1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Transforms/IPO.h" 29 #include <vector> 30 31 #define DEBUG_TYPE "iroutliner" 32 33 using namespace llvm; 34 using namespace IRSimilarity; 35 36 // A command flag to be used for debugging to exclude branches from similarity 37 // matching and outlining. 38 namespace llvm { 39 extern cl::opt<bool> DisableBranches; 40 41 // A command flag to be used for debugging to indirect calls from similarity 42 // matching and outlining. 43 extern cl::opt<bool> DisableIndirectCalls; 44 45 // A command flag to be used for debugging to exclude intrinsics from similarity 46 // matching and outlining. 47 extern cl::opt<bool> DisableIntrinsics; 48 49 } // namespace llvm 50 51 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 52 // functions. This is false by default because the linker can dedupe linkonceodr 53 // functions. Since the outliner is confined to a single module (modulo LTO), 54 // this is off by default. It should, however, be the default behavior in 55 // LTO. 56 static cl::opt<bool> EnableLinkOnceODRIROutlining( 57 "enable-linkonceodr-ir-outlining", cl::Hidden, 58 cl::desc("Enable the IR outliner on linkonceodr functions"), 59 cl::init(false)); 60 61 // This is a debug option to test small pieces of code to ensure that outlining 62 // works correctly. 63 static cl::opt<bool> NoCostModel( 64 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 65 cl::desc("Debug option to outline greedily, without restriction that " 66 "calculated benefit outweighs cost")); 67 68 /// The OutlinableGroup holds all the overarching information for outlining 69 /// a set of regions that are structurally similar to one another, such as the 70 /// types of the overall function, the output blocks, the sets of stores needed 71 /// and a list of the different regions. This information is used in the 72 /// deduplication of extracted regions with the same structure. 73 struct OutlinableGroup { 74 /// The sections that could be outlined 75 std::vector<OutlinableRegion *> Regions; 76 77 /// The argument types for the function created as the overall function to 78 /// replace the extracted function for each region. 79 std::vector<Type *> ArgumentTypes; 80 /// The FunctionType for the overall function. 81 FunctionType *OutlinedFunctionType = nullptr; 82 /// The Function for the collective overall function. 83 Function *OutlinedFunction = nullptr; 84 85 /// Flag for whether we should not consider this group of OutlinableRegions 86 /// for extraction. 87 bool IgnoreGroup = false; 88 89 /// The return blocks for the overall function. 90 DenseMap<Value *, BasicBlock *> EndBBs; 91 92 /// The PHIBlocks with their corresponding return block based on the return 93 /// value as the key. 94 DenseMap<Value *, BasicBlock *> PHIBlocks; 95 96 /// A set containing the different GVN store sets needed. Each array contains 97 /// a sorted list of the different values that need to be stored into output 98 /// registers. 99 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 100 101 /// Flag for whether the \ref ArgumentTypes have been defined after the 102 /// extraction of the first region. 103 bool InputTypesSet = false; 104 105 /// The number of input values in \ref ArgumentTypes. Anything after this 106 /// index in ArgumentTypes is an output argument. 107 unsigned NumAggregateInputs = 0; 108 109 /// The mapping of the canonical numbering of the values in outlined sections 110 /// to specific arguments. 111 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 112 113 /// The number of branches in the region target a basic block that is outside 114 /// of the region. 115 unsigned BranchesToOutside = 0; 116 117 /// Tracker counting backwards from the highest unsigned value possible to 118 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 119 /// -2 and -1 are assigned by the DenseMap. 120 unsigned PHINodeGVNTracker = -3; 121 122 DenseMap<unsigned, 123 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 124 PHINodeGVNToGVNs; 125 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 126 127 /// The number of instructions that will be outlined by extracting \ref 128 /// Regions. 129 InstructionCost Benefit = 0; 130 /// The number of added instructions needed for the outlining of the \ref 131 /// Regions. 132 InstructionCost Cost = 0; 133 134 /// The argument that needs to be marked with the swifterr attribute. If not 135 /// needed, there is no value. 136 Optional<unsigned> SwiftErrorArgument; 137 138 /// For the \ref Regions, we look at every Value. If it is a constant, 139 /// we check whether it is the same in Region. 140 /// 141 /// \param [in,out] NotSame contains the global value numbers where the 142 /// constant is not always the same, and must be passed in as an argument. 143 void findSameConstants(DenseSet<unsigned> &NotSame); 144 145 /// For the regions, look at each set of GVN stores needed and account for 146 /// each combination. Add an argument to the argument types if there is 147 /// more than one combination. 148 /// 149 /// \param [in] M - The module we are outlining from. 150 void collectGVNStoreSets(Module &M); 151 }; 152 153 /// Move the contents of \p SourceBB to before the last instruction of \p 154 /// TargetBB. 155 /// \param SourceBB - the BasicBlock to pull Instructions from. 156 /// \param TargetBB - the BasicBlock to put Instruction into. 157 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 158 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 159 I.moveBefore(TargetBB, TargetBB.end()); 160 } 161 162 /// A function to sort the keys of \p Map, which must be a mapping of constant 163 /// values to basic blocks and return it in \p SortedKeys 164 /// 165 /// \param SortedKeys - The vector the keys will be return in and sorted. 166 /// \param Map - The DenseMap containing keys to sort. 167 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 168 DenseMap<Value *, BasicBlock *> &Map) { 169 for (auto &VtoBB : Map) 170 SortedKeys.push_back(VtoBB.first); 171 172 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 173 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 174 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 175 assert(RHSC && "Not a constant integer in return value?"); 176 assert(LHSC && "Not a constant integer in return value?"); 177 178 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 179 }); 180 } 181 182 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 183 Value *V) { 184 Optional<unsigned> GVN = Candidate->getGVN(V); 185 assert(GVN.hasValue() && "No GVN for incoming value"); 186 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 187 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 188 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 189 return FoundValueOpt.getValueOr(nullptr); 190 } 191 192 BasicBlock * 193 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other, 194 BasicBlock *BB) { 195 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 196 assert(FirstNonPHI && "block is empty?"); 197 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI); 198 if (!CorrespondingVal) 199 return nullptr; 200 BasicBlock *CorrespondingBlock = 201 cast<Instruction>(CorrespondingVal)->getParent(); 202 return CorrespondingBlock; 203 } 204 205 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 206 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 207 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 208 /// when PHINodes are included in outlined regions. 209 /// 210 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 211 /// checked. 212 /// \param Find - The successor block to be replaced. 213 /// \param Replace - The new succesor block to branch to. 214 /// \param Included - The set of blocks about to be outlined. 215 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 216 BasicBlock *Replace, 217 DenseSet<BasicBlock *> &Included) { 218 for (PHINode &PN : PHIBlock->phis()) { 219 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 220 ++Idx) { 221 // Check if the incoming block is included in the set of blocks being 222 // outlined. 223 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 224 if (!Included.contains(Incoming)) 225 continue; 226 227 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 228 assert(BI && "Not a branch instruction?"); 229 // Look over the branching instructions into this block to see if we 230 // used to branch to Find in this outlined block. 231 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 232 Succ++) { 233 // If we have found the block to replace, we do so here. 234 if (BI->getSuccessor(Succ) != Find) 235 continue; 236 BI->setSuccessor(Succ, Replace); 237 } 238 } 239 } 240 } 241 242 243 void OutlinableRegion::splitCandidate() { 244 assert(!CandidateSplit && "Candidate already split!"); 245 246 Instruction *BackInst = Candidate->backInstruction(); 247 248 Instruction *EndInst = nullptr; 249 // Check whether the last instruction is a terminator, if it is, we do 250 // not split on the following instruction. We leave the block as it is. We 251 // also check that this is not the last instruction in the Module, otherwise 252 // the check for whether the current following instruction matches the 253 // previously recorded instruction will be incorrect. 254 if (!BackInst->isTerminator() || 255 BackInst->getParent() != &BackInst->getFunction()->back()) { 256 EndInst = Candidate->end()->Inst; 257 assert(EndInst && "Expected an end instruction?"); 258 } 259 260 // We check if the current instruction following the last instruction in the 261 // region is the same as the recorded instruction following the last 262 // instruction. If they do not match, there could be problems in rewriting 263 // the program after outlining, so we ignore it. 264 if (!BackInst->isTerminator() && 265 EndInst != BackInst->getNextNonDebugInstruction()) 266 return; 267 268 Instruction *StartInst = (*Candidate->begin()).Inst; 269 assert(StartInst && "Expected a start instruction?"); 270 StartBB = StartInst->getParent(); 271 PrevBB = StartBB; 272 273 DenseSet<BasicBlock *> BBSet; 274 Candidate->getBasicBlocks(BBSet); 275 276 // We iterate over the instructions in the region, if we find a PHINode, we 277 // check if there are predecessors outside of the region, if there are, 278 // we ignore this region since we are unable to handle the severing of the 279 // phi node right now. 280 281 // TODO: Handle extraneous inputs for PHINodes through variable number of 282 // inputs, similar to how outputs are handled. 283 BasicBlock::iterator It = StartInst->getIterator(); 284 EndBB = BackInst->getParent(); 285 BasicBlock *IBlock; 286 BasicBlock *PHIPredBlock = nullptr; 287 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst; 288 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 289 unsigned NumPredsOutsideRegion = 0; 290 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 291 if (!BBSet.contains(PN->getIncomingBlock(i))) { 292 PHIPredBlock = PN->getIncomingBlock(i); 293 ++NumPredsOutsideRegion; 294 continue; 295 } 296 297 // We must consider the case there the incoming block to the PHINode is 298 // the same as the final block of the OutlinableRegion. If this is the 299 // case, the branch from this block must also be outlined to be valid. 300 IBlock = PN->getIncomingBlock(i); 301 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) { 302 PHIPredBlock = PN->getIncomingBlock(i); 303 ++NumPredsOutsideRegion; 304 } 305 } 306 307 if (NumPredsOutsideRegion > 1) 308 return; 309 310 It++; 311 } 312 313 // If the region starts with a PHINode, but is not the initial instruction of 314 // the BasicBlock, we ignore this region for now. 315 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 316 return; 317 318 // If the region ends with a PHINode, but does not contain all of the phi node 319 // instructions of the region, we ignore it for now. 320 if (isa<PHINode>(BackInst) && 321 BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 322 return; 323 324 // The basic block gets split like so: 325 // block: block: 326 // inst1 inst1 327 // inst2 inst2 328 // region1 br block_to_outline 329 // region2 block_to_outline: 330 // region3 -> region1 331 // region4 region2 332 // inst3 region3 333 // inst4 region4 334 // br block_after_outline 335 // block_after_outline: 336 // inst3 337 // inst4 338 339 std::string OriginalName = PrevBB->getName().str(); 340 341 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 342 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 343 // If there was a PHINode with an incoming block outside the region, 344 // make sure is correctly updated in the newly split block. 345 if (PHIPredBlock) 346 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB); 347 348 CandidateSplit = true; 349 if (!BackInst->isTerminator()) { 350 EndBB = EndInst->getParent(); 351 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 352 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 353 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 354 } else { 355 EndBB = BackInst->getParent(); 356 EndsInBranch = true; 357 FollowBB = nullptr; 358 } 359 360 // Refind the basic block set. 361 BBSet.clear(); 362 Candidate->getBasicBlocks(BBSet); 363 // For the phi nodes in the new starting basic block of the region, we 364 // reassign the targets of the basic blocks branching instructions. 365 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 366 if (FollowBB) 367 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 368 } 369 370 void OutlinableRegion::reattachCandidate() { 371 assert(CandidateSplit && "Candidate is not split!"); 372 373 // The basic block gets reattached like so: 374 // block: block: 375 // inst1 inst1 376 // inst2 inst2 377 // br block_to_outline region1 378 // block_to_outline: -> region2 379 // region1 region3 380 // region2 region4 381 // region3 inst3 382 // region4 inst4 383 // br block_after_outline 384 // block_after_outline: 385 // inst3 386 // inst4 387 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 388 389 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 390 // Make sure PHINode references to the block we are merging into are 391 // updated to be incoming blocks from the predecessor to the current block. 392 393 // NOTE: If this is updated such that the outlined block can have more than 394 // one incoming block to a PHINode, this logic will have to updated 395 // to handle multiple precessors instead. 396 397 // We only need to update this if the outlined section contains a PHINode, if 398 // it does not, then the incoming block was never changed in the first place. 399 // On the other hand, if PrevBB has no predecessors, it means that all 400 // incoming blocks to the first block are contained in the region, and there 401 // will be nothing to update. 402 Instruction *StartInst = (*Candidate->begin()).Inst; 403 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) { 404 assert(!PrevBB->hasNPredecessorsOrMore(2) && 405 "PrevBB has more than one predecessor. Should be 0 or 1."); 406 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor(); 407 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB); 408 } 409 PrevBB->getTerminator()->eraseFromParent(); 410 411 // If we reattaching after outlining, we iterate over the phi nodes to 412 // the initial block, and reassign the branch instructions of the incoming 413 // blocks to the block we are remerging into. 414 if (!ExtractedFunction) { 415 DenseSet<BasicBlock *> BBSet; 416 Candidate->getBasicBlocks(BBSet); 417 418 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 419 if (!EndsInBranch) 420 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 421 } 422 423 moveBBContents(*StartBB, *PrevBB); 424 425 BasicBlock *PlacementBB = PrevBB; 426 if (StartBB != EndBB) 427 PlacementBB = EndBB; 428 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 429 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 430 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 431 PlacementBB->getTerminator()->eraseFromParent(); 432 moveBBContents(*FollowBB, *PlacementBB); 433 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 434 FollowBB->eraseFromParent(); 435 } 436 437 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 438 StartBB->eraseFromParent(); 439 440 // Make sure to save changes back to the StartBB. 