
276   // We iterate over the instructions in the region, if we find a PHINode, we
277   // check if there are predecessors outside of the region, if there are,
278   // we ignore this region since we are unable to handle the severing of the
279   // phi node right now.
280 
281   // TODO: Handle extraneous inputs for PHINodes through variable number of
282   // inputs, similar to how outputs are handled.
283   BasicBlock::iterator It = StartInst->getIterator();
284   EndBB = BackInst->getParent();
285   BasicBlock *IBlock;
286   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
287   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
288     unsigned NumPredsOutsideRegion = 0;
289     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
290       if (!BBSet.contains(PN->getIncomingBlock(i))) {
291         ++NumPredsOutsideRegion;
292         continue;
293       }
294 
295       // We must consider the case there the incoming block to the PHINode is
296       // the same as the final block of the OutlinableRegion.  If this is the
297       // case, the branch from this block must also be outlined to be valid.
298       IBlock = PN->getIncomingBlock(i);
299       if (IBlock == EndBB && EndBBTermAndBackInstDifferent)
300         ++NumPredsOutsideRegion;
301     }
302 
303     if (NumPredsOutsideRegion > 1)
304       return;
305 
306     It++;
307   }
308 
309   // If the region starts with a PHINode, but is not the initial instruction of
310   // the BasicBlock, we ignore this region for now.
311   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
312     return;
313 
314   // If the region ends with a PHINode, but does not contain all of the phi node
315   // instructions of the region, we ignore it for now.
316   if (isa<PHINode>(BackInst) &&
317       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
318     return;
319 
320   // The basic block gets split like so:
321   // block:                 block:
322   //   inst1                  inst1
323   //   inst2                  inst2
324   //   region1               br block_to_outline
325   //   region2              block_to_outline:
326   //   region3          ->    region1
327   //   region4                region2
328   //   inst3                  region3
329   //   inst4                  region4
330   //                          br block_after_outline
331   //                        block_after_outline:
332   //                          inst3
333   //                          inst4
334 
335   std::string OriginalName = PrevBB->getName().str();
336 
337   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
338   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
339 
340   CandidateSplit = true;
341   if (!BackInst->isTerminator()) {
342     EndBB = EndInst->getParent();
343     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
344     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
345     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
346   } else {
347     EndBB = BackInst->getParent();
348     EndsInBranch = true;
349     FollowBB = nullptr;
350   }
351 
352   // Refind the basic block set.
353   BBSet.clear();
354   Candidate->getBasicBlocks(BBSet);
355   // For the phi nodes in the new starting basic block of the region, we
356   // reassign the targets of the basic blocks branching instructions.
357   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
358   if (FollowBB)
359     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
360 }
361 
362 void OutlinableRegion::reattachCandidate() {
363   assert(CandidateSplit && "Candidate is not split!");
364 
365   // The basic block gets reattached like so:
366   // block:                        block:
367   //   inst1                         inst1
368   //   inst2                         inst2
369   //   br block_to_outline           region1
370   // block_to_outline:        ->     region2
371   //   region1                       region3
372   //   region2                       region4
373   //   region3                       inst3
374   //   region4                       inst4
375   //   br block_after_outline
376   // block_after_outline:
377   //   inst3
378   //   inst4
379   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
380 
381   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
382   PrevBB->getTerminator()->eraseFromParent();
383 
384   // If we reattaching after outlining, we iterate over the phi nodes to
385   // the initial block, and reassign the branch instructions of the incoming
386   // blocks to the block we are remerging into.
387   if (!ExtractedFunction) {
388     DenseSet<BasicBlock *> BBSet;
389     Candidate->getBasicBlocks(BBSet);
390 
391     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
392     if (!EndsInBranch)
393       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
394   }
395 
396   moveBBContents(*StartBB, *PrevBB);
397 
398   BasicBlock *PlacementBB = PrevBB;
399   if (StartBB != EndBB)
400     PlacementBB = EndBB;
401   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
402     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
403     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
404     PlacementBB->getTerminator()->eraseFromParent();
405     moveBBContents(*FollowBB, *PlacementBB);
406     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
407     FollowBB->eraseFromParent();
408   }
409 
410   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
411   StartBB->eraseFromParent();
412 
413   // Make sure to save changes back to the StartBB.
414   StartBB = PrevBB;
415   EndBB = nullptr;
416   PrevBB = nullptr;
417   FollowBB = nullptr;
418 
419   CandidateSplit = false;
420 }
421 
422 /// Find whether \p V matches the Constants previously found for the \p GVN.
423 ///
424 /// \param V - The value to check for consistency.
425 /// \param GVN - The global value number assigned to \p V.
426 /// \param GVNToConstant - The mapping of global value number to Constants.
427 /// \returns true if the Value matches the Constant mapped to by V and false if
428 /// it \p V is a Constant but does not match.
429 /// \returns None if \p V is not a Constant.
430 static Optional<bool>
431 constantMatches(Value *V, unsigned GVN,
432                 DenseMap<unsigned, Constant *> &GVNToConstant) {
433   // See if we have a constants
434   Constant *CST = dyn_cast<Constant>(V);
435   if (!CST)
436     return None;
437 
438   // Holds a mapping from a global value number to a Constant.
439   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
440   bool Inserted;
441 
442 
443   // If we have a constant, try to make a new entry in the GVNToConstant.
444   std::tie(GVNToConstantIt, Inserted) =
445       GVNToConstant.insert(std::make_pair(GVN, CST));
446   // If it was found and is not equal, it is not the same. We do not
447   // handle this case yet, and exit early.
448   if (Inserted || (GVNToConstantIt->second == CST))
449     return true;
450 
451   return false;
452 }
453 
454 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
455   InstructionCost Benefit = 0;
456 
457   // Estimate the benefit of outlining a specific sections of the program.  We
458   // delegate mostly this task to the TargetTransformInfo so that if the target
459   // has specific changes, we can have a more accurate estimate.
460 
461   // However, getInstructionCost delegates the code size calculation for
462   // arithmetic instructions to getArithmeticInstrCost in
463   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
464   // code size for a division and remainder instruction to be equal to 4, and
465   // everything else to 1.  This is not an accurate representation of the
466   // division instruction for targets that have a native division instruction.
467   // To be overly conservative, we only add 1 to the number of instructions for
468   // each division instruction.
469   for (IRInstructionData &ID : *Candidate) {
470     Instruction *I = ID.Inst;
471     switch (I->getOpcode()) {
472     case Instruction::FDiv:
473     case Instruction::FRem:
474     case Instruction::SDiv:
475     case Instruction::SRem:
476     case Instruction::UDiv:
477     case Instruction::URem:
478       Benefit += 1;
479       break;
480     default:
481       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
482       break;
483     }
484   }
485 
486   return Benefit;
487 }
488 
489 /// Check the \p OutputMappings structure for value \p Input, if it exists
490 /// it has been used as an output for outlining, and has been renamed, and we
491 /// return the new value, otherwise, we return the same value.
492 ///
493 /// \param OutputMappings [in] - The mapping of values to their renamed value
494 /// after being used as an output for an outlined region.
495 /// \param Input [in] - The value to find the remapped value of, if it exists.
496 /// \return The remapped value if it has been renamed, and the same value if has
497 /// not.
498 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
499                                 Value *Input) {
500   DenseMap<Value *, Value *>::const_iterator OutputMapping =
501       OutputMappings.find(Input);
502   if (OutputMapping != OutputMappings.end())
503     return OutputMapping->second;
504   return Input;
505 }
506 
507 /// Find whether \p Region matches the global value numbering to Constant
508 /// mapping found so far.
509 ///
510 /// \param Region - The OutlinableRegion we are checking for constants
511 /// \param GVNToConstant - The mapping of global value number to Constants.
512 /// \param NotSame - The set of global value numbers that do not have the same
513 /// constant in each region.
514 /// \returns true if all Constants are the same in every use of a Constant in \p
515 /// Region and false if not
516 static bool
517 collectRegionsConstants(OutlinableRegion &Region,
518                         DenseMap<unsigned, Constant *> &GVNToConstant,
519                         DenseSet<unsigned> &NotSame) {
520   bool ConstantsTheSame = true;
521 
522   IRSimilarityCandidate &C = *Region.Candidate;
523   for (IRInstructionData &ID : C) {
524 
525     // Iterate over the operands in an instruction. If the global value number,
526     // assigned by the IRSimilarityCandidate, has been seen before, we check if
527     // the the number has been found to be not the same value in each instance.
528     for (Value *V : ID.OperVals) {
529       Optional<unsigned> GVNOpt = C.getGVN(V);
530       assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
531       unsigned GVN = GVNOpt.getValue();
532 
533       // Check if this global value has been found to not be the same already.
534       if (NotSame.contains(GVN)) {
535         if (isa<Constant>(V))
536           ConstantsTheSame = false;
537         continue;
538       }
539 
540       // If it has been the same so far, we check the value for if the
541       // associated Constant value match the previous instances of the same
542       // global value number.  If the global value does not map to a Constant,
543       // it is considered to not be the same value.
544       Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
545       if (ConstantMatches.hasValue()) {
546         if (ConstantMatches.getValue())
547           continue;
548         else
549           ConstantsTheSame = false;
550       }
551 
552       // While this value is a register, it might not have been previously,
553       // make sure we don't already have a constant mapped to this global value
554       // number.
555       if (GVNToConstant.find(GVN) != GVNToConstant.end())
556         ConstantsTheSame = false;
557 
558       NotSame.insert(GVN);
559     }
560   }
561 
562   return ConstantsTheSame;
563 }
564 
565 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
566   DenseMap<unsigned, Constant *> GVNToConstant;
567 
568   for (OutlinableRegion *Region : Regions)
569     collectRegionsConstants(*Region, GVNToConstant, NotSame);
570 }
571 
572 void OutlinableGroup::collectGVNStoreSets(Module &M) {
573   for (OutlinableRegion *OS : Regions)
574     OutputGVNCombinations.insert(OS->GVNStores);
575 
576   // We are adding an extracted argument to decide between which output path
577   // to use in the basic block.  It is used in a switch statement and only
578   // needs to be an integer.
579   if (OutputGVNCombinations.size() > 1)
580     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
581 }
582 
583 /// Get the subprogram if it exists for one of the outlined regions.
584 ///
585 /// \param [in] Group - The set of regions to find a subprogram for.
586 /// \returns the subprogram if it exists, or nullptr.
587 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
588   for (OutlinableRegion *OS : Group.Regions)
589     if (Function *F = OS->Call->getFunction())
590       if (DISubprogram *SP = F->getSubprogram())
591         return SP;
592 
593   return nullptr;
594 }
595 
596 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
597                                      unsigned FunctionNameSuffix) {
598   assert(!Group.OutlinedFunction && "Function is already defined!");
599 
600   Type *RetTy = Type::getVoidTy(M.getContext());
601   // All extracted functions _should_ have the same return type at this point
602   // since the similarity identifier ensures that all branches outside of the
603   // region occur in the same place.
604 
605   // NOTE: Should we ever move to the model that uses a switch at every point
606   // needed, meaning that we could branch within the region or out, it is
607   // possible that we will need to switch to using the most general case all of
608   // the time.
609   for (OutlinableRegion *R : Group.Regions) {
610     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
611     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
612         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
613       RetTy = ExtractedFuncType;
614   }
615 
616   Group.OutlinedFunctionType = FunctionType::get(
617       RetTy, Group.ArgumentTypes, false);
618 
619   // These functions will only be called from within the same module, so
620   // we can set an internal linkage.
621   Group.OutlinedFunction = Function::Create(
622       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
623       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
624 
625   // Transfer the swifterr attribute to the correct function parameter.
626   if (Group.SwiftErrorArgument.hasValue())
627     Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
628                                          Attribute::SwiftError);
629 
630   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
631   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
632 
633   // If there's a DISubprogram associated with this outlined function, then
634   // emit debug info for the outlined function.
