1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/IPO/Attributor.h"
15
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Assumptions.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/NoFolder.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Support/Alignment.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <cassert>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "attributor"
67
68 static cl::opt<bool> ManifestInternal(
69 "attributor-manifest-internal", cl::Hidden,
70 cl::desc("Manifest Attributor internal string attributes."),
71 cl::init(false));
72
73 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
74 cl::Hidden);
75
76 template <>
77 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
78
79 template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
80
81 static cl::opt<unsigned, true> MaxPotentialValues(
82 "attributor-max-potential-values", cl::Hidden,
83 cl::desc("Maximum number of potential values to be "
84 "tracked for each position."),
85 cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
86 cl::init(7));
87
88 static cl::opt<int> MaxPotentialValuesIterations(
89 "attributor-max-potential-values-iterations", cl::Hidden,
90 cl::desc(
91 "Maximum number of iterations we keep dismantling potential values."),
92 cl::init(64));
93
94 static cl::opt<unsigned> MaxInterferingAccesses(
95 "attributor-max-interfering-accesses", cl::Hidden,
96 cl::desc("Maximum number of interfering accesses to "
97 "check before assuming all might interfere."),
98 cl::init(6));
99
100 STATISTIC(NumAAs, "Number of abstract attributes created");
101
102 // Some helper macros to deal with statistics tracking.
103 //
104 // Usage:
105 // For simple IR attribute tracking overload trackStatistics in the abstract
106 // attribute and choose the right STATS_DECLTRACK_********* macro,
107 // e.g.,:
108 // void trackStatistics() const override {
109 // STATS_DECLTRACK_ARG_ATTR(returned)
110 // }
111 // If there is a single "increment" side one can use the macro
112 // STATS_DECLTRACK with a custom message. If there are multiple increment
113 // sides, STATS_DECL and STATS_TRACK can also be used separately.
114 //
115 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
116 ("Number of " #TYPE " marked '" #NAME "'")
117 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
118 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
119 #define STATS_DECL(NAME, TYPE, MSG) \
120 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
121 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
122 #define STATS_DECLTRACK(NAME, TYPE, MSG) \
123 { \
124 STATS_DECL(NAME, TYPE, MSG) \
125 STATS_TRACK(NAME, TYPE) \
126 }
127 #define STATS_DECLTRACK_ARG_ATTR(NAME) \
128 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
129 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \
130 STATS_DECLTRACK(NAME, CSArguments, \
131 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
132 #define STATS_DECLTRACK_FN_ATTR(NAME) \
133 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
134 #define STATS_DECLTRACK_CS_ATTR(NAME) \
135 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
136 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \
137 STATS_DECLTRACK(NAME, FunctionReturn, \
138 BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
139 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \
140 STATS_DECLTRACK(NAME, CSReturn, \
141 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
142 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
143 STATS_DECLTRACK(NAME, Floating, \
144 ("Number of floating values known to be '" #NAME "'"))
145
146 // Specialization of the operator<< for abstract attributes subclasses. This
147 // disambiguates situations where multiple operators are applicable.
148 namespace llvm {
149 #define PIPE_OPERATOR(CLASS) \
150 raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \
151 return OS << static_cast<const AbstractAttribute &>(AA); \
152 }
153
154 PIPE_OPERATOR(AAIsDead)
PIPE_OPERATOR(AANoUnwind)155 PIPE_OPERATOR(AANoUnwind)
156 PIPE_OPERATOR(AANoSync)
157 PIPE_OPERATOR(AANoRecurse)
158 PIPE_OPERATOR(AAWillReturn)
159 PIPE_OPERATOR(AANoReturn)
160 PIPE_OPERATOR(AAReturnedValues)
161 PIPE_OPERATOR(AANonNull)
162 PIPE_OPERATOR(AANoAlias)
163 PIPE_OPERATOR(AADereferenceable)
164 PIPE_OPERATOR(AAAlign)
165 PIPE_OPERATOR(AAInstanceInfo)
166 PIPE_OPERATOR(AANoCapture)
167 PIPE_OPERATOR(AAValueSimplify)
168 PIPE_OPERATOR(AANoFree)
169 PIPE_OPERATOR(AAHeapToStack)
170 PIPE_OPERATOR(AAReachability)
171 PIPE_OPERATOR(AAMemoryBehavior)
172 PIPE_OPERATOR(AAMemoryLocation)
173 PIPE_OPERATOR(AAValueConstantRange)
174 PIPE_OPERATOR(AAPrivatizablePtr)
175 PIPE_OPERATOR(AAUndefinedBehavior)
176 PIPE_OPERATOR(AAPotentialConstantValues)
177 PIPE_OPERATOR(AAPotentialValues)
178 PIPE_OPERATOR(AANoUndef)
179 PIPE_OPERATOR(AACallEdges)
180 PIPE_OPERATOR(AAFunctionReachability)
181 PIPE_OPERATOR(AAPointerInfo)
182 PIPE_OPERATOR(AAAssumptionInfo)
183
184 #undef PIPE_OPERATOR
185
186 template <>
187 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
188 const DerefState &R) {
189 ChangeStatus CS0 =
190 clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
191 ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
192 return CS0 | CS1;
193 }
194
195 } // namespace llvm
196
197 /// Checks if a type could have padding bytes.
isDenselyPacked(Type * Ty,const DataLayout & DL)198 static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
199 // There is no size information, so be conservative.
200 if (!Ty->isSized())
201 return false;
202
203 // If the alloc size is not equal to the storage size, then there are padding
204 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
205 if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
206 return false;
207
208 // FIXME: This isn't the right way to check for padding in vectors with
209 // non-byte-size elements.
210 if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
211 return isDenselyPacked(SeqTy->getElementType(), DL);
212
213 // For array types, check for padding within members.
214 if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
215 return isDenselyPacked(SeqTy->getElementType(), DL);
216
217 if (!isa<StructType>(Ty))
218 return true;
219
220 // Check for padding within and between elements of a struct.
221 StructType *StructTy = cast<StructType>(Ty);
222 const StructLayout *Layout = DL.getStructLayout(StructTy);
223 uint64_t StartPos = 0;
224 for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
225 Type *ElTy = StructTy->getElementType(I);
226 if (!isDenselyPacked(ElTy, DL))
227 return false;
228 if (StartPos != Layout->getElementOffsetInBits(I))
229 return false;
230 StartPos += DL.getTypeAllocSizeInBits(ElTy);
231 }
232
233 return true;
234 }
235
236 /// Get pointer operand of memory accessing instruction. If \p I is
237 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
238 /// is set to false and the instruction is volatile, return nullptr.
getPointerOperand(const Instruction * I,bool AllowVolatile)239 static const Value *getPointerOperand(const Instruction *I,
240 bool AllowVolatile) {
241 if (!AllowVolatile && I->isVolatile())
242 return nullptr;
243
244 if (auto *LI = dyn_cast<LoadInst>(I)) {
245 return LI->getPointerOperand();
246 }
247
248 if (auto *SI = dyn_cast<StoreInst>(I)) {
249 return SI->getPointerOperand();
250 }
251
252 if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
253 return CXI->getPointerOperand();
254 }
255
256 if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
257 return RMWI->getPointerOperand();
258 }
259
260 return nullptr;
261 }
262
263 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
264 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
265 /// getelement pointer instructions that traverse the natural type of \p Ptr if
266 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
267 /// through a cast to i8*.
268 ///
269 /// TODO: This could probably live somewhere more prominantly if it doesn't
270 /// already exist.
constructPointer(Type * ResTy,Type * PtrElemTy,Value * Ptr,int64_t Offset,IRBuilder<NoFolder> & IRB,const DataLayout & DL)271 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
272 int64_t Offset, IRBuilder<NoFolder> &IRB,
273 const DataLayout &DL) {
274 assert(Offset >= 0 && "Negative offset not supported yet!");
275 LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
276 << "-bytes as " << *ResTy << "\n");
277
278 if (Offset) {
279 Type *Ty = PtrElemTy;
280 APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
281 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
282
283 SmallVector<Value *, 4> ValIndices;
284 std::string GEPName = Ptr->getName().str();
285 for (const APInt &Index : IntIndices) {
286 ValIndices.push_back(IRB.getInt(Index));
287 GEPName += "." + std::to_string(Index.getZExtValue());
288 }
289
290 // Create a GEP for the indices collected above.
291 Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
292
293 // If an offset is left we use byte-wise adjustment.
294 if (IntOffset != 0) {
295 Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
296 Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
297 GEPName + ".b" + Twine(IntOffset.getZExtValue()));
298 }
299 }
300
301 // Ensure the result has the requested type.
302 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
303 Ptr->getName() + ".cast");
304
305 LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
306 return Ptr;
307 }
308
getAssumedUnderlyingObjects(Attributor & A,const Value & Ptr,SmallSetVector<Value *,8> & Objects,const AbstractAttribute & QueryingAA,const Instruction * CtxI,bool & UsedAssumedInformation,AA::ValueScope S,SmallPtrSetImpl<Value * > * SeenObjects)309 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
310 SmallSetVector<Value *, 8> &Objects,
311 const AbstractAttribute &QueryingAA,
312 const Instruction *CtxI,
313 bool &UsedAssumedInformation,
314 AA::ValueScope S,
315 SmallPtrSetImpl<Value *> *SeenObjects) {
316 SmallPtrSet<Value *, 8> LocalSeenObjects;
317 if (!SeenObjects)
318 SeenObjects = &LocalSeenObjects;
319
320 SmallVector<AA::ValueAndContext> Values;
321 if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), &QueryingAA, Values,
322 S, UsedAssumedInformation)) {
323 Objects.insert(const_cast<Value *>(&Ptr));
324 return true;
325 }
326
327 for (auto &VAC : Values) {
328 Value *UO = getUnderlyingObject(VAC.getValue());
329 if (UO && UO != VAC.getValue() && SeenObjects->insert(UO).second) {
330 if (!getAssumedUnderlyingObjects(A, *UO, Objects, QueryingAA,
331 VAC.getCtxI(), UsedAssumedInformation, S,
332 SeenObjects))
333 return false;
334 continue;
335 }
336 Objects.insert(VAC.getValue());
337 }
338 return true;
339 }
340
341 static const Value *
stripAndAccumulateOffsets(Attributor & A,const AbstractAttribute & QueryingAA,const Value * Val,const DataLayout & DL,APInt & Offset,bool GetMinOffset,bool AllowNonInbounds,bool UseAssumed=false)342 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
343 const Value *Val, const DataLayout &DL, APInt &Offset,
344 bool GetMinOffset, bool AllowNonInbounds,
345 bool UseAssumed = false) {
346
347 auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
348 const IRPosition &Pos = IRPosition::value(V);
349 // Only track dependence if we are going to use the assumed info.
350 const AAValueConstantRange &ValueConstantRangeAA =
351 A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
352 UseAssumed ? DepClassTy::OPTIONAL
353 : DepClassTy::NONE);
354 ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
355 : ValueConstantRangeAA.getKnown();
356 if (Range.isFullSet())
357 return false;
358
359 // We can only use the lower part of the range because the upper part can
360 // be higher than what the value can really be.
361 if (GetMinOffset)
362 ROffset = Range.getSignedMin();
363 else
364 ROffset = Range.getSignedMax();
365 return true;
366 };
367
368 return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
369 /* AllowInvariant */ true,
370 AttributorAnalysis);
371 }
372
373 static const Value *
getMinimalBaseOfPointer(Attributor & A,const AbstractAttribute & QueryingAA,const Value * Ptr,int64_t & BytesOffset,const DataLayout & DL,bool AllowNonInbounds=false)374 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
375 const Value *Ptr, int64_t &BytesOffset,
376 const DataLayout &DL, bool AllowNonInbounds = false) {
377 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
378 const Value *Base =
379 stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
380 /* GetMinOffset */ true, AllowNonInbounds);
381
382 BytesOffset = OffsetAPInt.getSExtValue();
383 return Base;
384 }
385
386 /// Clamp the information known for all returned values of a function
387 /// (identified by \p QueryingAA) into \p S.
388 template <typename AAType, typename StateType = typename AAType::StateType>
clampReturnedValueStates(Attributor & A,const AAType & QueryingAA,StateType & S,const IRPosition::CallBaseContext * CBContext=nullptr)389 static void clampReturnedValueStates(
390 Attributor &A, const AAType &QueryingAA, StateType &S,
391 const IRPosition::CallBaseContext *CBContext = nullptr) {
392 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
393 << QueryingAA << " into " << S << "\n");
394
395 assert((QueryingAA.getIRPosition().getPositionKind() ==
396 IRPosition::IRP_RETURNED ||
397 QueryingAA.getIRPosition().getPositionKind() ==
398 IRPosition::IRP_CALL_SITE_RETURNED) &&
399 "Can only clamp returned value states for a function returned or call "
400 "site returned position!");
401
402 // Use an optional state as there might not be any return values and we want
403 // to join (IntegerState::operator&) the state of all there are.
404 Optional<StateType> T;
405
406 // Callback for each possibly returned value.
407 auto CheckReturnValue = [&](Value &RV) -> bool {
408 const IRPosition &RVPos = IRPosition::value(RV, CBContext);
409 const AAType &AA =
410 A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
411 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
412 << " @ " << RVPos << "\n");
413 const StateType &AAS = AA.getState();
414 if (!T)
415 T = StateType::getBestState(AAS);
416 *T &= AAS;
417 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
418 << "\n");
419 return T->isValidState();
420 };
421
422 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
423 S.indicatePessimisticFixpoint();
424 else if (T)
425 S ^= *T;
426 }
427
428 namespace {
429 /// Helper class for generic deduction: return value -> returned position.
