1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/PassManager.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Transforms/IPO.h" 24 #include <map> 25 #include <set> 26 #include <vector> 27 28 #define DEBUG_TYPE "iroutliner" 29 30 using namespace llvm; 31 using namespace IRSimilarity; 32 33 // This is a debug option to test small pieces of code to ensure that outlining 34 // works correctly. 35 static cl::opt<bool> NoCostModel( 36 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 37 cl::desc("Debug option to outline greedily, without restriction that " 38 "calculated benefit outweighs cost")); 39 40 /// The OutlinableGroup holds all the overarching information for outlining 41 /// a set of regions that are structurally similar to one another, such as the 42 /// types of the overall function, the output blocks, the sets of stores needed 43 /// and a list of the different regions. This information is used in the 44 /// deduplication of extracted regions with the same structure. 45 struct OutlinableGroup { 46 /// The sections that could be outlined 47 std::vector<OutlinableRegion *> Regions; 48 49 /// The argument types for the function created as the overall function to 50 /// replace the extracted function for each region. 51 std::vector<Type *> ArgumentTypes; 52 /// The FunctionType for the overall function. 53 FunctionType *OutlinedFunctionType = nullptr; 54 /// The Function for the collective overall function. 55 Function *OutlinedFunction = nullptr; 56 57 /// Flag for whether we should not consider this group of OutlinableRegions 58 /// for extraction. 59 bool IgnoreGroup = false; 60 61 /// The return block for the overall function. 62 BasicBlock *EndBB = nullptr; 63 64 /// A set containing the different GVN store sets needed. Each array contains 65 /// a sorted list of the different values that need to be stored into output 66 /// registers. 67 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 68 69 /// Flag for whether the \ref ArgumentTypes have been defined after the 70 /// extraction of the first region. 71 bool InputTypesSet = false; 72 73 /// The number of input values in \ref ArgumentTypes. Anything after this 74 /// index in ArgumentTypes is an output argument. 75 unsigned NumAggregateInputs = 0; 76 77 /// The number of instructions that will be outlined by extracting \ref 78 /// Regions. 79 unsigned Benefit = 0; 80 /// The number of added instructions needed for the outlining of the \ref 81 /// Regions. 82 unsigned Cost = 0; 83 84 /// The argument that needs to be marked with the swifterr attribute. If not 85 /// needed, there is no value. 86 Optional<unsigned> SwiftErrorArgument; 87 88 /// For the \ref Regions, we look at every Value. If it is a constant, 89 /// we check whether it is the same in Region. 90 /// 91 /// \param [in,out] NotSame contains the global value numbers where the 92 /// constant is not always the same, and must be passed in as an argument. 93 void findSameConstants(DenseSet<unsigned> &NotSame); 94 95 /// For the regions, look at each set of GVN stores needed and account for 96 /// each combination. Add an argument to the argument types if there is 97 /// more than one combination. 98 /// 99 /// \param [in] M - The module we are outlining from. 100 void collectGVNStoreSets(Module &M); 101 }; 102 103 /// Move the contents of \p SourceBB to before the last instruction of \p 104 /// TargetBB. 105 /// \param SourceBB - the BasicBlock to pull Instructions from. 106 /// \param TargetBB - the BasicBlock to put Instruction into. 107 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 108 BasicBlock::iterator BBCurr, BBEnd, BBNext; 109 for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd; 110 BBCurr = BBNext) { 111 BBNext = std::next(BBCurr); 112 BBCurr->moveBefore(TargetBB, TargetBB.end()); 113 } 114 } 115 116 void OutlinableRegion::splitCandidate() { 117 assert(!CandidateSplit && "Candidate already split!"); 118 119 Instruction *StartInst = (*Candidate->begin()).Inst; 120 Instruction *EndInst = (*Candidate->end()).Inst; 121 assert(StartInst && EndInst && "Expected a start and end instruction?"); 122 StartBB = StartInst->getParent(); 123 PrevBB = StartBB; 124 125 // The basic block gets split like so: 126 // block: block: 127 // inst1 inst1 128 // inst2 inst2 129 // region1 br block_to_outline 130 // region2 block_to_outline: 131 // region3 -> region1 132 // region4 region2 133 // inst3 region3 134 // inst4 region4 135 // br block_after_outline 136 // block_after_outline: 137 // inst3 138 // inst4 139 140 std::string OriginalName = PrevBB->getName().str(); 141 142 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 143 144 // This is the case for the inner block since we do not have to include 145 // multiple blocks. 146 EndBB = StartBB; 147 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 148 149 CandidateSplit = true; 150 } 151 152 void OutlinableRegion::reattachCandidate() { 153 assert(CandidateSplit && "Candidate is not split!"); 154 155 // The basic block gets reattached like so: 156 // block: block: 157 // inst1 inst1 158 // inst2 inst2 159 // br block_to_outline region1 160 // block_to_outline: -> region2 161 // region1 region3 162 // region2 region4 163 // region3 inst3 164 // region4 inst4 165 // br block_after_outline 166 // block_after_outline: 167 // inst3 168 // inst4 169 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 170 assert(FollowBB != nullptr && "StartBB for Candidate is not defined!"); 171 172 // StartBB should only have one predecessor since we put an unconditional 173 // branch at the end of PrevBB when we split the BasicBlock. 174 PrevBB = StartBB->getSinglePredecessor(); 175 assert(PrevBB != nullptr && 176 "No Predecessor for the region start basic block!"); 177 178 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 179 assert(EndBB->getTerminator() && "Terminator removed from EndBB!"); 180 PrevBB->getTerminator()->eraseFromParent(); 181 EndBB->getTerminator()->eraseFromParent(); 182 183 moveBBContents(*StartBB, *PrevBB); 184 185 BasicBlock *PlacementBB = PrevBB; 186 if (StartBB != EndBB) 187 PlacementBB = EndBB; 188 moveBBContents(*FollowBB, *PlacementBB); 189 190 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 191 PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 192 StartBB->eraseFromParent(); 193 FollowBB->eraseFromParent(); 194 195 // Make sure to save changes back to the StartBB. 196 StartBB = PrevBB; 197 EndBB = nullptr; 198 PrevBB = nullptr; 199 FollowBB = nullptr; 200 201 CandidateSplit = false; 202 } 203 204 /// Find whether \p V matches the Constants previously found for the \p GVN. 205 /// 206 /// \param V - The value to check for consistency. 207 /// \param GVN - The global value number assigned to \p V. 208 /// \param GVNToConstant - The mapping of global value number to Constants. 209 /// \returns true if the Value matches the Constant mapped to by V and false if 210 /// it \p V is a Constant but does not match. 211 /// \returns None if \p V is not a Constant. 212 static Optional<bool> 213 constantMatches(Value *V, unsigned GVN, 214 DenseMap<unsigned, Constant *> &GVNToConstant) { 215 // See if we have a constants 216 Constant *CST = dyn_cast<Constant>(V); 217 if (!CST) 218 return None; 219 220 // Holds a mapping from a global value number to a Constant. 221 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 222 bool Inserted; 223 224 225 // If we have a constant, try to make a new entry in the GVNToConstant. 226 std::tie(GVNToConstantIt, Inserted) = 227 GVNToConstant.insert(std::make_pair(GVN, CST)); 228 // If it was found and is not equal, it is not the same. We do not 229 // handle this case yet, and exit early. 230 if (Inserted || (GVNToConstantIt->second == CST)) 231 return true; 232 233 return false; 234 } 235 236 unsigned OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 237 InstructionCost Benefit(0); 238 239 // Estimate the benefit of outlining a specific sections of the program. We 240 // delegate mostly this task to the TargetTransformInfo so that if the target 241 // has specific changes, we can have a more accurate estimate. 242 243 // However, getInstructionCost delegates the code size calculation for 244 // arithmetic instructions to getArithmeticInstrCost in 245 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 246 // code size for a division and remainder instruction to be equal to 4, and 247 // everything else to 1. This is not an accurate representation of the 248 // division instruction for targets that have a native division instruction. 