1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 #define DEBUG_TYPE "iroutliner" 33 34 using namespace llvm; 35 using namespace IRSimilarity; 36 37 // A command flag to be used for debugging to exclude branches from similarity 38 // matching and outlining. 39 extern cl::opt<bool> DisableBranches; 40 41 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 42 // functions. This is false by default because the linker can dedupe linkonceodr 43 // functions. Since the outliner is confined to a single module (modulo LTO), 44 // this is off by default. It should, however, be the default behavior in 45 // LTO. 46 static cl::opt<bool> EnableLinkOnceODRIROutlining( 47 "enable-linkonceodr-ir-outlining", cl::Hidden, 48 cl::desc("Enable the IR outliner on linkonceodr functions"), 49 cl::init(false)); 50 51 // This is a debug option to test small pieces of code to ensure that outlining 52 // works correctly. 53 static cl::opt<bool> NoCostModel( 54 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 55 cl::desc("Debug option to outline greedily, without restriction that " 56 "calculated benefit outweighs cost")); 57 58 /// The OutlinableGroup holds all the overarching information for outlining 59 /// a set of regions that are structurally similar to one another, such as the 60 /// types of the overall function, the output blocks, the sets of stores needed 61 /// and a list of the different regions. This information is used in the 62 /// deduplication of extracted regions with the same structure. 63 struct OutlinableGroup { 64 /// The sections that could be outlined 65 std::vector<OutlinableRegion *> Regions; 66 67 /// The argument types for the function created as the overall function to 68 /// replace the extracted function for each region. 69 std::vector<Type *> ArgumentTypes; 70 /// The FunctionType for the overall function. 71 FunctionType *OutlinedFunctionType = nullptr; 72 /// The Function for the collective overall function. 73 Function *OutlinedFunction = nullptr; 74 75 /// Flag for whether we should not consider this group of OutlinableRegions 76 /// for extraction. 77 bool IgnoreGroup = false; 78 79 /// The return blocks for the overall function. 80 DenseMap<Value *, BasicBlock *> EndBBs; 81 82 /// The PHIBlocks with their corresponding return block based on the return 83 /// value as the key. 84 DenseMap<Value *, BasicBlock *> PHIBlocks; 85 86 /// A set containing the different GVN store sets needed. Each array contains 87 /// a sorted list of the different values that need to be stored into output 88 /// registers. 89 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 90 91 /// Flag for whether the \ref ArgumentTypes have been defined after the 92 /// extraction of the first region. 93 bool InputTypesSet = false; 94 95 /// The number of input values in \ref ArgumentTypes. Anything after this 96 /// index in ArgumentTypes is an output argument. 97 unsigned NumAggregateInputs = 0; 98 99 /// The mapping of the canonical numbering of the values in outlined sections 100 /// to specific arguments. 101 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 102 103 /// The number of branches in the region target a basic block that is outside 104 /// of the region. 105 unsigned BranchesToOutside = 0; 106 107 /// The number of instructions that will be outlined by extracting \ref 108 /// Regions. 109 InstructionCost Benefit = 0; 110 /// The number of added instructions needed for the outlining of the \ref 111 /// Regions. 112 InstructionCost Cost = 0; 113 114 /// The argument that needs to be marked with the swifterr attribute. If not 115 /// needed, there is no value. 116 Optional<unsigned> SwiftErrorArgument; 117 118 /// For the \ref Regions, we look at every Value. If it is a constant, 119 /// we check whether it is the same in Region. 120 /// 121 /// \param [in,out] NotSame contains the global value numbers where the 122 /// constant is not always the same, and must be passed in as an argument. 123 void findSameConstants(DenseSet<unsigned> &NotSame); 124 125 /// For the regions, look at each set of GVN stores needed and account for 126 /// each combination. Add an argument to the argument types if there is 127 /// more than one combination. 128 /// 129 /// \param [in] M - The module we are outlining from. 130 void collectGVNStoreSets(Module &M); 131 }; 132 133 /// Move the contents of \p SourceBB to before the last instruction of \p 134 /// TargetBB. 135 /// \param SourceBB - the BasicBlock to pull Instructions from. 136 /// \param TargetBB - the BasicBlock to put Instruction into. 137 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 138 BasicBlock::iterator BBCurr, BBEnd, BBNext; 139 for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd; 140 BBCurr = BBNext) { 141 BBNext = std::next(BBCurr); 142 BBCurr->moveBefore(TargetBB, TargetBB.end()); 143 } 144 } 145 146 /// A function to sort the keys of \p Map, which must be a mapping of constant 147 /// values to basic blocks and return it in \p SortedKeys 148 /// 149 /// \param SortedKeys - The vector the keys will be return in and sorted. 150 /// \param Map - The DenseMap containing keys to sort. 151 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 152 DenseMap<Value *, BasicBlock *> &Map) { 153 for (auto &VtoBB : Map) 154 SortedKeys.push_back(VtoBB.first); 155 156 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 157 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 158 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 159 assert(RHSC && "Not a constant integer in return value?"); 160 assert(LHSC && "Not a constant integer in return value?"); 161 162 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 163 }); 164 } 165 166 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 167 Value *V) { 168 Optional<unsigned> GVN = Candidate->getGVN(V); 169 assert(GVN.hasValue() && "No GVN for incoming value"); 170 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 171 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 172 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 173 return FoundValueOpt.getValueOr(nullptr); 174 } 175 176 void OutlinableRegion::splitCandidate() { 177 assert(!CandidateSplit && "Candidate already split!"); 178 179 Instruction *BackInst = Candidate->backInstruction(); 180 181 Instruction *EndInst = nullptr; 182 // Check whether the last instruction is a terminator, if it is, we do 183 // not split on the following instruction. We leave the block as it is. We 184 // also check that this is not the last instruction in the Module, otherwise 185 // the check for whether the current following instruction matches the 186 // previously recorded instruction will be incorrect. 187 if (!BackInst->isTerminator() || 188 BackInst->getParent() != &BackInst->getFunction()->back()) { 189 EndInst = Candidate->end()->Inst; 190 assert(EndInst && "Expected an end instruction?"); 191 } 192 193 // We check if the current instruction following the last instruction in the 194 // region is the same as the recorded instruction following the last 195 // instruction. If they do not match, there could be problems in rewriting 196 // the program after outlining, so we ignore it. 197 if (!BackInst->isTerminator() && 198 EndInst != BackInst->getNextNonDebugInstruction()) 199 return; 200 201 Instruction *StartInst = (*Candidate->begin()).Inst; 202 assert(StartInst && "Expected a start instruction?"); 203 StartBB = StartInst->getParent(); 204 PrevBB = StartBB; 205 206 // The basic block gets split like so: 207 // block: block: 208 // inst1 inst1 209 // inst2 inst2 210 // region1 br block_to_outline 211 // region2 block_to_outline: 212 // region3 -> region1 213 // region4 region2 214 // inst3 region3 215 // inst4 region4 216 // br block_after_outline 217 // block_after_outline: 218 // inst3 219 // inst4 220 221 std::string OriginalName = PrevBB->getName().str(); 222 223 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 224 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 225 226 CandidateSplit = true; 227 if (!BackInst->isTerminator()) { 228 EndBB = EndInst->getParent(); 229 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 230 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 231 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 232 return; 233 } 234 235 EndBB = BackInst->getParent(); 236 EndsInBranch = true; 237 FollowBB = nullptr; 238 } 239 240 void OutlinableRegion::reattachCandidate() { 241 assert(CandidateSplit && "Candidate is not split!"); 242 243 // The basic block gets reattached like so: 244 // block: block: 245 // inst1 inst1 246 // inst2 inst2 247 // br block_to_outline region1 248 // block_to_outline: -> region2 249 // region1 region3 250 // region2 region4 251 // region3 inst3 252 // region4 inst4 253 // br block_after_outline 254 // block_after_outline: 255 // inst3 256 // inst4 257 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 258 259 // StartBB should only have one predecessor since we put an unconditional 260 // branch at the end of PrevBB when we split the BasicBlock. 261 PrevBB = StartBB->getSinglePredecessor(); 262 assert(PrevBB != nullptr && 263 "No Predecessor for the region start basic block!"); 264 265 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 266 PrevBB->getTerminator()->eraseFromParent(); 267 268 moveBBContents(*StartBB, *PrevBB); 269 270 BasicBlock *PlacementBB = PrevBB; 271 if (StartBB != EndBB) 272 PlacementBB = EndBB; 273 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 274 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 275 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 276 PlacementBB->getTerminator()->eraseFromParent(); 277 moveBBContents(*FollowBB, *PlacementBB); 278 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 279 FollowBB->eraseFromParent(); 280 } 281 282 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 283 StartBB->eraseFromParent(); 284 285 // Make sure to save changes back to the StartBB. 286 StartBB = PrevBB; 287 EndBB = nullptr; 288 PrevBB = nullptr; 289 FollowBB = nullptr; 290 291 CandidateSplit = false; 292 } 293 294 /// Find whether \p V matches the Constants previously found for the \p GVN. 295 /// 296 /// \param V - The value to check for consistency. 297 /// \param GVN - The global value number assigned to \p V. 298 /// \param GVNToConstant - The mapping of global value number to Constants. 299 /// \returns true if the Value matches the Constant mapped to by V and false if 300 /// it \p V is a Constant but does not match. 301 /// \returns None if \p V is not a Constant. 302 static Optional<bool> 303 constantMatches(Value *V, unsigned GVN, 304 DenseMap<unsigned, Constant *> &GVNToConstant) { 305 // See if we have a constants 306 Constant *CST = dyn_cast<Constant>(V); 307 if (!CST) 308 return None; 309 310 // Holds a mapping from a global value number to a Constant. 311 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 312 bool Inserted; 313 314 315 // If we have a constant, try to make a new entry in the GVNToConstant. 316 std::tie(GVNToConstantIt, Inserted) = 317 GVNToConstant.insert(std::make_pair(GVN, CST)); 318 // If it was found and is not equal, it is not the same. We do not 319 // handle this case yet, and exit early. 