441 StartBB = PrevBB; 442 EndBB = nullptr; 443 PrevBB = nullptr; 444 FollowBB = nullptr; 445 446 CandidateSplit = false; 447 } 448 449 /// Find whether \p V matches the Constants previously found for the \p GVN. 450 /// 451 /// \param V - The value to check for consistency. 452 /// \param GVN - The global value number assigned to \p V. 453 /// \param GVNToConstant - The mapping of global value number to Constants. 454 /// \returns true if the Value matches the Constant mapped to by V and false if 455 /// it \p V is a Constant but does not match. 456 /// \returns None if \p V is not a Constant. 457 static Optional<bool> 458 constantMatches(Value *V, unsigned GVN, 459 DenseMap<unsigned, Constant *> &GVNToConstant) { 460 // See if we have a constants 461 Constant *CST = dyn_cast<Constant>(V); 462 if (!CST) 463 return None; 464 465 // Holds a mapping from a global value number to a Constant. 466 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 467 bool Inserted; 468 469 470 // If we have a constant, try to make a new entry in the GVNToConstant. 471 std::tie(GVNToConstantIt, Inserted) = 472 GVNToConstant.insert(std::make_pair(GVN, CST)); 473 // If it was found and is not equal, it is not the same. We do not 474 // handle this case yet, and exit early. 475 if (Inserted || (GVNToConstantIt->second == CST)) 476 return true; 477 478 return false; 479 } 480 481 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 482 InstructionCost Benefit = 0; 483 484 // Estimate the benefit of outlining a specific sections of the program. We 485 // delegate mostly this task to the TargetTransformInfo so that if the target 486 // has specific changes, we can have a more accurate estimate. 487 488 // However, getInstructionCost delegates the code size calculation for 489 // arithmetic instructions to getArithmeticInstrCost in 490 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 491 // code size for a division and remainder instruction to be equal to 4, and 492 // everything else to 1. This is not an accurate representation of the 493 // division instruction for targets that have a native division instruction. 494 // To be overly conservative, we only add 1 to the number of instructions for 495 // each division instruction. 496 for (IRInstructionData &ID : *Candidate) { 497 Instruction *I = ID.Inst; 498 switch (I->getOpcode()) { 499 case Instruction::FDiv: 500 case Instruction::FRem: 501 case Instruction::SDiv: 502 case Instruction::SRem: 503 case Instruction::UDiv: 504 case Instruction::URem: 505 Benefit += 1; 506 break; 507 default: 508 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 509 break; 510 } 511 } 512 513 return Benefit; 514 } 515 516 /// Check the \p OutputMappings structure for value \p Input, if it exists 517 /// it has been used as an output for outlining, and has been renamed, and we 518 /// return the new value, otherwise, we return the same value. 519 /// 520 /// \param OutputMappings [in] - The mapping of values to their renamed value 521 /// after being used as an output for an outlined region. 522 /// \param Input [in] - The value to find the remapped value of, if it exists. 523 /// \return The remapped value if it has been renamed, and the same value if has 524 /// not. 525 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 526 Value *Input) { 527 DenseMap<Value *, Value *>::const_iterator OutputMapping = 528 OutputMappings.find(Input); 529 if (OutputMapping != OutputMappings.end()) 530 return OutputMapping->second; 531 return Input; 532 } 533 534 /// Find whether \p Region matches the global value numbering to Constant 535 /// mapping found so far. 536 /// 537 /// \param Region - The OutlinableRegion we are checking for constants 538 /// \param GVNToConstant - The mapping of global value number to Constants. 539 /// \param NotSame - The set of global value numbers that do not have the same 540 /// constant in each region. 541 /// \returns true if all Constants are the same in every use of a Constant in \p 542 /// Region and false if not 543 static bool 544 collectRegionsConstants(OutlinableRegion &Region, 545 DenseMap<unsigned, Constant *> &GVNToConstant, 546 DenseSet<unsigned> &NotSame) { 547 bool ConstantsTheSame = true; 548 549 IRSimilarityCandidate &C = *Region.Candidate; 550 for (IRInstructionData &ID : C) { 551 552 // Iterate over the operands in an instruction. If the global value number, 553 // assigned by the IRSimilarityCandidate, has been seen before, we check if 554 // the the number has been found to be not the same value in each instance. 555 for (Value *V : ID.OperVals) { 556 Optional<unsigned> GVNOpt = C.getGVN(V); 557 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 558 unsigned GVN = GVNOpt.getValue(); 559 560 // Check if this global value has been found to not be the same already. 561 if (NotSame.contains(GVN)) { 562 if (isa<Constant>(V)) 563 ConstantsTheSame = false; 564 continue; 565 } 566 567 // If it has been the same so far, we check the value for if the 568 // associated Constant value match the previous instances of the same 569 // global value number. If the global value does not map to a Constant, 570 // it is considered to not be the same value. 571 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 572 if (ConstantMatches.hasValue()) { 573 if (ConstantMatches.getValue()) 574 continue; 575 else 576 ConstantsTheSame = false; 577 } 578 579 // While this value is a register, it might not have been previously, 580 // make sure we don't already have a constant mapped to this global value 581 // number. 582 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 583 ConstantsTheSame = false; 584 585 NotSame.insert(GVN); 586 } 587 } 588 589 return ConstantsTheSame; 590 } 591 592 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 593 DenseMap<unsigned, Constant *> GVNToConstant; 594 595 for (OutlinableRegion *Region : Regions) 596 collectRegionsConstants(*Region, GVNToConstant, NotSame); 597 } 598 599 void OutlinableGroup::collectGVNStoreSets(Module &M) { 600 for (OutlinableRegion *OS : Regions) 601 OutputGVNCombinations.insert(OS->GVNStores); 602 603 // We are adding an extracted argument to decide between which output path 604 // to use in the basic block. It is used in a switch statement and only 605 // needs to be an integer. 606 if (OutputGVNCombinations.size() > 1) 607 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 608 } 609 610 /// Get the subprogram if it exists for one of the outlined regions. 611 /// 612 /// \param [in] Group - The set of regions to find a subprogram for. 613 /// \returns the subprogram if it exists, or nullptr. 614 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 615 for (OutlinableRegion *OS : Group.Regions) 616 if (Function *F = OS->Call->getFunction()) 617 if (DISubprogram *SP = F->getSubprogram()) 618 return SP; 619 620 return nullptr; 621 } 622 623 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 624 unsigned FunctionNameSuffix) { 625 assert(!Group.OutlinedFunction && "Function is already defined!"); 626 627 Type *RetTy = Type::getVoidTy(M.getContext()); 628 // All extracted functions _should_ have the same return type at this point 629 // since the similarity identifier ensures that all branches outside of the 630 // region occur in the same place. 631 632 // NOTE: Should we ever move to the model that uses a switch at every point 633 // needed, meaning that we could branch within the region or out, it is 634 // possible that we will need to switch to using the most general case all of 635 // the time. 636 for (OutlinableRegion *R : Group.Regions) { 637 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 638 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 639 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 640 RetTy = ExtractedFuncType; 641 } 642 643 Group.OutlinedFunctionType = FunctionType::get( 644 RetTy, Group.ArgumentTypes, false); 645 646 // These functions will only be called from within the same module, so 647 // we can set an internal linkage. 648 Group.OutlinedFunction = Function::Create( 649 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 650 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 651 652 // Transfer the swifterr attribute to the correct function parameter. 653 if (Group.SwiftErrorArgument.hasValue()) 654 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 655 Attribute::SwiftError); 656 657 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 658 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 659 660 // If there's a DISubprogram associated with this outlined function, then 661 // emit debug info for the outlined function. 662 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 663 Function *F = Group.OutlinedFunction; 664 // We have a DISubprogram. Get its DICompileUnit. 665 DICompileUnit *CU = SP->getUnit(); 666 DIBuilder DB(M, true, CU); 667 DIFile *Unit = SP->getFile(); 668 Mangler Mg; 669 // Get the mangled name of the function for the linkage name. 670 std::string Dummy; 671 llvm::raw_string_ostream MangledNameStream(Dummy); 672 Mg.getNameWithPrefix(MangledNameStream, F, false); 673 674 DISubprogram *OutlinedSP = DB.createFunction( 675 Unit /* Context */, F->getName(), MangledNameStream.str(), 676 Unit /* File */, 677 0 /* Line 0 is reserved for compiler-generated code. */, 678 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 679 0, /* Line 0 is reserved for compiler-generated code. */ 680 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 681 /* Outlined code is optimized code by definition. */ 682 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 683 684 // Don't add any new variables to the subprogram. 685 DB.finalizeSubprogram(OutlinedSP); 686 687 // Attach subprogram to the function. 688 F->setSubprogram(OutlinedSP); 689 // We're done with the DIBuilder. 690 DB.finalize(); 691 } 692 693 return Group.OutlinedFunction; 694 } 695 696 /// Move each BasicBlock in \p Old to \p New. 697 /// 698 /// \param [in] Old - The function to move the basic blocks from. 699 /// \param [in] New - The function to move the basic blocks to. 700 /// \param [out] NewEnds - The return blocks of the new overall function. 701 static void moveFunctionData(Function &Old, Function &New, 702 DenseMap<Value *, BasicBlock *> &NewEnds) { 703 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 704 CurrBB.removeFromParent(); 705 CurrBB.insertInto(&New); 706 Instruction *I = CurrBB.getTerminator(); 707 708 // For each block we find a return instruction is, it is a potential exit 709 // path for the function. We keep track of each block based on the return 710 // value here. 711 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 712 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 713 714 std::vector<Instruction *> DebugInsts; 715 716 for (Instruction &Val : CurrBB) { 717 // We must handle the scoping of called functions differently than 718 // other outlined instructions. 719 if (!isa<CallInst>(&Val)) { 720 // Remove the debug information for outlined functions. 721 Val.setDebugLoc(DebugLoc()); 722 723 // Loop info metadata may contain line locations. Update them to have no 724 // value in the new subprogram since the outlined code could be from 725 // several locations. 726 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * { 727 if (DISubprogram *SP = New.getSubprogram()) 728 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 729 return DILocation::get(New.getContext(), Loc->getLine(), 730 Loc->getColumn(), SP, nullptr); 731 return MD; 732 }; 733 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc); 734 continue; 735 } 736 737 // From this point we are only handling call instructions. 738 CallInst *CI = cast<CallInst>(&Val); 739 740 // We add any debug statements here, to be removed after. Since the 741 // instructions originate from many different locations in the program, 742 // it will cause incorrect reporting from a debugger if we keep the 743 // same debug instructions. 744 if (isa<DbgInfoIntrinsic>(CI)) { 745 DebugInsts.push_back(&Val); 746 continue; 747 } 748 749 // Edit the scope of called functions inside of outlined functions. 750 if (DISubprogram *SP = New.getSubprogram()) { 751 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 752 Val.setDebugLoc(DI); 753 } 754 } 755 756 for (Instruction *I : DebugInsts) 757 I->eraseFromParent(); 758 } 759 } 760 761 /// Find the the constants that will need to be lifted into arguments 762 /// as they are not the same in each instance of the region. 763 /// 764 /// \param [in] C - The IRSimilarityCandidate containing the region we are 765 /// analyzing. 766 /// \param [in] NotSame - The set of global value numbers that do not have a 767 /// single Constant across all OutlinableRegions similar to \p C. 768 /// \param [out] Inputs - The list containing the global value numbers of the 769 /// arguments needed for the region of code. 770 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 771 std::vector<unsigned> &Inputs) { 772 DenseSet<unsigned> Seen; 773 // Iterate over the instructions, and find what constants will need to be 774 // extracted into arguments. 775 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 776 IDIt != EndIDIt; IDIt++) { 777 for (Value *V : (*IDIt).OperVals) { 778 // Since these are stored before any outlining, they will be in the 779 // global value numbering. 780 unsigned GVN = C.getGVN(V).getValue(); 781 if (isa<Constant>(V)) 782 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 783 Inputs.push_back(GVN); 784 Seen.insert(GVN); 785 } 786 } 787 } 788 } 789 790 /// Find the GVN for the inputs that have been found by the CodeExtractor. 791 /// 792 /// \param [in] C - The IRSimilarityCandidate containing the region we are 793 /// analyzing. 794 /// \param [in] CurrentInputs - The set of inputs found by the 795 /// CodeExtractor. 796 /// \param [in] OutputMappings - The mapping of values that have been replaced 797 /// by a new output value. 798 /// \param [out] EndInputNumbers - The global value numbers for the extracted 799 /// arguments. 800 static void mapInputsToGVNs(IRSimilarityCandidate &C, 801 SetVector<Value *> &CurrentInputs, 802 const DenseMap<Value *, Value *> &OutputMappings, 803 std::vector<unsigned> &EndInputNumbers) { 804 // Get the Global Value Number for each input. We check if the Value has been 805 // replaced by a different value at output, and use the original value before 806 // replacement. 807 for (Value *Input : CurrentInputs) { 808 assert(Input && "Have a nullptr as an input"); 809 if (OutputMappings.find(Input) != OutputMappings.end()) 810 Input = OutputMappings.find(Input)->second; 811 assert(C.getGVN(Input).hasValue() && 812 "Could not find a numbering for the given input"); 813 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 814 } 815 } 816 817 /// Find the original value for the \p ArgInput values if any one of them was 818 /// replaced during a previous extraction. 