249 // To be overly conservative, we only add 1 to the number of instructions for 250 // each division instruction. 251 for (Instruction &I : *StartBB) { 252 switch (I.getOpcode()) { 253 case Instruction::FDiv: 254 case Instruction::FRem: 255 case Instruction::SDiv: 256 case Instruction::SRem: 257 case Instruction::UDiv: 258 case Instruction::URem: 259 Benefit += 1; 260 break; 261 default: 262 Benefit += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 263 break; 264 } 265 } 266 267 return *Benefit.getValue(); 268 } 269 270 /// Find whether \p Region matches the global value numbering to Constant 271 /// mapping found so far. 272 /// 273 /// \param Region - The OutlinableRegion we are checking for constants 274 /// \param GVNToConstant - The mapping of global value number to Constants. 275 /// \param NotSame - The set of global value numbers that do not have the same 276 /// constant in each region. 277 /// \returns true if all Constants are the same in every use of a Constant in \p 278 /// Region and false if not 279 static bool 280 collectRegionsConstants(OutlinableRegion &Region, 281 DenseMap<unsigned, Constant *> &GVNToConstant, 282 DenseSet<unsigned> &NotSame) { 283 bool ConstantsTheSame = true; 284 285 IRSimilarityCandidate &C = *Region.Candidate; 286 for (IRInstructionData &ID : C) { 287 288 // Iterate over the operands in an instruction. If the global value number, 289 // assigned by the IRSimilarityCandidate, has been seen before, we check if 290 // the the number has been found to be not the same value in each instance. 291 for (Value *V : ID.OperVals) { 292 Optional<unsigned> GVNOpt = C.getGVN(V); 293 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 294 unsigned GVN = GVNOpt.getValue(); 295 296 // Check if this global value has been found to not be the same already. 297 if (NotSame.find(GVN) != NotSame.end()) { 298 if (isa<Constant>(V)) 299 ConstantsTheSame = false; 300 continue; 301 } 302 303 // If it has been the same so far, we check the value for if the 304 // associated Constant value match the previous instances of the same 305 // global value number. If the global value does not map to a Constant, 306 // it is considered to not be the same value. 307 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 308 if (ConstantMatches.hasValue()) { 309 if (ConstantMatches.getValue()) 310 continue; 311 else 312 ConstantsTheSame = false; 313 } 314 315 // While this value is a register, it might not have been previously, 316 // make sure we don't already have a constant mapped to this global value 317 // number. 318 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 319 ConstantsTheSame = false; 320 321 NotSame.insert(GVN); 322 } 323 } 324 325 return ConstantsTheSame; 326 } 327 328 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 329 DenseMap<unsigned, Constant *> GVNToConstant; 330 331 for (OutlinableRegion *Region : Regions) 332 collectRegionsConstants(*Region, GVNToConstant, NotSame); 333 } 334 335 void OutlinableGroup::collectGVNStoreSets(Module &M) { 336 for (OutlinableRegion *OS : Regions) 337 OutputGVNCombinations.insert(OS->GVNStores); 338 339 // We are adding an extracted argument to decide between which output path 340 // to use in the basic block. It is used in a switch statement and only 341 // needs to be an integer. 342 if (OutputGVNCombinations.size() > 1) 343 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 344 } 345 346 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 347 unsigned FunctionNameSuffix) { 348 assert(!Group.OutlinedFunction && "Function is already defined!"); 349 350 Group.OutlinedFunctionType = FunctionType::get( 351 Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false); 352 353 // These functions will only be called from within the same module, so 354 // we can set an internal linkage. 355 Group.OutlinedFunction = Function::Create( 356 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 357 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 358 359 // Transfer the swifterr attribute to the correct function parameter. 360 if (Group.SwiftErrorArgument.hasValue()) 361 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 362 Attribute::SwiftError); 363 364 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 365 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 366 367 return Group.OutlinedFunction; 368 } 369 370 /// Move each BasicBlock in \p Old to \p New. 371 /// 372 /// \param [in] Old - the function to move the basic blocks from. 373 /// \param [in] New - The function to move the basic blocks to. 374 /// \returns the first return block for the function in New. 375 static BasicBlock *moveFunctionData(Function &Old, Function &New) { 376 Function::iterator CurrBB, NextBB, FinalBB; 377 BasicBlock *NewEnd = nullptr; 378 std::vector<Instruction *> DebugInsts; 379 for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB; 380 CurrBB = NextBB) { 381 NextBB = std::next(CurrBB); 382 CurrBB->removeFromParent(); 383 CurrBB->insertInto(&New); 384 Instruction *I = CurrBB->getTerminator(); 385 if (isa<ReturnInst>(I)) 386 NewEnd = &(*CurrBB); 387 } 388 389 assert(NewEnd && "No return instruction for new function?"); 390 return NewEnd; 391 } 392 393 /// Find the the constants that will need to be lifted into arguments 394 /// as they are not the same in each instance of the region. 395 /// 396 /// \param [in] C - The IRSimilarityCandidate containing the region we are 397 /// analyzing. 398 /// \param [in] NotSame - The set of global value numbers that do not have a 399 /// single Constant across all OutlinableRegions similar to \p C. 400 /// \param [out] Inputs - The list containing the global value numbers of the 401 /// arguments needed for the region of code. 402 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 403 std::vector<unsigned> &Inputs) { 404 DenseSet<unsigned> Seen; 405 // Iterate over the instructions, and find what constants will need to be 406 // extracted into arguments. 407 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 408 IDIt != EndIDIt; IDIt++) { 409 for (Value *V : (*IDIt).OperVals) { 410 // Since these are stored before any outlining, they will be in the 411 // global value numbering. 412 unsigned GVN = C.getGVN(V).getValue(); 413 if (isa<Constant>(V)) 414 if (NotSame.find(GVN) != NotSame.end() && 415 Seen.find(GVN) == Seen.end()) { 416 Inputs.push_back(GVN); 417 Seen.insert(GVN); 418 } 419 } 420 } 421 } 422 423 /// Find the GVN for the inputs that have been found by the CodeExtractor. 424 /// 425 /// \param [in] C - The IRSimilarityCandidate containing the region we are 426 /// analyzing. 427 /// \param [in] CurrentInputs - The set of inputs found by the 428 /// CodeExtractor. 429 /// \param [out] EndInputNumbers - The global value numbers for the extracted 430 /// arguments. 431 /// \param [in] OutputMappings - The mapping of values that have been replaced 432 /// by a new output value. 433 /// \param [out] EndInputs - The global value numbers for the extracted 434 /// arguments. 435 static void mapInputsToGVNs(IRSimilarityCandidate &C, 436 SetVector<Value *> &CurrentInputs, 437 const DenseMap<Value *, Value *> &OutputMappings, 438 std::vector<unsigned> &EndInputNumbers) { 439 // Get the Global Value Number for each input. We check if the Value has been 440 // replaced by a different value at output, and use the original value before 441 // replacement. 442 for (Value *Input : CurrentInputs) { 443 assert(Input && "Have a nullptr as an input"); 444 if (OutputMappings.find(Input) != OutputMappings.end()) 445 Input = OutputMappings.find(Input)->second; 446 assert(C.getGVN(Input).hasValue() && 447 "Could not find a numbering for the given input"); 448 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 449 } 450 } 451 452 /// Find the original value for the \p ArgInput values if any one of them was 453 /// replaced during a previous extraction. 454 /// 455 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 456 /// \param [in] OutputMappings - The mapping of values that have been replaced 457 /// by a new output value. 458 /// \param [out] RemappedArgInputs - The remapped values according to 459 /// \p OutputMappings that will be extracted. 