430 template <typename AAType, typename BaseType,
431 typename StateType = typename BaseType::StateType,
432 bool PropagateCallBaseContext = false>
433 struct AAReturnedFromReturnedValues : public BaseType {
AAReturnedFromReturnedValues__anon26093b6c0311::AAReturnedFromReturnedValues434 AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
435 : BaseType(IRP, A) {}
436
437 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0311::AAReturnedFromReturnedValues438 ChangeStatus updateImpl(Attributor &A) override {
439 StateType S(StateType::getBestState(this->getState()));
440 clampReturnedValueStates<AAType, StateType>(
441 A, *this, S,
442 PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
443 // TODO: If we know we visited all returned values, thus no are assumed
444 // dead, we can take the known information from the state T.
445 return clampStateAndIndicateChange<StateType>(this->getState(), S);
446 }
447 };
448
449 /// Clamp the information known at all call sites for a given argument
450 /// (identified by \p QueryingAA) into \p S.
451 template <typename AAType, typename StateType = typename AAType::StateType>
clampCallSiteArgumentStates(Attributor & A,const AAType & QueryingAA,StateType & S)452 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
453 StateType &S) {
454 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
455 << QueryingAA << " into " << S << "\n");
456
457 assert(QueryingAA.getIRPosition().getPositionKind() ==
458 IRPosition::IRP_ARGUMENT &&
459 "Can only clamp call site argument states for an argument position!");
460
461 // Use an optional state as there might not be any return values and we want
462 // to join (IntegerState::operator&) the state of all there are.
463 Optional<StateType> T;
464
465 // The argument number which is also the call site argument number.
466 unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
467
468 auto CallSiteCheck = [&](AbstractCallSite ACS) {
469 const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
470 // Check if a coresponding argument was found or if it is on not associated
471 // (which can happen for callback calls).
472 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
473 return false;
474
475 const AAType &AA =
476 A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
477 LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
478 << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
479 const StateType &AAS = AA.getState();
480 if (!T)
481 T = StateType::getBestState(AAS);
482 *T &= AAS;
483 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
484 << "\n");
485 return T->isValidState();
486 };
487
488 bool UsedAssumedInformation = false;
489 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
490 UsedAssumedInformation))
491 S.indicatePessimisticFixpoint();
492 else if (T)
493 S ^= *T;
494 }
495
496 /// This function is the bridge between argument position and the call base
497 /// context.
498 template <typename AAType, typename BaseType,
499 typename StateType = typename AAType::StateType>
getArgumentStateFromCallBaseContext(Attributor & A,BaseType & QueryingAttribute,IRPosition & Pos,StateType & State)500 bool getArgumentStateFromCallBaseContext(Attributor &A,
501 BaseType &QueryingAttribute,
502 IRPosition &Pos, StateType &State) {
503 assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
504 "Expected an 'argument' position !");
505 const CallBase *CBContext = Pos.getCallBaseContext();
506 if (!CBContext)
507 return false;
508
509 int ArgNo = Pos.getCallSiteArgNo();
510 assert(ArgNo >= 0 && "Invalid Arg No!");
511
512 const auto &AA = A.getAAFor<AAType>(
513 QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
514 DepClassTy::REQUIRED);
515 const StateType &CBArgumentState =
516 static_cast<const StateType &>(AA.getState());
517
518 LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
519 << "Position:" << Pos << "CB Arg state:" << CBArgumentState
520 << "\n");
521
522 // NOTE: If we want to do call site grouping it should happen here.
523 State ^= CBArgumentState;
524 return true;
525 }
526
527 /// Helper class for generic deduction: call site argument -> argument position.
528 template <typename AAType, typename BaseType,
529 typename StateType = typename AAType::StateType,
530 bool BridgeCallBaseContext = false>
531 struct AAArgumentFromCallSiteArguments : public BaseType {
AAArgumentFromCallSiteArguments__anon26093b6c0311::AAArgumentFromCallSiteArguments532 AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
533 : BaseType(IRP, A) {}
534
535 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0311::AAArgumentFromCallSiteArguments536 ChangeStatus updateImpl(Attributor &A) override {
537 StateType S = StateType::getBestState(this->getState());
538
539 if (BridgeCallBaseContext) {
540 bool Success =
541 getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
542 A, *this, this->getIRPosition(), S);
543 if (Success)
544 return clampStateAndIndicateChange<StateType>(this->getState(), S);
545 }
546 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
547
548 // TODO: If we know we visited all incoming values, thus no are assumed
549 // dead, we can take the known information from the state T.
550 return clampStateAndIndicateChange<StateType>(this->getState(), S);
551 }
552 };
553
554 /// Helper class for generic replication: function returned -> cs returned.
555 template <typename AAType, typename BaseType,
556 typename StateType = typename BaseType::StateType,
557 bool IntroduceCallBaseContext = false>
558 struct AACallSiteReturnedFromReturned : public BaseType {
AACallSiteReturnedFromReturned__anon26093b6c0311::AACallSiteReturnedFromReturned559 AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
560 : BaseType(IRP, A) {}
561
562 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0311::AACallSiteReturnedFromReturned563 ChangeStatus updateImpl(Attributor &A) override {
564 assert(this->getIRPosition().getPositionKind() ==
565 IRPosition::IRP_CALL_SITE_RETURNED &&
566 "Can only wrap function returned positions for call site returned "
567 "positions!");
568 auto &S = this->getState();
569
570 const Function *AssociatedFunction =
571 this->getIRPosition().getAssociatedFunction();
572 if (!AssociatedFunction)
573 return S.indicatePessimisticFixpoint();
574
575 CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
576 if (IntroduceCallBaseContext)
577 LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
578 << CBContext << "\n");
579
580 IRPosition FnPos = IRPosition::returned(
581 *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
582 const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
583 return clampStateAndIndicateChange(S, AA.getState());
584 }
585 };
586
587 /// Helper function to accumulate uses.
588 template <class AAType, typename StateType = typename AAType::StateType>
followUsesInContext(AAType & AA,Attributor & A,MustBeExecutedContextExplorer & Explorer,const Instruction * CtxI,SetVector<const Use * > & Uses,StateType & State)589 static void followUsesInContext(AAType &AA, Attributor &A,
590 MustBeExecutedContextExplorer &Explorer,
591 const Instruction *CtxI,
592 SetVector<const Use *> &Uses,
593 StateType &State) {
594 auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
595 for (unsigned u = 0; u < Uses.size(); ++u) {
596 const Use *U = Uses[u];
597 if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
598 bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
599 if (Found && AA.followUseInMBEC(A, U, UserI, State))
600 for (const Use &Us : UserI->uses())
601 Uses.insert(&Us);
602 }
603 }
604 }
605
606 /// Use the must-be-executed-context around \p I to add information into \p S.
607 /// The AAType class is required to have `followUseInMBEC` method with the
608 /// following signature and behaviour:
609 ///
610 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
611 /// U - Underlying use.
612 /// I - The user of the \p U.
613 /// Returns true if the value should be tracked transitively.
614 ///
615 template <class AAType, typename StateType = typename AAType::StateType>
followUsesInMBEC(AAType & AA,Attributor & A,StateType & S,Instruction & CtxI)616 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
617 Instruction &CtxI) {
618
619 // Container for (transitive) uses of the associated value.
620 SetVector<const Use *> Uses;
621 for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
622 Uses.insert(&U);
623
624 MustBeExecutedContextExplorer &Explorer =
625 A.getInfoCache().getMustBeExecutedContextExplorer();
626
627 followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
628
629 if (S.isAtFixpoint())
630 return;
631
632 SmallVector<const BranchInst *, 4> BrInsts;
633 auto Pred = [&](const Instruction *I) {
634 if (const BranchInst *Br = dyn_cast<BranchInst>(I))
635 if (Br->isConditional())
636 BrInsts.push_back(Br);
637 return true;
638 };
639
640 // Here, accumulate conditional branch instructions in the context. We
641 // explore the child paths and collect the known states. The disjunction of
642 // those states can be merged to its own state. Let ParentState_i be a state
643 // to indicate the known information for an i-th branch instruction in the
644 // context. ChildStates are created for its successors respectively.
645 //
646 // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
647 // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
648 // ...
649 // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
650 //
651 // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
652 //
653 // FIXME: Currently, recursive branches are not handled. For example, we
654 // can't deduce that ptr must be dereferenced in below function.
655 //
656 // void f(int a, int c, int *ptr) {
657 // if(a)
658 // if (b) {
659 // *ptr = 0;
660 // } else {
661 // *ptr = 1;
662 // }
663 // else {
664 // if (b) {
665 // *ptr = 0;
666 // } else {
667 // *ptr = 1;
668 // }
669 // }
670 // }
671
672 Explorer.checkForAllContext(&CtxI, Pred);
673 for (const BranchInst *Br : BrInsts) {
674 StateType ParentState;
675
676 // The known state of the parent state is a conjunction of children's
677 // known states so it is initialized with a best state.
678 ParentState.indicateOptimisticFixpoint();
679
680 for (const BasicBlock *BB : Br->successors()) {
681 StateType ChildState;
682
683 size_t BeforeSize = Uses.size();
684 followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
685
686 // Erase uses which only appear in the child.
687 for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
688 It = Uses.erase(It);
689
690 ParentState &= ChildState;
691 }
692
693 // Use only known state.
694 S += ParentState;
695 }
696 }
697 } // namespace
698
699 /// ------------------------ PointerInfo ---------------------------------------
700
701 namespace llvm {
702 namespace AA {
703 namespace PointerInfo {
704
705 struct State;
706
707 } // namespace PointerInfo
708 } // namespace AA
709
710 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
711 template <>
712 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
713 using Access = AAPointerInfo::Access;
714 static inline Access getEmptyKey();
715 static inline Access getTombstoneKey();
716 static unsigned getHashValue(const Access &A);
717 static bool isEqual(const Access &LHS, const Access &RHS);
718 };
719
720 /// Helper that allows OffsetAndSize as a key in a DenseMap.
721 template <>
722 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
723 : DenseMapInfo<std::pair<int64_t, int64_t>> {};
724
725 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
726 /// but the instruction
727 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
728 using Base = DenseMapInfo<Instruction *>;
729 using Access = AAPointerInfo::Access;
730 static inline Access getEmptyKey();
731 static inline Access getTombstoneKey();
732 static unsigned getHashValue(const Access &A);
733 static bool isEqual(const Access &LHS, const Access &RHS);
734 };
735
736 } // namespace llvm
737
738 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
739 struct AA::PointerInfo::State : public AbstractState {
740
~StateAA::PointerInfo::State741 ~State() {
742 // We do not delete the Accesses objects but need to destroy them still.
743 for (auto &It : AccessBins)
744 It.second->~Accesses();
745 }
746
747 /// Return the best possible representable state.
getBestStateAA::PointerInfo::State748 static State getBestState(const State &SIS) { return State(); }
749
750 /// Return the worst possible representable state.
getWorstStateAA::PointerInfo::State751 static State getWorstState(const State &SIS) {
752 State R;
753 R.indicatePessimisticFixpoint();
754 return R;
755 }
756
757 State() = default;
StateAA::PointerInfo::State758 State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {
759 SIS.AccessBins.clear();
760 }
761
getAssumedAA::PointerInfo::State762 const State &getAssumed() const { return *this; }
763
764 /// See AbstractState::isValidState().
isValidStateAA::PointerInfo::State765 bool isValidState() const override { return BS.isValidState(); }
766
767 /// See AbstractState::isAtFixpoint().
isAtFixpointAA::PointerInfo::State768 bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
769
770 /// See AbstractState::indicateOptimisticFixpoint().
indicateOptimisticFixpointAA::PointerInfo::State771 ChangeStatus indicateOptimisticFixpoint() override {
772 BS.indicateOptimisticFixpoint();
773 return ChangeStatus::UNCHANGED;
774 }
775
776 /// See AbstractState::indicatePessimisticFixpoint().
indicatePessimisticFixpointAA::PointerInfo::State777 ChangeStatus indicatePessimisticFixpoint() override {
778 BS.indicatePessimisticFixpoint();
779 return ChangeStatus::CHANGED;
780 }
781
operator =AA::PointerInfo::State782 State &operator=(const State &R) {
783 if (this == &R)
784 return *this;
785 BS = R.BS;
786 AccessBins = R.AccessBins;
787 return *this;
788 }
789
operator =AA::PointerInfo::State790 State &operator=(State &&R) {
791 if (this == &R)
792 return *this;
793 std::swap(BS, R.BS);
794 std::swap(AccessBins, R.AccessBins);
795 return *this;
796 }
797
operator ==AA::PointerInfo::State798 bool operator==(const State &R) const {
799 if (BS != R.BS)
800 return false;
801 if (AccessBins.size() != R.AccessBins.size())
802 return false;
803 auto It = begin(), RIt = R.begin(), E = end();
804 while (It != E) {
805 if (It->getFirst() != RIt->getFirst())
806 return false;
807 auto &Accs = It->getSecond();
808 auto &RAccs = RIt->getSecond();
809 if (Accs->size() != RAccs->size())
810 return false;
811 for (const auto &ZipIt : llvm::zip(*Accs, *RAccs))
812 if (std::get<0>(ZipIt) != std::get<1>(ZipIt))
813 return false;
814 ++It;
815 ++RIt;
816 }
817 return true;
818 }
operator !=AA::PointerInfo::State819 bool operator!=(const State &R) const { return !(*this == R); }
820
821 /// We store accesses in a set with the instruction as key.