635   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
636     Function *F = Group.OutlinedFunction;
637     // We have a DISubprogram. Get its DICompileUnit.
638     DICompileUnit *CU = SP->getUnit();
639     DIBuilder DB(M, true, CU);
640     DIFile *Unit = SP->getFile();
641     Mangler Mg;
642     // Get the mangled name of the function for the linkage name.
643     std::string Dummy;
644     llvm::raw_string_ostream MangledNameStream(Dummy);
645     Mg.getNameWithPrefix(MangledNameStream, F, false);
646 
647     DISubprogram *OutlinedSP = DB.createFunction(
648         Unit /* Context */, F->getName(), MangledNameStream.str(),
649         Unit /* File */,
650         0 /* Line 0 is reserved for compiler-generated code. */,
651         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
652         0, /* Line 0 is reserved for compiler-generated code. */
653         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
654         /* Outlined code is optimized code by definition. */
655         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
656 
657     // Don't add any new variables to the subprogram.
658     DB.finalizeSubprogram(OutlinedSP);
659 
660     // Attach subprogram to the function.
661     F->setSubprogram(OutlinedSP);
662     // We're done with the DIBuilder.
663     DB.finalize();
664   }
665 
666   return Group.OutlinedFunction;
667 }
668 
669 /// Move each BasicBlock in \p Old to \p New.
670 ///
671 /// \param [in] Old - The function to move the basic blocks from.
672 /// \param [in] New - The function to move the basic blocks to.
673 /// \param [out] NewEnds - The return blocks of the new overall function.
674 static void moveFunctionData(Function &Old, Function &New,
675                              DenseMap<Value *, BasicBlock *> &NewEnds) {
676   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
677     CurrBB.removeFromParent();
678     CurrBB.insertInto(&New);
679     Instruction *I = CurrBB.getTerminator();
680 
681     // For each block we find a return instruction is, it is a potential exit
682     // path for the function.  We keep track of each block based on the return
683     // value here.
684     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
685       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
686 
687     std::vector<Instruction *> DebugInsts;
688 
689     for (Instruction &Val : CurrBB) {
690       // We must handle the scoping of called functions differently than
691       // other outlined instructions.
692       if (!isa<CallInst>(&Val)) {
693         // Remove the debug information for outlined functions.
694         Val.setDebugLoc(DebugLoc());
695 
696         // Loop info metadata may contain line locations. Update them to have no
697         // value in the new subprogram since the outlined code could be from
698         // several locations.
699         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
700           if (DISubprogram *SP = New.getSubprogram())
701             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
702               return DILocation::get(New.getContext(), Loc->getLine(),
703                                      Loc->getColumn(), SP, nullptr);
704           return MD;
705         };
706         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
707         continue;
708       }
709 
710       // From this point we are only handling call instructions.
711       CallInst *CI = cast<CallInst>(&Val);
712 
713       // We add any debug statements here, to be removed after.  Since the
714       // instructions originate from many different locations in the program,
715       // it will cause incorrect reporting from a debugger if we keep the
716       // same debug instructions.
717       if (isa<DbgInfoIntrinsic>(CI)) {
718         DebugInsts.push_back(&Val);
719         continue;
720       }
721 
722       // Edit the scope of called functions inside of outlined functions.
723       if (DISubprogram *SP = New.getSubprogram()) {
724         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
725         Val.setDebugLoc(DI);
726       }
727     }
728 
729     for (Instruction *I : DebugInsts)
730       I->eraseFromParent();
731   }
732 }
733 
734 /// Find the the constants that will need to be lifted into arguments
735 /// as they are not the same in each instance of the region.
736 ///
737 /// \param [in] C - The IRSimilarityCandidate containing the region we are
738 /// analyzing.
739 /// \param [in] NotSame - The set of global value numbers that do not have a
740 /// single Constant across all OutlinableRegions similar to \p C.
741 /// \param [out] Inputs - The list containing the global value numbers of the
742 /// arguments needed for the region of code.
743 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
744                           std::vector<unsigned> &Inputs) {
745   DenseSet<unsigned> Seen;
746   // Iterate over the instructions, and find what constants will need to be
747   // extracted into arguments.
748   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
749        IDIt != EndIDIt; IDIt++) {
750     for (Value *V : (*IDIt).OperVals) {
751       // Since these are stored before any outlining, they will be in the
752       // global value numbering.
753       unsigned GVN = C.getGVN(V).getValue();
754       if (isa<Constant>(V))
755         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
756           Inputs.push_back(GVN);
757           Seen.insert(GVN);
758         }
759     }
760   }
761 }
762 
763 /// Find the GVN for the inputs that have been found by the CodeExtractor.
764 ///
765 /// \param [in] C - The IRSimilarityCandidate containing the region we are
766 /// analyzing.
767 /// \param [in] CurrentInputs - The set of inputs found by the
768 /// CodeExtractor.
769 /// \param [in] OutputMappings - The mapping of values that have been replaced
770 /// by a new output value.
771 /// \param [out] EndInputNumbers - The global value numbers for the extracted
772 /// arguments.
773 static void mapInputsToGVNs(IRSimilarityCandidate &C,
774                             SetVector<Value *> &CurrentInputs,
775                             const DenseMap<Value *, Value *> &OutputMappings,
776                             std::vector<unsigned> &EndInputNumbers) {
777   // Get the Global Value Number for each input.  We check if the Value has been
778   // replaced by a different value at output, and use the original value before
779   // replacement.
780   for (Value *Input : CurrentInputs) {
781     assert(Input && "Have a nullptr as an input");
782     if (OutputMappings.find(Input) != OutputMappings.end())
783       Input = OutputMappings.find(Input)->second;
784     assert(C.getGVN(Input).hasValue() &&
785            "Could not find a numbering for the given input");
786     EndInputNumbers.push_back(C.getGVN(Input).getValue());
787   }
788 }
789 
790 /// Find the original value for the \p ArgInput values if any one of them was
791 /// replaced during a previous extraction.
792 ///
793 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
794 /// \param [in] OutputMappings - The mapping of values that have been replaced
795 /// by a new output value.
796 /// \param [out] RemappedArgInputs - The remapped values according to
797 /// \p OutputMappings that will be extracted.
798 static void
799 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
800                      const DenseMap<Value *, Value *> &OutputMappings,
801                      SetVector<Value *> &RemappedArgInputs) {
802   // Get the global value number for each input that will be extracted as an
803   // argument by the code extractor, remapping if needed for reloaded values.
804   for (Value *Input : ArgInputs) {
805     if (OutputMappings.find(Input) != OutputMappings.end())
806       Input = OutputMappings.find(Input)->second;
807     RemappedArgInputs.insert(Input);
808   }
809 }
810 
811 /// Find the input GVNs and the output values for a region of Instructions.
812 /// Using the code extractor, we collect the inputs to the extracted function.
813 ///
814 /// The \p Region can be identified as needing to be ignored in this function.
815 /// It should be checked whether it should be ignored after a call to this
816 /// function.
817 ///
818 /// \param [in,out] Region - The region of code to be analyzed.
819 /// \param [out] InputGVNs - The global value numbers for the extracted
820 /// arguments.
821 /// \param [in] NotSame - The global value numbers in the region that do not
822 /// have the same constant value in the regions structurally similar to
823 /// \p Region.
824 /// \param [in] OutputMappings - The mapping of values that have been replaced
825 /// by a new output value after extraction.
826 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
827 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
828 /// as outputs.
829 static void getCodeExtractorArguments(
830     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
831     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
832     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
833   IRSimilarityCandidate &C = *Region.Candidate;
834 
835   // OverallInputs are the inputs to the region found by the CodeExtractor,
836   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
837   // allocas of values whose lifetimes are contained completely within the
838   // outlined region. PremappedInputs are the arguments found by the
839   // CodeExtractor, removing conditions such as sunken allocas, but that
840   // may need to be remapped due to the extracted output values replacing
841   // the original values. We use DummyOutputs for this first run of finding
842   // inputs and outputs since the outputs could change during findAllocas,
843   // the correct set of extracted outputs will be in the final Outputs ValueSet.
844   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
845       DummyOutputs;
846 
847   // Use the code extractor to get the inputs and outputs, without sunken
848   // allocas or removing llvm.assumes.
849   CodeExtractor *CE = Region.CE;
850   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
851   assert(Region.StartBB && "Region must have a start BasicBlock!");
852   Function *OrigF = Region.StartBB->getParent();
853   CodeExtractorAnalysisCache CEAC(*OrigF);
854   BasicBlock *Dummy = nullptr;
855 
856   // The region may be ineligible due to VarArgs in the parent function. In this
857   // case we ignore the region.
858   if (!CE->isEligible()) {
859     Region.IgnoreRegion = true;
860     return;
861   }
862 
863   // Find if any values are going to be sunk into the function when extracted
864   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
865   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
866 
867   // TODO: Support regions with sunken allocas: values whose lifetimes are
868   // contained completely within the outlined region.  These are not guaranteed
869   // to be the same in every region, so we must elevate them all to arguments
870   // when they appear.  If these values are not equal, it means there is some
871   // Input in OverallInputs that was removed for ArgInputs.
872   if (OverallInputs.size() != PremappedInputs.size()) {
873     Region.IgnoreRegion = true;
874     return;
875   }
876 
877   findConstants(C, NotSame, InputGVNs);
878 
879   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
880 
881   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
882                        ArgInputs);
883 
884   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
885   // we need to make sure they are in a deterministic order.
886   stable_sort(InputGVNs);
887 }
888 
889 /// Look over the inputs and map each input argument to an argument in the
890 /// overall function for the OutlinableRegions.  This creates a way to replace
891 /// the arguments of the extracted function with the arguments of the new
892 /// overall function.
893 ///
894 /// \param [in,out] Region - The region of code to be analyzed.
895 /// \param [in] InputGVNs - The global value numbering of the input values
896 /// collected.
897 /// \param [in] ArgInputs - The values of the arguments to the extracted
898 /// function.
899 static void
900 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
901                                         std::vector<unsigned> &InputGVNs,
902                                         SetVector<Value *> &ArgInputs) {
903 
904   IRSimilarityCandidate &C = *Region.Candidate;
905   OutlinableGroup &Group = *Region.Parent;
906 
907   // This counts the argument number in the overall function.
908   unsigned TypeIndex = 0;
909 
910   // This counts the argument number in the extracted function.
911   unsigned OriginalIndex = 0;
912 
913   // Find the mapping of the extracted arguments to the arguments for the
914   // overall function. Since there may be extra arguments in the overall
915   // function to account for the extracted constants, we have two different
916   // counters as we find extracted arguments, and as we come across overall
917   // arguments.
918 
919   // Additionally, in our first pass, for the first extracted function,
920   // we find argument locations for the canonical value numbering.  This
921   // numbering overrides any discovered location for the extracted code.
922   for (unsigned InputVal : InputGVNs) {
923     Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
924     assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?");
925     unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
926 
927     Optional<Value *> InputOpt = C.fromGVN(InputVal);
928     assert(InputOpt.hasValue() && "Global value number not found?");
929     Value *Input = InputOpt.getValue();
930 
931     DenseMap<unsigned, unsigned>::iterator AggArgIt =
932         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
933 
934     if (!Group.InputTypesSet) {
935       Group.ArgumentTypes.push_back(Input->getType());
936       // If the input value has a swifterr attribute, make sure to mark the
937       // argument in the overall function.
938       if (Input->isSwiftError()) {
939         assert(
940             !Group.SwiftErrorArgument.hasValue() &&
941             "Argument already marked with swifterr for this OutlinableGroup!");
942         Group.SwiftErrorArgument = TypeIndex;
943       }
944     }
945 
946     // Check if we have a constant. If we do add it to the overall argument
947     // number to Constant map for the region, and continue to the next input.
948     if (Constant *CST = dyn_cast<Constant>(Input)) {
949       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
950         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
951       else {
952         Group.CanonicalNumberToAggArg.insert(
953             std::make_pair(CanonicalNumber, TypeIndex));
954         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
955       }
956       TypeIndex++;
957       continue;
958     }
959 
960     // It is not a constant, we create the mapping from extracted argument list
961     // to the overall argument list, using the canonical location, if it exists.