819 /// 820 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 821 /// \param [in] OutputMappings - The mapping of values that have been replaced 822 /// by a new output value. 823 /// \param [out] RemappedArgInputs - The remapped values according to 824 /// \p OutputMappings that will be extracted. 825 static void 826 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 827 const DenseMap<Value *, Value *> &OutputMappings, 828 SetVector<Value *> &RemappedArgInputs) { 829 // Get the global value number for each input that will be extracted as an 830 // argument by the code extractor, remapping if needed for reloaded values. 831 for (Value *Input : ArgInputs) { 832 if (OutputMappings.find(Input) != OutputMappings.end()) 833 Input = OutputMappings.find(Input)->second; 834 RemappedArgInputs.insert(Input); 835 } 836 } 837 838 /// Find the input GVNs and the output values for a region of Instructions. 839 /// Using the code extractor, we collect the inputs to the extracted function. 840 /// 841 /// The \p Region can be identified as needing to be ignored in this function. 842 /// It should be checked whether it should be ignored after a call to this 843 /// function. 844 /// 845 /// \param [in,out] Region - The region of code to be analyzed. 846 /// \param [out] InputGVNs - The global value numbers for the extracted 847 /// arguments. 848 /// \param [in] NotSame - The global value numbers in the region that do not 849 /// have the same constant value in the regions structurally similar to 850 /// \p Region. 851 /// \param [in] OutputMappings - The mapping of values that have been replaced 852 /// by a new output value after extraction. 853 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 854 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 855 /// as outputs. 856 static void getCodeExtractorArguments( 857 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 858 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 859 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 860 IRSimilarityCandidate &C = *Region.Candidate; 861 862 // OverallInputs are the inputs to the region found by the CodeExtractor, 863 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 864 // allocas of values whose lifetimes are contained completely within the 865 // outlined region. PremappedInputs are the arguments found by the 866 // CodeExtractor, removing conditions such as sunken allocas, but that 867 // may need to be remapped due to the extracted output values replacing 868 // the original values. We use DummyOutputs for this first run of finding 869 // inputs and outputs since the outputs could change during findAllocas, 870 // the correct set of extracted outputs will be in the final Outputs ValueSet. 871 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 872 DummyOutputs; 873 874 // Use the code extractor to get the inputs and outputs, without sunken 875 // allocas or removing llvm.assumes. 876 CodeExtractor *CE = Region.CE; 877 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 878 assert(Region.StartBB && "Region must have a start BasicBlock!"); 879 Function *OrigF = Region.StartBB->getParent(); 880 CodeExtractorAnalysisCache CEAC(*OrigF); 881 BasicBlock *Dummy = nullptr; 882 883 // The region may be ineligible due to VarArgs in the parent function. In this 884 // case we ignore the region. 885 if (!CE->isEligible()) { 886 Region.IgnoreRegion = true; 887 return; 888 } 889 890 // Find if any values are going to be sunk into the function when extracted 891 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 892 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 893 894 // TODO: Support regions with sunken allocas: values whose lifetimes are 895 // contained completely within the outlined region. These are not guaranteed 896 // to be the same in every region, so we must elevate them all to arguments 897 // when they appear. If these values are not equal, it means there is some 898 // Input in OverallInputs that was removed for ArgInputs. 899 if (OverallInputs.size() != PremappedInputs.size()) { 900 Region.IgnoreRegion = true; 901 return; 902 } 903 904 findConstants(C, NotSame, InputGVNs); 905 906 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 907 908 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 909 ArgInputs); 910 911 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 912 // we need to make sure they are in a deterministic order. 913 stable_sort(InputGVNs); 914 } 915 916 /// Look over the inputs and map each input argument to an argument in the 917 /// overall function for the OutlinableRegions. This creates a way to replace 918 /// the arguments of the extracted function with the arguments of the new 919 /// overall function. 920 /// 921 /// \param [in,out] Region - The region of code to be analyzed. 922 /// \param [in] InputGVNs - The global value numbering of the input values 923 /// collected. 924 /// \param [in] ArgInputs - The values of the arguments to the extracted 925 /// function. 926 static void 927 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 928 std::vector<unsigned> &InputGVNs, 929 SetVector<Value *> &ArgInputs) { 930 931 IRSimilarityCandidate &C = *Region.Candidate; 932 OutlinableGroup &Group = *Region.Parent; 933 934 // This counts the argument number in the overall function. 935 unsigned TypeIndex = 0; 936 937 // This counts the argument number in the extracted function. 938 unsigned OriginalIndex = 0; 939 940 // Find the mapping of the extracted arguments to the arguments for the 941 // overall function. Since there may be extra arguments in the overall 942 // function to account for the extracted constants, we have two different 943 // counters as we find extracted arguments, and as we come across overall 944 // arguments. 945 946 // Additionally, in our first pass, for the first extracted function, 947 // we find argument locations for the canonical value numbering. This 948 // numbering overrides any discovered location for the extracted code. 949 for (unsigned InputVal : InputGVNs) { 950 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 951 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 952 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 953 954 Optional<Value *> InputOpt = C.fromGVN(InputVal); 955 assert(InputOpt.hasValue() && "Global value number not found?"); 956 Value *Input = InputOpt.getValue(); 957 958 DenseMap<unsigned, unsigned>::iterator AggArgIt = 959 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 960 961 if (!Group.InputTypesSet) { 962 Group.ArgumentTypes.push_back(Input->getType()); 963 // If the input value has a swifterr attribute, make sure to mark the 964 // argument in the overall function. 965 if (Input->isSwiftError()) { 966 assert( 967 !Group.SwiftErrorArgument.hasValue() && 968 "Argument already marked with swifterr for this OutlinableGroup!"); 969 Group.SwiftErrorArgument = TypeIndex; 970 } 971 } 972 973 // Check if we have a constant. If we do add it to the overall argument 974 // number to Constant map for the region, and continue to the next input. 975 if (Constant *CST = dyn_cast<Constant>(Input)) { 976 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 977 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 978 else { 979 Group.CanonicalNumberToAggArg.insert( 980 std::make_pair(CanonicalNumber, TypeIndex)); 981 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 982 } 983 TypeIndex++; 984 continue; 985 } 986 987 // It is not a constant, we create the mapping from extracted argument list 988 // to the overall argument list, using the canonical location, if it exists. 989 assert(ArgInputs.count(Input) && "Input cannot be found!"); 990 991 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 992 if (OriginalIndex != AggArgIt->second) 993 Region.ChangedArgOrder = true; 994 Region.ExtractedArgToAgg.insert( 995 std::make_pair(OriginalIndex, AggArgIt->second)); 996 Region.AggArgToExtracted.insert( 997 std::make_pair(AggArgIt->second, OriginalIndex)); 998 } else { 999 Group.CanonicalNumberToAggArg.insert( 1000 std::make_pair(CanonicalNumber, TypeIndex)); 1001 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 1002 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 1003 } 1004 OriginalIndex++; 1005 TypeIndex++; 1006 } 1007 1008 // If the function type definitions for the OutlinableGroup holding the region 1009 // have not been set, set the length of the inputs here. We should have the 1010 // same inputs for all of the different regions contained in the 1011 // OutlinableGroup since they are all structurally similar to one another. 1012 if (!Group.InputTypesSet) { 1013 Group.NumAggregateInputs = TypeIndex; 1014 Group.InputTypesSet = true; 1015 } 1016 1017 Region.NumExtractedInputs = OriginalIndex; 1018 } 1019 1020 /// Check if the \p V has any uses outside of the region other than \p PN. 1021 /// 1022 /// \param V [in] - The value to check. 1023 /// \param PHILoc [in] - The location in the PHINode of \p V. 1024 /// \param PN [in] - The PHINode using \p V. 1025 /// \param Exits [in] - The potential blocks we exit to from the outlined 1026 /// region. 1027 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 1028 /// \returns true if \p V has any use soutside its region other than \p PN. 1029 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 1030 SmallPtrSet<BasicBlock *, 1> &Exits, 1031 DenseSet<BasicBlock *> &BlocksInRegion) { 1032 // We check to see if the value is used by the PHINode from some other 1033 // predecessor not included in the region. If it is, we make sure 1034 // to keep it as an output. 1035 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 1036 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 1037 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 1038 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 1039 })) 1040 return true; 1041 1042 // Check if the value is used by any other instructions outside the region. 1043 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 1044 Instruction *I = dyn_cast<Instruction>(U); 1045 if (!I) 1046 return false; 1047 1048 // If the use of the item is inside the region, we skip it. Uses 1049 // inside the region give us useful information about how the item could be 1050 // used as an output. 1051 BasicBlock *Parent = I->getParent(); 1052 if (BlocksInRegion.contains(Parent)) 1053 return false; 1054 1055 // If it's not a PHINode then we definitely know the use matters. This 1056 // output value will not completely combined with another item in a PHINode 1057 // as it is directly reference by another non-phi instruction 1058 if (!isa<PHINode>(I)) 1059 return true; 1060 1061 // If we have a PHINode outside one of the exit locations, then it 1062 // can be considered an outside use as well. If there is a PHINode 1063 // contained in the Exit where this values use matters, it will be 1064 // caught when we analyze that PHINode. 1065 if (!Exits.contains(Parent)) 1066 return true; 1067 1068 return false; 1069 }); 1070 } 1071 1072 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1073 /// considered outputs. A PHINodes is an output when more than one incoming 1074 /// value has been marked by the CodeExtractor as an output. 1075 /// 1076 /// \param CurrentExitFromRegion [in] - The block to analyze. 1077 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1078 /// region. 1079 /// \param RegionBlocks [in] - The basic blocks in the region. 1080 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1081 /// PHINodes to this as we find that they replace output values. 1082 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1083 /// totally replaced by a PHINode. 1084 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1085 /// in PHINodes, but have other uses, and should still be considered outputs. 1086 static void analyzeExitPHIsForOutputUses( 1087 BasicBlock *CurrentExitFromRegion, 1088 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1089 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1090 DenseSet<Value *> &OutputsReplacedByPHINode, 1091 DenseSet<Value *> &OutputsWithNonPhiUses) { 1092 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1093 // Find all incoming values from the outlining region. 1094 SmallVector<unsigned, 2> IncomingVals; 1095 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1096 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1097 IncomingVals.push_back(I); 1098 1099 // Do not process PHI if there are no predecessors from region. 1100 unsigned NumIncomingVals = IncomingVals.size(); 1101 if (NumIncomingVals == 0) 1102 continue; 1103 1104 // If there is one predecessor, we mark it as a value that needs to be kept 1105 // as an output. 1106 if (NumIncomingVals == 1) { 1107 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1108 OutputsWithNonPhiUses.insert(V); 1109 OutputsReplacedByPHINode.erase(V); 1110 continue; 1111 } 1112 1113 // This PHINode will be used as an output value, so we add it to our list. 1114 Outputs.insert(&PN); 1115 1116 // Not all of the incoming values should be ignored as other inputs and 1117 // outputs may have uses in outlined region. If they have other uses 1118 // outside of the single PHINode we should not skip over it. 1119 for (unsigned Idx : IncomingVals) { 1120 Value *V = PN.getIncomingValue(Idx); 1121 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1122 OutputsWithNonPhiUses.insert(V); 1123 OutputsReplacedByPHINode.erase(V); 1124 continue; 1125 } 1126 if (!OutputsWithNonPhiUses.contains(V)) 1127 OutputsReplacedByPHINode.insert(V); 1128 } 1129 } 1130 } 1131 1132 // Represents the type for the unsigned number denoting the output number for 1133 // phi node, along with the canonical number for the exit block. 1134 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1135 // The list of canonical numbers for the incoming values to a PHINode. 1136 using CanonList = SmallVector<unsigned, 2>; 1137 // The pair type representing the set of canonical values being combined in the 1138 // PHINode, along with the location data for the PHINode. 1139 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1140 1141 /// Encode \p PND as an integer for easy lookup based on the argument location, 1142 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1143 /// the values stored in the PHINode. 1144 /// 1145 /// \param PND - The data to hash. 1146 /// \returns The hash code of \p PND. 1147 static hash_code encodePHINodeData(PHINodeData &PND) { 1148 return llvm::hash_combine( 1149 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1150 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1151 } 1152 1153 /// Create a special GVN for PHINodes that will be used outside of 1154 /// the region. We create a hash code based on the Canonical number of the 1155 /// parent BasicBlock, the canonical numbering of the values stored in the 1156 /// PHINode and the aggregate argument location. This is used to find whether 1157 /// this PHINode type has been given a canonical numbering already. If not, we 1158 /// assign it a value and store it for later use. The value is returned to 1159 /// identify different output schemes for the set of regions. 1160 /// 1161 /// \param Region - The region that \p PN is an output for. 1162 /// \param PN - The PHINode we are analyzing. 1163 /// \param Blocks - The blocks for the region we are analyzing. 