320 if (Inserted || (GVNToConstantIt->second == CST)) 321 return true; 322 323 return false; 324 } 325 326 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 327 InstructionCost Benefit = 0; 328 329 // Estimate the benefit of outlining a specific sections of the program. We 330 // delegate mostly this task to the TargetTransformInfo so that if the target 331 // has specific changes, we can have a more accurate estimate. 332 333 // However, getInstructionCost delegates the code size calculation for 334 // arithmetic instructions to getArithmeticInstrCost in 335 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 336 // code size for a division and remainder instruction to be equal to 4, and 337 // everything else to 1. This is not an accurate representation of the 338 // division instruction for targets that have a native division instruction. 339 // To be overly conservative, we only add 1 to the number of instructions for 340 // each division instruction. 341 for (IRInstructionData &ID : *Candidate) { 342 Instruction *I = ID.Inst; 343 switch (I->getOpcode()) { 344 case Instruction::FDiv: 345 case Instruction::FRem: 346 case Instruction::SDiv: 347 case Instruction::SRem: 348 case Instruction::UDiv: 349 case Instruction::URem: 350 Benefit += 1; 351 break; 352 default: 353 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 354 break; 355 } 356 } 357 358 return Benefit; 359 } 360 361 /// Find whether \p Region matches the global value numbering to Constant 362 /// mapping found so far. 363 /// 364 /// \param Region - The OutlinableRegion we are checking for constants 365 /// \param GVNToConstant - The mapping of global value number to Constants. 366 /// \param NotSame - The set of global value numbers that do not have the same 367 /// constant in each region. 368 /// \returns true if all Constants are the same in every use of a Constant in \p 369 /// Region and false if not 370 static bool 371 collectRegionsConstants(OutlinableRegion &Region, 372 DenseMap<unsigned, Constant *> &GVNToConstant, 373 DenseSet<unsigned> &NotSame) { 374 bool ConstantsTheSame = true; 375 376 IRSimilarityCandidate &C = *Region.Candidate; 377 for (IRInstructionData &ID : C) { 378 379 // Iterate over the operands in an instruction. If the global value number, 380 // assigned by the IRSimilarityCandidate, has been seen before, we check if 381 // the the number has been found to be not the same value in each instance. 382 for (Value *V : ID.OperVals) { 383 Optional<unsigned> GVNOpt = C.getGVN(V); 384 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 385 unsigned GVN = GVNOpt.getValue(); 386 387 // Check if this global value has been found to not be the same already. 388 if (NotSame.contains(GVN)) { 389 if (isa<Constant>(V)) 390 ConstantsTheSame = false; 391 continue; 392 } 393 394 // If it has been the same so far, we check the value for if the 395 // associated Constant value match the previous instances of the same 396 // global value number. If the global value does not map to a Constant, 397 // it is considered to not be the same value. 398 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 399 if (ConstantMatches.hasValue()) { 400 if (ConstantMatches.getValue()) 401 continue; 402 else 403 ConstantsTheSame = false; 404 } 405 406 // While this value is a register, it might not have been previously, 407 // make sure we don't already have a constant mapped to this global value 408 // number. 409 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 410 ConstantsTheSame = false; 411 412 NotSame.insert(GVN); 413 } 414 } 415 416 return ConstantsTheSame; 417 } 418 419 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 420 DenseMap<unsigned, Constant *> GVNToConstant; 421 422 for (OutlinableRegion *Region : Regions) 423 collectRegionsConstants(*Region, GVNToConstant, NotSame); 424 } 425 426 void OutlinableGroup::collectGVNStoreSets(Module &M) { 427 for (OutlinableRegion *OS : Regions) 428 OutputGVNCombinations.insert(OS->GVNStores); 429 430 // We are adding an extracted argument to decide between which output path 431 // to use in the basic block. It is used in a switch statement and only 432 // needs to be an integer. 433 if (OutputGVNCombinations.size() > 1) 434 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 435 } 436 437 /// Get the subprogram if it exists for one of the outlined regions. 438 /// 439 /// \param [in] Group - The set of regions to find a subprogram for. 440 /// \returns the subprogram if it exists, or nullptr. 441 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 442 for (OutlinableRegion *OS : Group.Regions) 443 if (Function *F = OS->Call->getFunction()) 444 if (DISubprogram *SP = F->getSubprogram()) 445 return SP; 446 447 return nullptr; 448 } 449 450 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 451 unsigned FunctionNameSuffix) { 452 assert(!Group.OutlinedFunction && "Function is already defined!"); 453 454 Type *RetTy = Type::getVoidTy(M.getContext()); 455 // All extracted functions _should_ have the same return type at this point 456 // since the similarity identifier ensures that all branches outside of the 457 // region occur in the same place. 458 459 // NOTE: Should we ever move to the model that uses a switch at every point 460 // needed, meaning that we could branch within the region or out, it is 461 // possible that we will need to switch to using the most general case all of 462 // the time. 463 for (OutlinableRegion *R : Group.Regions) { 464 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 465 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 466 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 467 RetTy = ExtractedFuncType; 468 } 469 470 Group.OutlinedFunctionType = FunctionType::get( 471 RetTy, Group.ArgumentTypes, false); 472 473 // These functions will only be called from within the same module, so 474 // we can set an internal linkage. 475 Group.OutlinedFunction = Function::Create( 476 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 477 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 478 479 // Transfer the swifterr attribute to the correct function parameter. 480 if (Group.SwiftErrorArgument.hasValue()) 481 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 482 Attribute::SwiftError); 483 484 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 485 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 486 487 // If there's a DISubprogram associated with this outlined function, then 488 // emit debug info for the outlined function. 489 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 490 Function *F = Group.OutlinedFunction; 491 // We have a DISubprogram. Get its DICompileUnit. 492 DICompileUnit *CU = SP->getUnit(); 493 DIBuilder DB(M, true, CU); 494 DIFile *Unit = SP->getFile(); 495 Mangler Mg; 496 // Get the mangled name of the function for the linkage name. 497 std::string Dummy; 498 llvm::raw_string_ostream MangledNameStream(Dummy); 499 Mg.getNameWithPrefix(MangledNameStream, F, false); 500 501 DISubprogram *OutlinedSP = DB.createFunction( 502 Unit /* Context */, F->getName(), MangledNameStream.str(), 503 Unit /* File */, 504 0 /* Line 0 is reserved for compiler-generated code. */, 505 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 506 0, /* Line 0 is reserved for compiler-generated code. */ 507 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 508 /* Outlined code is optimized code by definition. */ 509 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 510 511 // Don't add any new variables to the subprogram. 512 DB.finalizeSubprogram(OutlinedSP); 513 514 // Attach subprogram to the function. 515 F->setSubprogram(OutlinedSP); 516 // We're done with the DIBuilder. 517 DB.finalize(); 518 } 519 520 return Group.OutlinedFunction; 521 } 522 523 /// Move each BasicBlock in \p Old to \p New. 524 /// 525 /// \param [in] Old - The function to move the basic blocks from. 526 /// \param [in] New - The function to move the basic blocks to. 527 /// \param [out] NewEnds - The return blocks of the new overall function. 528 static void moveFunctionData(Function &Old, Function &New, 529 DenseMap<Value *, BasicBlock *> &NewEnds) { 530 Function::iterator CurrBB, NextBB, FinalBB; 531 for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB; 532 CurrBB = NextBB) { 533 NextBB = std::next(CurrBB); 534 CurrBB->removeFromParent(); 535 CurrBB->insertInto(&New); 536 Instruction *I = CurrBB->getTerminator(); 537 538 // For each block we find a return instruction is, it is a potential exit 539 // path for the function. We keep track of each block based on the return 540 // value here. 541 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 542 NewEnds.insert(std::make_pair(RI->getReturnValue(), &(*CurrBB))); 543 544 std::vector<Instruction *> DebugInsts; 545 546 for (Instruction &Val : *CurrBB) { 547 // We must handle the scoping of called functions differently than 548 // other outlined instructions. 549 if (!isa<CallInst>(&Val)) { 550 // Remove the debug information for outlined functions. 551 Val.setDebugLoc(DebugLoc()); 552 continue; 553 } 554 555 // From this point we are only handling call instructions. 556 CallInst *CI = cast<CallInst>(&Val); 557 558 // We add any debug statements here, to be removed after. Since the 559 // instructions originate from many different locations in the program, 560 // it will cause incorrect reporting from a debugger if we keep the 561 // same debug instructions. 562 if (isa<DbgInfoIntrinsic>(CI)) { 563 DebugInsts.push_back(&Val); 564 continue; 565 } 566 567 // Edit the scope of called functions inside of outlined functions. 568 if (DISubprogram *SP = New.getSubprogram()) { 569 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 570 Val.setDebugLoc(DI); 571 } 572 } 573 574 for (Instruction *I : DebugInsts) 575 I->eraseFromParent(); 576 } 577 578 assert(NewEnds.size() > 0 && "No return instruction for new function?"); 579 } 580 581 /// Find the the constants that will need to be lifted into arguments 582 /// as they are not the same in each instance of the region. 583 /// 584 /// \param [in] C - The IRSimilarityCandidate containing the region we are 585 /// analyzing. 586 /// \param [in] NotSame - The set of global value numbers that do not have a 587 /// single Constant across all OutlinableRegions similar to \p C. 588 /// \param [out] Inputs - The list containing the global value numbers of the 589 /// arguments needed for the region of code. 590 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 591 std::vector<unsigned> &Inputs) { 592 DenseSet<unsigned> Seen; 593 // Iterate over the instructions, and find what constants will need to be 594 // extracted into arguments. 595 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 596 IDIt != EndIDIt; IDIt++) { 597 for (Value *V : (*IDIt).OperVals) { 598 // Since these are stored before any outlining, they will be in the 599 // global value numbering. 