822 struct Accesses {
823 SmallVector<AAPointerInfo::Access, 4> Accesses;
824 DenseMap<const Instruction *, unsigned> Map;
825
sizeAA::PointerInfo::State::Accesses826 unsigned size() const { return Accesses.size(); }
827
828 using vec_iterator = decltype(Accesses)::iterator;
beginAA::PointerInfo::State::Accesses829 vec_iterator begin() { return Accesses.begin(); }
endAA::PointerInfo::State::Accesses830 vec_iterator end() { return Accesses.end(); }
831
832 using iterator = decltype(Map)::const_iterator;
findAA::PointerInfo::State::Accesses833 iterator find(AAPointerInfo::Access &Acc) {
834 return Map.find(Acc.getRemoteInst());
835 }
find_endAA::PointerInfo::State::Accesses836 iterator find_end() { return Map.end(); }
837
getAA::PointerInfo::State::Accesses838 AAPointerInfo::Access &get(iterator &It) {
839 return Accesses[It->getSecond()];
840 }
841
insertAA::PointerInfo::State::Accesses842 void insert(AAPointerInfo::Access &Acc) {
843 Map[Acc.getRemoteInst()] = Accesses.size();
844 Accesses.push_back(Acc);
845 }
846 };
847
848 /// We store all accesses in bins denoted by their offset and size.
849 using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses *>;
850
beginAA::PointerInfo::State851 AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
endAA::PointerInfo::State852 AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
853
854 protected:
855 /// The bins with all the accesses for the associated pointer.
856 AccessBinsTy AccessBins;
857
858 /// Add a new access to the state at offset \p Offset and with size \p Size.
859 /// The access is associated with \p I, writes \p Content (if anything), and
860 /// is of kind \p Kind.
861 /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
addAccessAA::PointerInfo::State862 ChangeStatus addAccess(Attributor &A, int64_t Offset, int64_t Size,
863 Instruction &I, Optional<Value *> Content,
864 AAPointerInfo::AccessKind Kind, Type *Ty,
865 Instruction *RemoteI = nullptr,
866 Accesses *BinPtr = nullptr) {
867 AAPointerInfo::OffsetAndSize Key{Offset, Size};
868 Accesses *&Bin = BinPtr ? BinPtr : AccessBins[Key];
869 if (!Bin)
870 Bin = new (A.Allocator) Accesses;
871 AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
872 // Check if we have an access for this instruction in this bin, if not,
873 // simply add it.
874 auto It = Bin->find(Acc);
875 if (It == Bin->find_end()) {
876 Bin->insert(Acc);
877 return ChangeStatus::CHANGED;
878 }
879 // If the existing access is the same as then new one, nothing changed.
880 AAPointerInfo::Access &Current = Bin->get(It);
881 AAPointerInfo::Access Before = Current;
882 // The new one will be combined with the existing one.
883 Current &= Acc;
884 return Current == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
885 }
886
887 /// See AAPointerInfo::forallInterferingAccesses.
forallInterferingAccessesAA::PointerInfo::State888 bool forallInterferingAccesses(
889 AAPointerInfo::OffsetAndSize OAS,
890 function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
891 if (!isValidState())
892 return false;
893
894 for (auto &It : AccessBins) {
895 AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
896 if (!OAS.mayOverlap(ItOAS))
897 continue;
898 bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
899 for (auto &Access : *It.getSecond())
900 if (!CB(Access, IsExact))
901 return false;
902 }
903 return true;
904 }
905
906 /// See AAPointerInfo::forallInterferingAccesses.
forallInterferingAccessesAA::PointerInfo::State907 bool forallInterferingAccesses(
908 Instruction &I,
909 function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
910 if (!isValidState())
911 return false;
912
913 // First find the offset and size of I.
914 AAPointerInfo::OffsetAndSize OAS(-1, -1);
915 for (auto &It : AccessBins) {
916 for (auto &Access : *It.getSecond()) {
917 if (Access.getRemoteInst() == &I) {
918 OAS = It.getFirst();
919 break;
920 }
921 }
922 if (OAS.getSize() != -1)
923 break;
924 }
925 // No access for I was found, we are done.
926 if (OAS.getSize() == -1)
927 return true;
928
929 // Now that we have an offset and size, find all overlapping ones and use
930 // the callback on the accesses.
931 return forallInterferingAccesses(OAS, CB);
932 }
933
934 private:
935 /// State to track fixpoint and validity.
936 BooleanState BS;
937 };
938
939 namespace {
940 struct AAPointerInfoImpl
941 : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
942 using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
AAPointerInfoImpl__anon26093b6c0611::AAPointerInfoImpl943 AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
944
945 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c0611::AAPointerInfoImpl946 const std::string getAsStr() const override {
947 return std::string("PointerInfo ") +
948 (isValidState() ? (std::string("#") +
949 std::to_string(AccessBins.size()) + " bins")
950 : "<invalid>");
951 }
952
953 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c0611::AAPointerInfoImpl954 ChangeStatus manifest(Attributor &A) override {
955 return AAPointerInfo::manifest(A);
956 }
957
forallInterferingAccesses__anon26093b6c0611::AAPointerInfoImpl958 bool forallInterferingAccesses(
959 OffsetAndSize OAS,
960 function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
961 const override {
962 return State::forallInterferingAccesses(OAS, CB);
963 }
964
965 bool
forallInterferingAccesses__anon26093b6c0611::AAPointerInfoImpl966 forallInterferingAccesses(Attributor &A, const AbstractAttribute &QueryingAA,
967 Instruction &I,
968 function_ref<bool(const Access &, bool)> UserCB,
969 bool &HasBeenWrittenTo) const override {
970 HasBeenWrittenTo = false;
971
972 SmallPtrSet<const Access *, 8> DominatingWrites;
973 SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
974
975 Function &Scope = *I.getFunction();
976 const auto &NoSyncAA = A.getAAFor<AANoSync>(
977 QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
978 const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
979 IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
980 const bool NoSync = NoSyncAA.isAssumedNoSync();
981
982 // Helper to determine if we need to consider threading, which we cannot
983 // right now. However, if the function is (assumed) nosync or the thread
984 // executing all instructions is the main thread only we can ignore
985 // threading.
986 auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
987 if (NoSync)
988 return true;
989 if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
990 return true;
991 return false;
992 };
993
994 // Helper to determine if the access is executed by the same thread as the
995 // load, for now it is sufficient to avoid any potential threading effects
996 // as we cannot deal with them anyway.
997 auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
998 return CanIgnoreThreading(*Acc.getLocalInst());
999 };
1000
1001 // TODO: Use inter-procedural reachability and dominance.
1002 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1003 QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1004
1005 const bool FindInterferingWrites = I.mayReadFromMemory();
1006 const bool FindInterferingReads = I.mayWriteToMemory();
1007 const bool UseDominanceReasoning =
1008 FindInterferingWrites && NoRecurseAA.isKnownNoRecurse();
1009 const bool CanUseCFGResoning = CanIgnoreThreading(I);
1010 InformationCache &InfoCache = A.getInfoCache();
1011 const DominatorTree *DT =
1012 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
1013
1014 enum GPUAddressSpace : unsigned {
1015 Generic = 0,
1016 Global = 1,
1017 Shared = 3,
1018 Constant = 4,
1019 Local = 5,
1020 };
1021
1022 // Helper to check if a value has "kernel lifetime", that is it will not
1023 // outlive a GPU kernel. This is true for shared, constant, and local
1024 // globals on AMD and NVIDIA GPUs.
1025 auto HasKernelLifetime = [&](Value *V, Module &M) {
1026 Triple T(M.getTargetTriple());
1027 if (!(T.isAMDGPU() || T.isNVPTX()))
1028 return false;
1029 switch (V->getType()->getPointerAddressSpace()) {
1030 case GPUAddressSpace::Shared:
1031 case GPUAddressSpace::Constant:
1032 case GPUAddressSpace::Local:
1033 return true;
1034 default:
1035 return false;
1036 };
1037 };
1038
1039 // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1040 // to determine if we should look at reachability from the callee. For
1041 // certain pointers we know the lifetime and we do not have to step into the
1042 // callee to determine reachability as the pointer would be dead in the
1043 // callee. See the conditional initialization below.
1044 std::function<bool(const Function &)> IsLiveInCalleeCB;
1045
1046 if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1047 // If the alloca containing function is not recursive the alloca
1048 // must be dead in the callee.
1049 const Function *AIFn = AI->getFunction();
1050 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1051 *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1052 if (NoRecurseAA.isAssumedNoRecurse()) {
1053 IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1054 }
1055 } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1056 // If the global has kernel lifetime we can stop if we reach a kernel
1057 // as it is "dead" in the (unknown) callees.
1058 if (HasKernelLifetime(GV, *GV->getParent()))
1059 IsLiveInCalleeCB = [](const Function &Fn) {
1060 return !Fn.hasFnAttribute("kernel");
1061 };
1062 }
1063
1064 auto AccessCB = [&](const Access &Acc, bool Exact) {
1065 if ((!FindInterferingWrites || !Acc.isWrite()) &&
1066 (!FindInterferingReads || !Acc.isRead()))
1067 return true;
1068
1069 bool Dominates = DT && Exact && Acc.isMustAccess() &&
1070 (Acc.getLocalInst()->getFunction() == &Scope) &&
1071 DT->dominates(Acc.getRemoteInst(), &I);
1072 if (FindInterferingWrites && Dominates)
1073 HasBeenWrittenTo = true;
1074
1075 // For now we only filter accesses based on CFG reasoning which does not
1076 // work yet if we have threading effects, or the access is complicated.
1077 if (CanUseCFGResoning && Dominates && UseDominanceReasoning &&
1078 IsSameThreadAsLoad(Acc))
1079 DominatingWrites.insert(&Acc);
1080
1081 InterferingAccesses.push_back({&Acc, Exact});
1082 return true;
1083 };
1084 if (!State::forallInterferingAccesses(I, AccessCB))
1085 return false;
1086
1087 if (HasBeenWrittenTo) {
1088 const Function *ScopePtr = &Scope;
1089 IsLiveInCalleeCB = [ScopePtr](const Function &Fn) {
1090 return ScopePtr != &Fn;
1091 };
1092 }
1093
1094 // Helper to determine if we can skip a specific write access. This is in
1095 // the worst case quadratic as we are looking for another write that will
1096 // hide the effect of this one.
1097 auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1098 if ((!Acc.isWrite() ||
1099 !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1100 IsLiveInCalleeCB)) &&
1101 (!Acc.isRead() ||
1102 !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1103 IsLiveInCalleeCB)))
1104 return true;
1105
1106 if (!DT || !UseDominanceReasoning)
1107 return false;
1108 if (!IsSameThreadAsLoad(Acc))
1109 return false;
1110 if (!DominatingWrites.count(&Acc))
1111 return false;
1112 for (const Access *DomAcc : DominatingWrites) {
1113 assert(Acc.getLocalInst()->getFunction() ==
1114 DomAcc->getLocalInst()->getFunction() &&
1115 "Expected dominating writes to be in the same function!");
1116
1117 if (DomAcc != &Acc &&
1118 DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1119 return true;
1120 }
1121 }
1122 return false;
1123 };
1124
1125 // Run the user callback on all accesses we cannot skip and return if that
1126 // succeeded for all or not.
1127 unsigned NumInterferingAccesses = InterferingAccesses.size();
1128 for (auto &It : InterferingAccesses) {
1129 if (NumInterferingAccesses > MaxInterferingAccesses ||
1130 !CanSkipAccess(*It.first, It.second)) {
1131 if (!UserCB(*It.first, It.second))
1132 return false;
1133 }
1134 }
1135 return true;
1136 }
1137
translateAndAddState__anon26093b6c0611::AAPointerInfoImpl1138 ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
1139 int64_t Offset, CallBase &CB,
1140 bool FromCallee = false) {
1141 using namespace AA::PointerInfo;
1142 if (!OtherAA.getState().isValidState() || !isValidState())
1143 return indicatePessimisticFixpoint();
1144
1145 const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
1146 bool IsByval =
1147 FromCallee && OtherAAImpl.getAssociatedArgument()->hasByValAttr();
1148
1149 // Combine the accesses bin by bin.
1150 ChangeStatus Changed = ChangeStatus::UNCHANGED;
1151 for (auto &It : OtherAAImpl.getState()) {
1152 OffsetAndSize OAS = OffsetAndSize::getUnknown();
1153 if (Offset != OffsetAndSize::Unknown)
1154 OAS = OffsetAndSize(It.first.getOffset() + Offset, It.first.getSize());
1155 Accesses *Bin = AccessBins.lookup(OAS);
1156 for (const AAPointerInfo::Access &RAcc : *It.second) {
1157 if (IsByval && !RAcc.isRead())
1158 continue;
1159 bool UsedAssumedInformation = false;
1160 AccessKind AK = RAcc.getKind();
1161 Optional<Value *> Content = RAcc.getContent();
1162 if (FromCallee) {
1163 Content = A.translateArgumentToCallSiteContent(
1164 RAcc.getContent(), CB, *this, UsedAssumedInformation);
1165 AK =
1166 AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
1167 AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
1168 }
1169 Changed =
1170 Changed | addAccess(A, OAS.getOffset(), OAS.getSize(), CB, Content,
1171 AK, RAcc.getType(), RAcc.getRemoteInst(), Bin);
1172 }
1173 }
1174 return Changed;
1175 }
1176
1177 /// Statistic tracking for all AAPointerInfo implementations.
1178 /// See AbstractAttribute::trackStatistics().
trackPointerInfoStatistics__anon26093b6c0611::AAPointerInfoImpl1179 void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1180
1181 /// Dump the state into \p O.
dumpState__anon26093b6c0611::AAPointerInfoImpl1182 void dumpState(raw_ostream &O) {
1183 for (auto &It : AccessBins) {
1184 O << "[" << It.first.getOffset() << "-"
1185 << It.first.getOffset() + It.first.getSize()
1186 << "] : " << It.getSecond()->size() << "\n";
1187 for (auto &Acc : *It.getSecond()) {
1188 O << " - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
1189 if (Acc.getLocalInst() != Acc.getRemoteInst())
1190 O << " --> " << *Acc.getRemoteInst()
1191 << "\n";
1192 if (!Acc.isWrittenValueYetUndetermined()) {
1193 if (Acc.getWrittenValue())
1194 O << " - c: " << *Acc.getWrittenValue() << "\n";
1195 else
1196 O << " - c: <unknown>\n";
1197 }
1198 }
1199 }
1200 }
1201 };
1202
1203 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1204 using AccessKind = AAPointerInfo::AccessKind;
AAPointerInfoFloating__anon26093b6c0611::AAPointerInfoFloating1205 AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1206 : AAPointerInfoImpl(IRP, A) {}
1207
1208 /// Deal with an access and signal if it was handled successfully.
handleAccess__anon26093b6c0611::AAPointerInfoFloating1209 bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1210 Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1211 ChangeStatus &Changed, Type *Ty,
1212 int64_t Size = OffsetAndSize::Unknown) {
1213 using namespace AA::PointerInfo;
1214 // No need to find a size if one is given or the offset is unknown.