1164 /// \param AggArgIdx - The argument \p PN will be stored into. 1165 /// \returns An optional holding the assigned canonical number, or None if 1166 /// there is some attribute of the PHINode blocking it from being used. 1167 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1168 PHINode *PN, 1169 DenseSet<BasicBlock *> &Blocks, 1170 unsigned AggArgIdx) { 1171 OutlinableGroup &Group = *Region.Parent; 1172 IRSimilarityCandidate &Cand = *Region.Candidate; 1173 BasicBlock *PHIBB = PN->getParent(); 1174 CanonList PHIGVNs; 1175 Value *Incoming; 1176 BasicBlock *IncomingBlock; 1177 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1178 Incoming = PN->getIncomingValue(Idx); 1179 IncomingBlock = PN->getIncomingBlock(Idx); 1180 // If we cannot find a GVN, and the incoming block is included in the region 1181 // this means that the input to the PHINode is not included in the region we 1182 // are trying to analyze, meaning, that if it was outlined, we would be 1183 // adding an extra input. We ignore this case for now, and so ignore the 1184 // region. 1185 Optional<unsigned> OGVN = Cand.getGVN(Incoming); 1186 if (!OGVN.hasValue() && Blocks.contains(IncomingBlock)) { 1187 Region.IgnoreRegion = true; 1188 return None; 1189 } 1190 1191 // If the incoming block isn't in the region, we don't have to worry about 1192 // this incoming value. 1193 if (!Blocks.contains(IncomingBlock)) 1194 continue; 1195 1196 // Collect the canonical numbers of the values in the PHINode. 1197 unsigned GVN = OGVN.getValue(); 1198 OGVN = Cand.getCanonicalNum(GVN); 1199 assert(OGVN.hasValue() && "No GVN found for incoming value?"); 1200 PHIGVNs.push_back(*OGVN); 1201 1202 // Find the incoming block and use the canonical numbering as well to define 1203 // the hash for the PHINode. 1204 OGVN = Cand.getGVN(IncomingBlock); 1205 1206 // If there is no number for the incoming block, it is becaause we have 1207 // split the candidate basic blocks. So we use the previous block that it 1208 // was split from to find the valid global value numbering for the PHINode. 1209 if (!OGVN.hasValue()) { 1210 assert(Cand.getStartBB() == IncomingBlock && 1211 "Unknown basic block used in exit path PHINode."); 1212 1213 BasicBlock *PrevBlock = nullptr; 1214 // Iterate over the predecessors to the incoming block of the 1215 // PHINode, when we find a block that is not contained in the region 1216 // we know that this is the first block that we split from, and should 1217 // have a valid global value numbering. 1218 for (BasicBlock *Pred : predecessors(IncomingBlock)) 1219 if (!Blocks.contains(Pred)) { 1220 PrevBlock = Pred; 1221 break; 1222 } 1223 assert(PrevBlock && "Expected a predecessor not in the reigon!"); 1224 OGVN = Cand.getGVN(PrevBlock); 1225 } 1226 GVN = OGVN.getValue(); 1227 OGVN = Cand.getCanonicalNum(GVN); 1228 assert(OGVN.hasValue() && "No GVN found for incoming block?"); 1229 PHIGVNs.push_back(*OGVN); 1230 } 1231 1232 // Now that we have the GVNs for the incoming values, we are going to combine 1233 // them with the GVN of the incoming bock, and the output location of the 1234 // PHINode to generate a hash value representing this instance of the PHINode. 1235 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1236 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1237 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1238 assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!"); 1239 1240 BBGVN = Cand.getCanonicalNum(BBGVN.getValue()); 1241 assert(BBGVN.hasValue() && 1242 "Could not find canonical number for the incoming block!"); 1243 // Create a pair of the exit block canonical value, and the aggregate 1244 // argument location, connected to the canonical numbers stored in the 1245 // PHINode. 1246 PHINodeData TemporaryPair = 1247 std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs); 1248 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1249 1250 // Look for and create a new entry in our connection between canonical 1251 // numbers for PHINodes, and the set of objects we just created. 1252 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1253 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1254 bool Inserted = false; 1255 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1256 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1257 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1258 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1259 } 1260 1261 return GVNToPHIIt->second; 1262 } 1263 1264 /// Create a mapping of the output arguments for the \p Region to the output 1265 /// arguments of the overall outlined function. 1266 /// 1267 /// \param [in,out] Region - The region of code to be analyzed. 1268 /// \param [in] Outputs - The values found by the code extractor. 1269 static void 1270 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 1271 SetVector<Value *> &Outputs) { 1272 OutlinableGroup &Group = *Region.Parent; 1273 IRSimilarityCandidate &C = *Region.Candidate; 1274 1275 SmallVector<BasicBlock *> BE; 1276 DenseSet<BasicBlock *> BlocksInRegion; 1277 C.getBasicBlocks(BlocksInRegion, BE); 1278 1279 // Find the exits to the region. 1280 SmallPtrSet<BasicBlock *, 1> Exits; 1281 for (BasicBlock *Block : BE) 1282 for (BasicBlock *Succ : successors(Block)) 1283 if (!BlocksInRegion.contains(Succ)) 1284 Exits.insert(Succ); 1285 1286 // After determining which blocks exit to PHINodes, we add these PHINodes to 1287 // the set of outputs to be processed. We also check the incoming values of 1288 // the PHINodes for whether they should no longer be considered outputs. 1289 DenseSet<Value *> OutputsReplacedByPHINode; 1290 DenseSet<Value *> OutputsWithNonPhiUses; 1291 for (BasicBlock *ExitBB : Exits) 1292 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1293 OutputsReplacedByPHINode, 1294 OutputsWithNonPhiUses); 1295 1296 // This counts the argument number in the extracted function. 1297 unsigned OriginalIndex = Region.NumExtractedInputs; 1298 1299 // This counts the argument number in the overall function. 1300 unsigned TypeIndex = Group.NumAggregateInputs; 1301 bool TypeFound; 1302 DenseSet<unsigned> AggArgsUsed; 1303 1304 // Iterate over the output types and identify if there is an aggregate pointer 1305 // type whose base type matches the current output type. If there is, we mark 1306 // that we will use this output register for this value. If not we add another 1307 // type to the overall argument type list. We also store the GVNs used for 1308 // stores to identify which values will need to be moved into an special 1309 // block that holds the stores to the output registers. 1310 for (Value *Output : Outputs) { 1311 TypeFound = false; 1312 // We can do this since it is a result value, and will have a number 1313 // that is necessarily the same. BUT if in the future, the instructions 1314 // do not have to be in same order, but are functionally the same, we will 1315 // have to use a different scheme, as one-to-one correspondence is not 1316 // guaranteed. 1317 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1318 1319 // If the output is combined in a PHINode, we make sure to skip over it. 1320 if (OutputsReplacedByPHINode.contains(Output)) 1321 continue; 1322 1323 unsigned AggArgIdx = 0; 1324 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1325 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 1326 continue; 1327 1328 if (AggArgsUsed.contains(Jdx)) 1329 continue; 1330 1331 TypeFound = true; 1332 AggArgsUsed.insert(Jdx); 1333 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1334 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1335 AggArgIdx = Jdx; 1336 break; 1337 } 1338 1339 // We were unable to find an unused type in the output type set that matches 1340 // the output, so we add a pointer type to the argument types of the overall 1341 // function to handle this output and create a mapping to it. 1342 if (!TypeFound) { 1343 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 1344 // Mark the new pointer type as the last value in the aggregate argument 1345 // list. 1346 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1347 AggArgsUsed.insert(ArgTypeIdx); 1348 Region.ExtractedArgToAgg.insert( 1349 std::make_pair(OriginalIndex, ArgTypeIdx)); 1350 Region.AggArgToExtracted.insert( 1351 std::make_pair(ArgTypeIdx, OriginalIndex)); 1352 AggArgIdx = ArgTypeIdx; 1353 } 1354 1355 // TODO: Adapt to the extra input from the PHINode. 1356 PHINode *PN = dyn_cast<PHINode>(Output); 1357 1358 Optional<unsigned> GVN; 1359 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1360 // Values outside the region can be combined into PHINode when we 1361 // have multiple exits. We collect both of these into a list to identify 1362 // which values are being used in the PHINode. Each list identifies a 1363 // different PHINode, and a different output. We store the PHINode as it's 1364 // own canonical value. These canonical values are also dependent on the 1365 // output argument it is saved to. 1366 1367 // If two PHINodes have the same canonical values, but different aggregate 1368 // argument locations, then they will have distinct Canonical Values. 1369 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx); 1370 if (!GVN.hasValue()) 1371 return; 1372 } else { 1373 // If we do not have a PHINode we use the global value numbering for the 1374 // output value, to find the canonical number to add to the set of stored 1375 // values. 1376 GVN = C.getGVN(Output); 1377 GVN = C.getCanonicalNum(*GVN); 1378 } 1379 1380 // Each region has a potentially unique set of outputs. We save which 1381 // values are output in a list of canonical values so we can differentiate 1382 // among the different store schemes. 1383 Region.GVNStores.push_back(*GVN); 1384 1385 OriginalIndex++; 1386 TypeIndex++; 1387 } 1388 1389 // We sort the stored values to make sure that we are not affected by analysis 1390 // order when determining what combination of items were stored. 1391 stable_sort(Region.GVNStores); 1392 } 1393 1394 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1395 DenseSet<unsigned> &NotSame) { 1396 std::vector<unsigned> Inputs; 1397 SetVector<Value *> ArgInputs, Outputs; 1398 1399 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1400 Outputs); 1401 1402 if (Region.IgnoreRegion) 1403 return; 1404 1405 // Map the inputs found by the CodeExtractor to the arguments found for 1406 // the overall function. 1407 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1408 1409 // Map the outputs found by the CodeExtractor to the arguments found for 1410 // the overall function. 1411 findExtractedOutputToOverallOutputMapping(Region, Outputs); 1412 } 1413 1414 /// Replace the extracted function in the Region with a call to the overall 1415 /// function constructed from the deduplicated similar regions, replacing and 1416 /// remapping the values passed to the extracted function as arguments to the 1417 /// new arguments of the overall function. 1418 /// 1419 /// \param [in] M - The module to outline from. 1420 /// \param [in] Region - The regions of extracted code to be replaced with a new 1421 /// function. 1422 /// \returns a call instruction with the replaced function. 1423 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1424 std::vector<Value *> NewCallArgs; 1425 DenseMap<unsigned, unsigned>::iterator ArgPair; 1426 1427 OutlinableGroup &Group = *Region.Parent; 1428 CallInst *Call = Region.Call; 1429 assert(Call && "Call to replace is nullptr?"); 1430 Function *AggFunc = Group.OutlinedFunction; 1431 assert(AggFunc && "Function to replace with is nullptr?"); 1432 1433 // If the arguments are the same size, there are not values that need to be 1434 // made into an argument, the argument ordering has not been change, or 1435 // different output registers to handle. We can simply replace the called 1436 // function in this case. 1437 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1438 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1439 << *AggFunc << " with same number of arguments\n"); 1440 Call->setCalledFunction(AggFunc); 1441 return Call; 1442 } 1443 1444 // We have a different number of arguments than the new function, so 1445 // we need to use our previously mappings off extracted argument to overall 1446 // function argument, and constants to overall function argument to create the 1447 // new argument list. 1448 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1449 1450 if (AggArgIdx == AggFunc->arg_size() - 1 && 1451 Group.OutputGVNCombinations.size() > 1) { 1452 // If we are on the last argument, and we need to differentiate between 1453 // output blocks, add an integer to the argument list to determine 1454 // what block to take 1455 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1456 << Region.OutputBlockNum << "\n"); 1457 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1458 Region.OutputBlockNum)); 1459 continue; 1460 } 1461 1462 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1463 if (ArgPair != Region.AggArgToExtracted.end()) { 1464 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1465 // If we found the mapping from the extracted function to the overall 1466 // function, we simply add it to the argument list. We use the same 1467 // value, it just needs to honor the new order of arguments. 1468 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1469 << *ArgumentValue << "\n"); 1470 NewCallArgs.push_back(ArgumentValue); 1471 continue; 1472 } 1473 1474 // If it is a constant, we simply add it to the argument list as a value. 1475 if (Region.AggArgToConstant.find(AggArgIdx) != 1476 Region.AggArgToConstant.end()) { 1477 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1478 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1479 << *CST << "\n"); 1480 NewCallArgs.push_back(CST); 1481 continue; 1482 } 1483 1484 // Add a nullptr value if the argument is not found in the extracted 1485 // function. If we cannot find a value, it means it is not in use 1486 // for the region, so we should not pass anything to it. 1487 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1488 NewCallArgs.push_back(ConstantPointerNull::get( 1489 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1490 } 1491 1492 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1493 << *AggFunc << " with new set of arguments\n"); 1494 // Create the new call instruction and erase the old one. 1495 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1496 Call); 1497 1498 // It is possible that the call to the outlined function is either the first 1499 // instruction is in the new block, the last instruction, or both. If either 1500 // of these is the case, we need to make sure that we replace the instruction 1501 // in the IRInstructionData struct with the new call. 1502 CallInst *OldCall = Region.Call; 1503 if (Region.NewFront->Inst == OldCall) 1504 Region.NewFront->Inst = Call; 1505 if (Region.NewBack->Inst == OldCall) 1506 Region.NewBack->Inst = Call; 1507 1508 // Transfer any debug information. 1509 Call->setDebugLoc(Region.Call->getDebugLoc()); 1510 // Since our output may determine which branch we go to, we make sure to 1511 // propogate this new call value through the module. 1512 OldCall->replaceAllUsesWith(Call); 1513 1514 // Remove the old instruction. 1515 OldCall->eraseFromParent(); 1516 Region.Call = Call; 1517 1518 // Make sure that the argument in the new function has the SwiftError 1519 // argument. 1520 if (Group.SwiftErrorArgument.hasValue()) 1521 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1522 Attribute::SwiftError); 1523 1524 return Call; 1525 } 1526 1527 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1528 /// for \p RetVal. 