600 unsigned GVN = C.getGVN(V).getValue(); 601 if (isa<Constant>(V)) 602 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 603 Inputs.push_back(GVN); 604 Seen.insert(GVN); 605 } 606 } 607 } 608 } 609 610 /// Find the GVN for the inputs that have been found by the CodeExtractor. 611 /// 612 /// \param [in] C - The IRSimilarityCandidate containing the region we are 613 /// analyzing. 614 /// \param [in] CurrentInputs - The set of inputs found by the 615 /// CodeExtractor. 616 /// \param [in] OutputMappings - The mapping of values that have been replaced 617 /// by a new output value. 618 /// \param [out] EndInputNumbers - The global value numbers for the extracted 619 /// arguments. 620 static void mapInputsToGVNs(IRSimilarityCandidate &C, 621 SetVector<Value *> &CurrentInputs, 622 const DenseMap<Value *, Value *> &OutputMappings, 623 std::vector<unsigned> &EndInputNumbers) { 624 // Get the Global Value Number for each input. We check if the Value has been 625 // replaced by a different value at output, and use the original value before 626 // replacement. 627 for (Value *Input : CurrentInputs) { 628 assert(Input && "Have a nullptr as an input"); 629 if (OutputMappings.find(Input) != OutputMappings.end()) 630 Input = OutputMappings.find(Input)->second; 631 assert(C.getGVN(Input).hasValue() && 632 "Could not find a numbering for the given input"); 633 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 634 } 635 } 636 637 /// Find the original value for the \p ArgInput values if any one of them was 638 /// replaced during a previous extraction. 639 /// 640 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 641 /// \param [in] OutputMappings - The mapping of values that have been replaced 642 /// by a new output value. 643 /// \param [out] RemappedArgInputs - The remapped values according to 644 /// \p OutputMappings that will be extracted. 645 static void 646 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 647 const DenseMap<Value *, Value *> &OutputMappings, 648 SetVector<Value *> &RemappedArgInputs) { 649 // Get the global value number for each input that will be extracted as an 650 // argument by the code extractor, remapping if needed for reloaded values. 651 for (Value *Input : ArgInputs) { 652 if (OutputMappings.find(Input) != OutputMappings.end()) 653 Input = OutputMappings.find(Input)->second; 654 RemappedArgInputs.insert(Input); 655 } 656 } 657 658 /// Find the input GVNs and the output values for a region of Instructions. 659 /// Using the code extractor, we collect the inputs to the extracted function. 660 /// 661 /// The \p Region can be identified as needing to be ignored in this function. 662 /// It should be checked whether it should be ignored after a call to this 663 /// function. 664 /// 665 /// \param [in,out] Region - The region of code to be analyzed. 666 /// \param [out] InputGVNs - The global value numbers for the extracted 667 /// arguments. 668 /// \param [in] NotSame - The global value numbers in the region that do not 669 /// have the same constant value in the regions structurally similar to 670 /// \p Region. 671 /// \param [in] OutputMappings - The mapping of values that have been replaced 672 /// by a new output value after extraction. 673 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 674 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 675 /// as outputs. 676 static void getCodeExtractorArguments( 677 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 678 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 679 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 680 IRSimilarityCandidate &C = *Region.Candidate; 681 682 // OverallInputs are the inputs to the region found by the CodeExtractor, 683 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 684 // allocas of values whose lifetimes are contained completely within the 685 // outlined region. PremappedInputs are the arguments found by the 686 // CodeExtractor, removing conditions such as sunken allocas, but that 687 // may need to be remapped due to the extracted output values replacing 688 // the original values. We use DummyOutputs for this first run of finding 689 // inputs and outputs since the outputs could change during findAllocas, 690 // the correct set of extracted outputs will be in the final Outputs ValueSet. 691 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 692 DummyOutputs; 693 694 // Use the code extractor to get the inputs and outputs, without sunken 695 // allocas or removing llvm.assumes. 696 CodeExtractor *CE = Region.CE; 697 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 698 assert(Region.StartBB && "Region must have a start BasicBlock!"); 699 Function *OrigF = Region.StartBB->getParent(); 700 CodeExtractorAnalysisCache CEAC(*OrigF); 701 BasicBlock *Dummy = nullptr; 702 703 // The region may be ineligible due to VarArgs in the parent function. In this 704 // case we ignore the region. 705 if (!CE->isEligible()) { 706 Region.IgnoreRegion = true; 707 return; 708 } 709 710 // Find if any values are going to be sunk into the function when extracted 711 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 712 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 713 714 // TODO: Support regions with sunken allocas: values whose lifetimes are 715 // contained completely within the outlined region. These are not guaranteed 716 // to be the same in every region, so we must elevate them all to arguments 717 // when they appear. If these values are not equal, it means there is some 718 // Input in OverallInputs that was removed for ArgInputs. 719 if (OverallInputs.size() != PremappedInputs.size()) { 720 Region.IgnoreRegion = true; 721 return; 722 } 723 724 findConstants(C, NotSame, InputGVNs); 725 726 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 727 728 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 729 ArgInputs); 730 731 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 732 // we need to make sure they are in a deterministic order. 733 stable_sort(InputGVNs); 734 } 735 736 /// Look over the inputs and map each input argument to an argument in the 737 /// overall function for the OutlinableRegions. This creates a way to replace 738 /// the arguments of the extracted function with the arguments of the new 739 /// overall function. 740 /// 741 /// \param [in,out] Region - The region of code to be analyzed. 742 /// \param [in] InputGVNs - The global value numbering of the input values 743 /// collected. 744 /// \param [in] ArgInputs - The values of the arguments to the extracted 745 /// function. 746 static void 747 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 748 std::vector<unsigned> &InputGVNs, 749 SetVector<Value *> &ArgInputs) { 750 751 IRSimilarityCandidate &C = *Region.Candidate; 752 OutlinableGroup &Group = *Region.Parent; 753 754 // This counts the argument number in the overall function. 755 unsigned TypeIndex = 0; 756 757 // This counts the argument number in the extracted function. 758 unsigned OriginalIndex = 0; 759 760 // Find the mapping of the extracted arguments to the arguments for the 761 // overall function. Since there may be extra arguments in the overall 762 // function to account for the extracted constants, we have two different 763 // counters as we find extracted arguments, and as we come across overall 764 // arguments. 765 766 // Additionally, in our first pass, for the first extracted function, 767 // we find argument locations for the canonical value numbering. This 768 // numbering overrides any discovered location for the extracted code. 769 for (unsigned InputVal : InputGVNs) { 770 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 771 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 772 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 773 774 Optional<Value *> InputOpt = C.fromGVN(InputVal); 775 assert(InputOpt.hasValue() && "Global value number not found?"); 776 Value *Input = InputOpt.getValue(); 777 778 DenseMap<unsigned, unsigned>::iterator AggArgIt = 779 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 780 781 if (!Group.InputTypesSet) { 782 Group.ArgumentTypes.push_back(Input->getType()); 783 // If the input value has a swifterr attribute, make sure to mark the 784 // argument in the overall function. 785 if (Input->isSwiftError()) { 786 assert( 787 !Group.SwiftErrorArgument.hasValue() && 788 "Argument already marked with swifterr for this OutlinableGroup!"); 789 Group.SwiftErrorArgument = TypeIndex; 790 } 791 } 792 793 // Check if we have a constant. If we do add it to the overall argument 794 // number to Constant map for the region, and continue to the next input. 795 if (Constant *CST = dyn_cast<Constant>(Input)) { 796 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 797 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 798 else { 799 Group.CanonicalNumberToAggArg.insert( 800 std::make_pair(CanonicalNumber, TypeIndex)); 801 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 802 } 803 TypeIndex++; 804 continue; 805 } 806 807 // It is not a constant, we create the mapping from extracted argument list 808 // to the overall argument list, using the canonical location, if it exists. 809 assert(ArgInputs.count(Input) && "Input cannot be found!"); 810 811 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 812 if (OriginalIndex != AggArgIt->second) 813 Region.ChangedArgOrder = true; 814 Region.ExtractedArgToAgg.insert( 815 std::make_pair(OriginalIndex, AggArgIt->second)); 816 Region.AggArgToExtracted.insert( 817 std::make_pair(AggArgIt->second, OriginalIndex)); 818 } else { 819 Group.CanonicalNumberToAggArg.insert( 820 std::make_pair(CanonicalNumber, TypeIndex)); 821 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 822 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 823 } 824 OriginalIndex++; 825 TypeIndex++; 826 } 827 828 // If the function type definitions for the OutlinableGroup holding the region 829 // have not been set, set the length of the inputs here. We should have the 830 // same inputs for all of the different regions contained in the 831 // OutlinableGroup since they are all structurally similar to one another. 832 if (!Group.InputTypesSet) { 833 Group.NumAggregateInputs = TypeIndex; 834 Group.InputTypesSet = true; 835 } 836 837 Region.NumExtractedInputs = OriginalIndex; 838 } 839 840 /// Create a mapping of the output arguments for the \p Region to the output 841 /// arguments of the overall outlined function. 842 /// 843 /// \param [in,out] Region - The region of code to be analyzed. 844 /// \param [in] Outputs - The values found by the code extractor. 845 static void 846 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 847 SetVector<Value *> &Outputs) { 848 OutlinableGroup &Group = *Region.Parent; 849 IRSimilarityCandidate &C = *Region.Candidate; 850 851 SmallVector<BasicBlock *> BE; 852 DenseSet<BasicBlock *> BBSet; 853 C.getBasicBlocks(BBSet, BE); 854 855 // Find the exits to the region. 856 SmallPtrSet<BasicBlock *, 1> Exits; 857 for (BasicBlock *Block : BE) 858 for (BasicBlock *Succ : successors(Block)) 859 if (!BBSet.contains(Succ)) 860 Exits.insert(Succ); 861 862 // After determining which blocks exit to PHINodes, we add these PHINodes to 863 // the set of outputs to be processed. We also check the incoming values of 864 // the PHINodes for whether they should no longer be considered outputs. 