460 static void 461 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 462 const DenseMap<Value *, Value *> &OutputMappings, 463 SetVector<Value *> &RemappedArgInputs) { 464 // Get the global value number for each input that will be extracted as an 465 // argument by the code extractor, remapping if needed for reloaded values. 466 for (Value *Input : ArgInputs) { 467 if (OutputMappings.find(Input) != OutputMappings.end()) 468 Input = OutputMappings.find(Input)->second; 469 RemappedArgInputs.insert(Input); 470 } 471 } 472 473 /// Find the input GVNs and the output values for a region of Instructions. 474 /// Using the code extractor, we collect the inputs to the extracted function. 475 /// 476 /// The \p Region can be identified as needing to be ignored in this function. 477 /// It should be checked whether it should be ignored after a call to this 478 /// function. 479 /// 480 /// \param [in,out] Region - The region of code to be analyzed. 481 /// \param [out] InputGVNs - The global value numbers for the extracted 482 /// arguments. 483 /// \param [in] NotSame - The global value numbers in the region that do not 484 /// have the same constant value in the regions structurally similar to 485 /// \p Region. 486 /// \param [in] OutputMappings - The mapping of values that have been replaced 487 /// by a new output value after extraction. 488 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 489 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 490 /// as outputs. 491 static void getCodeExtractorArguments( 492 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 493 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 494 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 495 IRSimilarityCandidate &C = *Region.Candidate; 496 497 // OverallInputs are the inputs to the region found by the CodeExtractor, 498 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 499 // allocas of values whose lifetimes are contained completely within the 500 // outlined region. PremappedInputs are the arguments found by the 501 // CodeExtractor, removing conditions such as sunken allocas, but that 502 // may need to be remapped due to the extracted output values replacing 503 // the original values. 504 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands; 505 506 // Use the code extractor to get the inputs and outputs, without sunken 507 // allocas or removing llvm.assumes. 508 CodeExtractor *CE = Region.CE; 509 CE->findInputsOutputs(OverallInputs, Outputs, SinkCands); 510 assert(Region.StartBB && "Region must have a start BasicBlock!"); 511 Function *OrigF = Region.StartBB->getParent(); 512 CodeExtractorAnalysisCache CEAC(*OrigF); 513 BasicBlock *Dummy = nullptr; 514 515 // The region may be ineligible due to VarArgs in the parent function. In this 516 // case we ignore the region. 517 if (!CE->isEligible()) { 518 Region.IgnoreRegion = true; 519 return; 520 } 521 522 // Find if any values are going to be sunk into the function when extracted 523 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 524 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 525 526 // TODO: Support regions with sunken allocas: values whose lifetimes are 527 // contained completely within the outlined region. These are not guaranteed 528 // to be the same in every region, so we must elevate them all to arguments 529 // when they appear. If these values are not equal, it means there is some 530 // Input in OverallInputs that was removed for ArgInputs. 531 if (OverallInputs.size() != PremappedInputs.size()) { 532 Region.IgnoreRegion = true; 533 return; 534 } 535 536 findConstants(C, NotSame, InputGVNs); 537 538 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 539 540 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 541 ArgInputs); 542 543 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 544 // we need to make sure they are in a deterministic order. 545 stable_sort(InputGVNs.begin(), InputGVNs.end()); 546 } 547 548 /// Look over the inputs and map each input argument to an argument in the 549 /// overall function for the OutlinableRegions. This creates a way to replace 550 /// the arguments of the extracted function with the arguments of the new 551 /// overall function. 552 /// 553 /// \param [in,out] Region - The region of code to be analyzed. 554 /// \param [in] InputsGVNs - The global value numbering of the input values 555 /// collected. 556 /// \param [in] ArgInputs - The values of the arguments to the extracted 557 /// function. 558 static void 559 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 560 std::vector<unsigned> &InputGVNs, 561 SetVector<Value *> &ArgInputs) { 562 563 IRSimilarityCandidate &C = *Region.Candidate; 564 OutlinableGroup &Group = *Region.Parent; 565 566 // This counts the argument number in the overall function. 567 unsigned TypeIndex = 0; 568 569 // This counts the argument number in the extracted function. 570 unsigned OriginalIndex = 0; 571 572 // Find the mapping of the extracted arguments to the arguments for the 573 // overall function. Since there may be extra arguments in the overall 574 // function to account for the extracted constants, we have two different 575 // counters as we find extracted arguments, and as we come across overall 576 // arguments. 577 for (unsigned InputVal : InputGVNs) { 578 Optional<Value *> InputOpt = C.fromGVN(InputVal); 579 assert(InputOpt.hasValue() && "Global value number not found?"); 580 Value *Input = InputOpt.getValue(); 581 582 if (!Group.InputTypesSet) { 583 Group.ArgumentTypes.push_back(Input->getType()); 584 // If the input value has a swifterr attribute, make sure to mark the 585 // argument in the overall function. 586 if (Input->isSwiftError()) { 587 assert( 588 !Group.SwiftErrorArgument.hasValue() && 589 "Argument already marked with swifterr for this OutlinableGroup!"); 590 Group.SwiftErrorArgument = TypeIndex; 591 } 592 } 593 594 // Check if we have a constant. If we do add it to the overall argument 595 // number to Constant map for the region, and continue to the next input. 596 if (Constant *CST = dyn_cast<Constant>(Input)) { 597 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 598 TypeIndex++; 599 continue; 600 } 601 602 // It is not a constant, we create the mapping from extracted argument list 603 // to the overall argument list. 604 assert(ArgInputs.count(Input) && "Input cannot be found!"); 605 606 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 607 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 608 OriginalIndex++; 609 TypeIndex++; 610 } 611 612 // If the function type definitions for the OutlinableGroup holding the region 613 // have not been set, set the length of the inputs here. We should have the 614 // same inputs for all of the different regions contained in the 615 // OutlinableGroup since they are all structurally similar to one another. 616 if (!Group.InputTypesSet) { 617 Group.NumAggregateInputs = TypeIndex; 618 Group.InputTypesSet = true; 619 } 620 621 Region.NumExtractedInputs = OriginalIndex; 622 } 623 624 /// Create a mapping of the output arguments for the \p Region to the output 625 /// arguments of the overall outlined function. 626 /// 627 /// \param [in,out] Region - The region of code to be analyzed. 628 /// \param [in] Outputs - The values found by the code extractor. 629 static void 630 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 631 ArrayRef<Value *> Outputs) { 632 OutlinableGroup &Group = *Region.Parent; 633 IRSimilarityCandidate &C = *Region.Candidate; 634 635 // This counts the argument number in the extracted function. 636 unsigned OriginalIndex = Region.NumExtractedInputs; 637 638 // This counts the argument number in the overall function. 639 unsigned TypeIndex = Group.NumAggregateInputs; 640 bool TypeFound; 641 DenseSet<unsigned> AggArgsUsed; 642 643 // Iterate over the output types and identify if there is an aggregate pointer 644 // type whose base type matches the current output type. If there is, we mark 645 // that we will use this output register for this value. If not we add another 646 // type to the overall argument type list. We also store the GVNs used for 647 // stores to identify which values will need to be moved into an special 648 // block that holds the stores to the output registers. 