1215 if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1216 Ty) {
1217 const DataLayout &DL = A.getDataLayout();
1218 TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1219 if (!AccessSize.isScalable())
1220 Size = AccessSize.getFixedSize();
1221 }
1222 Changed = Changed | addAccess(A, Offset, Size, I, Content, Kind, Ty);
1223 return true;
1224 };
1225
1226 /// Helper struct, will support ranges eventually.
1227 struct OffsetInfo {
1228 int64_t Offset = OffsetAndSize::Unknown;
1229
operator ==__anon26093b6c0611::AAPointerInfoFloating::OffsetInfo1230 bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1231 };
1232
1233 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0611::AAPointerInfoFloating1234 ChangeStatus updateImpl(Attributor &A) override {
1235 using namespace AA::PointerInfo;
1236 ChangeStatus Changed = ChangeStatus::UNCHANGED;
1237 Value &AssociatedValue = getAssociatedValue();
1238
1239 const DataLayout &DL = A.getDataLayout();
1240 DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1241 OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1242
1243 auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo PtrOI,
1244 bool &Follow) {
1245 OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1246 UsrOI = PtrOI;
1247 Follow = true;
1248 return true;
1249 };
1250
1251 const auto *TLI = getAnchorScope()
1252 ? A.getInfoCache().getTargetLibraryInfoForFunction(
1253 *getAnchorScope())
1254 : nullptr;
1255 auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1256 Value *CurPtr = U.get();
1257 User *Usr = U.getUser();
1258 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1259 << *Usr << "\n");
1260 assert(OffsetInfoMap.count(CurPtr) &&
1261 "The current pointer offset should have been seeded!");
1262
1263 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1264 if (CE->isCast())
1265 return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1266 if (CE->isCompare())
1267 return true;
1268 if (!isa<GEPOperator>(CE)) {
1269 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1270 << "\n");
1271 return false;
1272 }
1273 }
1274 if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1275 // Note the order here, the Usr access might change the map, CurPtr is
1276 // already in it though.
1277 OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1278 OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1279 UsrOI = PtrOI;
1280
1281 // TODO: Use range information.
1282 if (PtrOI.Offset == OffsetAndSize::Unknown ||
1283 !GEP->hasAllConstantIndices()) {
1284 UsrOI.Offset = OffsetAndSize::Unknown;
1285 Follow = true;
1286 return true;
1287 }
1288
1289 SmallVector<Value *, 8> Indices;
1290 for (Use &Idx : GEP->indices()) {
1291 if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1292 Indices.push_back(CIdx);
1293 continue;
1294 }
1295
1296 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1297 << " : " << *Idx << "\n");
1298 return false;
1299 }
1300 UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1301 GEP->getSourceElementType(), Indices);
1302 Follow = true;
1303 return true;
1304 }
1305 if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
1306 return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1307
1308 // For PHIs we need to take care of the recurrence explicitly as the value
1309 // might change while we iterate through a loop. For now, we give up if
1310 // the PHI is not invariant.
1311 if (isa<PHINode>(Usr)) {
1312 // Note the order here, the Usr access might change the map, CurPtr is
1313 // already in it though.
1314 bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
1315 OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1316 OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1317 // Check if the PHI is invariant (so far).
1318 if (UsrOI == PtrOI)
1319 return true;
1320
1321 // Check if the PHI operand has already an unknown offset as we can't
1322 // improve on that anymore.
1323 if (PtrOI.Offset == OffsetAndSize::Unknown) {
1324 UsrOI = PtrOI;
1325 Follow = true;
1326 return true;
1327 }
1328
1329 // Check if the PHI operand is not dependent on the PHI itself.
1330 APInt Offset(
1331 DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1332 0);
1333 Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
1334 DL, Offset, /* AllowNonInbounds */ true);
1335 auto It = OffsetInfoMap.find(CurPtrBase);
1336 if (It != OffsetInfoMap.end()) {
1337 Offset += It->getSecond().Offset;
1338 if (IsFirstPHIUser || Offset == UsrOI.Offset)
1339 return HandlePassthroughUser(Usr, PtrOI, Follow);
1340 LLVM_DEBUG(dbgs()
1341 << "[AAPointerInfo] PHI operand pointer offset mismatch "
1342 << *CurPtr << " in " << *Usr << "\n");
1343 } else {
1344 LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1345 << *CurPtr << " in " << *Usr << "\n");
1346 }
1347
1348 // TODO: Approximate in case we know the direction of the recurrence.
1349 UsrOI = PtrOI;
1350 UsrOI.Offset = OffsetAndSize::Unknown;
1351 Follow = true;
1352 return true;
1353 }
1354
1355 if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
1356 // If the access is to a pointer that may or may not be the associated
1357 // value, e.g. due to a PHI, we cannot assume it will be read.
1358 AccessKind AK = AccessKind::AK_R;
1359 if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1360 AK = AccessKind(AK | AccessKind::AK_MUST);
1361 else
1362 AK = AccessKind(AK | AccessKind::AK_MAY);
1363 return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr, AK,
1364 OffsetInfoMap[CurPtr].Offset, Changed,
1365 LoadI->getType());
1366 }
1367
1368 if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1369 if (StoreI->getValueOperand() == CurPtr) {
1370 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1371 << *StoreI << "\n");
1372 return false;
1373 }
1374 // If the access is to a pointer that may or may not be the associated
1375 // value, e.g. due to a PHI, we cannot assume it will be written.
1376 AccessKind AK = AccessKind::AK_W;
1377 if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1378 AK = AccessKind(AK | AccessKind::AK_MUST);
1379 else
1380 AK = AccessKind(AK | AccessKind::AK_MAY);
1381 bool UsedAssumedInformation = false;
1382 Optional<Value *> Content =
1383 A.getAssumedSimplified(*StoreI->getValueOperand(), *this,
1384 UsedAssumedInformation, AA::Interprocedural);
1385 return handleAccess(A, *StoreI, *CurPtr, Content, AK,
1386 OffsetInfoMap[CurPtr].Offset, Changed,
1387 StoreI->getValueOperand()->getType());
1388 }
1389 if (auto *CB = dyn_cast<CallBase>(Usr)) {
1390 if (CB->isLifetimeStartOrEnd())
1391 return true;
1392 if (getFreedOperand(CB, TLI) == U)
1393 return true;
1394 if (CB->isArgOperand(&U)) {
1395 unsigned ArgNo = CB->getArgOperandNo(&U);
1396 const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1397 *this, IRPosition::callsite_argument(*CB, ArgNo),
1398 DepClassTy::REQUIRED);
1399 Changed = translateAndAddState(A, CSArgPI,
1400 OffsetInfoMap[CurPtr].Offset, *CB) |
1401 Changed;
1402 return isValidState();
1403 }
1404 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1405 << "\n");
1406 // TODO: Allow some call uses
1407 return false;
1408 }
1409
1410 LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1411 return false;
1412 };
1413 auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1414 if (OffsetInfoMap.count(NewU)) {
1415 LLVM_DEBUG({
1416 if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
1417 dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
1418 << OffsetInfoMap[NewU].Offset << " vs "
1419 << OffsetInfoMap[OldU].Offset << "\n";
1420 }
1421 });
1422 return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1423 }
1424 OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1425 return true;
1426 };
1427 if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1428 /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1429 /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
1430 LLVM_DEBUG(
1431 dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
1432 return indicatePessimisticFixpoint();
1433 }
1434
1435 LLVM_DEBUG({
1436 dbgs() << "Accesses by bin after update:\n";
1437 dumpState(dbgs());
1438 });
1439
1440 return Changed;
1441 }
1442
1443 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c0611::AAPointerInfoFloating1444 void trackStatistics() const override {
1445 AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1446 }
1447 };
1448
1449 struct AAPointerInfoReturned final : AAPointerInfoImpl {
AAPointerInfoReturned__anon26093b6c0611::AAPointerInfoReturned1450 AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1451 : AAPointerInfoImpl(IRP, A) {}
1452
1453 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0611::AAPointerInfoReturned1454 ChangeStatus updateImpl(Attributor &A) override {
1455 return indicatePessimisticFixpoint();
1456 }
1457
1458 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c0611::AAPointerInfoReturned1459 void trackStatistics() const override {
1460 AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1461 }
1462 };
1463
1464 struct AAPointerInfoArgument final : AAPointerInfoFloating {
AAPointerInfoArgument__anon26093b6c0611::AAPointerInfoArgument1465 AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1466 : AAPointerInfoFloating(IRP, A) {}
1467
1468 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c0611::AAPointerInfoArgument1469 void initialize(Attributor &A) override {
1470 AAPointerInfoFloating::initialize(A);
1471 if (getAnchorScope()->isDeclaration())
1472 indicatePessimisticFixpoint();
1473 }
1474
1475 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c0611::AAPointerInfoArgument1476 void trackStatistics() const override {
1477 AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1478 }
1479 };
1480
1481 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
AAPointerInfoCallSiteArgument__anon26093b6c0611::AAPointerInfoCallSiteArgument1482 AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1483 : AAPointerInfoFloating(IRP, A) {}
1484
1485 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c0611::AAPointerInfoCallSiteArgument1486 ChangeStatus updateImpl(Attributor &A) override {
1487 using namespace AA::PointerInfo;
1488 // We handle memory intrinsics explicitly, at least the first (=
1489 // destination) and second (=source) arguments as we know how they are
1490 // accessed.
1491 if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1492 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1493 int64_t LengthVal = OffsetAndSize::Unknown;
1494 if (Length)
1495 LengthVal = Length->getSExtValue();
1496 Value &Ptr = getAssociatedValue();
1497 unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1498 ChangeStatus Changed = ChangeStatus::UNCHANGED;
1499 if (ArgNo == 0) {
1500 handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_MUST_WRITE, 0,
1501 Changed, nullptr, LengthVal);
1502 } else if (ArgNo == 1) {
1503 handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_MUST_READ, 0, Changed,
1504 nullptr, LengthVal);
1505 } else {
1506 LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1507 << *MI << "\n");
1508 return indicatePessimisticFixpoint();
1509 }
1510
1511 LLVM_DEBUG({
1512 dbgs() << "Accesses by bin after update:\n";
1513 dumpState(dbgs());
1514 });
1515
1516 return Changed;
1517 }
1518
1519 // TODO: Once we have call site specific value information we can provide
1520 // call site specific liveness information and then it makes
1521 // sense to specialize attributes for call sites arguments instead of
1522 // redirecting requests to the callee argument.
1523 Argument *Arg = getAssociatedArgument();
1524 if (!Arg)
1525 return indicatePessimisticFixpoint();
1526 const IRPosition &ArgPos = IRPosition::argument(*Arg);
1527 auto &ArgAA =
1528 A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1529 return translateAndAddState(A, ArgAA, 0, *cast<CallBase>(getCtxI()),
1530 /* FromCallee */ true);
1531 }
1532
1533 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c0611::AAPointerInfoCallSiteArgument1534 void trackStatistics() const override {
1535 AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1536 }
1537 };
1538
1539 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
AAPointerInfoCallSiteReturned__anon26093b6c0611::AAPointerInfoCallSiteReturned1540 AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1541 : AAPointerInfoFloating(IRP, A) {}
1542
1543 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c0611::AAPointerInfoCallSiteReturned1544 void trackStatistics() const override {
1545 AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1546 }
1547 };
1548 } // namespace
1549
1550 /// -----------------------NoUnwind Function Attribute--------------------------
1551
1552 namespace {
1553 struct AANoUnwindImpl : AANoUnwind {
AANoUnwindImpl__anon26093b6c1211::AANoUnwindImpl1554 AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1555
getAsStr__anon26093b6c1211::AANoUnwindImpl1556 const std::string getAsStr() const override {
1557 return getAssumed() ? "nounwind" : "may-unwind";
1558 }
1559
1560 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1211::AANoUnwindImpl1561 ChangeStatus updateImpl(Attributor &A) override {
1562 auto Opcodes = {
1563 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
1564 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
1565 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1566
1567 auto CheckForNoUnwind = [&](Instruction &I) {
1568 if (!I.mayThrow())
1569 return true;
1570
1571 if (const auto *CB = dyn_cast<CallBase>(&I)) {
1572 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1573 *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1574 return NoUnwindAA.isAssumedNoUnwind();
1575 }
1576 return false;
1577 };
1578
1579 bool UsedAssumedInformation = false;
1580 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1581 UsedAssumedInformation))
1582 return indicatePessimisticFixpoint();
1583
1584 return ChangeStatus::UNCHANGED;
1585 }
1586 };
1587
1588 struct AANoUnwindFunction final : public AANoUnwindImpl {
AANoUnwindFunction__anon26093b6c1211::AANoUnwindFunction1589 AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1590 : AANoUnwindImpl(IRP, A) {}
1591
1592 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1211::AANoUnwindFunction1593 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1594 };
1595
1596 /// NoUnwind attribute deduction for a call sites.