865 for (BasicBlock *ExitBB : Exits) { 866 for (PHINode &PN : ExitBB->phis()) { 867 // Find all incoming values from the outlining region. 868 SmallVector<unsigned, 2> IncomingVals; 869 for (unsigned Idx = 0; Idx < PN.getNumIncomingValues(); ++Idx) 870 if (BBSet.contains(PN.getIncomingBlock(Idx))) 871 IncomingVals.push_back(Idx); 872 873 // Do not process PHI if there is one (or fewer) predecessor from region. 874 if (IncomingVals.size() <= 1) 875 continue; 876 877 Region.IgnoreRegion = true; 878 return; 879 } 880 } 881 882 // This counts the argument number in the extracted function. 883 unsigned OriginalIndex = Region.NumExtractedInputs; 884 885 // This counts the argument number in the overall function. 886 unsigned TypeIndex = Group.NumAggregateInputs; 887 bool TypeFound; 888 DenseSet<unsigned> AggArgsUsed; 889 890 // Iterate over the output types and identify if there is an aggregate pointer 891 // type whose base type matches the current output type. If there is, we mark 892 // that we will use this output register for this value. If not we add another 893 // type to the overall argument type list. We also store the GVNs used for 894 // stores to identify which values will need to be moved into an special 895 // block that holds the stores to the output registers. 896 for (Value *Output : Outputs) { 897 TypeFound = false; 898 // We can do this since it is a result value, and will have a number 899 // that is necessarily the same. BUT if in the future, the instructions 900 // do not have to be in same order, but are functionally the same, we will 901 // have to use a different scheme, as one-to-one correspondence is not 902 // guaranteed. 903 unsigned GlobalValue = C.getGVN(Output).getValue(); 904 unsigned ArgumentSize = Group.ArgumentTypes.size(); 905 906 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 907 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 908 continue; 909 910 if (AggArgsUsed.contains(Jdx)) 911 continue; 912 913 TypeFound = true; 914 AggArgsUsed.insert(Jdx); 915 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 916 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 917 Region.GVNStores.push_back(GlobalValue); 918 break; 919 } 920 921 // We were unable to find an unused type in the output type set that matches 922 // the output, so we add a pointer type to the argument types of the overall 923 // function to handle this output and create a mapping to it. 924 if (!TypeFound) { 925 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 926 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); 927 Region.ExtractedArgToAgg.insert( 928 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); 929 Region.AggArgToExtracted.insert( 930 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); 931 Region.GVNStores.push_back(GlobalValue); 932 } 933 934 stable_sort(Region.GVNStores); 935 OriginalIndex++; 936 TypeIndex++; 937 } 938 } 939 940 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 941 DenseSet<unsigned> &NotSame) { 942 std::vector<unsigned> Inputs; 943 SetVector<Value *> ArgInputs, Outputs; 944 945 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 946 Outputs); 947 948 if (Region.IgnoreRegion) 949 return; 950 951 // Map the inputs found by the CodeExtractor to the arguments found for 952 // the overall function. 953 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 954 955 // Map the outputs found by the CodeExtractor to the arguments found for 956 // the overall function. 957 findExtractedOutputToOverallOutputMapping(Region, Outputs); 958 } 959 960 /// Replace the extracted function in the Region with a call to the overall 961 /// function constructed from the deduplicated similar regions, replacing and 962 /// remapping the values passed to the extracted function as arguments to the 963 /// new arguments of the overall function. 964 /// 965 /// \param [in] M - The module to outline from. 966 /// \param [in] Region - The regions of extracted code to be replaced with a new 967 /// function. 968 /// \returns a call instruction with the replaced function. 969 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 970 std::vector<Value *> NewCallArgs; 971 DenseMap<unsigned, unsigned>::iterator ArgPair; 972 973 OutlinableGroup &Group = *Region.Parent; 974 CallInst *Call = Region.Call; 975 assert(Call && "Call to replace is nullptr?"); 976 Function *AggFunc = Group.OutlinedFunction; 977 assert(AggFunc && "Function to replace with is nullptr?"); 978 979 // If the arguments are the same size, there are not values that need to be 980 // made into an argument, the argument ordering has not been change, or 981 // different output registers to handle. We can simply replace the called 982 // function in this case. 983 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 984 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 985 << *AggFunc << " with same number of arguments\n"); 986 Call->setCalledFunction(AggFunc); 987 return Call; 988 } 989 990 // We have a different number of arguments than the new function, so 991 // we need to use our previously mappings off extracted argument to overall 992 // function argument, and constants to overall function argument to create the 993 // new argument list. 994 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 995 996 if (AggArgIdx == AggFunc->arg_size() - 1 && 997 Group.OutputGVNCombinations.size() > 1) { 998 // If we are on the last argument, and we need to differentiate between 999 // output blocks, add an integer to the argument list to determine 1000 // what block to take 1001 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1002 << Region.OutputBlockNum << "\n"); 1003 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1004 Region.OutputBlockNum)); 1005 continue; 1006 } 1007 1008 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1009 if (ArgPair != Region.AggArgToExtracted.end()) { 1010 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1011 // If we found the mapping from the extracted function to the overall 1012 // function, we simply add it to the argument list. We use the same 1013 // value, it just needs to honor the new order of arguments. 1014 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1015 << *ArgumentValue << "\n"); 1016 NewCallArgs.push_back(ArgumentValue); 1017 continue; 1018 } 1019 1020 // If it is a constant, we simply add it to the argument list as a value. 1021 if (Region.AggArgToConstant.find(AggArgIdx) != 1022 Region.AggArgToConstant.end()) { 1023 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1024 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1025 << *CST << "\n"); 1026 NewCallArgs.push_back(CST); 1027 continue; 1028 } 1029 1030 // Add a nullptr value if the argument is not found in the extracted 1031 // function. If we cannot find a value, it means it is not in use 1032 // for the region, so we should not pass anything to it. 1033 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1034 NewCallArgs.push_back(ConstantPointerNull::get( 1035 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1036 } 1037 1038 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1039 << *AggFunc << " with new set of arguments\n"); 1040 // Create the new call instruction and erase the old one. 1041 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1042 Call); 1043 1044 // It is possible that the call to the outlined function is either the first 1045 // instruction is in the new block, the last instruction, or both. If either 1046 // of these is the case, we need to make sure that we replace the instruction 1047 // in the IRInstructionData struct with the new call. 1048 CallInst *OldCall = Region.Call; 1049 if (Region.NewFront->Inst == OldCall) 1050 Region.NewFront->Inst = Call; 1051 if (Region.NewBack->Inst == OldCall) 1052 Region.NewBack->Inst = Call; 1053 1054 // Transfer any debug information. 1055 Call->setDebugLoc(Region.Call->getDebugLoc()); 1056 // Since our output may determine which branch we go to, we make sure to 1057 // propogate this new call value through the module. 1058 OldCall->replaceAllUsesWith(Call); 1059 1060 // Remove the old instruction. 1061 OldCall->eraseFromParent(); 1062 Region.Call = Call; 1063 1064 // Make sure that the argument in the new function has the SwiftError 1065 // argument. 1066 if (Group.SwiftErrorArgument.hasValue()) 1067 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1068 Attribute::SwiftError); 1069 1070 return Call; 1071 } 1072 1073 // Within an extracted function, replace the argument uses of the extracted 1074 // region with the arguments of the function for an OutlinableGroup. 1075 // 1076 /// \param [in] Region - The region of extracted code to be changed. 1077 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1078 /// region. 1079 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1080 /// function to define the overall outlined function for all the regions, or 1081 /// if we are operating on one of the following regions. 1082 static void 1083 replaceArgumentUses(OutlinableRegion &Region, 1084 DenseMap<Value *, BasicBlock *> &OutputBBs, 1085 bool FirstFunction = false) { 1086 OutlinableGroup &Group = *Region.Parent; 1087 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1088 1089 Function *DominatingFunction = Region.ExtractedFunction; 1090 if (FirstFunction) 1091 DominatingFunction = Group.OutlinedFunction; 1092 DominatorTree DT(*DominatingFunction); 1093 1094 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1095 ArgIdx++) { 1096 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1097 Region.ExtractedArgToAgg.end() && 1098 "No mapping from extracted to outlined?"); 1099 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1100 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1101 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1102 // The argument is an input, so we can simply replace it with the overall 1103 // argument value 1104 if (ArgIdx < Region.NumExtractedInputs) { 1105 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1106 << *Region.ExtractedFunction << " with " << *AggArg 1107 << " in function " << *Group.OutlinedFunction << "\n"); 1108 Arg->replaceAllUsesWith(AggArg); 1109 continue; 1110 } 1111 1112 // If we are replacing an output, we place the store value in its own 1113 // block inside the overall function before replacing the use of the output 1114 // in the function. 1115 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1116 User *InstAsUser = Arg->user_back(); 1117 assert(InstAsUser && "User is nullptr!"); 1118 1119 Instruction *I = cast<Instruction>(InstAsUser); 1120 BasicBlock *BB = I->getParent(); 1121 SmallVector<BasicBlock *, 4> Descendants; 1122 DT.getDescendants(BB, Descendants); 1123 bool EdgeAdded = false; 1124 if (Descendants.size() == 0) { 1125 EdgeAdded = true; 1126 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1127 DT.getDescendants(BB, Descendants); 1128 } 1129 1130 // Iterate over the following blocks, looking for return instructions, 1131 // if we find one, find the corresponding output block for the return value 1132 // and move our store instruction there. 