1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumeBundleQueries.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/Support/Alignment.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/FileSystem.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "attributor"
48 
49 static cl::opt<bool> ManifestInternal(
50     "attributor-manifest-internal", cl::Hidden,
51     cl::desc("Manifest Attributor internal string attributes."),
52     cl::init(false));
53 
54 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
55                                        cl::Hidden);
56 
57 template <>
58 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
59 
60 static cl::opt<unsigned, true> MaxPotentialValues(
61     "attributor-max-potential-values", cl::Hidden,
62     cl::desc("Maximum number of potential values to be "
63              "tracked for each position."),
64     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
65     cl::init(7));
66 
67 STATISTIC(NumAAs, "Number of abstract attributes created");
68 
69 // Some helper macros to deal with statistics tracking.
70 //
71 // Usage:
72 // For simple IR attribute tracking overload trackStatistics in the abstract
73 // attribute and choose the right STATS_DECLTRACK_********* macro,
74 // e.g.,:
75 //  void trackStatistics() const override {
76 //    STATS_DECLTRACK_ARG_ATTR(returned)
77 //  }
78 // If there is a single "increment" side one can use the macro
79 // STATS_DECLTRACK with a custom message. If there are multiple increment
80 // sides, STATS_DECL and STATS_TRACK can also be used separately.
81 //
82 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
83   ("Number of " #TYPE " marked '" #NAME "'")
84 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
85 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
86 #define STATS_DECL(NAME, TYPE, MSG)                                            \
87   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
88 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
89 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
90   {                                                                            \
91     STATS_DECL(NAME, TYPE, MSG)                                                \
92     STATS_TRACK(NAME, TYPE)                                                    \
93   }
94 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
95   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
96 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
97   STATS_DECLTRACK(NAME, CSArguments,                                           \
98                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
99 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
100   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
101 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
102   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
103 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
104   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
105                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
106 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
107   STATS_DECLTRACK(NAME, CSReturn,                                              \
108                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
109 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
110   STATS_DECLTRACK(NAME, Floating,                                              \
111                   ("Number of floating values known to be '" #NAME "'"))
112 
113 // Specialization of the operator<< for abstract attributes subclasses. This
114 // disambiguates situations where multiple operators are applicable.
115 namespace llvm {
116 #define PIPE_OPERATOR(CLASS)                                                   \
117   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
118     return OS << static_cast<const AbstractAttribute &>(AA);                   \
119   }
120 
121 PIPE_OPERATOR(AAIsDead)
122 PIPE_OPERATOR(AANoUnwind)
123 PIPE_OPERATOR(AANoSync)
124 PIPE_OPERATOR(AANoRecurse)
125 PIPE_OPERATOR(AAWillReturn)
126 PIPE_OPERATOR(AANoReturn)
127 PIPE_OPERATOR(AAReturnedValues)
128 PIPE_OPERATOR(AANonNull)
129 PIPE_OPERATOR(AANoAlias)
130 PIPE_OPERATOR(AADereferenceable)
131 PIPE_OPERATOR(AAAlign)
132 PIPE_OPERATOR(AANoCapture)
133 PIPE_OPERATOR(AAValueSimplify)
134 PIPE_OPERATOR(AANoFree)
135 PIPE_OPERATOR(AAHeapToStack)
136 PIPE_OPERATOR(AAReachability)
137 PIPE_OPERATOR(AAMemoryBehavior)
138 PIPE_OPERATOR(AAMemoryLocation)
139 PIPE_OPERATOR(AAValueConstantRange)
140 PIPE_OPERATOR(AAPrivatizablePtr)
141 PIPE_OPERATOR(AAUndefinedBehavior)
142 PIPE_OPERATOR(AAPotentialValues)
143 PIPE_OPERATOR(AANoUndef)
144 PIPE_OPERATOR(AACallEdges)
145 PIPE_OPERATOR(AAFunctionReachability)
146 PIPE_OPERATOR(AAPointerInfo)
147 
148 #undef PIPE_OPERATOR
149 } // namespace llvm
150 
151 /// Get pointer operand of memory accessing instruction. If \p I is
152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
153 /// is set to false and the instruction is volatile, return nullptr.
154 static const Value *getPointerOperand(const Instruction *I,
155                                       bool AllowVolatile) {
156   if (!AllowVolatile && I->isVolatile())
157     return nullptr;
158 
159   if (auto *LI = dyn_cast<LoadInst>(I)) {
160     return LI->getPointerOperand();
161   }
162 
163   if (auto *SI = dyn_cast<StoreInst>(I)) {
164     return SI->getPointerOperand();
165   }
166 
167   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
168     return CXI->getPointerOperand();
169   }
170 
171   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
172     return RMWI->getPointerOperand();
173   }
174 
175   return nullptr;
176 }
177 
178 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
179 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
180 /// getelement pointer instructions that traverse the natural type of \p Ptr if
181 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
182 /// through a cast to i8*.
183 ///
184 /// TODO: This could probably live somewhere more prominantly if it doesn't
185 ///       already exist.
186 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
187                                int64_t Offset, IRBuilder<NoFolder> &IRB,
188                                const DataLayout &DL) {
189   assert(Offset >= 0 && "Negative offset not supported yet!");
190   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
191                     << "-bytes as " << *ResTy << "\n");
192 
193   if (Offset) {
194     SmallVector<Value *, 4> Indices;
195     std::string GEPName = Ptr->getName().str() + ".0";
196 
197     // Add 0 index to look through the pointer.
198     assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) &&
199            "Offset out of bounds");
200     Indices.push_back(Constant::getNullValue(IRB.getInt32Ty()));
201 
202     Type *Ty = PtrElemTy;
203     do {
204       auto *STy = dyn_cast<StructType>(Ty);
205       if (!STy)
206         // Non-aggregate type, we cast and make byte-wise progress now.
207         break;
208 
209       const StructLayout *SL = DL.getStructLayout(STy);
210       if (int64_t(SL->getSizeInBytes()) < Offset)
211         break;
212 
213       uint64_t Idx = SL->getElementContainingOffset(Offset);
214       assert(Idx < STy->getNumElements() && "Offset calculation error!");
215       uint64_t Rem = Offset - SL->getElementOffset(Idx);
216       Ty = STy->getElementType(Idx);
217 
218       LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
219                         << " Idx: " << Idx << " Rem: " << Rem << "\n");
220 
221       GEPName += "." + std::to_string(Idx);
222       Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
223       Offset = Rem;
224     } while (Offset);
225 
226     // Create a GEP for the indices collected above.
227     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName);
228 
229     // If an offset is left we use byte-wise adjustment.
230     if (Offset) {
231       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
232       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset),
233                           GEPName + ".b" + Twine(Offset));
234     }
235   }
236 
237   // Ensure the result has the requested type.
238   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
239 
240   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
241   return Ptr;
242 }
243 
244 /// Recursively visit all values that might become \p IRP at some point. This
245 /// will be done by looking through cast instructions, selects, phis, and calls
246 /// with the "returned" attribute. Once we cannot look through the value any
247 /// further, the callback \p VisitValueCB is invoked and passed the current
248 /// value, the \p State, and a flag to indicate if we stripped anything.
249 /// Stripped means that we unpacked the value associated with \p IRP at least
250 /// once. Note that the value used for the callback may still be the value
251 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
252 /// we will never visit more values than specified by \p MaxValues.
253 template <typename StateTy>
254 static bool genericValueTraversal(
255     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
256     StateTy &State,
257     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
258         VisitValueCB,
259     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
260     function_ref<Value *(Value *)> StripCB = nullptr) {
261 
262   const AAIsDead *LivenessAA = nullptr;
263   if (IRP.getAnchorScope())
264     LivenessAA = &A.getAAFor<AAIsDead>(
265         QueryingAA,
266         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
267         DepClassTy::NONE);
268   bool AnyDead = false;
269 
270   Value *InitialV = &IRP.getAssociatedValue();
271   using Item = std::pair<Value *, const Instruction *>;
272   SmallSet<Item, 16> Visited;
273   SmallVector<Item, 16> Worklist;
274   Worklist.push_back({InitialV, CtxI});
275 
276   int Iteration = 0;
277   do {
278     Item I = Worklist.pop_back_val();
279     Value *V = I.first;
280     CtxI = I.second;
281     if (StripCB)
282       V = StripCB(V);
283 
284     // Check if we should process the current value. To prevent endless
285     // recursion keep a record of the values we followed!
286     if (!Visited.insert(I).second)
287       continue;
288 
289     // Make sure we limit the compile time for complex expressions.
290     if (Iteration++ >= MaxValues)
291       return false;
292 
293     // Explicitly look through calls with a "returned" attribute if we do
294     // not have a pointer as stripPointerCasts only works on them.
295     Value *NewV = nullptr;
296     if (V->getType()->isPointerTy()) {
297       NewV = V->stripPointerCasts();
298     } else {
299       auto *CB = dyn_cast<CallBase>(V);
300       if (CB && CB->getCalledFunction()) {
301         for (Argument &Arg : CB->getCalledFunction()->args())
302           if (Arg.hasReturnedAttr()) {
303             NewV = CB->getArgOperand(Arg.getArgNo());
304             break;
305           }
306       }
307     }
308     if (NewV && NewV != V) {
309       Worklist.push_back({NewV, CtxI});
310       continue;
311     }
312 
313     // Look through select instructions, visit assumed potential values.
314     if (auto *SI = dyn_cast<SelectInst>(V)) {
315       bool UsedAssumedInformation = false;
316       Optional<Constant *> C = A.getAssumedConstant(
317           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
318       bool NoValueYet = !C.hasValue();
319       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
320         continue;
321       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
322         if (CI->isZero())
323           Worklist.push_back({SI->getFalseValue(), CtxI});
324         else
325           Worklist.push_back({SI->getTrueValue(), CtxI});
326         continue;
327       }
328       // We could not simplify the condition, assume both values.(
329       Worklist.push_back({SI->getTrueValue(), CtxI});
330       Worklist.push_back({SI->getFalseValue(), CtxI});
331       continue;
332     }
333 
334     // Look through phi nodes, visit all live operands.
335     if (auto *PHI = dyn_cast<PHINode>(V)) {
336       assert(LivenessAA &&
337              "Expected liveness in the presence of instructions!");
338       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
339         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
340         bool UsedAssumedInformation = false;
341         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
342                             LivenessAA, UsedAssumedInformation,
343                             /* CheckBBLivenessOnly */ true)) {
344           AnyDead = true;
345           continue;
346         }
347         Worklist.push_back(
348             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
349       }
350       continue;
351     }
352 
353     if (UseValueSimplify && !isa<Constant>(V)) {
354       bool UsedAssumedInformation = false;
355       Optional<Value *> SimpleV =
356           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
357       if (!SimpleV.hasValue())
358         continue;
359       if (!SimpleV.getValue())
360         return false;
361       Value *NewV = SimpleV.getValue();
362       if (NewV != V) {
363         Worklist.push_back({NewV, CtxI});
364         continue;
365       }
366     }
367 
368     // Once a leaf is reached we inform the user through the callback.
369     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
370       return false;
371   } while (!Worklist.empty());
372 
373   // If we actually used liveness information so we have to record a dependence.
374   if (AnyDead)
375     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
376 
377   // All values have been visited.
378   return true;
379 }
380 
381 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
382                                      SmallVectorImpl<Value *> &Objects,
383                                      const AbstractAttribute &QueryingAA,
384                                      const Instruction *CtxI) {
385   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
386   SmallPtrSet<Value *, 8> SeenObjects;
387   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
388                                      SmallVectorImpl<Value *> &Objects,
389                                      bool) -> bool {
390     if (SeenObjects.insert(&Val).second)
391       Objects.push_back(&Val);
392     return true;
393   };
394   if (!genericValueTraversal<decltype(Objects)>(
395           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
396           true, 32, StripCB))
397     return false;
398   return true;
399 }
400 
401 const Value *stripAndAccumulateMinimalOffsets(
402     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
403     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
404     bool UseAssumed = false) {
405 
406   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
407     const IRPosition &Pos = IRPosition::value(V);
408     // Only track dependence if we are going to use the assumed info.
409     const AAValueConstantRange &ValueConstantRangeAA =
410         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
411                                          UseAssumed ? DepClassTy::OPTIONAL
412                                                     : DepClassTy::NONE);
413     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
414                                      : ValueConstantRangeAA.getKnown();
415     // We can only use the lower part of the range because the upper part can
416     // be higher than what the value can really be.
417     ROffset = Range.getSignedMin();
418     return true;
419   };
420 
421   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
422                                                 AttributorAnalysis);
423 }
424 
425 static const Value *getMinimalBaseOfAccsesPointerOperand(
426     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
427     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
428   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
429   if (!Ptr)
430     return nullptr;
431   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
432   const Value *Base = stripAndAccumulateMinimalOffsets(
433       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
434 
435   BytesOffset = OffsetAPInt.getSExtValue();
436   return Base;
437 }
438 
439 static const Value *
440 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
441                                      const DataLayout &DL,
442                                      bool AllowNonInbounds = false) {
443   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
444   if (!Ptr)
445     return nullptr;
446 
447   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
448                                           AllowNonInbounds);
449 }
450 
451 /// Helper function to clamp a state \p S of type \p StateType with the
452 /// information in \p R and indicate/return if \p S did change (as-in update is
453 /// required to be run again).
454 template <typename StateType>
455 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
456   auto Assumed = S.getAssumed();
457   S ^= R;
458   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
459                                    : ChangeStatus::CHANGED;
460 }
461 
462 /// Clamp the information known for all returned values of a function
463 /// (identified by \p QueryingAA) into \p S.
464 template <typename AAType, typename StateType = typename AAType::StateType>
465 static void clampReturnedValueStates(
466     Attributor &A, const AAType &QueryingAA, StateType &S,
467     const IRPosition::CallBaseContext *CBContext = nullptr) {
468   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
469                     << QueryingAA << " into " << S << "\n");
470 
471   assert((QueryingAA.getIRPosition().getPositionKind() ==
472               IRPosition::IRP_RETURNED ||
473           QueryingAA.getIRPosition().getPositionKind() ==
474               IRPosition::IRP_CALL_SITE_RETURNED) &&
475          "Can only clamp returned value states for a function returned or call "
476          "site returned position!");
477 
478   // Use an optional state as there might not be any return values and we want
479   // to join (IntegerState::operator&) the state of all there are.
480   Optional<StateType> T;
481 
482   // Callback for each possibly returned value.
483   auto CheckReturnValue = [&](Value &RV) -> bool {
484     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
485     const AAType &AA =
486         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
487     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
488                       << " @ " << RVPos << "\n");
489     const StateType &AAS = AA.getState();
490     if (T.hasValue())
491       *T &= AAS;
492     else
493       T = AAS;
494     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
495                       << "\n");
496     return T->isValidState();
497   };
498 
499   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
500     S.indicatePessimisticFixpoint();
501   else if (T.hasValue())
502     S ^= *T;
503 }
504 
505 /// Helper class for generic deduction: return value -> returned position.
506 template <typename AAType, typename BaseType,
507           typename StateType = typename BaseType::StateType,
508           bool PropagateCallBaseContext = false>
509 struct AAReturnedFromReturnedValues : public BaseType {
510   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
511       : BaseType(IRP, A) {}
512 
513   /// See AbstractAttribute::updateImpl(...).
514   ChangeStatus updateImpl(Attributor &A) override {
515     StateType S(StateType::getBestState(this->getState()));
516     clampReturnedValueStates<AAType, StateType>(
517         A, *this, S,
518         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
519     // TODO: If we know we visited all returned values, thus no are assumed
520     // dead, we can take the known information from the state T.
521     return clampStateAndIndicateChange<StateType>(this->getState(), S);
522   }
523 };
524 
525 /// Clamp the information known at all call sites for a given argument
526 /// (identified by \p QueryingAA) into \p S.
527 template <typename AAType, typename StateType = typename AAType::StateType>
528 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
529                                         StateType &S) {
530   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
531                     << QueryingAA << " into " << S << "\n");
532 
533   assert(QueryingAA.getIRPosition().getPositionKind() ==
534              IRPosition::IRP_ARGUMENT &&
535          "Can only clamp call site argument states for an argument position!");
536 
537   // Use an optional state as there might not be any return values and we want
538   // to join (IntegerState::operator&) the state of all there are.
539   Optional<StateType> T;
540 
541   // The argument number which is also the call site argument number.
542   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
543 
544   auto CallSiteCheck = [&](AbstractCallSite ACS) {
545     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
546     // Check if a coresponding argument was found or if it is on not associated
547     // (which can happen for callback calls).
548     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
549       return false;
550 
551     const AAType &AA =
552         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
553     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
554                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
555     const StateType &AAS = AA.getState();
556     if (T.hasValue())
557       *T &= AAS;
558     else
559       T = AAS;
560     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
561                       << "\n");
562     return T->isValidState();
563   };
564 
565   bool AllCallSitesKnown;
566   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
567                               AllCallSitesKnown))
568     S.indicatePessimisticFixpoint();
569   else if (T.hasValue())
570     S ^= *T;
571 }
572 
573 /// This function is the bridge between argument position and the call base
574 /// context.
575 template <typename AAType, typename BaseType,
576           typename StateType = typename AAType::StateType>
577 bool getArgumentStateFromCallBaseContext(Attributor &A,
578                                          BaseType &QueryingAttribute,
579                                          IRPosition &Pos, StateType &State) {
580   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
581          "Expected an 'argument' position !");
582   const CallBase *CBContext = Pos.getCallBaseContext();
583   if (!CBContext)
584     return false;
585 
586   int ArgNo = Pos.getCallSiteArgNo();
587   assert(ArgNo >= 0 && "Invalid Arg No!");
588 
589   const auto &AA = A.getAAFor<AAType>(
590       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
591       DepClassTy::REQUIRED);
592   const StateType &CBArgumentState =
593       static_cast<const StateType &>(AA.getState());
594 
595   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
596                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
597                     << "\n");
598 
599   // NOTE: If we want to do call site grouping it should happen here.
600   State ^= CBArgumentState;
601   return true;
602 }
603 
604 /// Helper class for generic deduction: call site argument -> argument position.
605 template <typename AAType, typename BaseType,
606           typename StateType = typename AAType::StateType,
607           bool BridgeCallBaseContext = false>
608 struct AAArgumentFromCallSiteArguments : public BaseType {
609   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
610       : BaseType(IRP, A) {}
611 
612   /// See AbstractAttribute::updateImpl(...).
613   ChangeStatus updateImpl(Attributor &A) override {
614     StateType S = StateType::getBestState(this->getState());
615 
616     if (BridgeCallBaseContext) {
617       bool Success =
618           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
619               A, *this, this->getIRPosition(), S);
620       if (Success)
621         return clampStateAndIndicateChange<StateType>(this->getState(), S);
622     }
623     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
624 
625     // TODO: If we know we visited all incoming values, thus no are assumed
626     // dead, we can take the known information from the state T.
627     return clampStateAndIndicateChange<StateType>(this->getState(), S);
628   }
629 };
630 
631 /// Helper class for generic replication: function returned -> cs returned.
632 template <typename AAType, typename BaseType,
633           typename StateType = typename BaseType::StateType,
634           bool IntroduceCallBaseContext = false>
635 struct AACallSiteReturnedFromReturned : public BaseType {
636   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
637       : BaseType(IRP, A) {}
638 
639   /// See AbstractAttribute::updateImpl(...).
640   ChangeStatus updateImpl(Attributor &A) override {
641     assert(this->getIRPosition().getPositionKind() ==
642                IRPosition::IRP_CALL_SITE_RETURNED &&
643            "Can only wrap function returned positions for call site returned "
644            "positions!");
645     auto &S = this->getState();
646 
647     const Function *AssociatedFunction =
648         this->getIRPosition().getAssociatedFunction();
649     if (!AssociatedFunction)
650       return S.indicatePessimisticFixpoint();
651 
652     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
653     if (IntroduceCallBaseContext)
654       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
655                         << CBContext << "\n");
656 
657     IRPosition FnPos = IRPosition::returned(
658         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
659     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
660     return clampStateAndIndicateChange(S, AA.getState());
661   }
662 };
663 
664 /// Helper function to accumulate uses.
665 template <class AAType, typename StateType = typename AAType::StateType>
666 static void followUsesInContext(AAType &AA, Attributor &A,
667                                 MustBeExecutedContextExplorer &Explorer,
668                                 const Instruction *CtxI,
669                                 SetVector<const Use *> &Uses,
670                                 StateType &State) {
671   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
672   for (unsigned u = 0; u < Uses.size(); ++u) {
673     const Use *U = Uses[u];
674     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
675       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
676       if (Found && AA.followUseInMBEC(A, U, UserI, State))
677         for (const Use &Us : UserI->uses())
678           Uses.insert(&Us);
679     }
680   }
681 }
682 
683 /// Use the must-be-executed-context around \p I to add information into \p S.
684 /// The AAType class is required to have `followUseInMBEC` method with the
685 /// following signature and behaviour:
686 ///
687 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
688 /// U - Underlying use.
689 /// I - The user of the \p U.
690 /// Returns true if the value should be tracked transitively.
691 ///
692 template <class AAType, typename StateType = typename AAType::StateType>
693 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
694                              Instruction &CtxI) {
695 
696   // Container for (transitive) uses of the associated value.
697   SetVector<const Use *> Uses;
698   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
699     Uses.insert(&U);
700 
701   MustBeExecutedContextExplorer &Explorer =
702       A.getInfoCache().getMustBeExecutedContextExplorer();
703 
704   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
705 
706   if (S.isAtFixpoint())
707     return;
708 
709   SmallVector<const BranchInst *, 4> BrInsts;
710   auto Pred = [&](const Instruction *I) {
711     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
712       if (Br->isConditional())
713         BrInsts.push_back(Br);
714     return true;
715   };
716 
717   // Here, accumulate conditional branch instructions in the context. We
718   // explore the child paths and collect the known states. The disjunction of
719   // those states can be merged to its own state. Let ParentState_i be a state
720   // to indicate the known information for an i-th branch instruction in the
721   // context. ChildStates are created for its successors respectively.
722   //
723   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
724   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
725   //      ...
726   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
727   //
728   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
729   //
730   // FIXME: Currently, recursive branches are not handled. For example, we
731   // can't deduce that ptr must be dereferenced in below function.
732   //
733   // void f(int a, int c, int *ptr) {
734   //    if(a)
735   //      if (b) {
736   //        *ptr = 0;
737   //      } else {
738   //        *ptr = 1;
739   //      }
740   //    else {
741   //      if (b) {
742   //        *ptr = 0;
743   //      } else {
744   //        *ptr = 1;
745   //      }
746   //    }
747   // }
748 
749   Explorer.checkForAllContext(&CtxI, Pred);
750   for (const BranchInst *Br : BrInsts) {
751     StateType ParentState;
752 
753     // The known state of the parent state is a conjunction of children's
754     // known states so it is initialized with a best state.
755     ParentState.indicateOptimisticFixpoint();
756 
757     for (const BasicBlock *BB : Br->successors()) {
758       StateType ChildState;
759 
760       size_t BeforeSize = Uses.size();
761       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
762 
763       // Erase uses which only appear in the child.
764       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
765         It = Uses.erase(It);
766 
767       ParentState &= ChildState;
768     }
769 
770     // Use only known state.
771     S += ParentState;
772   }
773 }
774 
775 /// ------------------------ PointerInfo ---------------------------------------
776 
777 namespace llvm {
778 namespace AA {
779 namespace PointerInfo {
780 
781 /// An access kind description as used by AAPointerInfo.
782 struct OffsetAndSize;
783 
784 struct State;
785 
786 } // namespace PointerInfo
787 } // namespace AA
788 
789 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
790 template <>
791 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
792   using Access = AAPointerInfo::Access;
793   static inline Access getEmptyKey();
794   static inline Access getTombstoneKey();
795   static unsigned getHashValue(const Access &A);
796   static bool isEqual(const Access &LHS, const Access &RHS);
797 };
798 
799 /// Helper that allows OffsetAndSize as a key in a DenseMap.
800 template <>
801 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
802     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
803 
804 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
805 /// but the instruction
806 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
807   using Base = DenseMapInfo<Instruction *>;
808   using Access = AAPointerInfo::Access;
809   static inline Access getEmptyKey();
810   static inline Access getTombstoneKey();
811   static unsigned getHashValue(const Access &A);
812   static bool isEqual(const Access &LHS, const Access &RHS);
813 };
814 
815 } // namespace llvm
816 
817 /// Helper to represent an access offset and size, with logic to deal with
818 /// uncertainty and check for overlapping accesses.
819 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
820   using BaseTy = std::pair<int64_t, int64_t>;
821   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
822   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
823   int64_t getOffset() const { return first; }
824   int64_t getSize() const { return second; }
825   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
826 
827   /// Return true if this offset and size pair might describe an address that
828   /// overlaps with \p OAS.
829   bool mayOverlap(const OffsetAndSize &OAS) const {
830     // Any unknown value and we are giving up -> overlap.
831     if (OAS.getOffset() == OffsetAndSize::Unknown ||
832         OAS.getSize() == OffsetAndSize::Unknown ||
833         getOffset() == OffsetAndSize::Unknown ||
834         getSize() == OffsetAndSize::Unknown)
835       return true;
836 
837     // Check if one offset point is in the other interval [offset, offset+size].
838     return OAS.getOffset() + OAS.getSize() > getOffset() &&
839            OAS.getOffset() < getOffset() + getSize();
840   }
841 
842   /// Constant used to represent unknown offset or sizes.
843   static constexpr int64_t Unknown = 1 << 31;
844 };
845 
846 /// Implementation of the DenseMapInfo.
847 ///
848 ///{
849 inline llvm::AccessAsInstructionInfo::Access
850 llvm::AccessAsInstructionInfo::getEmptyKey() {
851   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
852 }
853 inline llvm::AccessAsInstructionInfo::Access
854 llvm::AccessAsInstructionInfo::getTombstoneKey() {
855   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
856                 nullptr);
857 }
858 unsigned llvm::AccessAsInstructionInfo::getHashValue(
859     const llvm::AccessAsInstructionInfo::Access &A) {
860   return Base::getHashValue(A.getRemoteInst());
861 }
862 bool llvm::AccessAsInstructionInfo::isEqual(
863     const llvm::AccessAsInstructionInfo::Access &LHS,
864     const llvm::AccessAsInstructionInfo::Access &RHS) {
865   return LHS.getRemoteInst() == RHS.getRemoteInst();
866 }
867 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
868 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
869   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
870                                nullptr);
871 }
872 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
873 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
874   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
875                                nullptr);
876 }
877 
878 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
879     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
880   return detail::combineHashValue(
881              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
882              (A.isWrittenValueYetUndetermined()
883                   ? ~0
884                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
885          A.getKind();
886 }
887 
888 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
889     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
890     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
891   return LHS == RHS;
892 }
893 ///}
894 
895 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
896 struct AA::PointerInfo::State : public AbstractState {
897 
898   /// Return the best possible representable state.
899   static State getBestState(const State &SIS) { return State(); }
900 
901   /// Return the worst possible representable state.
902   static State getWorstState(const State &SIS) {
903     State R;
904     R.indicatePessimisticFixpoint();
905     return R;
906   }
907 
908   State() {}
909   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
910   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
911 
912   const State &getAssumed() const { return *this; }
913 
914   /// See AbstractState::isValidState().
915   bool isValidState() const override { return BS.isValidState(); }
916 
917   /// See AbstractState::isAtFixpoint().
918   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
919 
920   /// See AbstractState::indicateOptimisticFixpoint().
921   ChangeStatus indicateOptimisticFixpoint() override {
922     BS.indicateOptimisticFixpoint();
923     return ChangeStatus::UNCHANGED;
924   }
925 
926   /// See AbstractState::indicatePessimisticFixpoint().
927   ChangeStatus indicatePessimisticFixpoint() override {
928     BS.indicatePessimisticFixpoint();
929     return ChangeStatus::CHANGED;
930   }
931 
932   State &operator=(const State &R) {
933     if (this == &R)
934       return *this;
935     BS = R.BS;
936     AccessBins = R.AccessBins;
937     return *this;
938   }
939 
940   State &operator=(State &&R) {
941     if (this == &R)
942       return *this;
943     std::swap(BS, R.BS);
944     std::swap(AccessBins, R.AccessBins);
945     return *this;
946   }
947 
948   bool operator==(const State &R) const {
949     if (BS != R.BS)
950       return false;
951     if (AccessBins.size() != R.AccessBins.size())
952       return false;
953     auto It = begin(), RIt = R.begin(), E = end();
954     while (It != E) {
955       if (It->getFirst() != RIt->getFirst())
956         return false;
957       auto &Accs = It->getSecond();
958       auto &RAccs = RIt->getSecond();
959       if (Accs.size() != RAccs.size())
960         return false;
961       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
962       while (AccIt != AccE) {
963         if (*AccIt != *RAccIt)
964           return false;
965         ++AccIt;
966         ++RAccIt;
967       }
968       ++It;
969       ++RIt;
970     }
971     return true;
972   }
973   bool operator!=(const State &R) const { return !(*this == R); }
974 
975   /// We store accesses in a set with the instruction as key.
976   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
977 
978   /// We store all accesses in bins denoted by their offset and size.
979   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
980 
981   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
982   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
983 
984 protected:
985   /// The bins with all the accesses for the associated pointer.
986   DenseMap<OffsetAndSize, Accesses> AccessBins;
987 
988   /// Add a new access to the state at offset \p Offset and with size \p Size.
989   /// The access is associated with \p I, writes \p Content (if anything), and
990   /// is of kind \p Kind.
991   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
992   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
993                          Optional<Value *> Content,
994                          AAPointerInfo::AccessKind Kind, Type *Ty,
995                          Instruction *RemoteI = nullptr,
996                          Accesses *BinPtr = nullptr) {
997     OffsetAndSize Key{Offset, Size};
998     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
999     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1000     // Check if we have an access for this instruction in this bin, if not,
1001     // simply add it.
1002     auto It = Bin.find(Acc);
1003     if (It == Bin.end()) {
1004       Bin.insert(Acc);
1005       return ChangeStatus::CHANGED;
1006     }
1007     // If the existing access is the same as then new one, nothing changed.
1008     AAPointerInfo::Access Before = *It;
1009     // The new one will be combined with the existing one.
1010     *It &= Acc;
1011     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1012   }
1013 
1014   /// See AAPointerInfo::forallInterferingAccesses.
1015   bool forallInterferingAccesses(
1016       Instruction &I,
1017       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1018     if (!isValidState())
1019       return false;
1020     // First find the offset and size of I.
1021     OffsetAndSize OAS(-1, -1);
1022     for (auto &It : AccessBins) {
1023       for (auto &Access : It.getSecond()) {
1024         if (Access.getRemoteInst() == &I) {
1025           OAS = It.getFirst();
1026           break;
1027         }
1028       }
1029       if (OAS.getSize() != -1)
1030         break;
1031     }
1032     if (OAS.getSize() == -1)
1033       return true;
1034 
1035     // Now that we have an offset and size, find all overlapping ones and use
1036     // the callback on the accesses.
1037     for (auto &It : AccessBins) {
1038       OffsetAndSize ItOAS = It.getFirst();
1039       if (!OAS.mayOverlap(ItOAS))
1040         continue;
1041       for (auto &Access : It.getSecond())
1042         if (!CB(Access, OAS == ItOAS))
1043           return false;
1044     }
1045     return true;
1046   }
1047 
1048 private:
1049   /// State to track fixpoint and validity.
1050   BooleanState BS;
1051 };
1052 
1053 struct AAPointerInfoImpl
1054     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1055   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1056   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1057 
1058   /// See AbstractAttribute::initialize(...).
1059   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1060 
1061   /// See AbstractAttribute::getAsStr().
1062   const std::string getAsStr() const override {
1063     return std::string("PointerInfo ") +
1064            (isValidState() ? (std::string("#") +
1065                               std::to_string(AccessBins.size()) + " bins")
1066                            : "<invalid>");
1067   }
1068 
1069   /// See AbstractAttribute::manifest(...).
1070   ChangeStatus manifest(Attributor &A) override {
1071     return AAPointerInfo::manifest(A);
1072   }
1073 
1074   bool forallInterferingAccesses(
1075       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1076       const override {
1077     return State::forallInterferingAccesses(LI, CB);
1078   }
1079   bool forallInterferingAccesses(
1080       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1081       const override {
1082     return State::forallInterferingAccesses(SI, CB);
1083   }
1084 
1085   ChangeStatus translateAndAddCalleeState(Attributor &A,
1086                                           const AAPointerInfo &CalleeAA,
1087                                           int64_t CallArgOffset, CallBase &CB) {
1088     using namespace AA::PointerInfo;
1089     if (!CalleeAA.getState().isValidState() || !isValidState())
1090       return indicatePessimisticFixpoint();
1091 
1092     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1093     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1094 
1095     // Combine the accesses bin by bin.
1096     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1097     for (auto &It : CalleeImplAA.getState()) {
1098       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1099       if (CallArgOffset != OffsetAndSize::Unknown)
1100         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1101                             It.first.getSize());
1102       Accesses &Bin = AccessBins[OAS];
1103       for (const AAPointerInfo::Access &RAcc : It.second) {
1104         if (IsByval && !RAcc.isRead())
1105           continue;
1106         bool UsedAssumedInformation = false;
1107         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1108             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1109         AccessKind AK =
1110             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1111                                                  : AccessKind::AK_READ_WRITE));
1112         Changed =
1113             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1114                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1115       }
1116     }
1117     return Changed;
1118   }
1119 
1120   /// Statistic tracking for all AAPointerInfo implementations.
1121   /// See AbstractAttribute::trackStatistics().
1122   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1123 };
1124 
1125 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1126   using AccessKind = AAPointerInfo::AccessKind;
1127   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1128       : AAPointerInfoImpl(IRP, A) {}
1129 
1130   /// See AbstractAttribute::initialize(...).
1131   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1132 
1133   /// Deal with an access and signal if it was handled successfully.
1134   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1135                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1136                     ChangeStatus &Changed, Type *Ty,
1137                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1138     using namespace AA::PointerInfo;
1139     // No need to find a size if one is given or the offset is unknown.
1140     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1141         Ty) {
1142       const DataLayout &DL = A.getDataLayout();
1143       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1144       if (!AccessSize.isScalable())
1145         Size = AccessSize.getFixedSize();
1146     }
1147     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1148     return true;
1149   };
1150 
1151   /// See AbstractAttribute::updateImpl(...).
1152   ChangeStatus updateImpl(Attributor &A) override {
1153     using namespace AA::PointerInfo;
1154     State S = getState();
1155     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1156     Value &AssociatedValue = getAssociatedValue();
1157     struct OffsetInfo {
1158       int64_t Offset = 0;
1159     };
1160 
1161     const DataLayout &DL = A.getDataLayout();
1162     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1163     OffsetInfoMap[&AssociatedValue] = {};
1164 
1165     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1166                                      bool &Follow) {
1167       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1168       UsrOI = PtrOI;
1169       Follow = true;
1170       return true;
1171     };
1172 
1173     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1174       Value *CurPtr = U.get();
1175       User *Usr = U.getUser();
1176       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1177                         << *Usr << "\n");
1178 
1179       OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1180 
1181       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1182         if (CE->isCast())
1183           return HandlePassthroughUser(Usr, PtrOI, Follow);
1184         if (CE->isCompare())
1185           return true;
1186         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1187           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1188                             << "\n");
1189           return false;
1190         }
1191       }
1192       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1193         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1194         UsrOI = PtrOI;
1195 
1196         // TODO: Use range information.
1197         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1198             !GEP->hasAllConstantIndices()) {
1199           UsrOI.Offset = OffsetAndSize::Unknown;
1200           Follow = true;
1201           return true;
1202         }
1203 
1204         SmallVector<Value *, 8> Indices;
1205         for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) {
1206           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1207             Indices.push_back(CIdx);
1208             continue;
1209           }
1210 
1211           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1212                             << " : " << *Idx << "\n");
1213           return false;
1214         }
1215         UsrOI.Offset = PtrOI.Offset +
1216                        DL.getIndexedOffsetInType(
1217                            CurPtr->getType()->getPointerElementType(), Indices);
1218         Follow = true;
1219         return true;
1220       }
1221       if (isa<CastInst>(Usr) || isa<PHINode>(Usr) || isa<SelectInst>(Usr))
1222         return HandlePassthroughUser(Usr, PtrOI, Follow);
1223       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1224         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1225                             AccessKind::AK_READ, PtrOI.Offset, Changed,
1226                             LoadI->getType());
1227       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1228         if (StoreI->getValueOperand() == CurPtr) {
1229           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1230                             << *StoreI << "\n");
1231           return false;
1232         }
1233         bool UsedAssumedInformation = false;
1234         Optional<Value *> Content = A.getAssumedSimplified(
1235             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1236         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1237                             PtrOI.Offset, Changed,
1238                             StoreI->getValueOperand()->getType());
1239       }
1240       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1241         if (CB->isLifetimeStartOrEnd())
1242           return true;
1243         if (CB->isArgOperand(&U)) {
1244           unsigned ArgNo = CB->getArgOperandNo(&U);
1245           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1246               *this, IRPosition::callsite_argument(*CB, ArgNo),
1247               DepClassTy::REQUIRED);
1248           Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) |
1249                     Changed;
1250           return true;
1251         }
1252         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1253                           << "\n");
1254         // TODO: Allow some call uses
1255         return false;
1256       }
1257 
1258       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1259       return false;
1260     };
1261     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1262                            /* CheckBBLivenessOnly */ true))
1263       return indicatePessimisticFixpoint();
1264 
1265     LLVM_DEBUG({
1266       dbgs() << "Accesses by bin after update:\n";
1267       for (auto &It : AccessBins) {
1268         dbgs() << "[" << It.first.getOffset() << "-"
1269                << It.first.getOffset() + It.first.getSize()
1270                << "] : " << It.getSecond().size() << "\n";
1271         for (auto &Acc : It.getSecond()) {
1272           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1273                  << "\n";
1274           if (Acc.getLocalInst() != Acc.getRemoteInst())
1275             dbgs() << "     -->                         "
1276                    << *Acc.getRemoteInst() << "\n";
1277           if (!Acc.isWrittenValueYetUndetermined())
1278             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1279         }
1280       }
1281     });
1282 
1283     return Changed;
1284   }
1285 
1286   /// See AbstractAttribute::trackStatistics()
1287   void trackStatistics() const override {
1288     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1289   }
1290 };
1291 
1292 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1293   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1294       : AAPointerInfoImpl(IRP, A) {}
1295 
1296   /// See AbstractAttribute::updateImpl(...).