649 for (Value *Output : Outputs) { 650 TypeFound = false; 651 // We can do this since it is a result value, and will have a number 652 // that is necessarily the same. BUT if in the future, the instructions 653 // do not have to be in same order, but are functionally the same, we will 654 // have to use a different scheme, as one-to-one correspondence is not 655 // guaranteed. 656 unsigned GlobalValue = C.getGVN(Output).getValue(); 657 unsigned ArgumentSize = Group.ArgumentTypes.size(); 658 659 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 660 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 661 continue; 662 663 if (AggArgsUsed.find(Jdx) != AggArgsUsed.end()) 664 continue; 665 666 TypeFound = true; 667 AggArgsUsed.insert(Jdx); 668 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 669 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 670 Region.GVNStores.push_back(GlobalValue); 671 break; 672 } 673 674 // We were unable to find an unused type in the output type set that matches 675 // the output, so we add a pointer type to the argument types of the overall 676 // function to handle this output and create a mapping to it. 677 if (!TypeFound) { 678 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 679 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); 680 Region.ExtractedArgToAgg.insert( 681 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); 682 Region.AggArgToExtracted.insert( 683 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); 684 Region.GVNStores.push_back(GlobalValue); 685 } 686 687 stable_sort(Region.GVNStores); 688 OriginalIndex++; 689 TypeIndex++; 690 } 691 } 692 693 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 694 DenseSet<unsigned> &NotSame) { 695 std::vector<unsigned> Inputs; 696 SetVector<Value *> ArgInputs, Outputs; 697 698 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 699 Outputs); 700 701 if (Region.IgnoreRegion) 702 return; 703 704 // Map the inputs found by the CodeExtractor to the arguments found for 705 // the overall function. 706 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 707 708 // Map the outputs found by the CodeExtractor to the arguments found for 709 // the overall function. 710 findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef()); 711 } 712 713 /// Replace the extracted function in the Region with a call to the overall 714 /// function constructed from the deduplicated similar regions, replacing and 715 /// remapping the values passed to the extracted function as arguments to the 716 /// new arguments of the overall function. 717 /// 718 /// \param [in] M - The module to outline from. 719 /// \param [in] Region - The regions of extracted code to be replaced with a new 720 /// function. 721 /// \returns a call instruction with the replaced function. 722 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 723 std::vector<Value *> NewCallArgs; 724 DenseMap<unsigned, unsigned>::iterator ArgPair; 725 726 OutlinableGroup &Group = *Region.Parent; 727 CallInst *Call = Region.Call; 728 assert(Call && "Call to replace is nullptr?"); 729 Function *AggFunc = Group.OutlinedFunction; 730 assert(AggFunc && "Function to replace with is nullptr?"); 731 732 // If the arguments are the same size, there are not values that need to be 733 // made argument, or different output registers to handle. We can simply 734 // replace the called function in this case. 735 if (AggFunc->arg_size() == Call->arg_size()) { 736 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 737 << *AggFunc << " with same number of arguments\n"); 738 Call->setCalledFunction(AggFunc); 739 return Call; 740 } 741 742 // We have a different number of arguments than the new function, so 743 // we need to use our previously mappings off extracted argument to overall 744 // function argument, and constants to overall function argument to create the 745 // new argument list. 746 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 747 748 if (AggArgIdx == AggFunc->arg_size() - 1 && 749 Group.OutputGVNCombinations.size() > 1) { 750 // If we are on the last argument, and we need to differentiate between 751 // output blocks, add an integer to the argument list to determine 752 // what block to take 753 LLVM_DEBUG(dbgs() << "Set switch block argument to " 754 << Region.OutputBlockNum << "\n"); 755 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 756 Region.OutputBlockNum)); 757 continue; 758 } 759 760 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 761 if (ArgPair != Region.AggArgToExtracted.end()) { 762 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 763 // If we found the mapping from the extracted function to the overall 764 // function, we simply add it to the argument list. We use the same 765 // value, it just needs to honor the new order of arguments. 766 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 767 << *ArgumentValue << "\n"); 768 NewCallArgs.push_back(ArgumentValue); 769 continue; 770 } 771 772 // If it is a constant, we simply add it to the argument list as a value. 773 if (Region.AggArgToConstant.find(AggArgIdx) != 774 Region.AggArgToConstant.end()) { 775 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 776 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 777 << *CST << "\n"); 778 NewCallArgs.push_back(CST); 779 continue; 780 } 781 782 // Add a nullptr value if the argument is not found in the extracted 783 // function. If we cannot find a value, it means it is not in use 784 // for the region, so we should not pass anything to it. 785 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 786 NewCallArgs.push_back(ConstantPointerNull::get( 787 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 788 } 789 790 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 791 << *AggFunc << " with new set of arguments\n"); 792 // Create the new call instruction and erase the old one. 793 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 794 Call); 795 796 // It is possible that the call to the outlined function is either the first 797 // instruction is in the new block, the last instruction, or both. If either 798 // of these is the case, we need to make sure that we replace the instruction 799 // in the IRInstructionData struct with the new call. 800 CallInst *OldCall = Region.Call; 801 if (Region.NewFront->Inst == OldCall) 802 Region.NewFront->Inst = Call; 803 if (Region.NewBack->Inst == OldCall) 804 Region.NewBack->Inst = Call; 805 806 // Transfer any debug information. 807 Call->setDebugLoc(Region.Call->getDebugLoc()); 808 809 // Remove the old instruction. 810 OldCall->eraseFromParent(); 811 Region.Call = Call; 812 813 // Make sure that the argument in the new function has the SwiftError 814 // argument. 815 if (Group.SwiftErrorArgument.hasValue()) 816 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 817 Attribute::SwiftError); 818 819 return Call; 820 } 821 822 // Within an extracted function, replace the argument uses of the extracted 823 // region with the arguments of the function for an OutlinableGroup. 824 // 825 /// \param [in] Region - The region of extracted code to be changed. 826 /// \param [in,out] OutputBB - The BasicBlock for the output stores for this 827 /// region. 828 static void replaceArgumentUses(OutlinableRegion &Region, 829 BasicBlock *OutputBB) { 830 OutlinableGroup &Group = *Region.Parent; 831 assert(Region.ExtractedFunction && "Region has no extracted function?"); 832 833 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 834 ArgIdx++) { 835 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 836 Region.ExtractedArgToAgg.end() && 837 "No mapping from extracted to outlined?"); 838 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 839 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 840 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 841 // The argument is an input, so we can simply replace it with the overall 842 // argument value 843 if (ArgIdx < Region.NumExtractedInputs) { 844 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 845 << *Region.ExtractedFunction << " with " << *AggArg 846 << " in function " << *Group.OutlinedFunction << "\n"); 847 Arg->replaceAllUsesWith(AggArg); 848 continue; 849 } 850 851 // If we are replacing an output, we place the store value in its own 852 // block inside the overall function before replacing the use of the output 853 // in the function. 