1597 struct AANoUnwindCallSite final : AANoUnwindImpl {
AANoUnwindCallSite__anon26093b6c1211::AANoUnwindCallSite1598 AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1599 : AANoUnwindImpl(IRP, A) {}
1600
1601 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1211::AANoUnwindCallSite1602 void initialize(Attributor &A) override {
1603 AANoUnwindImpl::initialize(A);
1604 Function *F = getAssociatedFunction();
1605 if (!F || F->isDeclaration())
1606 indicatePessimisticFixpoint();
1607 }
1608
1609 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1211::AANoUnwindCallSite1610 ChangeStatus updateImpl(Attributor &A) override {
1611 // TODO: Once we have call site specific value information we can provide
1612 // call site specific liveness information and then it makes
1613 // sense to specialize attributes for call sites arguments instead of
1614 // redirecting requests to the callee argument.
1615 Function *F = getAssociatedFunction();
1616 const IRPosition &FnPos = IRPosition::function(*F);
1617 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1618 return clampStateAndIndicateChange(getState(), FnAA.getState());
1619 }
1620
1621 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1211::AANoUnwindCallSite1622 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1623 };
1624 } // namespace
1625
1626 /// --------------------- Function Return Values -------------------------------
1627
1628 namespace {
1629 /// "Attribute" that collects all potential returned values and the return
1630 /// instructions that they arise from.
1631 ///
1632 /// If there is a unique returned value R, the manifest method will:
1633 /// - mark R with the "returned" attribute, if R is an argument.
1634 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1635
1636 /// Mapping of values potentially returned by the associated function to the
1637 /// return instructions that might return them.
1638 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1639
1640 /// State flags
1641 ///
1642 ///{
1643 bool IsFixed = false;
1644 bool IsValidState = true;
1645 ///}
1646
1647 public:
AAReturnedValuesImpl(const IRPosition & IRP,Attributor & A)1648 AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1649 : AAReturnedValues(IRP, A) {}
1650
1651 /// See AbstractAttribute::initialize(...).
initialize(Attributor & A)1652 void initialize(Attributor &A) override {
1653 // Reset the state.
1654 IsFixed = false;
1655 IsValidState = true;
1656 ReturnedValues.clear();
1657
1658 Function *F = getAssociatedFunction();
1659 if (!F || F->isDeclaration()) {
1660 indicatePessimisticFixpoint();
1661 return;
1662 }
1663 assert(!F->getReturnType()->isVoidTy() &&
1664 "Did not expect a void return type!");
1665
1666 // The map from instruction opcodes to those instructions in the function.
1667 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1668
1669 // Look through all arguments, if one is marked as returned we are done.
1670 for (Argument &Arg : F->args()) {
1671 if (Arg.hasReturnedAttr()) {
1672 auto &ReturnInstSet = ReturnedValues[&Arg];
1673 if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1674 for (Instruction *RI : *Insts)
1675 ReturnInstSet.insert(cast<ReturnInst>(RI));
1676
1677 indicateOptimisticFixpoint();
1678 return;
1679 }
1680 }
1681
1682 if (!A.isFunctionIPOAmendable(*F))
1683 indicatePessimisticFixpoint();
1684 }
1685
1686 /// See AbstractAttribute::manifest(...).
1687 ChangeStatus manifest(Attributor &A) override;
1688
1689 /// See AbstractAttribute::getState(...).
getState()1690 AbstractState &getState() override { return *this; }
1691
1692 /// See AbstractAttribute::getState(...).
getState() const1693 const AbstractState &getState() const override { return *this; }
1694
1695 /// See AbstractAttribute::updateImpl(Attributor &A).
1696 ChangeStatus updateImpl(Attributor &A) override;
1697
returned_values()1698 llvm::iterator_range<iterator> returned_values() override {
1699 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1700 }
1701
returned_values() const1702 llvm::iterator_range<const_iterator> returned_values() const override {
1703 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1704 }
1705
1706 /// Return the number of potential return values, -1 if unknown.
getNumReturnValues() const1707 size_t getNumReturnValues() const override {
1708 return isValidState() ? ReturnedValues.size() : -1;
1709 }
1710
1711 /// Return an assumed unique return value if a single candidate is found. If
1712 /// there cannot be one, return a nullptr. If it is not clear yet, return the
1713 /// Optional::NoneType.
1714 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1715
1716 /// See AbstractState::checkForAllReturnedValues(...).
1717 bool checkForAllReturnedValuesAndReturnInsts(
1718 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1719 const override;
1720
1721 /// Pretty print the attribute similar to the IR representation.
1722 const std::string getAsStr() const override;
1723
1724 /// See AbstractState::isAtFixpoint().
isAtFixpoint() const1725 bool isAtFixpoint() const override { return IsFixed; }
1726
1727 /// See AbstractState::isValidState().
isValidState() const1728 bool isValidState() const override { return IsValidState; }
1729
1730 /// See AbstractState::indicateOptimisticFixpoint(...).
indicateOptimisticFixpoint()1731 ChangeStatus indicateOptimisticFixpoint() override {
1732 IsFixed = true;
1733 return ChangeStatus::UNCHANGED;
1734 }
1735
indicatePessimisticFixpoint()1736 ChangeStatus indicatePessimisticFixpoint() override {
1737 IsFixed = true;
1738 IsValidState = false;
1739 return ChangeStatus::CHANGED;
1740 }
1741 };
1742
manifest(Attributor & A)1743 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1744 ChangeStatus Changed = ChangeStatus::UNCHANGED;
1745
1746 // Bookkeeping.
1747 assert(isValidState());
1748 STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1749 "Number of function with known return values");
1750
1751 // Check if we have an assumed unique return value that we could manifest.
1752 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1753
1754 if (!UniqueRV || !UniqueRV.value())
1755 return Changed;
1756
1757 // Bookkeeping.
1758 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1759 "Number of function with unique return");
1760 // If the assumed unique return value is an argument, annotate it.
1761 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.value())) {
1762 if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1763 getAssociatedFunction()->getReturnType())) {
1764 getIRPosition() = IRPosition::argument(*UniqueRVArg);
1765 Changed = IRAttribute::manifest(A);
1766 }
1767 }
1768 return Changed;
1769 }
1770
getAsStr() const1771 const std::string AAReturnedValuesImpl::getAsStr() const {
1772 return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1773 (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1774 }
1775
1776 Optional<Value *>
getAssumedUniqueReturnValue(Attributor & A) const1777 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1778 // If checkForAllReturnedValues provides a unique value, ignoring potential
1779 // undef values that can also be present, it is assumed to be the actual
1780 // return value and forwarded to the caller of this method. If there are
1781 // multiple, a nullptr is returned indicating there cannot be a unique
1782 // returned value.
1783 Optional<Value *> UniqueRV;
1784 Type *Ty = getAssociatedFunction()->getReturnType();
1785
1786 auto Pred = [&](Value &RV) -> bool {
1787 UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1788 return UniqueRV != Optional<Value *>(nullptr);
1789 };
1790
1791 if (!A.checkForAllReturnedValues(Pred, *this))
1792 UniqueRV = nullptr;
1793
1794 return UniqueRV;
1795 }
1796
checkForAllReturnedValuesAndReturnInsts(function_ref<bool (Value &,const SmallSetVector<ReturnInst *,4> &)> Pred) const1797 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1798 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1799 const {
1800 if (!isValidState())
1801 return false;
1802
1803 // Check all returned values but ignore call sites as long as we have not
1804 // encountered an overdefined one during an update.
1805 for (auto &It : ReturnedValues) {
1806 Value *RV = It.first;
1807 if (!Pred(*RV, It.second))
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
updateImpl(Attributor & A)1814 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1815 ChangeStatus Changed = ChangeStatus::UNCHANGED;
1816
1817 SmallVector<AA::ValueAndContext> Values;
1818 bool UsedAssumedInformation = false;
1819 auto ReturnInstCB = [&](Instruction &I) {
1820 ReturnInst &Ret = cast<ReturnInst>(I);
1821 Values.clear();
1822 if (!A.getAssumedSimplifiedValues(IRPosition::value(*Ret.getReturnValue()),
1823 *this, Values, AA::Intraprocedural,
1824 UsedAssumedInformation))
1825 Values.push_back({*Ret.getReturnValue(), Ret});
1826
1827 for (auto &VAC : Values) {
1828 assert(AA::isValidInScope(*VAC.getValue(), Ret.getFunction()) &&
1829 "Assumed returned value should be valid in function scope!");
1830 if (ReturnedValues[VAC.getValue()].insert(&Ret))
1831 Changed = ChangeStatus::CHANGED;
1832 }
1833 return true;
1834 };
1835
1836 // Discover returned values from all live returned instructions in the
1837 // associated function.
1838 if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1839 UsedAssumedInformation))
1840 return indicatePessimisticFixpoint();
1841 return Changed;
1842 }
1843
1844 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
AAReturnedValuesFunction__anon26093b6c1411::AAReturnedValuesFunction1845 AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1846 : AAReturnedValuesImpl(IRP, A) {}
1847
1848 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1411::AAReturnedValuesFunction1849 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1850 };
1851
1852 /// Returned values information for a call sites.
1853 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
AAReturnedValuesCallSite__anon26093b6c1411::AAReturnedValuesCallSite1854 AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1855 : AAReturnedValuesImpl(IRP, A) {}
1856
1857 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1411::AAReturnedValuesCallSite1858 void initialize(Attributor &A) override {
1859 // TODO: Once we have call site specific value information we can provide
1860 // call site specific liveness information and then it makes
1861 // sense to specialize attributes for call sites instead of
1862 // redirecting requests to the callee.
1863 llvm_unreachable("Abstract attributes for returned values are not "
1864 "supported for call sites yet!");
1865 }
1866
1867 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1411::AAReturnedValuesCallSite1868 ChangeStatus updateImpl(Attributor &A) override {
1869 return indicatePessimisticFixpoint();
1870 }
1871
1872 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1411::AAReturnedValuesCallSite1873 void trackStatistics() const override {}
1874 };
1875 } // namespace
1876
1877 /// ------------------------ NoSync Function Attribute -------------------------
1878
isNonRelaxedAtomic(const Instruction * I)1879 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1880 if (!I->isAtomic())
1881 return false;
1882
1883 if (auto *FI = dyn_cast<FenceInst>(I))
1884 // All legal orderings for fence are stronger than monotonic.
1885 return FI->getSyncScopeID() != SyncScope::SingleThread;
1886 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1887 // Unordered is not a legal ordering for cmpxchg.
1888 return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1889 AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1890 }
1891
1892 AtomicOrdering Ordering;
1893 switch (I->getOpcode()) {
1894 case Instruction::AtomicRMW:
1895 Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1896 break;
1897 case Instruction::Store:
1898 Ordering = cast<StoreInst>(I)->getOrdering();
1899 break;
1900 case Instruction::Load:
1901 Ordering = cast<LoadInst>(I)->getOrdering();
1902 break;
1903 default:
1904 llvm_unreachable(
1905 "New atomic operations need to be known in the attributor.");
1906 }
1907
1908 return (Ordering != AtomicOrdering::Unordered &&
1909 Ordering != AtomicOrdering::Monotonic);
1910 }
1911
1912 /// Return true if this intrinsic is nosync. This is only used for intrinsics
1913 /// which would be nosync except that they have a volatile flag. All other
1914 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
isNoSyncIntrinsic(const Instruction * I)1915 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
1916 if (auto *MI = dyn_cast<MemIntrinsic>(I))
1917 return !MI->isVolatile();
1918 return false;
1919 }
1920
1921 namespace {
1922 struct AANoSyncImpl : AANoSync {
AANoSyncImpl__anon26093b6c1711::AANoSyncImpl1923 AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1924
getAsStr__anon26093b6c1711::AANoSyncImpl1925 const std::string getAsStr() const override {
1926 return getAssumed() ? "nosync" : "may-sync";
1927 }
1928
1929 /// See AbstractAttribute::updateImpl(...).
1930 ChangeStatus updateImpl(Attributor &A) override;
1931 };
1932
updateImpl(Attributor & A)1933 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1934
1935 auto CheckRWInstForNoSync = [&](Instruction &I) {
1936 return AA::isNoSyncInst(A, I, *this);
1937 };
1938
1939 auto CheckForNoSync = [&](Instruction &I) {
1940 // At this point we handled all read/write effects and they are all
1941 // nosync, so they can be skipped.
1942 if (I.mayReadOrWriteMemory())
1943 return true;
1944
1945 // non-convergent and readnone imply nosync.
1946 return !cast<CallBase>(I).isConvergent();
1947 };
1948
1949 bool UsedAssumedInformation = false;
1950 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1951 UsedAssumedInformation) ||
1952 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1953 UsedAssumedInformation))
1954 return indicatePessimisticFixpoint();
1955
1956 return ChangeStatus::UNCHANGED;
1957 }
1958
1959 struct AANoSyncFunction final : public AANoSyncImpl {
AANoSyncFunction__anon26093b6c1711::AANoSyncFunction1960 AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1961 : AANoSyncImpl(IRP, A) {}
1962
1963 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1711::AANoSyncFunction1964 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1965 };
1966
1967 /// NoSync attribute deduction for a call sites.
1968 struct AANoSyncCallSite final : AANoSyncImpl {
AANoSyncCallSite__anon26093b6c1711::AANoSyncCallSite1969 AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1970 : AANoSyncImpl(IRP, A) {}
1971
1972 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1711::AANoSyncCallSite1973 void initialize(Attributor &A) override {
1974 AANoSyncImpl::initialize(A);
1975 Function *F = getAssociatedFunction();
1976 if (!F || F->isDeclaration())
1977 indicatePessimisticFixpoint();
1978 }
1979
1980 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1711::AANoSyncCallSite1981 ChangeStatus updateImpl(Attributor &A) override {
1982 // TODO: Once we have call site specific value information we can provide
1983 // call site specific liveness information and then it makes
1984 // sense to specialize attributes for call sites arguments instead of
1985 // redirecting requests to the callee argument.