1297   ChangeStatus updateImpl(Attributor &A) override {
1298     return indicatePessimisticFixpoint();
1299   }
1300 
1301   /// See AbstractAttribute::trackStatistics()
1302   void trackStatistics() const override {
1303     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1304   }
1305 };
1306 
1307 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1308   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1309       : AAPointerInfoFloating(IRP, A) {}
1310 
1311   /// See AbstractAttribute::initialize(...).
1312   void initialize(Attributor &A) override {
1313     AAPointerInfoFloating::initialize(A);
1314     if (getAnchorScope()->isDeclaration())
1315       indicatePessimisticFixpoint();
1316   }
1317 
1318   /// See AbstractAttribute::trackStatistics()
1319   void trackStatistics() const override {
1320     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1321   }
1322 };
1323 
1324 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1325   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1326       : AAPointerInfoFloating(IRP, A) {}
1327 
1328   /// See AbstractAttribute::updateImpl(...).
1329   ChangeStatus updateImpl(Attributor &A) override {
1330     using namespace AA::PointerInfo;
1331     // We handle memory intrinsics explicitly, at least the first (=
1332     // destination) and second (=source) arguments as we know how they are
1333     // accessed.
1334     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1335       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1336       int64_t LengthVal = OffsetAndSize::Unknown;
1337       if (Length)
1338         LengthVal = Length->getSExtValue();
1339       Value &Ptr = getAssociatedValue();
1340       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1341       ChangeStatus Changed;
1342       if (ArgNo == 0) {
1343         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1344                      nullptr, LengthVal);
1345       } else if (ArgNo == 1) {
1346         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1347                      nullptr, LengthVal);
1348       } else {
1349         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1350                           << *MI << "\n");
1351         return indicatePessimisticFixpoint();
1352       }
1353       return Changed;
1354     }
1355 
1356     // TODO: Once we have call site specific value information we can provide
1357     //       call site specific liveness information and then it makes
1358     //       sense to specialize attributes for call sites arguments instead of
1359     //       redirecting requests to the callee argument.
1360     Argument *Arg = getAssociatedArgument();
1361     if (!Arg)
1362       return indicatePessimisticFixpoint();
1363     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1364     auto &ArgAA =
1365         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1366     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1367   }
1368 
1369   /// See AbstractAttribute::trackStatistics()
1370   void trackStatistics() const override {
1371     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1372   }
1373 };
1374 
1375 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1376   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1377       : AAPointerInfoFloating(IRP, A) {}
1378 
1379   /// See AbstractAttribute::trackStatistics()
1380   void trackStatistics() const override {
1381     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1382   }
1383 };
1384 
1385 /// -----------------------NoUnwind Function Attribute--------------------------
1386 
1387 struct AANoUnwindImpl : AANoUnwind {
1388   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1389 
1390   const std::string getAsStr() const override {
1391     return getAssumed() ? "nounwind" : "may-unwind";
1392   }
1393 
1394   /// See AbstractAttribute::updateImpl(...).
1395   ChangeStatus updateImpl(Attributor &A) override {
1396     auto Opcodes = {
1397         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1398         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1399         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1400 
1401     auto CheckForNoUnwind = [&](Instruction &I) {
1402       if (!I.mayThrow())
1403         return true;
1404 
1405       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1406         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1407             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1408         return NoUnwindAA.isAssumedNoUnwind();
1409       }
1410       return false;
1411     };
1412 
1413     bool UsedAssumedInformation = false;
1414     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1415                                    UsedAssumedInformation))
1416       return indicatePessimisticFixpoint();
1417 
1418     return ChangeStatus::UNCHANGED;
1419   }
1420 };
1421 
1422 struct AANoUnwindFunction final : public AANoUnwindImpl {
1423   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1424       : AANoUnwindImpl(IRP, A) {}
1425 
1426   /// See AbstractAttribute::trackStatistics()
1427   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1428 };
1429 
1430 /// NoUnwind attribute deduction for a call sites.
1431 struct AANoUnwindCallSite final : AANoUnwindImpl {
1432   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1433       : AANoUnwindImpl(IRP, A) {}
1434 
1435   /// See AbstractAttribute::initialize(...).
1436   void initialize(Attributor &A) override {
1437     AANoUnwindImpl::initialize(A);
1438     Function *F = getAssociatedFunction();
1439     if (!F || F->isDeclaration())
1440       indicatePessimisticFixpoint();
1441   }
1442 
1443   /// See AbstractAttribute::updateImpl(...).
1444   ChangeStatus updateImpl(Attributor &A) override {
1445     // TODO: Once we have call site specific value information we can provide
1446     //       call site specific liveness information and then it makes
1447     //       sense to specialize attributes for call sites arguments instead of
1448     //       redirecting requests to the callee argument.
1449     Function *F = getAssociatedFunction();
1450     const IRPosition &FnPos = IRPosition::function(*F);
1451     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1452     return clampStateAndIndicateChange(getState(), FnAA.getState());
1453   }
1454 
1455   /// See AbstractAttribute::trackStatistics()
1456   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1457 };
1458 
1459 /// --------------------- Function Return Values -------------------------------
1460 
1461 /// "Attribute" that collects all potential returned values and the return
1462 /// instructions that they arise from.
1463 ///
1464 /// If there is a unique returned value R, the manifest method will:
1465 ///   - mark R with the "returned" attribute, if R is an argument.
1466 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1467 
1468   /// Mapping of values potentially returned by the associated function to the
1469   /// return instructions that might return them.
1470   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1471 
1472   /// State flags
1473   ///
1474   ///{
1475   bool IsFixed = false;
1476   bool IsValidState = true;
1477   ///}
1478 
1479 public:
1480   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1481       : AAReturnedValues(IRP, A) {}
1482 
1483   /// See AbstractAttribute::initialize(...).
1484   void initialize(Attributor &A) override {
1485     // Reset the state.
1486     IsFixed = false;
1487     IsValidState = true;
1488     ReturnedValues.clear();
1489 
1490     Function *F = getAssociatedFunction();
1491     if (!F || F->isDeclaration()) {
1492       indicatePessimisticFixpoint();
1493       return;
1494     }
1495     assert(!F->getReturnType()->isVoidTy() &&
1496            "Did not expect a void return type!");
1497 
1498     // The map from instruction opcodes to those instructions in the function.
1499     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1500 
1501     // Look through all arguments, if one is marked as returned we are done.
1502     for (Argument &Arg : F->args()) {
1503       if (Arg.hasReturnedAttr()) {
1504         auto &ReturnInstSet = ReturnedValues[&Arg];
1505         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1506           for (Instruction *RI : *Insts)
1507             ReturnInstSet.insert(cast<ReturnInst>(RI));
1508 
1509         indicateOptimisticFixpoint();
1510         return;
1511       }
1512     }
1513 
1514     if (!A.isFunctionIPOAmendable(*F))
1515       indicatePessimisticFixpoint();
1516   }
1517 
1518   /// See AbstractAttribute::manifest(...).
1519   ChangeStatus manifest(Attributor &A) override;
1520 
1521   /// See AbstractAttribute::getState(...).
1522   AbstractState &getState() override { return *this; }
1523 
1524   /// See AbstractAttribute::getState(...).
1525   const AbstractState &getState() const override { return *this; }
1526 
1527   /// See AbstractAttribute::updateImpl(Attributor &A).
1528   ChangeStatus updateImpl(Attributor &A) override;
1529 
1530   llvm::iterator_range<iterator> returned_values() override {
1531     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1532   }
1533 
1534   llvm::iterator_range<const_iterator> returned_values() const override {
1535     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1536   }
1537 
1538   /// Return the number of potential return values, -1 if unknown.
1539   size_t getNumReturnValues() const override {
1540     return isValidState() ? ReturnedValues.size() : -1;
1541   }
1542 
1543   /// Return an assumed unique return value if a single candidate is found. If
1544   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1545   /// Optional::NoneType.
1546   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1547 
1548   /// See AbstractState::checkForAllReturnedValues(...).
1549   bool checkForAllReturnedValuesAndReturnInsts(
1550       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1551       const override;
1552 
1553   /// Pretty print the attribute similar to the IR representation.
1554   const std::string getAsStr() const override;
1555 
1556   /// See AbstractState::isAtFixpoint().
1557   bool isAtFixpoint() const override { return IsFixed; }
1558 
1559   /// See AbstractState::isValidState().
1560   bool isValidState() const override { return IsValidState; }
1561 
1562   /// See AbstractState::indicateOptimisticFixpoint(...).
1563   ChangeStatus indicateOptimisticFixpoint() override {
1564     IsFixed = true;
1565     return ChangeStatus::UNCHANGED;
1566   }
1567 
1568   ChangeStatus indicatePessimisticFixpoint() override {
1569     IsFixed = true;
1570     IsValidState = false;
1571     return ChangeStatus::CHANGED;
1572   }
1573 };
1574 
1575 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1576   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1577 
1578   // Bookkeeping.
1579   assert(isValidState());
1580   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1581                   "Number of function with known return values");
1582 
1583   // Check if we have an assumed unique return value that we could manifest.
1584   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1585 
1586   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1587     return Changed;
1588 
1589   // Bookkeeping.
1590   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1591                   "Number of function with unique return");
1592   // If the assumed unique return value is an argument, annotate it.
1593   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1594     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1595             getAssociatedFunction()->getReturnType())) {
1596       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1597       Changed = IRAttribute::manifest(A);
1598     }
1599   }
1600   return Changed;
1601 }
1602 
1603 const std::string AAReturnedValuesImpl::getAsStr() const {
1604   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1605          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1606 }
1607 
1608 Optional<Value *>
1609 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1610   // If checkForAllReturnedValues provides a unique value, ignoring potential
1611   // undef values that can also be present, it is assumed to be the actual
1612   // return value and forwarded to the caller of this method. If there are
1613   // multiple, a nullptr is returned indicating there cannot be a unique
1614   // returned value.
1615   Optional<Value *> UniqueRV;
1616   Type *Ty = getAssociatedFunction()->getReturnType();
1617 
1618   auto Pred = [&](Value &RV) -> bool {
1619     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1620     return UniqueRV != Optional<Value *>(nullptr);
1621   };
1622 
1623   if (!A.checkForAllReturnedValues(Pred, *this))
1624     UniqueRV = nullptr;
1625 
1626   return UniqueRV;
1627 }
1628 
1629 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1630     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1631     const {
1632   if (!isValidState())
1633     return false;
1634 
1635   // Check all returned values but ignore call sites as long as we have not
1636   // encountered an overdefined one during an update.
1637   for (auto &It : ReturnedValues) {
1638     Value *RV = It.first;
1639     if (!Pred(*RV, It.second))
1640       return false;
1641   }
1642 
1643   return true;
1644 }
1645 
1646 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1647   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1648 
1649   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1650                            bool) -> bool {
1651     bool UsedAssumedInformation = false;
1652     Optional<Value *> SimpleRetVal =
1653         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1654     if (!SimpleRetVal.hasValue())
1655       return true;
1656     if (!SimpleRetVal.getValue())
1657       return false;
1658     Value *RetVal = *SimpleRetVal;
1659     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1660            "Assumed returned value should be valid in function scope!");
1661     if (ReturnedValues[RetVal].insert(&Ret))
1662       Changed = ChangeStatus::CHANGED;
1663     return true;
1664   };
1665 
1666   auto ReturnInstCB = [&](Instruction &I) {
1667     ReturnInst &Ret = cast<ReturnInst>(I);
1668     return genericValueTraversal<ReturnInst>(
1669         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1670         &I);
1671   };
1672 
1673   // Discover returned values from all live returned instructions in the
1674   // associated function.
1675   bool UsedAssumedInformation = false;
1676   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1677                                  UsedAssumedInformation))
1678     return indicatePessimisticFixpoint();
1679   return Changed;
1680 }
1681 
1682 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1683   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1684       : AAReturnedValuesImpl(IRP, A) {}
1685 
1686   /// See AbstractAttribute::trackStatistics()
1687   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1688 };
1689 
1690 /// Returned values information for a call sites.
1691 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1692   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1693       : AAReturnedValuesImpl(IRP, A) {}
1694 
1695   /// See AbstractAttribute::initialize(...).
1696   void initialize(Attributor &A) override {
1697     // TODO: Once we have call site specific value information we can provide
1698     //       call site specific liveness information and then it makes
1699     //       sense to specialize attributes for call sites instead of
1700     //       redirecting requests to the callee.
1701     llvm_unreachable("Abstract attributes for returned values are not "
1702                      "supported for call sites yet!");
1703   }
1704 
1705   /// See AbstractAttribute::updateImpl(...).
1706   ChangeStatus updateImpl(Attributor &A) override {
1707     return indicatePessimisticFixpoint();
1708   }
1709 
1710   /// See AbstractAttribute::trackStatistics()
1711   void trackStatistics() const override {}
1712 };
1713 
1714 /// ------------------------ NoSync Function Attribute -------------------------
1715 
1716 struct AANoSyncImpl : AANoSync {
1717   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1718 
1719   const std::string getAsStr() const override {
1720     return getAssumed() ? "nosync" : "may-sync";
1721   }
1722 
1723   /// See AbstractAttribute::updateImpl(...).
1724   ChangeStatus updateImpl(Attributor &A) override;
1725 
1726   /// Helper function used to determine whether an instruction is non-relaxed
1727   /// atomic. In other words, if an atomic instruction does not have unordered
1728   /// or monotonic ordering
1729   static bool isNonRelaxedAtomic(Instruction *I);
1730 
1731   /// Helper function specific for intrinsics which are potentially volatile
1732   static bool isNoSyncIntrinsic(Instruction *I);
1733 };
1734 
1735 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1736   if (!I->isAtomic())
1737     return false;
1738 
1739   if (auto *FI = dyn_cast<FenceInst>(I))
1740     // All legal orderings for fence are stronger than monotonic.
1741     return FI->getSyncScopeID() != SyncScope::SingleThread;
1742   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1743     // Unordered is not a legal ordering for cmpxchg.
1744     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1745             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1746   }
1747 
1748   AtomicOrdering Ordering;
1749   switch (I->getOpcode()) {
1750   case Instruction::AtomicRMW:
1751     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1752     break;
1753   case Instruction::Store:
1754     Ordering = cast<StoreInst>(I)->getOrdering();
1755     break;
1756   case Instruction::Load:
1757     Ordering = cast<LoadInst>(I)->getOrdering();
1758     break;
1759   default:
1760     llvm_unreachable(
1761         "New atomic operations need to be known in the attributor.");
1762   }
1763 
1764   return (Ordering != AtomicOrdering::Unordered &&
1765           Ordering != AtomicOrdering::Monotonic);
1766 }
1767 
1768 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1769 /// which would be nosync except that they have a volatile flag.  All other
1770 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1771 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1772   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1773     return !MI->isVolatile();
1774   return false;
1775 }
1776 
1777 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1778 
1779   auto CheckRWInstForNoSync = [&](Instruction &I) {
1780     /// We are looking for volatile instructions or Non-Relaxed atomics.
1781 
1782     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1783       if (CB->hasFnAttr(Attribute::NoSync))
1784         return true;
1785 
1786       if (isNoSyncIntrinsic(&I))
1787         return true;
1788 
1789       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1790           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1791       return NoSyncAA.isAssumedNoSync();
1792     }
1793 
1794     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1795       return true;
1796 
1797     return false;
1798   };
1799 
1800   auto CheckForNoSync = [&](Instruction &I) {
1801     // At this point we handled all read/write effects and they are all
1802     // nosync, so they can be skipped.
1803     if (I.mayReadOrWriteMemory())
1804       return true;
1805 
1806     // non-convergent and readnone imply nosync.
1807     return !cast<CallBase>(I).isConvergent();
1808   };
1809 
1810   bool UsedAssumedInformation = false;
1811   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1812                                           UsedAssumedInformation) ||
1813       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1814                                          UsedAssumedInformation))
1815     return indicatePessimisticFixpoint();
1816 
1817   return ChangeStatus::UNCHANGED;
1818 }
1819 
1820 struct AANoSyncFunction final : public AANoSyncImpl {
1821   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1822       : AANoSyncImpl(IRP, A) {}
1823 
1824   /// See AbstractAttribute::trackStatistics()
1825   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1826 };
1827 
1828 /// NoSync attribute deduction for a call sites.
1829 struct AANoSyncCallSite final : AANoSyncImpl {
1830   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1831       : AANoSyncImpl(IRP, A) {}
1832 
1833   /// See AbstractAttribute::initialize(...).
1834   void initialize(Attributor &A) override {
1835     AANoSyncImpl::initialize(A);
1836     Function *F = getAssociatedFunction();
1837     if (!F || F->isDeclaration())
1838       indicatePessimisticFixpoint();
1839   }
1840 
1841   /// See AbstractAttribute::updateImpl(...).
1842   ChangeStatus updateImpl(Attributor &A) override {
1843     // TODO: Once we have call site specific value information we can provide
1844     //       call site specific liveness information and then it makes
1845     //       sense to specialize attributes for call sites arguments instead of
1846     //       redirecting requests to the callee argument.
1847     Function *F = getAssociatedFunction();
1848     const IRPosition &FnPos = IRPosition::function(*F);
1849     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1850     return clampStateAndIndicateChange(getState(), FnAA.getState());
1851   }
1852 
1853   /// See AbstractAttribute::trackStatistics()
1854   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1855 };
1856 
1857 /// ------------------------ No-Free Attributes ----------------------------
1858 
1859 struct AANoFreeImpl : public AANoFree {
1860   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1861 
1862   /// See AbstractAttribute::updateImpl(...).
1863   ChangeStatus updateImpl(Attributor &A) override {
1864     auto CheckForNoFree = [&](Instruction &I) {
1865       const auto &CB = cast<CallBase>(I);
1866       if (CB.hasFnAttr(Attribute::NoFree))
1867         return true;
1868 
1869       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1870           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1871       return NoFreeAA.isAssumedNoFree();
1872     };
1873 
1874     bool UsedAssumedInformation = false;
1875     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1876                                            UsedAssumedInformation))
1877       return indicatePessimisticFixpoint();
1878     return ChangeStatus::UNCHANGED;
1879   }
1880 
1881   /// See AbstractAttribute::getAsStr().
1882   const std::string getAsStr() const override {
1883     return getAssumed() ? "nofree" : "may-free";
1884   }
1885 };
1886 
1887 struct AANoFreeFunction final : public AANoFreeImpl {
1888   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1889       : AANoFreeImpl(IRP, A) {}
1890 
1891   /// See AbstractAttribute::trackStatistics()
1892   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1893 };
1894 
1895 /// NoFree attribute deduction for a call sites.
1896 struct AANoFreeCallSite final : AANoFreeImpl {
1897   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1898       : AANoFreeImpl(IRP, A) {}
1899 
1900   /// See AbstractAttribute::initialize(...).
1901   void initialize(Attributor &A) override {
1902     AANoFreeImpl::initialize(A);
1903     Function *F = getAssociatedFunction();
1904     if (!F || F->isDeclaration())
1905       indicatePessimisticFixpoint();
1906   }
1907 
1908   /// See AbstractAttribute::updateImpl(...).
1909   ChangeStatus updateImpl(Attributor &A) override {
1910     // TODO: Once we have call site specific value information we can provide
1911     //       call site specific liveness information and then it makes
1912     //       sense to specialize attributes for call sites arguments instead of
1913     //       redirecting requests to the callee argument.
1914     Function *F = getAssociatedFunction();
1915     const IRPosition &FnPos = IRPosition::function(*F);
1916     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1917     return clampStateAndIndicateChange(getState(), FnAA.getState());
1918   }
1919 
1920   /// See AbstractAttribute::trackStatistics()
1921   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1922 };
1923 
1924 /// NoFree attribute for floating values.
1925 struct AANoFreeFloating : AANoFreeImpl {
1926   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1927       : AANoFreeImpl(IRP, A) {}
1928 
1929   /// See AbstractAttribute::trackStatistics()
1930   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1931 
1932   /// See Abstract Attribute::updateImpl(...).
1933   ChangeStatus updateImpl(Attributor &A) override {
1934     const IRPosition &IRP = getIRPosition();
1935 
1936     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1937         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1938     if (NoFreeAA.isAssumedNoFree())
1939       return ChangeStatus::UNCHANGED;
1940 
1941     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1942     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1943       Instruction *UserI = cast<Instruction>(U.getUser());
1944       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1945         if (CB->isBundleOperand(&U))
1946           return false;
1947         if (!CB->isArgOperand(&U))
1948           return true;
1949         unsigned ArgNo = CB->getArgOperandNo(&U);
1950 
1951         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1952             *this, IRPosition::callsite_argument(*CB, ArgNo),
1953             DepClassTy::REQUIRED);
1954         return NoFreeArg.isAssumedNoFree();
1955       }
1956 
1957       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1958           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1959         Follow = true;
1960         return true;
1961       }
1962       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
1963           isa<ReturnInst>(UserI))
1964         return true;
1965 
1966       // Unknown user.
1967       return false;
1968     };
1969     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1970       return indicatePessimisticFixpoint();
1971 
1972     return ChangeStatus::UNCHANGED;
1973   }
1974 };
1975 
1976 /// NoFree attribute for a call site argument.
1977 struct AANoFreeArgument final : AANoFreeFloating {
1978   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1979       : AANoFreeFloating(IRP, A) {}
1980 
1981   /// See AbstractAttribute::trackStatistics()
1982   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1983 };
1984 
1985 /// NoFree attribute for call site arguments.
1986 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1987   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1988       : AANoFreeFloating(IRP, A) {}
1989 
1990   /// See AbstractAttribute::updateImpl(...).
1991   ChangeStatus updateImpl(Attributor &A) override {
1992     // TODO: Once we have call site specific value information we can provide
1993     //       call site specific liveness information and then it makes
1994     //       sense to specialize attributes for call sites arguments instead of
1995     //       redirecting requests to the callee argument.
1996     Argument *Arg = getAssociatedArgument();
1997     if (!Arg)
1998       return indicatePessimisticFixpoint();
1999     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2000     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2001     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2002   }
2003 
2004   /// See AbstractAttribute::trackStatistics()
2005   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2006 };
2007 
2008 /// NoFree attribute for function return value.
2009 struct AANoFreeReturned final : AANoFreeFloating {
2010   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2011       : AANoFreeFloating(IRP, A) {
2012     llvm_unreachable("NoFree is not applicable to function returns!");
2013   }
2014 
2015   /// See AbstractAttribute::initialize(...).
2016   void initialize(Attributor &A) override {
2017     llvm_unreachable("NoFree is not applicable to function returns!");
2018   }
2019 
2020   /// See AbstractAttribute::updateImpl(...).
2021   ChangeStatus updateImpl(Attributor &A) override {
2022     llvm_unreachable("NoFree is not applicable to function returns!");
2023   }
2024 
2025   /// See AbstractAttribute::trackStatistics()
2026   void trackStatistics() const override {}
2027 };
2028 
2029 /// NoFree attribute deduction for a call site return value.
2030 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2031   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2032       : AANoFreeFloating(IRP, A) {}
2033 
2034   ChangeStatus manifest(Attributor &A) override {
2035     return ChangeStatus::UNCHANGED;
2036   }
2037   /// See AbstractAttribute::trackStatistics()
2038   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2039 };
2040 
2041 /// ------------------------ NonNull Argument Attribute ------------------------
2042 static int64_t getKnownNonNullAndDerefBytesForUse(
2043     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2044     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2045   TrackUse = false;
2046 
2047   const Value *UseV = U->get();
2048   if (!UseV->getType()->isPointerTy())
2049     return 0;
2050 
2051   // We need to follow common pointer manipulation uses to the accesses they
2052   // feed into. We can try to be smart to avoid looking through things we do not
2053   // like for now, e.g., non-inbounds GEPs.
2054   if (isa<CastInst>(I)) {
2055     TrackUse = true;
2056     return 0;
2057   }
2058 
2059   if (isa<GetElementPtrInst>(I)) {
2060     TrackUse = true;
2061     return 0;
2062   }
2063 
2064   Type *PtrTy = UseV->getType();
2065   const Function *F = I->getFunction();
2066   bool NullPointerIsDefined =
2067       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2068   const DataLayout &DL = A.getInfoCache().getDL();
2069   if (const auto *CB = dyn_cast<CallBase>(I)) {
2070     if (CB->isBundleOperand(U)) {
2071       if (RetainedKnowledge RK = getKnowledgeFromUse(
2072               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2073         IsNonNull |=
2074             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2075         return RK.ArgValue;
2076       }
2077       return 0;
2078     }
2079 
2080     if (CB->isCallee(U)) {
2081       IsNonNull |= !NullPointerIsDefined;
2082       return 0;
2083     }
2084 
2085     unsigned ArgNo = CB->getArgOperandNo(U);
2086     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2087     // As long as we only use known information there is no need to track
2088     // dependences here.
2089     auto &DerefAA =
2090         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2091     IsNonNull |= DerefAA.isKnownNonNull();
2092     return DerefAA.getKnownDereferenceableBytes();
2093   }
2094 
2095   int64_t Offset;
2096   const Value *Base =
2097       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
2098   if (Base) {
2099     if (Base == &AssociatedValue &&
2100         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2101       int64_t DerefBytes =
2102           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2103 
2104       IsNonNull |= !NullPointerIsDefined;
2105       return std::max(int64_t(0), DerefBytes);
2106     }
2107   }
2108 
2109   /// Corner case when an offset is 0.
2110   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2111                                               /*AllowNonInbounds*/ true);
2112   if (Base) {
2113     if (Offset == 0 && Base == &AssociatedValue &&
2114         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2115       int64_t DerefBytes =
2116           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2117       IsNonNull |= !NullPointerIsDefined;
2118       return std::max(int64_t(0), DerefBytes);
2119     }
2120   }
2121 
2122   return 0;
2123 }
2124 
2125 struct AANonNullImpl : AANonNull {
2126   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2127       : AANonNull(IRP, A),
2128         NullIsDefined(NullPointerIsDefined(
2129             getAnchorScope(),
2130             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2131 
2132   /// See AbstractAttribute::initialize(...).
2133   void initialize(Attributor &A) override {
2134     Value &V = getAssociatedValue();
2135     if (!NullIsDefined &&
2136         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2137                 /* IgnoreSubsumingPositions */ false, &A)) {
2138       indicateOptimisticFixpoint();
2139       return;
2140     }
2141 
2142     if (isa<ConstantPointerNull>(V)) {
2143       indicatePessimisticFixpoint();
2144       return;
2145     }
2146 
2147     AANonNull::initialize(A);
2148 
2149     bool CanBeNull, CanBeFreed;
2150     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2151                                          CanBeFreed)) {
2152       if (!CanBeNull) {
2153         indicateOptimisticFixpoint();
2154         return;
2155       }
2156     }
2157 
2158     if (isa<GlobalValue>(&getAssociatedValue())) {
2159       indicatePessimisticFixpoint();
2160       return;
2161     }
2162 
2163     if (Instruction *CtxI = getCtxI())
2164       followUsesInMBEC(*this, A, getState(), *CtxI);
2165   }
2166 
2167   /// See followUsesInMBEC
2168   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2169                        AANonNull::StateType &State) {
2170     bool IsNonNull = false;
2171     bool TrackUse = false;
2172     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2173                                        IsNonNull, TrackUse);
2174     State.setKnown(IsNonNull);
2175     return TrackUse;
2176   }
2177 
2178   /// See AbstractAttribute::getAsStr().
2179   const std::string getAsStr() const override {
2180     return getAssumed() ? "nonnull" : "may-null";
2181   }
2182 
2183   /// Flag to determine if the underlying value can be null and still allow
2184   /// valid accesses.
2185   const bool NullIsDefined;
2186 };
2187 
2188 /// NonNull attribute for a floating value.
2189 struct AANonNullFloating : public AANonNullImpl {
2190   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2191       : AANonNullImpl(IRP, A) {}
2192 
2193   /// See AbstractAttribute::updateImpl(...).
2194   ChangeStatus updateImpl(Attributor &A) override {
2195     const DataLayout &DL = A.getDataLayout();
2196 
2197     DominatorTree *DT = nullptr;
2198     AssumptionCache *AC = nullptr;
2199     InformationCache &InfoCache = A.getInfoCache();
2200     if (const Function *Fn = getAnchorScope()) {
2201       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2202       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2203     }
2204 
2205     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2206                             AANonNull::StateType &T, bool Stripped) -> bool {
2207       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2208                                              DepClassTy::REQUIRED);
2209       if (!Stripped && this == &AA) {
2210         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2211           T.indicatePessimisticFixpoint();
2212       } else {
2213         // Use abstract attribute information.
2214         const AANonNull::StateType &NS = AA.getState();
2215         T ^= NS;
2216       }
2217       return T.isValidState();
2218     };
2219 
2220     StateType T;
2221     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2222                                           VisitValueCB, getCtxI()))
2223       return indicatePessimisticFixpoint();
2224 
2225     return clampStateAndIndicateChange(getState(), T);
2226   }
2227 
2228   /// See AbstractAttribute::trackStatistics()
2229   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2230 };
2231 
2232 /// NonNull attribute for function return value.
2233 struct AANonNullReturned final
2234     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2235   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2236       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2237 
2238   /// See AbstractAttribute::getAsStr().
2239   const std::string getAsStr() const override {
2240     return getAssumed() ? "nonnull" : "may-null";
2241   }
2242 
2243   /// See AbstractAttribute::trackStatistics()
2244   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2245 };
2246 
2247 /// NonNull attribute for function argument.
2248 struct AANonNullArgument final
2249     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2250   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2251       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2252 
2253   /// See AbstractAttribute::trackStatistics()
2254   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2255 };
2256 
2257 struct AANonNullCallSiteArgument final : AANonNullFloating {
2258   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2259       : AANonNullFloating(IRP, A) {}
2260 
2261   /// See AbstractAttribute::trackStatistics()
2262   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2263 };
2264 
2265 /// NonNull attribute for a call site return position.
2266 struct AANonNullCallSiteReturned final
2267     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2268   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2269       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2270 
2271   /// See AbstractAttribute::trackStatistics()
2272   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2273 };
2274 
2275 /// ------------------------ No-Recurse Attributes ----------------------------
2276 
2277 struct AANoRecurseImpl : public AANoRecurse {
2278   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2279 
2280   /// See AbstractAttribute::getAsStr()
2281   const std::string getAsStr() const override {
2282     return getAssumed() ? "norecurse" : "may-recurse";
2283   }
2284 };
2285 
2286 struct AANoRecurseFunction final : AANoRecurseImpl {
2287   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2288       : AANoRecurseImpl(IRP, A) {}
2289 
2290   /// See AbstractAttribute::initialize(...).
2291   void initialize(Attributor &A) override {
2292     AANoRecurseImpl::initialize(A);
2293     if (const Function *F = getAnchorScope())
2294       if (A.getInfoCache().getSccSize(*F) != 1)
2295         indicatePessimisticFixpoint();
2296   }
2297 
2298   /// See AbstractAttribute::updateImpl(...).
2299   ChangeStatus updateImpl(Attributor &A) override {
2300 
2301     // If all live call sites are known to be no-recurse, we are as well.
2302     auto CallSitePred = [&](AbstractCallSite ACS) {
2303       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2304           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2305           DepClassTy::NONE);
2306       return NoRecurseAA.isKnownNoRecurse();
2307     };
2308     bool AllCallSitesKnown;
2309     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2310       // If we know all call sites and all are known no-recurse, we are done.
2311       // If all known call sites, which might not be all that exist, are known
2312       // to be no-recurse, we are not done but we can continue to assume
2313       // no-recurse. If one of the call sites we have not visited will become
2314       // live, another update is triggered.
2315       if (AllCallSitesKnown)
2316         indicateOptimisticFixpoint();
2317       return ChangeStatus::UNCHANGED;
2318     }
2319 
2320     // If the above check does not hold anymore we look at the calls.
2321     auto CheckForNoRecurse = [&](Instruction &I) {
2322       const auto &CB = cast<CallBase>(I);
2323       if (CB.hasFnAttr(Attribute::NoRecurse))
2324         return true;
2325 
2326       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2327           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2328       if (!NoRecurseAA.isAssumedNoRecurse())
2329         return false;
2330 
2331       // Recursion to the same function
2332       if (CB.getCalledFunction() == getAnchorScope())
2333         return false;
2334 
2335       return true;
2336     };
2337 
2338     bool UsedAssumedInformation = false;
2339     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2340                                            UsedAssumedInformation))
2341       return indicatePessimisticFixpoint();
2342     return ChangeStatus::UNCHANGED;
2343   }
2344 
2345   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2346 };
2347 
2348 /// NoRecurse attribute deduction for a call sites.
2349 struct AANoRecurseCallSite final : AANoRecurseImpl {
2350   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2351       : AANoRecurseImpl(IRP, A) {}
2352 
2353   /// See AbstractAttribute::initialize(...).
2354   void initialize(Attributor &A) override {
2355     AANoRecurseImpl::initialize(A);
2356     Function *F = getAssociatedFunction();
2357     if (!F || F->isDeclaration())
2358       indicatePessimisticFixpoint();
2359   }
2360 
2361   /// See AbstractAttribute::updateImpl(...).
2362   ChangeStatus updateImpl(Attributor &A) override {
2363     // TODO: Once we have call site specific value information we can provide
2364     //       call site specific liveness information and then it makes
2365     //       sense to specialize attributes for call sites arguments instead of
2366     //       redirecting requests to the callee argument.
2367     Function *F = getAssociatedFunction();
2368     const IRPosition &FnPos = IRPosition::function(*F);
2369     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2370     return clampStateAndIndicateChange(getState(), FnAA.getState());
2371   }
2372 
2373   /// See AbstractAttribute::trackStatistics()
2374   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2375 };
2376 
2377 /// -------------------- Undefined-Behavior Attributes ------------------------
2378 
2379 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2380   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2381       : AAUndefinedBehavior(IRP, A) {}
2382 
2383   /// See AbstractAttribute::updateImpl(...).
2384   // through a pointer (i.e. also branches etc.)
2385   ChangeStatus updateImpl(Attributor &A) override {
2386     const size_t UBPrevSize = KnownUBInsts.size();
2387     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2388 
2389     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2390       // Skip instructions that are already saved.
2391       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2392         return true;
2393 
2394       // If we reach here, we know we have an instruction
2395       // that accesses memory through a pointer operand,
2396       // for which getPointerOperand() should give it to us.
2397       Value *PtrOp =
2398           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2399       assert(PtrOp &&
2400              "Expected pointer operand of memory accessing instruction");
2401 
2402       // Either we stopped and the appropriate action was taken,
2403       // or we got back a simplified value to continue.
2404       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2405       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2406         return true;
2407       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2408 
2409       // A memory access through a pointer is considered UB
2410       // only if the pointer has constant null value.
2411       // TODO: Expand it to not only check constant values.
2412       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2413         AssumedNoUBInsts.insert(&I);
2414         return true;
2415       }
2416       const Type *PtrTy = PtrOpVal->getType();
2417 
2418       // Because we only consider instructions inside functions,
2419       // assume that a parent function exists.
2420       const Function *F = I.getFunction();
2421 
2422       // A memory access using constant null pointer is only considered UB
2423       // if null pointer is _not_ defined for the target platform.
2424       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2425         AssumedNoUBInsts.insert(&I);
2426       else
2427         KnownUBInsts.insert(&I);
2428       return true;
2429     };
2430 
2431     auto InspectBrInstForUB = [&](Instruction &I) {
2432       // A conditional branch instruction is considered UB if it has `undef`
2433       // condition.
2434 
2435       // Skip instructions that are already saved.
2436       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2437         return true;
2438 
2439       // We know we have a branch instruction.
2440       auto *BrInst = cast<BranchInst>(&I);
2441 
2442       // Unconditional branches are never considered UB.
2443       if (BrInst->isUnconditional())
2444         return true;
2445 
2446       // Either we stopped and the appropriate action was taken,
2447       // or we got back a simplified value to continue.
2448       Optional<Value *> SimplifiedCond =
2449           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2450       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2451         return true;
2452       AssumedNoUBInsts.insert(&I);
2453       return true;
2454     };
2455 
2456     auto InspectCallSiteForUB = [&](Instruction &I) {
2457       // Check whether a callsite always cause UB or not
2458 
2459       // Skip instructions that are already saved.