854 assert(Arg->hasOneUse() && "Output argument can only have one use"); 855 User *InstAsUser = Arg->user_back(); 856 assert(InstAsUser && "User is nullptr!"); 857 858 Instruction *I = cast<Instruction>(InstAsUser); 859 I->setDebugLoc(DebugLoc()); 860 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 861 << *OutputBB << "\n"); 862 863 I->moveBefore(*OutputBB, OutputBB->end()); 864 865 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 866 << *Region.ExtractedFunction << " with " << *AggArg 867 << " in function " << *Group.OutlinedFunction << "\n"); 868 Arg->replaceAllUsesWith(AggArg); 869 } 870 } 871 872 /// Within an extracted function, replace the constants that need to be lifted 873 /// into arguments with the actual argument. 874 /// 875 /// \param Region [in] - The region of extracted code to be changed. 876 void replaceConstants(OutlinableRegion &Region) { 877 OutlinableGroup &Group = *Region.Parent; 878 // Iterate over the constants that need to be elevated into arguments 879 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 880 unsigned AggArgIdx = Const.first; 881 Function *OutlinedFunction = Group.OutlinedFunction; 882 assert(OutlinedFunction && "Overall Function is not defined?"); 883 Constant *CST = Const.second; 884 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 885 // Identify the argument it will be elevated to, and replace instances of 886 // that constant in the function. 887 888 // TODO: If in the future constants do not have one global value number, 889 // i.e. a constant 1 could be mapped to several values, this check will 890 // have to be more strict. It cannot be using only replaceUsesWithIf. 891 892 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 893 << " in function " << *OutlinedFunction << " with " 894 << *Arg << "\n"); 895 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 896 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 897 return I->getFunction() == OutlinedFunction; 898 return false; 899 }); 900 } 901 } 902 903 /// For the given function, find all the nondebug or lifetime instructions, 904 /// and return them as a vector. Exclude any blocks in \p ExludeBlocks. 905 /// 906 /// \param [in] F - The function we collect the instructions from. 907 /// \param [in] ExcludeBlocks - BasicBlocks to ignore. 908 /// \returns the list of instructions extracted. 909 static std::vector<Instruction *> 910 collectRelevantInstructions(Function &F, 911 DenseSet<BasicBlock *> &ExcludeBlocks) { 912 std::vector<Instruction *> RelevantInstructions; 913 914 for (BasicBlock &BB : F) { 915 if (ExcludeBlocks.find(&BB) != ExcludeBlocks.end()) 916 continue; 917 918 for (Instruction &Inst : BB) { 919 if (Inst.isLifetimeStartOrEnd()) 920 continue; 921 if (isa<DbgInfoIntrinsic>(Inst)) 922 continue; 923 924 RelevantInstructions.push_back(&Inst); 925 } 926 } 927 928 return RelevantInstructions; 929 } 930 931 /// It is possible that there is a basic block that already performs the same 932 /// stores. This returns a duplicate block, if it exists 933 /// 934 /// \param OutputBB [in] the block we are looking for a duplicate of. 935 /// \param OutputStoreBBs [in] The existing output blocks. 936 /// \returns an optional value with the number output block if there is a match. 937 Optional<unsigned> 938 findDuplicateOutputBlock(BasicBlock *OutputBB, 939 ArrayRef<BasicBlock *> OutputStoreBBs) { 940 941 bool WrongInst = false; 942 bool WrongSize = false; 943 unsigned MatchingNum = 0; 944 for (BasicBlock *CompBB : OutputStoreBBs) { 945 WrongInst = false; 946 if (CompBB->size() - 1 != OutputBB->size()) { 947 WrongSize = true; 948 MatchingNum++; 949 continue; 950 } 951 952 WrongSize = false; 953 BasicBlock::iterator NIt = OutputBB->begin(); 954 for (Instruction &I : *CompBB) { 955 if (isa<BranchInst>(&I)) 956 continue; 957 958 if (!I.isIdenticalTo(&(*NIt))) { 959 WrongInst = true; 960 break; 961 } 962 963 NIt++; 964 } 965 if (!WrongInst && !WrongSize) 966 return MatchingNum; 967 968 MatchingNum++; 969 } 970 971 return None; 972 } 973 974 /// For the outlined section, move needed the StoreInsts for the output 975 /// registers into their own block. Then, determine if there is a duplicate 976 /// output block already created. 977 /// 978 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 979 /// \param [in] Region - The OutlinableRegion that is being analyzed. 980 /// \param [in,out] OutputBB - the block that stores for this region will be 981 /// placed in. 982 /// \param [in] EndBB - the final block of the extracted function. 983 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 984 /// been replaced by a new output value. 985 /// \param [in,out] OutputStoreBBs - The existing output blocks. 986 static void 987 alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region, 988 BasicBlock *OutputBB, BasicBlock *EndBB, 989 const DenseMap<Value *, Value *> &OutputMappings, 990 std::vector<BasicBlock *> &OutputStoreBBs) { 991 DenseSet<unsigned> ValuesToFind(Region.GVNStores.begin(), 992 Region.GVNStores.end()); 993 994 // We iterate over the instructions in the extracted function, and find the 995 // global value number of the instructions. If we find a value that should 996 // be contained in a store, we replace the uses of the value with the value 997 // from the overall function, so that the store is storing the correct 998 // value from the overall function. 999 DenseSet<BasicBlock *> ExcludeBBs(OutputStoreBBs.begin(), 1000 OutputStoreBBs.end()); 1001 ExcludeBBs.insert(OutputBB); 1002 std::vector<Instruction *> ExtractedFunctionInsts = 1003 collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs); 1004 std::vector<Instruction *> OverallFunctionInsts = 1005 collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs); 1006 1007 assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() && 1008 "Number of relevant instructions not equal!"); 1009 1010 unsigned NumInstructions = ExtractedFunctionInsts.size(); 1011 for (unsigned Idx = 0; Idx < NumInstructions; Idx++) { 1012 Value *V = ExtractedFunctionInsts[Idx]; 1013 1014 if (OutputMappings.find(V) != OutputMappings.end()) 1015 V = OutputMappings.find(V)->second; 1016 Optional<unsigned> GVN = Region.Candidate->getGVN(V); 1017 1018 // If we have found one of the stored values for output, replace the value 1019 // with the corresponding one from the overall function. 1020 if (GVN.hasValue() && 1021 ValuesToFind.find(GVN.getValue()) != ValuesToFind.end()) { 1022 ValuesToFind.erase(GVN.getValue()); 1023 V->replaceAllUsesWith(OverallFunctionInsts[Idx]); 1024 if (ValuesToFind.size() == 0) 1025 break; 1026 } 1027 1028 if (ValuesToFind.size() == 0) 1029 break; 1030 } 1031 1032 assert(ValuesToFind.size() == 0 && "Not all store values were handled!"); 1033 1034 // If the size of the block is 0, then there are no stores, and we do not 1035 // need to save this block. 1036 if (OutputBB->size() == 0) { 1037 Region.OutputBlockNum = -1; 1038 OutputBB->eraseFromParent(); 1039 return; 1040 } 1041 1042 // Determine is there is a duplicate block. 1043 Optional<unsigned> MatchingBB = 1044 findDuplicateOutputBlock(OutputBB, OutputStoreBBs); 1045 1046 // If there is, we remove the new output block. If it does not, 1047 // we add it to our list of output blocks. 1048 if (MatchingBB.hasValue()) { 1049 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1050 << Region.ExtractedFunction << " to " 1051 << MatchingBB.getValue()); 1052 1053 Region.OutputBlockNum = MatchingBB.getValue(); 1054 OutputBB->eraseFromParent(); 1055 return; 1056 } 1057 1058 Region.OutputBlockNum = OutputStoreBBs.size(); 1059 1060 LLVM_DEBUG(dbgs() << "Create output block for region in" 1061 << Region.ExtractedFunction << " to " 1062 << *OutputBB); 1063 OutputStoreBBs.push_back(OutputBB); 1064 BranchInst::Create(EndBB, OutputBB); 1065 } 1066 1067 /// Create the switch statement for outlined function to differentiate between 1068 /// all the output blocks. 1069 /// 1070 /// For the outlined section, determine if an outlined block already exists that 1071 /// matches the needed stores for the extracted section. 1072 /// \param [in] M - The module we are outlining from. 1073 /// \param [in] OG - The group of regions to be outlined. 1074 /// \param [in] OS - The region that is being analyzed. 1075 /// \param [in] EndBB - The final block of the extracted function. 1076 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1077 void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB, 1078 ArrayRef<BasicBlock *> OutputStoreBBs) { 1079 // We only need the switch statement if there is more than one store 1080 // combination. 