962     assert(ArgInputs.count(Input) && "Input cannot be found!");
963 
964     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
965       if (OriginalIndex != AggArgIt->second)
966         Region.ChangedArgOrder = true;
967       Region.ExtractedArgToAgg.insert(
968           std::make_pair(OriginalIndex, AggArgIt->second));
969       Region.AggArgToExtracted.insert(
970           std::make_pair(AggArgIt->second, OriginalIndex));
971     } else {
972       Group.CanonicalNumberToAggArg.insert(
973           std::make_pair(CanonicalNumber, TypeIndex));
974       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
975       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
976     }
977     OriginalIndex++;
978     TypeIndex++;
979   }
980 
981   // If the function type definitions for the OutlinableGroup holding the region
982   // have not been set, set the length of the inputs here.  We should have the
983   // same inputs for all of the different regions contained in the
984   // OutlinableGroup since they are all structurally similar to one another.
985   if (!Group.InputTypesSet) {
986     Group.NumAggregateInputs = TypeIndex;
987     Group.InputTypesSet = true;
988   }
989 
990   Region.NumExtractedInputs = OriginalIndex;
991 }
992 
993 /// Check if the \p V has any uses outside of the region other than \p PN.
994 ///
995 /// \param V [in] - The value to check.
996 /// \param PHILoc [in] - The location in the PHINode of \p V.
997 /// \param PN [in] - The PHINode using \p V.
998 /// \param Exits [in] - The potential blocks we exit to from the outlined
999 /// region.
1000 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1001 /// \returns true if \p V has any use soutside its region other than \p PN.
1002 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1003                             SmallPtrSet<BasicBlock *, 1> &Exits,
1004                             DenseSet<BasicBlock *> &BlocksInRegion) {
1005   // We check to see if the value is used by the PHINode from some other
1006   // predecessor not included in the region.  If it is, we make sure
1007   // to keep it as an output.
1008   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1009              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1010                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1011                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1012              }))
1013     return true;
1014 
1015   // Check if the value is used by any other instructions outside the region.
1016   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1017     Instruction *I = dyn_cast<Instruction>(U);
1018     if (!I)
1019       return false;
1020 
1021     // If the use of the item is inside the region, we skip it.  Uses
1022     // inside the region give us useful information about how the item could be
1023     // used as an output.
1024     BasicBlock *Parent = I->getParent();
1025     if (BlocksInRegion.contains(Parent))
1026       return false;
1027 
1028     // If it's not a PHINode then we definitely know the use matters.  This
1029     // output value will not completely combined with another item in a PHINode
1030     // as it is directly reference by another non-phi instruction
1031     if (!isa<PHINode>(I))
1032       return true;
1033 
1034     // If we have a PHINode outside one of the exit locations, then it
1035     // can be considered an outside use as well.  If there is a PHINode
1036     // contained in the Exit where this values use matters, it will be
1037     // caught when we analyze that PHINode.
1038     if (!Exits.contains(Parent))
1039       return true;
1040 
1041     return false;
1042   });
1043 }
1044 
1045 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1046 /// considered outputs. A PHINodes is an output when more than one incoming
1047 /// value has been marked by the CodeExtractor as an output.
1048 ///
1049 /// \param CurrentExitFromRegion [in] - The block to analyze.
1050 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1051 /// region.
1052 /// \param RegionBlocks [in] - The basic blocks in the region.
1053 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1054 /// PHINodes to this as we find that they replace output values.
1055 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1056 /// totally replaced  by a PHINode.
1057 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1058 /// in PHINodes, but have other uses, and should still be considered outputs.
1059 static void analyzeExitPHIsForOutputUses(
1060     BasicBlock *CurrentExitFromRegion,
1061     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1062     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1063     DenseSet<Value *> &OutputsReplacedByPHINode,
1064     DenseSet<Value *> &OutputsWithNonPhiUses) {
1065   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1066     // Find all incoming values from the outlining region.
1067     SmallVector<unsigned, 2> IncomingVals;
1068     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1069       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1070         IncomingVals.push_back(I);
1071 
1072     // Do not process PHI if there are no predecessors from region.
1073     unsigned NumIncomingVals = IncomingVals.size();
1074     if (NumIncomingVals == 0)
1075       continue;
1076 
1077     // If there is one predecessor, we mark it as a value that needs to be kept
1078     // as an output.
1079     if (NumIncomingVals == 1) {
1080       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1081       OutputsWithNonPhiUses.insert(V);
1082       OutputsReplacedByPHINode.erase(V);
1083       continue;
1084     }
1085 
1086     // This PHINode will be used as an output value, so we add it to our list.
1087     Outputs.insert(&PN);
1088 
1089     // Not all of the incoming values should be ignored as other inputs and
1090     // outputs may have uses in outlined region.  If they have other uses
1091     // outside of the single PHINode we should not skip over it.
1092     for (unsigned Idx : IncomingVals) {
1093       Value *V = PN.getIncomingValue(Idx);
1094       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1095         OutputsWithNonPhiUses.insert(V);
1096         OutputsReplacedByPHINode.erase(V);
1097         continue;
1098       }
1099       if (!OutputsWithNonPhiUses.contains(V))
1100         OutputsReplacedByPHINode.insert(V);
1101     }
1102   }
1103 }
1104 
1105 // Represents the type for the unsigned number denoting the output number for
1106 // phi node, along with the canonical number for the exit block.
1107 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1108 // The list of canonical numbers for the incoming values to a PHINode.
1109 using CanonList = SmallVector<unsigned, 2>;
1110 // The pair type representing the set of canonical values being combined in the
1111 // PHINode, along with the location data for the PHINode.
1112 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1113 
1114 /// Encode \p PND as an integer for easy lookup based on the argument location,
1115 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1116 /// the values stored in the PHINode.
1117 ///
1118 /// \param PND - The data to hash.
1119 /// \returns The hash code of \p PND.
1120 static hash_code encodePHINodeData(PHINodeData &PND) {
1121   return llvm::hash_combine(
1122       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1123       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1124 }
1125 
1126 /// Create a special GVN for PHINodes that will be used outside of
1127 /// the region.  We create a hash code based on the Canonical number of the
1128 /// parent BasicBlock, the canonical numbering of the values stored in the
1129 /// PHINode and the aggregate argument location.  This is used to find whether
1130 /// this PHINode type has been given a canonical numbering already.  If not, we
1131 /// assign it a value and store it for later use.  The value is returned to
1132 /// identify different output schemes for the set of regions.
1133 ///
1134 /// \param Region - The region that \p PN is an output for.
1135 /// \param PN - The PHINode we are analyzing.
1136 /// \param Blocks - The blocks for the region we are analyzing.
1137 /// \param AggArgIdx - The argument \p PN will be stored into.
1138 /// \returns An optional holding the assigned canonical number, or None if
1139 /// there is some attribute of the PHINode blocking it from being used.
1140 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1141                                            PHINode *PN,
1142                                            DenseSet<BasicBlock *> &Blocks,
1143                                            unsigned AggArgIdx) {
1144   OutlinableGroup &Group = *Region.Parent;
1145   IRSimilarityCandidate &Cand = *Region.Candidate;
1146   BasicBlock *PHIBB = PN->getParent();
1147   CanonList PHIGVNs;
1148   Value *Incoming;
1149   BasicBlock *IncomingBlock;
1150   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1151     Incoming = PN->getIncomingValue(Idx);
1152     IncomingBlock = PN->getIncomingBlock(Idx);
1153     // If we cannot find a GVN, and the incoming block is included in the region
1154     // this means that the input to the PHINode is not included in the region we
1155     // are trying to analyze, meaning, that if it was outlined, we would be
1156     // adding an extra input.  We ignore this case for now, and so ignore the
1157     // region.
1158     Optional<unsigned> OGVN = Cand.getGVN(Incoming);
1159     if (!OGVN.hasValue() && (Blocks.find(IncomingBlock) != Blocks.end())) {
1160       Region.IgnoreRegion = true;
1161       return None;
1162     }
1163 
1164     // If the incoming block isn't in the region, we don't have to worry about
1165     // this incoming value.
1166     if (Blocks.find(IncomingBlock) == Blocks.end())
1167       continue;
1168 
1169     // Collect the canonical numbers of the values in the PHINode.
1170     unsigned GVN = OGVN.getValue();
1171     OGVN = Cand.getCanonicalNum(GVN);
1172     assert(OGVN.hasValue() && "No GVN found for incoming value?");
1173     PHIGVNs.push_back(*OGVN);
1174   }
1175 
1176   // Now that we have the GVNs for the incoming values, we are going to combine
1177   // them with the GVN of the incoming bock, and the output location of the
1178   // PHINode to generate a hash value representing this instance of the PHINode.
1179   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1180   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1181   Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1182   assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!");
1183 
1184   BBGVN = Cand.getCanonicalNum(BBGVN.getValue());
1185   assert(BBGVN.hasValue() &&
1186          "Could not find canonical number for the incoming block!");
1187   // Create a pair of the exit block canonical value, and the aggregate
1188   // argument location, connected to the canonical numbers stored in the
1189   // PHINode.
1190   PHINodeData TemporaryPair =
1191       std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs);
1192   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1193 
1194   // Look for and create a new entry in our connection between canonical
1195   // numbers for PHINodes, and the set of objects we just created.
1196   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1197   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1198     bool Inserted = false;
1199     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1200         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1201     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1202         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1203   }
1204 
1205   return GVNToPHIIt->second;
1206 }
1207 
1208 /// Create a mapping of the output arguments for the \p Region to the output
1209 /// arguments of the overall outlined function.
1210 ///
1211 /// \param [in,out] Region - The region of code to be analyzed.
1212 /// \param [in] Outputs - The values found by the code extractor.
1213 static void
1214 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
1215                                           SetVector<Value *> &Outputs) {
1216   OutlinableGroup &Group = *Region.Parent;
1217   IRSimilarityCandidate &C = *Region.Candidate;
1218 
1219   SmallVector<BasicBlock *> BE;
1220   DenseSet<BasicBlock *> BlocksInRegion;
1221   C.getBasicBlocks(BlocksInRegion, BE);
1222 
1223   // Find the exits to the region.
1224   SmallPtrSet<BasicBlock *, 1> Exits;
1225   for (BasicBlock *Block : BE)
1226     for (BasicBlock *Succ : successors(Block))
1227       if (!BlocksInRegion.contains(Succ))
1228         Exits.insert(Succ);
1229 
1230   // After determining which blocks exit to PHINodes, we add these PHINodes to
1231   // the set of outputs to be processed.  We also check the incoming values of
1232   // the PHINodes for whether they should no longer be considered outputs.
1233   DenseSet<Value *> OutputsReplacedByPHINode;
1234   DenseSet<Value *> OutputsWithNonPhiUses;
1235   for (BasicBlock *ExitBB : Exits)
1236     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1237                                  OutputsReplacedByPHINode,
1238                                  OutputsWithNonPhiUses);
1239 
1240   // This counts the argument number in the extracted function.
1241   unsigned OriginalIndex = Region.NumExtractedInputs;
1242 
1243   // This counts the argument number in the overall function.
1244   unsigned TypeIndex = Group.NumAggregateInputs;
1245   bool TypeFound;
1246   DenseSet<unsigned> AggArgsUsed;
1247 
1248   // Iterate over the output types and identify if there is an aggregate pointer
1249   // type whose base type matches the current output type. If there is, we mark
1250   // that we will use this output register for this value. If not we add another
1251   // type to the overall argument type list. We also store the GVNs used for
1252   // stores to identify which values will need to be moved into an special
1253   // block that holds the stores to the output registers.