2460       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2461         return true;
2462 
2463       // Check nonnull and noundef argument attribute violation for each
2464       // callsite.
2465       CallBase &CB = cast<CallBase>(I);
2466       Function *Callee = CB.getCalledFunction();
2467       if (!Callee)
2468         return true;
2469       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2470         // If current argument is known to be simplified to null pointer and the
2471         // corresponding argument position is known to have nonnull attribute,
2472         // the argument is poison. Furthermore, if the argument is poison and
2473         // the position is known to have noundef attriubte, this callsite is
2474         // considered UB.
2475         if (idx >= Callee->arg_size())
2476           break;
2477         Value *ArgVal = CB.getArgOperand(idx);
2478         if (!ArgVal)
2479           continue;
2480         // Here, we handle three cases.
2481         //   (1) Not having a value means it is dead. (we can replace the value
2482         //       with undef)
2483         //   (2) Simplified to undef. The argument violate noundef attriubte.
2484         //   (3) Simplified to null pointer where known to be nonnull.
2485         //       The argument is a poison value and violate noundef attribute.
2486         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2487         auto &NoUndefAA =
2488             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2489         if (!NoUndefAA.isKnownNoUndef())
2490           continue;
2491         bool UsedAssumedInformation = false;
2492         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2493             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2494         if (UsedAssumedInformation)
2495           continue;
2496         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2497           return true;
2498         if (!SimplifiedVal.hasValue() ||
2499             isa<UndefValue>(*SimplifiedVal.getValue())) {
2500           KnownUBInsts.insert(&I);
2501           continue;
2502         }
2503         if (!ArgVal->getType()->isPointerTy() ||
2504             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2505           continue;
2506         auto &NonNullAA =
2507             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2508         if (NonNullAA.isKnownNonNull())
2509           KnownUBInsts.insert(&I);
2510       }
2511       return true;
2512     };
2513 
2514     auto InspectReturnInstForUB =
2515         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2516           // Check if a return instruction always cause UB or not
2517           // Note: It is guaranteed that the returned position of the anchor
2518           //       scope has noundef attribute when this is called.
2519           //       We also ensure the return position is not "assumed dead"
2520           //       because the returned value was then potentially simplified to
2521           //       `undef` in AAReturnedValues without removing the `noundef`
2522           //       attribute yet.
2523 
2524           // When the returned position has noundef attriubte, UB occur in the
2525           // following cases.
2526           //   (1) Returned value is known to be undef.
2527           //   (2) The value is known to be a null pointer and the returned
2528           //       position has nonnull attribute (because the returned value is
2529           //       poison).
2530           bool FoundUB = false;
2531           if (isa<UndefValue>(V)) {
2532             FoundUB = true;
2533           } else {
2534             if (isa<ConstantPointerNull>(V)) {
2535               auto &NonNullAA = A.getAAFor<AANonNull>(
2536                   *this, IRPosition::returned(*getAnchorScope()),
2537                   DepClassTy::NONE);
2538               if (NonNullAA.isKnownNonNull())
2539                 FoundUB = true;
2540             }
2541           }
2542 
2543           if (FoundUB)
2544             for (ReturnInst *RI : RetInsts)
2545               KnownUBInsts.insert(RI);
2546           return true;
2547         };
2548 
2549     bool UsedAssumedInformation = false;
2550     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2551                               {Instruction::Load, Instruction::Store,
2552                                Instruction::AtomicCmpXchg,
2553                                Instruction::AtomicRMW},
2554                               UsedAssumedInformation,
2555                               /* CheckBBLivenessOnly */ true);
2556     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2557                               UsedAssumedInformation,
2558                               /* CheckBBLivenessOnly */ true);
2559     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2560                                       UsedAssumedInformation);
2561 
2562     // If the returned position of the anchor scope has noundef attriubte, check
2563     // all returned instructions.
2564     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2565       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2566       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2567         auto &RetPosNoUndefAA =
2568             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2569         if (RetPosNoUndefAA.isKnownNoUndef())
2570           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2571                                                     *this);
2572       }
2573     }
2574 
2575     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2576         UBPrevSize != KnownUBInsts.size())
2577       return ChangeStatus::CHANGED;
2578     return ChangeStatus::UNCHANGED;
2579   }
2580 
2581   bool isKnownToCauseUB(Instruction *I) const override {
2582     return KnownUBInsts.count(I);
2583   }
2584 
2585   bool isAssumedToCauseUB(Instruction *I) const override {
2586     // In simple words, if an instruction is not in the assumed to _not_
2587     // cause UB, then it is assumed UB (that includes those
2588     // in the KnownUBInsts set). The rest is boilerplate
2589     // is to ensure that it is one of the instructions we test
2590     // for UB.
2591 
2592     switch (I->getOpcode()) {
2593     case Instruction::Load:
2594     case Instruction::Store:
2595     case Instruction::AtomicCmpXchg:
2596     case Instruction::AtomicRMW:
2597       return !AssumedNoUBInsts.count(I);
2598     case Instruction::Br: {
2599       auto BrInst = cast<BranchInst>(I);
2600       if (BrInst->isUnconditional())
2601         return false;
2602       return !AssumedNoUBInsts.count(I);
2603     } break;
2604     default:
2605       return false;
2606     }
2607     return false;
2608   }
2609 
2610   ChangeStatus manifest(Attributor &A) override {
2611     if (KnownUBInsts.empty())
2612       return ChangeStatus::UNCHANGED;
2613     for (Instruction *I : KnownUBInsts)
2614       A.changeToUnreachableAfterManifest(I);
2615     return ChangeStatus::CHANGED;
2616   }
2617 
2618   /// See AbstractAttribute::getAsStr()
2619   const std::string getAsStr() const override {
2620     return getAssumed() ? "undefined-behavior" : "no-ub";
2621   }
2622 
2623   /// Note: The correctness of this analysis depends on the fact that the
2624   /// following 2 sets will stop changing after some point.
2625   /// "Change" here means that their size changes.
2626   /// The size of each set is monotonically increasing
2627   /// (we only add items to them) and it is upper bounded by the number of
2628   /// instructions in the processed function (we can never save more
2629   /// elements in either set than this number). Hence, at some point,
2630   /// they will stop increasing.
2631   /// Consequently, at some point, both sets will have stopped
2632   /// changing, effectively making the analysis reach a fixpoint.
2633 
2634   /// Note: These 2 sets are disjoint and an instruction can be considered
2635   /// one of 3 things:
2636   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2637   ///    the KnownUBInsts set.
2638   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2639   ///    has a reason to assume it).
2640   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2641   ///    could not find a reason to assume or prove that it can cause UB,
2642   ///    hence it assumes it doesn't. We have a set for these instructions
2643   ///    so that we don't reprocess them in every update.
2644   ///    Note however that instructions in this set may cause UB.
2645 
2646 protected:
2647   /// A set of all live instructions _known_ to cause UB.
2648   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2649 
2650 private:
2651   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2652   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2653 
2654   // Should be called on updates in which if we're processing an instruction
2655   // \p I that depends on a value \p V, one of the following has to happen:
2656   // - If the value is assumed, then stop.
2657   // - If the value is known but undef, then consider it UB.
2658   // - Otherwise, do specific processing with the simplified value.
2659   // We return None in the first 2 cases to signify that an appropriate
2660   // action was taken and the caller should stop.
2661   // Otherwise, we return the simplified value that the caller should
2662   // use for specific processing.
2663   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2664                                          Instruction *I) {
2665     bool UsedAssumedInformation = false;
2666     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2667         IRPosition::value(*V), *this, UsedAssumedInformation);
2668     if (!UsedAssumedInformation) {
2669       // Don't depend on assumed values.
2670       if (!SimplifiedV.hasValue()) {
2671         // If it is known (which we tested above) but it doesn't have a value,
2672         // then we can assume `undef` and hence the instruction is UB.
2673         KnownUBInsts.insert(I);
2674         return llvm::None;
2675       }
2676       if (!SimplifiedV.getValue())
2677         return nullptr;
2678       V = *SimplifiedV;
2679     }
2680     if (isa<UndefValue>(V)) {
2681       KnownUBInsts.insert(I);
2682       return llvm::None;
2683     }
2684     return V;
2685   }
2686 };
2687 
2688 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2689   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2690       : AAUndefinedBehaviorImpl(IRP, A) {}
2691 
2692   /// See AbstractAttribute::trackStatistics()
2693   void trackStatistics() const override {
2694     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2695                "Number of instructions known to have UB");
2696     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2697         KnownUBInsts.size();
2698   }
2699 };
2700 
2701 /// ------------------------ Will-Return Attributes ----------------------------
2702 
2703 // Helper function that checks whether a function has any cycle which we don't
2704 // know if it is bounded or not.
2705 // Loops with maximum trip count are considered bounded, any other cycle not.
2706 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2707   ScalarEvolution *SE =
2708       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2709   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2710   // If either SCEV or LoopInfo is not available for the function then we assume
2711   // any cycle to be unbounded cycle.
2712   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2713   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2714   if (!SE || !LI) {
2715     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2716       if (SCCI.hasCycle())
2717         return true;
2718     return false;
2719   }
2720 
2721   // If there's irreducible control, the function may contain non-loop cycles.
2722   if (mayContainIrreducibleControl(F, LI))
2723     return true;
2724 
2725   // Any loop that does not have a max trip count is considered unbounded cycle.
2726   for (auto *L : LI->getLoopsInPreorder()) {
2727     if (!SE->getSmallConstantMaxTripCount(L))
2728       return true;
2729   }
2730   return false;
2731 }
2732 
2733 struct AAWillReturnImpl : public AAWillReturn {
2734   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2735       : AAWillReturn(IRP, A) {}
2736 
2737   /// See AbstractAttribute::initialize(...).
2738   void initialize(Attributor &A) override {
2739     AAWillReturn::initialize(A);
2740 
2741     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2742       indicateOptimisticFixpoint();
2743       return;
2744     }
2745   }
2746 
2747   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2748   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2749     // Check for `mustprogress` in the scope and the associated function which
2750     // might be different if this is a call site.
2751     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2752         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2753       return false;
2754 
2755     const auto &MemAA =
2756         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2757     if (!MemAA.isAssumedReadOnly())
2758       return false;
2759     if (KnownOnly && !MemAA.isKnownReadOnly())
2760       return false;
2761     if (!MemAA.isKnownReadOnly())
2762       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2763 
2764     return true;
2765   }
2766 
2767   /// See AbstractAttribute::updateImpl(...).
2768   ChangeStatus updateImpl(Attributor &A) override {
2769     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2770       return ChangeStatus::UNCHANGED;
2771 
2772     auto CheckForWillReturn = [&](Instruction &I) {
2773       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2774       const auto &WillReturnAA =
2775           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2776       if (WillReturnAA.isKnownWillReturn())
2777         return true;
2778       if (!WillReturnAA.isAssumedWillReturn())
2779         return false;
2780       const auto &NoRecurseAA =
2781           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2782       return NoRecurseAA.isAssumedNoRecurse();
2783     };
2784 
2785     bool UsedAssumedInformation = false;
2786     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2787                                            UsedAssumedInformation))
2788       return indicatePessimisticFixpoint();
2789 
2790     return ChangeStatus::UNCHANGED;
2791   }
2792 
2793   /// See AbstractAttribute::getAsStr()
2794   const std::string getAsStr() const override {
2795     return getAssumed() ? "willreturn" : "may-noreturn";
2796   }
2797 };
2798 
2799 struct AAWillReturnFunction final : AAWillReturnImpl {
2800   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2801       : AAWillReturnImpl(IRP, A) {}
2802 
2803   /// See AbstractAttribute::initialize(...).
2804   void initialize(Attributor &A) override {
2805     AAWillReturnImpl::initialize(A);
2806 
2807     Function *F = getAnchorScope();
2808     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2809       indicatePessimisticFixpoint();
2810   }
2811 
2812   /// See AbstractAttribute::trackStatistics()
2813   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2814 };
2815 
2816 /// WillReturn attribute deduction for a call sites.
2817 struct AAWillReturnCallSite final : AAWillReturnImpl {
2818   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2819       : AAWillReturnImpl(IRP, A) {}
2820 
2821   /// See AbstractAttribute::initialize(...).
2822   void initialize(Attributor &A) override {
2823     AAWillReturnImpl::initialize(A);
2824     Function *F = getAssociatedFunction();
2825     if (!F || !A.isFunctionIPOAmendable(*F))
2826       indicatePessimisticFixpoint();
2827   }
2828 
2829   /// See AbstractAttribute::updateImpl(...).
2830   ChangeStatus updateImpl(Attributor &A) override {
2831     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2832       return ChangeStatus::UNCHANGED;
2833 
2834     // TODO: Once we have call site specific value information we can provide
2835     //       call site specific liveness information and then it makes
2836     //       sense to specialize attributes for call sites arguments instead of
2837     //       redirecting requests to the callee argument.
2838     Function *F = getAssociatedFunction();
2839     const IRPosition &FnPos = IRPosition::function(*F);
2840     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2841     return clampStateAndIndicateChange(getState(), FnAA.getState());
2842   }
2843 
2844   /// See AbstractAttribute::trackStatistics()
2845   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2846 };
2847 
2848 /// -------------------AAReachability Attribute--------------------------
2849 
2850 struct AAReachabilityImpl : AAReachability {
2851   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2852       : AAReachability(IRP, A) {}
2853 
2854   const std::string getAsStr() const override {
2855     // TODO: Return the number of reachable queries.
2856     return "reachable";
2857   }
2858 
2859   /// See AbstractAttribute::updateImpl(...).
2860   ChangeStatus updateImpl(Attributor &A) override {
2861     return ChangeStatus::UNCHANGED;
2862   }
2863 };
2864 
2865 struct AAReachabilityFunction final : public AAReachabilityImpl {
2866   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2867       : AAReachabilityImpl(IRP, A) {}
2868 
2869   /// See AbstractAttribute::trackStatistics()
2870   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2871 };
2872 
2873 /// ------------------------ NoAlias Argument Attribute ------------------------
2874 
2875 struct AANoAliasImpl : AANoAlias {
2876   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2877     assert(getAssociatedType()->isPointerTy() &&
2878            "Noalias is a pointer attribute");
2879   }
2880 
2881   const std::string getAsStr() const override {
2882     return getAssumed() ? "noalias" : "may-alias";
2883   }
2884 };
2885 
2886 /// NoAlias attribute for a floating value.
2887 struct AANoAliasFloating final : AANoAliasImpl {
2888   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2889       : AANoAliasImpl(IRP, A) {}
2890 
2891   /// See AbstractAttribute::initialize(...).
2892   void initialize(Attributor &A) override {
2893     AANoAliasImpl::initialize(A);
2894     Value *Val = &getAssociatedValue();
2895     do {
2896       CastInst *CI = dyn_cast<CastInst>(Val);
2897       if (!CI)
2898         break;
2899       Value *Base = CI->getOperand(0);
2900       if (!Base->hasOneUse())
2901         break;
2902       Val = Base;
2903     } while (true);
2904 
2905     if (!Val->getType()->isPointerTy()) {
2906       indicatePessimisticFixpoint();
2907       return;
2908     }
2909 
2910     if (isa<AllocaInst>(Val))
2911       indicateOptimisticFixpoint();
2912     else if (isa<ConstantPointerNull>(Val) &&
2913              !NullPointerIsDefined(getAnchorScope(),
2914                                    Val->getType()->getPointerAddressSpace()))
2915       indicateOptimisticFixpoint();
2916     else if (Val != &getAssociatedValue()) {
2917       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2918           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2919       if (ValNoAliasAA.isKnownNoAlias())
2920         indicateOptimisticFixpoint();
2921     }
2922   }
2923 
2924   /// See AbstractAttribute::updateImpl(...).
2925   ChangeStatus updateImpl(Attributor &A) override {
2926     // TODO: Implement this.
2927     return indicatePessimisticFixpoint();
2928   }
2929 
2930   /// See AbstractAttribute::trackStatistics()
2931   void trackStatistics() const override {
2932     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2933   }
2934 };
2935 
2936 /// NoAlias attribute for an argument.
2937 struct AANoAliasArgument final
2938     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2939   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2940   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2941 
2942   /// See AbstractAttribute::initialize(...).
2943   void initialize(Attributor &A) override {
2944     Base::initialize(A);
2945     // See callsite argument attribute and callee argument attribute.
2946     if (hasAttr({Attribute::ByVal}))
2947       indicateOptimisticFixpoint();
2948   }
2949 
2950   /// See AbstractAttribute::update(...).
2951   ChangeStatus updateImpl(Attributor &A) override {
2952     // We have to make sure no-alias on the argument does not break
2953     // synchronization when this is a callback argument, see also [1] below.
2954     // If synchronization cannot be affected, we delegate to the base updateImpl
2955     // function, otherwise we give up for now.
2956 
2957     // If the function is no-sync, no-alias cannot break synchronization.
2958     const auto &NoSyncAA =
2959         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2960                              DepClassTy::OPTIONAL);
2961     if (NoSyncAA.isAssumedNoSync())
2962       return Base::updateImpl(A);
2963 
2964     // If the argument is read-only, no-alias cannot break synchronization.
2965     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2966         *this, getIRPosition(), DepClassTy::OPTIONAL);
2967     if (MemBehaviorAA.isAssumedReadOnly())
2968       return Base::updateImpl(A);
2969 
2970     // If the argument is never passed through callbacks, no-alias cannot break
2971     // synchronization.
2972     bool AllCallSitesKnown;
2973     if (A.checkForAllCallSites(
2974             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2975             true, AllCallSitesKnown))
2976       return Base::updateImpl(A);
2977 
2978     // TODO: add no-alias but make sure it doesn't break synchronization by
2979     // introducing fake uses. See:
2980     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2981     //     International Workshop on OpenMP 2018,
2982     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2983 
2984     return indicatePessimisticFixpoint();
2985   }
2986 
2987   /// See AbstractAttribute::trackStatistics()
2988   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2989 };
2990 
2991 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2992   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2993       : AANoAliasImpl(IRP, A) {}
2994 
2995   /// See AbstractAttribute::initialize(...).
2996   void initialize(Attributor &A) override {
2997     // See callsite argument attribute and callee argument attribute.
2998     const auto &CB = cast<CallBase>(getAnchorValue());
2999     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3000       indicateOptimisticFixpoint();
3001     Value &Val = getAssociatedValue();
3002     if (isa<ConstantPointerNull>(Val) &&
3003         !NullPointerIsDefined(getAnchorScope(),
3004                               Val.getType()->getPointerAddressSpace()))
3005       indicateOptimisticFixpoint();
3006   }
3007 
3008   /// Determine if the underlying value may alias with the call site argument
3009   /// \p OtherArgNo of \p ICS (= the underlying call site).
3010   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3011                             const AAMemoryBehavior &MemBehaviorAA,
3012                             const CallBase &CB, unsigned OtherArgNo) {
3013     // We do not need to worry about aliasing with the underlying IRP.
3014     if (this->getCalleeArgNo() == (int)OtherArgNo)
3015       return false;
3016 
3017     // If it is not a pointer or pointer vector we do not alias.
3018     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3019     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3020       return false;
3021 
3022     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3023         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3024 
3025     // If the argument is readnone, there is no read-write aliasing.
3026     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3027       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3028       return false;
3029     }
3030 
3031     // If the argument is readonly and the underlying value is readonly, there
3032     // is no read-write aliasing.
3033     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3034     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3035       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3036       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3037       return false;
3038     }
3039 
3040     // We have to utilize actual alias analysis queries so we need the object.
3041     if (!AAR)
3042       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3043 
3044     // Try to rule it out at the call site.
3045     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3046     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3047                          "callsite arguments: "
3048                       << getAssociatedValue() << " " << *ArgOp << " => "
3049                       << (IsAliasing ? "" : "no-") << "alias \n");
3050 
3051     return IsAliasing;
3052   }
3053 
3054   bool
3055   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3056                                          const AAMemoryBehavior &MemBehaviorAA,
3057                                          const AANoAlias &NoAliasAA) {
3058     // We can deduce "noalias" if the following conditions hold.
3059     // (i)   Associated value is assumed to be noalias in the definition.
3060     // (ii)  Associated value is assumed to be no-capture in all the uses
3061     //       possibly executed before this callsite.
3062     // (iii) There is no other pointer argument which could alias with the
3063     //       value.
3064 
3065     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3066     if (!AssociatedValueIsNoAliasAtDef) {
3067       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3068                         << " is not no-alias at the definition\n");
3069       return false;
3070     }
3071 
3072     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3073 
3074     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3075     const Function *ScopeFn = VIRP.getAnchorScope();
3076     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3077     // Check whether the value is captured in the scope using AANoCapture.
3078     //      Look at CFG and check only uses possibly executed before this
3079     //      callsite.
3080     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3081       Instruction *UserI = cast<Instruction>(U.getUser());
3082 
3083       // If UserI is the curr instruction and there is a single potential use of
3084       // the value in UserI we allow the use.
3085       // TODO: We should inspect the operands and allow those that cannot alias
3086       //       with the value.
3087       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3088         return true;
3089 
3090       if (ScopeFn) {
3091         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3092             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3093 
3094         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3095           return true;
3096 
3097         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3098           if (CB->isArgOperand(&U)) {
3099 
3100             unsigned ArgNo = CB->getArgOperandNo(&U);
3101 
3102             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3103                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3104                 DepClassTy::OPTIONAL);
3105 
3106             if (NoCaptureAA.isAssumedNoCapture())
3107               return true;
3108           }
3109         }
3110       }
3111 
3112       // For cases which can potentially have more users
3113       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3114           isa<SelectInst>(U)) {
3115         Follow = true;
3116         return true;
3117       }
3118 
3119       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3120       return false;
3121     };
3122 
3123     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3124       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3125         LLVM_DEBUG(
3126             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3127                    << " cannot be noalias as it is potentially captured\n");
3128         return false;
3129       }
3130     }
3131     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3132 
3133     // Check there is no other pointer argument which could alias with the
3134     // value passed at this call site.
3135     // TODO: AbstractCallSite
3136     const auto &CB = cast<CallBase>(getAnchorValue());
3137     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
3138          OtherArgNo++)
3139       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3140         return false;
3141 
3142     return true;
3143   }
3144 
3145   /// See AbstractAttribute::updateImpl(...).
3146   ChangeStatus updateImpl(Attributor &A) override {
3147     // If the argument is readnone we are done as there are no accesses via the
3148     // argument.
3149     auto &MemBehaviorAA =
3150         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3151     if (MemBehaviorAA.isAssumedReadNone()) {
3152       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3153       return ChangeStatus::UNCHANGED;
3154     }
3155 
3156     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3157     const auto &NoAliasAA =
3158         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3159 
3160     AAResults *AAR = nullptr;
3161     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3162                                                NoAliasAA)) {
3163       LLVM_DEBUG(
3164           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3165       return ChangeStatus::UNCHANGED;
3166     }
3167 
3168     return indicatePessimisticFixpoint();
3169   }
3170 
3171   /// See AbstractAttribute::trackStatistics()
3172   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3173 };
3174 
3175 /// NoAlias attribute for function return value.
3176 struct AANoAliasReturned final : AANoAliasImpl {
3177   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3178       : AANoAliasImpl(IRP, A) {}
3179 
3180   /// See AbstractAttribute::initialize(...).
3181   void initialize(Attributor &A) override {
3182     AANoAliasImpl::initialize(A);
3183     Function *F = getAssociatedFunction();
3184     if (!F || F->isDeclaration())
3185       indicatePessimisticFixpoint();
3186   }
3187 
3188   /// See AbstractAttribute::updateImpl(...).
3189   virtual ChangeStatus updateImpl(Attributor &A) override {
3190 
3191     auto CheckReturnValue = [&](Value &RV) -> bool {
3192       if (Constant *C = dyn_cast<Constant>(&RV))
3193         if (C->isNullValue() || isa<UndefValue>(C))
3194           return true;
3195 
3196       /// For now, we can only deduce noalias if we have call sites.
3197       /// FIXME: add more support.
3198       if (!isa<CallBase>(&RV))
3199         return false;
3200 
3201       const IRPosition &RVPos = IRPosition::value(RV);
3202       const auto &NoAliasAA =
3203           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3204       if (!NoAliasAA.isAssumedNoAlias())
3205         return false;
3206 
3207       const auto &NoCaptureAA =
3208           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3209       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3210     };
3211 
3212     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3213       return indicatePessimisticFixpoint();
3214 
3215     return ChangeStatus::UNCHANGED;
3216   }
3217 
3218   /// See AbstractAttribute::trackStatistics()
3219   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3220 };
3221 
3222 /// NoAlias attribute deduction for a call site return value.
3223 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3224   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3225       : AANoAliasImpl(IRP, A) {}
3226 
3227   /// See AbstractAttribute::initialize(...).
3228   void initialize(Attributor &A) override {
3229     AANoAliasImpl::initialize(A);
3230     Function *F = getAssociatedFunction();
3231     if (!F || F->isDeclaration())
3232       indicatePessimisticFixpoint();
3233   }
3234 
3235   /// See AbstractAttribute::updateImpl(...).
3236   ChangeStatus updateImpl(Attributor &A) override {
3237     // TODO: Once we have call site specific value information we can provide
3238     //       call site specific liveness information and then it makes
3239     //       sense to specialize attributes for call sites arguments instead of
3240     //       redirecting requests to the callee argument.
3241     Function *F = getAssociatedFunction();
3242     const IRPosition &FnPos = IRPosition::returned(*F);
3243     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3244     return clampStateAndIndicateChange(getState(), FnAA.getState());
3245   }
3246 
3247   /// See AbstractAttribute::trackStatistics()
3248   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3249 };
3250 
3251 /// -------------------AAIsDead Function Attribute-----------------------
3252 
3253 struct AAIsDeadValueImpl : public AAIsDead {
3254   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3255 
3256   /// See AAIsDead::isAssumedDead().
3257   bool isAssumedDead() const override { return getAssumed(); }
3258 
3259   /// See AAIsDead::isKnownDead().
3260   bool isKnownDead() const override { return getKnown(); }
3261 
3262   /// See AAIsDead::isAssumedDead(BasicBlock *).
3263   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3264 
3265   /// See AAIsDead::isKnownDead(BasicBlock *).
3266   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3267 
3268   /// See AAIsDead::isAssumedDead(Instruction *I).
3269   bool isAssumedDead(const Instruction *I) const override {
3270     return I == getCtxI() && isAssumedDead();
3271   }
3272 
3273   /// See AAIsDead::isKnownDead(Instruction *I).
3274   bool isKnownDead(const Instruction *I) const override {
3275     return isAssumedDead(I) && getKnown();
3276   }
3277 
3278   /// See AbstractAttribute::getAsStr().
3279   const std::string getAsStr() const override {
3280     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3281   }
3282 
3283   /// Check if all uses are assumed dead.
3284   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3285     // Callers might not check the type, void has no uses.
3286     if (V.getType()->isVoidTy())
3287       return true;
3288 
3289     // If we replace a value with a constant there are no uses left afterwards.
3290     if (!isa<Constant>(V)) {
3291       bool UsedAssumedInformation = false;
3292       Optional<Constant *> C =
3293           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3294       if (!C.hasValue() || *C)
3295         return true;
3296     }
3297 
3298     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3299     // Explicitly set the dependence class to required because we want a long
3300     // chain of N dependent instructions to be considered live as soon as one is
3301     // without going through N update cycles. This is not required for
3302     // correctness.
3303     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3304                              DepClassTy::REQUIRED);
3305   }
3306 
3307   /// Determine if \p I is assumed to be side-effect free.
3308   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3309     if (!I || wouldInstructionBeTriviallyDead(I))
3310       return true;
3311 
3312     auto *CB = dyn_cast<CallBase>(I);
3313     if (!CB || isa<IntrinsicInst>(CB))
3314       return false;
3315 
3316     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3317     const auto &NoUnwindAA =
3318         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3319     if (!NoUnwindAA.isAssumedNoUnwind())
3320       return false;
3321     if (!NoUnwindAA.isKnownNoUnwind())
3322       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3323 
3324     const auto &MemBehaviorAA =
3325         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3326     if (MemBehaviorAA.isAssumedReadOnly()) {
3327       if (!MemBehaviorAA.isKnownReadOnly())
3328         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3329       return true;
3330     }
3331     return false;
3332   }
3333 };
3334 
3335 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3336   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3337       : AAIsDeadValueImpl(IRP, A) {}
3338 
3339   /// See AbstractAttribute::initialize(...).
3340   void initialize(Attributor &A) override {
3341     if (isa<UndefValue>(getAssociatedValue())) {
3342       indicatePessimisticFixpoint();
3343       return;
3344     }
3345 
3346     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3347     if (!isAssumedSideEffectFree(A, I))
3348       indicatePessimisticFixpoint();
3349   }
3350 
3351   /// See AbstractAttribute::updateImpl(...).
3352   ChangeStatus updateImpl(Attributor &A) override {
3353     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3354     if (!isAssumedSideEffectFree(A, I))
3355       return indicatePessimisticFixpoint();
3356     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3357       return indicatePessimisticFixpoint();
3358     return ChangeStatus::UNCHANGED;
3359   }
3360 
3361   /// See AbstractAttribute::manifest(...).
3362   ChangeStatus manifest(Attributor &A) override {
3363     Value &V = getAssociatedValue();
3364     if (auto *I = dyn_cast<Instruction>(&V)) {
3365       // If we get here we basically know the users are all dead. We check if
3366       // isAssumedSideEffectFree returns true here again because it might not be
3367       // the case and only the users are dead but the instruction (=call) is
3368       // still needed.
3369       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
3370         A.deleteAfterManifest(*I);
3371         return ChangeStatus::CHANGED;
3372       }
3373     }
3374     if (V.use_empty())
3375       return ChangeStatus::UNCHANGED;
3376 
3377     bool UsedAssumedInformation = false;
3378     Optional<Constant *> C =
3379         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3380     if (C.hasValue() && C.getValue())
3381       return ChangeStatus::UNCHANGED;
3382 
3383     // Replace the value with undef as it is dead but keep droppable uses around
3384     // as they provide information we don't want to give up on just yet.
3385     UndefValue &UV = *UndefValue::get(V.getType());
3386     bool AnyChange =
3387         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3388     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3389   }
3390 
3391   /// See AbstractAttribute::trackStatistics()
3392   void trackStatistics() const override {
3393     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3394   }
3395 };
3396 
3397 struct AAIsDeadArgument : public AAIsDeadFloating {
3398   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3399       : AAIsDeadFloating(IRP, A) {}
3400 
3401   /// See AbstractAttribute::initialize(...).
3402   void initialize(Attributor &A) override {
3403     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3404       indicatePessimisticFixpoint();
3405   }
3406 
3407   /// See AbstractAttribute::manifest(...).
3408   ChangeStatus manifest(Attributor &A) override {
3409     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3410     Argument &Arg = *getAssociatedArgument();
3411     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3412       if (A.registerFunctionSignatureRewrite(
3413               Arg, /* ReplacementTypes */ {},
3414               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3415               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3416         Arg.dropDroppableUses();
3417         return ChangeStatus::CHANGED;
3418       }
3419     return Changed;
3420   }
3421 
3422   /// See AbstractAttribute::trackStatistics()
3423   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3424 };
3425 
3426 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3427   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3428       : AAIsDeadValueImpl(IRP, A) {}
3429 
3430   /// See AbstractAttribute::initialize(...).
3431   void initialize(Attributor &A) override {
3432     if (isa<UndefValue>(getAssociatedValue()))
3433       indicatePessimisticFixpoint();
3434   }
3435 
3436   /// See AbstractAttribute::updateImpl(...).
3437   ChangeStatus updateImpl(Attributor &A) override {
3438     // TODO: Once we have call site specific value information we can provide
3439     //       call site specific liveness information and then it makes
3440     //       sense to specialize attributes for call sites arguments instead of
3441     //       redirecting requests to the callee argument.
3442     Argument *Arg = getAssociatedArgument();
3443     if (!Arg)
3444       return indicatePessimisticFixpoint();
3445     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3446     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3447     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3448   }
3449 
3450   /// See AbstractAttribute::manifest(...).
3451   ChangeStatus manifest(Attributor &A) override {
3452     CallBase &CB = cast<CallBase>(getAnchorValue());
3453     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3454     assert(!isa<UndefValue>(U.get()) &&
3455            "Expected undef values to be filtered out!");
3456     UndefValue &UV = *UndefValue::get(U->getType());
3457     if (A.changeUseAfterManifest(U, UV))
3458       return ChangeStatus::CHANGED;
3459     return ChangeStatus::UNCHANGED;
3460   }
3461 
3462   /// See AbstractAttribute::trackStatistics()
3463   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3464 };
3465 
3466 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3467   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3468       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3469 
3470   /// See AAIsDead::isAssumedDead().
3471   bool isAssumedDead() const override {
3472     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3473   }
3474 
3475   /// See AbstractAttribute::initialize(...).
3476   void initialize(Attributor &A) override {
3477     if (isa<UndefValue>(getAssociatedValue())) {
3478       indicatePessimisticFixpoint();
3479       return;
3480     }
3481 
3482     // We track this separately as a secondary state.
3483     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3484   }
3485 
3486   /// See AbstractAttribute::updateImpl(...).
3487   ChangeStatus updateImpl(Attributor &A) override {
3488     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3489     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3490       IsAssumedSideEffectFree = false;
3491       Changed = ChangeStatus::CHANGED;
3492     }
3493     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3494       return indicatePessimisticFixpoint();
3495     return Changed;
3496   }
3497 
3498   /// See AbstractAttribute::trackStatistics()
3499   void trackStatistics() const override {
3500     if (IsAssumedSideEffectFree)
3501       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3502     else
3503       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3504   }
3505 
3506   /// See AbstractAttribute::getAsStr().
3507   const std::string getAsStr() const override {
3508     return isAssumedDead()
3509                ? "assumed-dead"
3510                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3511   }
3512 
3513 private:
3514   bool IsAssumedSideEffectFree;
3515 };
3516 
3517 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3518   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3519       : AAIsDeadValueImpl(IRP, A) {}
3520 
3521   /// See AbstractAttribute::updateImpl(...).
3522   ChangeStatus updateImpl(Attributor &A) override {
3523 
3524     bool UsedAssumedInformation = false;
3525     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3526                               {Instruction::Ret}, UsedAssumedInformation);
3527 
3528     auto PredForCallSite = [&](AbstractCallSite ACS) {
3529       if (ACS.isCallbackCall() || !ACS.getInstruction())
3530         return false;
3531       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3532     };
3533 
3534     bool AllCallSitesKnown;
3535     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3536                                 AllCallSitesKnown))
3537       return indicatePessimisticFixpoint();
3538 
3539     return ChangeStatus::UNCHANGED;
3540   }
3541 
3542   /// See AbstractAttribute::manifest(...).
3543   ChangeStatus manifest(Attributor &A) override {
3544     // TODO: Rewrite the signature to return void?
3545     bool AnyChange = false;
3546     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3547     auto RetInstPred = [&](Instruction &I) {
3548       ReturnInst &RI = cast<ReturnInst>(I);
3549       if (!isa<UndefValue>(RI.getReturnValue()))
3550         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3551       return true;
3552     };
3553     bool UsedAssumedInformation = false;
3554     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3555                               UsedAssumedInformation);
3556     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3557   }
3558 
3559   /// See AbstractAttribute::trackStatistics()
3560   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3561 };
3562 
3563 struct AAIsDeadFunction : public AAIsDead {
3564   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3565 
3566   /// See AbstractAttribute::initialize(...).
3567   void initialize(Attributor &A) override {
3568     const Function *F = getAnchorScope();
3569     if (F && !F->isDeclaration()) {
3570       // We only want to compute liveness once. If the function is not part of
3571       // the SCC, skip it.
3572       if (A.isRunOn(*const_cast<Function *>(F))) {
3573         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3574         assumeLive(A, F->getEntryBlock());
3575       } else {
3576         indicatePessimisticFixpoint();
3577       }
3578     }
3579   }
3580 
3581   /// See AbstractAttribute::getAsStr().
3582   const std::string getAsStr() const override {
3583     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3584            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3585            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3586            std::to_string(KnownDeadEnds.size()) + "]";
3587   }
3588 
3589   /// See AbstractAttribute::manifest(...).
3590   ChangeStatus manifest(Attributor &A) override {
3591     assert(getState().isValidState() &&
3592            "Attempted to manifest an invalid state!");
3593 
3594     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3595     Function &F = *getAnchorScope();
3596 
3597     if (AssumedLiveBlocks.empty()) {
3598       A.deleteAfterManifest(F);
3599       return ChangeStatus::CHANGED;
3600     }
3601 
3602     // Flag to determine if we can change an invoke to a call assuming the
3603     // callee is nounwind. This is not possible if the personality of the
3604     // function allows to catch asynchronous exceptions.
3605     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3606 
3607     KnownDeadEnds.set_union(ToBeExploredFrom);
3608     for (const Instruction *DeadEndI : KnownDeadEnds) {
3609       auto *CB = dyn_cast<CallBase>(DeadEndI);
3610       if (!CB)
3611         continue;
3612       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3613           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3614       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3615       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3616         continue;
3617 
3618       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3619         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3620       else
3621         A.changeToUnreachableAfterManifest(
3622             const_cast<Instruction *>(DeadEndI->getNextNode()));
3623       HasChanged = ChangeStatus::CHANGED;
3624     }
3625 
3626     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3627     for (BasicBlock &BB : F)
3628       if (!AssumedLiveBlocks.count(&BB)) {
3629         A.deleteAfterManifest(BB);
3630         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3631       }
3632 
3633     return HasChanged;
3634   }
3635 
3636   /// See AbstractAttribute::updateImpl(...).