1133 for (BasicBlock *DescendBB : Descendants) { 1134 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1135 if (!RI) 1136 continue; 1137 Value *RetVal = RI->getReturnValue(); 1138 auto VBBIt = OutputBBs.find(RetVal); 1139 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1140 1141 // If this is storing a PHINode, we must make sure it is included in the 1142 // overall function. 1143 StoreInst *SI = cast<StoreInst>(I); 1144 1145 Value *ValueOperand = SI->getValueOperand(); 1146 1147 StoreInst *NewI = cast<StoreInst>(I->clone()); 1148 NewI->setDebugLoc(DebugLoc()); 1149 BasicBlock *OutputBB = VBBIt->second; 1150 OutputBB->getInstList().push_back(NewI); 1151 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1152 << *OutputBB << "\n"); 1153 1154 if (FirstFunction) 1155 continue; 1156 Value *CorrVal = 1157 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1158 assert(CorrVal && "Value is nullptr?"); 1159 NewI->setOperand(0, CorrVal); 1160 } 1161 1162 // If we added an edge for basic blocks without a predecessor, we remove it 1163 // here. 1164 if (EdgeAdded) 1165 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1166 I->eraseFromParent(); 1167 1168 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1169 << *Region.ExtractedFunction << " with " << *AggArg 1170 << " in function " << *Group.OutlinedFunction << "\n"); 1171 Arg->replaceAllUsesWith(AggArg); 1172 } 1173 } 1174 1175 /// Within an extracted function, replace the constants that need to be lifted 1176 /// into arguments with the actual argument. 1177 /// 1178 /// \param Region [in] - The region of extracted code to be changed. 1179 void replaceConstants(OutlinableRegion &Region) { 1180 OutlinableGroup &Group = *Region.Parent; 1181 // Iterate over the constants that need to be elevated into arguments 1182 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1183 unsigned AggArgIdx = Const.first; 1184 Function *OutlinedFunction = Group.OutlinedFunction; 1185 assert(OutlinedFunction && "Overall Function is not defined?"); 1186 Constant *CST = Const.second; 1187 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1188 // Identify the argument it will be elevated to, and replace instances of 1189 // that constant in the function. 1190 1191 // TODO: If in the future constants do not have one global value number, 1192 // i.e. a constant 1 could be mapped to several values, this check will 1193 // have to be more strict. It cannot be using only replaceUsesWithIf. 1194 1195 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1196 << " in function " << *OutlinedFunction << " with " 1197 << *Arg << "\n"); 1198 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1199 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1200 return I->getFunction() == OutlinedFunction; 1201 return false; 1202 }); 1203 } 1204 } 1205 1206 /// It is possible that there is a basic block that already performs the same 1207 /// stores. This returns a duplicate block, if it exists 1208 /// 1209 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1210 /// \param OutputStoreBBs [in] The existing output blocks. 1211 /// \returns an optional value with the number output block if there is a match. 1212 Optional<unsigned> findDuplicateOutputBlock( 1213 DenseMap<Value *, BasicBlock *> &OutputBBs, 1214 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1215 1216 bool Mismatch = false; 1217 unsigned MatchingNum = 0; 1218 // We compare the new set output blocks to the other sets of output blocks. 1219 // If they are the same number, and have identical instructions, they are 1220 // considered to be the same. 1221 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1222 Mismatch = false; 1223 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1224 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1225 OutputBBs.find(VToB.first); 1226 if (OutputBBIt == OutputBBs.end()) { 1227 Mismatch = true; 1228 break; 1229 } 1230 1231 BasicBlock *CompBB = VToB.second; 1232 BasicBlock *OutputBB = OutputBBIt->second; 1233 if (CompBB->size() - 1 != OutputBB->size()) { 1234 Mismatch = true; 1235 break; 1236 } 1237 1238 BasicBlock::iterator NIt = OutputBB->begin(); 1239 for (Instruction &I : *CompBB) { 1240 if (isa<BranchInst>(&I)) 1241 continue; 1242 1243 if (!I.isIdenticalTo(&(*NIt))) { 1244 Mismatch = true; 1245 break; 1246 } 1247 1248 NIt++; 1249 } 1250 } 1251 1252 if (!Mismatch) 1253 return MatchingNum; 1254 1255 MatchingNum++; 1256 } 1257 1258 return None; 1259 } 1260 1261 /// Remove empty output blocks from the outlined region. 1262 /// 1263 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 1264 /// Region. 1265 /// \param Region - The OutlinableRegion we are analyzing. 1266 static bool 1267 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 1268 OutlinableRegion &Region) { 1269 bool AllRemoved = true; 1270 Value *RetValueForBB; 1271 BasicBlock *NewBB; 1272 SmallVector<Value *, 4> ToRemove; 1273 // Iterate over the output blocks created in the outlined section. 1274 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 1275 RetValueForBB = VtoBB.first; 1276 NewBB = VtoBB.second; 1277 1278 // If there are no instructions, we remove it from the module, and also 1279 // mark the value for removal from the return value to output block mapping. 1280 if (NewBB->size() == 0) { 1281 NewBB->eraseFromParent(); 1282 ToRemove.push_back(RetValueForBB); 1283 continue; 1284 } 1285 1286 // Mark that we could not remove all the blocks since they were not all 1287 // empty. 1288 AllRemoved = false; 1289 } 1290 1291 // Remove the return value from the mapping. 1292 for (Value *V : ToRemove) 1293 BlocksToPrune.erase(V); 1294 1295 // Mark the region as having the no output scheme. 1296 if (AllRemoved) 1297 Region.OutputBlockNum = -1; 1298 1299 return AllRemoved; 1300 } 1301 1302 /// For the outlined section, move needed the StoreInsts for the output 1303 /// registers into their own block. Then, determine if there is a duplicate 1304 /// output block already created. 1305 /// 1306 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1307 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1308 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 1309 /// placed in. 1310 /// \param [in] EndBBs - the final blocks of the extracted function. 1311 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1312 /// been replaced by a new output value. 1313 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1314 static void alignOutputBlockWithAggFunc( 1315 OutlinableGroup &OG, OutlinableRegion &Region, 1316 DenseMap<Value *, BasicBlock *> &OutputBBs, 1317 DenseMap<Value *, BasicBlock *> &EndBBs, 1318 const DenseMap<Value *, Value *> &OutputMappings, 1319 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1320 // If none of the output blocks have any instructions, this means that we do 1321 // not have to determine if it matches any of the other output schemes, and we 1322 // don't have to do anything else. 1323 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 1324 return; 1325 1326 // Determine is there is a duplicate set of blocks. 1327 Optional<unsigned> MatchingBB = 1328 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 1329 1330 // If there is, we remove the new output blocks. If it does not, 1331 // we add it to our list of sets of output blocks. 1332 if (MatchingBB.hasValue()) { 1333 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1334 << Region.ExtractedFunction << " to " 1335 << MatchingBB.getValue()); 1336 1337 Region.OutputBlockNum = MatchingBB.getValue(); 1338 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 1339 VtoBB.second->eraseFromParent(); 1340 return; 1341 } 1342 1343 Region.OutputBlockNum = OutputStoreBBs.size(); 1344 1345 Value *RetValueForBB; 1346 BasicBlock *NewBB; 1347 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1348 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 1349 RetValueForBB = VtoBB.first; 1350 NewBB = VtoBB.second; 1351 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1352 EndBBs.find(RetValueForBB); 1353 LLVM_DEBUG(dbgs() << "Create output block for region in" 1354 << Region.ExtractedFunction << " to " 1355 << *NewBB); 1356 BranchInst::Create(VBBIt->second, NewBB); 1357 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 1358 } 1359 } 1360 1361 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 1362 /// before creating a basic block for each \p NewMap, and inserting into the new 1363 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 1364 /// 1365 /// \param OldMap [in] - The mapping to base the new mapping off of. 1366 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 1367 /// \param ParentFunc [in] - The function to put the new basic block in. 1368 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 1369 /// by an index value. 1370 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 1371 DenseMap<Value *, BasicBlock *> &NewMap, 1372 Function *ParentFunc, Twine BaseName) { 1373 unsigned Idx = 0; 1374 std::vector<Value *> SortedKeys; 1375 1376 getSortedConstantKeys(SortedKeys, OldMap); 1377 1378 for (Value *RetVal : SortedKeys) { 1379 BasicBlock *NewBB = BasicBlock::Create( 1380 ParentFunc->getContext(), 1381 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 1382 ParentFunc); 1383 NewMap.insert(std::make_pair(RetVal, NewBB)); 1384 } 1385 } 1386 1387 /// Create the switch statement for outlined function to differentiate between 1388 /// all the output blocks. 1389 /// 1390 /// For the outlined section, determine if an outlined block already exists that 1391 /// matches the needed stores for the extracted section. 1392 /// \param [in] M - The module we are outlining from. 1393 /// \param [in] OG - The group of regions to be outlined. 1394 /// \param [in] EndBBs - The final blocks of the extracted function. 1395 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1396 void createSwitchStatement( 1397 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 1398 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1399 // We only need the switch statement if there is more than one store 1400 // combination. 1401 if (OG.OutputGVNCombinations.size() > 1) { 1402 Function *AggFunc = OG.OutlinedFunction; 1403 // Create a final block for each different return block. 1404 DenseMap<Value *, BasicBlock *> ReturnBBs; 1405 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 1406 1407 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 1408 std::pair<Value *, BasicBlock *> &OutputBlock = 1409 *OG.EndBBs.find(RetBlockPair.first); 1410 BasicBlock *ReturnBlock = RetBlockPair.second; 1411 BasicBlock *EndBB = OutputBlock.second; 1412 Instruction *Term = EndBB->getTerminator(); 1413 // Move the return value to the final block instead of the original exit 1414 // stub. 1415 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 1416 // Put the switch statement in the old end basic block for the function 1417 // with a fall through to the new return block. 