1529 /// 1530 /// \param Group - The OutlinableGroup containing the information about the 1531 /// overall outlined function. 1532 /// \param RetVal - The return value or exit option that we are currently 1533 /// evaluating. 1534 /// \returns The found or newly created BasicBlock to contain the needed 1535 /// PHINodes to be used as outputs. 1536 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1537 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1538 ReturnBlockForRetVal; 1539 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1540 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1541 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1542 "Could not find output value!"); 1543 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1544 1545 // Find if a PHIBlock exists for this return value already. If it is 1546 // the first time we are analyzing this, we will not, so we record it. 1547 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1548 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1549 return PhiBlockForRetVal->second; 1550 1551 // If we did not find a block, we create one, and insert it into the 1552 // overall function and record it. 1553 bool Inserted = false; 1554 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1555 ReturnBB->getParent()); 1556 std::tie(PhiBlockForRetVal, Inserted) = 1557 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1558 1559 // We find the predecessors of the return block in the newly created outlined 1560 // function in order to point them to the new PHIBlock rather than the already 1561 // existing return block. 1562 SmallVector<BranchInst *, 2> BranchesToChange; 1563 for (BasicBlock *Pred : predecessors(ReturnBB)) 1564 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1565 1566 // Now we mark the branch instructions found, and change the references of the 1567 // return block to the newly created PHIBlock. 1568 for (BranchInst *BI : BranchesToChange) 1569 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1570 if (BI->getSuccessor(Succ) != ReturnBB) 1571 continue; 1572 BI->setSuccessor(Succ, PHIBlock); 1573 } 1574 1575 BranchInst::Create(ReturnBB, PHIBlock); 1576 1577 return PhiBlockForRetVal->second; 1578 } 1579 1580 /// For the function call now representing the \p Region, find the passed value 1581 /// to that call that represents Argument \p A at the call location if the 1582 /// call has already been replaced with a call to the overall, aggregate 1583 /// function. 1584 /// 1585 /// \param A - The Argument to get the passed value for. 1586 /// \param Region - The extracted Region corresponding to the outlined function. 1587 /// \returns The Value representing \p A at the call site. 1588 static Value * 1589 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1590 const OutlinableRegion &Region) { 1591 // If we don't need to adjust the argument number at all (since the call 1592 // has already been replaced by a call to the overall outlined function) 1593 // we can just get the specified argument. 1594 return Region.Call->getArgOperand(A->getArgNo()); 1595 } 1596 1597 /// For the function call now representing the \p Region, find the passed value 1598 /// to that call that represents Argument \p A at the call location if the 1599 /// call has only been replaced by the call to the aggregate function. 1600 /// 1601 /// \param A - The Argument to get the passed value for. 1602 /// \param Region - The extracted Region corresponding to the outlined function. 1603 /// \returns The Value representing \p A at the call site. 1604 static Value * 1605 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1606 const OutlinableRegion &Region) { 1607 unsigned ArgNum = A->getArgNo(); 1608 1609 // If it is a constant, we can look at our mapping from when we created 1610 // the outputs to figure out what the constant value is. 1611 if (Region.AggArgToConstant.count(ArgNum)) 1612 return Region.AggArgToConstant.find(ArgNum)->second; 1613 1614 // If it is not a constant, and we are not looking at the overall function, we 1615 // need to adjust which argument we are looking at. 1616 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1617 return Region.Call->getArgOperand(ArgNum); 1618 } 1619 1620 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1621 /// 1622 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1623 /// \param Region [in] - The OutlinableRegion containing \p PN. 1624 /// \param OutputMappings [in] - The mapping of output values from outlined 1625 /// region to their original values. 1626 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1627 /// \p PN paired with their incoming block. 1628 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1629 /// of \p Region rather than the overall function's call. 1630 static void findCanonNumsForPHI( 1631 PHINode *PN, OutlinableRegion &Region, 1632 const DenseMap<Value *, Value *> &OutputMappings, 1633 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums, 1634 bool ReplacedWithOutlinedCall = true) { 1635 // Iterate over the incoming values. 1636 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1637 Value *IVal = PN->getIncomingValue(Idx); 1638 BasicBlock *IBlock = PN->getIncomingBlock(Idx); 1639 // If we have an argument as incoming value, we need to grab the passed 1640 // value from the call itself. 1641 if (Argument *A = dyn_cast<Argument>(IVal)) { 1642 if (ReplacedWithOutlinedCall) 1643 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1644 else 1645 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1646 } 1647 1648 // Get the original value if it has been replaced by an output value. 1649 IVal = findOutputMapping(OutputMappings, IVal); 1650 1651 // Find and add the canonical number for the incoming value. 1652 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1653 assert(GVN.hasValue() && "No GVN for incoming value"); 1654 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1655 assert(CanonNum.hasValue() && "No Canonical Number for GVN"); 1656 CanonNums.push_back(std::make_pair(*CanonNum, IBlock)); 1657 } 1658 } 1659 1660 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1661 /// in order to condense the number of instructions added to the outlined 1662 /// function. 1663 /// 1664 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1665 /// \param Region [in] - The OutlinableRegion containing \p PN. 1666 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1667 /// \p PN in. 1668 /// \param OutputMappings [in] - The mapping of output values from outlined 1669 /// region to their original values. 1670 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been 1671 /// matched. 1672 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1673 static PHINode* 1674 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1675 BasicBlock *OverallPhiBlock, 1676 const DenseMap<Value *, Value *> &OutputMappings, 1677 DenseSet<PHINode *> &UsedPHIs) { 1678 OutlinableGroup &Group = *Region.Parent; 1679 1680 1681 // A list of the canonical numbering assigned to each incoming value, paired 1682 // with the incoming block for the PHINode passed into this function. 1683 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums; 1684 1685 // We have to use the extracted function since we have merged this region into 1686 // the overall function yet. We make sure to reassign the argument numbering 1687 // since it is possible that the argument ordering is different between the 1688 // functions. 1689 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1690 /* ReplacedWithOutlinedCall = */ false); 1691 1692 OutlinableRegion *FirstRegion = Group.Regions[0]; 1693 1694 // A list of the canonical numbering assigned to each incoming value, paired 1695 // with the incoming block for the PHINode that we are currently comparing 1696 // the passed PHINode to. 1697 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums; 1698 1699 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1700 // the uses of the PHINode we are searching for, with the found PHINode. 1701 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1702 // If this PHINode has already been matched to another PHINode to be merged, 1703 // we skip it. 1704 if (UsedPHIs.contains(&CurrPN)) 1705 continue; 1706 1707 CurrentCanonNums.clear(); 1708 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1709 /* ReplacedWithOutlinedCall = */ true); 1710 1711 // If the list of incoming values is not the same length, then they cannot 1712 // match since there is not an analogue for each incoming value. 1713 if (PNCanonNums.size() != CurrentCanonNums.size()) 1714 continue; 1715 1716 bool FoundMatch = true; 1717 1718 // We compare the canonical value for each incoming value in the passed 1719 // in PHINode to one already present in the outlined region. If the 1720 // incoming values do not match, then the PHINodes do not match. 1721 1722 // We also check to make sure that the incoming block matches as well by 1723 // finding the corresponding incoming block in the combined outlined region 1724 // for the current outlined region. 1725 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) { 1726 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx]; 1727 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx]; 1728 if (ToCompareTo.first != ToAdd.first) { 1729 FoundMatch = false; 1730 break; 1731 } 1732 1733 BasicBlock *CorrespondingBlock = 1734 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second); 1735 assert(CorrespondingBlock && "Found block is nullptr"); 1736 if (CorrespondingBlock != ToCompareTo.second) { 1737 FoundMatch = false; 1738 break; 1739 } 1740 } 1741 1742 // If all incoming values and branches matched, then we can merge 1743 // into the found PHINode. 1744 if (FoundMatch) { 1745 UsedPHIs.insert(&CurrPN); 1746 return &CurrPN; 1747 } 1748 } 1749 1750 // If we've made it here, it means we weren't able to replace the PHINode, so 1751 // we must insert it ourselves. 1752 PHINode *NewPN = cast<PHINode>(PN.clone()); 1753 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1754 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1755 Idx++) { 1756 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1757 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1758 1759 // Find corresponding basic block in the overall function for the incoming 1760 // block. 1761 BasicBlock *BlockToUse = 1762 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock); 1763 NewPN->setIncomingBlock(Idx, BlockToUse); 1764 1765 // If we have an argument we make sure we replace using the argument from 1766 // the correct function. 1767 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1768 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1769 NewPN->setIncomingValue(Idx, Val); 1770 continue; 1771 } 1772 1773 // Find the corresponding value in the overall function. 1774 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1775 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1776 assert(Val && "Value is nullptr?"); 1777 DenseMap<Value *, Value *>::iterator RemappedIt = 1778 FirstRegion->RemappedArguments.find(Val); 1779 if (RemappedIt != FirstRegion->RemappedArguments.end()) 1780 Val = RemappedIt->second; 1781 NewPN->setIncomingValue(Idx, Val); 1782 } 1783 return NewPN; 1784 } 1785 1786 // Within an extracted function, replace the argument uses of the extracted 1787 // region with the arguments of the function for an OutlinableGroup. 1788 // 1789 /// \param [in] Region - The region of extracted code to be changed. 1790 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1791 /// region. 1792 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1793 /// function to define the overall outlined function for all the regions, or 1794 /// if we are operating on one of the following regions. 1795 static void 1796 replaceArgumentUses(OutlinableRegion &Region, 1797 DenseMap<Value *, BasicBlock *> &OutputBBs, 1798 const DenseMap<Value *, Value *> &OutputMappings, 1799 bool FirstFunction = false) { 1800 OutlinableGroup &Group = *Region.Parent; 1801 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1802 1803 Function *DominatingFunction = Region.ExtractedFunction; 1804 if (FirstFunction) 1805 DominatingFunction = Group.OutlinedFunction; 1806 DominatorTree DT(*DominatingFunction); 1807 DenseSet<PHINode *> UsedPHIs; 1808 1809 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1810 ArgIdx++) { 1811 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1812 Region.ExtractedArgToAgg.end() && 1813 "No mapping from extracted to outlined?"); 1814 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1815 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1816 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1817 // The argument is an input, so we can simply replace it with the overall 1818 // argument value 1819 if (ArgIdx < Region.NumExtractedInputs) { 1820 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1821 << *Region.ExtractedFunction << " with " << *AggArg 1822 << " in function " << *Group.OutlinedFunction << "\n"); 1823 Arg->replaceAllUsesWith(AggArg); 1824 Value *V = Region.Call->getArgOperand(ArgIdx); 1825 Region.RemappedArguments.insert(std::make_pair(V, AggArg)); 1826 continue; 1827 } 1828 1829 // If we are replacing an output, we place the store value in its own 1830 // block inside the overall function before replacing the use of the output 1831 // in the function. 1832 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1833 User *InstAsUser = Arg->user_back(); 1834 assert(InstAsUser && "User is nullptr!"); 1835 1836 Instruction *I = cast<Instruction>(InstAsUser); 1837 BasicBlock *BB = I->getParent(); 1838 SmallVector<BasicBlock *, 4> Descendants; 1839 DT.getDescendants(BB, Descendants); 1840 bool EdgeAdded = false; 1841 if (Descendants.size() == 0) { 1842 EdgeAdded = true; 1843 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1844 DT.getDescendants(BB, Descendants); 1845 } 1846 1847 // Iterate over the following blocks, looking for return instructions, 1848 // if we find one, find the corresponding output block for the return value 1849 // and move our store instruction there. 1850 for (BasicBlock *DescendBB : Descendants) { 1851 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1852 if (!RI) 1853 continue; 1854 Value *RetVal = RI->getReturnValue(); 1855 auto VBBIt = OutputBBs.find(RetVal); 1856 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1857 1858 // If this is storing a PHINode, we must make sure it is included in the 1859 // overall function. 1860 StoreInst *SI = cast<StoreInst>(I); 1861 1862 Value *ValueOperand = SI->getValueOperand(); 1863 1864 StoreInst *NewI = cast<StoreInst>(I->clone()); 1865 NewI->setDebugLoc(DebugLoc()); 1866 BasicBlock *OutputBB = VBBIt->second; 1867 OutputBB->getInstList().push_back(NewI); 1868 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1869 << *OutputBB << "\n"); 1870 1871 // If this is storing a PHINode, we must make sure it is included in the 1872 // overall function. 1873 if (!isa<PHINode>(ValueOperand) || 1874 Region.Candidate->getGVN(ValueOperand).hasValue()) { 1875 if (FirstFunction) 1876 continue; 1877 Value *CorrVal = 1878 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1879 assert(CorrVal && "Value is nullptr?"); 1880 NewI->setOperand(0, CorrVal); 1881 continue; 1882 } 1883 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1884 // If it has a value, it was not split by the code extractor, which 1885 // is what we are looking for. 1886 if (Region.Candidate->getGVN(PN).hasValue()) 1887 continue; 1888 1889 // We record the parent block for the PHINode in the Region so that 1890 // we can exclude it from checks later on. 1891 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1892 1893 // If this is the first function, we do not need to worry about mergiing 1894 // this with any other block in the overall outlined function, so we can 1895 // just continue. 