1254   for (Value *Output : Outputs) {
1255     TypeFound = false;
1256     // We can do this since it is a result value, and will have a number
1257     // that is necessarily the same. BUT if in the future, the instructions
1258     // do not have to be in same order, but are functionally the same, we will
1259     // have to use a different scheme, as one-to-one correspondence is not
1260     // guaranteed.
1261     unsigned ArgumentSize = Group.ArgumentTypes.size();
1262 
1263     // If the output is combined in a PHINode, we make sure to skip over it.
1264     if (OutputsReplacedByPHINode.contains(Output))
1265       continue;
1266 
1267     unsigned AggArgIdx = 0;
1268     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1269       if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
1270         continue;
1271 
1272       if (AggArgsUsed.contains(Jdx))
1273         continue;
1274 
1275       TypeFound = true;
1276       AggArgsUsed.insert(Jdx);
1277       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1278       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1279       AggArgIdx = Jdx;
1280       break;
1281     }
1282 
1283     // We were unable to find an unused type in the output type set that matches
1284     // the output, so we add a pointer type to the argument types of the overall
1285     // function to handle this output and create a mapping to it.
1286     if (!TypeFound) {
1287       Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
1288       // Mark the new pointer type as the last value in the aggregate argument
1289       // list.
1290       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1291       AggArgsUsed.insert(ArgTypeIdx);
1292       Region.ExtractedArgToAgg.insert(
1293           std::make_pair(OriginalIndex, ArgTypeIdx));
1294       Region.AggArgToExtracted.insert(
1295           std::make_pair(ArgTypeIdx, OriginalIndex));
1296       AggArgIdx = ArgTypeIdx;
1297     }
1298 
1299     // TODO: Adapt to the extra input from the PHINode.
1300     PHINode *PN = dyn_cast<PHINode>(Output);
1301 
1302     Optional<unsigned> GVN;
1303     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1304       // Values outside the region can be combined into PHINode when we
1305       // have multiple exits. We collect both of these into a list to identify
1306       // which values are being used in the PHINode. Each list identifies a
1307       // different PHINode, and a different output. We store the PHINode as it's
1308       // own canonical value.  These canonical values are also dependent on the
1309       // output argument it is saved to.
1310 
1311       // If two PHINodes have the same canonical values, but different aggregate
1312       // argument locations, then they will have distinct Canonical Values.
1313       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1314       if (!GVN.hasValue())
1315         return;
1316     } else {
1317       // If we do not have a PHINode we use the global value numbering for the
1318       // output value, to find the canonical number to add to the set of stored
1319       // values.
1320       GVN = C.getGVN(Output);
1321       GVN = C.getCanonicalNum(*GVN);
1322     }
1323 
1324     // Each region has a potentially unique set of outputs.  We save which
1325     // values are output in a list of canonical values so we can differentiate
1326     // among the different store schemes.
1327     Region.GVNStores.push_back(*GVN);
1328 
1329     OriginalIndex++;
1330     TypeIndex++;
1331   }
1332 
1333   // We sort the stored values to make sure that we are not affected by analysis
1334   // order when determining what combination of items were stored.
1335   stable_sort(Region.GVNStores);
1336 }
1337 
1338 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1339                                       DenseSet<unsigned> &NotSame) {
1340   std::vector<unsigned> Inputs;
1341   SetVector<Value *> ArgInputs, Outputs;
1342 
1343   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1344                             Outputs);
1345 
1346   if (Region.IgnoreRegion)
1347     return;
1348 
1349   // Map the inputs found by the CodeExtractor to the arguments found for
1350   // the overall function.
1351   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1352 
1353   // Map the outputs found by the CodeExtractor to the arguments found for
1354   // the overall function.
1355   findExtractedOutputToOverallOutputMapping(Region, Outputs);
1356 }
1357 
1358 /// Replace the extracted function in the Region with a call to the overall
1359 /// function constructed from the deduplicated similar regions, replacing and
1360 /// remapping the values passed to the extracted function as arguments to the
1361 /// new arguments of the overall function.
1362 ///
1363 /// \param [in] M - The module to outline from.
1364 /// \param [in] Region - The regions of extracted code to be replaced with a new
1365 /// function.
1366 /// \returns a call instruction with the replaced function.
1367 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1368   std::vector<Value *> NewCallArgs;
1369   DenseMap<unsigned, unsigned>::iterator ArgPair;
1370 
1371   OutlinableGroup &Group = *Region.Parent;
1372   CallInst *Call = Region.Call;
1373   assert(Call && "Call to replace is nullptr?");
1374   Function *AggFunc = Group.OutlinedFunction;
1375   assert(AggFunc && "Function to replace with is nullptr?");
1376 
1377   // If the arguments are the same size, there are not values that need to be
1378   // made into an argument, the argument ordering has not been change, or
1379   // different output registers to handle.  We can simply replace the called
1380   // function in this case.
1381   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1382     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1383                       << *AggFunc << " with same number of arguments\n");
1384     Call->setCalledFunction(AggFunc);
1385     return Call;
1386   }
1387 
1388   // We have a different number of arguments than the new function, so
1389   // we need to use our previously mappings off extracted argument to overall
1390   // function argument, and constants to overall function argument to create the
1391   // new argument list.
1392   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1393 
1394     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1395         Group.OutputGVNCombinations.size() > 1) {
1396       // If we are on the last argument, and we need to differentiate between
1397       // output blocks, add an integer to the argument list to determine
1398       // what block to take
1399       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1400                         << Region.OutputBlockNum << "\n");
1401       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1402                                              Region.OutputBlockNum));
1403       continue;
1404     }
1405 
1406     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1407     if (ArgPair != Region.AggArgToExtracted.end()) {
1408       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1409       // If we found the mapping from the extracted function to the overall
1410       // function, we simply add it to the argument list.  We use the same
1411       // value, it just needs to honor the new order of arguments.
1412       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1413                         << *ArgumentValue << "\n");
1414       NewCallArgs.push_back(ArgumentValue);
1415       continue;
1416     }
1417 
1418     // If it is a constant, we simply add it to the argument list as a value.
1419     if (Region.AggArgToConstant.find(AggArgIdx) !=
1420         Region.AggArgToConstant.end()) {
1421       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1422       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1423                         << *CST << "\n");
1424       NewCallArgs.push_back(CST);
1425       continue;
1426     }
1427 
1428     // Add a nullptr value if the argument is not found in the extracted
1429     // function.  If we cannot find a value, it means it is not in use
1430     // for the region, so we should not pass anything to it.
1431     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1432     NewCallArgs.push_back(ConstantPointerNull::get(
1433         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1434   }
1435 
1436   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1437                     << *AggFunc << " with new set of arguments\n");
1438   // Create the new call instruction and erase the old one.
1439   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1440                           Call);
1441 
1442   // It is possible that the call to the outlined function is either the first
1443   // instruction is in the new block, the last instruction, or both.  If either
1444   // of these is the case, we need to make sure that we replace the instruction
1445   // in the IRInstructionData struct with the new call.
1446   CallInst *OldCall = Region.Call;
1447   if (Region.NewFront->Inst == OldCall)
1448     Region.NewFront->Inst = Call;
1449   if (Region.NewBack->Inst == OldCall)
1450     Region.NewBack->Inst = Call;
1451 
1452   // Transfer any debug information.
1453   Call->setDebugLoc(Region.Call->getDebugLoc());
1454   // Since our output may determine which branch we go to, we make sure to
1455   // propogate this new call value through the module.
1456   OldCall->replaceAllUsesWith(Call);
1457 
1458   // Remove the old instruction.
1459   OldCall->eraseFromParent();
1460   Region.Call = Call;
1461 
1462   // Make sure that the argument in the new function has the SwiftError
1463   // argument.
1464   if (Group.SwiftErrorArgument.hasValue())
1465     Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
1466                        Attribute::SwiftError);
1467 
1468   return Call;
1469 }
1470 
1471 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1472 /// for \p RetVal.
1473 ///
1474 /// \param Group - The OutlinableGroup containing the information about the
1475 /// overall outlined function.
1476 /// \param RetVal - The return value or exit option that we are currently
1477 /// evaluating.
1478 /// \returns The found or newly created BasicBlock to contain the needed
1479 /// PHINodes to be used as outputs.
1480 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1481   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1482       ReturnBlockForRetVal;
1483   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1484   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1485   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1486          "Could not find output value!");
1487   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1488 
1489   // Find if a PHIBlock exists for this return value already.  If it is
1490   // the first time we are analyzing this, we will not, so we record it.
1491   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1492   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1493     return PhiBlockForRetVal->second;
1494 
1495   // If we did not find a block, we create one, and insert it into the
1496   // overall function and record it.
1497   bool Inserted = false;
1498   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1499                                             ReturnBB->getParent());
1500   std::tie(PhiBlockForRetVal, Inserted) =
1501       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1502 
1503   // We find the predecessors of the return block in the newly created outlined
1504   // function in order to point them to the new PHIBlock rather than the already
1505   // existing return block.
1506   SmallVector<BranchInst *, 2> BranchesToChange;
1507   for (BasicBlock *Pred : predecessors(ReturnBB))
1508     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1509 
1510   // Now we mark the branch instructions found, and change the references of the
1511   // return block to the newly created PHIBlock.
1512   for (BranchInst *BI : BranchesToChange)
1513     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1514       if (BI->getSuccessor(Succ) != ReturnBB)
1515         continue;
1516       BI->setSuccessor(Succ, PHIBlock);
1517     }
1518 
1519   BranchInst::Create(ReturnBB, PHIBlock);
1520 
1521   return PhiBlockForRetVal->second;
1522 }
1523 
1524 /// For the function call now representing the \p Region, find the passed value
1525 /// to that call that represents Argument \p A at the call location if the
1526 /// call has already been replaced with a call to the  overall, aggregate
1527 /// function.
1528 ///
1529 /// \param A - The Argument to get the passed value for.
1530 /// \param Region - The extracted Region corresponding to the outlined function.
1531 /// \returns The Value representing \p A at the call site.
1532 static Value *
1533 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1534                                            const OutlinableRegion &Region) {
1535   // If we don't need to adjust the argument number at all (since the call
1536   // has already been replaced by a call to the overall outlined function)
1537   // we can just get the specified argument.
1538   return Region.Call->getArgOperand(A->getArgNo());
1539 }
1540 
1541 /// For the function call now representing the \p Region, find the passed value
1542 /// to that call that represents Argument \p A at the call location if the
1543 /// call has only been replaced by the call to the aggregate function.
1544 ///
1545 /// \param A - The Argument to get the passed value for.
1546 /// \param Region - The extracted Region corresponding to the outlined function.
1547 /// \returns The Value representing \p A at the call site.
1548 static Value *
1549 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1550                                            const OutlinableRegion &Region) {
1551   unsigned ArgNum = A->getArgNo();
1552 
1553   // If it is a constant, we can look at our mapping from when we created
1554   // the outputs to figure out what the constant value is.
1555   if (Region.AggArgToConstant.count(ArgNum))
1556     return Region.AggArgToConstant.find(ArgNum)->second;
1557 
1558   // If it is not a constant, and we are not looking at the overall function, we
1559   // need to adjust which argument we are looking at.
1560   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1561   return Region.Call->getArgOperand(ArgNum);
1562 }
1563 
1564 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1565 ///
1566 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1567 /// \param Region [in] - The OutlinableRegion containing \p PN.
1568 /// \param OutputMappings [in] - The mapping of output values from outlined
1569 /// region to their original values.
1570 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1571 /// \p PN paired with their incoming block.
1572 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1573 /// of \p Region rather than the overall function's call.
1574 static void findCanonNumsForPHI(
1575     PHINode *PN, OutlinableRegion &Region,
1576     const DenseMap<Value *, Value *> &OutputMappings,
1577     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1578     bool ReplacedWithOutlinedCall = true) {
1579   // Iterate over the incoming values.
1580   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1581     Value *IVal = PN->getIncomingValue(Idx);
1582     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1583     // If we have an argument as incoming value, we need to grab the passed
1584     // value from the call itself.