1418 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 1419 << OutputStoreBBs.size() << "\n"); 1420 SwitchInst *SwitchI = 1421 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 1422 ReturnBlock, OutputStoreBBs.size(), EndBB); 1423 1424 unsigned Idx = 0; 1425 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 1426 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 1427 OutputStoreBB.find(OutputBlock.first); 1428 1429 if (OSBBIt == OutputStoreBB.end()) 1430 continue; 1431 1432 BasicBlock *BB = OSBBIt->second; 1433 SwitchI->addCase( 1434 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 1435 Term = BB->getTerminator(); 1436 Term->setSuccessor(0, ReturnBlock); 1437 Idx++; 1438 } 1439 } 1440 return; 1441 } 1442 1443 // If there needs to be stores, move them from the output blocks to their 1444 // corresponding ending block. 1445 if (OutputStoreBBs.size() == 1) { 1446 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 1447 << *OG.OutlinedFunction << "\n"); 1448 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 1449 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 1450 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 1451 EndBBs.find(VBPair.first); 1452 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 1453 BasicBlock *EndBB = EndBBIt->second; 1454 BasicBlock *OutputBB = VBPair.second; 1455 Instruction *Term = OutputBB->getTerminator(); 1456 Term->eraseFromParent(); 1457 Term = EndBB->getTerminator(); 1458 moveBBContents(*OutputBB, *EndBB); 1459 Term->moveBefore(*EndBB, EndBB->end()); 1460 OutputBB->eraseFromParent(); 1461 } 1462 } 1463 } 1464 1465 /// Fill the new function that will serve as the replacement function for all of 1466 /// the extracted regions of a certain structure from the first region in the 1467 /// list of regions. Replace this first region's extracted function with the 1468 /// new overall function. 1469 /// 1470 /// \param [in] M - The module we are outlining from. 1471 /// \param [in] CurrentGroup - The group of regions to be outlined. 1472 /// \param [in,out] OutputStoreBBs - The output blocks for each different 1473 /// set of stores needed for the different functions. 1474 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 1475 /// once outlining is complete. 1476 static void fillOverallFunction( 1477 Module &M, OutlinableGroup &CurrentGroup, 1478 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 1479 std::vector<Function *> &FuncsToRemove) { 1480 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 1481 1482 // Move first extracted function's instructions into new function. 1483 LLVM_DEBUG(dbgs() << "Move instructions from " 1484 << *CurrentOS->ExtractedFunction << " to instruction " 1485 << *CurrentGroup.OutlinedFunction << "\n"); 1486 moveFunctionData(*CurrentOS->ExtractedFunction, 1487 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 1488 1489 // Transfer the attributes from the function to the new function. 1490 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 1491 CurrentGroup.OutlinedFunction->addFnAttr(A); 1492 1493 // Create a new set of output blocks for the first extracted function. 1494 DenseMap<Value *, BasicBlock *> NewBBs; 1495 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 1496 CurrentGroup.OutlinedFunction, "output_block_0"); 1497 CurrentOS->OutputBlockNum = 0; 1498 1499 replaceArgumentUses(*CurrentOS, NewBBs, true); 1500 replaceConstants(*CurrentOS); 1501 1502 // We first identify if any output blocks are empty, if they are we remove 1503 // them. We then create a branch instruction to the basic block to the return 1504 // block for the function for each non empty output block. 1505 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 1506 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1507 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 1508 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1509 CurrentGroup.EndBBs.find(VToBB.first); 1510 BasicBlock *EndBB = VBBIt->second; 1511 BranchInst::Create(EndBB, VToBB.second); 1512 OutputStoreBBs.back().insert(VToBB); 1513 } 1514 } 1515 1516 // Replace the call to the extracted function with the outlined function. 1517 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1518 1519 // We only delete the extracted functions at the end since we may need to 1520 // reference instructions contained in them for mapping purposes. 1521 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1522 } 1523 1524 void IROutliner::deduplicateExtractedSections( 1525 Module &M, OutlinableGroup &CurrentGroup, 1526 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 1527 createFunction(M, CurrentGroup, OutlinedFunctionNum); 1528 1529 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 1530 1531 OutlinableRegion *CurrentOS; 1532 1533 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); 1534 1535 std::vector<Value *> SortedKeys; 1536 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 1537 CurrentOS = CurrentGroup.Regions[Idx]; 1538 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 1539 *CurrentOS->ExtractedFunction); 1540 1541 // Create a set of BasicBlocks, one for each return block, to hold the 1542 // needed store instructions. 1543 DenseMap<Value *, BasicBlock *> NewBBs; 1544 createAndInsertBasicBlocks( 1545 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 1546 "output_block_" + Twine(static_cast<unsigned>(Idx))); 1547 1548 replaceArgumentUses(*CurrentOS, NewBBs); 1549 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 1550 CurrentGroup.EndBBs, OutputMappings, 1551 OutputStoreBBs); 1552 1553 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1554 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1555 } 1556 1557 // Create a switch statement to handle the different output schemes. 1558 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 1559 1560 OutlinedFunctionNum++; 1561 } 1562 1563 /// Checks that the next instruction in the InstructionDataList matches the 1564 /// next instruction in the module. If they do not, there could be the 1565 /// possibility that extra code has been inserted, and we must ignore it. 1566 /// 1567 /// \param ID - The IRInstructionData to check the next instruction of. 1568 /// \returns true if the InstructionDataList and actual instruction match. 1569 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 1570 // We check if there is a discrepancy between the InstructionDataList 1571 // and the actual next instruction in the module. If there is, it means 1572 // that an extra instruction was added, likely by the CodeExtractor. 1573 1574 // Since we do not have any similarity data about this particular 1575 // instruction, we cannot confidently outline it, and must discard this 1576 // candidate. 1577 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 1578 Instruction *NextIDLInst = NextIDIt->Inst; 1579 Instruction *NextModuleInst = nullptr; 1580 if (!ID.Inst->isTerminator()) 1581 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 1582 else if (NextIDLInst != nullptr) 1583 NextModuleInst = 1584 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 1585 1586 if (NextIDLInst && NextIDLInst != NextModuleInst) 1587 return false; 1588 1589 return true; 1590 } 1591 1592 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 1593 const OutlinableRegion &Region) { 1594 IRSimilarityCandidate *IRSC = Region.Candidate; 1595 unsigned StartIdx = IRSC->getStartIdx(); 1596 unsigned EndIdx = IRSC->getEndIdx(); 1597 1598 // A check to make sure that we are not about to attempt to outline something 1599 // that has already been outlined. 1600 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1601 if (Outlined.contains(Idx)) 1602 return false; 1603 1604 // We check if the recorded instruction matches the actual next instruction, 1605 // if it does not, we fix it in the InstructionDataList. 1606 if (!Region.Candidate->backInstruction()->isTerminator()) { 1607 Instruction *NewEndInst = 1608 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 1609 assert(NewEndInst && "Next instruction is a nullptr?"); 1610 if (Region.Candidate->end()->Inst != NewEndInst) { 1611 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1612 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 1613 IRInstructionData(*NewEndInst, 1614 InstructionClassifier.visit(*NewEndInst), *IDL); 1615 1616 // Insert the first IRInstructionData of the new region after the 1617 // last IRInstructionData of the IRSimilarityCandidate. 1618 IDL->insert(Region.Candidate->end(), *NewEndIRID); 1619 } 1620 } 1621 1622 return none_of(*IRSC, [this](IRInstructionData &ID) { 1623 if (!nextIRInstructionDataMatchesNextInst(ID)) 1624 return true; 1625 1626 return !this->InstructionClassifier.visit(ID.Inst); 1627 }); 1628 } 1629 1630 void IROutliner::pruneIncompatibleRegions( 1631 std::vector<IRSimilarityCandidate> &CandidateVec, 1632 OutlinableGroup &CurrentGroup) { 1633 bool PreviouslyOutlined; 1634 1635 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 1636 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 1637 const IRSimilarityCandidate &RHS) { 1638 return LHS.getStartIdx() < RHS.getStartIdx(); 1639 }); 1640 1641 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 1642 // Since outlining a call and a branch instruction will be the same as only 1643 // outlinining a call instruction, we ignore it as a space saving. 1644 if (FirstCandidate.getLength() == 2) { 1645 if (isa<CallInst>(FirstCandidate.front()->Inst) && 1646 isa<BranchInst>(FirstCandidate.back()->Inst)) 1647 return; 1648 } 1649 1650 unsigned CurrentEndIdx = 0; 1651 for (IRSimilarityCandidate &IRSC : CandidateVec) { 1652 PreviouslyOutlined = false; 1653 unsigned StartIdx = IRSC.getStartIdx(); 1654 unsigned EndIdx = IRSC.getEndIdx(); 1655 1656 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1657 if (Outlined.contains(Idx)) { 1658 PreviouslyOutlined = true; 1659 break; 1660 } 1661 1662 if (PreviouslyOutlined) 1663 continue; 1664 1665 // Check over the instructions, and if the basic block has its address 1666 // taken for use somewhere else, we do not outline that block. 1667 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 1668 return ID.Inst->getParent()->hasAddressTaken(); 1669 }); 1670 1671 if (BBHasAddressTaken) 1672 continue; 1673 1674 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 1675 !OutlineFromLinkODRs) 1676 continue; 1677 1678 // Greedily prune out any regions that will overlap with already chosen 1679 // regions. 1680 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 1681 continue; 1682 1683 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 1684 if (!nextIRInstructionDataMatchesNextInst(ID)) 1685 return true; 1686 1687 return !this->InstructionClassifier.visit(ID.Inst); 1688 }); 1689 1690 if (BadInst) 1691 continue; 1692 1693 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 1694 OutlinableRegion(IRSC, CurrentGroup); 1695 CurrentGroup.Regions.push_back(OS); 1696 1697 CurrentEndIdx = EndIdx; 1698 } 1699 } 1700 1701 InstructionCost 1702 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 1703 InstructionCost RegionBenefit = 0; 1704 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1705 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1706 // We add the number of instructions in the region to the benefit as an 1707 // estimate as to how much will be removed. 