1896 if (FirstFunction) { 1897 BasicBlock *PHIBlock = PN->getParent(); 1898 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1899 continue; 1900 } 1901 1902 // We look for the aggregate block that contains the PHINodes leading into 1903 // this exit path. If we can't find one, we create one. 1904 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1905 1906 // For our PHINode, we find the combined canonical numbering, and 1907 // attempt to find a matching PHINode in the overall PHIBlock. If we 1908 // cannot, we copy the PHINode and move it into this new block. 1909 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, 1910 OutputMappings, UsedPHIs); 1911 NewI->setOperand(0, NewPN); 1912 } 1913 1914 // If we added an edge for basic blocks without a predecessor, we remove it 1915 // here. 1916 if (EdgeAdded) 1917 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1918 I->eraseFromParent(); 1919 1920 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1921 << *Region.ExtractedFunction << " with " << *AggArg 1922 << " in function " << *Group.OutlinedFunction << "\n"); 1923 Arg->replaceAllUsesWith(AggArg); 1924 } 1925 } 1926 1927 /// Within an extracted function, replace the constants that need to be lifted 1928 /// into arguments with the actual argument. 1929 /// 1930 /// \param Region [in] - The region of extracted code to be changed. 1931 void replaceConstants(OutlinableRegion &Region) { 1932 OutlinableGroup &Group = *Region.Parent; 1933 // Iterate over the constants that need to be elevated into arguments 1934 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1935 unsigned AggArgIdx = Const.first; 1936 Function *OutlinedFunction = Group.OutlinedFunction; 1937 assert(OutlinedFunction && "Overall Function is not defined?"); 1938 Constant *CST = Const.second; 1939 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1940 // Identify the argument it will be elevated to, and replace instances of 1941 // that constant in the function. 1942 1943 // TODO: If in the future constants do not have one global value number, 1944 // i.e. a constant 1 could be mapped to several values, this check will 1945 // have to be more strict. It cannot be using only replaceUsesWithIf. 1946 1947 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1948 << " in function " << *OutlinedFunction << " with " 1949 << *Arg << "\n"); 1950 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1951 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1952 return I->getFunction() == OutlinedFunction; 1953 return false; 1954 }); 1955 } 1956 } 1957 1958 /// It is possible that there is a basic block that already performs the same 1959 /// stores. This returns a duplicate block, if it exists 1960 /// 1961 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1962 /// \param OutputStoreBBs [in] The existing output blocks. 1963 /// \returns an optional value with the number output block if there is a match. 1964 Optional<unsigned> findDuplicateOutputBlock( 1965 DenseMap<Value *, BasicBlock *> &OutputBBs, 1966 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1967 1968 bool Mismatch = false; 1969 unsigned MatchingNum = 0; 1970 // We compare the new set output blocks to the other sets of output blocks. 1971 // If they are the same number, and have identical instructions, they are 1972 // considered to be the same. 1973 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1974 Mismatch = false; 1975 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1976 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1977 OutputBBs.find(VToB.first); 1978 if (OutputBBIt == OutputBBs.end()) { 1979 Mismatch = true; 1980 break; 1981 } 1982 1983 BasicBlock *CompBB = VToB.second; 1984 BasicBlock *OutputBB = OutputBBIt->second; 1985 if (CompBB->size() - 1 != OutputBB->size()) { 1986 Mismatch = true; 1987 break; 1988 } 1989 1990 BasicBlock::iterator NIt = OutputBB->begin(); 1991 for (Instruction &I : *CompBB) { 1992 if (isa<BranchInst>(&I)) 1993 continue; 1994 1995 if (!I.isIdenticalTo(&(*NIt))) { 1996 Mismatch = true; 1997 break; 1998 } 1999 2000 NIt++; 2001 } 2002 } 2003 2004 if (!Mismatch) 2005 return MatchingNum; 2006 2007 MatchingNum++; 2008 } 2009 2010 return None; 2011 } 2012 2013 /// Remove empty output blocks from the outlined region. 2014 /// 2015 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 2016 /// Region. 2017 /// \param Region - The OutlinableRegion we are analyzing. 2018 static bool 2019 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 2020 OutlinableRegion &Region) { 2021 bool AllRemoved = true; 2022 Value *RetValueForBB; 2023 BasicBlock *NewBB; 2024 SmallVector<Value *, 4> ToRemove; 2025 // Iterate over the output blocks created in the outlined section. 2026 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 2027 RetValueForBB = VtoBB.first; 2028 NewBB = VtoBB.second; 2029 2030 // If there are no instructions, we remove it from the module, and also 2031 // mark the value for removal from the return value to output block mapping. 2032 if (NewBB->size() == 0) { 2033 NewBB->eraseFromParent(); 2034 ToRemove.push_back(RetValueForBB); 2035 continue; 2036 } 2037 2038 // Mark that we could not remove all the blocks since they were not all 2039 // empty. 2040 AllRemoved = false; 2041 } 2042 2043 // Remove the return value from the mapping. 2044 for (Value *V : ToRemove) 2045 BlocksToPrune.erase(V); 2046 2047 // Mark the region as having the no output scheme. 2048 if (AllRemoved) 2049 Region.OutputBlockNum = -1; 2050 2051 return AllRemoved; 2052 } 2053 2054 /// For the outlined section, move needed the StoreInsts for the output 2055 /// registers into their own block. Then, determine if there is a duplicate 2056 /// output block already created. 2057 /// 2058 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 2059 /// \param [in] Region - The OutlinableRegion that is being analyzed. 2060 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 2061 /// placed in. 2062 /// \param [in] EndBBs - the final blocks of the extracted function. 2063 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 2064 /// been replaced by a new output value. 2065 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2066 static void alignOutputBlockWithAggFunc( 2067 OutlinableGroup &OG, OutlinableRegion &Region, 2068 DenseMap<Value *, BasicBlock *> &OutputBBs, 2069 DenseMap<Value *, BasicBlock *> &EndBBs, 2070 const DenseMap<Value *, Value *> &OutputMappings, 2071 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2072 // If none of the output blocks have any instructions, this means that we do 2073 // not have to determine if it matches any of the other output schemes, and we 2074 // don't have to do anything else. 2075 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 2076 return; 2077 2078 // Determine is there is a duplicate set of blocks. 2079 Optional<unsigned> MatchingBB = 2080 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 2081 2082 // If there is, we remove the new output blocks. If it does not, 2083 // we add it to our list of sets of output blocks. 2084 if (MatchingBB.hasValue()) { 2085 LLVM_DEBUG(dbgs() << "Set output block for region in function" 2086 << Region.ExtractedFunction << " to " 2087 << MatchingBB.getValue()); 2088 2089 Region.OutputBlockNum = MatchingBB.getValue(); 2090 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 2091 VtoBB.second->eraseFromParent(); 2092 return; 2093 } 2094 2095 Region.OutputBlockNum = OutputStoreBBs.size(); 2096 2097 Value *RetValueForBB; 2098 BasicBlock *NewBB; 2099 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2100 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 2101 RetValueForBB = VtoBB.first; 2102 NewBB = VtoBB.second; 2103 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2104 EndBBs.find(RetValueForBB); 2105 LLVM_DEBUG(dbgs() << "Create output block for region in" 2106 << Region.ExtractedFunction << " to " 2107 << *NewBB); 2108 BranchInst::Create(VBBIt->second, NewBB); 2109 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 2110 } 2111 } 2112 2113 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 2114 /// before creating a basic block for each \p NewMap, and inserting into the new 2115 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 2116 /// 2117 /// \param OldMap [in] - The mapping to base the new mapping off of. 2118 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 2119 /// \param ParentFunc [in] - The function to put the new basic block in. 2120 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 2121 /// by an index value. 2122 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 2123 DenseMap<Value *, BasicBlock *> &NewMap, 2124 Function *ParentFunc, Twine BaseName) { 2125 unsigned Idx = 0; 2126 std::vector<Value *> SortedKeys; 2127 2128 getSortedConstantKeys(SortedKeys, OldMap); 2129 2130 for (Value *RetVal : SortedKeys) { 2131 BasicBlock *NewBB = BasicBlock::Create( 2132 ParentFunc->getContext(), 2133 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 2134 ParentFunc); 2135 NewMap.insert(std::make_pair(RetVal, NewBB)); 2136 } 2137 } 2138 2139 /// Create the switch statement for outlined function to differentiate between 2140 /// all the output blocks. 2141 /// 2142 /// For the outlined section, determine if an outlined block already exists that 2143 /// matches the needed stores for the extracted section. 2144 /// \param [in] M - The module we are outlining from. 2145 /// \param [in] OG - The group of regions to be outlined. 2146 /// \param [in] EndBBs - The final blocks of the extracted function. 2147 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2148 void createSwitchStatement( 2149 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 2150 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2151 // We only need the switch statement if there is more than one store 2152 // combination, or there is more than one set of output blocks. The first 2153 // will occur when we store different sets of values for two different 2154 // regions. The second will occur when we have two outputs that are combined 2155 // in a PHINode outside of the region in one outlined instance, and are used 2156 // seaparately in another. This will create the same set of OutputGVNs, but 2157 // will generate two different output schemes. 2158 if (OG.OutputGVNCombinations.size() > 1) { 2159 Function *AggFunc = OG.OutlinedFunction; 2160 // Create a final block for each different return block. 2161 DenseMap<Value *, BasicBlock *> ReturnBBs; 2162 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2163 2164 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2165 std::pair<Value *, BasicBlock *> &OutputBlock = 2166 *OG.EndBBs.find(RetBlockPair.first); 2167 BasicBlock *ReturnBlock = RetBlockPair.second; 2168 BasicBlock *EndBB = OutputBlock.second; 2169 Instruction *Term = EndBB->getTerminator(); 2170 // Move the return value to the final block instead of the original exit 2171 // stub. 2172 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2173 // Put the switch statement in the old end basic block for the function 2174 // with a fall through to the new return block. 2175 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2176 << OutputStoreBBs.size() << "\n"); 2177 SwitchInst *SwitchI = 2178 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2179 ReturnBlock, OutputStoreBBs.size(), EndBB); 2180 2181 unsigned Idx = 0; 2182 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2183 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2184 OutputStoreBB.find(OutputBlock.first); 2185 2186 if (OSBBIt == OutputStoreBB.end()) 2187 continue; 2188 2189 BasicBlock *BB = OSBBIt->second; 2190 SwitchI->addCase( 2191 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2192 Term = BB->getTerminator(); 2193 Term->setSuccessor(0, ReturnBlock); 2194 Idx++; 2195 } 2196 } 2197 return; 2198 } 2199 2200 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2201 2202 // If there needs to be stores, move them from the output blocks to their 2203 // corresponding ending block. We do not check that the OutputGVNCombinations 2204 // is equal to 1 here since that could just been the case where there are 0 2205 // outputs. Instead, we check whether there is more than one set of output 2206 // blocks since this is the only case where we would have to move the 2207 // stores, and erase the extraneous blocks. 2208 if (OutputStoreBBs.size() == 1) { 2209 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2210 << *OG.OutlinedFunction << "\n"); 2211 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2212 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2213 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2214 EndBBs.find(VBPair.first); 2215 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2216 BasicBlock *EndBB = EndBBIt->second; 2217 BasicBlock *OutputBB = VBPair.second; 2218 Instruction *Term = OutputBB->getTerminator(); 2219 Term->eraseFromParent(); 2220 Term = EndBB->getTerminator(); 2221 moveBBContents(*OutputBB, *EndBB); 2222 Term->moveBefore(*EndBB, EndBB->end()); 2223 OutputBB->eraseFromParent(); 2224 } 2225 } 2226 } 2227 2228 /// Fill the new function that will serve as the replacement function for all of 2229 /// the extracted regions of a certain structure from the first region in the 2230 /// list of regions. Replace this first region's extracted function with the 2231 /// new overall function. 2232 /// 2233 /// \param [in] M - The module we are outlining from. 2234 /// \param [in] CurrentGroup - The group of regions to be outlined. 2235 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2236 /// set of stores needed for the different functions. 2237 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2238 /// once outlining is complete. 2239 /// \param [in] OutputMappings - Extracted functions to erase from module 2240 /// once outlining is complete. 2241 static void fillOverallFunction( 2242 Module &M, OutlinableGroup &CurrentGroup, 2243 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2244 std::vector<Function *> &FuncsToRemove, 2245 const DenseMap<Value *, Value *> &OutputMappings) { 2246 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2247 2248 // Move first extracted function's instructions into new function. 2249 LLVM_DEBUG(dbgs() << "Move instructions from " 2250 << *CurrentOS->ExtractedFunction << " to instruction " 2251 << *CurrentGroup.OutlinedFunction << "\n"); 2252 moveFunctionData(*CurrentOS->ExtractedFunction, 2253 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2254 2255 // Transfer the attributes from the function to the new function. 2256 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2257 CurrentGroup.OutlinedFunction->addFnAttr(A); 2258 2259 // Create a new set of output blocks for the first extracted function. 2260 DenseMap<Value *, BasicBlock *> NewBBs; 2261 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2262 CurrentGroup.OutlinedFunction, "output_block_0"); 2263 CurrentOS->OutputBlockNum = 0; 2264 2265 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2266 replaceConstants(*CurrentOS); 2267 2268 // We first identify if any output blocks are empty, if they are we remove 2269 // them. We then create a branch instruction to the basic block to the return 2270 // block for the function for each non empty output block. 