1986 Function *F = getAssociatedFunction();
1987 const IRPosition &FnPos = IRPosition::function(*F);
1988 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1989 return clampStateAndIndicateChange(getState(), FnAA.getState());
1990 }
1991
1992 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1711::AANoSyncCallSite1993 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1994 };
1995 } // namespace
1996
1997 /// ------------------------ No-Free Attributes ----------------------------
1998
1999 namespace {
2000 struct AANoFreeImpl : public AANoFree {
AANoFreeImpl__anon26093b6c1a11::AANoFreeImpl2001 AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2002
2003 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1a11::AANoFreeImpl2004 ChangeStatus updateImpl(Attributor &A) override {
2005 auto CheckForNoFree = [&](Instruction &I) {
2006 const auto &CB = cast<CallBase>(I);
2007 if (CB.hasFnAttr(Attribute::NoFree))
2008 return true;
2009
2010 const auto &NoFreeAA = A.getAAFor<AANoFree>(
2011 *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2012 return NoFreeAA.isAssumedNoFree();
2013 };
2014
2015 bool UsedAssumedInformation = false;
2016 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2017 UsedAssumedInformation))
2018 return indicatePessimisticFixpoint();
2019 return ChangeStatus::UNCHANGED;
2020 }
2021
2022 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c1a11::AANoFreeImpl2023 const std::string getAsStr() const override {
2024 return getAssumed() ? "nofree" : "may-free";
2025 }
2026 };
2027
2028 struct AANoFreeFunction final : public AANoFreeImpl {
AANoFreeFunction__anon26093b6c1a11::AANoFreeFunction2029 AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2030 : AANoFreeImpl(IRP, A) {}
2031
2032 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeFunction2033 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2034 };
2035
2036 /// NoFree attribute deduction for a call sites.
2037 struct AANoFreeCallSite final : AANoFreeImpl {
AANoFreeCallSite__anon26093b6c1a11::AANoFreeCallSite2038 AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2039 : AANoFreeImpl(IRP, A) {}
2040
2041 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1a11::AANoFreeCallSite2042 void initialize(Attributor &A) override {
2043 AANoFreeImpl::initialize(A);
2044 Function *F = getAssociatedFunction();
2045 if (!F || F->isDeclaration())
2046 indicatePessimisticFixpoint();
2047 }
2048
2049 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1a11::AANoFreeCallSite2050 ChangeStatus updateImpl(Attributor &A) override {
2051 // TODO: Once we have call site specific value information we can provide
2052 // call site specific liveness information and then it makes
2053 // sense to specialize attributes for call sites arguments instead of
2054 // redirecting requests to the callee argument.
2055 Function *F = getAssociatedFunction();
2056 const IRPosition &FnPos = IRPosition::function(*F);
2057 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2058 return clampStateAndIndicateChange(getState(), FnAA.getState());
2059 }
2060
2061 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeCallSite2062 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2063 };
2064
2065 /// NoFree attribute for floating values.
2066 struct AANoFreeFloating : AANoFreeImpl {
AANoFreeFloating__anon26093b6c1a11::AANoFreeFloating2067 AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2068 : AANoFreeImpl(IRP, A) {}
2069
2070 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeFloating2071 void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2072
2073 /// See Abstract Attribute::updateImpl(...).
updateImpl__anon26093b6c1a11::AANoFreeFloating2074 ChangeStatus updateImpl(Attributor &A) override {
2075 const IRPosition &IRP = getIRPosition();
2076
2077 const auto &NoFreeAA = A.getAAFor<AANoFree>(
2078 *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2079 if (NoFreeAA.isAssumedNoFree())
2080 return ChangeStatus::UNCHANGED;
2081
2082 Value &AssociatedValue = getIRPosition().getAssociatedValue();
2083 auto Pred = [&](const Use &U, bool &Follow) -> bool {
2084 Instruction *UserI = cast<Instruction>(U.getUser());
2085 if (auto *CB = dyn_cast<CallBase>(UserI)) {
2086 if (CB->isBundleOperand(&U))
2087 return false;
2088 if (!CB->isArgOperand(&U))
2089 return true;
2090 unsigned ArgNo = CB->getArgOperandNo(&U);
2091
2092 const auto &NoFreeArg = A.getAAFor<AANoFree>(
2093 *this, IRPosition::callsite_argument(*CB, ArgNo),
2094 DepClassTy::REQUIRED);
2095 return NoFreeArg.isAssumedNoFree();
2096 }
2097
2098 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2099 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2100 Follow = true;
2101 return true;
2102 }
2103 if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2104 isa<ReturnInst>(UserI))
2105 return true;
2106
2107 // Unknown user.
2108 return false;
2109 };
2110 if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2111 return indicatePessimisticFixpoint();
2112
2113 return ChangeStatus::UNCHANGED;
2114 }
2115 };
2116
2117 /// NoFree attribute for a call site argument.
2118 struct AANoFreeArgument final : AANoFreeFloating {
AANoFreeArgument__anon26093b6c1a11::AANoFreeArgument2119 AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2120 : AANoFreeFloating(IRP, A) {}
2121
2122 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeArgument2123 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2124 };
2125
2126 /// NoFree attribute for call site arguments.
2127 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
AANoFreeCallSiteArgument__anon26093b6c1a11::AANoFreeCallSiteArgument2128 AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2129 : AANoFreeFloating(IRP, A) {}
2130
2131 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1a11::AANoFreeCallSiteArgument2132 ChangeStatus updateImpl(Attributor &A) override {
2133 // TODO: Once we have call site specific value information we can provide
2134 // call site specific liveness information and then it makes
2135 // sense to specialize attributes for call sites arguments instead of
2136 // redirecting requests to the callee argument.
2137 Argument *Arg = getAssociatedArgument();
2138 if (!Arg)
2139 return indicatePessimisticFixpoint();
2140 const IRPosition &ArgPos = IRPosition::argument(*Arg);
2141 auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2142 return clampStateAndIndicateChange(getState(), ArgAA.getState());
2143 }
2144
2145 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeCallSiteArgument2146 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2147 };
2148
2149 /// NoFree attribute for function return value.
2150 struct AANoFreeReturned final : AANoFreeFloating {
AANoFreeReturned__anon26093b6c1a11::AANoFreeReturned2151 AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2152 : AANoFreeFloating(IRP, A) {
2153 llvm_unreachable("NoFree is not applicable to function returns!");
2154 }
2155
2156 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1a11::AANoFreeReturned2157 void initialize(Attributor &A) override {
2158 llvm_unreachable("NoFree is not applicable to function returns!");
2159 }
2160
2161 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1a11::AANoFreeReturned2162 ChangeStatus updateImpl(Attributor &A) override {
2163 llvm_unreachable("NoFree is not applicable to function returns!");
2164 }
2165
2166 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeReturned2167 void trackStatistics() const override {}
2168 };
2169
2170 /// NoFree attribute deduction for a call site return value.
2171 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
AANoFreeCallSiteReturned__anon26093b6c1a11::AANoFreeCallSiteReturned2172 AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2173 : AANoFreeFloating(IRP, A) {}
2174
manifest__anon26093b6c1a11::AANoFreeCallSiteReturned2175 ChangeStatus manifest(Attributor &A) override {
2176 return ChangeStatus::UNCHANGED;
2177 }
2178 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1a11::AANoFreeCallSiteReturned2179 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2180 };
2181 } // namespace
2182
2183 /// ------------------------ NonNull Argument Attribute ------------------------
2184 namespace {
getKnownNonNullAndDerefBytesForUse(Attributor & A,const AbstractAttribute & QueryingAA,Value & AssociatedValue,const Use * U,const Instruction * I,bool & IsNonNull,bool & TrackUse)2185 static int64_t getKnownNonNullAndDerefBytesForUse(
2186 Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2187 const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2188 TrackUse = false;
2189
2190 const Value *UseV = U->get();
2191 if (!UseV->getType()->isPointerTy())
2192 return 0;
2193
2194 // We need to follow common pointer manipulation uses to the accesses they
2195 // feed into. We can try to be smart to avoid looking through things we do not
2196 // like for now, e.g., non-inbounds GEPs.
2197 if (isa<CastInst>(I)) {
2198 TrackUse = true;
2199 return 0;
2200 }
2201
2202 if (isa<GetElementPtrInst>(I)) {
2203 TrackUse = true;
2204 return 0;
2205 }
2206
2207 Type *PtrTy = UseV->getType();
2208 const Function *F = I->getFunction();
2209 bool NullPointerIsDefined =
2210 F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2211 const DataLayout &DL = A.getInfoCache().getDL();
2212 if (const auto *CB = dyn_cast<CallBase>(I)) {
2213 if (CB->isBundleOperand(U)) {
2214 if (RetainedKnowledge RK = getKnowledgeFromUse(
2215 U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2216 IsNonNull |=
2217 (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2218 return RK.ArgValue;
2219 }
2220 return 0;
2221 }
2222
2223 if (CB->isCallee(U)) {
2224 IsNonNull |= !NullPointerIsDefined;
2225 return 0;
2226 }
2227
2228 unsigned ArgNo = CB->getArgOperandNo(U);
2229 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2230 // As long as we only use known information there is no need to track
2231 // dependences here.
2232 auto &DerefAA =
2233 A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2234 IsNonNull |= DerefAA.isKnownNonNull();
2235 return DerefAA.getKnownDereferenceableBytes();
2236 }
2237
2238 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2239 if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2240 return 0;
2241
2242 int64_t Offset;
2243 const Value *Base =
2244 getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2245 if (Base && Base == &AssociatedValue) {
2246 int64_t DerefBytes = Loc->Size.getValue() + Offset;
2247 IsNonNull |= !NullPointerIsDefined;
2248 return std::max(int64_t(0), DerefBytes);
2249 }
2250
2251 /// Corner case when an offset is 0.
2252 Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2253 /*AllowNonInbounds*/ true);
2254 if (Base && Base == &AssociatedValue && Offset == 0) {
2255 int64_t DerefBytes = Loc->Size.getValue();
2256 IsNonNull |= !NullPointerIsDefined;
2257 return std::max(int64_t(0), DerefBytes);
2258 }
2259
2260 return 0;
2261 }
2262
2263 struct AANonNullImpl : AANonNull {
AANonNullImpl__anon26093b6c1d11::AANonNullImpl2264 AANonNullImpl(const IRPosition &IRP, Attributor &A)
2265 : AANonNull(IRP, A),
2266 NullIsDefined(NullPointerIsDefined(
2267 getAnchorScope(),
2268 getAssociatedValue().getType()->getPointerAddressSpace())) {}
2269
2270 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1d11::AANonNullImpl2271 void initialize(Attributor &A) override {
2272 Value &V = *getAssociatedValue().stripPointerCasts();
2273 if (!NullIsDefined &&
2274 hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2275 /* IgnoreSubsumingPositions */ false, &A)) {
2276 indicateOptimisticFixpoint();
2277 return;
2278 }
2279
2280 if (isa<ConstantPointerNull>(V)) {
2281 indicatePessimisticFixpoint();
2282 return;
2283 }
2284
2285 AANonNull::initialize(A);
2286
2287 bool CanBeNull, CanBeFreed;
2288 if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2289 CanBeFreed)) {
2290 if (!CanBeNull) {
2291 indicateOptimisticFixpoint();
2292 return;
2293 }
2294 }
2295
2296 if (isa<GlobalValue>(V)) {
2297 indicatePessimisticFixpoint();
2298 return;
2299 }
2300
2301 if (Instruction *CtxI = getCtxI())
2302 followUsesInMBEC(*this, A, getState(), *CtxI);
2303 }
2304
2305 /// See followUsesInMBEC
followUseInMBEC__anon26093b6c1d11::AANonNullImpl2306 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2307 AANonNull::StateType &State) {
2308 bool IsNonNull = false;
2309 bool TrackUse = false;
2310 getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2311 IsNonNull, TrackUse);
2312 State.setKnown(IsNonNull);
2313 return TrackUse;
2314 }
2315
2316 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c1d11::AANonNullImpl2317 const std::string getAsStr() const override {
2318 return getAssumed() ? "nonnull" : "may-null";
2319 }
2320
2321 /// Flag to determine if the underlying value can be null and still allow
2322 /// valid accesses.
2323 const bool NullIsDefined;
2324 };
2325
2326 /// NonNull attribute for a floating value.
2327 struct AANonNullFloating : public AANonNullImpl {
AANonNullFloating__anon26093b6c1d11::AANonNullFloating2328 AANonNullFloating(const IRPosition &IRP, Attributor &A)
2329 : AANonNullImpl(IRP, A) {}
2330
2331 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1d11::AANonNullFloating2332 ChangeStatus updateImpl(Attributor &A) override {
2333 const DataLayout &DL = A.getDataLayout();
2334
2335 bool Stripped;
2336 bool UsedAssumedInformation = false;
2337 SmallVector<AA::ValueAndContext> Values;
2338 if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
2339 AA::AnyScope, UsedAssumedInformation)) {
2340 Values.push_back({getAssociatedValue(), getCtxI()});
2341 Stripped = false;
2342 } else {
2343 Stripped = Values.size() != 1 ||
2344 Values.front().getValue() != &getAssociatedValue();
2345 }
2346
2347 DominatorTree *DT = nullptr;
2348 AssumptionCache *AC = nullptr;
2349 InformationCache &InfoCache = A.getInfoCache();
2350 if (const Function *Fn = getAnchorScope()) {
2351 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2352 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2353 }
2354
2355 AANonNull::StateType T;
2356 auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
2357 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2358 DepClassTy::REQUIRED);
2359 if (!Stripped && this == &AA) {
2360 if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2361 T.indicatePessimisticFixpoint();
2362 } else {
2363 // Use abstract attribute information.
2364 const AANonNull::StateType &NS = AA.getState();
2365 T ^= NS;
2366 }
2367 return T.isValidState();
2368 };
2369
2370 for (const auto &VAC : Values)
2371 if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
2372 return indicatePessimisticFixpoint();
2373
2374 return clampStateAndIndicateChange(getState(), T);
2375 }
2376
2377 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1d11::AANonNullFloating2378 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2379 };
2380
2381 /// NonNull attribute for function return value.