1708 RegionBenefit += Region->getBenefit(TTI); 1709 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 1710 << " saved instructions to overfall benefit.\n"); 1711 } 1712 1713 return RegionBenefit; 1714 } 1715 1716 InstructionCost 1717 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 1718 InstructionCost OverallCost = 0; 1719 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1720 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1721 1722 // Each output incurs a load after the call, so we add that to the cost. 1723 for (unsigned OutputGVN : Region->GVNStores) { 1724 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN); 1725 assert(OV.hasValue() && "Could not find value for GVN?"); 1726 Value *V = OV.getValue(); 1727 InstructionCost LoadCost = 1728 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1729 TargetTransformInfo::TCK_CodeSize); 1730 1731 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 1732 << " instructions to cost for output of type " 1733 << *V->getType() << "\n"); 1734 OverallCost += LoadCost; 1735 } 1736 } 1737 1738 return OverallCost; 1739 } 1740 1741 /// Find the extra instructions needed to handle any output values for the 1742 /// region. 1743 /// 1744 /// \param [in] M - The Module to outline from. 1745 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 1746 /// \param [in] TTI - The TargetTransformInfo used to collect information for 1747 /// new instruction costs. 1748 /// \returns the additional cost to handle the outputs. 1749 static InstructionCost findCostForOutputBlocks(Module &M, 1750 OutlinableGroup &CurrentGroup, 1751 TargetTransformInfo &TTI) { 1752 InstructionCost OutputCost = 0; 1753 unsigned NumOutputBranches = 0; 1754 1755 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 1756 DenseSet<BasicBlock *> CandidateBlocks; 1757 Candidate.getBasicBlocks(CandidateBlocks); 1758 1759 // Count the number of different output branches that point to blocks outside 1760 // of the region. 1761 DenseSet<BasicBlock *> FoundBlocks; 1762 for (IRInstructionData &ID : Candidate) { 1763 if (!isa<BranchInst>(ID.Inst)) 1764 continue; 1765 1766 for (Value *V : ID.OperVals) { 1767 BasicBlock *BB = static_cast<BasicBlock *>(V); 1768 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 1769 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 1770 continue; 1771 FoundBlocks.insert(BB); 1772 NumOutputBranches++; 1773 } 1774 } 1775 1776 CurrentGroup.BranchesToOutside = NumOutputBranches; 1777 1778 for (const ArrayRef<unsigned> &OutputUse : 1779 CurrentGroup.OutputGVNCombinations) { 1780 for (unsigned GVN : OutputUse) { 1781 Optional<Value *> OV = Candidate.fromGVN(GVN); 1782 assert(OV.hasValue() && "Could not find value for GVN?"); 1783 Value *V = OV.getValue(); 1784 InstructionCost StoreCost = 1785 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1786 TargetTransformInfo::TCK_CodeSize); 1787 1788 // An instruction cost is added for each store set that needs to occur for 1789 // various output combinations inside the function, plus a branch to 1790 // return to the exit block. 1791 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 1792 << " instructions to cost for output of type " 1793 << *V->getType() << "\n"); 1794 OutputCost += StoreCost * NumOutputBranches; 1795 } 1796 1797 InstructionCost BranchCost = 1798 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1799 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 1800 << " a branch instruction\n"); 1801 OutputCost += BranchCost * NumOutputBranches; 1802 } 1803 1804 // If there is more than one output scheme, we must have a comparison and 1805 // branch for each different item in the switch statement. 1806 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 1807 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 1808 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 1809 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 1810 TargetTransformInfo::TCK_CodeSize); 1811 InstructionCost BranchCost = 1812 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1813 1814 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 1815 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 1816 1817 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 1818 << " instructions for each switch case for each different" 1819 << " output path in a function\n"); 1820 OutputCost += TotalCost * NumOutputBranches; 1821 } 1822 1823 return OutputCost; 1824 } 1825 1826 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 1827 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 1828 CurrentGroup.Benefit += RegionBenefit; 1829 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 1830 1831 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 1832 CurrentGroup.Cost += OutputReloadCost; 1833 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1834 1835 InstructionCost AverageRegionBenefit = 1836 RegionBenefit / CurrentGroup.Regions.size(); 1837 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 1838 unsigned NumRegions = CurrentGroup.Regions.size(); 1839 TargetTransformInfo &TTI = 1840 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1841 1842 // We add one region to the cost once, to account for the instructions added 1843 // inside of the newly created function. 1844 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 1845 << " instructions to cost for body of new function.\n"); 1846 CurrentGroup.Cost += AverageRegionBenefit; 1847 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1848 1849 // For each argument, we must add an instruction for loading the argument 1850 // out of the register and into a value inside of the newly outlined function. 1851 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1852 << " instructions to cost for each argument in the new" 1853 << " function.\n"); 1854 CurrentGroup.Cost += 1855 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 1856 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1857 1858 // Each argument needs to either be loaded into a register or onto the stack. 1859 // Some arguments will only be loaded into the stack once the argument 1860 // registers are filled. 1861 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1862 << " instructions to cost for each argument in the new" 1863 << " function " << NumRegions << " times for the " 1864 << "needed argument handling at the call site.\n"); 1865 CurrentGroup.Cost += 1866 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 1867 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1868 1869 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 1870 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1871 } 1872 1873 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 1874 ArrayRef<Value *> Outputs, 1875 LoadInst *LI) { 1876 // For and load instructions following the call 1877 Value *Operand = LI->getPointerOperand(); 1878 Optional<unsigned> OutputIdx = None; 1879 // Find if the operand it is an output register. 1880 for (unsigned ArgIdx = Region.NumExtractedInputs; 1881 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 1882 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 1883 OutputIdx = ArgIdx - Region.NumExtractedInputs; 1884 break; 1885 } 1886 } 1887 1888 // If we found an output register, place a mapping of the new value 1889 // to the original in the mapping. 1890 if (!OutputIdx.hasValue()) 1891 return; 1892 1893 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 1894 OutputMappings.end()) { 1895 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 1896 << *Outputs[OutputIdx.getValue()] << "\n"); 1897 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 1898 } else { 1899 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 1900 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 1901 << *Outputs[OutputIdx.getValue()] << "\n"); 1902 OutputMappings.insert(std::make_pair(LI, Orig)); 1903 } 1904 } 1905 1906 bool IROutliner::extractSection(OutlinableRegion &Region) { 1907 SetVector<Value *> ArgInputs, Outputs, SinkCands; 1908 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 1909 BasicBlock *InitialStart = Region.StartBB; 1910 Function *OrigF = Region.StartBB->getParent(); 1911 CodeExtractorAnalysisCache CEAC(*OrigF); 1912 Region.ExtractedFunction = 1913 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 1914 1915 // If the extraction was successful, find the BasicBlock, and reassign the 1916 // OutlinableRegion blocks 1917 if (!Region.ExtractedFunction) { 1918 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 1919 << "\n"); 1920 Region.reattachCandidate(); 1921 return false; 1922 } 1923 1924 // Get the block containing the called branch, and reassign the blocks as 1925 // necessary. If the original block still exists, it is because we ended on 1926 // a branch instruction, and so we move the contents into the block before 1927 // and assign the previous block correctly. 1928 User *InstAsUser = Region.ExtractedFunction->user_back(); 1929 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 1930 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 1931 assert(Region.PrevBB && "PrevBB is nullptr?"); 1932 if (Region.PrevBB == InitialStart) { 1933 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 1934 Instruction *BI = NewPrev->getTerminator(); 1935 BI->eraseFromParent(); 1936 moveBBContents(*InitialStart, *NewPrev); 1937 Region.PrevBB = NewPrev; 1938 InitialStart->eraseFromParent(); 1939 } 1940 1941 Region.StartBB = RewrittenBB; 1942 Region.EndBB = RewrittenBB; 1943 1944 // The sequences of outlinable regions has now changed. We must fix the 1945 // IRInstructionDataList for consistency. Although they may not be illegal 1946 // instructions, they should not be compared with anything else as they 1947 // should not be outlined in this round. So marking these as illegal is 1948 // allowed. 1949 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1950 Instruction *BeginRewritten = &*RewrittenBB->begin(); 1951 Instruction *EndRewritten = &*RewrittenBB->begin(); 1952 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 1953 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 1954 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 1955 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 1956 1957 // Insert the first IRInstructionData of the new region in front of the 1958 // first IRInstructionData of the IRSimilarityCandidate. 1959 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 1960 // Insert the first IRInstructionData of the new region after the 1961 // last IRInstructionData of the IRSimilarityCandidate. 1962 IDL->insert(Region.Candidate->end(), *Region.NewBack); 1963 // Remove the IRInstructionData from the IRSimilarityCandidate. 1964 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 1965 1966 assert(RewrittenBB != nullptr && 1967 "Could not find a predecessor after extraction!"); 1968 1969 // Iterate over the new set of instructions to find the new call 1970 // instruction. 