1585     if (Argument *A = dyn_cast<Argument>(IVal)) {
1586       if (ReplacedWithOutlinedCall)
1587         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1588       else
1589         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1590     }
1591 
1592     // Get the original value if it has been replaced by an output value.
1593     IVal = findOutputMapping(OutputMappings, IVal);
1594 
1595     // Find and add the canonical number for the incoming value.
1596     Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1597     assert(GVN.hasValue() && "No GVN for incoming value");
1598     Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1599     assert(CanonNum.hasValue() && "No Canonical Number for GVN");
1600     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1601   }
1602 }
1603 
1604 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1605 /// in order to condense the number of instructions added to the outlined
1606 /// function.
1607 ///
1608 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1609 /// \param Region [in] - The OutlinableRegion containing \p PN.
1610 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1611 /// \p PN in.
1612 /// \param OutputMappings [in] - The mapping of output values from outlined
1613 /// region to their original values.
1614 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1615 /// matched.
1616 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1617 static PHINode*
1618 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1619                        BasicBlock *OverallPhiBlock,
1620                        const DenseMap<Value *, Value *> &OutputMappings,
1621                        DenseSet<PHINode *> &UsedPHIs) {
1622   OutlinableGroup &Group = *Region.Parent;
1623 
1624 
1625   // A list of the canonical numbering assigned to each incoming value, paired
1626   // with the incoming block for the PHINode passed into this function.
1627   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1628 
1629   // We have to use the extracted function since we have merged this region into
1630   // the overall function yet.  We make sure to reassign the argument numbering
1631   // since it is possible that the argument ordering is different between the
1632   // functions.
1633   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1634                       /* ReplacedWithOutlinedCall = */ false);
1635 
1636   OutlinableRegion *FirstRegion = Group.Regions[0];
1637 
1638   // A list of the canonical numbering assigned to each incoming value, paired
1639   // with the incoming block for the PHINode that we are currently comparing
1640   // the passed PHINode to.
1641   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1642 
1643   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1644   // the uses of the PHINode we are searching for, with the found PHINode.
1645   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1646     // If this PHINode has already been matched to another PHINode to be merged,
1647     // we skip it.
1648     if (UsedPHIs.find(&CurrPN) != UsedPHIs.end())
1649       continue;
1650 
1651     CurrentCanonNums.clear();
1652     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1653                         /* ReplacedWithOutlinedCall = */ true);
1654 
1655     // If the list of incoming values is not the same length, then they cannot
1656     // match since there is not an analogue for each incoming value.
1657     if (PNCanonNums.size() != CurrentCanonNums.size())
1658       continue;
1659 
1660     bool FoundMatch = true;
1661 
1662     // We compare the canonical value for each incoming value in the passed
1663     // in PHINode to one already present in the outlined region.  If the
1664     // incoming values do not match, then the PHINodes do not match.
1665 
1666     // We also check to make sure that the incoming block matches as well by
1667     // finding the corresponding incoming block in the combined outlined region
1668     // for the current outlined region.
1669     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1670       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1671       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1672       if (ToCompareTo.first != ToAdd.first) {
1673         FoundMatch = false;
1674         break;
1675       }
1676 
1677       BasicBlock *CorrespondingBlock =
1678           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1679       assert(CorrespondingBlock && "Found block is nullptr");
1680       if (CorrespondingBlock != ToCompareTo.second) {
1681         FoundMatch = false;
1682         break;
1683       }
1684     }
1685 
1686     // If all incoming values and branches matched, then we can merge
1687     // into the found PHINode.
1688     if (FoundMatch) {
1689       UsedPHIs.insert(&CurrPN);
1690       return &CurrPN;
1691     }
1692   }
1693 
1694   // If we've made it here, it means we weren't able to replace the PHINode, so
1695   // we must insert it ourselves.
1696   PHINode *NewPN = cast<PHINode>(PN.clone());
1697   NewPN->insertBefore(&*OverallPhiBlock->begin());
1698   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1699        Idx++) {
1700     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1701     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1702 
1703     // Find corresponding basic block in the overall function for the incoming
1704     // block.
1705     BasicBlock *BlockToUse =
1706         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1707     NewPN->setIncomingBlock(Idx, BlockToUse);
1708 
1709     // If we have an argument we make sure we replace using the argument from
1710     // the correct function.
1711     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1712       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1713       NewPN->setIncomingValue(Idx, Val);
1714       continue;
1715     }
1716 
1717     // Find the corresponding value in the overall function.
1718     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1719     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1720     assert(Val && "Value is nullptr?");
1721     NewPN->setIncomingValue(Idx, Val);
1722   }
1723   return NewPN;
1724 }
1725 
1726 // Within an extracted function, replace the argument uses of the extracted
1727 // region with the arguments of the function for an OutlinableGroup.
1728 //
1729 /// \param [in] Region - The region of extracted code to be changed.
1730 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1731 /// region.
1732 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1733 /// function to define the overall outlined function for all the regions, or
1734 /// if we are operating on one of the following regions.
1735 static void
1736 replaceArgumentUses(OutlinableRegion &Region,
1737                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1738                     const DenseMap<Value *, Value *> &OutputMappings,
1739                     bool FirstFunction = false) {
1740   OutlinableGroup &Group = *Region.Parent;
1741   assert(Region.ExtractedFunction && "Region has no extracted function?");
1742 
1743   Function *DominatingFunction = Region.ExtractedFunction;
1744   if (FirstFunction)
1745     DominatingFunction = Group.OutlinedFunction;
1746   DominatorTree DT(*DominatingFunction);
1747   DenseSet<PHINode *> UsedPHIs;
1748 
1749   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1750        ArgIdx++) {
1751     assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
1752                Region.ExtractedArgToAgg.end() &&
1753            "No mapping from extracted to outlined?");
1754     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1755     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1756     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1757     // The argument is an input, so we can simply replace it with the overall
1758     // argument value
1759     if (ArgIdx < Region.NumExtractedInputs) {
1760       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1761                         << *Region.ExtractedFunction << " with " << *AggArg
1762                         << " in function " << *Group.OutlinedFunction << "\n");
1763       Arg->replaceAllUsesWith(AggArg);
1764       continue;
1765     }
1766 
1767     // If we are replacing an output, we place the store value in its own
1768     // block inside the overall function before replacing the use of the output
1769     // in the function.
1770     assert(Arg->hasOneUse() && "Output argument can only have one use");
1771     User *InstAsUser = Arg->user_back();
1772     assert(InstAsUser && "User is nullptr!");
1773 
1774     Instruction *I = cast<Instruction>(InstAsUser);
1775     BasicBlock *BB = I->getParent();
1776     SmallVector<BasicBlock *, 4> Descendants;
1777     DT.getDescendants(BB, Descendants);
1778     bool EdgeAdded = false;
1779     if (Descendants.size() == 0) {
1780       EdgeAdded = true;
1781       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1782       DT.getDescendants(BB, Descendants);
1783     }
1784 
1785     // Iterate over the following blocks, looking for return instructions,
1786     // if we find one, find the corresponding output block for the return value
1787     // and move our store instruction there.
1788     for (BasicBlock *DescendBB : Descendants) {
1789       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1790       if (!RI)
1791         continue;
1792       Value *RetVal = RI->getReturnValue();
1793       auto VBBIt = OutputBBs.find(RetVal);
1794       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1795 
1796       // If this is storing a PHINode, we must make sure it is included in the
1797       // overall function.
1798       StoreInst *SI = cast<StoreInst>(I);
1799 
1800       Value *ValueOperand = SI->getValueOperand();
1801 
1802       StoreInst *NewI = cast<StoreInst>(I->clone());
1803       NewI->setDebugLoc(DebugLoc());
1804       BasicBlock *OutputBB = VBBIt->second;
1805       OutputBB->getInstList().push_back(NewI);
1806       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1807                         << *OutputBB << "\n");
1808 
1809       // If this is storing a PHINode, we must make sure it is included in the
1810       // overall function.
1811       if (!isa<PHINode>(ValueOperand) ||
1812           Region.Candidate->getGVN(ValueOperand).hasValue()) {
1813         if (FirstFunction)
1814           continue;
1815         Value *CorrVal =
1816             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1817         assert(CorrVal && "Value is nullptr?");
1818         NewI->setOperand(0, CorrVal);
1819         continue;
1820       }
1821       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1822       // If it has a value, it was not split by the code extractor, which
1823       // is what we are looking for.
1824       if (Region.Candidate->getGVN(PN).hasValue())
1825         continue;
1826 
1827       // We record the parent block for the PHINode in the Region so that
1828       // we can exclude it from checks later on.
1829       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1830 
1831       // If this is the first function, we do not need to worry about mergiing
1832       // this with any other block in the overall outlined function, so we can
1833       // just continue.
1834       if (FirstFunction) {
1835         BasicBlock *PHIBlock = PN->getParent();
1836         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1837         continue;
1838       }
1839 
1840       // We look for the aggregate block that contains the PHINodes leading into
1841       // this exit path. If we can't find one, we create one.
1842       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1843 
1844       // For our PHINode, we find the combined canonical numbering, and
1845       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1846       // cannot, we copy the PHINode and move it into this new block.
1847       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1848                                               OutputMappings, UsedPHIs);
1849       NewI->setOperand(0, NewPN);
1850     }
1851 
1852     // If we added an edge for basic blocks without a predecessor, we remove it
1853     // here.
1854     if (EdgeAdded)
1855       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1856     I->eraseFromParent();
1857 
1858     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1859                       << *Region.ExtractedFunction << " with " << *AggArg
1860                       << " in function " << *Group.OutlinedFunction << "\n");
1861     Arg->replaceAllUsesWith(AggArg);
1862   }
1863 }
1864 
1865 /// Within an extracted function, replace the constants that need to be lifted
1866 /// into arguments with the actual argument.
1867 ///
1868 /// \param Region [in] - The region of extracted code to be changed.
1869 void replaceConstants(OutlinableRegion &Region) {
1870   OutlinableGroup &Group = *Region.Parent;
1871   // Iterate over the constants that need to be elevated into arguments
1872   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1873     unsigned AggArgIdx = Const.first;
1874     Function *OutlinedFunction = Group.OutlinedFunction;
1875     assert(OutlinedFunction && "Overall Function is not defined?");
1876     Constant *CST = Const.second;
1877     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1878     // Identify the argument it will be elevated to, and replace instances of
1879     // that constant in the function.
1880 
1881     // TODO: If in the future constants do not have one global value number,
1882     // i.e. a constant 1 could be mapped to several values, this check will
1883     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1884 
1885     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1886                       << " in function " << *OutlinedFunction << " with "
1887                       << *Arg << "\n");
1888     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1889       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1890         return I->getFunction() == OutlinedFunction;
1891       return false;
1892     });
1893   }
1894 }
1895 
1896 /// It is possible that there is a basic block that already performs the same
1897 /// stores. This returns a duplicate block, if it exists
1898 ///
1899 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1900 /// \param OutputStoreBBs [in] The existing output blocks.
1901 /// \returns an optional value with the number output block if there is a match.
1902 Optional<unsigned> findDuplicateOutputBlock(
1903     DenseMap<Value *, BasicBlock *> &OutputBBs,
1904     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1905 
1906   bool Mismatch = false;
1907   unsigned MatchingNum = 0;
1908   // We compare the new set output blocks to the other sets of output blocks.
1909   // If they are the same number, and have identical instructions, they are
1910   // considered to be the same.
1911   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1912     Mismatch = false;
1913     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1914       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1915           OutputBBs.find(VToB.first);
1916       if (OutputBBIt == OutputBBs.end()) {
1917         Mismatch = true;
1918         break;
1919       }
1920 
1921       BasicBlock *CompBB = VToB.second;
1922       BasicBlock *OutputBB = OutputBBIt->second;
1923       if (CompBB->size() - 1 != OutputBB->size()) {
1924         Mismatch = true;
1925         break;
1926       }
1927 
1928       BasicBlock::iterator NIt = OutputBB->begin();
1929       for (Instruction &I : *CompBB) {
1930         if (isa<BranchInst>(&I))
1931           continue;
1932 
1933         if (!I.isIdenticalTo(&(*NIt))) {
1934           Mismatch = true;
1935           break;
1936         }
1937 
1938         NIt++;
1939       }
1940     }
1941 
1942     if (!Mismatch)
1943       return MatchingNum;
1944 
1945     MatchingNum++;
1946   }
1947 
1948   return None;
1949 }
1950 
1951 /// Remove empty output blocks from the outlined region.