1081 if (OG.OutputGVNCombinations.size() > 1) { 1082 Function *AggFunc = OG.OutlinedFunction; 1083 // Create a final block 1084 BasicBlock *ReturnBlock = 1085 BasicBlock::Create(M.getContext(), "final_block", AggFunc); 1086 Instruction *Term = EndBB->getTerminator(); 1087 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 1088 // Put the switch statement in the old end basic block for the function with 1089 // a fall through to the new return block 1090 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 1091 << OutputStoreBBs.size() << "\n"); 1092 SwitchInst *SwitchI = 1093 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 1094 ReturnBlock, OutputStoreBBs.size(), EndBB); 1095 1096 unsigned Idx = 0; 1097 for (BasicBlock *BB : OutputStoreBBs) { 1098 SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), 1099 BB); 1100 Term = BB->getTerminator(); 1101 Term->setSuccessor(0, ReturnBlock); 1102 Idx++; 1103 } 1104 return; 1105 } 1106 1107 // If there needs to be stores, move them from the output block to the end 1108 // block to save on branching instructions. 1109 if (OutputStoreBBs.size() == 1) { 1110 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 1111 << *OG.OutlinedFunction << "\n"); 1112 BasicBlock *OutputBlock = OutputStoreBBs[0]; 1113 Instruction *Term = OutputBlock->getTerminator(); 1114 Term->eraseFromParent(); 1115 Term = EndBB->getTerminator(); 1116 moveBBContents(*OutputBlock, *EndBB); 1117 Term->moveBefore(*EndBB, EndBB->end()); 1118 OutputBlock->eraseFromParent(); 1119 } 1120 1121 return; 1122 } 1123 1124 /// Fill the new function that will serve as the replacement function for all of 1125 /// the extracted regions of a certain structure from the first region in the 1126 /// list of regions. Replace this first region's extracted function with the 1127 /// new overall function. 1128 /// 1129 /// \param [in] M - The module we are outlining from. 1130 /// \param [in] CurrentGroup - The group of regions to be outlined. 1131 /// \param [in,out] OutputStoreBBs - The output blocks for each different 1132 /// set of stores needed for the different functions. 1133 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 1134 /// once outlining is complete. 1135 static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup, 1136 std::vector<BasicBlock *> &OutputStoreBBs, 1137 std::vector<Function *> &FuncsToRemove) { 1138 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 1139 1140 // Move first extracted function's instructions into new function. 1141 LLVM_DEBUG(dbgs() << "Move instructions from " 1142 << *CurrentOS->ExtractedFunction << " to instruction " 1143 << *CurrentGroup.OutlinedFunction << "\n"); 1144 1145 CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction, 1146 *CurrentGroup.OutlinedFunction); 1147 1148 // Transfer the attributes from the function to the new function. 1149 for (Attribute A : 1150 CurrentOS->ExtractedFunction->getAttributes().getFnAttributes()) 1151 CurrentGroup.OutlinedFunction->addFnAttr(A); 1152 1153 // Create an output block for the first extracted function. 1154 BasicBlock *NewBB = BasicBlock::Create( 1155 M.getContext(), Twine("output_block_") + Twine(static_cast<unsigned>(0)), 1156 CurrentGroup.OutlinedFunction); 1157 CurrentOS->OutputBlockNum = 0; 1158 1159 replaceArgumentUses(*CurrentOS, NewBB); 1160 replaceConstants(*CurrentOS); 1161 1162 // If the new basic block has no new stores, we can erase it from the module. 1163 // It it does, we create a branch instruction to the last basic block from the 1164 // new one. 1165 if (NewBB->size() == 0) { 1166 CurrentOS->OutputBlockNum = -1; 1167 NewBB->eraseFromParent(); 1168 } else { 1169 BranchInst::Create(CurrentGroup.EndBB, NewBB); 1170 OutputStoreBBs.push_back(NewBB); 1171 } 1172 1173 // Replace the call to the extracted function with the outlined function. 1174 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1175 1176 // We only delete the extracted functions at the end since we may need to 1177 // reference instructions contained in them for mapping purposes. 1178 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1179 } 1180 1181 void IROutliner::deduplicateExtractedSections( 1182 Module &M, OutlinableGroup &CurrentGroup, 1183 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 1184 createFunction(M, CurrentGroup, OutlinedFunctionNum); 1185 1186 std::vector<BasicBlock *> OutputStoreBBs; 1187 1188 OutlinableRegion *CurrentOS; 1189 1190 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); 1191 1192 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 1193 CurrentOS = CurrentGroup.Regions[Idx]; 1194 1195 // Create a new BasicBlock to hold the needed store instructions. 1196 BasicBlock *NewBB = BasicBlock::Create( 1197 M.getContext(), "output_block_" + std::to_string(Idx), 1198 CurrentGroup.OutlinedFunction); 1199 replaceArgumentUses(*CurrentOS, NewBB); 1200 1201 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB, 1202 CurrentGroup.EndBB, OutputMappings, 1203 OutputStoreBBs); 1204 1205 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1206 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1207 } 1208 1209 // Create a switch statement to handle the different output schemes. 1210 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs); 1211 1212 OutlinedFunctionNum++; 1213 } 1214 1215 void IROutliner::pruneIncompatibleRegions( 1216 std::vector<IRSimilarityCandidate> &CandidateVec, 1217 OutlinableGroup &CurrentGroup) { 1218 bool PreviouslyOutlined; 1219 1220 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 1221 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 1222 const IRSimilarityCandidate &RHS) { 1223 return LHS.getStartIdx() < RHS.getStartIdx(); 1224 }); 1225 1226 unsigned CurrentEndIdx = 0; 1227 for (IRSimilarityCandidate &IRSC : CandidateVec) { 1228 PreviouslyOutlined = false; 1229 unsigned StartIdx = IRSC.getStartIdx(); 1230 unsigned EndIdx = IRSC.getEndIdx(); 1231 1232 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1233 if (Outlined.contains(Idx)) { 1234 PreviouslyOutlined = true; 1235 break; 1236 } 1237 1238 if (PreviouslyOutlined) 1239 continue; 1240 1241 // TODO: If in the future we can outline across BasicBlocks, we will need to 1242 // check all BasicBlocks contained in the region. 1243 if (IRSC.getStartBB()->hasAddressTaken()) 1244 continue; 1245 1246 // Greedily prune out any regions that will overlap with already chosen 1247 // regions. 1248 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 1249 continue; 1250 1251 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 1252 return !this->InstructionClassifier.visit(ID.Inst); 1253 }); 1254 1255 if (BadInst) 1256 continue; 1257 1258 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 1259 OutlinableRegion(IRSC, CurrentGroup); 1260 CurrentGroup.Regions.push_back(OS); 1261 1262 CurrentEndIdx = EndIdx; 1263 } 1264 } 1265 1266 unsigned IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 1267 unsigned RegionBenefit = 0; 1268 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1269 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1270 // We add the number of instructions in the region to the benefit as an 1271 // estimate as to how much will be removed. 1272 RegionBenefit += Region->getBenefit(TTI); 1273 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 1274 << " saved instructions to overfall benefit.\n"); 1275 CurrentGroup.Benefit += RegionBenefit; 1276 } 1277 1278 return RegionBenefit; 1279 } 1280 1281 unsigned IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 1282 unsigned OverallCost = 0; 1283 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1284 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1285 1286 // Each output incurs a load after the call, so we add that to the cost. 1287 for (unsigned OutputGVN : Region->GVNStores) { 1288 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN); 1289 assert(OV.hasValue() && "Could not find value for GVN?"); 1290 Value *V = OV.getValue(); 1291 unsigned LoadCost = 1292 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1293 TargetTransformInfo::TCK_CodeSize); 1294 1295 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 1296 << " instructions to cost for output of type " 1297 << *V->getType() << "\n"); 1298 OverallCost += LoadCost; 1299 } 1300 } 1301 1302 return OverallCost; 1303 } 1304 1305 /// Find the extra instructions needed to handle any output values for the 1306 /// region. 