2382 struct AANonNullReturned final
2383 : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
AANonNullReturned__anon26093b6c1d11::AANonNullReturned2384 AANonNullReturned(const IRPosition &IRP, Attributor &A)
2385 : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2386
2387 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c1d11::AANonNullReturned2388 const std::string getAsStr() const override {
2389 return getAssumed() ? "nonnull" : "may-null";
2390 }
2391
2392 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1d11::AANonNullReturned2393 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2394 };
2395
2396 /// NonNull attribute for function argument.
2397 struct AANonNullArgument final
2398 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
AANonNullArgument__anon26093b6c1d11::AANonNullArgument2399 AANonNullArgument(const IRPosition &IRP, Attributor &A)
2400 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2401
2402 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1d11::AANonNullArgument2403 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2404 };
2405
2406 struct AANonNullCallSiteArgument final : AANonNullFloating {
AANonNullCallSiteArgument__anon26093b6c1d11::AANonNullCallSiteArgument2407 AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2408 : AANonNullFloating(IRP, A) {}
2409
2410 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1d11::AANonNullCallSiteArgument2411 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2412 };
2413
2414 /// NonNull attribute for a call site return position.
2415 struct AANonNullCallSiteReturned final
2416 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
AANonNullCallSiteReturned__anon26093b6c1d11::AANonNullCallSiteReturned2417 AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2418 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2419
2420 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1d11::AANonNullCallSiteReturned2421 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2422 };
2423 } // namespace
2424
2425 /// ------------------------ No-Recurse Attributes ----------------------------
2426
2427 namespace {
2428 struct AANoRecurseImpl : public AANoRecurse {
AANoRecurseImpl__anon26093b6c1f11::AANoRecurseImpl2429 AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2430
2431 /// See AbstractAttribute::getAsStr()
getAsStr__anon26093b6c1f11::AANoRecurseImpl2432 const std::string getAsStr() const override {
2433 return getAssumed() ? "norecurse" : "may-recurse";
2434 }
2435 };
2436
2437 struct AANoRecurseFunction final : AANoRecurseImpl {
AANoRecurseFunction__anon26093b6c1f11::AANoRecurseFunction2438 AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2439 : AANoRecurseImpl(IRP, A) {}
2440
2441 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1f11::AANoRecurseFunction2442 ChangeStatus updateImpl(Attributor &A) override {
2443
2444 // If all live call sites are known to be no-recurse, we are as well.
2445 auto CallSitePred = [&](AbstractCallSite ACS) {
2446 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2447 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2448 DepClassTy::NONE);
2449 return NoRecurseAA.isKnownNoRecurse();
2450 };
2451 bool UsedAssumedInformation = false;
2452 if (A.checkForAllCallSites(CallSitePred, *this, true,
2453 UsedAssumedInformation)) {
2454 // If we know all call sites and all are known no-recurse, we are done.
2455 // If all known call sites, which might not be all that exist, are known
2456 // to be no-recurse, we are not done but we can continue to assume
2457 // no-recurse. If one of the call sites we have not visited will become
2458 // live, another update is triggered.
2459 if (!UsedAssumedInformation)
2460 indicateOptimisticFixpoint();
2461 return ChangeStatus::UNCHANGED;
2462 }
2463
2464 const AAFunctionReachability &EdgeReachability =
2465 A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2466 DepClassTy::REQUIRED);
2467 if (EdgeReachability.canReach(A, *getAnchorScope()))
2468 return indicatePessimisticFixpoint();
2469 return ChangeStatus::UNCHANGED;
2470 }
2471
trackStatistics__anon26093b6c1f11::AANoRecurseFunction2472 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2473 };
2474
2475 /// NoRecurse attribute deduction for a call sites.
2476 struct AANoRecurseCallSite final : AANoRecurseImpl {
AANoRecurseCallSite__anon26093b6c1f11::AANoRecurseCallSite2477 AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2478 : AANoRecurseImpl(IRP, A) {}
2479
2480 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c1f11::AANoRecurseCallSite2481 void initialize(Attributor &A) override {
2482 AANoRecurseImpl::initialize(A);
2483 Function *F = getAssociatedFunction();
2484 if (!F || F->isDeclaration())
2485 indicatePessimisticFixpoint();
2486 }
2487
2488 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c1f11::AANoRecurseCallSite2489 ChangeStatus updateImpl(Attributor &A) override {
2490 // TODO: Once we have call site specific value information we can provide
2491 // call site specific liveness information and then it makes
2492 // sense to specialize attributes for call sites arguments instead of
2493 // redirecting requests to the callee argument.
2494 Function *F = getAssociatedFunction();
2495 const IRPosition &FnPos = IRPosition::function(*F);
2496 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2497 return clampStateAndIndicateChange(getState(), FnAA.getState());
2498 }
2499
2500 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c1f11::AANoRecurseCallSite2501 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2502 };
2503 } // namespace
2504
2505 /// -------------------- Undefined-Behavior Attributes ------------------------
2506
2507 namespace {
2508 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
AAUndefinedBehaviorImpl__anon26093b6c2111::AAUndefinedBehaviorImpl2509 AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2510 : AAUndefinedBehavior(IRP, A) {}
2511
2512 /// See AbstractAttribute::updateImpl(...).
2513 // through a pointer (i.e. also branches etc.)
updateImpl__anon26093b6c2111::AAUndefinedBehaviorImpl2514 ChangeStatus updateImpl(Attributor &A) override {
2515 const size_t UBPrevSize = KnownUBInsts.size();
2516 const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2517
2518 auto InspectMemAccessInstForUB = [&](Instruction &I) {
2519 // Lang ref now states volatile store is not UB, let's skip them.
2520 if (I.isVolatile() && I.mayWriteToMemory())
2521 return true;
2522
2523 // Skip instructions that are already saved.
2524 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2525 return true;
2526
2527 // If we reach here, we know we have an instruction
2528 // that accesses memory through a pointer operand,
2529 // for which getPointerOperand() should give it to us.
2530 Value *PtrOp =
2531 const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2532 assert(PtrOp &&
2533 "Expected pointer operand of memory accessing instruction");
2534
2535 // Either we stopped and the appropriate action was taken,
2536 // or we got back a simplified value to continue.
2537 Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2538 if (!SimplifiedPtrOp || !SimplifiedPtrOp.value())
2539 return true;
2540 const Value *PtrOpVal = SimplifiedPtrOp.value();
2541
2542 // A memory access through a pointer is considered UB
2543 // only if the pointer has constant null value.
2544 // TODO: Expand it to not only check constant values.
2545 if (!isa<ConstantPointerNull>(PtrOpVal)) {
2546 AssumedNoUBInsts.insert(&I);
2547 return true;
2548 }
2549 const Type *PtrTy = PtrOpVal->getType();
2550
2551 // Because we only consider instructions inside functions,
2552 // assume that a parent function exists.
2553 const Function *F = I.getFunction();
2554
2555 // A memory access using constant null pointer is only considered UB
2556 // if null pointer is _not_ defined for the target platform.
2557 if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2558 AssumedNoUBInsts.insert(&I);
2559 else
2560 KnownUBInsts.insert(&I);
2561 return true;
2562 };
2563
2564 auto InspectBrInstForUB = [&](Instruction &I) {
2565 // A conditional branch instruction is considered UB if it has `undef`
2566 // condition.
2567
2568 // Skip instructions that are already saved.
2569 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2570 return true;
2571
2572 // We know we have a branch instruction.
2573 auto *BrInst = cast<BranchInst>(&I);
2574
2575 // Unconditional branches are never considered UB.
2576 if (BrInst->isUnconditional())
2577 return true;
2578
2579 // Either we stopped and the appropriate action was taken,
2580 // or we got back a simplified value to continue.
2581 Optional<Value *> SimplifiedCond =
2582 stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2583 if (!SimplifiedCond || !*SimplifiedCond)
2584 return true;
2585 AssumedNoUBInsts.insert(&I);
2586 return true;
2587 };
2588
2589 auto InspectCallSiteForUB = [&](Instruction &I) {
2590 // Check whether a callsite always cause UB or not
2591
2592 // Skip instructions that are already saved.
2593 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2594 return true;
2595
2596 // Check nonnull and noundef argument attribute violation for each
2597 // callsite.
2598 CallBase &CB = cast<CallBase>(I);
2599 Function *Callee = CB.getCalledFunction();
2600 if (!Callee)
2601 return true;
2602 for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2603 // If current argument is known to be simplified to null pointer and the
2604 // corresponding argument position is known to have nonnull attribute,
2605 // the argument is poison. Furthermore, if the argument is poison and
2606 // the position is known to have noundef attriubte, this callsite is
2607 // considered UB.
2608 if (idx >= Callee->arg_size())
2609 break;
2610 Value *ArgVal = CB.getArgOperand(idx);
2611 if (!ArgVal)
2612 continue;
2613 // Here, we handle three cases.
2614 // (1) Not having a value means it is dead. (we can replace the value
2615 // with undef)
2616 // (2) Simplified to undef. The argument violate noundef attriubte.
2617 // (3) Simplified to null pointer where known to be nonnull.
2618 // The argument is a poison value and violate noundef attribute.
2619 IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2620 auto &NoUndefAA =
2621 A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2622 if (!NoUndefAA.isKnownNoUndef())
2623 continue;
2624 bool UsedAssumedInformation = false;
2625 Optional<Value *> SimplifiedVal =
2626 A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
2627 UsedAssumedInformation, AA::Interprocedural);
2628 if (UsedAssumedInformation)
2629 continue;
2630 if (SimplifiedVal && !SimplifiedVal.value())
2631 return true;
2632 if (!SimplifiedVal || isa<UndefValue>(*SimplifiedVal.value())) {
2633 KnownUBInsts.insert(&I);
2634 continue;
2635 }
2636 if (!ArgVal->getType()->isPointerTy() ||
2637 !isa<ConstantPointerNull>(*SimplifiedVal.value()))
2638 continue;
2639 auto &NonNullAA =
2640 A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2641 if (NonNullAA.isKnownNonNull())
2642 KnownUBInsts.insert(&I);
2643 }
2644 return true;
2645 };
2646
2647 auto InspectReturnInstForUB = [&](Instruction &I) {
2648 auto &RI = cast<ReturnInst>(I);
2649 // Either we stopped and the appropriate action was taken,
2650 // or we got back a simplified return value to continue.
2651 Optional<Value *> SimplifiedRetValue =
2652 stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2653 if (!SimplifiedRetValue || !*SimplifiedRetValue)
2654 return true;
2655
2656 // Check if a return instruction always cause UB or not
2657 // Note: It is guaranteed that the returned position of the anchor
2658 // scope has noundef attribute when this is called.
2659 // We also ensure the return position is not "assumed dead"
2660 // because the returned value was then potentially simplified to
2661 // `undef` in AAReturnedValues without removing the `noundef`
2662 // attribute yet.
2663
2664 // When the returned position has noundef attriubte, UB occurs in the
2665 // following cases.
2666 // (1) Returned value is known to be undef.
2667 // (2) The value is known to be a null pointer and the returned
2668 // position has nonnull attribute (because the returned value is
2669 // poison).
2670 if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2671 auto &NonNullAA = A.getAAFor<AANonNull>(
2672 *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2673 if (NonNullAA.isKnownNonNull())
2674 KnownUBInsts.insert(&I);
2675 }
2676
2677 return true;
2678 };
2679
2680 bool UsedAssumedInformation = false;
2681 A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2682 {Instruction::Load, Instruction::Store,
2683 Instruction::AtomicCmpXchg,
2684 Instruction::AtomicRMW},
2685 UsedAssumedInformation,
2686 /* CheckBBLivenessOnly */ true);
2687 A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2688 UsedAssumedInformation,
2689 /* CheckBBLivenessOnly */ true);
2690 A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2691 UsedAssumedInformation);
2692
2693 // If the returned position of the anchor scope has noundef attriubte, check
2694 // all returned instructions.
2695 if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2696 const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2697 if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2698 auto &RetPosNoUndefAA =
2699 A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2700 if (RetPosNoUndefAA.isKnownNoUndef())
2701 A.checkForAllInstructions(InspectReturnInstForUB, *this,
2702 {Instruction::Ret}, UsedAssumedInformation,
2703 /* CheckBBLivenessOnly */ true);
2704 }
2705 }
2706
2707 if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2708 UBPrevSize != KnownUBInsts.size())
2709 return ChangeStatus::CHANGED;
2710 return ChangeStatus::UNCHANGED;
2711 }
2712
isKnownToCauseUB__anon26093b6c2111::AAUndefinedBehaviorImpl2713 bool isKnownToCauseUB(Instruction *I) const override {
2714 return KnownUBInsts.count(I);
2715 }
2716
isAssumedToCauseUB__anon26093b6c2111::AAUndefinedBehaviorImpl2717 bool isAssumedToCauseUB(Instruction *I) const override {
2718 // In simple words, if an instruction is not in the assumed to _not_
2719 // cause UB, then it is assumed UB (that includes those
2720 // in the KnownUBInsts set). The rest is boilerplate
2721 // is to ensure that it is one of the instructions we test
2722 // for UB.
2723
2724 switch (I->getOpcode()) {
2725 case Instruction::Load:
2726 case Instruction::Store:
2727 case Instruction::AtomicCmpXchg:
2728 case Instruction::AtomicRMW:
2729 return !AssumedNoUBInsts.count(I);
2730 case Instruction::Br: {
2731 auto *BrInst = cast<BranchInst>(I);
2732 if (BrInst->isUnconditional())
2733 return false;
2734 return !AssumedNoUBInsts.count(I);
2735 } break;
2736 default:
2737 return false;
2738 }
2739 return false;
2740 }
2741
manifest__anon26093b6c2111::AAUndefinedBehaviorImpl2742 ChangeStatus manifest(Attributor &A) override {
2743 if (KnownUBInsts.empty())
2744 return ChangeStatus::UNCHANGED;
2745 for (Instruction *I : KnownUBInsts)
2746 A.changeToUnreachableAfterManifest(I);
2747 return ChangeStatus::CHANGED;
2748 }
2749
2750 /// See AbstractAttribute::getAsStr()
getAsStr__anon26093b6c2111::AAUndefinedBehaviorImpl2751 const std::string getAsStr() const override {
2752 return getAssumed() ? "undefined-behavior" : "no-ub";
2753 }
2754
2755 /// Note: The correctness of this analysis depends on the fact that the
2756 /// following 2 sets will stop changing after some point.