3637   ChangeStatus updateImpl(Attributor &A) override;
3638 
3639   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3640     return !AssumedLiveEdges.count(std::make_pair(From, To));
3641   }
3642 
3643   /// See AbstractAttribute::trackStatistics()
3644   void trackStatistics() const override {}
3645 
3646   /// Returns true if the function is assumed dead.
3647   bool isAssumedDead() const override { return false; }
3648 
3649   /// See AAIsDead::isKnownDead().
3650   bool isKnownDead() const override { return false; }
3651 
3652   /// See AAIsDead::isAssumedDead(BasicBlock *).
3653   bool isAssumedDead(const BasicBlock *BB) const override {
3654     assert(BB->getParent() == getAnchorScope() &&
3655            "BB must be in the same anchor scope function.");
3656 
3657     if (!getAssumed())
3658       return false;
3659     return !AssumedLiveBlocks.count(BB);
3660   }
3661 
3662   /// See AAIsDead::isKnownDead(BasicBlock *).
3663   bool isKnownDead(const BasicBlock *BB) const override {
3664     return getKnown() && isAssumedDead(BB);
3665   }
3666 
3667   /// See AAIsDead::isAssumed(Instruction *I).
3668   bool isAssumedDead(const Instruction *I) const override {
3669     assert(I->getParent()->getParent() == getAnchorScope() &&
3670            "Instruction must be in the same anchor scope function.");
3671 
3672     if (!getAssumed())
3673       return false;
3674 
3675     // If it is not in AssumedLiveBlocks then it for sure dead.
3676     // Otherwise, it can still be after noreturn call in a live block.
3677     if (!AssumedLiveBlocks.count(I->getParent()))
3678       return true;
3679 
3680     // If it is not after a liveness barrier it is live.
3681     const Instruction *PrevI = I->getPrevNode();
3682     while (PrevI) {
3683       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3684         return true;
3685       PrevI = PrevI->getPrevNode();
3686     }
3687     return false;
3688   }
3689 
3690   /// See AAIsDead::isKnownDead(Instruction *I).
3691   bool isKnownDead(const Instruction *I) const override {
3692     return getKnown() && isAssumedDead(I);
3693   }
3694 
3695   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3696   /// that internal function called from \p BB should now be looked at.
3697   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3698     if (!AssumedLiveBlocks.insert(&BB).second)
3699       return false;
3700 
3701     // We assume that all of BB is (probably) live now and if there are calls to
3702     // internal functions we will assume that those are now live as well. This
3703     // is a performance optimization for blocks with calls to a lot of internal
3704     // functions. It can however cause dead functions to be treated as live.
3705     for (const Instruction &I : BB)
3706       if (const auto *CB = dyn_cast<CallBase>(&I))
3707         if (const Function *F = CB->getCalledFunction())
3708           if (F->hasLocalLinkage())
3709             A.markLiveInternalFunction(*F);
3710     return true;
3711   }
3712 
3713   /// Collection of instructions that need to be explored again, e.g., we
3714   /// did assume they do not transfer control to (one of their) successors.
3715   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3716 
3717   /// Collection of instructions that are known to not transfer control.
3718   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3719 
3720   /// Collection of all assumed live edges
3721   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3722 
3723   /// Collection of all assumed live BasicBlocks.
3724   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3725 };
3726 
3727 static bool
3728 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3729                         AbstractAttribute &AA,
3730                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3731   const IRPosition &IPos = IRPosition::callsite_function(CB);
3732 
3733   const auto &NoReturnAA =
3734       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3735   if (NoReturnAA.isAssumedNoReturn())
3736     return !NoReturnAA.isKnownNoReturn();
3737   if (CB.isTerminator())
3738     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3739   else
3740     AliveSuccessors.push_back(CB.getNextNode());
3741   return false;
3742 }
3743 
3744 static bool
3745 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3746                         AbstractAttribute &AA,
3747                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3748   bool UsedAssumedInformation =
3749       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3750 
3751   // First, determine if we can change an invoke to a call assuming the
3752   // callee is nounwind. This is not possible if the personality of the
3753   // function allows to catch asynchronous exceptions.
3754   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3755     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3756   } else {
3757     const IRPosition &IPos = IRPosition::callsite_function(II);
3758     const auto &AANoUnw =
3759         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3760     if (AANoUnw.isAssumedNoUnwind()) {
3761       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3762     } else {
3763       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3764     }
3765   }
3766   return UsedAssumedInformation;
3767 }
3768 
3769 static bool
3770 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3771                         AbstractAttribute &AA,
3772                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3773   bool UsedAssumedInformation = false;
3774   if (BI.getNumSuccessors() == 1) {
3775     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3776   } else {
3777     Optional<Constant *> C =
3778         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3779     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3780       // No value yet, assume both edges are dead.
3781     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3782       const BasicBlock *SuccBB =
3783           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3784       AliveSuccessors.push_back(&SuccBB->front());
3785     } else {
3786       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3787       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3788       UsedAssumedInformation = false;
3789     }
3790   }
3791   return UsedAssumedInformation;
3792 }
3793 
3794 static bool
3795 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3796                         AbstractAttribute &AA,
3797                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3798   bool UsedAssumedInformation = false;
3799   Optional<Constant *> C =
3800       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3801   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3802     // No value yet, assume all edges are dead.
3803   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3804     for (auto &CaseIt : SI.cases()) {
3805       if (CaseIt.getCaseValue() == C.getValue()) {
3806         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3807         return UsedAssumedInformation;
3808       }
3809     }
3810     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3811     return UsedAssumedInformation;
3812   } else {
3813     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3814       AliveSuccessors.push_back(&SuccBB->front());
3815   }
3816   return UsedAssumedInformation;
3817 }
3818 
3819 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3820   ChangeStatus Change = ChangeStatus::UNCHANGED;
3821 
3822   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3823                     << getAnchorScope()->size() << "] BBs and "
3824                     << ToBeExploredFrom.size() << " exploration points and "
3825                     << KnownDeadEnds.size() << " known dead ends\n");
3826 
3827   // Copy and clear the list of instructions we need to explore from. It is
3828   // refilled with instructions the next update has to look at.
3829   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3830                                                ToBeExploredFrom.end());
3831   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3832 
3833   SmallVector<const Instruction *, 8> AliveSuccessors;
3834   while (!Worklist.empty()) {
3835     const Instruction *I = Worklist.pop_back_val();
3836     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3837 
3838     // Fast forward for uninteresting instructions. We could look for UB here
3839     // though.
3840     while (!I->isTerminator() && !isa<CallBase>(I)) {
3841       Change = ChangeStatus::CHANGED;
3842       I = I->getNextNode();
3843     }
3844 
3845     AliveSuccessors.clear();
3846 
3847     bool UsedAssumedInformation = false;
3848     switch (I->getOpcode()) {
3849     // TODO: look for (assumed) UB to backwards propagate "deadness".
3850     default:
3851       assert(I->isTerminator() &&
3852              "Expected non-terminators to be handled already!");
3853       for (const BasicBlock *SuccBB : successors(I->getParent()))
3854         AliveSuccessors.push_back(&SuccBB->front());
3855       break;
3856     case Instruction::Call:
3857       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3858                                                        *this, AliveSuccessors);
3859       break;
3860     case Instruction::Invoke:
3861       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3862                                                        *this, AliveSuccessors);
3863       break;
3864     case Instruction::Br:
3865       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3866                                                        *this, AliveSuccessors);
3867       break;
3868     case Instruction::Switch:
3869       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3870                                                        *this, AliveSuccessors);
3871       break;
3872     }
3873 
3874     if (UsedAssumedInformation) {
3875       NewToBeExploredFrom.insert(I);
3876     } else {
3877       Change = ChangeStatus::CHANGED;
3878       if (AliveSuccessors.empty() ||
3879           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3880         KnownDeadEnds.insert(I);
3881     }
3882 
3883     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3884                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3885                       << UsedAssumedInformation << "\n");
3886 
3887     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3888       if (!I->isTerminator()) {
3889         assert(AliveSuccessors.size() == 1 &&
3890                "Non-terminator expected to have a single successor!");
3891         Worklist.push_back(AliveSuccessor);
3892       } else {
3893         // record the assumed live edge
3894         AssumedLiveEdges.insert(
3895             std::make_pair(I->getParent(), AliveSuccessor->getParent()));
3896         if (assumeLive(A, *AliveSuccessor->getParent()))
3897           Worklist.push_back(AliveSuccessor);
3898       }
3899     }
3900   }
3901 
3902   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3903 
3904   // If we know everything is live there is no need to query for liveness.
3905   // Instead, indicating a pessimistic fixpoint will cause the state to be
3906   // "invalid" and all queries to be answered conservatively without lookups.
3907   // To be in this state we have to (1) finished the exploration and (3) not
3908   // discovered any non-trivial dead end and (2) not ruled unreachable code
3909   // dead.
3910   if (ToBeExploredFrom.empty() &&
3911       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3912       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3913         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3914       }))
3915     return indicatePessimisticFixpoint();
3916   return Change;
3917 }
3918 
3919 /// Liveness information for a call sites.
3920 struct AAIsDeadCallSite final : AAIsDeadFunction {
3921   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3922       : AAIsDeadFunction(IRP, A) {}
3923 
3924   /// See AbstractAttribute::initialize(...).
3925   void initialize(Attributor &A) override {
3926     // TODO: Once we have call site specific value information we can provide
3927     //       call site specific liveness information and then it makes
3928     //       sense to specialize attributes for call sites instead of
3929     //       redirecting requests to the callee.
3930     llvm_unreachable("Abstract attributes for liveness are not "
3931                      "supported for call sites yet!");
3932   }
3933 
3934   /// See AbstractAttribute::updateImpl(...).
3935   ChangeStatus updateImpl(Attributor &A) override {
3936     return indicatePessimisticFixpoint();
3937   }
3938 
3939   /// See AbstractAttribute::trackStatistics()
3940   void trackStatistics() const override {}
3941 };
3942 
3943 /// -------------------- Dereferenceable Argument Attribute --------------------
3944 
3945 template <>
3946 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3947                                                      const DerefState &R) {
3948   ChangeStatus CS0 =
3949       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3950   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3951   return CS0 | CS1;
3952 }
3953 
3954 struct AADereferenceableImpl : AADereferenceable {
3955   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3956       : AADereferenceable(IRP, A) {}
3957   using StateType = DerefState;
3958 
3959   /// See AbstractAttribute::initialize(...).
3960   void initialize(Attributor &A) override {
3961     SmallVector<Attribute, 4> Attrs;
3962     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3963              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3964     for (const Attribute &Attr : Attrs)
3965       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3966 
3967     const IRPosition &IRP = this->getIRPosition();
3968     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
3969 
3970     bool CanBeNull, CanBeFreed;
3971     takeKnownDerefBytesMaximum(
3972         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3973             A.getDataLayout(), CanBeNull, CanBeFreed));
3974 
3975     bool IsFnInterface = IRP.isFnInterfaceKind();
3976     Function *FnScope = IRP.getAnchorScope();
3977     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3978       indicatePessimisticFixpoint();
3979       return;
3980     }
3981 
3982     if (Instruction *CtxI = getCtxI())
3983       followUsesInMBEC(*this, A, getState(), *CtxI);
3984   }
3985 
3986   /// See AbstractAttribute::getState()
3987   /// {
3988   StateType &getState() override { return *this; }
3989   const StateType &getState() const override { return *this; }
3990   /// }
3991 
3992   /// Helper function for collecting accessed bytes in must-be-executed-context
3993   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3994                               DerefState &State) {
3995     const Value *UseV = U->get();
3996     if (!UseV->getType()->isPointerTy())
3997       return;
3998 
3999     Type *PtrTy = UseV->getType();
4000     const DataLayout &DL = A.getDataLayout();
4001     int64_t Offset;
4002     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4003             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4004       if (Base == &getAssociatedValue() &&
4005           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4006         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4007         State.addAccessedBytes(Offset, Size);
4008       }
4009     }
4010   }
4011 
4012   /// See followUsesInMBEC
4013   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4014                        AADereferenceable::StateType &State) {
4015     bool IsNonNull = false;
4016     bool TrackUse = false;
4017     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4018         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4019     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4020                       << " for instruction " << *I << "\n");
4021 
4022     addAccessedBytesForUse(A, U, I, State);
4023     State.takeKnownDerefBytesMaximum(DerefBytes);
4024     return TrackUse;
4025   }
4026 
4027   /// See AbstractAttribute::manifest(...).
4028   ChangeStatus manifest(Attributor &A) override {
4029     ChangeStatus Change = AADereferenceable::manifest(A);
4030     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4031       removeAttrs({Attribute::DereferenceableOrNull});
4032       return ChangeStatus::CHANGED;
4033     }
4034     return Change;
4035   }
4036 
4037   void getDeducedAttributes(LLVMContext &Ctx,
4038                             SmallVectorImpl<Attribute> &Attrs) const override {
4039     // TODO: Add *_globally support
4040     if (isAssumedNonNull())
4041       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4042           Ctx, getAssumedDereferenceableBytes()));
4043     else
4044       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4045           Ctx, getAssumedDereferenceableBytes()));
4046   }
4047 
4048   /// See AbstractAttribute::getAsStr().
4049   const std::string getAsStr() const override {
4050     if (!getAssumedDereferenceableBytes())
4051       return "unknown-dereferenceable";
4052     return std::string("dereferenceable") +
4053            (isAssumedNonNull() ? "" : "_or_null") +
4054            (isAssumedGlobal() ? "_globally" : "") + "<" +
4055            std::to_string(getKnownDereferenceableBytes()) + "-" +
4056            std::to_string(getAssumedDereferenceableBytes()) + ">";
4057   }
4058 };
4059 
4060 /// Dereferenceable attribute for a floating value.
4061 struct AADereferenceableFloating : AADereferenceableImpl {
4062   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4063       : AADereferenceableImpl(IRP, A) {}
4064 
4065   /// See AbstractAttribute::updateImpl(...).
4066   ChangeStatus updateImpl(Attributor &A) override {
4067     const DataLayout &DL = A.getDataLayout();
4068 
4069     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4070                             bool Stripped) -> bool {
4071       unsigned IdxWidth =
4072           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4073       APInt Offset(IdxWidth, 0);
4074       const Value *Base =
4075           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4076 
4077       const auto &AA = A.getAAFor<AADereferenceable>(
4078           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4079       int64_t DerefBytes = 0;
4080       if (!Stripped && this == &AA) {
4081         // Use IR information if we did not strip anything.
4082         // TODO: track globally.
4083         bool CanBeNull, CanBeFreed;
4084         DerefBytes =
4085             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4086         T.GlobalState.indicatePessimisticFixpoint();
4087       } else {
4088         const DerefState &DS = AA.getState();
4089         DerefBytes = DS.DerefBytesState.getAssumed();
4090         T.GlobalState &= DS.GlobalState;
4091       }
4092 
4093       // For now we do not try to "increase" dereferenceability due to negative
4094       // indices as we first have to come up with code to deal with loops and
4095       // for overflows of the dereferenceable bytes.
4096       int64_t OffsetSExt = Offset.getSExtValue();
4097       if (OffsetSExt < 0)
4098         OffsetSExt = 0;
4099 
4100       T.takeAssumedDerefBytesMinimum(
4101           std::max(int64_t(0), DerefBytes - OffsetSExt));
4102 
4103       if (this == &AA) {
4104         if (!Stripped) {
4105           // If nothing was stripped IR information is all we got.
4106           T.takeKnownDerefBytesMaximum(
4107               std::max(int64_t(0), DerefBytes - OffsetSExt));
4108           T.indicatePessimisticFixpoint();
4109         } else if (OffsetSExt > 0) {
4110           // If something was stripped but there is circular reasoning we look
4111           // for the offset. If it is positive we basically decrease the
4112           // dereferenceable bytes in a circluar loop now, which will simply
4113           // drive them down to the known value in a very slow way which we
4114           // can accelerate.
4115           T.indicatePessimisticFixpoint();
4116         }
4117       }
4118 
4119       return T.isValidState();
4120     };
4121 
4122     DerefState T;
4123     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4124                                            VisitValueCB, getCtxI()))
4125       return indicatePessimisticFixpoint();
4126 
4127     return clampStateAndIndicateChange(getState(), T);
4128   }
4129 
4130   /// See AbstractAttribute::trackStatistics()
4131   void trackStatistics() const override {
4132     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4133   }
4134 };
4135 
4136 /// Dereferenceable attribute for a return value.
4137 struct AADereferenceableReturned final
4138     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4139   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4140       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4141             IRP, A) {}
4142 
4143   /// See AbstractAttribute::trackStatistics()
4144   void trackStatistics() const override {
4145     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4146   }
4147 };
4148 
4149 /// Dereferenceable attribute for an argument
4150 struct AADereferenceableArgument final
4151     : AAArgumentFromCallSiteArguments<AADereferenceable,
4152                                       AADereferenceableImpl> {
4153   using Base =
4154       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4155   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4156       : Base(IRP, A) {}
4157 
4158   /// See AbstractAttribute::trackStatistics()
4159   void trackStatistics() const override {
4160     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4161   }
4162 };
4163 
4164 /// Dereferenceable attribute for a call site argument.
4165 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4166   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4167       : AADereferenceableFloating(IRP, A) {}
4168 
4169   /// See AbstractAttribute::trackStatistics()
4170   void trackStatistics() const override {
4171     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4172   }
4173 };
4174 
4175 /// Dereferenceable attribute deduction for a call site return value.
4176 struct AADereferenceableCallSiteReturned final
4177     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4178   using Base =
4179       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4180   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4181       : Base(IRP, A) {}
4182 
4183   /// See AbstractAttribute::trackStatistics()
4184   void trackStatistics() const override {
4185     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4186   }
4187 };
4188 
4189 // ------------------------ Align Argument Attribute ------------------------
4190 
4191 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4192                                     Value &AssociatedValue, const Use *U,
4193                                     const Instruction *I, bool &TrackUse) {
4194   // We need to follow common pointer manipulation uses to the accesses they
4195   // feed into.
4196   if (isa<CastInst>(I)) {
4197     // Follow all but ptr2int casts.
4198     TrackUse = !isa<PtrToIntInst>(I);
4199     return 0;
4200   }
4201   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4202     if (GEP->hasAllConstantIndices())
4203       TrackUse = true;
4204     return 0;
4205   }
4206 
4207   MaybeAlign MA;
4208   if (const auto *CB = dyn_cast<CallBase>(I)) {
4209     if (CB->isBundleOperand(U) || CB->isCallee(U))
4210       return 0;
4211 
4212     unsigned ArgNo = CB->getArgOperandNo(U);
4213     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4214     // As long as we only use known information there is no need to track
4215     // dependences here.
4216     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4217     MA = MaybeAlign(AlignAA.getKnownAlign());
4218   }
4219 
4220   const DataLayout &DL = A.getDataLayout();
4221   const Value *UseV = U->get();
4222   if (auto *SI = dyn_cast<StoreInst>(I)) {
4223     if (SI->getPointerOperand() == UseV)
4224       MA = SI->getAlign();
4225   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4226     if (LI->getPointerOperand() == UseV)
4227       MA = LI->getAlign();
4228   }
4229 
4230   if (!MA || *MA <= QueryingAA.getKnownAlign())
4231     return 0;
4232 
4233   unsigned Alignment = MA->value();
4234   int64_t Offset;
4235 
4236   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4237     if (Base == &AssociatedValue) {
4238       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4239       // So we can say that the maximum power of two which is a divisor of
4240       // gcd(Offset, Alignment) is an alignment.
4241 
4242       uint32_t gcd =
4243           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4244       Alignment = llvm::PowerOf2Floor(gcd);
4245     }
4246   }
4247 
4248   return Alignment;
4249 }
4250 
4251 struct AAAlignImpl : AAAlign {
4252   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4253 
4254   /// See AbstractAttribute::initialize(...).
4255   void initialize(Attributor &A) override {
4256     SmallVector<Attribute, 4> Attrs;
4257     getAttrs({Attribute::Alignment}, Attrs);
4258     for (const Attribute &Attr : Attrs)
4259       takeKnownMaximum(Attr.getValueAsInt());
4260 
4261     Value &V = getAssociatedValue();
4262     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4263     //       use of the function pointer. This was caused by D73131. We want to
4264     //       avoid this for function pointers especially because we iterate
4265     //       their uses and int2ptr is not handled. It is not a correctness
4266     //       problem though!
4267     if (!V.getType()->getPointerElementType()->isFunctionTy())
4268       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4269 
4270     if (getIRPosition().isFnInterfaceKind() &&
4271         (!getAnchorScope() ||
4272          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4273       indicatePessimisticFixpoint();
4274       return;
4275     }
4276 
4277     if (Instruction *CtxI = getCtxI())
4278       followUsesInMBEC(*this, A, getState(), *CtxI);
4279   }
4280 
4281   /// See AbstractAttribute::manifest(...).
4282   ChangeStatus manifest(Attributor &A) override {
4283     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4284 
4285     // Check for users that allow alignment annotations.
4286     Value &AssociatedValue = getAssociatedValue();
4287     for (const Use &U : AssociatedValue.uses()) {
4288       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4289         if (SI->getPointerOperand() == &AssociatedValue)
4290           if (SI->getAlignment() < getAssumedAlign()) {
4291             STATS_DECLTRACK(AAAlign, Store,
4292                             "Number of times alignment added to a store");
4293             SI->setAlignment(Align(getAssumedAlign()));
4294             LoadStoreChanged = ChangeStatus::CHANGED;
4295           }
4296       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4297         if (LI->getPointerOperand() == &AssociatedValue)
4298           if (LI->getAlignment() < getAssumedAlign()) {
4299             LI->setAlignment(Align(getAssumedAlign()));
4300             STATS_DECLTRACK(AAAlign, Load,
4301                             "Number of times alignment added to a load");
4302             LoadStoreChanged = ChangeStatus::CHANGED;
4303           }
4304       }
4305     }
4306 
4307     ChangeStatus Changed = AAAlign::manifest(A);
4308 
4309     Align InheritAlign =
4310         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4311     if (InheritAlign >= getAssumedAlign())
4312       return LoadStoreChanged;
4313     return Changed | LoadStoreChanged;
4314   }
4315 
4316   // TODO: Provide a helper to determine the implied ABI alignment and check in
4317   //       the existing manifest method and a new one for AAAlignImpl that value
4318   //       to avoid making the alignment explicit if it did not improve.
4319 
4320   /// See AbstractAttribute::getDeducedAttributes
4321   virtual void
4322   getDeducedAttributes(LLVMContext &Ctx,
4323                        SmallVectorImpl<Attribute> &Attrs) const override {
4324     if (getAssumedAlign() > 1)
4325       Attrs.emplace_back(
4326           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4327   }
4328 
4329   /// See followUsesInMBEC
4330   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4331                        AAAlign::StateType &State) {
4332     bool TrackUse = false;
4333 
4334     unsigned int KnownAlign =
4335         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4336     State.takeKnownMaximum(KnownAlign);
4337 
4338     return TrackUse;
4339   }
4340 
4341   /// See AbstractAttribute::getAsStr().
4342   const std::string getAsStr() const override {
4343     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4344                                 "-" + std::to_string(getAssumedAlign()) + ">")
4345                              : "unknown-align";
4346   }
4347 };
4348 
4349 /// Align attribute for a floating value.
4350 struct AAAlignFloating : AAAlignImpl {
4351   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4352 
4353   /// See AbstractAttribute::updateImpl(...).
4354   ChangeStatus updateImpl(Attributor &A) override {
4355     const DataLayout &DL = A.getDataLayout();
4356 
4357     auto VisitValueCB = [&](Value &V, const Instruction *,
4358                             AAAlign::StateType &T, bool Stripped) -> bool {
4359       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4360                                            DepClassTy::REQUIRED);
4361       if (!Stripped && this == &AA) {
4362         int64_t Offset;
4363         unsigned Alignment = 1;
4364         if (const Value *Base =
4365                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4366           Align PA = Base->getPointerAlignment(DL);
4367           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4368           // So we can say that the maximum power of two which is a divisor of
4369           // gcd(Offset, Alignment) is an alignment.
4370 
4371           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4372                                                uint32_t(PA.value()));
4373           Alignment = llvm::PowerOf2Floor(gcd);
4374         } else {
4375           Alignment = V.getPointerAlignment(DL).value();
4376         }
4377         // Use only IR information if we did not strip anything.
4378         T.takeKnownMaximum(Alignment);
4379         T.indicatePessimisticFixpoint();
4380       } else {
4381         // Use abstract attribute information.
4382         const AAAlign::StateType &DS = AA.getState();
4383         T ^= DS;
4384       }
4385       return T.isValidState();
4386     };
4387 
4388     StateType T;
4389     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4390                                           VisitValueCB, getCtxI()))
4391       return indicatePessimisticFixpoint();
4392 
4393     // TODO: If we know we visited all incoming values, thus no are assumed
4394     // dead, we can take the known information from the state T.
4395     return clampStateAndIndicateChange(getState(), T);
4396   }
4397 
4398   /// See AbstractAttribute::trackStatistics()
4399   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4400 };
4401 
4402 /// Align attribute for function return value.
4403 struct AAAlignReturned final
4404     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4405   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4406   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4407 
4408   /// See AbstractAttribute::initialize(...).
4409   void initialize(Attributor &A) override {
4410     Base::initialize(A);
4411     Function *F = getAssociatedFunction();
4412     if (!F || F->isDeclaration())
4413       indicatePessimisticFixpoint();
4414   }
4415 
4416   /// See AbstractAttribute::trackStatistics()
4417   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4418 };
4419 
4420 /// Align attribute for function argument.
4421 struct AAAlignArgument final
4422     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4423   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4424   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4425 
4426   /// See AbstractAttribute::manifest(...).
4427   ChangeStatus manifest(Attributor &A) override {
4428     // If the associated argument is involved in a must-tail call we give up
4429     // because we would need to keep the argument alignments of caller and
4430     // callee in-sync. Just does not seem worth the trouble right now.
4431     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4432       return ChangeStatus::UNCHANGED;
4433     return Base::manifest(A);
4434   }
4435 
4436   /// See AbstractAttribute::trackStatistics()
4437   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4438 };
4439 
4440 struct AAAlignCallSiteArgument final : AAAlignFloating {
4441   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4442       : AAAlignFloating(IRP, A) {}
4443 
4444   /// See AbstractAttribute::manifest(...).
4445   ChangeStatus manifest(Attributor &A) override {
4446     // If the associated argument is involved in a must-tail call we give up
4447     // because we would need to keep the argument alignments of caller and
4448     // callee in-sync. Just does not seem worth the trouble right now.
4449     if (Argument *Arg = getAssociatedArgument())
4450       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4451         return ChangeStatus::UNCHANGED;
4452     ChangeStatus Changed = AAAlignImpl::manifest(A);
4453     Align InheritAlign =
4454         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4455     if (InheritAlign >= getAssumedAlign())
4456       Changed = ChangeStatus::UNCHANGED;
4457     return Changed;
4458   }
4459 
4460   /// See AbstractAttribute::updateImpl(Attributor &A).
4461   ChangeStatus updateImpl(Attributor &A) override {
4462     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4463     if (Argument *Arg = getAssociatedArgument()) {
4464       // We only take known information from the argument
4465       // so we do not need to track a dependence.
4466       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4467           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4468       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4469     }
4470     return Changed;
4471   }
4472 
4473   /// See AbstractAttribute::trackStatistics()
4474   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4475 };
4476 
4477 /// Align attribute deduction for a call site return value.
4478 struct AAAlignCallSiteReturned final
4479     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4480   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4481   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4482       : Base(IRP, A) {}
4483 
4484   /// See AbstractAttribute::initialize(...).
4485   void initialize(Attributor &A) override {
4486     Base::initialize(A);
4487     Function *F = getAssociatedFunction();
4488     if (!F || F->isDeclaration())
4489       indicatePessimisticFixpoint();
4490   }
4491 
4492   /// See AbstractAttribute::trackStatistics()
4493   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4494 };
4495 
4496 /// ------------------ Function No-Return Attribute ----------------------------
4497 struct AANoReturnImpl : public AANoReturn {
4498   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4499 
4500   /// See AbstractAttribute::initialize(...).
4501   void initialize(Attributor &A) override {
4502     AANoReturn::initialize(A);
4503     Function *F = getAssociatedFunction();
4504     if (!F || F->isDeclaration())
4505       indicatePessimisticFixpoint();
4506   }
4507 
4508   /// See AbstractAttribute::getAsStr().
4509   const std::string getAsStr() const override {
4510     return getAssumed() ? "noreturn" : "may-return";
4511   }
4512 
4513   /// See AbstractAttribute::updateImpl(Attributor &A).
4514   virtual ChangeStatus updateImpl(Attributor &A) override {
4515     auto CheckForNoReturn = [](Instruction &) { return false; };
4516     bool UsedAssumedInformation = false;
4517     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4518                                    {(unsigned)Instruction::Ret},
4519                                    UsedAssumedInformation))
4520       return indicatePessimisticFixpoint();
4521     return ChangeStatus::UNCHANGED;
4522   }
4523 };
4524 
4525 struct AANoReturnFunction final : AANoReturnImpl {
4526   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4527       : AANoReturnImpl(IRP, A) {}
4528 
4529   /// See AbstractAttribute::trackStatistics()
4530   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4531 };
4532 
4533 /// NoReturn attribute deduction for a call sites.
4534 struct AANoReturnCallSite final : AANoReturnImpl {
4535   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4536       : AANoReturnImpl(IRP, A) {}
4537 
4538   /// See AbstractAttribute::initialize(...).
4539   void initialize(Attributor &A) override {
4540     AANoReturnImpl::initialize(A);
4541     if (Function *F = getAssociatedFunction()) {
4542       const IRPosition &FnPos = IRPosition::function(*F);
4543       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4544       if (!FnAA.isAssumedNoReturn())
4545         indicatePessimisticFixpoint();
4546     }
4547   }
4548 
4549   /// See AbstractAttribute::updateImpl(...).
4550   ChangeStatus updateImpl(Attributor &A) override {
4551     // TODO: Once we have call site specific value information we can provide
4552     //       call site specific liveness information and then it makes
4553     //       sense to specialize attributes for call sites arguments instead of
4554     //       redirecting requests to the callee argument.
4555     Function *F = getAssociatedFunction();
4556     const IRPosition &FnPos = IRPosition::function(*F);
4557     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4558     return clampStateAndIndicateChange(getState(), FnAA.getState());
4559   }
4560 
4561   /// See AbstractAttribute::trackStatistics()
4562   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4563 };
4564 
4565 /// ----------------------- Variable Capturing ---------------------------------
4566 
4567 /// A class to hold the state of for no-capture attributes.
4568 struct AANoCaptureImpl : public AANoCapture {
4569   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4570 
4571   /// See AbstractAttribute::initialize(...).
4572   void initialize(Attributor &A) override {
4573     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4574       indicateOptimisticFixpoint();
4575       return;
4576     }
4577     Function *AnchorScope = getAnchorScope();
4578     if (isFnInterfaceKind() &&
4579         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4580       indicatePessimisticFixpoint();
4581       return;
4582     }
4583 
4584     // You cannot "capture" null in the default address space.
4585     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4586         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4587       indicateOptimisticFixpoint();
4588       return;
4589     }
4590 
4591     const Function *F =
4592         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4593 
4594     // Check what state the associated function can actually capture.
4595     if (F)
4596       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4597     else
4598       indicatePessimisticFixpoint();
4599   }
4600 
4601   /// See AbstractAttribute::updateImpl(...).
4602   ChangeStatus updateImpl(Attributor &A) override;
4603 
4604   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4605   virtual void
4606   getDeducedAttributes(LLVMContext &Ctx,
4607                        SmallVectorImpl<Attribute> &Attrs) const override {
4608     if (!isAssumedNoCaptureMaybeReturned())
4609       return;
4610 
4611     if (isArgumentPosition()) {
4612       if (isAssumedNoCapture())
4613         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4614       else if (ManifestInternal)
4615         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4616     }
4617   }
4618 
4619   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4620   /// depending on the ability of the function associated with \p IRP to capture
4621   /// state in memory and through "returning/throwing", respectively.
4622   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4623                                                    const Function &F,
4624                                                    BitIntegerState &State) {
4625     // TODO: Once we have memory behavior attributes we should use them here.
4626 
4627     // If we know we cannot communicate or write to memory, we do not care about
4628     // ptr2int anymore.
4629     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4630         F.getReturnType()->isVoidTy()) {
4631       State.addKnownBits(NO_CAPTURE);
4632       return;
4633     }
4634 
4635     // A function cannot capture state in memory if it only reads memory, it can
4636     // however return/throw state and the state might be influenced by the
4637     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4638     if (F.onlyReadsMemory())
4639       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4640 
4641     // A function cannot communicate state back if it does not through
4642     // exceptions and doesn not return values.
4643     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4644       State.addKnownBits(NOT_CAPTURED_IN_RET);
4645 
4646     // Check existing "returned" attributes.
4647     int ArgNo = IRP.getCalleeArgNo();
4648     if (F.doesNotThrow() && ArgNo >= 0) {
4649       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4650         if (F.hasParamAttribute(u, Attribute::Returned)) {
4651           if (u == unsigned(ArgNo))
4652             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4653           else if (F.onlyReadsMemory())
4654             State.addKnownBits(NO_CAPTURE);
4655           else
4656             State.addKnownBits(NOT_CAPTURED_IN_RET);
4657           break;
4658         }
4659     }
4660   }
4661 
4662   /// See AbstractState::getAsStr().
4663   const std::string getAsStr() const override {
4664     if (isKnownNoCapture())
4665       return "known not-captured";
4666     if (isAssumedNoCapture())
4667       return "assumed not-captured";
4668     if (isKnownNoCaptureMaybeReturned())
4669       return "known not-captured-maybe-returned";
4670     if (isAssumedNoCaptureMaybeReturned())
4671       return "assumed not-captured-maybe-returned";
4672     return "assumed-captured";
4673   }
4674 };
4675 
4676 /// Attributor-aware capture tracker.
4677 struct AACaptureUseTracker final : public CaptureTracker {
4678 
4679   /// Create a capture tracker that can lookup in-flight abstract attributes
4680   /// through the Attributor \p A.
4681   ///
4682   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4683   /// search is stopped. If a use leads to a return instruction,
4684   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4685   /// If a use leads to a ptr2int which may capture the value,
4686   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4687   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4688   /// set. All values in \p PotentialCopies are later tracked as well. For every
4689   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4690   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4691   /// conservatively set to true.
4692   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4693                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4694                       SmallSetVector<Value *, 4> &PotentialCopies,
4695                       unsigned &RemainingUsesToExplore)
4696       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4697         PotentialCopies(PotentialCopies),
4698         RemainingUsesToExplore(RemainingUsesToExplore) {}
4699 
4700   /// Determine if \p V maybe captured. *Also updates the state!*
4701   bool valueMayBeCaptured(const Value *V) {
4702     if (V->getType()->isPointerTy()) {
4703       PointerMayBeCaptured(V, this);
4704     } else {
4705       State.indicatePessimisticFixpoint();
4706     }
4707     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4708   }
4709 
4710   /// See CaptureTracker::tooManyUses().
4711   void tooManyUses() override {
4712     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4713   }
4714 
4715   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4716     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4717       return true;
4718     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4719         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4720     return DerefAA.getAssumedDereferenceableBytes();
4721   }
4722 
4723   /// See CaptureTracker::captured(...).
4724   bool captured(const Use *U) override {
4725     Instruction *UInst = cast<Instruction>(U->getUser());
4726     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4727                       << "\n");
4728 
4729     // Because we may reuse the tracker multiple times we keep track of the
4730     // number of explored uses ourselves as well.
4731     if (RemainingUsesToExplore-- == 0) {
4732       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4733       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4734                           /* Return */ true);
4735     }
4736 
4737     // Deal with ptr2int by following uses.
4738     if (isa<PtrToIntInst>(UInst)) {
4739       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4740       return valueMayBeCaptured(UInst);
4741     }
4742 
4743     // Explicitly catch return instructions.
4744     if (isa<ReturnInst>(UInst))
4745       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4746                           /* Return */ true);
4747 
4748     // For now we only use special logic for call sites. However, the tracker
4749     // itself knows about a lot of other non-capturing cases already.
4750     auto *CB = dyn_cast<CallBase>(UInst);
4751     if (!CB || !CB->isArgOperand(U))
4752       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4753                           /* Return */ true);
4754 
4755     unsigned ArgNo = CB->getArgOperandNo(U);
4756     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4757     // If we have a abstract no-capture attribute for the argument we can use
4758     // it to justify a non-capture attribute here. This allows recursion!
4759     auto &ArgNoCaptureAA =
4760         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4761     if (ArgNoCaptureAA.isAssumedNoCapture())
4762       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4763                           /* Return */ false);
4764     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4765       addPotentialCopy(*CB);
4766       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4767                           /* Return */ false);
4768     }
4769 
4770     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4771     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4772                         /* Return */ true);
4773   }
4774 
4775   /// Register \p CS as potential copy of the value we are checking.