1952 ///
1953 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
1954 /// Region.
1955 /// \param Region - The OutlinableRegion we are analyzing.
1956 static bool
1957 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
1958                             OutlinableRegion &Region) {
1959   bool AllRemoved = true;
1960   Value *RetValueForBB;
1961   BasicBlock *NewBB;
1962   SmallVector<Value *, 4> ToRemove;
1963   // Iterate over the output blocks created in the outlined section.
1964   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
1965     RetValueForBB = VtoBB.first;
1966     NewBB = VtoBB.second;
1967 
1968     // If there are no instructions, we remove it from the module, and also
1969     // mark the value for removal from the return value to output block mapping.
1970     if (NewBB->size() == 0) {
1971       NewBB->eraseFromParent();
1972       ToRemove.push_back(RetValueForBB);
1973       continue;
1974     }
1975 
1976     // Mark that we could not remove all the blocks since they were not all
1977     // empty.
1978     AllRemoved = false;
1979   }
1980 
1981   // Remove the return value from the mapping.
1982   for (Value *V : ToRemove)
1983     BlocksToPrune.erase(V);
1984 
1985   // Mark the region as having the no output scheme.
1986   if (AllRemoved)
1987     Region.OutputBlockNum = -1;
1988 
1989   return AllRemoved;
1990 }
1991 
1992 /// For the outlined section, move needed the StoreInsts for the output
1993 /// registers into their own block. Then, determine if there is a duplicate
1994 /// output block already created.
1995 ///
1996 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
1997 /// \param [in] Region - The OutlinableRegion that is being analyzed.
1998 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
1999 /// placed in.
2000 /// \param [in] EndBBs - the final blocks of the extracted function.
2001 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2002 /// been replaced by a new output value.
2003 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2004 static void alignOutputBlockWithAggFunc(
2005     OutlinableGroup &OG, OutlinableRegion &Region,
2006     DenseMap<Value *, BasicBlock *> &OutputBBs,
2007     DenseMap<Value *, BasicBlock *> &EndBBs,
2008     const DenseMap<Value *, Value *> &OutputMappings,
2009     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2010   // If none of the output blocks have any instructions, this means that we do
2011   // not have to determine if it matches any of the other output schemes, and we
2012   // don't have to do anything else.
2013   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2014     return;
2015 
2016   // Determine is there is a duplicate set of blocks.
2017   Optional<unsigned> MatchingBB =
2018       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2019 
2020   // If there is, we remove the new output blocks.  If it does not,
2021   // we add it to our list of sets of output blocks.
2022   if (MatchingBB.hasValue()) {
2023     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2024                       << Region.ExtractedFunction << " to "
2025                       << MatchingBB.getValue());
2026 
2027     Region.OutputBlockNum = MatchingBB.getValue();
2028     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2029       VtoBB.second->eraseFromParent();
2030     return;
2031   }
2032 
2033   Region.OutputBlockNum = OutputStoreBBs.size();
2034 
2035   Value *RetValueForBB;
2036   BasicBlock *NewBB;
2037   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2038   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2039     RetValueForBB = VtoBB.first;
2040     NewBB = VtoBB.second;
2041     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2042         EndBBs.find(RetValueForBB);
2043     LLVM_DEBUG(dbgs() << "Create output block for region in"
2044                       << Region.ExtractedFunction << " to "
2045                       << *NewBB);
2046     BranchInst::Create(VBBIt->second, NewBB);
2047     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2048   }
2049 }
2050 
2051 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2052 /// before creating a basic block for each \p NewMap, and inserting into the new
2053 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2054 ///
2055 /// \param OldMap [in] - The mapping to base the new mapping off of.
2056 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2057 /// \param ParentFunc [in] - The function to put the new basic block in.
2058 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2059 /// by an index value.
2060 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2061                                        DenseMap<Value *, BasicBlock *> &NewMap,
2062                                        Function *ParentFunc, Twine BaseName) {
2063   unsigned Idx = 0;
2064   std::vector<Value *> SortedKeys;
2065 
2066   getSortedConstantKeys(SortedKeys, OldMap);
2067 
2068   for (Value *RetVal : SortedKeys) {
2069     BasicBlock *NewBB = BasicBlock::Create(
2070         ParentFunc->getContext(),
2071         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2072         ParentFunc);
2073     NewMap.insert(std::make_pair(RetVal, NewBB));
2074   }
2075 }
2076 
2077 /// Create the switch statement for outlined function to differentiate between
2078 /// all the output blocks.
2079 ///
2080 /// For the outlined section, determine if an outlined block already exists that
2081 /// matches the needed stores for the extracted section.
2082 /// \param [in] M - The module we are outlining from.
2083 /// \param [in] OG - The group of regions to be outlined.
2084 /// \param [in] EndBBs - The final blocks of the extracted function.
2085 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2086 void createSwitchStatement(
2087     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2088     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2089   // We only need the switch statement if there is more than one store
2090   // combination, or there is more than one set of output blocks.  The first
2091   // will occur when we store different sets of values for two different
2092   // regions.  The second will occur when we have two outputs that are combined
2093   // in a PHINode outside of the region in one outlined instance, and are used
2094   // seaparately in another. This will create the same set of OutputGVNs, but
2095   // will generate two different output schemes.
2096   if (OG.OutputGVNCombinations.size() > 1) {
2097     Function *AggFunc = OG.OutlinedFunction;
2098     // Create a final block for each different return block.
2099     DenseMap<Value *, BasicBlock *> ReturnBBs;
2100     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2101 
2102     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2103       std::pair<Value *, BasicBlock *> &OutputBlock =
2104           *OG.EndBBs.find(RetBlockPair.first);
2105       BasicBlock *ReturnBlock = RetBlockPair.second;
2106       BasicBlock *EndBB = OutputBlock.second;
2107       Instruction *Term = EndBB->getTerminator();
2108       // Move the return value to the final block instead of the original exit
2109       // stub.
2110       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2111       // Put the switch statement in the old end basic block for the function
2112       // with a fall through to the new return block.
2113       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2114                         << OutputStoreBBs.size() << "\n");
2115       SwitchInst *SwitchI =
2116           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2117                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2118 
2119       unsigned Idx = 0;
2120       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2121         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2122             OutputStoreBB.find(OutputBlock.first);
2123 
2124         if (OSBBIt == OutputStoreBB.end())
2125           continue;
2126 
2127         BasicBlock *BB = OSBBIt->second;
2128         SwitchI->addCase(
2129             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2130         Term = BB->getTerminator();
2131         Term->setSuccessor(0, ReturnBlock);
2132         Idx++;
2133       }
2134     }
2135     return;
2136   }
2137 
2138   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2139 
2140   // If there needs to be stores, move them from the output blocks to their
2141   // corresponding ending block.  We do not check that the OutputGVNCombinations
2142   // is equal to 1 here since that could just been the case where there are 0
2143   // outputs. Instead, we check whether there is more than one set of output
2144   // blocks since this is the only case where we would have to move the
2145   // stores, and erase the extraneous blocks.
2146   if (OutputStoreBBs.size() == 1) {
2147     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2148                       << *OG.OutlinedFunction << "\n");
2149     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2150     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2151       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2152           EndBBs.find(VBPair.first);
2153       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2154       BasicBlock *EndBB = EndBBIt->second;
2155       BasicBlock *OutputBB = VBPair.second;
2156       Instruction *Term = OutputBB->getTerminator();
2157       Term->eraseFromParent();
2158       Term = EndBB->getTerminator();
2159       moveBBContents(*OutputBB, *EndBB);
2160       Term->moveBefore(*EndBB, EndBB->end());
2161       OutputBB->eraseFromParent();
2162     }
2163   }
2164 }
2165 
2166 /// Fill the new function that will serve as the replacement function for all of
2167 /// the extracted regions of a certain structure from the first region in the
2168 /// list of regions.  Replace this first region's extracted function with the
2169 /// new overall function.
2170 ///
2171 /// \param [in] M - The module we are outlining from.
2172 /// \param [in] CurrentGroup - The group of regions to be outlined.
2173 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2174 /// set of stores needed for the different functions.
2175 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2176 /// once outlining is complete.
2177 /// \param [in] OutputMappings - Extracted functions to erase from module
2178 /// once outlining is complete.
2179 static void fillOverallFunction(
2180     Module &M, OutlinableGroup &CurrentGroup,
2181     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2182     std::vector<Function *> &FuncsToRemove,
2183     const DenseMap<Value *, Value *> &OutputMappings) {
2184   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2185 
2186   // Move first extracted function's instructions into new function.
2187   LLVM_DEBUG(dbgs() << "Move instructions from "
2188                     << *CurrentOS->ExtractedFunction << " to instruction "
2189                     << *CurrentGroup.OutlinedFunction << "\n");
2190   moveFunctionData(*CurrentOS->ExtractedFunction,
2191                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2192 
2193   // Transfer the attributes from the function to the new function.
2194   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2195     CurrentGroup.OutlinedFunction->addFnAttr(A);
2196 
2197   // Create a new set of output blocks for the first extracted function.
2198   DenseMap<Value *, BasicBlock *> NewBBs;
2199   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2200                              CurrentGroup.OutlinedFunction, "output_block_0");
2201   CurrentOS->OutputBlockNum = 0;
2202 
2203   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2204   replaceConstants(*CurrentOS);
2205 
2206   // We first identify if any output blocks are empty, if they are we remove
2207   // them. We then create a branch instruction to the basic block to the return
2208   // block for the function for each non empty output block.
2209   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2210     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2211     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2212       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2213           CurrentGroup.EndBBs.find(VToBB.first);
2214       BasicBlock *EndBB = VBBIt->second;
2215       BranchInst::Create(EndBB, VToBB.second);
2216       OutputStoreBBs.back().insert(VToBB);
2217     }
2218   }
2219 
2220   // Replace the call to the extracted function with the outlined function.
2221   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2222 
2223   // We only delete the extracted functions at the end since we may need to
2224   // reference instructions contained in them for mapping purposes.
2225   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2226 }
2227 
2228 void IROutliner::deduplicateExtractedSections(
2229     Module &M, OutlinableGroup &CurrentGroup,
2230     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2231   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2232 
2233   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2234 
2235   OutlinableRegion *CurrentOS;
2236 
2237   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2238                       OutputMappings);
2239 
2240   std::vector<Value *> SortedKeys;
2241   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2242     CurrentOS = CurrentGroup.Regions[Idx];
2243     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2244                                                *CurrentOS->ExtractedFunction);
2245 
2246     // Create a set of BasicBlocks, one for each return block, to hold the
2247     // needed store instructions.
2248     DenseMap<Value *, BasicBlock *> NewBBs;
2249     createAndInsertBasicBlocks(
2250         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2251         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2252     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2253     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2254                                 CurrentGroup.EndBBs, OutputMappings,
2255                                 OutputStoreBBs);
2256 
2257     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2258     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2259   }
2260 
2261   // Create a switch statement to handle the different output schemes.
2262   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2263 
2264   OutlinedFunctionNum++;
2265 }
2266 
2267 /// Checks that the next instruction in the InstructionDataList matches the
2268 /// next instruction in the module.  If they do not, there could be the
2269 /// possibility that extra code has been inserted, and we must ignore it.
2270 ///
2271 /// \param ID - The IRInstructionData to check the next instruction of.
2272 /// \returns true if the InstructionDataList and actual instruction match.