1307 /// 1308 /// \param [in] M - The Module to outline from. 1309 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 1310 /// \param [in] TTI - The TargetTransformInfo used to collect information for 1311 /// new instruction costs. 1312 /// \returns the additional cost to handle the outputs. 1313 static unsigned findCostForOutputBlocks(Module &M, 1314 OutlinableGroup &CurrentGroup, 1315 TargetTransformInfo &TTI) { 1316 unsigned OutputCost = 0; 1317 1318 for (const ArrayRef<unsigned> &OutputUse : 1319 CurrentGroup.OutputGVNCombinations) { 1320 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 1321 for (unsigned GVN : OutputUse) { 1322 Optional<Value *> OV = Candidate.fromGVN(GVN); 1323 assert(OV.hasValue() && "Could not find value for GVN?"); 1324 Value *V = OV.getValue(); 1325 unsigned StoreCost = 1326 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1327 TargetTransformInfo::TCK_CodeSize); 1328 1329 // An instruction cost is added for each store set that needs to occur for 1330 // various output combinations inside the function, plus a branch to 1331 // return to the exit block. 1332 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 1333 << " instructions to cost for output of type " 1334 << *V->getType() << "\n"); 1335 OutputCost += StoreCost; 1336 } 1337 1338 unsigned BranchCost = 1339 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1340 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 1341 << " a branch instruction\n"); 1342 OutputCost += BranchCost; 1343 } 1344 1345 // If there is more than one output scheme, we must have a comparison and 1346 // branch for each different item in the switch statement. 1347 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 1348 unsigned ComparisonCost = TTI.getCmpSelInstrCost( 1349 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 1350 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 1351 TargetTransformInfo::TCK_CodeSize); 1352 unsigned BranchCost = 1353 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1354 1355 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 1356 unsigned TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 1357 1358 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 1359 << " instructions for each switch case for each different" 1360 << " output path in a function\n"); 1361 OutputCost += TotalCost; 1362 } 1363 1364 return OutputCost; 1365 } 1366 1367 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 1368 unsigned RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 1369 CurrentGroup.Benefit += RegionBenefit; 1370 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 1371 1372 unsigned OutputReloadCost = findCostOutputReloads(CurrentGroup); 1373 CurrentGroup.Cost += OutputReloadCost; 1374 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1375 1376 unsigned AverageRegionBenefit = RegionBenefit / CurrentGroup.Regions.size(); 1377 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 1378 unsigned NumRegions = CurrentGroup.Regions.size(); 1379 TargetTransformInfo &TTI = 1380 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1381 1382 // We add one region to the cost once, to account for the instructions added 1383 // inside of the newly created function. 1384 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 1385 << " instructions to cost for body of new function.\n"); 1386 CurrentGroup.Cost += AverageRegionBenefit; 1387 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1388 1389 // For each argument, we must add an instruction for loading the argument 1390 // out of the register and into a value inside of the newly outlined function. 1391 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1392 << " instructions to cost for each argument in the new" 1393 << " function.\n"); 1394 CurrentGroup.Cost += 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic; 1395 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1396 1397 // Each argument needs to either be loaded into a register or onto the stack. 1398 // Some arguments will only be loaded into the stack once the argument 1399 // registers are filled. 1400 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1401 << " instructions to cost for each argument in the new" 1402 << " function " << NumRegions << " times for the " 1403 << "needed argument handling at the call site.\n"); 1404 CurrentGroup.Cost += 1405 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 1406 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1407 1408 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 1409 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1410 } 1411 1412 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 1413 ArrayRef<Value *> Outputs, 1414 LoadInst *LI) { 1415 // For and load instructions following the call 1416 Value *Operand = LI->getPointerOperand(); 1417 Optional<unsigned> OutputIdx = None; 1418 // Find if the operand it is an output register. 1419 for (unsigned ArgIdx = Region.NumExtractedInputs; 1420 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 1421 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 1422 OutputIdx = ArgIdx - Region.NumExtractedInputs; 1423 break; 1424 } 1425 } 1426 1427 // If we found an output register, place a mapping of the new value 1428 // to the original in the mapping. 1429 if (!OutputIdx.hasValue()) 1430 return; 1431 1432 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 1433 OutputMappings.end()) { 1434 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 1435 << *Outputs[OutputIdx.getValue()] << "\n"); 1436 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 1437 } else { 1438 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 1439 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 1440 << *Outputs[OutputIdx.getValue()] << "\n"); 1441 OutputMappings.insert(std::make_pair(LI, Orig)); 1442 } 1443 } 1444 1445 bool IROutliner::extractSection(OutlinableRegion &Region) { 1446 SetVector<Value *> ArgInputs, Outputs, SinkCands; 1447 Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands); 1448 1449 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 1450 assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!"); 1451 Function *OrigF = Region.StartBB->getParent(); 1452 CodeExtractorAnalysisCache CEAC(*OrigF); 1453 Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC); 1454 1455 // If the extraction was successful, find the BasicBlock, and reassign the 1456 // OutlinableRegion blocks 1457 if (!Region.ExtractedFunction) { 1458 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 1459 << "\n"); 1460 Region.reattachCandidate(); 1461 return false; 1462 } 1463 1464 BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor(); 1465 Region.StartBB = RewrittenBB; 1466 Region.EndBB = RewrittenBB; 1467 1468 // The sequences of outlinable regions has now changed. We must fix the 1469 // IRInstructionDataList for consistency. Although they may not be illegal 1470 // instructions, they should not be compared with anything else as they 1471 // should not be outlined in this round. So marking these as illegal is 1472 // allowed. 1473 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1474 Instruction *BeginRewritten = &*RewrittenBB->begin(); 1475 Instruction *EndRewritten = &*RewrittenBB->begin(); 1476 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 1477 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 1478 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 1479 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 1480 1481 // Insert the first IRInstructionData of the new region in front of the 1482 // first IRInstructionData of the IRSimilarityCandidate. 1483 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 1484 // Insert the first IRInstructionData of the new region after the 1485 // last IRInstructionData of the IRSimilarityCandidate. 1486 IDL->insert(Region.Candidate->end(), *Region.NewBack); 1487 // Remove the IRInstructionData from the IRSimilarityCandidate. 1488 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 1489 1490 assert(RewrittenBB != nullptr && 1491 "Could not find a predecessor after extraction!"); 1492 1493 // Iterate over the new set of instructions to find the new call 1494 // instruction. 