4776   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4777 
4778   /// See CaptureTracker::shouldExplore(...).
4779   bool shouldExplore(const Use *U) override {
4780     // Check liveness and ignore droppable users.
4781     bool UsedAssumedInformation = false;
4782     return !U->getUser()->isDroppable() &&
4783            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4784                             UsedAssumedInformation);
4785   }
4786 
4787   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4788   /// \p CapturedInRet, then return the appropriate value for use in the
4789   /// CaptureTracker::captured() interface.
4790   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4791                     bool CapturedInRet) {
4792     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4793                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4794     if (CapturedInMem)
4795       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4796     if (CapturedInInt)
4797       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4798     if (CapturedInRet)
4799       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4800     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4801   }
4802 
4803 private:
4804   /// The attributor providing in-flight abstract attributes.
4805   Attributor &A;
4806 
4807   /// The abstract attribute currently updated.
4808   AANoCapture &NoCaptureAA;
4809 
4810   /// The abstract liveness state.
4811   const AAIsDead &IsDeadAA;
4812 
4813   /// The state currently updated.
4814   AANoCapture::StateType &State;
4815 
4816   /// Set of potential copies of the tracked value.
4817   SmallSetVector<Value *, 4> &PotentialCopies;
4818 
4819   /// Global counter to limit the number of explored uses.
4820   unsigned &RemainingUsesToExplore;
4821 };
4822 
4823 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4824   const IRPosition &IRP = getIRPosition();
4825   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4826                                   : &IRP.getAssociatedValue();
4827   if (!V)
4828     return indicatePessimisticFixpoint();
4829 
4830   const Function *F =
4831       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4832   assert(F && "Expected a function!");
4833   const IRPosition &FnPos = IRPosition::function(*F);
4834   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4835 
4836   AANoCapture::StateType T;
4837 
4838   // Readonly means we cannot capture through memory.
4839   const auto &FnMemAA =
4840       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4841   if (FnMemAA.isAssumedReadOnly()) {
4842     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4843     if (FnMemAA.isKnownReadOnly())
4844       addKnownBits(NOT_CAPTURED_IN_MEM);
4845     else
4846       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4847   }
4848 
4849   // Make sure all returned values are different than the underlying value.
4850   // TODO: we could do this in a more sophisticated way inside
4851   //       AAReturnedValues, e.g., track all values that escape through returns
4852   //       directly somehow.
4853   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4854     bool SeenConstant = false;
4855     for (auto &It : RVAA.returned_values()) {
4856       if (isa<Constant>(It.first)) {
4857         if (SeenConstant)
4858           return false;
4859         SeenConstant = true;
4860       } else if (!isa<Argument>(It.first) ||
4861                  It.first == getAssociatedArgument())
4862         return false;
4863     }
4864     return true;
4865   };
4866 
4867   const auto &NoUnwindAA =
4868       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4869   if (NoUnwindAA.isAssumedNoUnwind()) {
4870     bool IsVoidTy = F->getReturnType()->isVoidTy();
4871     const AAReturnedValues *RVAA =
4872         IsVoidTy ? nullptr
4873                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4874 
4875                                                  DepClassTy::OPTIONAL);
4876     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4877       T.addKnownBits(NOT_CAPTURED_IN_RET);
4878       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4879         return ChangeStatus::UNCHANGED;
4880       if (NoUnwindAA.isKnownNoUnwind() &&
4881           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4882         addKnownBits(NOT_CAPTURED_IN_RET);
4883         if (isKnown(NOT_CAPTURED_IN_MEM))
4884           return indicateOptimisticFixpoint();
4885       }
4886     }
4887   }
4888 
4889   // Use the CaptureTracker interface and logic with the specialized tracker,
4890   // defined in AACaptureUseTracker, that can look at in-flight abstract
4891   // attributes and directly updates the assumed state.
4892   SmallSetVector<Value *, 4> PotentialCopies;
4893   unsigned RemainingUsesToExplore =
4894       getDefaultMaxUsesToExploreForCaptureTracking();
4895   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4896                               RemainingUsesToExplore);
4897 
4898   // Check all potential copies of the associated value until we can assume
4899   // none will be captured or we have to assume at least one might be.
4900   unsigned Idx = 0;
4901   PotentialCopies.insert(V);
4902   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4903     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4904 
4905   AANoCapture::StateType &S = getState();
4906   auto Assumed = S.getAssumed();
4907   S.intersectAssumedBits(T.getAssumed());
4908   if (!isAssumedNoCaptureMaybeReturned())
4909     return indicatePessimisticFixpoint();
4910   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4911                                    : ChangeStatus::CHANGED;
4912 }
4913 
4914 /// NoCapture attribute for function arguments.
4915 struct AANoCaptureArgument final : AANoCaptureImpl {
4916   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4917       : AANoCaptureImpl(IRP, A) {}
4918 
4919   /// See AbstractAttribute::trackStatistics()
4920   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4921 };
4922 
4923 /// NoCapture attribute for call site arguments.
4924 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4925   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4926       : AANoCaptureImpl(IRP, A) {}
4927 
4928   /// See AbstractAttribute::initialize(...).
4929   void initialize(Attributor &A) override {
4930     if (Argument *Arg = getAssociatedArgument())
4931       if (Arg->hasByValAttr())
4932         indicateOptimisticFixpoint();
4933     AANoCaptureImpl::initialize(A);
4934   }
4935 
4936   /// See AbstractAttribute::updateImpl(...).
4937   ChangeStatus updateImpl(Attributor &A) override {
4938     // TODO: Once we have call site specific value information we can provide
4939     //       call site specific liveness information and then it makes
4940     //       sense to specialize attributes for call sites arguments instead of
4941     //       redirecting requests to the callee argument.
4942     Argument *Arg = getAssociatedArgument();
4943     if (!Arg)
4944       return indicatePessimisticFixpoint();
4945     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4946     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
4947     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4948   }
4949 
4950   /// See AbstractAttribute::trackStatistics()
4951   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4952 };
4953 
4954 /// NoCapture attribute for floating values.
4955 struct AANoCaptureFloating final : AANoCaptureImpl {
4956   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4957       : AANoCaptureImpl(IRP, A) {}
4958 
4959   /// See AbstractAttribute::trackStatistics()
4960   void trackStatistics() const override {
4961     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4962   }
4963 };
4964 
4965 /// NoCapture attribute for function return value.
4966 struct AANoCaptureReturned final : AANoCaptureImpl {
4967   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4968       : AANoCaptureImpl(IRP, A) {
4969     llvm_unreachable("NoCapture is not applicable to function returns!");
4970   }
4971 
4972   /// See AbstractAttribute::initialize(...).
4973   void initialize(Attributor &A) override {
4974     llvm_unreachable("NoCapture is not applicable to function returns!");
4975   }
4976 
4977   /// See AbstractAttribute::updateImpl(...).
4978   ChangeStatus updateImpl(Attributor &A) override {
4979     llvm_unreachable("NoCapture is not applicable to function returns!");
4980   }
4981 
4982   /// See AbstractAttribute::trackStatistics()
4983   void trackStatistics() const override {}
4984 };
4985 
4986 /// NoCapture attribute deduction for a call site return value.
4987 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4988   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4989       : AANoCaptureImpl(IRP, A) {}
4990 
4991   /// See AbstractAttribute::initialize(...).
4992   void initialize(Attributor &A) override {
4993     const Function *F = getAnchorScope();
4994     // Check what state the associated function can actually capture.
4995     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4996   }
4997 
4998   /// See AbstractAttribute::trackStatistics()
4999   void trackStatistics() const override {
5000     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5001   }
5002 };
5003 
5004 /// ------------------ Value Simplify Attribute ----------------------------
5005 
5006 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5007   // FIXME: Add a typecast support.
5008   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5009       SimplifiedAssociatedValue, Other, Ty);
5010   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5011     return false;
5012 
5013   LLVM_DEBUG({
5014     if (SimplifiedAssociatedValue.hasValue())
5015       dbgs() << "[ValueSimplify] is assumed to be "
5016              << **SimplifiedAssociatedValue << "\n";
5017     else
5018       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5019   });
5020   return true;
5021 }
5022 
5023 struct AAValueSimplifyImpl : AAValueSimplify {
5024   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5025       : AAValueSimplify(IRP, A) {}
5026 
5027   /// See AbstractAttribute::initialize(...).
5028   void initialize(Attributor &A) override {
5029     if (getAssociatedValue().getType()->isVoidTy())
5030       indicatePessimisticFixpoint();
5031   }
5032 
5033   /// See AbstractAttribute::getAsStr().
5034   const std::string getAsStr() const override {
5035     LLVM_DEBUG({
5036       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5037       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5038         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5039     });
5040     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5041                           : "not-simple";
5042   }
5043 
5044   /// See AbstractAttribute::trackStatistics()
5045   void trackStatistics() const override {}
5046 
5047   /// See AAValueSimplify::getAssumedSimplifiedValue()
5048   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5049     return SimplifiedAssociatedValue;
5050   }
5051 
5052   /// Return a value we can use as replacement for the associated one, or
5053   /// nullptr if we don't have one that makes sense.
5054   Value *getReplacementValue(Attributor &A) const {
5055     Value *NewV;
5056     NewV = SimplifiedAssociatedValue.hasValue()
5057                ? SimplifiedAssociatedValue.getValue()
5058                : UndefValue::get(getAssociatedType());
5059     if (!NewV)
5060       return nullptr;
5061     NewV = AA::getWithType(*NewV, *getAssociatedType());
5062     if (!NewV || NewV == &getAssociatedValue())
5063       return nullptr;
5064     const Instruction *CtxI = getCtxI();
5065     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5066       return nullptr;
5067     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5068       return nullptr;
5069     return NewV;
5070   }
5071 
5072   /// Helper function for querying AAValueSimplify and updating candicate.
5073   /// \param IRP The value position we are trying to unify with SimplifiedValue
5074   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5075                       const IRPosition &IRP, bool Simplify = true) {
5076     bool UsedAssumedInformation = false;
5077     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5078     if (Simplify)
5079       QueryingValueSimplified =
5080           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5081     return unionAssumed(QueryingValueSimplified);
5082   }
5083 
5084   /// Returns a candidate is found or not
5085   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5086     if (!getAssociatedValue().getType()->isIntegerTy())
5087       return false;
5088 
5089     // This will also pass the call base context.
5090     const auto &AA =
5091         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5092 
5093     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5094 
5095     if (!COpt.hasValue()) {
5096       SimplifiedAssociatedValue = llvm::None;
5097       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5098       return true;
5099     }
5100     if (auto *C = COpt.getValue()) {
5101       SimplifiedAssociatedValue = C;
5102       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5103       return true;
5104     }
5105     return false;
5106   }
5107 
5108   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5109     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5110       return true;
5111     if (askSimplifiedValueFor<AAPotentialValues>(A))
5112       return true;
5113     return false;
5114   }
5115 
5116   /// See AbstractAttribute::manifest(...).
5117   ChangeStatus manifest(Attributor &A) override {
5118     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5119     if (getAssociatedValue().user_empty())
5120       return Changed;
5121 
5122     if (auto *NewV = getReplacementValue(A)) {
5123       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5124                         << *NewV << " :: " << *this << "\n");
5125       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5126         Changed = ChangeStatus::CHANGED;
5127     }
5128 
5129     return Changed | AAValueSimplify::manifest(A);
5130   }
5131 
5132   /// See AbstractState::indicatePessimisticFixpoint(...).
5133   ChangeStatus indicatePessimisticFixpoint() override {
5134     SimplifiedAssociatedValue = &getAssociatedValue();
5135     return AAValueSimplify::indicatePessimisticFixpoint();
5136   }
5137 
5138   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5139                          LoadInst &L, function_ref<bool(Value &)> Union) {
5140     auto UnionWrapper = [&](Value &V, Value &Obj) {
5141       if (isa<AllocaInst>(Obj))
5142         return Union(V);
5143       if (!AA::isDynamicallyUnique(A, AA, V))
5144         return false;
5145       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5146         return false;
5147       return Union(V);
5148     };
5149 
5150     Value &Ptr = *L.getPointerOperand();
5151     SmallVector<Value *, 8> Objects;
5152     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5153       return false;
5154 
5155     for (Value *Obj : Objects) {
5156       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5157       if (isa<UndefValue>(Obj))
5158         continue;
5159       if (isa<ConstantPointerNull>(Obj)) {
5160         // A null pointer access can be undefined but any offset from null may
5161         // be OK. We do not try to optimize the latter.
5162         bool UsedAssumedInformation = false;
5163         if (!NullPointerIsDefined(L.getFunction(),
5164                                   Ptr.getType()->getPointerAddressSpace()) &&
5165             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5166           continue;
5167         return false;
5168       }
5169       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj))
5170         return false;
5171       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType());
5172       if (!InitialVal || !Union(*InitialVal))
5173         return false;
5174 
5175       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5176                            "propagation, checking accesses next.\n");
5177 
5178       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5179         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5180         if (!Acc.isWrite())
5181           return true;
5182         if (Acc.isWrittenValueYetUndetermined())
5183           return true;
5184         Value *Content = Acc.getWrittenValue();
5185         if (!Content)
5186           return false;
5187         Value *CastedContent =
5188             AA::getWithType(*Content, *AA.getAssociatedType());
5189         if (!CastedContent)
5190           return false;
5191         if (IsExact)
5192           return UnionWrapper(*CastedContent, *Obj);
5193         if (auto *C = dyn_cast<Constant>(CastedContent))
5194           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5195             return UnionWrapper(*CastedContent, *Obj);
5196         return false;
5197       };
5198 
5199       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5200                                            DepClassTy::REQUIRED);
5201       if (!PI.forallInterferingAccesses(L, CheckAccess))
5202         return false;
5203     }
5204     return true;
5205   }
5206 };
5207 
5208 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5209   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5210       : AAValueSimplifyImpl(IRP, A) {}
5211 
5212   void initialize(Attributor &A) override {
5213     AAValueSimplifyImpl::initialize(A);
5214     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5215       indicatePessimisticFixpoint();
5216     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5217                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5218                 /* IgnoreSubsumingPositions */ true))
5219       indicatePessimisticFixpoint();
5220 
5221     // FIXME: This is a hack to prevent us from propagating function poiner in
5222     // the new pass manager CGSCC pass as it creates call edges the
5223     // CallGraphUpdater cannot handle yet.
5224     Value &V = getAssociatedValue();
5225     if (V.getType()->isPointerTy() &&
5226         V.getType()->getPointerElementType()->isFunctionTy() &&
5227         !A.isModulePass())
5228       indicatePessimisticFixpoint();
5229   }
5230 
5231   /// See AbstractAttribute::updateImpl(...).
5232   ChangeStatus updateImpl(Attributor &A) override {
5233     // Byval is only replacable if it is readonly otherwise we would write into
5234     // the replaced value and not the copy that byval creates implicitly.
5235     Argument *Arg = getAssociatedArgument();
5236     if (Arg->hasByValAttr()) {
5237       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5238       //       there is no race by not copying a constant byval.
5239       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5240                                                        DepClassTy::REQUIRED);
5241       if (!MemAA.isAssumedReadOnly())
5242         return indicatePessimisticFixpoint();
5243     }
5244 
5245     auto Before = SimplifiedAssociatedValue;
5246 
5247     auto PredForCallSite = [&](AbstractCallSite ACS) {
5248       const IRPosition &ACSArgPos =
5249           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5250       // Check if a coresponding argument was found or if it is on not
5251       // associated (which can happen for callback calls).
5252       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5253         return false;
5254 
5255       // Simplify the argument operand explicitly and check if the result is
5256       // valid in the current scope. This avoids refering to simplified values
5257       // in other functions, e.g., we don't want to say a an argument in a
5258       // static function is actually an argument in a different function.
5259       bool UsedAssumedInformation = false;
5260       Optional<Constant *> SimpleArgOp =
5261           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5262       if (!SimpleArgOp.hasValue())
5263         return true;
5264       if (!SimpleArgOp.getValue())
5265         return false;
5266       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5267         return false;
5268       return unionAssumed(*SimpleArgOp);
5269     };
5270 
5271     // Generate a answer specific to a call site context.
5272     bool Success;
5273     bool AllCallSitesKnown;
5274     if (hasCallBaseContext() &&
5275         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5276       Success = PredForCallSite(
5277           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5278     else
5279       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5280                                        AllCallSitesKnown);
5281 
5282     if (!Success)
5283       if (!askSimplifiedValueForOtherAAs(A))
5284         return indicatePessimisticFixpoint();
5285 
5286     // If a candicate was found in this update, return CHANGED.
5287     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5288                                                : ChangeStatus ::CHANGED;
5289   }
5290 
5291   /// See AbstractAttribute::trackStatistics()
5292   void trackStatistics() const override {
5293     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5294   }
5295 };
5296 
5297 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5298   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5299       : AAValueSimplifyImpl(IRP, A) {}
5300 
5301   /// See AAValueSimplify::getAssumedSimplifiedValue()
5302   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5303     if (!isValidState())
5304       return nullptr;
5305     return SimplifiedAssociatedValue;
5306   }
5307 
5308   /// See AbstractAttribute::updateImpl(...).
5309   ChangeStatus updateImpl(Attributor &A) override {
5310     auto Before = SimplifiedAssociatedValue;
5311 
5312     auto PredForReturned = [&](Value &V) {
5313       return checkAndUpdate(A, *this,
5314                             IRPosition::value(V, getCallBaseContext()));
5315     };
5316 
5317     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5318       if (!askSimplifiedValueForOtherAAs(A))
5319         return indicatePessimisticFixpoint();
5320 
5321     // If a candicate was found in this update, return CHANGED.
5322     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5323                                                : ChangeStatus ::CHANGED;
5324   }
5325 
5326   ChangeStatus manifest(Attributor &A) override {
5327     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5328 
5329     if (auto *NewV = getReplacementValue(A)) {
5330       auto PredForReturned =
5331           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5332             for (ReturnInst *RI : RetInsts) {
5333               Value *ReturnedVal = RI->getReturnValue();
5334               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5335                 return true;
5336               assert(RI->getFunction() == getAnchorScope() &&
5337                      "ReturnInst in wrong function!");
5338               LLVM_DEBUG(dbgs()
5339                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5340                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5341               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5342                 Changed = ChangeStatus::CHANGED;
5343             }
5344             return true;
5345           };
5346       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5347     }
5348 
5349     return Changed | AAValueSimplify::manifest(A);
5350   }
5351 
5352   /// See AbstractAttribute::trackStatistics()
5353   void trackStatistics() const override {
5354     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5355   }
5356 };
5357 
5358 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5359   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5360       : AAValueSimplifyImpl(IRP, A) {}
5361 
5362   /// See AbstractAttribute::initialize(...).
5363   void initialize(Attributor &A) override {
5364     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
5365     //        Needs investigation.
5366     // AAValueSimplifyImpl::initialize(A);
5367     Value &V = getAnchorValue();
5368 
5369     // TODO: add other stuffs
5370     if (isa<Constant>(V))
5371       indicatePessimisticFixpoint();
5372   }
5373 
5374   /// Check if \p Cmp is a comparison we can simplify.
5375   ///
5376   /// We handle multiple cases, one in which at least one operand is an
5377   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5378   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5379   /// will be updated.
5380   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5381     auto Union = [&](Value &V) {
5382       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5383           SimplifiedAssociatedValue, &V, V.getType());
5384       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5385     };
5386 
5387     Value *LHS = Cmp.getOperand(0);
5388     Value *RHS = Cmp.getOperand(1);
5389 
5390     // Simplify the operands first.
5391     bool UsedAssumedInformation = false;
5392     const auto &SimplifiedLHS =
5393         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5394                                *this, UsedAssumedInformation);
5395     if (!SimplifiedLHS.hasValue())
5396       return true;
5397     if (!SimplifiedLHS.getValue())
5398       return false;
5399     LHS = *SimplifiedLHS;
5400 
5401     const auto &SimplifiedRHS =
5402         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5403                                *this, UsedAssumedInformation);
5404     if (!SimplifiedRHS.hasValue())
5405       return true;
5406     if (!SimplifiedRHS.getValue())
5407       return false;
5408     RHS = *SimplifiedRHS;
5409 
5410     LLVMContext &Ctx = Cmp.getContext();
5411     // Handle the trivial case first in which we don't even need to think about
5412     // null or non-null.
5413     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5414       Constant *NewVal =
5415           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5416       if (!Union(*NewVal))
5417         return false;
5418       if (!UsedAssumedInformation)
5419         indicateOptimisticFixpoint();
5420       return true;
5421     }
5422 
5423     // From now on we only handle equalities (==, !=).
5424     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5425     if (!ICmp || !ICmp->isEquality())
5426       return false;
5427 
5428     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5429     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5430     if (!LHSIsNull && !RHSIsNull)
5431       return false;
5432 
5433     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5434     // non-nullptr operand and if we assume it's non-null we can conclude the
5435     // result of the comparison.
5436     assert((LHSIsNull || RHSIsNull) &&
5437            "Expected nullptr versus non-nullptr comparison at this point");
5438 
5439     // The index is the operand that we assume is not null.
5440     unsigned PtrIdx = LHSIsNull;
5441     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5442         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5443         DepClassTy::REQUIRED);
5444     if (!PtrNonNullAA.isAssumedNonNull())
5445       return false;
5446     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5447 
5448     // The new value depends on the predicate, true for != and false for ==.
5449     Constant *NewVal = ConstantInt::get(
5450         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5451     if (!Union(*NewVal))
5452       return false;
5453 
5454     if (!UsedAssumedInformation)
5455       indicateOptimisticFixpoint();
5456 
5457     return true;
5458   }
5459 
5460   bool updateWithLoad(Attributor &A, LoadInst &L) {
5461     auto Union = [&](Value &V) {
5462       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5463           SimplifiedAssociatedValue, &V, L.getType());
5464       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5465     };
5466     return handleLoad(A, *this, L, Union);
5467   }
5468 
5469   /// See AbstractAttribute::updateImpl(...).
5470   ChangeStatus updateImpl(Attributor &A) override {
5471     auto Before = SimplifiedAssociatedValue;
5472 
5473     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5474                             bool Stripped) -> bool {
5475       auto &AA = A.getAAFor<AAValueSimplify>(
5476           *this, IRPosition::value(V, getCallBaseContext()),
5477           DepClassTy::REQUIRED);
5478       if (!Stripped && this == &AA) {
5479         if (auto *LI = dyn_cast<LoadInst>(&V))
5480           return updateWithLoad(A, *LI);
5481         if (auto *Cmp = dyn_cast<CmpInst>(&V))
5482           return handleCmp(A, *Cmp);
5483         // TODO: Look the instruction and check recursively.
5484 
5485         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5486                           << "\n");
5487         return false;
5488       }
5489       return checkAndUpdate(A, *this,
5490                             IRPosition::value(V, getCallBaseContext()));
5491     };
5492 
5493     bool Dummy = false;
5494     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5495                                      VisitValueCB, getCtxI(),
5496                                      /* UseValueSimplify */ false))
5497       if (!askSimplifiedValueForOtherAAs(A))
5498         return indicatePessimisticFixpoint();
5499 
5500     // If a candicate was found in this update, return CHANGED.
5501     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5502                                                : ChangeStatus ::CHANGED;
5503   }
5504 
5505   /// See AbstractAttribute::trackStatistics()
5506   void trackStatistics() const override {
5507     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5508   }
5509 };
5510 
5511 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5512   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5513       : AAValueSimplifyImpl(IRP, A) {}
5514 
5515   /// See AbstractAttribute::initialize(...).
5516   void initialize(Attributor &A) override {
5517     SimplifiedAssociatedValue = nullptr;
5518     indicateOptimisticFixpoint();
5519   }
5520   /// See AbstractAttribute::initialize(...).
5521   ChangeStatus updateImpl(Attributor &A) override {
5522     llvm_unreachable(
5523         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5524   }
5525   /// See AbstractAttribute::trackStatistics()
5526   void trackStatistics() const override {
5527     STATS_DECLTRACK_FN_ATTR(value_simplify)
5528   }
5529 };
5530 
5531 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5532   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5533       : AAValueSimplifyFunction(IRP, A) {}
5534   /// See AbstractAttribute::trackStatistics()
5535   void trackStatistics() const override {
5536     STATS_DECLTRACK_CS_ATTR(value_simplify)
5537   }
5538 };
5539 
5540 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5541   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5542       : AAValueSimplifyImpl(IRP, A) {}
5543 
5544   void initialize(Attributor &A) override {
5545     if (!getAssociatedFunction())
5546       indicatePessimisticFixpoint();
5547   }
5548 
5549   /// See AbstractAttribute::updateImpl(...).
5550   ChangeStatus updateImpl(Attributor &A) override {
5551     auto Before = SimplifiedAssociatedValue;
5552     auto &RetAA = A.getAAFor<AAReturnedValues>(
5553         *this, IRPosition::function(*getAssociatedFunction()),
5554         DepClassTy::REQUIRED);
5555     auto PredForReturned =
5556         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5557           bool UsedAssumedInformation = false;
5558           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5559               &RetVal, *cast<CallBase>(getCtxI()), *this,
5560               UsedAssumedInformation);
5561           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5562               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5563           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5564         };
5565     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5566       if (!askSimplifiedValueForOtherAAs(A))
5567         return indicatePessimisticFixpoint();
5568     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5569                                                : ChangeStatus ::CHANGED;
5570   }
5571 
5572   void trackStatistics() const override {
5573     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5574   }
5575 };
5576 
5577 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5578   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5579       : AAValueSimplifyFloating(IRP, A) {}
5580 
5581   /// See AbstractAttribute::manifest(...).
5582   ChangeStatus manifest(Attributor &A) override {
5583     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5584 
5585     if (auto *NewV = getReplacementValue(A)) {
5586       Use &U = cast<CallBase>(&getAnchorValue())
5587                    ->getArgOperandUse(getCallSiteArgNo());
5588       if (A.changeUseAfterManifest(U, *NewV))
5589         Changed = ChangeStatus::CHANGED;
5590     }
5591 
5592     return Changed | AAValueSimplify::manifest(A);
5593   }
5594 
5595   void trackStatistics() const override {
5596     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5597   }
5598 };
5599 
5600 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5601 struct AAHeapToStackFunction final : public AAHeapToStack {
5602 
5603   struct AllocationInfo {
5604     /// The call that allocates the memory.
5605     CallBase *const CB;
5606 
5607     /// The kind of allocation.
5608     const enum class AllocationKind {
5609       MALLOC,
5610       CALLOC,
5611       ALIGNED_ALLOC,
5612     } Kind;
5613 
5614     /// The library function id for the allocation.
5615     LibFunc LibraryFunctionId = NotLibFunc;
5616 
5617     /// The status wrt. a rewrite.
5618     enum {
5619       STACK_DUE_TO_USE,
5620       STACK_DUE_TO_FREE,
5621       INVALID,
5622     } Status = STACK_DUE_TO_USE;
5623 
5624     /// Flag to indicate if we encountered a use that might free this allocation
5625     /// but which is not in the deallocation infos.
5626     bool HasPotentiallyFreeingUnknownUses = false;
5627 
5628     /// The set of free calls that use this allocation.
5629     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5630   };
5631 
5632   struct DeallocationInfo {
5633     /// The call that deallocates the memory.
5634     CallBase *const CB;
5635 
5636     /// Flag to indicate if we don't know all objects this deallocation might
5637     /// free.
5638     bool MightFreeUnknownObjects = false;
5639 
5640     /// The set of allocation calls that are potentially freed.
5641     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5642   };
5643 
5644   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5645       : AAHeapToStack(IRP, A) {}
5646 
5647   ~AAHeapToStackFunction() {
5648     // Ensure we call the destructor so we release any memory allocated in the
5649     // sets.
5650     for (auto &It : AllocationInfos)
5651       It.getSecond()->~AllocationInfo();
5652     for (auto &It : DeallocationInfos)
5653       It.getSecond()->~DeallocationInfo();
5654   }
5655 
5656   void initialize(Attributor &A) override {
5657     AAHeapToStack::initialize(A);
5658 
5659     const Function *F = getAnchorScope();
5660     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5661 
5662     auto AllocationIdentifierCB = [&](Instruction &I) {
5663       CallBase *CB = dyn_cast<CallBase>(&I);
5664       if (!CB)
5665         return true;
5666       if (isFreeCall(CB, TLI)) {
5667         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5668         return true;
5669       }
5670       bool IsMalloc = isMallocLikeFn(CB, TLI);
5671       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5672       bool IsCalloc =
5673           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5674       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5675         return true;
5676       auto Kind =
5677           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5678                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5679                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5680 
5681       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5682       AllocationInfos[CB] = AI;
5683       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5684       return true;
5685     };
5686 
5687     bool UsedAssumedInformation = false;
5688     bool Success = A.checkForAllCallLikeInstructions(
5689         AllocationIdentifierCB, *this, UsedAssumedInformation,
5690         /* CheckBBLivenessOnly */ false,
5691         /* CheckPotentiallyDead */ true);
5692     (void)Success;
5693     assert(Success && "Did not expect the call base visit callback to fail!");
5694   }
5695 
5696   const std::string getAsStr() const override {
5697     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5698     for (const auto &It : AllocationInfos) {
5699       if (It.second->Status == AllocationInfo::INVALID)
5700         ++NumInvalidMallocs;
5701       else
5702         ++NumH2SMallocs;
5703     }
5704     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5705            std::to_string(NumInvalidMallocs);
5706   }
5707 
5708   /// See AbstractAttribute::trackStatistics().
5709   void trackStatistics() const override {
5710     STATS_DECL(
5711         MallocCalls, Function,
5712         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5713     for (auto &It : AllocationInfos)
5714       if (It.second->Status != AllocationInfo::INVALID)
5715         ++BUILD_STAT_NAME(MallocCalls, Function);
5716   }
5717 
5718   bool isAssumedHeapToStack(const CallBase &CB) const override {
5719     if (isValidState())
5720       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5721         return AI->Status != AllocationInfo::INVALID;
5722     return false;
5723   }
5724 
5725   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5726     if (!isValidState())
5727       return false;
5728 
5729     for (auto &It : AllocationInfos) {
5730       AllocationInfo &AI = *It.second;
5731       if (AI.Status == AllocationInfo::INVALID)
5732         continue;
5733 
5734       if (AI.PotentialFreeCalls.count(&CB))
5735         return true;
5736     }
5737 
5738     return false;
5739   }
5740 
5741   ChangeStatus manifest(Attributor &A) override {
5742     assert(getState().isValidState() &&
5743            "Attempted to manifest an invalid state!");
5744 
5745     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5746     Function *F = getAnchorScope();
5747     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5748 
5749     for (auto &It : AllocationInfos) {
5750       AllocationInfo &AI = *It.second;
5751       if (AI.Status == AllocationInfo::INVALID)
5752         continue;
5753 
5754       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5755         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5756         A.deleteAfterManifest(*FreeCall);
5757         HasChanged = ChangeStatus::CHANGED;
5758       }
5759 
5760       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5761                         << "\n");
5762 
5763       auto Remark = [&](OptimizationRemark OR) {
5764         LibFunc IsAllocShared;
5765         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5766           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5767             return OR << "Moving globalized variable to the stack.";
5768         return OR << "Moving memory allocation from the heap to the stack.";
5769       };
5770       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5771         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5772       else
5773         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5774 
5775       Value *Size;
5776       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5777       if (SizeAPI.hasValue()) {
5778         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5779       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5780         auto *Num = AI.CB->getOperand(0);
5781         auto *SizeT = AI.CB->getOperand(1);
5782         IRBuilder<> B(AI.CB);
5783         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5784       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5785         Size = AI.CB->getOperand(1);
5786       } else {
5787         Size = AI.CB->getOperand(0);
5788       }
5789 
5790       Align Alignment(1);
5791       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5792         Optional<APInt> AlignmentAPI =
5793             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5794         assert(AlignmentAPI.hasValue() &&
5795                "Expected an alignment during manifest!");
5796         Alignment =
5797             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5798       }
5799 
5800       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5801       Instruction *Alloca =
5802           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5803                          "", AI.CB->getNextNode());
5804 
5805       if (Alloca->getType() != AI.CB->getType())
5806         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5807                                  Alloca->getNextNode());
5808 
5809       A.changeValueAfterManifest(*AI.CB, *Alloca);
5810 
5811       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5812         auto *NBB = II->getNormalDest();
5813         BranchInst::Create(NBB, AI.CB->getParent());
5814         A.deleteAfterManifest(*AI.CB);
5815       } else {
5816         A.deleteAfterManifest(*AI.CB);
5817       }
5818 
5819       // Zero out the allocated memory if it was a calloc.
5820       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5821         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5822                                    Alloca->getNextNode());
5823         Value *Ops[] = {
5824             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5825             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5826 
5827         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5828         Module *M = F->getParent();
5829         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5830         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5831       }
5832       HasChanged = ChangeStatus::CHANGED;
5833     }
5834 
5835     return HasChanged;
5836   }
5837 
5838   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5839                            Value &V) {
5840     bool UsedAssumedInformation = false;
5841     Optional<Constant *> SimpleV =
5842         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5843     if (!SimpleV.hasValue())
5844       return APInt(64, 0);
5845     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5846       return CI->getValue();
5847     return llvm::None;
5848   }
5849 
5850   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5851                           AllocationInfo &AI) {
5852 
5853     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
5854       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
5855 
5856     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
5857       // Only if the alignment is also constant we return a size.
5858       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
5859                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
5860                  : llvm::None;
5861 
5862     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
5863            "Expected only callocs are left");
5864     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
5865     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
5866     if (!Num.hasValue() || !Size.hasValue())
5867       return llvm::None;
5868     bool Overflow = false;
5869     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
5870     return Overflow ? llvm::None : Size;
5871   }
5872 
5873   /// Collection of all malloc-like calls in a function with associated
5874   /// information.
5875   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
5876 
5877   /// Collection of all free-like calls in a function with associated
5878   /// information.
5879   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
5880 
5881   ChangeStatus updateImpl(Attributor &A) override;
5882 };
5883 
5884 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
5885   ChangeStatus Changed = ChangeStatus::UNCHANGED;
5886   const Function *F = getAnchorScope();
5887 
5888   const auto &LivenessAA =
5889       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
5890 
5891   MustBeExecutedContextExplorer &Explorer =
5892       A.getInfoCache().getMustBeExecutedContextExplorer();
5893 
5894   bool StackIsAccessibleByOtherThreads =
5895       A.getInfoCache().stackIsAccessibleByOtherThreads();
5896 
5897   // Flag to ensure we update our deallocation information at most once per
5898   // updateImpl call and only if we use the free check reasoning.
5899   bool HasUpdatedFrees = false;
5900 
5901   auto UpdateFrees = [&]() {
5902     HasUpdatedFrees = true;
5903 
5904     for (auto &It : DeallocationInfos) {
5905       DeallocationInfo &DI = *It.second;
5906       // For now we cannot use deallocations that have unknown inputs, skip
5907       // them.
5908       if (DI.MightFreeUnknownObjects)
5909         continue;
5910 
5911       // No need to analyze dead calls, ignore them instead.
5912       bool UsedAssumedInformation = false;
5913       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
5914                           /* CheckBBLivenessOnly */ true))
5915         continue;
5916 
5917       // Use the optimistic version to get the freed objects, ignoring dead
5918       // branches etc.
5919       SmallVector<Value *, 8> Objects;
5920       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
5921                                            *this, DI.CB)) {
5922         LLVM_DEBUG(
5923             dbgs()
5924             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
5925         DI.MightFreeUnknownObjects = true;
5926         continue;
5927       }
5928 
5929       // Check each object explicitly.
5930       for (auto *Obj : Objects) {
5931         // Free of null and undef can be ignored as no-ops (or UB in the latter
5932         // case).
5933         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
5934           continue;
5935 
5936         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
5937         if (!ObjCB) {
5938           LLVM_DEBUG(dbgs()
5939                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
5940           DI.MightFreeUnknownObjects = true;
5941           continue;
5942         }
5943 
5944         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
5945         if (!AI) {
5946           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
5947                             << "\n");
5948           DI.MightFreeUnknownObjects = true;
5949           continue;
5950         }
5951 
5952         DI.PotentialAllocationCalls.insert(ObjCB);
5953       }
5954     }
5955   };
5956 
5957   auto FreeCheck = [&](AllocationInfo &AI) {
5958     // If the stack is not accessible by other threads, the "must-free" logic
5959     // doesn't apply as the pointer could be shared and needs to be places in
5960     // "shareable" memory.
5961     if (!StackIsAccessibleByOtherThreads) {
5962       auto &NoSyncAA =
5963           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
5964       if (!NoSyncAA.isAssumedNoSync()) {
5965         LLVM_DEBUG(
5966             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
5967                       "other threads and function is not nosync:\n");
5968         return false;
5969       }
5970     }
5971     if (!HasUpdatedFrees)
5972       UpdateFrees();
5973 
5974     // TODO: Allow multi exit functions that have different free calls.