2273 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2274   // We check if there is a discrepancy between the InstructionDataList
2275   // and the actual next instruction in the module.  If there is, it means
2276   // that an extra instruction was added, likely by the CodeExtractor.
2277 
2278   // Since we do not have any similarity data about this particular
2279   // instruction, we cannot confidently outline it, and must discard this
2280   // candidate.
2281   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2282   Instruction *NextIDLInst = NextIDIt->Inst;
2283   Instruction *NextModuleInst = nullptr;
2284   if (!ID.Inst->isTerminator())
2285     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2286   else if (NextIDLInst != nullptr)
2287     NextModuleInst =
2288         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2289 
2290   if (NextIDLInst && NextIDLInst != NextModuleInst)
2291     return false;
2292 
2293   return true;
2294 }
2295 
2296 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2297     const OutlinableRegion &Region) {
2298   IRSimilarityCandidate *IRSC = Region.Candidate;
2299   unsigned StartIdx = IRSC->getStartIdx();
2300   unsigned EndIdx = IRSC->getEndIdx();
2301 
2302   // A check to make sure that we are not about to attempt to outline something
2303   // that has already been outlined.
2304   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2305     if (Outlined.contains(Idx))
2306       return false;
2307 
2308   // We check if the recorded instruction matches the actual next instruction,
2309   // if it does not, we fix it in the InstructionDataList.
2310   if (!Region.Candidate->backInstruction()->isTerminator()) {
2311     Instruction *NewEndInst =
2312         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2313     assert(NewEndInst && "Next instruction is a nullptr?");
2314     if (Region.Candidate->end()->Inst != NewEndInst) {
2315       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2316       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2317           IRInstructionData(*NewEndInst,
2318                             InstructionClassifier.visit(*NewEndInst), *IDL);
2319 
2320       // Insert the first IRInstructionData of the new region after the
2321       // last IRInstructionData of the IRSimilarityCandidate.
2322       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2323     }
2324   }
2325 
2326   return none_of(*IRSC, [this](IRInstructionData &ID) {
2327     if (!nextIRInstructionDataMatchesNextInst(ID))
2328       return true;
2329 
2330     return !this->InstructionClassifier.visit(ID.Inst);
2331   });
2332 }
2333 
2334 void IROutliner::pruneIncompatibleRegions(
2335     std::vector<IRSimilarityCandidate> &CandidateVec,
2336     OutlinableGroup &CurrentGroup) {
2337   bool PreviouslyOutlined;
2338 
2339   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2340   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2341                                const IRSimilarityCandidate &RHS) {
2342     return LHS.getStartIdx() < RHS.getStartIdx();
2343   });
2344 
2345   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2346   // Since outlining a call and a branch instruction will be the same as only
2347   // outlinining a call instruction, we ignore it as a space saving.
2348   if (FirstCandidate.getLength() == 2) {
2349     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2350         isa<BranchInst>(FirstCandidate.back()->Inst))
2351       return;
2352   }
2353 
2354   unsigned CurrentEndIdx = 0;
2355   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2356     PreviouslyOutlined = false;
2357     unsigned StartIdx = IRSC.getStartIdx();
2358     unsigned EndIdx = IRSC.getEndIdx();
2359 
2360     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2361       if (Outlined.contains(Idx)) {
2362         PreviouslyOutlined = true;
2363         break;
2364       }
2365 
2366     if (PreviouslyOutlined)
2367       continue;
2368 
2369     // Check over the instructions, and if the basic block has its address
2370     // taken for use somewhere else, we do not outline that block.
2371     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2372       return ID.Inst->getParent()->hasAddressTaken();
2373     });
2374 
2375     if (BBHasAddressTaken)
2376       continue;
2377 
2378     if (IRSC.getFunction()->hasOptNone())
2379       continue;
2380 
2381     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2382         !OutlineFromLinkODRs)
2383       continue;
2384 
2385     // Greedily prune out any regions that will overlap with already chosen
2386     // regions.
2387     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2388       continue;
2389 
2390     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2391       if (!nextIRInstructionDataMatchesNextInst(ID))
2392         return true;
2393 
2394       return !this->InstructionClassifier.visit(ID.Inst);
2395     });
2396 
2397     if (BadInst)
2398       continue;
2399 
2400     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2401         OutlinableRegion(IRSC, CurrentGroup);
2402     CurrentGroup.Regions.push_back(OS);
2403 
2404     CurrentEndIdx = EndIdx;
2405   }
2406 }
2407 
2408 InstructionCost
2409 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2410   InstructionCost RegionBenefit = 0;
2411   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2412     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2413     // We add the number of instructions in the region to the benefit as an
2414     // estimate as to how much will be removed.
2415     RegionBenefit += Region->getBenefit(TTI);
2416     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2417                       << " saved instructions to overfall benefit.\n");
2418   }
2419 
2420   return RegionBenefit;
2421 }
2422 
2423 /// For the \p OutputCanon number passed in find the value represented by this
2424 /// canonical number. If it is from a PHINode, we pick the first incoming
2425 /// value and return that Value instead.
2426 ///
2427 /// \param Region - The OutlinableRegion to get the Value from.
2428 /// \param OutputCanon - The canonical number to find the Value from.
2429 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2430 /// Region.
2431 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2432                                       unsigned OutputCanon) {
2433   OutlinableGroup &CurrentGroup = *Region.Parent;
2434   // If the value is greater than the value in the tracker, we have a
2435   // PHINode and will instead use one of the incoming values to find the
2436   // type.
2437   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2438     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2439     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2440            "Could not find GVN set for PHINode number!");
2441     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2442     OutputCanon = *It->second.second.begin();
2443   }
2444   Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
2445   assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?");
2446   Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2447   assert(OV.hasValue() && "Could not find value for GVN?");
2448   return *OV;
2449 }
2450 
2451 InstructionCost
2452 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2453   InstructionCost OverallCost = 0;
2454   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2455     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2456 
2457     // Each output incurs a load after the call, so we add that to the cost.
2458     for (unsigned OutputCanon : Region->GVNStores) {
2459       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2460       InstructionCost LoadCost =
2461           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2462                               TargetTransformInfo::TCK_CodeSize);
2463 
2464       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2465                         << " instructions to cost for output of type "
2466                         << *V->getType() << "\n");
2467       OverallCost += LoadCost;
2468     }
2469   }
2470 
2471   return OverallCost;
2472 }
2473 
2474 /// Find the extra instructions needed to handle any output values for the
2475 /// region.
2476 ///
2477 /// \param [in] M - The Module to outline from.
2478 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2479 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2480 /// new instruction costs.
2481 /// \returns the additional cost to handle the outputs.
2482 static InstructionCost findCostForOutputBlocks(Module &M,
2483                                                OutlinableGroup &CurrentGroup,
2484                                                TargetTransformInfo &TTI) {
2485   InstructionCost OutputCost = 0;
2486   unsigned NumOutputBranches = 0;
2487 
2488   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2489   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2490   DenseSet<BasicBlock *> CandidateBlocks;
2491   Candidate.getBasicBlocks(CandidateBlocks);
2492 
2493   // Count the number of different output branches that point to blocks outside
2494   // of the region.
2495   DenseSet<BasicBlock *> FoundBlocks;
2496   for (IRInstructionData &ID : Candidate) {
2497     if (!isa<BranchInst>(ID.Inst))
2498       continue;
2499 
2500     for (Value *V : ID.OperVals) {
2501       BasicBlock *BB = static_cast<BasicBlock *>(V);
2502       DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB);
2503       if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB))
2504         continue;
2505       FoundBlocks.insert(BB);
2506       NumOutputBranches++;
2507     }
2508   }
2509 
2510   CurrentGroup.BranchesToOutside = NumOutputBranches;
2511 
2512   for (const ArrayRef<unsigned> &OutputUse :
2513        CurrentGroup.OutputGVNCombinations) {
2514     for (unsigned OutputCanon : OutputUse) {
2515       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2516       InstructionCost StoreCost =
2517           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2518                               TargetTransformInfo::TCK_CodeSize);
2519 
2520       // An instruction cost is added for each store set that needs to occur for
2521       // various output combinations inside the function, plus a branch to
2522       // return to the exit block.
2523       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2524                         << " instructions to cost for output of type "
2525                         << *V->getType() << "\n");
2526       OutputCost += StoreCost * NumOutputBranches;
2527     }
2528 
2529     InstructionCost BranchCost =
2530         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2531     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2532                       << " a branch instruction\n");
2533     OutputCost += BranchCost * NumOutputBranches;
2534   }
2535 
2536   // If there is more than one output scheme, we must have a comparison and
2537   // branch for each different item in the switch statement.
2538   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2539     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2540         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2541         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2542         TargetTransformInfo::TCK_CodeSize);
2543     InstructionCost BranchCost =
2544         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2545 
2546     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2547     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2548 
2549     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2550                       << " instructions for each switch case for each different"
2551                       << " output path in a function\n");
2552     OutputCost += TotalCost * NumOutputBranches;
2553   }
2554 
2555   return OutputCost;
2556 }
2557 
2558 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2559   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2560   CurrentGroup.Benefit += RegionBenefit;
2561   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2562 
2563   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2564   CurrentGroup.Cost += OutputReloadCost;
2565   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2566 
2567   InstructionCost AverageRegionBenefit =
2568       RegionBenefit / CurrentGroup.Regions.size();
2569   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2570   unsigned NumRegions = CurrentGroup.Regions.size();
2571   TargetTransformInfo &TTI =
2572       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2573 
2574   // We add one region to the cost once, to account for the instructions added
2575   // inside of the newly created function.
2576   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2577                     << " instructions to cost for body of new function.\n");
2578   CurrentGroup.Cost += AverageRegionBenefit;
2579   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2580 
2581   // For each argument, we must add an instruction for loading the argument
2582   // out of the register and into a value inside of the newly outlined function.
2583   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2584                     << " instructions to cost for each argument in the new"
2585                     << " function.\n");
2586   CurrentGroup.Cost +=
2587       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2588   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2589 
2590   // Each argument needs to either be loaded into a register or onto the stack.
2591   // Some arguments will only be loaded into the stack once the argument
2592   // registers are filled.
2593   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2594                     << " instructions to cost for each argument in the new"
2595                     << " function " << NumRegions << " times for the "
2596                     << "needed argument handling at the call site.\n");
2597   CurrentGroup.Cost +=
2598       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2599   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2600 
2601   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2602   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2603 }
2604 
2605 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2606                                      ArrayRef<Value *> Outputs,
2607                                      LoadInst *LI) {
2608   // For and load instructions following the call
2609   Value *Operand = LI->getPointerOperand();
2610   Optional<unsigned> OutputIdx = None;
2611   // Find if the operand it is an output register.
2612   for (unsigned ArgIdx = Region.NumExtractedInputs;
2613        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2614     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2615       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2616       break;
2617     }
2618   }
2619 
2620   // If we found an output register, place a mapping of the new value
2621   // to the original in the mapping.
2622   if (!OutputIdx.hasValue())
2623     return;
2624 
2625   if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
2626       OutputMappings.end()) {
2627     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2628                       << *Outputs[OutputIdx.getValue()] << "\n");
2629     OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
2630   } else {
2631     Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
2632     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2633                       << *Outputs[OutputIdx.getValue()] << "\n");
2634     OutputMappings.insert(std::make_pair(LI, Orig));
2635   }
2636 }
2637 
2638 bool IROutliner::extractSection(OutlinableRegion &Region) {
2639   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2640   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2641   BasicBlock *InitialStart = Region.StartBB;
2642   Function *OrigF = Region.StartBB->getParent();
2643   CodeExtractorAnalysisCache CEAC(*OrigF);
2644   Region.ExtractedFunction =
2645       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2646 
2647   // If the extraction was successful, find the BasicBlock, and reassign the
2648   // OutlinableRegion blocks
2649   if (!Region.ExtractedFunction) {
2650     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2651                       << "\n");
2652     Region.reattachCandidate();
2653     return false;
2654   }
2655 
2656   // Get the block containing the called branch, and reassign the blocks as
2657   // necessary.  If the original block still exists, it is because we ended on
2658   // a branch instruction, and so we move the contents into the block before
2659   // and assign the previous block correctly.