2271 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2272 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2273 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2274 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2275 CurrentGroup.EndBBs.find(VToBB.first); 2276 BasicBlock *EndBB = VBBIt->second; 2277 BranchInst::Create(EndBB, VToBB.second); 2278 OutputStoreBBs.back().insert(VToBB); 2279 } 2280 } 2281 2282 // Replace the call to the extracted function with the outlined function. 2283 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2284 2285 // We only delete the extracted functions at the end since we may need to 2286 // reference instructions contained in them for mapping purposes. 2287 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2288 } 2289 2290 void IROutliner::deduplicateExtractedSections( 2291 Module &M, OutlinableGroup &CurrentGroup, 2292 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2293 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2294 2295 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2296 2297 OutlinableRegion *CurrentOS; 2298 2299 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2300 OutputMappings); 2301 2302 std::vector<Value *> SortedKeys; 2303 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2304 CurrentOS = CurrentGroup.Regions[Idx]; 2305 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2306 *CurrentOS->ExtractedFunction); 2307 2308 // Create a set of BasicBlocks, one for each return block, to hold the 2309 // needed store instructions. 2310 DenseMap<Value *, BasicBlock *> NewBBs; 2311 createAndInsertBasicBlocks( 2312 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2313 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2314 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2315 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2316 CurrentGroup.EndBBs, OutputMappings, 2317 OutputStoreBBs); 2318 2319 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2320 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2321 } 2322 2323 // Create a switch statement to handle the different output schemes. 2324 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2325 2326 OutlinedFunctionNum++; 2327 } 2328 2329 /// Checks that the next instruction in the InstructionDataList matches the 2330 /// next instruction in the module. If they do not, there could be the 2331 /// possibility that extra code has been inserted, and we must ignore it. 2332 /// 2333 /// \param ID - The IRInstructionData to check the next instruction of. 2334 /// \returns true if the InstructionDataList and actual instruction match. 2335 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2336 // We check if there is a discrepancy between the InstructionDataList 2337 // and the actual next instruction in the module. If there is, it means 2338 // that an extra instruction was added, likely by the CodeExtractor. 2339 2340 // Since we do not have any similarity data about this particular 2341 // instruction, we cannot confidently outline it, and must discard this 2342 // candidate. 2343 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2344 Instruction *NextIDLInst = NextIDIt->Inst; 2345 Instruction *NextModuleInst = nullptr; 2346 if (!ID.Inst->isTerminator()) 2347 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2348 else if (NextIDLInst != nullptr) 2349 NextModuleInst = 2350 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2351 2352 if (NextIDLInst && NextIDLInst != NextModuleInst) 2353 return false; 2354 2355 return true; 2356 } 2357 2358 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2359 const OutlinableRegion &Region) { 2360 IRSimilarityCandidate *IRSC = Region.Candidate; 2361 unsigned StartIdx = IRSC->getStartIdx(); 2362 unsigned EndIdx = IRSC->getEndIdx(); 2363 2364 // A check to make sure that we are not about to attempt to outline something 2365 // that has already been outlined. 2366 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2367 if (Outlined.contains(Idx)) 2368 return false; 2369 2370 // We check if the recorded instruction matches the actual next instruction, 2371 // if it does not, we fix it in the InstructionDataList. 2372 if (!Region.Candidate->backInstruction()->isTerminator()) { 2373 Instruction *NewEndInst = 2374 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2375 assert(NewEndInst && "Next instruction is a nullptr?"); 2376 if (Region.Candidate->end()->Inst != NewEndInst) { 2377 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2378 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2379 IRInstructionData(*NewEndInst, 2380 InstructionClassifier.visit(*NewEndInst), *IDL); 2381 2382 // Insert the first IRInstructionData of the new region after the 2383 // last IRInstructionData of the IRSimilarityCandidate. 2384 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2385 } 2386 } 2387 2388 return none_of(*IRSC, [this](IRInstructionData &ID) { 2389 if (!nextIRInstructionDataMatchesNextInst(ID)) 2390 return true; 2391 2392 return !this->InstructionClassifier.visit(ID.Inst); 2393 }); 2394 } 2395 2396 void IROutliner::pruneIncompatibleRegions( 2397 std::vector<IRSimilarityCandidate> &CandidateVec, 2398 OutlinableGroup &CurrentGroup) { 2399 bool PreviouslyOutlined; 2400 2401 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2402 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2403 const IRSimilarityCandidate &RHS) { 2404 return LHS.getStartIdx() < RHS.getStartIdx(); 2405 }); 2406 2407 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2408 // Since outlining a call and a branch instruction will be the same as only 2409 // outlinining a call instruction, we ignore it as a space saving. 2410 if (FirstCandidate.getLength() == 2) { 2411 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2412 isa<BranchInst>(FirstCandidate.back()->Inst)) 2413 return; 2414 } 2415 2416 unsigned CurrentEndIdx = 0; 2417 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2418 PreviouslyOutlined = false; 2419 unsigned StartIdx = IRSC.getStartIdx(); 2420 unsigned EndIdx = IRSC.getEndIdx(); 2421 2422 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2423 if (Outlined.contains(Idx)) { 2424 PreviouslyOutlined = true; 2425 break; 2426 } 2427 2428 if (PreviouslyOutlined) 2429 continue; 2430 2431 // Check over the instructions, and if the basic block has its address 2432 // taken for use somewhere else, we do not outline that block. 2433 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2434 return ID.Inst->getParent()->hasAddressTaken(); 2435 }); 2436 2437 if (BBHasAddressTaken) 2438 continue; 2439 2440 if (IRSC.getFunction()->hasOptNone()) 2441 continue; 2442 2443 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2444 !OutlineFromLinkODRs) 2445 continue; 2446 2447 // Greedily prune out any regions that will overlap with already chosen 2448 // regions. 2449 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2450 continue; 2451 2452 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2453 if (!nextIRInstructionDataMatchesNextInst(ID)) 2454 return true; 2455 2456 return !this->InstructionClassifier.visit(ID.Inst); 2457 }); 2458 2459 if (BadInst) 2460 continue; 2461 2462 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2463 OutlinableRegion(IRSC, CurrentGroup); 2464 CurrentGroup.Regions.push_back(OS); 2465 2466 CurrentEndIdx = EndIdx; 2467 } 2468 } 2469 2470 InstructionCost 2471 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2472 InstructionCost RegionBenefit = 0; 2473 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2474 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2475 // We add the number of instructions in the region to the benefit as an 2476 // estimate as to how much will be removed. 2477 RegionBenefit += Region->getBenefit(TTI); 2478 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2479 << " saved instructions to overfall benefit.\n"); 2480 } 2481 2482 return RegionBenefit; 2483 } 2484 2485 /// For the \p OutputCanon number passed in find the value represented by this 2486 /// canonical number. If it is from a PHINode, we pick the first incoming 2487 /// value and return that Value instead. 2488 /// 2489 /// \param Region - The OutlinableRegion to get the Value from. 2490 /// \param OutputCanon - The canonical number to find the Value from. 2491 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2492 /// Region. 2493 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2494 unsigned OutputCanon) { 2495 OutlinableGroup &CurrentGroup = *Region.Parent; 2496 // If the value is greater than the value in the tracker, we have a 2497 // PHINode and will instead use one of the incoming values to find the 2498 // type. 2499 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2500 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2501 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2502 "Could not find GVN set for PHINode number!"); 2503 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2504 OutputCanon = *It->second.second.begin(); 2505 } 2506 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); 2507 assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?"); 2508 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2509 assert(OV.hasValue() && "Could not find value for GVN?"); 2510 return *OV; 2511 } 2512 2513 InstructionCost 2514 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2515 InstructionCost OverallCost = 0; 2516 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2517 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2518 2519 // Each output incurs a load after the call, so we add that to the cost. 2520 for (unsigned OutputCanon : Region->GVNStores) { 2521 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2522 InstructionCost LoadCost = 2523 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2524 TargetTransformInfo::TCK_CodeSize); 2525 2526 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2527 << " instructions to cost for output of type " 2528 << *V->getType() << "\n"); 2529 OverallCost += LoadCost; 2530 } 2531 } 2532 2533 return OverallCost; 2534 } 2535 2536 /// Find the extra instructions needed to handle any output values for the 2537 /// region. 2538 /// 2539 /// \param [in] M - The Module to outline from. 2540 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2541 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2542 /// new instruction costs. 2543 /// \returns the additional cost to handle the outputs. 2544 static InstructionCost findCostForOutputBlocks(Module &M, 2545 OutlinableGroup &CurrentGroup, 2546 TargetTransformInfo &TTI) { 2547 InstructionCost OutputCost = 0; 2548 unsigned NumOutputBranches = 0; 2549 2550 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2551 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2552 DenseSet<BasicBlock *> CandidateBlocks; 2553 Candidate.getBasicBlocks(CandidateBlocks); 2554 2555 // Count the number of different output branches that point to blocks outside 2556 // of the region. 2557 DenseSet<BasicBlock *> FoundBlocks; 2558 for (IRInstructionData &ID : Candidate) { 2559 if (!isa<BranchInst>(ID.Inst)) 2560 continue; 2561 2562 for (Value *V : ID.OperVals) { 2563 BasicBlock *BB = static_cast<BasicBlock *>(V); 2564 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 2565 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 2566 continue; 2567 FoundBlocks.insert(BB); 2568 NumOutputBranches++; 2569 } 2570 } 2571 2572 CurrentGroup.BranchesToOutside = NumOutputBranches; 2573 2574 for (const ArrayRef<unsigned> &OutputUse : 2575 CurrentGroup.OutputGVNCombinations) { 2576 for (unsigned OutputCanon : OutputUse) { 2577 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2578 InstructionCost StoreCost = 2579 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2580 TargetTransformInfo::TCK_CodeSize); 2581 2582 // An instruction cost is added for each store set that needs to occur for 2583 // various output combinations inside the function, plus a branch to 2584 // return to the exit block. 2585 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2586 << " instructions to cost for output of type " 2587 << *V->getType() << "\n"); 2588 OutputCost += StoreCost * NumOutputBranches; 2589 } 2590 2591 InstructionCost BranchCost = 2592 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2593 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2594 << " a branch instruction\n"); 2595 OutputCost += BranchCost * NumOutputBranches; 2596 } 2597 2598 // If there is more than one output scheme, we must have a comparison and 2599 // branch for each different item in the switch statement. 2600 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2601 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2602 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2603 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2604 TargetTransformInfo::TCK_CodeSize); 2605 InstructionCost BranchCost = 2606 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2607 2608 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2609 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2610 2611 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2612 << " instructions for each switch case for each different" 2613 << " output path in a function\n"); 2614 OutputCost += TotalCost * NumOutputBranches; 2615 } 2616 2617 return OutputCost; 2618 } 2619 2620 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2621 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2622 CurrentGroup.Benefit += RegionBenefit; 2623 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2624 2625 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2626 CurrentGroup.Cost += OutputReloadCost; 2627 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2628 2629 InstructionCost AverageRegionBenefit = 2630 RegionBenefit / CurrentGroup.Regions.size(); 2631 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2632 unsigned NumRegions = CurrentGroup.Regions.size(); 2633 TargetTransformInfo &TTI = 2634 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2635 2636 // We add one region to the cost once, to account for the instructions added 2637 // inside of the newly created function. 2638 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2639 << " instructions to cost for body of new function.\n"); 2640 CurrentGroup.Cost += AverageRegionBenefit; 2641 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2642 2643 // For each argument, we must add an instruction for loading the argument 2644 // out of the register and into a value inside of the newly outlined function. 2645 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2646 << " instructions to cost for each argument in the new" 2647 << " function.\n"); 2648 CurrentGroup.Cost += 2649 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2650 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2651 2652 // Each argument needs to either be loaded into a register or onto the stack. 2653 // Some arguments will only be loaded into the stack once the argument 2654 // registers are filled. 2655 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2656 << " instructions to cost for each argument in the new" 2657 << " function " << NumRegions << " times for the " 2658 << "needed argument handling at the call site.\n"); 2659 CurrentGroup.Cost += 2660 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2661 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2662 2663 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2664 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2665 } 2666 2667 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2668 ArrayRef<Value *> Outputs, 2669 LoadInst *LI) { 2670 // For and load instructions following the call 2671 Value *Operand = LI->getPointerOperand(); 2672 Optional<unsigned> OutputIdx = None; 2673 // Find if the operand it is an output register. 