1971 for (Instruction &I : *RewrittenBB) 1972 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1973 if (Region.ExtractedFunction == CI->getCalledFunction()) 1974 Region.Call = CI; 1975 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 1976 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 1977 Region.reattachCandidate(); 1978 return true; 1979 } 1980 1981 unsigned IROutliner::doOutline(Module &M) { 1982 // Find the possible similarity sections. 1983 InstructionClassifier.EnableBranches = !DisableBranches; 1984 IRSimilarityIdentifier &Identifier = getIRSI(M); 1985 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 1986 1987 // Sort them by size of extracted sections 1988 unsigned OutlinedFunctionNum = 0; 1989 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 1990 // to sort them by the potential number of instructions to be outlined 1991 if (SimilarityCandidates.size() > 1) 1992 llvm::stable_sort(SimilarityCandidates, 1993 [](const std::vector<IRSimilarityCandidate> &LHS, 1994 const std::vector<IRSimilarityCandidate> &RHS) { 1995 return LHS[0].getLength() * LHS.size() > 1996 RHS[0].getLength() * RHS.size(); 1997 }); 1998 // Creating OutlinableGroups for each SimilarityCandidate to be used in 1999 // each of the following for loops to avoid making an allocator. 2000 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2001 2002 DenseSet<unsigned> NotSame; 2003 std::vector<OutlinableGroup *> NegativeCostGroups; 2004 std::vector<OutlinableRegion *> OutlinedRegions; 2005 // Iterate over the possible sets of similarity. 2006 unsigned PotentialGroupIdx = 0; 2007 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2008 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2009 2010 // Remove entries that were previously outlined 2011 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2012 2013 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2014 // trying to outlined since there is no compatible similar instance of this 2015 // code. 2016 if (CurrentGroup.Regions.size() < 2) 2017 continue; 2018 2019 // Determine if there are any values that are the same constant throughout 2020 // each section in the set. 2021 NotSame.clear(); 2022 CurrentGroup.findSameConstants(NotSame); 2023 2024 if (CurrentGroup.IgnoreGroup) 2025 continue; 2026 2027 // Create a CodeExtractor for each outlinable region. Identify inputs and 2028 // outputs for each section using the code extractor and create the argument 2029 // types for the Aggregate Outlining Function. 2030 OutlinedRegions.clear(); 2031 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2032 // Break the outlinable region out of its parent BasicBlock into its own 2033 // BasicBlocks (see function implementation). 2034 OS->splitCandidate(); 2035 2036 // There's a chance that when the region is split, extra instructions are 2037 // added to the region. This makes the region no longer viable 2038 // to be split, so we ignore it for outlining. 2039 if (!OS->CandidateSplit) 2040 continue; 2041 2042 SmallVector<BasicBlock *> BE; 2043 DenseSet<BasicBlock *> BBSet; 2044 OS->Candidate->getBasicBlocks(BBSet, BE); 2045 OS->CE = new (ExtractorAllocator.Allocate()) 2046 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2047 false, "outlined"); 2048 findAddInputsOutputs(M, *OS, NotSame); 2049 if (!OS->IgnoreRegion) 2050 OutlinedRegions.push_back(OS); 2051 2052 // We recombine the blocks together now that we have gathered all the 2053 // needed information. 2054 OS->reattachCandidate(); 2055 } 2056 2057 CurrentGroup.Regions = std::move(OutlinedRegions); 2058 2059 if (CurrentGroup.Regions.empty()) 2060 continue; 2061 2062 CurrentGroup.collectGVNStoreSets(M); 2063 2064 if (CostModel) 2065 findCostBenefit(M, CurrentGroup); 2066 2067 // If we are adhering to the cost model, skip those groups where the cost 2068 // outweighs the benefits. 2069 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2070 OptimizationRemarkEmitter &ORE = 2071 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2072 ORE.emit([&]() { 2073 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2074 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2075 C->frontInstruction()); 2076 R << "did not outline " 2077 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2078 << " regions due to estimated increase of " 2079 << ore::NV("InstructionIncrease", 2080 CurrentGroup.Cost - CurrentGroup.Benefit) 2081 << " instructions at locations "; 2082 interleave( 2083 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2084 [&R](OutlinableRegion *Region) { 2085 R << ore::NV( 2086 "DebugLoc", 2087 Region->Candidate->frontInstruction()->getDebugLoc()); 2088 }, 2089 [&R]() { R << " "; }); 2090 return R; 2091 }); 2092 continue; 2093 } 2094 2095 NegativeCostGroups.push_back(&CurrentGroup); 2096 } 2097 2098 ExtractorAllocator.DestroyAll(); 2099 2100 if (NegativeCostGroups.size() > 1) 2101 stable_sort(NegativeCostGroups, 2102 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2103 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2104 }); 2105 2106 std::vector<Function *> FuncsToRemove; 2107 for (OutlinableGroup *CG : NegativeCostGroups) { 2108 OutlinableGroup &CurrentGroup = *CG; 2109 2110 OutlinedRegions.clear(); 2111 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2112 // We check whether our region is compatible with what has already been 2113 // outlined, and whether we need to ignore this item. 2114 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2115 continue; 2116 OutlinedRegions.push_back(Region); 2117 } 2118 2119 if (OutlinedRegions.size() < 2) 2120 continue; 2121 2122 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2123 // we are still outlining enough regions to make up for the added cost. 2124 CurrentGroup.Regions = std::move(OutlinedRegions); 2125 if (CostModel) { 2126 CurrentGroup.Benefit = 0; 2127 CurrentGroup.Cost = 0; 2128 findCostBenefit(M, CurrentGroup); 2129 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2130 continue; 2131 } 2132 OutlinedRegions.clear(); 2133 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2134 Region->splitCandidate(); 2135 if (!Region->CandidateSplit) 2136 continue; 2137 OutlinedRegions.push_back(Region); 2138 } 2139 2140 CurrentGroup.Regions = std::move(OutlinedRegions); 2141 if (CurrentGroup.Regions.size() < 2) { 2142 for (OutlinableRegion *R : CurrentGroup.Regions) 2143 R->reattachCandidate(); 2144 continue; 2145 } 2146 2147 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2148 << " and benefit " << CurrentGroup.Benefit << "\n"); 2149 2150 // Create functions out of all the sections, and mark them as outlined. 2151 OutlinedRegions.clear(); 2152 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2153 SmallVector<BasicBlock *> BE; 2154 DenseSet<BasicBlock *> BBSet; 2155 OS->Candidate->getBasicBlocks(BBSet, BE); 2156 OS->CE = new (ExtractorAllocator.Allocate()) 2157 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2158 false, "outlined"); 2159 bool FunctionOutlined = extractSection(*OS); 2160 if (FunctionOutlined) { 2161 unsigned StartIdx = OS->Candidate->getStartIdx(); 2162 unsigned EndIdx = OS->Candidate->getEndIdx(); 2163 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2164 Outlined.insert(Idx); 2165 2166 OutlinedRegions.push_back(OS); 2167 } 2168 } 2169 2170 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2171 << " with benefit " << CurrentGroup.Benefit 2172 << " and cost " << CurrentGroup.Cost << "\n"); 2173 2174 CurrentGroup.Regions = std::move(OutlinedRegions); 2175 2176 if (CurrentGroup.Regions.empty()) 2177 continue; 2178 2179 OptimizationRemarkEmitter &ORE = 2180 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2181 ORE.emit([&]() { 2182 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2183 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2184 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2185 << " regions with decrease of " 2186 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2187 << " instructions at locations "; 2188 interleave( 2189 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2190 [&R](OutlinableRegion *Region) { 2191 R << ore::NV("DebugLoc", 2192 Region->Candidate->frontInstruction()->getDebugLoc()); 2193 }, 2194 [&R]() { R << " "; }); 2195 return R; 2196 }); 2197 2198 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2199 OutlinedFunctionNum); 2200 } 2201 2202 for (Function *F : FuncsToRemove) 2203 F->eraseFromParent(); 2204 2205 return OutlinedFunctionNum; 2206 } 2207 2208 bool IROutliner::run(Module &M) { 2209 CostModel = !NoCostModel; 2210 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 2211 2212 return doOutline(M) > 0; 2213 } 2214 2215 // Pass Manager Boilerplate 2216 class IROutlinerLegacyPass : public ModulePass { 2217 public: 2218 static char ID; 2219 IROutlinerLegacyPass() : ModulePass(ID) { 2220 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 2221 } 2222 2223 void getAnalysisUsage(AnalysisUsage &AU) const override { 2224 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2225 AU.addRequired<TargetTransformInfoWrapperPass>(); 2226 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 2227 } 2228 2229 bool runOnModule(Module &M) override; 2230 }; 2231 2232 bool IROutlinerLegacyPass::runOnModule(Module &M) { 2233 if (skipModule(M)) 2234 return false; 2235 2236 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2237 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2238 ORE.reset(new OptimizationRemarkEmitter(&F)); 2239 return *ORE.get(); 2240 }; 2241 2242 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 2243 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2244 }; 2245 2246 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 2247 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 2248 }; 2249 2250 return IROutliner(GTTI, GIRSI, GORE).run(M); 2251 } 2252 2253 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 2254 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2255 2256 std::function<TargetTransformInfo &(Function &)> GTTI = 2257 [&FAM](Function &F) -> TargetTransformInfo & { 2258 return FAM.getResult<TargetIRAnalysis>(F); 2259 }; 2260 2261 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 2262 [&AM](Module &M) -> IRSimilarityIdentifier & { 2263 return AM.getResult<IRSimilarityAnalysis>(M); 2264 }; 2265 2266 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2267 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 2268 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2269 ORE.reset(new OptimizationRemarkEmitter(&F)); 2270 return *ORE.get(); 2271 }; 2272 2273 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 2274 return PreservedAnalyses::none(); 2275 return PreservedAnalyses::all(); 2276 } 2277 2278 char IROutlinerLegacyPass::ID = 0; 2279 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2280 false) 2281 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 2282 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2283 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2284 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2285 false) 2286 2287 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 2288