5975     if (AI.PotentialFreeCalls.size() != 1) {
5976       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
5977                         << AI.PotentialFreeCalls.size() << "\n");
5978       return false;
5979     }
5980     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
5981     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
5982     if (!DI) {
5983       LLVM_DEBUG(
5984           dbgs() << "[H2S] unique free call was not known as deallocation call "
5985                  << *UniqueFree << "\n");
5986       return false;
5987     }
5988     if (DI->MightFreeUnknownObjects) {
5989       LLVM_DEBUG(
5990           dbgs() << "[H2S] unique free call might free unknown allocations\n");
5991       return false;
5992     }
5993     if (DI->PotentialAllocationCalls.size() > 1) {
5994       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
5995                         << DI->PotentialAllocationCalls.size()
5996                         << " different allocations\n");
5997       return false;
5998     }
5999     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6000       LLVM_DEBUG(
6001           dbgs()
6002           << "[H2S] unique free call not known to free this allocation but "
6003           << **DI->PotentialAllocationCalls.begin() << "\n");
6004       return false;
6005     }
6006     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6007     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6008       LLVM_DEBUG(
6009           dbgs()
6010           << "[H2S] unique free call might not be executed with the allocation "
6011           << *UniqueFree << "\n");
6012       return false;
6013     }
6014     return true;
6015   };
6016 
6017   auto UsesCheck = [&](AllocationInfo &AI) {
6018     bool ValidUsesOnly = true;
6019 
6020     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6021       Instruction *UserI = cast<Instruction>(U.getUser());
6022       if (isa<LoadInst>(UserI))
6023         return true;
6024       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6025         if (SI->getValueOperand() == U.get()) {
6026           LLVM_DEBUG(dbgs()
6027                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6028           ValidUsesOnly = false;
6029         } else {
6030           // A store into the malloc'ed memory is fine.
6031         }
6032         return true;
6033       }
6034       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6035         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6036           return true;
6037         if (DeallocationInfos.count(CB)) {
6038           AI.PotentialFreeCalls.insert(CB);
6039           return true;
6040         }
6041 
6042         unsigned ArgNo = CB->getArgOperandNo(&U);
6043 
6044         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6045             *this, IRPosition::callsite_argument(*CB, ArgNo),
6046             DepClassTy::OPTIONAL);
6047 
6048         // If a call site argument use is nofree, we are fine.
6049         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6050             *this, IRPosition::callsite_argument(*CB, ArgNo),
6051             DepClassTy::OPTIONAL);
6052 
6053         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6054         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6055         if (MaybeCaptured ||
6056             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6057              MaybeFreed)) {
6058           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6059 
6060           // Emit a missed remark if this is missed OpenMP globalization.
6061           auto Remark = [&](OptimizationRemarkMissed ORM) {
6062             return ORM
6063                    << "Could not move globalized variable to the stack. "
6064                       "Variable is potentially captured in call. Mark "
6065                       "parameter as `__attribute__((noescape))` to override.";
6066           };
6067 
6068           if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6069             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6070 
6071           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6072           ValidUsesOnly = false;
6073         }
6074         return true;
6075       }
6076 
6077       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6078           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6079         Follow = true;
6080         return true;
6081       }
6082       // Unknown user for which we can not track uses further (in a way that
6083       // makes sense).
6084       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6085       ValidUsesOnly = false;
6086       return true;
6087     };
6088     A.checkForAllUses(Pred, *this, *AI.CB);
6089     return ValidUsesOnly;
6090   };
6091 
6092   // The actual update starts here. We look at all allocations and depending on
6093   // their status perform the appropriate check(s).
6094   for (auto &It : AllocationInfos) {
6095     AllocationInfo &AI = *It.second;
6096     if (AI.Status == AllocationInfo::INVALID)
6097       continue;
6098 
6099     if (MaxHeapToStackSize == -1) {
6100       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6101         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6102           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6103                             << "\n");
6104           AI.Status = AllocationInfo::INVALID;
6105           Changed = ChangeStatus::CHANGED;
6106           continue;
6107         }
6108     } else {
6109       Optional<APInt> Size = getSize(A, *this, AI);
6110       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6111         LLVM_DEBUG({
6112           if (!Size.hasValue())
6113             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6114                    << "\n";
6115           else
6116             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6117                    << MaxHeapToStackSize << "\n";
6118         });
6119 
6120         AI.Status = AllocationInfo::INVALID;
6121         Changed = ChangeStatus::CHANGED;
6122         continue;
6123       }
6124     }
6125 
6126     switch (AI.Status) {
6127     case AllocationInfo::STACK_DUE_TO_USE:
6128       if (UsesCheck(AI))
6129         continue;
6130       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6131       LLVM_FALLTHROUGH;
6132     case AllocationInfo::STACK_DUE_TO_FREE:
6133       if (FreeCheck(AI))
6134         continue;
6135       AI.Status = AllocationInfo::INVALID;
6136       Changed = ChangeStatus::CHANGED;
6137       continue;
6138     case AllocationInfo::INVALID:
6139       llvm_unreachable("Invalid allocations should never reach this point!");
6140     };
6141   }
6142 
6143   return Changed;
6144 }
6145 
6146 /// ----------------------- Privatizable Pointers ------------------------------
6147 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6148   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6149       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6150 
6151   ChangeStatus indicatePessimisticFixpoint() override {
6152     AAPrivatizablePtr::indicatePessimisticFixpoint();
6153     PrivatizableType = nullptr;
6154     return ChangeStatus::CHANGED;
6155   }
6156 
6157   /// Identify the type we can chose for a private copy of the underlying
6158   /// argument. None means it is not clear yet, nullptr means there is none.
6159   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6160 
6161   /// Return a privatizable type that encloses both T0 and T1.
6162   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6163   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6164     if (!T0.hasValue())
6165       return T1;
6166     if (!T1.hasValue())
6167       return T0;
6168     if (T0 == T1)
6169       return T0;
6170     return nullptr;
6171   }
6172 
6173   Optional<Type *> getPrivatizableType() const override {
6174     return PrivatizableType;
6175   }
6176 
6177   const std::string getAsStr() const override {
6178     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6179   }
6180 
6181 protected:
6182   Optional<Type *> PrivatizableType;
6183 };
6184 
6185 // TODO: Do this for call site arguments (probably also other values) as well.
6186 
6187 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6188   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6189       : AAPrivatizablePtrImpl(IRP, A) {}
6190 
6191   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6192   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6193     // If this is a byval argument and we know all the call sites (so we can
6194     // rewrite them), there is no need to check them explicitly.
6195     bool AllCallSitesKnown;
6196     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6197         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6198                                true, AllCallSitesKnown))
6199       return getAssociatedValue().getType()->getPointerElementType();
6200 
6201     Optional<Type *> Ty;
6202     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6203 
6204     // Make sure the associated call site argument has the same type at all call
6205     // sites and it is an allocation we know is safe to privatize, for now that
6206     // means we only allow alloca instructions.
6207     // TODO: We can additionally analyze the accesses in the callee to  create
6208     //       the type from that information instead. That is a little more
6209     //       involved and will be done in a follow up patch.
6210     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6211       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6212       // Check if a coresponding argument was found or if it is one not
6213       // associated (which can happen for callback calls).
6214       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6215         return false;
6216 
6217       // Check that all call sites agree on a type.
6218       auto &PrivCSArgAA =
6219           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6220       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6221 
6222       LLVM_DEBUG({
6223         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6224         if (CSTy.hasValue() && CSTy.getValue())
6225           CSTy.getValue()->print(dbgs());
6226         else if (CSTy.hasValue())
6227           dbgs() << "<nullptr>";
6228         else
6229           dbgs() << "<none>";
6230       });
6231 
6232       Ty = combineTypes(Ty, CSTy);
6233 
6234       LLVM_DEBUG({
6235         dbgs() << " : New Type: ";
6236         if (Ty.hasValue() && Ty.getValue())
6237           Ty.getValue()->print(dbgs());
6238         else if (Ty.hasValue())
6239           dbgs() << "<nullptr>";
6240         else
6241           dbgs() << "<none>";
6242         dbgs() << "\n";
6243       });
6244 
6245       return !Ty.hasValue() || Ty.getValue();
6246     };
6247 
6248     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6249       return nullptr;
6250     return Ty;
6251   }
6252 
6253   /// See AbstractAttribute::updateImpl(...).
6254   ChangeStatus updateImpl(Attributor &A) override {
6255     PrivatizableType = identifyPrivatizableType(A);
6256     if (!PrivatizableType.hasValue())
6257       return ChangeStatus::UNCHANGED;
6258     if (!PrivatizableType.getValue())
6259       return indicatePessimisticFixpoint();
6260 
6261     // The dependence is optional so we don't give up once we give up on the
6262     // alignment.
6263     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6264                         DepClassTy::OPTIONAL);
6265 
6266     // Avoid arguments with padding for now.
6267     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6268         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6269                                                 A.getInfoCache().getDL())) {
6270       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6271       return indicatePessimisticFixpoint();
6272     }
6273 
6274     // Verify callee and caller agree on how the promoted argument would be
6275     // passed.
6276     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
6277     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
6278     // which doesn't require the arguments ArgumentPromotion wanted to pass.
6279     Function &Fn = *getIRPosition().getAnchorScope();
6280     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
6281     ArgsToPromote.insert(getAssociatedArgument());
6282     const auto *TTI =
6283         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6284     if (!TTI ||
6285         !ArgumentPromotionPass::areFunctionArgsABICompatible(
6286             Fn, *TTI, ArgsToPromote, Dummy) ||
6287         ArgsToPromote.empty()) {
6288       LLVM_DEBUG(
6289           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6290                  << Fn.getName() << "\n");
6291       return indicatePessimisticFixpoint();
6292     }
6293 
6294     // Collect the types that will replace the privatizable type in the function
6295     // signature.
6296     SmallVector<Type *, 16> ReplacementTypes;
6297     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6298 
6299     // Register a rewrite of the argument.
6300     Argument *Arg = getAssociatedArgument();
6301     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6302       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6303       return indicatePessimisticFixpoint();
6304     }
6305 
6306     unsigned ArgNo = Arg->getArgNo();
6307 
6308     // Helper to check if for the given call site the associated argument is
6309     // passed to a callback where the privatization would be different.
6310     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6311       SmallVector<const Use *, 4> CallbackUses;
6312       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6313       for (const Use *U : CallbackUses) {
6314         AbstractCallSite CBACS(U);
6315         assert(CBACS && CBACS.isCallbackCall());
6316         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6317           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6318 
6319           LLVM_DEBUG({
6320             dbgs()
6321                 << "[AAPrivatizablePtr] Argument " << *Arg
6322                 << "check if can be privatized in the context of its parent ("
6323                 << Arg->getParent()->getName()
6324                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6325                    "callback ("
6326                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6327                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6328                 << CBACS.getCallArgOperand(CBArg) << " vs "
6329                 << CB.getArgOperand(ArgNo) << "\n"
6330                 << "[AAPrivatizablePtr] " << CBArg << " : "
6331                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6332           });
6333 
6334           if (CBArgNo != int(ArgNo))
6335             continue;
6336           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6337               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6338           if (CBArgPrivAA.isValidState()) {
6339             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6340             if (!CBArgPrivTy.hasValue())
6341               continue;
6342             if (CBArgPrivTy.getValue() == PrivatizableType)
6343               continue;
6344           }
6345 
6346           LLVM_DEBUG({
6347             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6348                    << " cannot be privatized in the context of its parent ("
6349                    << Arg->getParent()->getName()
6350                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6351                       "callback ("
6352                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6353                    << ").\n[AAPrivatizablePtr] for which the argument "
6354                       "privatization is not compatible.\n";
6355           });
6356           return false;
6357         }
6358       }
6359       return true;
6360     };
6361 
6362     // Helper to check if for the given call site the associated argument is
6363     // passed to a direct call where the privatization would be different.
6364     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6365       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6366       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6367       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
6368              "Expected a direct call operand for callback call operand");
6369 
6370       LLVM_DEBUG({
6371         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6372                << " check if be privatized in the context of its parent ("
6373                << Arg->getParent()->getName()
6374                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6375                   "direct call of ("
6376                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6377                << ").\n";
6378       });
6379 
6380       Function *DCCallee = DC->getCalledFunction();
6381       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6382         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6383             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6384             DepClassTy::REQUIRED);
6385         if (DCArgPrivAA.isValidState()) {
6386           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6387           if (!DCArgPrivTy.hasValue())
6388             return true;
6389           if (DCArgPrivTy.getValue() == PrivatizableType)
6390             return true;
6391         }
6392       }
6393 
6394       LLVM_DEBUG({
6395         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6396                << " cannot be privatized in the context of its parent ("
6397                << Arg->getParent()->getName()
6398                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6399                   "direct call of ("
6400                << ACS.getInstruction()->getCalledFunction()->getName()
6401                << ").\n[AAPrivatizablePtr] for which the argument "
6402                   "privatization is not compatible.\n";
6403       });
6404       return false;
6405     };
6406 
6407     // Helper to check if the associated argument is used at the given abstract
6408     // call site in a way that is incompatible with the privatization assumed
6409     // here.
6410     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6411       if (ACS.isDirectCall())
6412         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6413       if (ACS.isCallbackCall())
6414         return IsCompatiblePrivArgOfDirectCS(ACS);
6415       return false;
6416     };
6417 
6418     bool AllCallSitesKnown;
6419     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6420                                 AllCallSitesKnown))
6421       return indicatePessimisticFixpoint();
6422 
6423     return ChangeStatus::UNCHANGED;
6424   }
6425 
6426   /// Given a type to private \p PrivType, collect the constituates (which are
6427   /// used) in \p ReplacementTypes.
6428   static void
6429   identifyReplacementTypes(Type *PrivType,
6430                            SmallVectorImpl<Type *> &ReplacementTypes) {
6431     // TODO: For now we expand the privatization type to the fullest which can
6432     //       lead to dead arguments that need to be removed later.
6433     assert(PrivType && "Expected privatizable type!");
6434 
6435     // Traverse the type, extract constituate types on the outermost level.
6436     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6437       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6438         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6439     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6440       ReplacementTypes.append(PrivArrayType->getNumElements(),
6441                               PrivArrayType->getElementType());
6442     } else {
6443       ReplacementTypes.push_back(PrivType);
6444     }
6445   }
6446 
6447   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6448   /// The values needed are taken from the arguments of \p F starting at
6449   /// position \p ArgNo.
6450   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6451                                    unsigned ArgNo, Instruction &IP) {
6452     assert(PrivType && "Expected privatizable type!");
6453 
6454     IRBuilder<NoFolder> IRB(&IP);
6455     const DataLayout &DL = F.getParent()->getDataLayout();
6456 
6457     // Traverse the type, build GEPs and stores.
6458     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6459       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6460       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6461         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6462         Value *Ptr =
6463             constructPointer(PointeeTy, PrivType, &Base,
6464                              PrivStructLayout->getElementOffset(u), IRB, DL);
6465         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6466       }
6467     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6468       Type *PointeeTy = PrivArrayType->getElementType();
6469       Type *PointeePtrTy = PointeeTy->getPointerTo();
6470       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6471       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6472         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6473                                       u * PointeeTySize, IRB, DL);
6474         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6475       }
6476     } else {
6477       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6478     }
6479   }
6480 
6481   /// Extract values from \p Base according to the type \p PrivType at the
6482   /// call position \p ACS. The values are appended to \p ReplacementValues.
6483   void createReplacementValues(Align Alignment, Type *PrivType,
6484                                AbstractCallSite ACS, Value *Base,
6485                                SmallVectorImpl<Value *> &ReplacementValues) {
6486     assert(Base && "Expected base value!");
6487     assert(PrivType && "Expected privatizable type!");
6488     Instruction *IP = ACS.getInstruction();
6489 
6490     IRBuilder<NoFolder> IRB(IP);
6491     const DataLayout &DL = IP->getModule()->getDataLayout();
6492 
6493     if (Base->getType()->getPointerElementType() != PrivType)
6494       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6495                                                  "", ACS.getInstruction());
6496 
6497     // Traverse the type, build GEPs and loads.
6498     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6499       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6500       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6501         Type *PointeeTy = PrivStructType->getElementType(u);
6502         Value *Ptr =
6503             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6504                              PrivStructLayout->getElementOffset(u), IRB, DL);
6505         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6506         L->setAlignment(Alignment);
6507         ReplacementValues.push_back(L);
6508       }
6509     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6510       Type *PointeeTy = PrivArrayType->getElementType();
6511       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6512       Type *PointeePtrTy = PointeeTy->getPointerTo();
6513       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6514         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6515                                       u * PointeeTySize, IRB, DL);
6516         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6517         L->setAlignment(Alignment);
6518         ReplacementValues.push_back(L);
6519       }
6520     } else {
6521       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6522       L->setAlignment(Alignment);
6523       ReplacementValues.push_back(L);
6524     }
6525   }
6526 
6527   /// See AbstractAttribute::manifest(...)
6528   ChangeStatus manifest(Attributor &A) override {
6529     if (!PrivatizableType.hasValue())
6530       return ChangeStatus::UNCHANGED;
6531     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6532 
6533     // Collect all tail calls in the function as we cannot allow new allocas to
6534     // escape into tail recursion.
6535     // TODO: Be smarter about new allocas escaping into tail calls.
6536     SmallVector<CallInst *, 16> TailCalls;
6537     bool UsedAssumedInformation = false;
6538     if (!A.checkForAllInstructions(
6539             [&](Instruction &I) {
6540               CallInst &CI = cast<CallInst>(I);
6541               if (CI.isTailCall())
6542                 TailCalls.push_back(&CI);
6543               return true;
6544             },
6545             *this, {Instruction::Call}, UsedAssumedInformation))
6546       return ChangeStatus::UNCHANGED;
6547 
6548     Argument *Arg = getAssociatedArgument();
6549     // Query AAAlign attribute for alignment of associated argument to
6550     // determine the best alignment of loads.
6551     const auto &AlignAA =
6552         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6553 
6554     // Callback to repair the associated function. A new alloca is placed at the
6555     // beginning and initialized with the values passed through arguments. The
6556     // new alloca replaces the use of the old pointer argument.
6557     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6558         [=](const Attributor::ArgumentReplacementInfo &ARI,
6559             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6560           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6561           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6562           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6563                                            Arg->getName() + ".priv", IP);
6564           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6565                                ArgIt->getArgNo(), *IP);
6566 
6567           if (AI->getType() != Arg->getType())
6568             AI =
6569                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6570           Arg->replaceAllUsesWith(AI);
6571 
6572           for (CallInst *CI : TailCalls)
6573             CI->setTailCall(false);
6574         };
6575 
6576     // Callback to repair a call site of the associated function. The elements
6577     // of the privatizable type are loaded prior to the call and passed to the
6578     // new function version.
6579     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6580         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6581                       AbstractCallSite ACS,
6582                       SmallVectorImpl<Value *> &NewArgOperands) {
6583           // When no alignment is specified for the load instruction,
6584           // natural alignment is assumed.
6585           createReplacementValues(
6586               assumeAligned(AlignAA.getAssumedAlign()),
6587               PrivatizableType.getValue(), ACS,
6588               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6589               NewArgOperands);
6590         };
6591 
6592     // Collect the types that will replace the privatizable type in the function
6593     // signature.
6594     SmallVector<Type *, 16> ReplacementTypes;
6595     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6596 
6597     // Register a rewrite of the argument.
6598     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6599                                            std::move(FnRepairCB),
6600                                            std::move(ACSRepairCB)))
6601       return ChangeStatus::CHANGED;
6602     return ChangeStatus::UNCHANGED;
6603   }
6604 
6605   /// See AbstractAttribute::trackStatistics()
6606   void trackStatistics() const override {
6607     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6608   }
6609 };
6610 
6611 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6612   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6613       : AAPrivatizablePtrImpl(IRP, A) {}
6614 
6615   /// See AbstractAttribute::initialize(...).
6616   virtual void initialize(Attributor &A) override {
6617     // TODO: We can privatize more than arguments.
6618     indicatePessimisticFixpoint();
6619   }
6620 
6621   ChangeStatus updateImpl(Attributor &A) override {
6622     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6623                      "updateImpl will not be called");
6624   }
6625 
6626   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6627   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6628     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6629     if (!Obj) {
6630       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6631       return nullptr;
6632     }
6633 
6634     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6635       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6636         if (CI->isOne())
6637           return Obj->getType()->getPointerElementType();
6638     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6639       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6640           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6641       if (PrivArgAA.isAssumedPrivatizablePtr())
6642         return Obj->getType()->getPointerElementType();
6643     }
6644 
6645     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6646                          "alloca nor privatizable argument: "
6647                       << *Obj << "!\n");
6648     return nullptr;
6649   }
6650 
6651   /// See AbstractAttribute::trackStatistics()
6652   void trackStatistics() const override {
6653     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6654   }
6655 };
6656 
6657 struct AAPrivatizablePtrCallSiteArgument final
6658     : public AAPrivatizablePtrFloating {
6659   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6660       : AAPrivatizablePtrFloating(IRP, A) {}
6661 
6662   /// See AbstractAttribute::initialize(...).
6663   void initialize(Attributor &A) override {
6664     if (getIRPosition().hasAttr(Attribute::ByVal))
6665       indicateOptimisticFixpoint();
6666   }
6667 
6668   /// See AbstractAttribute::updateImpl(...).
6669   ChangeStatus updateImpl(Attributor &A) override {
6670     PrivatizableType = identifyPrivatizableType(A);
6671     if (!PrivatizableType.hasValue())
6672       return ChangeStatus::UNCHANGED;
6673     if (!PrivatizableType.getValue())
6674       return indicatePessimisticFixpoint();
6675 
6676     const IRPosition &IRP = getIRPosition();
6677     auto &NoCaptureAA =
6678         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6679     if (!NoCaptureAA.isAssumedNoCapture()) {
6680       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6681       return indicatePessimisticFixpoint();
6682     }
6683 
6684     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6685     if (!NoAliasAA.isAssumedNoAlias()) {
6686       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6687       return indicatePessimisticFixpoint();
6688     }
6689 
6690     const auto &MemBehaviorAA =
6691         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6692     if (!MemBehaviorAA.isAssumedReadOnly()) {
6693       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6694       return indicatePessimisticFixpoint();
6695     }
6696 
6697     return ChangeStatus::UNCHANGED;
6698   }
6699 
6700   /// See AbstractAttribute::trackStatistics()
6701   void trackStatistics() const override {
6702     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6703   }
6704 };
6705 
6706 struct AAPrivatizablePtrCallSiteReturned final
6707     : public AAPrivatizablePtrFloating {
6708   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6709       : AAPrivatizablePtrFloating(IRP, A) {}
6710 
6711   /// See AbstractAttribute::initialize(...).
6712   void initialize(Attributor &A) override {
6713     // TODO: We can privatize more than arguments.
6714     indicatePessimisticFixpoint();
6715   }
6716 
6717   /// See AbstractAttribute::trackStatistics()
6718   void trackStatistics() const override {
6719     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6720   }
6721 };
6722 
6723 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6724   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6725       : AAPrivatizablePtrFloating(IRP, A) {}
6726 
6727   /// See AbstractAttribute::initialize(...).
6728   void initialize(Attributor &A) override {
6729     // TODO: We can privatize more than arguments.
6730     indicatePessimisticFixpoint();
6731   }
6732 
6733   /// See AbstractAttribute::trackStatistics()
6734   void trackStatistics() const override {
6735     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6736   }
6737 };
6738 
6739 /// -------------------- Memory Behavior Attributes ----------------------------
6740 /// Includes read-none, read-only, and write-only.
6741 /// ----------------------------------------------------------------------------
6742 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6743   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6744       : AAMemoryBehavior(IRP, A) {}
6745 
6746   /// See AbstractAttribute::initialize(...).
6747   void initialize(Attributor &A) override {
6748     intersectAssumedBits(BEST_STATE);
6749     getKnownStateFromValue(getIRPosition(), getState());
6750     AAMemoryBehavior::initialize(A);
6751   }
6752 
6753   /// Return the memory behavior information encoded in the IR for \p IRP.
6754   static void getKnownStateFromValue(const IRPosition &IRP,
6755                                      BitIntegerState &State,
6756                                      bool IgnoreSubsumingPositions = false) {
6757     SmallVector<Attribute, 2> Attrs;
6758     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6759     for (const Attribute &Attr : Attrs) {
6760       switch (Attr.getKindAsEnum()) {
6761       case Attribute::ReadNone:
6762         State.addKnownBits(NO_ACCESSES);
6763         break;
6764       case Attribute::ReadOnly:
6765         State.addKnownBits(NO_WRITES);
6766         break;
6767       case Attribute::WriteOnly:
6768         State.addKnownBits(NO_READS);
6769         break;
6770       default:
6771         llvm_unreachable("Unexpected attribute!");
6772       }
6773     }
6774 
6775     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6776       if (!I->mayReadFromMemory())
6777         State.addKnownBits(NO_READS);
6778       if (!I->mayWriteToMemory())
6779         State.addKnownBits(NO_WRITES);
6780     }
6781   }
6782 
6783   /// See AbstractAttribute::getDeducedAttributes(...).
6784   void getDeducedAttributes(LLVMContext &Ctx,
6785                             SmallVectorImpl<Attribute> &Attrs) const override {
6786     assert(Attrs.size() == 0);
6787     if (isAssumedReadNone())
6788       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6789     else if (isAssumedReadOnly())
6790       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6791     else if (isAssumedWriteOnly())
6792       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6793     assert(Attrs.size() <= 1);
6794   }
6795 
6796   /// See AbstractAttribute::manifest(...).
6797   ChangeStatus manifest(Attributor &A) override {
6798     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6799       return ChangeStatus::UNCHANGED;
6800 
6801     const IRPosition &IRP = getIRPosition();
6802 
6803     // Check if we would improve the existing attributes first.
6804     SmallVector<Attribute, 4> DeducedAttrs;
6805     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6806     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6807           return IRP.hasAttr(Attr.getKindAsEnum(),
6808                              /* IgnoreSubsumingPositions */ true);
6809         }))
6810       return ChangeStatus::UNCHANGED;
6811 
6812     // Clear existing attributes.
6813     IRP.removeAttrs(AttrKinds);
6814 
6815     // Use the generic manifest method.
6816     return IRAttribute::manifest(A);
6817   }
6818 
6819   /// See AbstractState::getAsStr().
6820   const std::string getAsStr() const override {
6821     if (isAssumedReadNone())
6822       return "readnone";
6823     if (isAssumedReadOnly())
6824       return "readonly";
6825     if (isAssumedWriteOnly())
6826       return "writeonly";
6827     return "may-read/write";
6828   }
6829 
6830   /// The set of IR attributes AAMemoryBehavior deals with.
6831   static const Attribute::AttrKind AttrKinds[3];
6832 };
6833 
6834 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6835     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6836 
6837 /// Memory behavior attribute for a floating value.
6838 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6839   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6840       : AAMemoryBehaviorImpl(IRP, A) {}
6841 
6842   /// See AbstractAttribute::updateImpl(...).
6843   ChangeStatus updateImpl(Attributor &A) override;
6844 
6845   /// See AbstractAttribute::trackStatistics()
6846   void trackStatistics() const override {
6847     if (isAssumedReadNone())
6848       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6849     else if (isAssumedReadOnly())
6850       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6851     else if (isAssumedWriteOnly())
6852       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6853   }
6854 
6855 private:
6856   /// Return true if users of \p UserI might access the underlying
6857   /// variable/location described by \p U and should therefore be analyzed.
6858   bool followUsersOfUseIn(Attributor &A, const Use &U,
6859                           const Instruction *UserI);
6860 
6861   /// Update the state according to the effect of use \p U in \p UserI.
6862   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
6863 };
6864 
6865 /// Memory behavior attribute for function argument.
6866 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6867   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6868       : AAMemoryBehaviorFloating(IRP, A) {}
6869 
6870   /// See AbstractAttribute::initialize(...).
6871   void initialize(Attributor &A) override {
6872     intersectAssumedBits(BEST_STATE);
6873     const IRPosition &IRP = getIRPosition();
6874     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
6875     // can query it when we use has/getAttr. That would allow us to reuse the
6876     // initialize of the base class here.
6877     bool HasByVal =
6878         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
6879     getKnownStateFromValue(IRP, getState(),
6880                            /* IgnoreSubsumingPositions */ HasByVal);
6881 
6882     // Initialize the use vector with all direct uses of the associated value.
6883     Argument *Arg = getAssociatedArgument();
6884     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
6885       indicatePessimisticFixpoint();
6886   }
6887 
6888   ChangeStatus manifest(Attributor &A) override {
6889     // TODO: Pointer arguments are not supported on vectors of pointers yet.
6890     if (!getAssociatedValue().getType()->isPointerTy())
6891       return ChangeStatus::UNCHANGED;
6892 
6893     // TODO: From readattrs.ll: "inalloca parameters are always
6894     //                           considered written"
6895     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
6896       removeKnownBits(NO_WRITES);
6897       removeAssumedBits(NO_WRITES);
6898     }
6899     return AAMemoryBehaviorFloating::manifest(A);
6900   }
6901 
6902   /// See AbstractAttribute::trackStatistics()
6903   void trackStatistics() const override {
6904     if (isAssumedReadNone())
6905       STATS_DECLTRACK_ARG_ATTR(readnone)
6906     else if (isAssumedReadOnly())
6907       STATS_DECLTRACK_ARG_ATTR(readonly)
6908     else if (isAssumedWriteOnly())
6909       STATS_DECLTRACK_ARG_ATTR(writeonly)
6910   }
6911 };
6912 
6913 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
6914   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
6915       : AAMemoryBehaviorArgument(IRP, A) {}
6916 
6917   /// See AbstractAttribute::initialize(...).
6918   void initialize(Attributor &A) override {
6919     // If we don't have an associated attribute this is either a variadic call
6920     // or an indirect call, either way, nothing to do here.
6921     Argument *Arg = getAssociatedArgument();
6922     if (!Arg) {
6923       indicatePessimisticFixpoint();
6924       return;
6925     }
6926     if (Arg->hasByValAttr()) {
6927       addKnownBits(NO_WRITES);
6928       removeKnownBits(NO_READS);
6929       removeAssumedBits(NO_READS);
6930     }
6931     AAMemoryBehaviorArgument::initialize(A);
6932     if (getAssociatedFunction()->isDeclaration())
6933       indicatePessimisticFixpoint();
6934   }
6935 
6936   /// See AbstractAttribute::updateImpl(...).
6937   ChangeStatus updateImpl(Attributor &A) override {
6938     // TODO: Once we have call site specific value information we can provide
6939     //       call site specific liveness liveness information and then it makes
6940     //       sense to specialize attributes for call sites arguments instead of
6941     //       redirecting requests to the callee argument.
6942     Argument *Arg = getAssociatedArgument();
6943     const IRPosition &ArgPos = IRPosition::argument(*Arg);
6944     auto &ArgAA =
6945         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
6946     return clampStateAndIndicateChange(getState(), ArgAA.getState());
6947   }
6948 
6949   /// See AbstractAttribute::trackStatistics()
6950   void trackStatistics() const override {
6951     if (isAssumedReadNone())
6952       STATS_DECLTRACK_CSARG_ATTR(readnone)
6953     else if (isAssumedReadOnly())
6954       STATS_DECLTRACK_CSARG_ATTR(readonly)
6955     else if (isAssumedWriteOnly())
6956       STATS_DECLTRACK_CSARG_ATTR(writeonly)
6957   }
6958 };
6959 
6960 /// Memory behavior attribute for a call site return position.
6961 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
6962   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
6963       : AAMemoryBehaviorFloating(IRP, A) {}
6964 
6965   /// See AbstractAttribute::initialize(...).
6966   void initialize(Attributor &A) override {
6967     AAMemoryBehaviorImpl::initialize(A);
6968     Function *F = getAssociatedFunction();
6969     if (!F || F->isDeclaration())
6970       indicatePessimisticFixpoint();
6971   }
6972 
6973   /// See AbstractAttribute::manifest(...).
6974   ChangeStatus manifest(Attributor &A) override {
6975     // We do not annotate returned values.
6976     return ChangeStatus::UNCHANGED;
6977   }
6978 
6979   /// See AbstractAttribute::trackStatistics()
6980   void trackStatistics() const override {}
6981 };
6982 
6983 /// An AA to represent the memory behavior function attributes.
6984 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
6985   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
6986       : AAMemoryBehaviorImpl(IRP, A) {}
6987 
6988   /// See AbstractAttribute::updateImpl(Attributor &A).
6989   virtual ChangeStatus updateImpl(Attributor &A) override;
6990 
6991   /// See AbstractAttribute::manifest(...).
6992   ChangeStatus manifest(Attributor &A) override {
6993     Function &F = cast<Function>(getAnchorValue());
6994     if (isAssumedReadNone()) {
6995       F.removeFnAttr(Attribute::ArgMemOnly);
6996       F.removeFnAttr(Attribute::InaccessibleMemOnly);
6997       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
6998     }
6999     return AAMemoryBehaviorImpl::manifest(A);
7000   }
7001 
7002   /// See AbstractAttribute::trackStatistics()
7003   void trackStatistics() const override {
7004     if (isAssumedReadNone())
7005       STATS_DECLTRACK_FN_ATTR(readnone)
7006     else if (isAssumedReadOnly())
7007       STATS_DECLTRACK_FN_ATTR(readonly)
7008     else if (isAssumedWriteOnly())
7009       STATS_DECLTRACK_FN_ATTR(writeonly)
7010   }
7011 };
7012 
7013 /// AAMemoryBehavior attribute for call sites.
7014 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7015   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7016       : AAMemoryBehaviorImpl(IRP, A) {}
7017 
7018   /// See AbstractAttribute::initialize(...).
7019   void initialize(Attributor &A) override {
7020     AAMemoryBehaviorImpl::initialize(A);
7021     Function *F = getAssociatedFunction();
7022     if (!F || F->isDeclaration())
7023       indicatePessimisticFixpoint();
7024   }
7025 
7026   /// See AbstractAttribute::updateImpl(...).
7027   ChangeStatus updateImpl(Attributor &A) override {
7028     // TODO: Once we have call site specific value information we can provide
7029     //       call site specific liveness liveness information and then it makes
7030     //       sense to specialize attributes for call sites arguments instead of
7031     //       redirecting requests to the callee argument.
7032     Function *F = getAssociatedFunction();
7033     const IRPosition &FnPos = IRPosition::function(*F);
7034     auto &FnAA =
7035         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7036     return clampStateAndIndicateChange(getState(), FnAA.getState());
7037   }
7038 
7039   /// See AbstractAttribute::trackStatistics()
7040   void trackStatistics() const override {
7041     if (isAssumedReadNone())
7042       STATS_DECLTRACK_CS_ATTR(readnone)
7043     else if (isAssumedReadOnly())
7044       STATS_DECLTRACK_CS_ATTR(readonly)
7045     else if (isAssumedWriteOnly())
7046       STATS_DECLTRACK_CS_ATTR(writeonly)
7047   }
7048 };
7049 
7050 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7051 
7052   // The current assumed state used to determine a change.
7053   auto AssumedState = getAssumed();
7054 
7055   auto CheckRWInst = [&](Instruction &I) {
7056     // If the instruction has an own memory behavior state, use it to restrict
7057     // the local state. No further analysis is required as the other memory
7058     // state is as optimistic as it gets.
7059     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7060       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7061           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7062       intersectAssumedBits(MemBehaviorAA.getAssumed());
7063       return !isAtFixpoint();
7064     }
7065 
7066     // Remove access kind modifiers if necessary.
7067     if (I.mayReadFromMemory())
7068       removeAssumedBits(NO_READS);
7069     if (I.mayWriteToMemory())
7070       removeAssumedBits(NO_WRITES);
7071     return !isAtFixpoint();
7072   };
7073 
7074   bool UsedAssumedInformation = false;
7075   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7076                                           UsedAssumedInformation))
7077     return indicatePessimisticFixpoint();
7078 
7079   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7080                                         : ChangeStatus::UNCHANGED;
7081 }
7082 
7083 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7084 
7085   const IRPosition &IRP = getIRPosition();
7086   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7087   AAMemoryBehavior::StateType &S = getState();
7088 
7089   // First, check the function scope. We take the known information and we avoid
7090   // work if the assumed information implies the current assumed information for
7091   // this attribute. This is a valid for all but byval arguments.
7092   Argument *Arg = IRP.getAssociatedArgument();
7093   AAMemoryBehavior::base_t FnMemAssumedState =
7094       AAMemoryBehavior::StateType::getWorstState();
7095   if (!Arg || !Arg->hasByValAttr()) {
7096     const auto &FnMemAA =
7097         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7098     FnMemAssumedState = FnMemAA.getAssumed();
7099     S.addKnownBits(FnMemAA.getKnown());
7100     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7101       return ChangeStatus::UNCHANGED;
7102   }
7103 
7104   // Make sure the value is not captured (except through "return"), if
7105   // it is, any information derived would be irrelevant anyway as we cannot
7106   // check the potential aliases introduced by the capture. However, no need
7107   // to fall back to anythign less optimistic than the function state.
7108   const auto &ArgNoCaptureAA =
7109       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7110   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7111     S.intersectAssumedBits(FnMemAssumedState);
7112     return ChangeStatus::CHANGED;
7113   }
7114 
7115   // The current assumed state used to determine a change.
7116   auto AssumedState = S.getAssumed();
7117 
7118   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7119   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7120     Instruction *UserI = cast<Instruction>(U.getUser());
7121     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7122                       << " \n");
7123 
7124     // Droppable users, e.g., llvm::assume does not actually perform any action.
7125     if (UserI->isDroppable())
7126       return true;
7127 
7128     // Check if the users of UserI should also be visited.