1495 for (Instruction &I : *RewrittenBB) 1496 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1497 if (Region.ExtractedFunction == CI->getCalledFunction()) 1498 Region.Call = CI; 1499 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 1500 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 1501 Region.reattachCandidate(); 1502 return true; 1503 } 1504 1505 unsigned IROutliner::doOutline(Module &M) { 1506 // Find the possible similarity sections. 1507 IRSimilarityIdentifier &Identifier = getIRSI(M); 1508 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 1509 1510 // Sort them by size of extracted sections 1511 unsigned OutlinedFunctionNum = 0; 1512 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 1513 // to sort them by the potential number of instructions to be outlined 1514 if (SimilarityCandidates.size() > 1) 1515 llvm::stable_sort(SimilarityCandidates, 1516 [](const std::vector<IRSimilarityCandidate> &LHS, 1517 const std::vector<IRSimilarityCandidate> &RHS) { 1518 return LHS[0].getLength() * LHS.size() > 1519 RHS[0].getLength() * RHS.size(); 1520 }); 1521 1522 DenseSet<unsigned> NotSame; 1523 std::vector<Function *> FuncsToRemove; 1524 // Iterate over the possible sets of similarity. 1525 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 1526 OutlinableGroup CurrentGroup; 1527 1528 // Remove entries that were previously outlined 1529 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 1530 1531 // We pruned the number of regions to 0 to 1, meaning that it's not worth 1532 // trying to outlined since there is no compatible similar instance of this 1533 // code. 1534 if (CurrentGroup.Regions.size() < 2) 1535 continue; 1536 1537 // Determine if there are any values that are the same constant throughout 1538 // each section in the set. 1539 NotSame.clear(); 1540 CurrentGroup.findSameConstants(NotSame); 1541 1542 if (CurrentGroup.IgnoreGroup) 1543 continue; 1544 1545 // Create a CodeExtractor for each outlinable region. Identify inputs and 1546 // outputs for each section using the code extractor and create the argument 1547 // types for the Aggregate Outlining Function. 1548 std::vector<OutlinableRegion *> OutlinedRegions; 1549 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1550 // Break the outlinable region out of its parent BasicBlock into its own 1551 // BasicBlocks (see function implementation). 1552 OS->splitCandidate(); 1553 std::vector<BasicBlock *> BE = {OS->StartBB}; 1554 OS->CE = new (ExtractorAllocator.Allocate()) 1555 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 1556 false, "outlined"); 1557 findAddInputsOutputs(M, *OS, NotSame); 1558 if (!OS->IgnoreRegion) 1559 OutlinedRegions.push_back(OS); 1560 else 1561 OS->reattachCandidate(); 1562 } 1563 1564 CurrentGroup.Regions = std::move(OutlinedRegions); 1565 1566 if (CurrentGroup.Regions.empty()) 1567 continue; 1568 1569 CurrentGroup.collectGVNStoreSets(M); 1570 1571 if (CostModel) 1572 findCostBenefit(M, CurrentGroup); 1573 1574 // If we are adhering to the cost model, reattach all the candidates 1575 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 1576 for (OutlinableRegion *OS : CurrentGroup.Regions) 1577 OS->reattachCandidate(); 1578 OptimizationRemarkEmitter &ORE = getORE( 1579 *CurrentGroup.Regions[0]->Candidate->getFunction()); 1580 ORE.emit([&]() { 1581 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1582 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 1583 C->frontInstruction()); 1584 R << "did not outline " 1585 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1586 << " regions due to estimated increase of " 1587 << ore::NV("InstructionIncrease", 1588 std::to_string(static_cast<int>(CurrentGroup.Cost - 1589 CurrentGroup.Benefit))) 1590 << " instructions at locations "; 1591 interleave( 1592 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1593 [&R](OutlinableRegion *Region) { 1594 R << ore::NV( 1595 "DebugLoc", 1596 Region->Candidate->frontInstruction()->getDebugLoc()); 1597 }, 1598 [&R]() { R << " "; }); 1599 return R; 1600 }); 1601 continue; 1602 } 1603 1604 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 1605 << " and benefit " << CurrentGroup.Benefit << "\n"); 1606 1607 // Create functions out of all the sections, and mark them as outlined. 1608 OutlinedRegions.clear(); 1609 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1610 bool FunctionOutlined = extractSection(*OS); 1611 if (FunctionOutlined) { 1612 unsigned StartIdx = OS->Candidate->getStartIdx(); 1613 unsigned EndIdx = OS->Candidate->getEndIdx(); 1614 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1615 Outlined.insert(Idx); 1616 1617 OutlinedRegions.push_back(OS); 1618 } 1619 } 1620 1621 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 1622 << " with benefit " << CurrentGroup.Benefit 1623 << " and cost " << CurrentGroup.Cost << "\n"); 1624 1625 CurrentGroup.Regions = std::move(OutlinedRegions); 1626 1627 if (CurrentGroup.Regions.empty()) 1628 continue; 1629 1630 OptimizationRemarkEmitter &ORE = 1631 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 1632 ORE.emit([&]() { 1633 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1634 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 1635 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1636 << " regions with decrease of " 1637 << ore::NV("Benefit", std::to_string(static_cast<int>( 1638 CurrentGroup.Benefit - CurrentGroup.Cost))) 1639 << " instructions at locations "; 1640 interleave( 1641 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1642 [&R](OutlinableRegion *Region) { 1643 R << ore::NV("DebugLoc", 1644 Region->Candidate->frontInstruction()->getDebugLoc()); 1645 }, 1646 [&R]() { R << " "; }); 1647 return R; 1648 }); 1649 1650 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 1651 OutlinedFunctionNum); 1652 } 1653 1654 for (Function *F : FuncsToRemove) 1655 F->eraseFromParent(); 1656 1657 return OutlinedFunctionNum; 1658 } 1659 1660 bool IROutliner::run(Module &M) { 1661 CostModel = !NoCostModel; 1662 1663 return doOutline(M) > 0; 1664 } 1665 1666 // Pass Manager Boilerplate 1667 class IROutlinerLegacyPass : public ModulePass { 1668 public: 1669 static char ID; 1670 IROutlinerLegacyPass() : ModulePass(ID) { 1671 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 1672 } 1673 1674 void getAnalysisUsage(AnalysisUsage &AU) const override { 1675 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1676 AU.addRequired<TargetTransformInfoWrapperPass>(); 1677 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 1678 } 1679 1680 bool runOnModule(Module &M) override; 1681 }; 1682 1683 bool IROutlinerLegacyPass::runOnModule(Module &M) { 1684 if (skipModule(M)) 1685 return false; 1686 1687 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1688 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1689 ORE.reset(new OptimizationRemarkEmitter(&F)); 1690 return *ORE.get(); 1691 }; 1692 1693 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 1694 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1695 }; 1696 1697 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 1698 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 1699 }; 1700 1701 return IROutliner(GTTI, GIRSI, GORE).run(M); 1702 } 1703 1704 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 1705 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1706 1707 std::function<TargetTransformInfo &(Function &)> GTTI = 1708 [&FAM](Function &F) -> TargetTransformInfo & { 1709 return FAM.getResult<TargetIRAnalysis>(F); 1710 }; 1711 1712 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 1713 [&AM](Module &M) -> IRSimilarityIdentifier & { 1714 return AM.getResult<IRSimilarityAnalysis>(M); 1715 }; 1716 1717 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1718 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 1719 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1720 ORE.reset(new OptimizationRemarkEmitter(&F)); 1721 return *ORE.get(); 1722 }; 1723 1724 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 1725 return PreservedAnalyses::none(); 1726 return PreservedAnalyses::all(); 1727 } 1728 1729 char IROutlinerLegacyPass::ID = 0; 1730 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1731 false) 1732 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 1733 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1734 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1735 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1736 false) 1737 1738 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 1739