2660   User *InstAsUser = Region.ExtractedFunction->user_back();
2661   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2662   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2663   assert(Region.PrevBB && "PrevBB is nullptr?");
2664   if (Region.PrevBB == InitialStart) {
2665     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2666     Instruction *BI = NewPrev->getTerminator();
2667     BI->eraseFromParent();
2668     moveBBContents(*InitialStart, *NewPrev);
2669     Region.PrevBB = NewPrev;
2670     InitialStart->eraseFromParent();
2671   }
2672 
2673   Region.StartBB = RewrittenBB;
2674   Region.EndBB = RewrittenBB;
2675 
2676   // The sequences of outlinable regions has now changed.  We must fix the
2677   // IRInstructionDataList for consistency.  Although they may not be illegal
2678   // instructions, they should not be compared with anything else as they
2679   // should not be outlined in this round.  So marking these as illegal is
2680   // allowed.
2681   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2682   Instruction *BeginRewritten = &*RewrittenBB->begin();
2683   Instruction *EndRewritten = &*RewrittenBB->begin();
2684   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2685       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2686   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2687       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2688 
2689   // Insert the first IRInstructionData of the new region in front of the
2690   // first IRInstructionData of the IRSimilarityCandidate.
2691   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2692   // Insert the first IRInstructionData of the new region after the
2693   // last IRInstructionData of the IRSimilarityCandidate.
2694   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2695   // Remove the IRInstructionData from the IRSimilarityCandidate.
2696   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2697 
2698   assert(RewrittenBB != nullptr &&
2699          "Could not find a predecessor after extraction!");
2700 
2701   // Iterate over the new set of instructions to find the new call
2702   // instruction.
2703   for (Instruction &I : *RewrittenBB)
2704     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2705       if (Region.ExtractedFunction == CI->getCalledFunction())
2706         Region.Call = CI;
2707     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2708       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2709   Region.reattachCandidate();
2710   return true;
2711 }
2712 
2713 unsigned IROutliner::doOutline(Module &M) {
2714   // Find the possible similarity sections.
2715   InstructionClassifier.EnableBranches = !DisableBranches;
2716   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2717   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2718 
2719   IRSimilarityIdentifier &Identifier = getIRSI(M);
2720   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2721 
2722   // Sort them by size of extracted sections
2723   unsigned OutlinedFunctionNum = 0;
2724   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2725   // to sort them by the potential number of instructions to be outlined
2726   if (SimilarityCandidates.size() > 1)
2727     llvm::stable_sort(SimilarityCandidates,
2728                       [](const std::vector<IRSimilarityCandidate> &LHS,
2729                          const std::vector<IRSimilarityCandidate> &RHS) {
2730                         return LHS[0].getLength() * LHS.size() >
2731                                RHS[0].getLength() * RHS.size();
2732                       });
2733   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2734   // each of the following for loops to avoid making an allocator.
2735   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2736 
2737   DenseSet<unsigned> NotSame;
2738   std::vector<OutlinableGroup *> NegativeCostGroups;
2739   std::vector<OutlinableRegion *> OutlinedRegions;
2740   // Iterate over the possible sets of similarity.
2741   unsigned PotentialGroupIdx = 0;
2742   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2743     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2744 
2745     // Remove entries that were previously outlined
2746     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2747 
2748     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2749     // trying to outlined since there is no compatible similar instance of this
2750     // code.
2751     if (CurrentGroup.Regions.size() < 2)
2752       continue;
2753 
2754     // Determine if there are any values that are the same constant throughout
2755     // each section in the set.
2756     NotSame.clear();
2757     CurrentGroup.findSameConstants(NotSame);
2758 
2759     if (CurrentGroup.IgnoreGroup)
2760       continue;
2761 
2762     // Create a CodeExtractor for each outlinable region. Identify inputs and
2763     // outputs for each section using the code extractor and create the argument
2764     // types for the Aggregate Outlining Function.
2765     OutlinedRegions.clear();
2766     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2767       // Break the outlinable region out of its parent BasicBlock into its own
2768       // BasicBlocks (see function implementation).
2769       OS->splitCandidate();
2770 
2771       // There's a chance that when the region is split, extra instructions are
2772       // added to the region. This makes the region no longer viable
2773       // to be split, so we ignore it for outlining.
2774       if (!OS->CandidateSplit)
2775         continue;
2776 
2777       SmallVector<BasicBlock *> BE;
2778       DenseSet<BasicBlock *> BlocksInRegion;
2779       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2780       OS->CE = new (ExtractorAllocator.Allocate())
2781           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2782                         false, nullptr, "outlined");
2783       findAddInputsOutputs(M, *OS, NotSame);
2784       if (!OS->IgnoreRegion)
2785         OutlinedRegions.push_back(OS);
2786 
2787       // We recombine the blocks together now that we have gathered all the
2788       // needed information.
2789       OS->reattachCandidate();
2790     }
2791 
2792     CurrentGroup.Regions = std::move(OutlinedRegions);
2793 
2794     if (CurrentGroup.Regions.empty())
2795       continue;
2796 
2797     CurrentGroup.collectGVNStoreSets(M);
2798 
2799     if (CostModel)
2800       findCostBenefit(M, CurrentGroup);
2801 
2802     // If we are adhering to the cost model, skip those groups where the cost
2803     // outweighs the benefits.
2804     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2805       OptimizationRemarkEmitter &ORE =
2806           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2807       ORE.emit([&]() {
2808         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2809         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2810                                    C->frontInstruction());
2811         R << "did not outline "
2812           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2813           << " regions due to estimated increase of "
2814           << ore::NV("InstructionIncrease",
2815                      CurrentGroup.Cost - CurrentGroup.Benefit)
2816           << " instructions at locations ";
2817         interleave(
2818             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2819             [&R](OutlinableRegion *Region) {
2820               R << ore::NV(
2821                   "DebugLoc",
2822                   Region->Candidate->frontInstruction()->getDebugLoc());
2823             },
2824             [&R]() { R << " "; });
2825         return R;
2826       });
2827       continue;
2828     }
2829 
2830     NegativeCostGroups.push_back(&CurrentGroup);
2831   }
2832 
2833   ExtractorAllocator.DestroyAll();
2834 
2835   if (NegativeCostGroups.size() > 1)
2836     stable_sort(NegativeCostGroups,
2837                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2838                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2839                 });
2840 
2841   std::vector<Function *> FuncsToRemove;
2842   for (OutlinableGroup *CG : NegativeCostGroups) {
2843     OutlinableGroup &CurrentGroup = *CG;
2844 
2845     OutlinedRegions.clear();
2846     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2847       // We check whether our region is compatible with what has already been
2848       // outlined, and whether we need to ignore this item.
2849       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2850         continue;
2851       OutlinedRegions.push_back(Region);
2852     }
2853 
2854     if (OutlinedRegions.size() < 2)
2855       continue;
2856 
2857     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2858     // we are still outlining enough regions to make up for the added cost.
2859     CurrentGroup.Regions = std::move(OutlinedRegions);
2860     if (CostModel) {
2861       CurrentGroup.Benefit = 0;
2862       CurrentGroup.Cost = 0;
2863       findCostBenefit(M, CurrentGroup);
2864       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2865         continue;
2866     }
2867     OutlinedRegions.clear();
2868     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2869       Region->splitCandidate();
2870       if (!Region->CandidateSplit)
2871         continue;
2872       OutlinedRegions.push_back(Region);
2873     }
2874 
2875     CurrentGroup.Regions = std::move(OutlinedRegions);
2876     if (CurrentGroup.Regions.size() < 2) {
2877       for (OutlinableRegion *R : CurrentGroup.Regions)
2878         R->reattachCandidate();
2879       continue;
2880     }
2881 
2882     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2883                       << " and benefit " << CurrentGroup.Benefit << "\n");
2884 
2885     // Create functions out of all the sections, and mark them as outlined.
2886     OutlinedRegions.clear();
2887     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2888       SmallVector<BasicBlock *> BE;
2889       DenseSet<BasicBlock *> BlocksInRegion;
2890       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2891       OS->CE = new (ExtractorAllocator.Allocate())
2892           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2893                         false, nullptr, "outlined");
2894       bool FunctionOutlined = extractSection(*OS);
2895       if (FunctionOutlined) {
2896         unsigned StartIdx = OS->Candidate->getStartIdx();
2897         unsigned EndIdx = OS->Candidate->getEndIdx();
2898         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2899           Outlined.insert(Idx);
2900 
2901         OutlinedRegions.push_back(OS);
2902       }
2903     }
2904 
2905     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2906                       << " with benefit " << CurrentGroup.Benefit
2907                       << " and cost " << CurrentGroup.Cost << "\n");
2908 
2909     CurrentGroup.Regions = std::move(OutlinedRegions);
2910 
2911     if (CurrentGroup.Regions.empty())
2912       continue;
2913 
2914     OptimizationRemarkEmitter &ORE =
2915         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2916     ORE.emit([&]() {
2917       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2918       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2919       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2920         << " regions with decrease of "
2921         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2922         << " instructions at locations ";
2923       interleave(
2924           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2925           [&R](OutlinableRegion *Region) {
2926             R << ore::NV("DebugLoc",
2927                          Region->Candidate->frontInstruction()->getDebugLoc());
2928           },
2929           [&R]() { R << " "; });
2930       return R;
2931     });
2932 
2933     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
2934                                  OutlinedFunctionNum);
2935   }
2936 
2937   for (Function *F : FuncsToRemove)
2938     F->eraseFromParent();
2939 
2940   return OutlinedFunctionNum;
2941 }
2942 
2943 bool IROutliner::run(Module &M) {
2944   CostModel = !NoCostModel;
2945   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
2946 
2947   return doOutline(M) > 0;
2948 }
2949 
2950 // Pass Manager Boilerplate
2951 namespace {
2952 class IROutlinerLegacyPass : public ModulePass {
2953 public:
2954   static char ID;
2955   IROutlinerLegacyPass() : ModulePass(ID) {
2956     initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
2957   }
2958 
2959   void getAnalysisUsage(AnalysisUsage &AU) const override {
2960     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2961     AU.addRequired<TargetTransformInfoWrapperPass>();
2962     AU.addRequired<IRSimilarityIdentifierWrapperPass>();
2963   }
2964 
2965   bool runOnModule(Module &M) override;
2966 };
2967 } // namespace
2968 
2969 bool IROutlinerLegacyPass::runOnModule(Module &M) {
2970   if (skipModule(M))
2971     return false;
2972 
2973   std::unique_ptr<OptimizationRemarkEmitter> ORE;
2974   auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
2975     ORE.reset(new OptimizationRemarkEmitter(&F));
2976     return *ORE;
2977   };
2978 
2979   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
2980     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2981   };
2982 
2983   auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
2984     return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
2985   };
2986 
2987   return IROutliner(GTTI, GIRSI, GORE).run(M);
2988 }
2989 
2990 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
2991   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2992 
2993   std::function<TargetTransformInfo &(Function &)> GTTI =
2994       [&FAM](Function &F) -> TargetTransformInfo & {
2995     return FAM.getResult<TargetIRAnalysis>(F);
2996   };
2997 
2998   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
2999       [&AM](Module &M) -> IRSimilarityIdentifier & {
3000     return AM.getResult<IRSimilarityAnalysis>(M);
3001   };
3002 
3003   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3004   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3005       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3006     ORE.reset(new OptimizationRemarkEmitter(&F));
3007     return *ORE;
3008   };
3009 
3010   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3011     return PreservedAnalyses::none();
3012   return PreservedAnalyses::all();
3013 }
3014 
3015 char IROutlinerLegacyPass::ID = 0;
3016 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3017                       false)
3018 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
3019 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3020 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3021 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3022                     false)
3023 
3024 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
3025