2674 for (unsigned ArgIdx = Region.NumExtractedInputs; 2675 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2676 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2677 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2678 break; 2679 } 2680 } 2681 2682 // If we found an output register, place a mapping of the new value 2683 // to the original in the mapping. 2684 if (!OutputIdx.hasValue()) 2685 return; 2686 2687 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 2688 OutputMappings.end()) { 2689 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2690 << *Outputs[OutputIdx.getValue()] << "\n"); 2691 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 2692 } else { 2693 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 2694 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2695 << *Outputs[OutputIdx.getValue()] << "\n"); 2696 OutputMappings.insert(std::make_pair(LI, Orig)); 2697 } 2698 } 2699 2700 bool IROutliner::extractSection(OutlinableRegion &Region) { 2701 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2702 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2703 BasicBlock *InitialStart = Region.StartBB; 2704 Function *OrigF = Region.StartBB->getParent(); 2705 CodeExtractorAnalysisCache CEAC(*OrigF); 2706 Region.ExtractedFunction = 2707 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2708 2709 // If the extraction was successful, find the BasicBlock, and reassign the 2710 // OutlinableRegion blocks 2711 if (!Region.ExtractedFunction) { 2712 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2713 << "\n"); 2714 Region.reattachCandidate(); 2715 return false; 2716 } 2717 2718 // Get the block containing the called branch, and reassign the blocks as 2719 // necessary. If the original block still exists, it is because we ended on 2720 // a branch instruction, and so we move the contents into the block before 2721 // and assign the previous block correctly. 2722 User *InstAsUser = Region.ExtractedFunction->user_back(); 2723 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2724 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2725 assert(Region.PrevBB && "PrevBB is nullptr?"); 2726 if (Region.PrevBB == InitialStart) { 2727 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2728 Instruction *BI = NewPrev->getTerminator(); 2729 BI->eraseFromParent(); 2730 moveBBContents(*InitialStart, *NewPrev); 2731 Region.PrevBB = NewPrev; 2732 InitialStart->eraseFromParent(); 2733 } 2734 2735 Region.StartBB = RewrittenBB; 2736 Region.EndBB = RewrittenBB; 2737 2738 // The sequences of outlinable regions has now changed. We must fix the 2739 // IRInstructionDataList for consistency. Although they may not be illegal 2740 // instructions, they should not be compared with anything else as they 2741 // should not be outlined in this round. So marking these as illegal is 2742 // allowed. 2743 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2744 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2745 Instruction *EndRewritten = &*RewrittenBB->begin(); 2746 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2747 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2748 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2749 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2750 2751 // Insert the first IRInstructionData of the new region in front of the 2752 // first IRInstructionData of the IRSimilarityCandidate. 2753 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2754 // Insert the first IRInstructionData of the new region after the 2755 // last IRInstructionData of the IRSimilarityCandidate. 2756 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2757 // Remove the IRInstructionData from the IRSimilarityCandidate. 2758 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2759 2760 assert(RewrittenBB != nullptr && 2761 "Could not find a predecessor after extraction!"); 2762 2763 // Iterate over the new set of instructions to find the new call 2764 // instruction. 2765 for (Instruction &I : *RewrittenBB) 2766 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2767 if (Region.ExtractedFunction == CI->getCalledFunction()) 2768 Region.Call = CI; 2769 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2770 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2771 Region.reattachCandidate(); 2772 return true; 2773 } 2774 2775 unsigned IROutliner::doOutline(Module &M) { 2776 // Find the possible similarity sections. 2777 InstructionClassifier.EnableBranches = !DisableBranches; 2778 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2779 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2780 2781 IRSimilarityIdentifier &Identifier = getIRSI(M); 2782 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2783 2784 // Sort them by size of extracted sections 2785 unsigned OutlinedFunctionNum = 0; 2786 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2787 // to sort them by the potential number of instructions to be outlined 2788 if (SimilarityCandidates.size() > 1) 2789 llvm::stable_sort(SimilarityCandidates, 2790 [](const std::vector<IRSimilarityCandidate> &LHS, 2791 const std::vector<IRSimilarityCandidate> &RHS) { 2792 return LHS[0].getLength() * LHS.size() > 2793 RHS[0].getLength() * RHS.size(); 2794 }); 2795 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2796 // each of the following for loops to avoid making an allocator. 2797 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2798 2799 DenseSet<unsigned> NotSame; 2800 std::vector<OutlinableGroup *> NegativeCostGroups; 2801 std::vector<OutlinableRegion *> OutlinedRegions; 2802 // Iterate over the possible sets of similarity. 2803 unsigned PotentialGroupIdx = 0; 2804 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2805 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2806 2807 // Remove entries that were previously outlined 2808 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2809 2810 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2811 // trying to outlined since there is no compatible similar instance of this 2812 // code. 2813 if (CurrentGroup.Regions.size() < 2) 2814 continue; 2815 2816 // Determine if there are any values that are the same constant throughout 2817 // each section in the set. 2818 NotSame.clear(); 2819 CurrentGroup.findSameConstants(NotSame); 2820 2821 if (CurrentGroup.IgnoreGroup) 2822 continue; 2823 2824 // Create a CodeExtractor for each outlinable region. Identify inputs and 2825 // outputs for each section using the code extractor and create the argument 2826 // types for the Aggregate Outlining Function. 2827 OutlinedRegions.clear(); 2828 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2829 // Break the outlinable region out of its parent BasicBlock into its own 2830 // BasicBlocks (see function implementation). 2831 OS->splitCandidate(); 2832 2833 // There's a chance that when the region is split, extra instructions are 2834 // added to the region. This makes the region no longer viable 2835 // to be split, so we ignore it for outlining. 2836 if (!OS->CandidateSplit) 2837 continue; 2838 2839 SmallVector<BasicBlock *> BE; 2840 DenseSet<BasicBlock *> BlocksInRegion; 2841 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2842 OS->CE = new (ExtractorAllocator.Allocate()) 2843 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2844 false, nullptr, "outlined"); 2845 findAddInputsOutputs(M, *OS, NotSame); 2846 if (!OS->IgnoreRegion) 2847 OutlinedRegions.push_back(OS); 2848 2849 // We recombine the blocks together now that we have gathered all the 2850 // needed information. 2851 OS->reattachCandidate(); 2852 } 2853 2854 CurrentGroup.Regions = std::move(OutlinedRegions); 2855 2856 if (CurrentGroup.Regions.empty()) 2857 continue; 2858 2859 CurrentGroup.collectGVNStoreSets(M); 2860 2861 if (CostModel) 2862 findCostBenefit(M, CurrentGroup); 2863 2864 // If we are adhering to the cost model, skip those groups where the cost 2865 // outweighs the benefits. 2866 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2867 OptimizationRemarkEmitter &ORE = 2868 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2869 ORE.emit([&]() { 2870 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2871 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2872 C->frontInstruction()); 2873 R << "did not outline " 2874 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2875 << " regions due to estimated increase of " 2876 << ore::NV("InstructionIncrease", 2877 CurrentGroup.Cost - CurrentGroup.Benefit) 2878 << " instructions at locations "; 2879 interleave( 2880 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2881 [&R](OutlinableRegion *Region) { 2882 R << ore::NV( 2883 "DebugLoc", 2884 Region->Candidate->frontInstruction()->getDebugLoc()); 2885 }, 2886 [&R]() { R << " "; }); 2887 return R; 2888 }); 2889 continue; 2890 } 2891 2892 NegativeCostGroups.push_back(&CurrentGroup); 2893 } 2894 2895 ExtractorAllocator.DestroyAll(); 2896 2897 if (NegativeCostGroups.size() > 1) 2898 stable_sort(NegativeCostGroups, 2899 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2900 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2901 }); 2902 2903 std::vector<Function *> FuncsToRemove; 2904 for (OutlinableGroup *CG : NegativeCostGroups) { 2905 OutlinableGroup &CurrentGroup = *CG; 2906 2907 OutlinedRegions.clear(); 2908 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2909 // We check whether our region is compatible with what has already been 2910 // outlined, and whether we need to ignore this item. 2911 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2912 continue; 2913 OutlinedRegions.push_back(Region); 2914 } 2915 2916 if (OutlinedRegions.size() < 2) 2917 continue; 2918 2919 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2920 // we are still outlining enough regions to make up for the added cost. 2921 CurrentGroup.Regions = std::move(OutlinedRegions); 2922 if (CostModel) { 2923 CurrentGroup.Benefit = 0; 2924 CurrentGroup.Cost = 0; 2925 findCostBenefit(M, CurrentGroup); 2926 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2927 continue; 2928 } 2929 OutlinedRegions.clear(); 2930 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2931 Region->splitCandidate(); 2932 if (!Region->CandidateSplit) 2933 continue; 2934 OutlinedRegions.push_back(Region); 2935 } 2936 2937 CurrentGroup.Regions = std::move(OutlinedRegions); 2938 if (CurrentGroup.Regions.size() < 2) { 2939 for (OutlinableRegion *R : CurrentGroup.Regions) 2940 R->reattachCandidate(); 2941 continue; 2942 } 2943 2944 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2945 << " and benefit " << CurrentGroup.Benefit << "\n"); 2946 2947 // Create functions out of all the sections, and mark them as outlined. 2948 OutlinedRegions.clear(); 2949 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2950 SmallVector<BasicBlock *> BE; 2951 DenseSet<BasicBlock *> BlocksInRegion; 2952 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2953 OS->CE = new (ExtractorAllocator.Allocate()) 2954 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2955 false, nullptr, "outlined"); 2956 bool FunctionOutlined = extractSection(*OS); 2957 if (FunctionOutlined) { 2958 unsigned StartIdx = OS->Candidate->getStartIdx(); 2959 unsigned EndIdx = OS->Candidate->getEndIdx(); 2960 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2961 Outlined.insert(Idx); 2962 2963 OutlinedRegions.push_back(OS); 2964 } 2965 } 2966 2967 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2968 << " with benefit " << CurrentGroup.Benefit 2969 << " and cost " << CurrentGroup.Cost << "\n"); 2970 2971 CurrentGroup.Regions = std::move(OutlinedRegions); 2972 2973 if (CurrentGroup.Regions.empty()) 2974 continue; 2975 2976 OptimizationRemarkEmitter &ORE = 2977 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2978 ORE.emit([&]() { 2979 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2980 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2981 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2982 << " regions with decrease of " 2983 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2984 << " instructions at locations "; 2985 interleave( 2986 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2987 [&R](OutlinableRegion *Region) { 2988 R << ore::NV("DebugLoc", 2989 Region->Candidate->frontInstruction()->getDebugLoc()); 2990 }, 2991 [&R]() { R << " "; }); 2992 return R; 2993 }); 2994 2995 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2996 OutlinedFunctionNum); 2997 } 2998 2999 for (Function *F : FuncsToRemove) 3000 F->eraseFromParent(); 3001 3002 return OutlinedFunctionNum; 3003 } 3004 3005 bool IROutliner::run(Module &M) { 3006 CostModel = !NoCostModel; 3007 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 3008 3009 return doOutline(M) > 0; 3010 } 3011 3012 // Pass Manager Boilerplate 3013 namespace { 3014 class IROutlinerLegacyPass : public ModulePass { 3015 public: 3016 static char ID; 3017 IROutlinerLegacyPass() : ModulePass(ID) { 3018 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 3019 } 3020 3021 void getAnalysisUsage(AnalysisUsage &AU) const override { 3022 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3023 AU.addRequired<TargetTransformInfoWrapperPass>(); 3024 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 3025 } 3026 3027 bool runOnModule(Module &M) override; 3028 }; 3029 } // namespace 3030 3031 bool IROutlinerLegacyPass::runOnModule(Module &M) { 3032 if (skipModule(M)) 3033 return false; 3034 3035 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3036 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3037 ORE.reset(new OptimizationRemarkEmitter(&F)); 3038 return *ORE; 3039 }; 3040 3041 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 3042 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3043 }; 3044 3045 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 3046 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 3047 }; 3048 3049 return IROutliner(GTTI, GIRSI, GORE).run(M); 3050 } 3051 3052 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 3053 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3054 3055 std::function<TargetTransformInfo &(Function &)> GTTI = 3056 [&FAM](Function &F) -> TargetTransformInfo & { 3057 return FAM.getResult<TargetIRAnalysis>(F); 3058 }; 3059 3060 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 3061 [&AM](Module &M) -> IRSimilarityIdentifier & { 3062 return AM.getResult<IRSimilarityAnalysis>(M); 3063 }; 3064 3065 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3066 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 3067 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3068 ORE.reset(new OptimizationRemarkEmitter(&F)); 3069 return *ORE; 3070 }; 3071 3072 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 3073 return PreservedAnalyses::none(); 3074 return PreservedAnalyses::all(); 3075 } 3076 3077 char IROutlinerLegacyPass::ID = 0; 3078 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 3079 false) 3080 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 3081 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3082 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3083 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 3084 false) 3085 3086 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 3087