7129     Follow = followUsersOfUseIn(A, U, UserI);
7130 
7131     // If UserI might touch memory we analyze the use in detail.
7132     if (UserI->mayReadOrWriteMemory())
7133       analyzeUseIn(A, U, UserI);
7134 
7135     return !isAtFixpoint();
7136   };
7137 
7138   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7139     return indicatePessimisticFixpoint();
7140 
7141   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7142                                         : ChangeStatus::UNCHANGED;
7143 }
7144 
7145 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7146                                                   const Instruction *UserI) {
7147   // The loaded value is unrelated to the pointer argument, no need to
7148   // follow the users of the load.
7149   if (isa<LoadInst>(UserI))
7150     return false;
7151 
7152   // By default we follow all uses assuming UserI might leak information on U,
7153   // we have special handling for call sites operands though.
7154   const auto *CB = dyn_cast<CallBase>(UserI);
7155   if (!CB || !CB->isArgOperand(&U))
7156     return true;
7157 
7158   // If the use is a call argument known not to be captured, the users of
7159   // the call do not need to be visited because they have to be unrelated to
7160   // the input. Note that this check is not trivial even though we disallow
7161   // general capturing of the underlying argument. The reason is that the
7162   // call might the argument "through return", which we allow and for which we
7163   // need to check call users.
7164   if (U.get()->getType()->isPointerTy()) {
7165     unsigned ArgNo = CB->getArgOperandNo(&U);
7166     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7167         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7168     return !ArgNoCaptureAA.isAssumedNoCapture();
7169   }
7170 
7171   return true;
7172 }
7173 
7174 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7175                                             const Instruction *UserI) {
7176   assert(UserI->mayReadOrWriteMemory());
7177 
7178   switch (UserI->getOpcode()) {
7179   default:
7180     // TODO: Handle all atomics and other side-effect operations we know of.
7181     break;
7182   case Instruction::Load:
7183     // Loads cause the NO_READS property to disappear.
7184     removeAssumedBits(NO_READS);
7185     return;
7186 
7187   case Instruction::Store:
7188     // Stores cause the NO_WRITES property to disappear if the use is the
7189     // pointer operand. Note that we do assume that capturing was taken care of
7190     // somewhere else.
7191     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7192       removeAssumedBits(NO_WRITES);
7193     return;
7194 
7195   case Instruction::Call:
7196   case Instruction::CallBr:
7197   case Instruction::Invoke: {
7198     // For call sites we look at the argument memory behavior attribute (this
7199     // could be recursive!) in order to restrict our own state.
7200     const auto *CB = cast<CallBase>(UserI);
7201 
7202     // Give up on operand bundles.
7203     if (CB->isBundleOperand(&U)) {
7204       indicatePessimisticFixpoint();
7205       return;
7206     }
7207 
7208     // Calling a function does read the function pointer, maybe write it if the
7209     // function is self-modifying.
7210     if (CB->isCallee(&U)) {
7211       removeAssumedBits(NO_READS);
7212       break;
7213     }
7214 
7215     // Adjust the possible access behavior based on the information on the
7216     // argument.
7217     IRPosition Pos;
7218     if (U.get()->getType()->isPointerTy())
7219       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7220     else
7221       Pos = IRPosition::callsite_function(*CB);
7222     const auto &MemBehaviorAA =
7223         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7224     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7225     // and at least "known".
7226     intersectAssumedBits(MemBehaviorAA.getAssumed());
7227     return;
7228   }
7229   };
7230 
7231   // Generally, look at the "may-properties" and adjust the assumed state if we
7232   // did not trigger special handling before.
7233   if (UserI->mayReadFromMemory())
7234     removeAssumedBits(NO_READS);
7235   if (UserI->mayWriteToMemory())
7236     removeAssumedBits(NO_WRITES);
7237 }
7238 
7239 /// -------------------- Memory Locations Attributes ---------------------------
7240 /// Includes read-none, argmemonly, inaccessiblememonly,
7241 /// inaccessiblememorargmemonly
7242 /// ----------------------------------------------------------------------------
7243 
7244 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7245     AAMemoryLocation::MemoryLocationsKind MLK) {
7246   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7247     return "all memory";
7248   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7249     return "no memory";
7250   std::string S = "memory:";
7251   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7252     S += "stack,";
7253   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7254     S += "constant,";
7255   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7256     S += "internal global,";
7257   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7258     S += "external global,";
7259   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7260     S += "argument,";
7261   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7262     S += "inaccessible,";
7263   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7264     S += "malloced,";
7265   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7266     S += "unknown,";
7267   S.pop_back();
7268   return S;
7269 }
7270 
7271 namespace {
7272 struct AAMemoryLocationImpl : public AAMemoryLocation {
7273 
7274   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7275       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7276     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7277       AccessKind2Accesses[u] = nullptr;
7278   }
7279 
7280   ~AAMemoryLocationImpl() {
7281     // The AccessSets are allocated via a BumpPtrAllocator, we call
7282     // the destructor manually.
7283     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7284       if (AccessKind2Accesses[u])
7285         AccessKind2Accesses[u]->~AccessSet();
7286   }
7287 
7288   /// See AbstractAttribute::initialize(...).
7289   void initialize(Attributor &A) override {
7290     intersectAssumedBits(BEST_STATE);
7291     getKnownStateFromValue(A, getIRPosition(), getState());
7292     AAMemoryLocation::initialize(A);
7293   }
7294 
7295   /// Return the memory behavior information encoded in the IR for \p IRP.
7296   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7297                                      BitIntegerState &State,
7298                                      bool IgnoreSubsumingPositions = false) {
7299     // For internal functions we ignore `argmemonly` and
7300     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7301     // constant propagation. It is unclear if this is the best way but it is
7302     // unlikely this will cause real performance problems. If we are deriving
7303     // attributes for the anchor function we even remove the attribute in
7304     // addition to ignoring it.
7305     bool UseArgMemOnly = true;
7306     Function *AnchorFn = IRP.getAnchorScope();
7307     if (AnchorFn && A.isRunOn(*AnchorFn))
7308       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7309 
7310     SmallVector<Attribute, 2> Attrs;
7311     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7312     for (const Attribute &Attr : Attrs) {
7313       switch (Attr.getKindAsEnum()) {
7314       case Attribute::ReadNone:
7315         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7316         break;
7317       case Attribute::InaccessibleMemOnly:
7318         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7319         break;
7320       case Attribute::ArgMemOnly:
7321         if (UseArgMemOnly)
7322           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7323         else
7324           IRP.removeAttrs({Attribute::ArgMemOnly});
7325         break;
7326       case Attribute::InaccessibleMemOrArgMemOnly:
7327         if (UseArgMemOnly)
7328           State.addKnownBits(inverseLocation(
7329               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7330         else
7331           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7332         break;
7333       default:
7334         llvm_unreachable("Unexpected attribute!");
7335       }
7336     }
7337   }
7338 
7339   /// See AbstractAttribute::getDeducedAttributes(...).
7340   void getDeducedAttributes(LLVMContext &Ctx,
7341                             SmallVectorImpl<Attribute> &Attrs) const override {
7342     assert(Attrs.size() == 0);
7343     if (isAssumedReadNone()) {
7344       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7345     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7346       if (isAssumedInaccessibleMemOnly())
7347         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7348       else if (isAssumedArgMemOnly())
7349         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7350       else if (isAssumedInaccessibleOrArgMemOnly())
7351         Attrs.push_back(
7352             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7353     }
7354     assert(Attrs.size() <= 1);
7355   }
7356 
7357   /// See AbstractAttribute::manifest(...).
7358   ChangeStatus manifest(Attributor &A) override {
7359     const IRPosition &IRP = getIRPosition();
7360 
7361     // Check if we would improve the existing attributes first.
7362     SmallVector<Attribute, 4> DeducedAttrs;
7363     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7364     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7365           return IRP.hasAttr(Attr.getKindAsEnum(),
7366                              /* IgnoreSubsumingPositions */ true);
7367         }))
7368       return ChangeStatus::UNCHANGED;
7369 
7370     // Clear existing attributes.
7371     IRP.removeAttrs(AttrKinds);
7372     if (isAssumedReadNone())
7373       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7374 
7375     // Use the generic manifest method.
7376     return IRAttribute::manifest(A);
7377   }
7378 
7379   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7380   bool checkForAllAccessesToMemoryKind(
7381       function_ref<bool(const Instruction *, const Value *, AccessKind,
7382                         MemoryLocationsKind)>
7383           Pred,
7384       MemoryLocationsKind RequestedMLK) const override {
7385     if (!isValidState())
7386       return false;
7387 
7388     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7389     if (AssumedMLK == NO_LOCATIONS)
7390       return true;
7391 
7392     unsigned Idx = 0;
7393     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7394          CurMLK *= 2, ++Idx) {
7395       if (CurMLK & RequestedMLK)
7396         continue;
7397 
7398       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7399         for (const AccessInfo &AI : *Accesses)
7400           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7401             return false;
7402     }
7403 
7404     return true;
7405   }
7406 
7407   ChangeStatus indicatePessimisticFixpoint() override {
7408     // If we give up and indicate a pessimistic fixpoint this instruction will
7409     // become an access for all potential access kinds:
7410     // TODO: Add pointers for argmemonly and globals to improve the results of
7411     //       checkForAllAccessesToMemoryKind.
7412     bool Changed = false;
7413     MemoryLocationsKind KnownMLK = getKnown();
7414     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7415     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7416       if (!(CurMLK & KnownMLK))
7417         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7418                                   getAccessKindFromInst(I));
7419     return AAMemoryLocation::indicatePessimisticFixpoint();
7420   }
7421 
7422 protected:
7423   /// Helper struct to tie together an instruction that has a read or write
7424   /// effect with the pointer it accesses (if any).
7425   struct AccessInfo {
7426 
7427     /// The instruction that caused the access.
7428     const Instruction *I;
7429 
7430     /// The base pointer that is accessed, or null if unknown.
7431     const Value *Ptr;
7432 
7433     /// The kind of access (read/write/read+write).
7434     AccessKind Kind;
7435 
7436     bool operator==(const AccessInfo &RHS) const {
7437       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7438     }
7439     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7440       if (LHS.I != RHS.I)
7441         return LHS.I < RHS.I;
7442       if (LHS.Ptr != RHS.Ptr)
7443         return LHS.Ptr < RHS.Ptr;
7444       if (LHS.Kind != RHS.Kind)
7445         return LHS.Kind < RHS.Kind;
7446       return false;
7447     }
7448   };
7449 
7450   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7451   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7452   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7453   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7454 
7455   /// Categorize the pointer arguments of CB that might access memory in
7456   /// AccessedLoc and update the state and access map accordingly.
7457   void
7458   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7459                                      AAMemoryLocation::StateType &AccessedLocs,
7460                                      bool &Changed);
7461 
7462   /// Return the kind(s) of location that may be accessed by \p V.
7463   AAMemoryLocation::MemoryLocationsKind
7464   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7465 
7466   /// Return the access kind as determined by \p I.
7467   AccessKind getAccessKindFromInst(const Instruction *I) {
7468     AccessKind AK = READ_WRITE;
7469     if (I) {
7470       AK = I->mayReadFromMemory() ? READ : NONE;
7471       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7472     }
7473     return AK;
7474   }
7475 
7476   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7477   /// an access of kind \p AK to a \p MLK memory location with the access
7478   /// pointer \p Ptr.
7479   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7480                                  MemoryLocationsKind MLK, const Instruction *I,
7481                                  const Value *Ptr, bool &Changed,
7482                                  AccessKind AK = READ_WRITE) {
7483 
7484     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7485     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7486     if (!Accesses)
7487       Accesses = new (Allocator) AccessSet();
7488     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7489     State.removeAssumedBits(MLK);
7490   }
7491 
7492   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7493   /// arguments, and update the state and access map accordingly.
7494   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7495                           AAMemoryLocation::StateType &State, bool &Changed);
7496 
7497   /// Used to allocate access sets.
7498   BumpPtrAllocator &Allocator;
7499 
7500   /// The set of IR attributes AAMemoryLocation deals with.
7501   static const Attribute::AttrKind AttrKinds[4];
7502 };
7503 
7504 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7505     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7506     Attribute::InaccessibleMemOrArgMemOnly};
7507 
7508 void AAMemoryLocationImpl::categorizePtrValue(
7509     Attributor &A, const Instruction &I, const Value &Ptr,
7510     AAMemoryLocation::StateType &State, bool &Changed) {
7511   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7512                     << Ptr << " ["
7513                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7514 
7515   SmallVector<Value *, 8> Objects;
7516   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7517     LLVM_DEBUG(
7518         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7519     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7520                               getAccessKindFromInst(&I));
7521     return;
7522   }
7523 
7524   for (Value *Obj : Objects) {
7525     // TODO: recognize the TBAA used for constant accesses.
7526     MemoryLocationsKind MLK = NO_LOCATIONS;
7527     assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped.");
7528     if (isa<UndefValue>(Obj))
7529       continue;
7530     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7531       if (Arg->hasByValAttr())
7532         MLK = NO_LOCAL_MEM;
7533       else
7534         MLK = NO_ARGUMENT_MEM;
7535     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7536       // Reading constant memory is not treated as a read "effect" by the
7537       // function attr pass so we won't neither. Constants defined by TBAA are
7538       // similar. (We know we do not write it because it is constant.)
7539       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7540         if (GVar->isConstant())
7541           continue;
7542 
7543       if (GV->hasLocalLinkage())
7544         MLK = NO_GLOBAL_INTERNAL_MEM;
7545       else
7546         MLK = NO_GLOBAL_EXTERNAL_MEM;
7547     } else if (isa<ConstantPointerNull>(Obj) &&
7548                !NullPointerIsDefined(getAssociatedFunction(),
7549                                      Ptr.getType()->getPointerAddressSpace())) {
7550       continue;
7551     } else if (isa<AllocaInst>(Obj)) {
7552       MLK = NO_LOCAL_MEM;
7553     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7554       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7555           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7556       if (NoAliasAA.isAssumedNoAlias())
7557         MLK = NO_MALLOCED_MEM;
7558       else
7559         MLK = NO_UNKOWN_MEM;
7560     } else {
7561       MLK = NO_UNKOWN_MEM;
7562     }
7563 
7564     assert(MLK != NO_LOCATIONS && "No location specified!");
7565     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7566                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7567                       << "\n");
7568     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7569                               getAccessKindFromInst(&I));
7570   }
7571 
7572   LLVM_DEBUG(
7573       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7574              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7575 }
7576 
7577 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7578     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7579     bool &Changed) {
7580   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
7581 
7582     // Skip non-pointer arguments.
7583     const Value *ArgOp = CB.getArgOperand(ArgNo);
7584     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7585       continue;
7586 
7587     // Skip readnone arguments.
7588     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7589     const auto &ArgOpMemLocationAA =
7590         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7591 
7592     if (ArgOpMemLocationAA.isAssumedReadNone())
7593       continue;
7594 
7595     // Categorize potentially accessed pointer arguments as if there was an
7596     // access instruction with them as pointer.
7597     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7598   }
7599 }
7600 
7601 AAMemoryLocation::MemoryLocationsKind
7602 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7603                                                   bool &Changed) {
7604   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7605                     << I << "\n");
7606 
7607   AAMemoryLocation::StateType AccessedLocs;
7608   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7609 
7610   if (auto *CB = dyn_cast<CallBase>(&I)) {
7611 
7612     // First check if we assume any memory is access is visible.
7613     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7614         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7615     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7616                       << " [" << CBMemLocationAA << "]\n");
7617 
7618     if (CBMemLocationAA.isAssumedReadNone())
7619       return NO_LOCATIONS;
7620 
7621     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7622       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7623                                 Changed, getAccessKindFromInst(&I));
7624       return AccessedLocs.getAssumed();
7625     }
7626 
7627     uint32_t CBAssumedNotAccessedLocs =
7628         CBMemLocationAA.getAssumedNotAccessedLocation();
7629 
7630     // Set the argmemonly and global bit as we handle them separately below.
7631     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7632         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7633 
7634     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7635       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7636         continue;
7637       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7638                                 getAccessKindFromInst(&I));
7639     }
7640 
7641     // Now handle global memory if it might be accessed. This is slightly tricky
7642     // as NO_GLOBAL_MEM has multiple bits set.
7643     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7644     if (HasGlobalAccesses) {
7645       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7646                             AccessKind Kind, MemoryLocationsKind MLK) {
7647         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7648                                   getAccessKindFromInst(&I));
7649         return true;
7650       };
7651       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7652               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7653         return AccessedLocs.getWorstState();
7654     }
7655 
7656     LLVM_DEBUG(
7657         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7658                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7659 
7660     // Now handle argument memory if it might be accessed.
7661     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7662     if (HasArgAccesses)
7663       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7664 
7665     LLVM_DEBUG(
7666         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7667                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7668 
7669     return AccessedLocs.getAssumed();
7670   }
7671 
7672   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7673     LLVM_DEBUG(
7674         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7675                << I << " [" << *Ptr << "]\n");
7676     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7677     return AccessedLocs.getAssumed();
7678   }
7679 
7680   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7681                     << I << "\n");
7682   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7683                             getAccessKindFromInst(&I));
7684   return AccessedLocs.getAssumed();
7685 }
7686 
7687 /// An AA to represent the memory behavior function attributes.
7688 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7689   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7690       : AAMemoryLocationImpl(IRP, A) {}
7691 
7692   /// See AbstractAttribute::updateImpl(Attributor &A).
7693   virtual ChangeStatus updateImpl(Attributor &A) override {
7694 
7695     const auto &MemBehaviorAA =
7696         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7697     if (MemBehaviorAA.isAssumedReadNone()) {
7698       if (MemBehaviorAA.isKnownReadNone())
7699         return indicateOptimisticFixpoint();
7700       assert(isAssumedReadNone() &&
7701              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7702       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7703       return ChangeStatus::UNCHANGED;
7704     }
7705 
7706     // The current assumed state used to determine a change.
7707     auto AssumedState = getAssumed();
7708     bool Changed = false;
7709 
7710     auto CheckRWInst = [&](Instruction &I) {
7711       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7712       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7713                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7714       removeAssumedBits(inverseLocation(MLK, false, false));
7715       // Stop once only the valid bit set in the *not assumed location*, thus
7716       // once we don't actually exclude any memory locations in the state.
7717       return getAssumedNotAccessedLocation() != VALID_STATE;
7718     };
7719 
7720     bool UsedAssumedInformation = false;
7721     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7722                                             UsedAssumedInformation))
7723       return indicatePessimisticFixpoint();
7724 
7725     Changed |= AssumedState != getAssumed();
7726     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7727   }
7728 
7729   /// See AbstractAttribute::trackStatistics()
7730   void trackStatistics() const override {
7731     if (isAssumedReadNone())
7732       STATS_DECLTRACK_FN_ATTR(readnone)
7733     else if (isAssumedArgMemOnly())
7734       STATS_DECLTRACK_FN_ATTR(argmemonly)
7735     else if (isAssumedInaccessibleMemOnly())
7736       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7737     else if (isAssumedInaccessibleOrArgMemOnly())
7738       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7739   }
7740 };
7741 
7742 /// AAMemoryLocation attribute for call sites.
7743 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7744   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7745       : AAMemoryLocationImpl(IRP, A) {}
7746 
7747   /// See AbstractAttribute::initialize(...).
7748   void initialize(Attributor &A) override {
7749     AAMemoryLocationImpl::initialize(A);
7750     Function *F = getAssociatedFunction();
7751     if (!F || F->isDeclaration())
7752       indicatePessimisticFixpoint();
7753   }
7754 
7755   /// See AbstractAttribute::updateImpl(...).
7756   ChangeStatus updateImpl(Attributor &A) override {
7757     // TODO: Once we have call site specific value information we can provide
7758     //       call site specific liveness liveness information and then it makes
7759     //       sense to specialize attributes for call sites arguments instead of
7760     //       redirecting requests to the callee argument.
7761     Function *F = getAssociatedFunction();
7762     const IRPosition &FnPos = IRPosition::function(*F);
7763     auto &FnAA =
7764         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7765     bool Changed = false;
7766     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7767                           AccessKind Kind, MemoryLocationsKind MLK) {
7768       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7769                                 getAccessKindFromInst(I));
7770       return true;
7771     };
7772     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7773       return indicatePessimisticFixpoint();
7774     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7775   }
7776 
7777   /// See AbstractAttribute::trackStatistics()
7778   void trackStatistics() const override {
7779     if (isAssumedReadNone())
7780       STATS_DECLTRACK_CS_ATTR(readnone)
7781   }
7782 };
7783 
7784 /// ------------------ Value Constant Range Attribute -------------------------
7785 
7786 struct AAValueConstantRangeImpl : AAValueConstantRange {
7787   using StateType = IntegerRangeState;
7788   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7789       : AAValueConstantRange(IRP, A) {}
7790 
7791   /// See AbstractAttribute::getAsStr().
7792   const std::string getAsStr() const override {
7793     std::string Str;
7794     llvm::raw_string_ostream OS(Str);
7795     OS << "range(" << getBitWidth() << ")<";
7796     getKnown().print(OS);
7797     OS << " / ";
7798     getAssumed().print(OS);
7799     OS << ">";
7800     return OS.str();
7801   }
7802 
7803   /// Helper function to get a SCEV expr for the associated value at program
7804   /// point \p I.
7805   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7806     if (!getAnchorScope())
7807       return nullptr;
7808 
7809     ScalarEvolution *SE =
7810         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7811             *getAnchorScope());
7812 
7813     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7814         *getAnchorScope());
7815 
7816     if (!SE || !LI)
7817       return nullptr;
7818 
7819     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7820     if (!I)
7821       return S;
7822 
7823     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7824   }
7825 
7826   /// Helper function to get a range from SCEV for the associated value at
7827   /// program point \p I.
7828   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7829                                          const Instruction *I = nullptr) const {
7830     if (!getAnchorScope())
7831       return getWorstState(getBitWidth());
7832 
7833     ScalarEvolution *SE =
7834         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7835             *getAnchorScope());
7836 
7837     const SCEV *S = getSCEV(A, I);
7838     if (!SE || !S)
7839       return getWorstState(getBitWidth());
7840 
7841     return SE->getUnsignedRange(S);
7842   }
7843 
7844   /// Helper function to get a range from LVI for the associated value at
7845   /// program point \p I.
7846   ConstantRange
7847   getConstantRangeFromLVI(Attributor &A,
7848                           const Instruction *CtxI = nullptr) const {
7849     if (!getAnchorScope())
7850       return getWorstState(getBitWidth());
7851 
7852     LazyValueInfo *LVI =
7853         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
7854             *getAnchorScope());
7855 
7856     if (!LVI || !CtxI)
7857       return getWorstState(getBitWidth());
7858     return LVI->getConstantRange(&getAssociatedValue(),
7859                                  const_cast<Instruction *>(CtxI));
7860   }
7861 
7862   /// Return true if \p CtxI is valid for querying outside analyses.
7863   /// This basically makes sure we do not ask intra-procedural analysis
7864   /// about a context in the wrong function or a context that violates
7865   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
7866   /// if the original context of this AA is OK or should be considered invalid.
7867   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
7868                                                const Instruction *CtxI,
7869                                                bool AllowAACtxI) const {
7870     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
7871       return false;
7872 
7873     // Our context might be in a different function, neither intra-procedural
7874     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
7875     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
7876       return false;
7877 
7878     // If the context is not dominated by the value there are paths to the
7879     // context that do not define the value. This cannot be handled by
7880     // LazyValueInfo so we need to bail.
7881     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
7882       InformationCache &InfoCache = A.getInfoCache();
7883       const DominatorTree *DT =
7884           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
7885               *I->getFunction());
7886       return DT && DT->dominates(I, CtxI);
7887     }
7888 
7889     return true;
7890   }
7891 
7892   /// See AAValueConstantRange::getKnownConstantRange(..).
7893   ConstantRange
7894   getKnownConstantRange(Attributor &A,
7895                         const Instruction *CtxI = nullptr) const override {
7896     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
7897                                                  /* AllowAACtxI */ false))
7898       return getKnown();
7899 
7900     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7901     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7902     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
7903   }
7904 
7905   /// See AAValueConstantRange::getAssumedConstantRange(..).
7906   ConstantRange
7907   getAssumedConstantRange(Attributor &A,
7908                           const Instruction *CtxI = nullptr) const override {
7909     // TODO: Make SCEV use Attributor assumption.
7910     //       We may be able to bound a variable range via assumptions in
7911     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
7912     //       evolve to x^2 + x, then we can say that y is in [2, 12].
7913     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
7914                                                  /* AllowAACtxI */ false))
7915       return getAssumed();
7916 
7917     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7918     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7919     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
7920   }
7921 
7922   /// See AbstractAttribute::initialize(..).
7923   void initialize(Attributor &A) override {
7924     // Intersect a range given by SCEV.
7925     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7926 
7927     // Intersect a range given by LVI.
7928     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7929   }
7930 
7931   /// Helper function to create MDNode for range metadata.
7932   static MDNode *
7933   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
7934                             const ConstantRange &AssumedConstantRange) {
7935     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
7936                                   Ty, AssumedConstantRange.getLower())),
7937                               ConstantAsMetadata::get(ConstantInt::get(
7938                                   Ty, AssumedConstantRange.getUpper()))};
7939     return MDNode::get(Ctx, LowAndHigh);
7940   }
7941 
7942   /// Return true if \p Assumed is included in \p KnownRanges.
7943   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
7944 
7945     if (Assumed.isFullSet())
7946       return false;
7947 
7948     if (!KnownRanges)
7949       return true;
7950 
7951     // If multiple ranges are annotated in IR, we give up to annotate assumed
7952     // range for now.
7953 
7954     // TODO:  If there exists a known range which containts assumed range, we
7955     // can say assumed range is better.
7956     if (KnownRanges->getNumOperands() > 2)
7957       return false;
7958 
7959     ConstantInt *Lower =
7960         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
7961     ConstantInt *Upper =
7962         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
7963 
7964     ConstantRange Known(Lower->getValue(), Upper->getValue());
7965     return Known.contains(Assumed) && Known != Assumed;
7966   }
7967 
7968   /// Helper function to set range metadata.
7969   static bool
7970   setRangeMetadataIfisBetterRange(Instruction *I,
7971                                   const ConstantRange &AssumedConstantRange) {
7972     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
7973     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
7974       if (!AssumedConstantRange.isEmptySet()) {
7975         I->setMetadata(LLVMContext::MD_range,
7976                        getMDNodeForConstantRange(I->getType(), I->getContext(),
7977                                                  AssumedConstantRange));
7978         return true;
7979       }
7980     }
7981     return false;
7982   }
7983 
7984   /// See AbstractAttribute::manifest()
7985   ChangeStatus manifest(Attributor &A) override {
7986     ChangeStatus Changed = ChangeStatus::UNCHANGED;
7987     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
7988     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
7989 
7990     auto &V = getAssociatedValue();
7991     if (!AssumedConstantRange.isEmptySet() &&
7992         !AssumedConstantRange.isSingleElement()) {
7993       if (Instruction *I = dyn_cast<Instruction>(&V)) {
7994         assert(I == getCtxI() && "Should not annotate an instruction which is "
7995                                  "not the context instruction");
7996         if (isa<CallInst>(I) || isa<LoadInst>(I))
7997           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
7998             Changed = ChangeStatus::CHANGED;
7999       }
8000     }
8001 
8002     return Changed;
8003   }
8004 };
8005 
8006 struct AAValueConstantRangeArgument final
8007     : AAArgumentFromCallSiteArguments<
8008           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8009           true /* BridgeCallBaseContext */> {
8010   using Base = AAArgumentFromCallSiteArguments<
8011       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8012       true /* BridgeCallBaseContext */>;
8013   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8014       : Base(IRP, A) {}
8015 
8016   /// See AbstractAttribute::initialize(..).
8017   void initialize(Attributor &A) override {
8018     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8019       indicatePessimisticFixpoint();
8020     } else {
8021       Base::initialize(A);
8022     }
8023   }
8024 
8025   /// See AbstractAttribute::trackStatistics()
8026   void trackStatistics() const override {
8027     STATS_DECLTRACK_ARG_ATTR(value_range)
8028   }
8029 };
8030 
8031 struct AAValueConstantRangeReturned
8032     : AAReturnedFromReturnedValues<AAValueConstantRange,
8033                                    AAValueConstantRangeImpl,
8034                                    AAValueConstantRangeImpl::StateType,
8035                                    /* PropogateCallBaseContext */ true> {
8036   using Base =
8037       AAReturnedFromReturnedValues<AAValueConstantRange,
8038                                    AAValueConstantRangeImpl,
8039                                    AAValueConstantRangeImpl::StateType,
8040                                    /* PropogateCallBaseContext */ true>;
8041   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8042       : Base(IRP, A) {}
8043 
8044   /// See AbstractAttribute::initialize(...).
8045   void initialize(Attributor &A) override {}
8046 
8047   /// See AbstractAttribute::trackStatistics()
8048   void trackStatistics() const override {
8049     STATS_DECLTRACK_FNRET_ATTR(value_range)
8050   }
8051 };
8052 
8053 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8054   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8055       : AAValueConstantRangeImpl(IRP, A) {}
8056 
8057   /// See AbstractAttribute::initialize(...).
8058   void initialize(Attributor &A) override {
8059     AAValueConstantRangeImpl::initialize(A);
8060     Value &V = getAssociatedValue();
8061 
8062     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8063       unionAssumed(ConstantRange(C->getValue()));
8064       indicateOptimisticFixpoint();
8065       return;
8066     }
8067 
8068     if (isa<UndefValue>(&V)) {
8069       // Collapse the undef state to 0.
8070       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8071       indicateOptimisticFixpoint();
8072       return;
8073     }
8074 
8075     if (isa<CallBase>(&V))
8076       return;
8077 
8078     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8079       return;
8080     // If it is a load instruction with range metadata, use it.
8081     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8082       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8083         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8084         return;
8085       }
8086 
8087     // We can work with PHI and select instruction as we traverse their operands
8088     // during update.
8089     if (isa<SelectInst>(V) || isa<PHINode>(V))
8090       return;
8091 
8092     // Otherwise we give up.
8093     indicatePessimisticFixpoint();
8094 
8095     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8096                       << getAssociatedValue() << "\n");
8097   }
8098 
8099   bool calculateBinaryOperator(
8100       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8101       const Instruction *CtxI,
8102       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8103     Value *LHS = BinOp->getOperand(0);
8104     Value *RHS = BinOp->getOperand(1);
8105 
8106     // Simplify the operands first.
8107     bool UsedAssumedInformation = false;
8108     const auto &SimplifiedLHS =
8109         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8110                                *this, UsedAssumedInformation);
8111     if (!SimplifiedLHS.hasValue())
8112       return true;
8113     if (!SimplifiedLHS.getValue())
8114       return false;
8115     LHS = *SimplifiedLHS;
8116 
8117     const auto &SimplifiedRHS =
8118         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8119                                *this, UsedAssumedInformation);
8120     if (!SimplifiedRHS.hasValue())
8121       return true;
8122     if (!SimplifiedRHS.getValue())
8123       return false;
8124     RHS = *SimplifiedRHS;
8125 
8126     // TODO: Allow non integers as well.
8127     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8128       return false;
8129 
8130     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8131         *this, IRPosition::value(*LHS, getCallBaseContext()),
8132         DepClassTy::REQUIRED);
8133     QuerriedAAs.push_back(&LHSAA);
8134     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8135 
8136     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8137         *this, IRPosition::value(*RHS, getCallBaseContext()),
8138         DepClassTy::REQUIRED);
8139     QuerriedAAs.push_back(&RHSAA);
8140     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8141 
8142     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8143 
8144     T.unionAssumed(AssumedRange);
8145 
8146     // TODO: Track a known state too.
8147 
8148     return T.isValidState();
8149   }
8150 
8151   bool calculateCastInst(
8152       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8153       const Instruction *CtxI,
8154       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8155     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8156     // TODO: Allow non integers as well.
8157     Value *OpV = CastI->getOperand(0);
8158 
8159     // Simplify the operand first.
8160     bool UsedAssumedInformation = false;
8161     const auto &SimplifiedOpV =
8162         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8163                                *this, UsedAssumedInformation);
8164     if (!SimplifiedOpV.hasValue())
8165       return true;
8166     if (!SimplifiedOpV.getValue())
8167       return false;
8168     OpV = *SimplifiedOpV;
8169 
8170     if (!OpV->getType()->isIntegerTy())
8171       return false;
8172 
8173     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8174         *this, IRPosition::value(*OpV, getCallBaseContext()),
8175         DepClassTy::REQUIRED);
8176     QuerriedAAs.push_back(&OpAA);
8177     T.unionAssumed(
8178         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8179     return T.isValidState();
8180   }
8181 
8182   bool
8183   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8184                    const Instruction *CtxI,
8185                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8186     Value *LHS = CmpI->getOperand(0);
8187     Value *RHS = CmpI->getOperand(1);
8188 
8189     // Simplify the operands first.
8190     bool UsedAssumedInformation = false;
8191     const auto &SimplifiedLHS =
8192         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8193                                *this, UsedAssumedInformation);
8194     if (!SimplifiedLHS.hasValue())
8195       return true;
8196     if (!SimplifiedLHS.getValue())
8197       return false;
8198     LHS = *SimplifiedLHS;
8199 
8200     const auto &SimplifiedRHS =
8201         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8202                                *this, UsedAssumedInformation);
8203     if (!SimplifiedRHS.hasValue())
8204       return true;
8205     if (!SimplifiedRHS.getValue())
8206       return false;
8207     RHS = *SimplifiedRHS;
8208 
8209     // TODO: Allow non integers as well.
8210     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8211       return false;
8212 
8213     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8214         *this, IRPosition::value(*LHS, getCallBaseContext()),
8215         DepClassTy::REQUIRED);
8216     QuerriedAAs.push_back(&LHSAA);
8217     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8218         *this, IRPosition::value(*RHS, getCallBaseContext()),
8219         DepClassTy::REQUIRED);
8220     QuerriedAAs.push_back(&RHSAA);
8221     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8222     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8223 
8224     // If one of them is empty set, we can't decide.
8225     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8226       return true;
8227 
8228     bool MustTrue = false, MustFalse = false;
8229 
8230     auto AllowedRegion =
8231         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8232 
8233     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8234       MustFalse = true;
8235 
8236     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8237       MustTrue = true;
8238 
8239     assert((!MustTrue || !MustFalse) &&
8240            "Either MustTrue or MustFalse should be false!");
8241 
8242     if (MustTrue)
8243       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8244     else if (MustFalse)
8245       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8246     else
8247       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8248 
8249     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8250                       << " " << RHSAA << "\n");
8251 
8252     // TODO: Track a known state too.
8253     return T.isValidState();
8254   }
8255 
8256   /// See AbstractAttribute::updateImpl(...).
8257   ChangeStatus updateImpl(Attributor &A) override {
8258     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8259                             IntegerRangeState &T, bool Stripped) -> bool {
8260       Instruction *I = dyn_cast<Instruction>(&V);
8261       if (!I || isa<CallBase>(I)) {
8262 
8263         // Simplify the operand first.
8264         bool UsedAssumedInformation = false;
8265         const auto &SimplifiedOpV =
8266             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8267                                    *this, UsedAssumedInformation);
8268         if (!SimplifiedOpV.hasValue())
8269           return true;
8270         if (!SimplifiedOpV.getValue())
8271           return false;
8272         Value *VPtr = *SimplifiedOpV;
8273 
8274         // If the value is not instruction, we query AA to Attributor.
8275         const auto &AA = A.getAAFor<AAValueConstantRange>(
8276             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8277             DepClassTy::REQUIRED);
8278 
8279         // Clamp operator is not used to utilize a program point CtxI.
8280         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8281 
8282         return T.isValidState();
8283       }
8284 
8285       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8286       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8287         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8288           return false;
8289       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8290         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8291           return false;
8292       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8293         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8294           return false;
8295       } else {
8296         // Give up with other instructions.
8297         // TODO: Add other instructions
8298 
8299         T.indicatePessimisticFixpoint();
8300         return false;
8301       }
8302 
8303       // Catch circular reasoning in a pessimistic way for now.
8304       // TODO: Check how the range evolves and if we stripped anything, see also
8305       //       AADereferenceable or AAAlign for similar situations.
8306       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8307         if (QueriedAA != this)
8308           continue;
8309         // If we are in a stady state we do not need to worry.
8310         if (T.getAssumed() == getState().getAssumed())
8311           continue;
8312         T.indicatePessimisticFixpoint();
8313       }
8314 
8315       return T.isValidState();
8316     };
8317 
8318     IntegerRangeState T(getBitWidth());
8319 
8320     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8321                                                   VisitValueCB, getCtxI(),
8322                                                   /* UseValueSimplify */ false))
8323       return indicatePessimisticFixpoint();
8324 
8325     return clampStateAndIndicateChange(getState(), T);
8326   }
8327 
8328   /// See AbstractAttribute::trackStatistics()
8329   void trackStatistics() const override {
8330     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8331   }
8332 };
8333 
8334 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8335   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8336       : AAValueConstantRangeImpl(IRP, A) {}
8337 
8338   /// See AbstractAttribute::initialize(...).
8339   ChangeStatus updateImpl(Attributor &A) override {
8340     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8341                      "not be called");
8342   }
8343 
8344   /// See AbstractAttribute::trackStatistics()
8345   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8346 };
8347 
8348 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8349   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8350       : AAValueConstantRangeFunction(IRP, A) {}
8351 
8352   /// See AbstractAttribute::trackStatistics()
8353   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8354 };
8355 
8356 struct AAValueConstantRangeCallSiteReturned
8357     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8358                                      AAValueConstantRangeImpl,
8359                                      AAValueConstantRangeImpl::StateType,
8360                                      /* IntroduceCallBaseContext */ true> {
8361   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8362       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8363                                        AAValueConstantRangeImpl,
8364                                        AAValueConstantRangeImpl::StateType,
8365                                        /* IntroduceCallBaseContext */ true>(IRP,
8366                                                                             A) {
8367   }
8368 
8369   /// See AbstractAttribute::initialize(...).
8370   void initialize(Attributor &A) override {
8371     // If it is a load instruction with range metadata, use the metadata.
8372     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8373       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8374         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8375 
8376     AAValueConstantRangeImpl::initialize(A);
8377   }
8378 
8379   /// See AbstractAttribute::trackStatistics()
8380   void trackStatistics() const override {
8381     STATS_DECLTRACK_CSRET_ATTR(value_range)
8382   }
8383 };
8384 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8385   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8386       : AAValueConstantRangeFloating(IRP, A) {}
8387 
8388   /// See AbstractAttribute::manifest()
8389   ChangeStatus manifest(Attributor &A) override {
8390     return ChangeStatus::UNCHANGED;
8391   }
8392 
8393   /// See AbstractAttribute::trackStatistics()
8394   void trackStatistics() const override {
8395     STATS_DECLTRACK_CSARG_ATTR(value_range)
8396   }
8397 };
8398 
8399 /// ------------------ Potential Values Attribute -------------------------
8400 
8401 struct AAPotentialValuesImpl : AAPotentialValues {
8402   using StateType = PotentialConstantIntValuesState;
8403 
8404   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8405       : AAPotentialValues(IRP, A) {}
8406 
8407   /// See AbstractAttribute::getAsStr().
8408   const std::string getAsStr() const override {
8409     std::string Str;
8410     llvm::raw_string_ostream OS(Str);
8411     OS << getState();
8412     return OS.str();
8413   }
8414 
8415   /// See AbstractAttribute::updateImpl(...).
8416   ChangeStatus updateImpl(Attributor &A) override {
8417     return indicatePessimisticFixpoint();
8418   }
8419 };
8420 
8421 struct AAPotentialValuesArgument final
8422     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8423                                       PotentialConstantIntValuesState> {
8424   using Base =
8425       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8426                                       PotentialConstantIntValuesState>;
8427   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8428       : Base(IRP, A) {}
8429 
8430   /// See AbstractAttribute::initialize(..).
8431   void initialize(Attributor &A) override {
8432     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8433       indicatePessimisticFixpoint();
8434     } else {
8435       Base::initialize(A);
8436     }
8437   }
8438 
8439   /// See AbstractAttribute::trackStatistics()
8440   void trackStatistics() const override {
8441     STATS_DECLTRACK_ARG_ATTR(potential_values)
8442   }
8443 };
8444 
8445 struct AAPotentialValuesReturned
8446     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8447   using Base =
8448       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8449   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8450       : Base(IRP, A) {}
8451 
8452   /// See AbstractAttribute::trackStatistics()
8453   void trackStatistics() const override {
8454     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8455   }
8456 };
8457 
8458 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8459   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8460       : AAPotentialValuesImpl(IRP, A) {}
8461 
8462   /// See AbstractAttribute::initialize(..).
8463   void initialize(Attributor &A) override {
8464     Value &V = getAssociatedValue();
8465 
8466     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8467       unionAssumed(C->getValue());
8468       indicateOptimisticFixpoint();
8469       return;
8470     }
8471 
8472     if (isa<UndefValue>(&V)) {
8473       unionAssumedWithUndef();
8474       indicateOptimisticFixpoint();
8475       return;
8476     }
8477 
8478     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8479       return;
8480 
8481     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8482       return;
8483 
8484     indicatePessimisticFixpoint();
8485 
8486     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8487                       << getAssociatedValue() << "\n");
8488   }
8489 
8490   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8491                                 const APInt &RHS) {
8492     ICmpInst::Predicate Pred = ICI->getPredicate();
8493     switch (Pred) {
8494     case ICmpInst::ICMP_UGT:
8495       return LHS.ugt(RHS);
8496     case ICmpInst::ICMP_SGT:
8497       return LHS.sgt(RHS);
8498     case ICmpInst::ICMP_EQ:
8499       return LHS.eq(RHS);
8500     case ICmpInst::ICMP_UGE:
8501       return LHS.uge(RHS);
8502     case ICmpInst::ICMP_SGE:
8503       return LHS.sge(RHS);
8504     case ICmpInst::ICMP_ULT:
8505       return LHS.ult(RHS);
8506     case ICmpInst::ICMP_SLT:
8507       return LHS.slt(RHS);
8508     case ICmpInst::ICMP_NE:
8509       return LHS.ne(RHS);
8510     case ICmpInst::ICMP_ULE:
8511       return LHS.ule(RHS);
8512     case ICmpInst::ICMP_SLE:
8513       return LHS.sle(RHS);
8514     default:
8515       llvm_unreachable("Invalid ICmp predicate!");
8516     }
8517   }
8518 
8519   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8520                                  uint32_t ResultBitWidth) {
8521     Instruction::CastOps CastOp = CI->getOpcode();
8522     switch (CastOp) {
8523     default:
8524       llvm_unreachable("unsupported or not integer cast");
8525     case Instruction::Trunc:
8526       return Src.trunc(ResultBitWidth);
8527     case Instruction::SExt:
8528       return Src.sext(ResultBitWidth);
8529     case Instruction::ZExt:
8530       return Src.zext(ResultBitWidth);
8531     case Instruction::BitCast:
8532       return Src;
8533     }
8534   }
8535 
8536   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8537                                        const APInt &LHS, const APInt &RHS,
8538                                        bool &SkipOperation, bool &Unsupported) {
8539     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8540     // Unsupported is set to true when the binary operator is not supported.
8541     // SkipOperation is set to true when UB occur with the given operand pair
8542     // (LHS, RHS).
8543     // TODO: we should look at nsw and nuw keywords to handle operations
8544     //       that create poison or undef value.
8545     switch (BinOpcode) {
8546     default:
8547       Unsupported = true;
8548       return LHS;
8549     case Instruction::Add:
8550       return LHS + RHS;
8551     case Instruction::Sub:
8552       return LHS - RHS;
8553     case Instruction::Mul:
8554       return LHS * RHS;
8555     case Instruction::UDiv:
8556       if (RHS.isNullValue()) {
8557         SkipOperation = true;
8558         return LHS;
8559       }
8560       return LHS.udiv(RHS);
8561     case Instruction::SDiv:
8562       if (RHS.isNullValue()) {
8563         SkipOperation = true;
8564         return LHS;
8565       }
8566       return LHS.sdiv(RHS);
8567     case Instruction::URem:
8568       if (RHS.isNullValue()) {
8569         SkipOperation = true;
8570         return LHS;
8571       }
8572       return LHS.urem(RHS);
8573     case Instruction::SRem:
8574       if (RHS.isNullValue()) {
8575         SkipOperation = true;
8576         return LHS;
8577       }
8578       return LHS.srem(RHS);
8579     case Instruction::Shl:
8580       return LHS.shl(RHS);
8581     case Instruction::LShr:
8582       return LHS.lshr(RHS);
8583     case Instruction::AShr:
8584       return LHS.ashr(RHS);
8585     case Instruction::And:
8586       return LHS & RHS;
8587     case Instruction::Or:
8588       return LHS | RHS;
8589     case Instruction::Xor:
8590       return LHS ^ RHS;
8591     }
8592   }
8593 
8594   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8595                                            const APInt &LHS, const APInt &RHS) {
8596     bool SkipOperation = false;
8597     bool Unsupported = false;
8598     APInt Result =
8599         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8600     if (Unsupported)
8601       return false;
8602     // If SkipOperation is true, we can ignore this operand pair (L, R).
8603     if (!SkipOperation)
8604       unionAssumed(Result);
8605     return isValidState();
8606   }
8607 
8608   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8609     auto AssumedBefore = getAssumed();
8610     Value *LHS = ICI->getOperand(0);
8611     Value *RHS = ICI->getOperand(1);
8612 
8613     // Simplify the operands first.
8614     bool UsedAssumedInformation = false;
8615     const auto &SimplifiedLHS =
8616         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8617                                *this, UsedAssumedInformation);
8618     if (!SimplifiedLHS.hasValue())
8619       return ChangeStatus::UNCHANGED;
8620     if (!SimplifiedLHS.getValue())
8621       return indicatePessimisticFixpoint();
8622     LHS = *SimplifiedLHS;
8623 
8624     const auto &SimplifiedRHS =
8625         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8626                                *this, UsedAssumedInformation);
8627     if (!SimplifiedRHS.hasValue())
8628       return ChangeStatus::UNCHANGED;
8629     if (!SimplifiedRHS.getValue())
8630       return indicatePessimisticFixpoint();
8631     RHS = *SimplifiedRHS;
8632 
8633     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8634       return indicatePessimisticFixpoint();
8635 
8636     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8637                                                 DepClassTy::REQUIRED);
8638     if (!LHSAA.isValidState())
8639       return indicatePessimisticFixpoint();
8640 
8641     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8642                                                 DepClassTy::REQUIRED);
8643     if (!RHSAA.isValidState())
8644       return indicatePessimisticFixpoint();
8645 
8646     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8647     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8648 
8649     // TODO: make use of undef flag to limit potential values aggressively.
8650     bool MaybeTrue = false, MaybeFalse = false;
8651     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8652     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8653       // The result of any comparison between undefs can be soundly replaced
8654       // with undef.
8655       unionAssumedWithUndef();
8656     } else if (LHSAA.undefIsContained()) {
8657       for (const APInt &R : RHSAAPVS) {
8658         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8659         MaybeTrue |= CmpResult;
8660         MaybeFalse |= !CmpResult;
8661         if (MaybeTrue & MaybeFalse)
8662           return indicatePessimisticFixpoint();
8663       }
8664     } else if (RHSAA.undefIsContained()) {
8665       for (const APInt &L : LHSAAPVS) {
8666         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8667         MaybeTrue |= CmpResult;
8668         MaybeFalse |= !CmpResult;
8669         if (MaybeTrue & MaybeFalse)
8670           return indicatePessimisticFixpoint();
8671       }
8672     } else {
8673       for (const APInt &L : LHSAAPVS) {
8674         for (const APInt &R : RHSAAPVS) {
8675           bool CmpResult = calculateICmpInst(ICI, L, R);
8676           MaybeTrue |= CmpResult;
8677           MaybeFalse |= !CmpResult;
8678           if (MaybeTrue & MaybeFalse)
8679             return indicatePessimisticFixpoint();
8680         }
8681       }
8682     }
8683     if (MaybeTrue)
8684       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8685     if (MaybeFalse)
8686       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8687     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8688                                          : ChangeStatus::CHANGED;
8689   }
8690 
8691   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8692     auto AssumedBefore = getAssumed();
8693     Value *LHS = SI->getTrueValue();
8694     Value *RHS = SI->getFalseValue();
8695 
8696     // Simplify the operands first.
8697     bool UsedAssumedInformation = false;
8698     const auto &SimplifiedLHS =
8699         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8700                                *this, UsedAssumedInformation);
8701     if (!SimplifiedLHS.hasValue())
8702       return ChangeStatus::UNCHANGED;
8703     if (!SimplifiedLHS.getValue())
8704       return indicatePessimisticFixpoint();
8705     LHS = *SimplifiedLHS;
8706 
8707     const auto &SimplifiedRHS =
8708         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8709                                *this, UsedAssumedInformation);
8710     if (!SimplifiedRHS.hasValue())
8711       return ChangeStatus::UNCHANGED;
8712     if (!SimplifiedRHS.getValue())
8713       return indicatePessimisticFixpoint();
8714     RHS = *SimplifiedRHS;
8715 
8716     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8717       return indicatePessimisticFixpoint();
8718 
8719     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8720                                                   UsedAssumedInformation);
8721 
8722     // Check if we only need one operand.
8723     bool OnlyLeft = false, OnlyRight = false;
8724     if (C.hasValue() && *C && (*C)->isOneValue())
8725       OnlyLeft = true;
8726     else if (C.hasValue() && *C && (*C)->isZeroValue())
8727       OnlyRight = true;
8728 
8729     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8730     if (!OnlyRight) {
8731       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8732                                              DepClassTy::REQUIRED);
8733       if (!LHSAA->isValidState())
8734         return indicatePessimisticFixpoint();
8735     }
8736     if (!OnlyLeft) {
8737       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8738                                              DepClassTy::REQUIRED);
8739       if (!RHSAA->isValidState())
8740         return indicatePessimisticFixpoint();
8741     }
8742 
8743     if (!LHSAA || !RHSAA) {
8744       // select (true/false), lhs, rhs
8745       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8746 
8747       if (OpAA->undefIsContained())
8748         unionAssumedWithUndef();
8749       else
8750         unionAssumed(*OpAA);
8751 
8752     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8753       // select i1 *, undef , undef => undef
8754       unionAssumedWithUndef();
8755     } else {
8756       unionAssumed(*LHSAA);
8757       unionAssumed(*RHSAA);
8758     }
8759     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8760                                          : ChangeStatus::CHANGED;
8761   }
8762 
8763   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8764     auto AssumedBefore = getAssumed();
8765     if (!CI->isIntegerCast())
8766       return indicatePessimisticFixpoint();
8767     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8768     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8769     Value *Src = CI->getOperand(0);
8770 
8771     // Simplify the operand first.
8772     bool UsedAssumedInformation = false;
8773     const auto &SimplifiedSrc =
8774         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8775                                *this, UsedAssumedInformation);
8776     if (!SimplifiedSrc.hasValue())
8777       return ChangeStatus::UNCHANGED;
8778     if (!SimplifiedSrc.getValue())
8779       return indicatePessimisticFixpoint();
8780     Src = *SimplifiedSrc;
8781 
8782     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8783                                                 DepClassTy::REQUIRED);
8784     if (!SrcAA.isValidState())
8785       return indicatePessimisticFixpoint();
8786     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8787     if (SrcAA.undefIsContained())
8788       unionAssumedWithUndef();
8789     else {
8790       for (const APInt &S : SrcAAPVS) {
8791         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8792         unionAssumed(T);
8793       }
8794     }
8795     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8796                                          : ChangeStatus::CHANGED;
8797   }
8798 
8799   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8800     auto AssumedBefore = getAssumed();
8801     Value *LHS = BinOp->getOperand(0);
8802     Value *RHS = BinOp->getOperand(1);
8803 
8804     // Simplify the operands first.
8805     bool UsedAssumedInformation = false;
8806     const auto &SimplifiedLHS =
8807         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8808                                *this, UsedAssumedInformation);
8809     if (!SimplifiedLHS.hasValue())
8810       return ChangeStatus::UNCHANGED;
8811     if (!SimplifiedLHS.getValue())
8812       return indicatePessimisticFixpoint();
8813     LHS = *SimplifiedLHS;
8814 
8815     const auto &SimplifiedRHS =
8816         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8817                                *this, UsedAssumedInformation);
8818     if (!SimplifiedRHS.hasValue())
8819       return ChangeStatus::UNCHANGED;
8820     if (!SimplifiedRHS.getValue())
8821       return indicatePessimisticFixpoint();
8822     RHS = *SimplifiedRHS;
8823 
8824     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8825       return indicatePessimisticFixpoint();
8826 
8827     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8828                                                 DepClassTy::REQUIRED);
8829     if (!LHSAA.isValidState())
8830       return indicatePessimisticFixpoint();
8831 
8832     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8833                                                 DepClassTy::REQUIRED);
8834     if (!RHSAA.isValidState())
8835       return indicatePessimisticFixpoint();
8836 
8837     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8838     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8839     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
8840 
8841     // TODO: make use of undef flag to limit potential values aggressively.
8842     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8843       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
8844         return indicatePessimisticFixpoint();
8845     } else if (LHSAA.undefIsContained()) {
8846       for (const APInt &R : RHSAAPVS) {
8847         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
8848           return indicatePessimisticFixpoint();
8849       }
8850     } else if (RHSAA.undefIsContained()) {
8851       for (const APInt &L : LHSAAPVS) {
8852         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
8853           return indicatePessimisticFixpoint();
8854       }
8855     } else {
8856       for (const APInt &L : LHSAAPVS) {
8857         for (const APInt &R : RHSAAPVS) {
8858           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
8859             return indicatePessimisticFixpoint();
8860         }
8861       }
8862     }
8863     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8864                                          : ChangeStatus::CHANGED;
8865   }
8866 
8867   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
8868     auto AssumedBefore = getAssumed();
8869     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
8870       Value *IncomingValue = PHI->getIncomingValue(u);
8871 
8872       // Simplify the operand first.
8873       bool UsedAssumedInformation = false;
8874       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
8875           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
8876           UsedAssumedInformation);
8877       if (!SimplifiedIncomingValue.hasValue())
8878         continue;
8879       if (!SimplifiedIncomingValue.getValue())
8880         return indicatePessimisticFixpoint();
8881       IncomingValue = *SimplifiedIncomingValue;
8882 
8883       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
8884           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
8885       if (!PotentialValuesAA.isValidState())
8886         return indicatePessimisticFixpoint();
8887       if (PotentialValuesAA.undefIsContained())
8888         unionAssumedWithUndef();
8889       else
8890         unionAssumed(PotentialValuesAA.getAssumed());
8891     }
8892     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8893                                          : ChangeStatus::CHANGED;
8894   }
8895 
8896   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
8897     if (!L.getType()->isIntegerTy())
8898       return indicatePessimisticFixpoint();
8899 
8900     auto Union = [&](Value &V) {
8901       if (isa<UndefValue>(V)) {
8902         unionAssumedWithUndef();
8903         return true;
8904       }
8905       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
8906         unionAssumed(CI->getValue());
8907         return true;
8908       }
8909       return false;
8910     };
8911     auto AssumedBefore = getAssumed();
8912 
8913     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
8914       return indicatePessimisticFixpoint();
8915 
8916     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8917                                          : ChangeStatus::CHANGED;
8918   }
8919 
8920   /// See AbstractAttribute::updateImpl(...).
8921   ChangeStatus updateImpl(Attributor &A) override {
8922     Value &V = getAssociatedValue();
8923     Instruction *I = dyn_cast<Instruction>(&V);
8924 
8925     if (auto *ICI = dyn_cast<ICmpInst>(I))
8926       return updateWithICmpInst(A, ICI);
8927 
8928     if (auto *SI = dyn_cast<SelectInst>(I))
8929       return updateWithSelectInst(A, SI);
8930 
8931     if (auto *CI = dyn_cast<CastInst>(I))
8932       return updateWithCastInst(A, CI);
8933 
8934     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
8935       return updateWithBinaryOperator(A, BinOp);
8936 
8937     if (auto *PHI = dyn_cast<PHINode>(I))
8938       return updateWithPHINode(A, PHI);
8939 
8940     if (auto *L = dyn_cast<LoadInst>(I))
8941       return updateWithLoad(A, *L);
8942 
8943     return indicatePessimisticFixpoint();
8944   }
8945 
8946   /// See AbstractAttribute::trackStatistics()
8947   void trackStatistics() const override {
8948     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
8949   }
8950 };
8951 
8952 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
8953   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
8954       : AAPotentialValuesImpl(IRP, A) {}
8955 
8956   /// See AbstractAttribute::initialize(...).
8957   ChangeStatus updateImpl(Attributor &A) override {
8958     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
8959                      "not be called");
8960   }
8961 
8962   /// See AbstractAttribute::trackStatistics()
8963   void trackStatistics() const override {
8964     STATS_DECLTRACK_FN_ATTR(potential_values)
8965   }
8966 };
8967 
8968 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
8969   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
8970       : AAPotentialValuesFunction(IRP, A) {}
8971 
8972   /// See AbstractAttribute::trackStatistics()
8973   void trackStatistics() const override {
8974     STATS_DECLTRACK_CS_ATTR(potential_values)
8975   }
8976 };
8977 
8978 struct AAPotentialValuesCallSiteReturned
8979     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
8980   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
8981       : AACallSiteReturnedFromReturned<AAPotentialValues,
8982                                        AAPotentialValuesImpl>(IRP, A) {}
8983 
8984   /// See AbstractAttribute::trackStatistics()
8985   void trackStatistics() const override {
8986     STATS_DECLTRACK_CSRET_ATTR(potential_values)
8987   }
8988 };
8989 
8990 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
8991   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
8992       : AAPotentialValuesFloating(IRP, A) {}
8993 
8994   /// See AbstractAttribute::initialize(..).
8995   void initialize(Attributor &A) override {
8996     Value &V = getAssociatedValue();
8997 
8998     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8999       unionAssumed(C->getValue());
9000       indicateOptimisticFixpoint();
9001       return;
9002     }
9003 
9004     if (isa<UndefValue>(&V)) {
9005       unionAssumedWithUndef();
9006       indicateOptimisticFixpoint();
9007       return;
9008     }
9009   }
9010 
9011   /// See AbstractAttribute::updateImpl(...).
9012   ChangeStatus updateImpl(Attributor &A) override {
9013     Value &V = getAssociatedValue();
9014     auto AssumedBefore = getAssumed();
9015     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9016                                              DepClassTy::REQUIRED);
9017     const auto &S = AA.getAssumed();
9018     unionAssumed(S);
9019     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9020                                          : ChangeStatus::CHANGED;
9021   }
9022 
9023   /// See AbstractAttribute::trackStatistics()
9024   void trackStatistics() const override {
9025     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9026   }
9027 };
9028 
9029 /// ------------------------ NoUndef Attribute ---------------------------------
9030 struct AANoUndefImpl : AANoUndef {
9031   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9032 
9033   /// See AbstractAttribute::initialize(...).
9034   void initialize(Attributor &A) override {
9035     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9036       indicateOptimisticFixpoint();
9037       return;
9038     }
9039     Value &V = getAssociatedValue();
9040     if (isa<UndefValue>(V))
9041       indicatePessimisticFixpoint();
9042     else if (isa<FreezeInst>(V))
9043       indicateOptimisticFixpoint();
9044     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9045              isGuaranteedNotToBeUndefOrPoison(&V))
9046       indicateOptimisticFixpoint();
9047     else
9048       AANoUndef::initialize(A);
9049   }
9050 
9051   /// See followUsesInMBEC
9052   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9053                        AANoUndef::StateType &State) {
9054     const Value *UseV = U->get();
9055     const DominatorTree *DT = nullptr;
9056     AssumptionCache *AC = nullptr;
9057     InformationCache &InfoCache = A.getInfoCache();
9058     if (Function *F = getAnchorScope()) {
9059       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9060       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9061     }
9062     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9063     bool TrackUse = false;
9064     // Track use for instructions which must produce undef or poison bits when
9065     // at least one operand contains such bits.
9066     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9067       TrackUse = true;
9068     return TrackUse;
9069   }
9070 
9071   /// See AbstractAttribute::getAsStr().
9072   const std::string getAsStr() const override {
9073     return getAssumed() ? "noundef" : "may-undef-or-poison";
9074   }
9075 
9076   ChangeStatus manifest(Attributor &A) override {
9077     // We don't manifest noundef attribute for dead positions because the
9078     // associated values with dead positions would be replaced with undef
9079     // values.
9080     bool UsedAssumedInformation = false;
9081     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9082                         UsedAssumedInformation))
9083       return ChangeStatus::UNCHANGED;
9084     // A position whose simplified value does not have any value is
9085     // considered to be dead. We don't manifest noundef in such positions for
9086     // the same reason above.
9087     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9088              .hasValue())
9089       return ChangeStatus::UNCHANGED;
9090     return AANoUndef::manifest(A);
9091   }
9092 };
9093 
9094 struct AANoUndefFloating : public AANoUndefImpl {
9095   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9096       : AANoUndefImpl(IRP, A) {}
9097 
9098   /// See AbstractAttribute::initialize(...).
9099   void initialize(Attributor &A) override {
9100     AANoUndefImpl::initialize(A);
9101     if (!getState().isAtFixpoint())
9102       if (Instruction *CtxI = getCtxI())
9103         followUsesInMBEC(*this, A, getState(), *CtxI);
9104   }
9105 
9106   /// See AbstractAttribute::updateImpl(...).
9107   ChangeStatus updateImpl(Attributor &A) override {
9108     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9109                             AANoUndef::StateType &T, bool Stripped) -> bool {
9110       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9111                                              DepClassTy::REQUIRED);
9112       if (!Stripped && this == &AA) {
9113         T.indicatePessimisticFixpoint();
9114       } else {
9115         const AANoUndef::StateType &S =
9116             static_cast<const AANoUndef::StateType &>(AA.getState());
9117         T ^= S;
9118       }
9119       return T.isValidState();
9120     };
9121 
9122     StateType T;
9123     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9124                                           VisitValueCB, getCtxI()))
9125       return indicatePessimisticFixpoint();
9126 
9127     return clampStateAndIndicateChange(getState(), T);
9128   }
9129 
9130   /// See AbstractAttribute::trackStatistics()
9131   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9132 };
9133 
9134 struct AANoUndefReturned final
9135     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9136   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9137       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9138 
9139   /// See AbstractAttribute::trackStatistics()
9140   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9141 };
9142 
9143 struct AANoUndefArgument final
9144     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9145   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9146       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9147 
9148   /// See AbstractAttribute::trackStatistics()
9149   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9150 };
9151 
9152 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9153   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9154       : AANoUndefFloating(IRP, A) {}
9155 
9156   /// See AbstractAttribute::trackStatistics()
9157   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9158 };
9159 
9160 struct AANoUndefCallSiteReturned final
9161     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9162   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9163       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9164 
9165   /// See AbstractAttribute::trackStatistics()
9166   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9167 };
9168 
9169 struct AACallEdgesFunction : public AACallEdges {
9170   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9171       : AACallEdges(IRP, A) {}
9172 
9173   /// See AbstractAttribute::updateImpl(...).
9174   ChangeStatus updateImpl(Attributor &A) override {
9175     ChangeStatus Change = ChangeStatus::UNCHANGED;
9176     bool OldHasUnknownCallee = HasUnknownCallee;
9177     bool OldHasUnknownCalleeNonAsm = HasUnknownCalleeNonAsm;
9178 
9179     auto AddCalledFunction = [&](Function *Fn) {
9180       if (CalledFunctions.insert(Fn)) {
9181         Change = ChangeStatus::CHANGED;
9182         LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9183                           << "\n");
9184       }
9185     };
9186 
9187     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9188                           bool Stripped) -> bool {
9189       if (Function *Fn = dyn_cast<Function>(&V)) {
9190         AddCalledFunction(Fn);
9191       } else {
9192         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9193         HasUnknown = true;
9194         HasUnknownCalleeNonAsm = true;
9195       }
9196 
9197       // Explore all values.
9198       return true;
9199     };
9200 
9201     // Process any value that we might call.
9202     auto ProcessCalledOperand = [&](Value *V, Instruction *Ctx) {
9203       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9204                                        HasUnknownCallee, VisitValue, nullptr,
9205                                        false)) {
9206         // If we haven't gone through all values, assume that there are unknown
9207         // callees.
9208         HasUnknownCallee = true;
9209         HasUnknownCalleeNonAsm = true;
9210       }
9211     };
9212 
9213     auto ProcessCallInst = [&](Instruction &Inst) {
9214       CallBase &CB = static_cast<CallBase &>(Inst);
9215       if (CB.isInlineAsm()) {
9216         HasUnknownCallee = true;
9217         return true;
9218       }
9219 
9220       // Process callee metadata if available.
9221       if (auto *MD = Inst.getMetadata(LLVMContext::MD_callees)) {
9222         for (auto &Op : MD->operands()) {
9223           Function *Callee = mdconst::extract_or_null<Function>(Op);
9224           if (Callee)
9225             AddCalledFunction(Callee);
9226         }
9227         // Callees metadata grantees that the called function is one of its
9228         // operands, So we are done.
9229         return true;
9230       }
9231 
9232       // The most simple case.
9233       ProcessCalledOperand(CB.getCalledOperand(), &Inst);
9234 
9235       // Process callback functions.
9236       SmallVector<const Use *, 4u> CallbackUses;
9237       AbstractCallSite::getCallbackUses(CB, CallbackUses);
9238       for (const Use *U : CallbackUses)
9239         ProcessCalledOperand(U->get(), &Inst);
9240 
9241       return true;
9242     };
9243 
9244     // Visit all callable instructions.
9245     bool UsedAssumedInformation = false;
9246     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9247                                            UsedAssumedInformation)) {
9248       // If we haven't looked at all call like instructions, assume that there
9249       // are unknown callees.
9250       HasUnknownCallee = true;
9251       HasUnknownCalleeNonAsm = true;
9252     }
9253 
9254     // Track changes.
9255     if (OldHasUnknownCallee != HasUnknownCallee ||
9256         OldHasUnknownCalleeNonAsm != HasUnknownCalleeNonAsm)
9257       Change = ChangeStatus::CHANGED;
9258 
9259     return Change;
9260   }
9261 
9262   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9263     return CalledFunctions;
9264   };
9265 
9266   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9267 
9268   virtual bool hasNonAsmUnknownCallee() const override {
9269     return HasUnknownCalleeNonAsm;
9270   }
9271 
9272   const std::string getAsStr() const override {
9273     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9274            std::to_string(CalledFunctions.size()) + "]";
9275   }
9276 
9277   void trackStatistics() const override {}
9278 
9279   /// Optimistic set of functions that might be called by this function.
9280   SetVector<Function *> CalledFunctions;
9281 
9282   /// Is there any call with a unknown callee.
9283   bool HasUnknownCallee = false;
9284 
9285   /// Is there any call with a unknown callee, excluding any inline asm.
9286   bool HasUnknownCalleeNonAsm = false;
9287 };
9288 
9289 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9290   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9291       : AAFunctionReachability(IRP, A) {}
9292 
9293   bool canReach(Attributor &A, Function *Fn) const override {
9294     // Assume that we can reach any function if we can reach a call with
9295     // unknown callee.
9296     if (CanReachUnknownCallee)
9297       return true;
9298 
9299     if (ReachableQueries.count(Fn))
9300       return true;
9301 
9302     if (UnreachableQueries.count(Fn))
9303       return false;
9304 
9305     const AACallEdges &AAEdges =
9306         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9307 
9308     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9309     bool Result = checkIfReachable(A, Edges, Fn);
9310 
9311     // Attributor returns attributes as const, so this function has to be
9312     // const for users of this attribute to use it without having to do
9313     // a const_cast.
9314     // This is a hack for us to be able to cache queries.
9315     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9316 
9317     if (Result)
9318       NonConstThis->ReachableQueries.insert(Fn);
9319     else
9320       NonConstThis->UnreachableQueries.insert(Fn);
9321 
9322     return Result;
9323   }
9324 
9325   /// See AbstractAttribute::updateImpl(...).
9326   ChangeStatus updateImpl(Attributor &A) override {
9327     if (CanReachUnknownCallee)
9328       return ChangeStatus::UNCHANGED;
9329 
9330     const AACallEdges &AAEdges =
9331         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9332     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9333     ChangeStatus Change = ChangeStatus::UNCHANGED;
9334 
9335     if (AAEdges.hasUnknownCallee()) {
9336       bool OldCanReachUnknown = CanReachUnknownCallee;
9337       CanReachUnknownCallee = true;
9338       return OldCanReachUnknown ? ChangeStatus::UNCHANGED
9339                                 : ChangeStatus::CHANGED;
9340     }
9341 
9342     // Check if any of the unreachable functions become reachable.
9343     for (auto Current = UnreachableQueries.begin();
9344          Current != UnreachableQueries.end();) {
9345       if (!checkIfReachable(A, Edges, *Current)) {
9346         Current++;
9347         continue;
9348       }
9349       ReachableQueries.insert(*Current);
9350       UnreachableQueries.erase(*Current++);
9351       Change = ChangeStatus::CHANGED;
9352     }
9353 
9354     return Change;
9355   }
9356 
9357   const std::string getAsStr() const override {
9358     size_t QueryCount = ReachableQueries.size() + UnreachableQueries.size();
9359 
9360     return "FunctionReachability [" + std::to_string(ReachableQueries.size()) +
9361            "," + std::to_string(QueryCount) + "]";
9362   }
9363 
9364   void trackStatistics() const override {}
9365 
9366 private:
9367   bool canReachUnknownCallee() const override { return CanReachUnknownCallee; }
9368 
9369   bool checkIfReachable(Attributor &A, const SetVector<Function *> &Edges,
9370                         Function *Fn) const {
9371     if (Edges.count(Fn))
9372       return true;
9373 
9374     for (Function *Edge : Edges) {
9375       // We don't need a dependency if the result is reachable.
9376       const AAFunctionReachability &EdgeReachability =
9377           A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Edge),
9378                                              DepClassTy::NONE);
9379 
9380       if (EdgeReachability.canReach(A, Fn))
9381         return true;
9382     }
9383     for (Function *Fn : Edges)
9384       A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Fn),
9385                                          DepClassTy::REQUIRED);
9386 
9387     return false;
9388   }
9389 
9390   /// Set of functions that we know for sure is reachable.
9391   SmallPtrSet<Function *, 8> ReachableQueries;
9392 
9393   /// Set of functions that are unreachable, but might become reachable.
9394   SmallPtrSet<Function *, 8> UnreachableQueries;
9395 
9396   /// If we can reach a function with a call to a unknown function we assume
9397   /// that we can reach any function.
9398   bool CanReachUnknownCallee = false;
9399 };
9400 
9401 } // namespace
9402 
9403 AACallGraphNode *AACallEdgeIterator::operator*() const {
9404   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9405       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9406 }
9407 
9408 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9409 
9410 const char AAReturnedValues::ID = 0;
9411 const char AANoUnwind::ID = 0;
9412 const char AANoSync::ID = 0;
9413 const char AANoFree::ID = 0;
9414 const char AANonNull::ID = 0;
9415 const char AANoRecurse::ID = 0;
9416 const char AAWillReturn::ID = 0;
9417 const char AAUndefinedBehavior::ID = 0;
9418 const char AANoAlias::ID = 0;
9419 const char AAReachability::ID = 0;
9420 const char AANoReturn::ID = 0;
9421 const char AAIsDead::ID = 0;
9422 const char AADereferenceable::ID = 0;
9423 const char AAAlign::ID = 0;
9424 const char AANoCapture::ID = 0;
9425 const char AAValueSimplify::ID = 0;
9426 const char AAHeapToStack::ID = 0;
9427 const char AAPrivatizablePtr::ID = 0;
9428 const char AAMemoryBehavior::ID = 0;
9429 const char AAMemoryLocation::ID = 0;
9430 const char AAValueConstantRange::ID = 0;
9431 const char AAPotentialValues::ID = 0;
9432 const char AANoUndef::ID = 0;
9433 const char AACallEdges::ID = 0;
9434 const char AAFunctionReachability::ID = 0;
9435 const char AAPointerInfo::ID = 0;
9436 
9437 // Macro magic to create the static generator function for attributes that
9438 // follow the naming scheme.
9439 
9440 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9441   case IRPosition::PK:                                                         \
9442     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9443 
9444 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9445   case IRPosition::PK:                                                         \
9446     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9447     ++NumAAs;                                                                  \
9448     break;
9449 
9450 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9451   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9452     CLASS *AA = nullptr;                                                       \
9453     switch (IRP.getPositionKind()) {                                           \
9454       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9455       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9456       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9457       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9458       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9459       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9460       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9461       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9462     }                                                                          \
9463     return *AA;                                                                \
9464   }
9465 
9466 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9467   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9468     CLASS *AA = nullptr;                                                       \
9469     switch (IRP.getPositionKind()) {                                           \
9470       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9471       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9472       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9473       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9474       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9475       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9476       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9477       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9478     }                                                                          \
9479     return *AA;                                                                \
9480   }
9481 
9482 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9483   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9484     CLASS *AA = nullptr;                                                       \
9485     switch (IRP.getPositionKind()) {                                           \
9486       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9487       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9488       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9489       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9490       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9491       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9492       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9493       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9494     }                                                                          \
9495     return *AA;                                                                \
9496   }
9497 
9498 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9499   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9500     CLASS *AA = nullptr;                                                       \
9501     switch (IRP.getPositionKind()) {                                           \
9502       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9503       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9504       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9505       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9506       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9507       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9508       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9509       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9510     }                                                                          \
9511     return *AA;                                                                \
9512   }
9513 
9514 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9515   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9516     CLASS *AA = nullptr;                                                       \
9517     switch (IRP.getPositionKind()) {                                           \
9518       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9519       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9520       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9521       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9522       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9523       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9524       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9525       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9526     }                                                                          \
9527     return *AA;                                                                \
9528   }
9529 
9530 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9531 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9532 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9533 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9534 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9535 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9536 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9537 
9538 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9539 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9540 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9541 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9542 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9543 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9544 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9545 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9546 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9547 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9548 
9549 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9550 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9551 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9552 
9553 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9554 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9555 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9556 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9557 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9558 
9559 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9560 
9561 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9562 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9563 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9564 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9565 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9566 #undef SWITCH_PK_CREATE
9567 #undef SWITCH_PK_INV
9568