2757 /// "Change" here means that their size changes.
2758 /// The size of each set is monotonically increasing
2759 /// (we only add items to them) and it is upper bounded by the number of
2760 /// instructions in the processed function (we can never save more
2761 /// elements in either set than this number). Hence, at some point,
2762 /// they will stop increasing.
2763 /// Consequently, at some point, both sets will have stopped
2764 /// changing, effectively making the analysis reach a fixpoint.
2765
2766 /// Note: These 2 sets are disjoint and an instruction can be considered
2767 /// one of 3 things:
2768 /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2769 /// the KnownUBInsts set.
2770 /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2771 /// has a reason to assume it).
2772 /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2773 /// could not find a reason to assume or prove that it can cause UB,
2774 /// hence it assumes it doesn't. We have a set for these instructions
2775 /// so that we don't reprocess them in every update.
2776 /// Note however that instructions in this set may cause UB.
2777
2778 protected:
2779 /// A set of all live instructions _known_ to cause UB.
2780 SmallPtrSet<Instruction *, 8> KnownUBInsts;
2781
2782 private:
2783 /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2784 SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2785
2786 // Should be called on updates in which if we're processing an instruction
2787 // \p I that depends on a value \p V, one of the following has to happen:
2788 // - If the value is assumed, then stop.
2789 // - If the value is known but undef, then consider it UB.
2790 // - Otherwise, do specific processing with the simplified value.
2791 // We return None in the first 2 cases to signify that an appropriate
2792 // action was taken and the caller should stop.
2793 // Otherwise, we return the simplified value that the caller should
2794 // use for specific processing.
stopOnUndefOrAssumed__anon26093b6c2111::AAUndefinedBehaviorImpl2795 Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2796 Instruction *I) {
2797 bool UsedAssumedInformation = false;
2798 Optional<Value *> SimplifiedV =
2799 A.getAssumedSimplified(IRPosition::value(*V), *this,
2800 UsedAssumedInformation, AA::Interprocedural);
2801 if (!UsedAssumedInformation) {
2802 // Don't depend on assumed values.
2803 if (!SimplifiedV) {
2804 // If it is known (which we tested above) but it doesn't have a value,
2805 // then we can assume `undef` and hence the instruction is UB.
2806 KnownUBInsts.insert(I);
2807 return llvm::None;
2808 }
2809 if (!*SimplifiedV)
2810 return nullptr;
2811 V = *SimplifiedV;
2812 }
2813 if (isa<UndefValue>(V)) {
2814 KnownUBInsts.insert(I);
2815 return llvm::None;
2816 }
2817 return V;
2818 }
2819 };
2820
2821 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
AAUndefinedBehaviorFunction__anon26093b6c2111::AAUndefinedBehaviorFunction2822 AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2823 : AAUndefinedBehaviorImpl(IRP, A) {}
2824
2825 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2111::AAUndefinedBehaviorFunction2826 void trackStatistics() const override {
2827 STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2828 "Number of instructions known to have UB");
2829 BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2830 KnownUBInsts.size();
2831 }
2832 };
2833 } // namespace
2834
2835 /// ------------------------ Will-Return Attributes ----------------------------
2836
2837 namespace {
2838 // Helper function that checks whether a function has any cycle which we don't
2839 // know if it is bounded or not.
2840 // Loops with maximum trip count are considered bounded, any other cycle not.
mayContainUnboundedCycle(Function & F,Attributor & A)2841 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2842 ScalarEvolution *SE =
2843 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2844 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2845 // If either SCEV or LoopInfo is not available for the function then we assume
2846 // any cycle to be unbounded cycle.
2847 // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2848 // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2849 if (!SE || !LI) {
2850 for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2851 if (SCCI.hasCycle())
2852 return true;
2853 return false;
2854 }
2855
2856 // If there's irreducible control, the function may contain non-loop cycles.
2857 if (mayContainIrreducibleControl(F, LI))
2858 return true;
2859
2860 // Any loop that does not have a max trip count is considered unbounded cycle.
2861 for (auto *L : LI->getLoopsInPreorder()) {
2862 if (!SE->getSmallConstantMaxTripCount(L))
2863 return true;
2864 }
2865 return false;
2866 }
2867
2868 struct AAWillReturnImpl : public AAWillReturn {
AAWillReturnImpl__anon26093b6c2611::AAWillReturnImpl2869 AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2870 : AAWillReturn(IRP, A) {}
2871
2872 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2611::AAWillReturnImpl2873 void initialize(Attributor &A) override {
2874 AAWillReturn::initialize(A);
2875
2876 if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2877 indicateOptimisticFixpoint();
2878 return;
2879 }
2880 }
2881
2882 /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
isImpliedByMustprogressAndReadonly__anon26093b6c2611::AAWillReturnImpl2883 bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2884 // Check for `mustprogress` in the scope and the associated function which
2885 // might be different if this is a call site.
2886 if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2887 (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2888 return false;
2889
2890 bool IsKnown;
2891 if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2892 return IsKnown || !KnownOnly;
2893 return false;
2894 }
2895
2896 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2611::AAWillReturnImpl2897 ChangeStatus updateImpl(Attributor &A) override {
2898 if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2899 return ChangeStatus::UNCHANGED;
2900
2901 auto CheckForWillReturn = [&](Instruction &I) {
2902 IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2903 const auto &WillReturnAA =
2904 A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2905 if (WillReturnAA.isKnownWillReturn())
2906 return true;
2907 if (!WillReturnAA.isAssumedWillReturn())
2908 return false;
2909 const auto &NoRecurseAA =
2910 A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2911 return NoRecurseAA.isAssumedNoRecurse();
2912 };
2913
2914 bool UsedAssumedInformation = false;
2915 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2916 UsedAssumedInformation))
2917 return indicatePessimisticFixpoint();
2918
2919 return ChangeStatus::UNCHANGED;
2920 }
2921
2922 /// See AbstractAttribute::getAsStr()
getAsStr__anon26093b6c2611::AAWillReturnImpl2923 const std::string getAsStr() const override {
2924 return getAssumed() ? "willreturn" : "may-noreturn";
2925 }
2926 };
2927
2928 struct AAWillReturnFunction final : AAWillReturnImpl {
AAWillReturnFunction__anon26093b6c2611::AAWillReturnFunction2929 AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2930 : AAWillReturnImpl(IRP, A) {}
2931
2932 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2611::AAWillReturnFunction2933 void initialize(Attributor &A) override {
2934 AAWillReturnImpl::initialize(A);
2935
2936 Function *F = getAnchorScope();
2937 if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2938 indicatePessimisticFixpoint();
2939 }
2940
2941 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2611::AAWillReturnFunction2942 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2943 };
2944
2945 /// WillReturn attribute deduction for a call sites.
2946 struct AAWillReturnCallSite final : AAWillReturnImpl {
AAWillReturnCallSite__anon26093b6c2611::AAWillReturnCallSite2947 AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2948 : AAWillReturnImpl(IRP, A) {}
2949
2950 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2611::AAWillReturnCallSite2951 void initialize(Attributor &A) override {
2952 AAWillReturnImpl::initialize(A);
2953 Function *F = getAssociatedFunction();
2954 if (!F || !A.isFunctionIPOAmendable(*F))
2955 indicatePessimisticFixpoint();
2956 }
2957
2958 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2611::AAWillReturnCallSite2959 ChangeStatus updateImpl(Attributor &A) override {
2960 if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2961 return ChangeStatus::UNCHANGED;
2962
2963 // TODO: Once we have call site specific value information we can provide
2964 // call site specific liveness information and then it makes
2965 // sense to specialize attributes for call sites arguments instead of
2966 // redirecting requests to the callee argument.
2967 Function *F = getAssociatedFunction();
2968 const IRPosition &FnPos = IRPosition::function(*F);
2969 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2970 return clampStateAndIndicateChange(getState(), FnAA.getState());
2971 }
2972
2973 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2611::AAWillReturnCallSite2974 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2975 };
2976 } // namespace
2977
2978 /// -------------------AAReachability Attribute--------------------------
2979
2980 namespace {
2981 struct AAReachabilityImpl : AAReachability {
AAReachabilityImpl__anon26093b6c2811::AAReachabilityImpl2982 AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2983 : AAReachability(IRP, A) {}
2984
getAsStr__anon26093b6c2811::AAReachabilityImpl2985 const std::string getAsStr() const override {
2986 // TODO: Return the number of reachable queries.
2987 return "reachable";
2988 }
2989
2990 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2811::AAReachabilityImpl2991 ChangeStatus updateImpl(Attributor &A) override {
2992 return ChangeStatus::UNCHANGED;
2993 }
2994 };
2995
2996 struct AAReachabilityFunction final : public AAReachabilityImpl {
AAReachabilityFunction__anon26093b6c2811::AAReachabilityFunction2997 AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2998 : AAReachabilityImpl(IRP, A) {}
2999
3000 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2811::AAReachabilityFunction3001 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3002 };
3003 } // namespace
3004
3005 /// ------------------------ NoAlias Argument Attribute ------------------------
3006
3007 namespace {
3008 struct AANoAliasImpl : AANoAlias {
AANoAliasImpl__anon26093b6c2911::AANoAliasImpl3009 AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3010 assert(getAssociatedType()->isPointerTy() &&
3011 "Noalias is a pointer attribute");
3012 }
3013
getAsStr__anon26093b6c2911::AANoAliasImpl3014 const std::string getAsStr() const override {
3015 return getAssumed() ? "noalias" : "may-alias";
3016 }
3017 };
3018
3019 /// NoAlias attribute for a floating value.
3020 struct AANoAliasFloating final : AANoAliasImpl {
AANoAliasFloating__anon26093b6c2911::AANoAliasFloating3021 AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3022 : AANoAliasImpl(IRP, A) {}
3023
3024 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2911::AANoAliasFloating3025 void initialize(Attributor &A) override {
3026 AANoAliasImpl::initialize(A);
3027 Value *Val = &getAssociatedValue();
3028 do {
3029 CastInst *CI = dyn_cast<CastInst>(Val);
3030 if (!CI)
3031 break;
3032 Value *Base = CI->getOperand(0);
3033 if (!Base->hasOneUse())
3034 break;
3035 Val = Base;
3036 } while (true);
3037
3038 if (!Val->getType()->isPointerTy()) {
3039 indicatePessimisticFixpoint();
3040 return;
3041 }
3042
3043 if (isa<AllocaInst>(Val))
3044 indicateOptimisticFixpoint();
3045 else if (isa<ConstantPointerNull>(Val) &&
3046 !NullPointerIsDefined(getAnchorScope(),
3047 Val->getType()->getPointerAddressSpace()))
3048 indicateOptimisticFixpoint();
3049 else if (Val != &getAssociatedValue()) {
3050 const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3051 *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3052 if (ValNoAliasAA.isKnownNoAlias())
3053 indicateOptimisticFixpoint();
3054 }
3055 }
3056
3057 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2911::AANoAliasFloating3058 ChangeStatus updateImpl(Attributor &A) override {
3059 // TODO: Implement this.
3060 return indicatePessimisticFixpoint();
3061 }
3062
3063 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2911::AANoAliasFloating3064 void trackStatistics() const override {
3065 STATS_DECLTRACK_FLOATING_ATTR(noalias)
3066 }
3067 };
3068
3069 /// NoAlias attribute for an argument.
3070 struct AANoAliasArgument final
3071 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3072 using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
AANoAliasArgument__anon26093b6c2911::AANoAliasArgument3073 AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3074
3075 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2911::AANoAliasArgument3076 void initialize(Attributor &A) override {
3077 Base::initialize(A);
3078 // See callsite argument attribute and callee argument attribute.
3079 if (hasAttr({Attribute::ByVal}))
3080 indicateOptimisticFixpoint();
3081 }
3082
3083 /// See AbstractAttribute::update(...).
updateImpl__anon26093b6c2911::AANoAliasArgument3084 ChangeStatus updateImpl(Attributor &A) override {
3085 // We have to make sure no-alias on the argument does not break
3086 // synchronization when this is a callback argument, see also [1] below.
3087 // If synchronization cannot be affected, we delegate to the base updateImpl
3088 // function, otherwise we give up for now.
3089
3090 // If the function is no-sync, no-alias cannot break synchronization.
3091 const auto &NoSyncAA =
3092 A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3093 DepClassTy::OPTIONAL);
3094 if (NoSyncAA.isAssumedNoSync())
3095 return Base::updateImpl(A);
3096
3097 // If the argument is read-only, no-alias cannot break synchronization.
3098 bool IsKnown;
3099 if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3100 return Base::updateImpl(A);
3101
3102 // If the argument is never passed through callbacks, no-alias cannot break
3103 // synchronization.
3104 bool UsedAssumedInformation = false;
3105 if (A.checkForAllCallSites(
3106 [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3107 true, UsedAssumedInformation))
3108 return Base::updateImpl(A);
3109
3110 // TODO: add no-alias but make sure it doesn't break synchronization by
3111 // introducing fake uses. See:
3112 // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3113 // International Workshop on OpenMP 2018,
3114 // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3115
3116 return indicatePessimisticFixpoint();
3117 }
3118
3119 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2911::AANoAliasArgument3120 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3121 };
3122
3123 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
AANoAliasCallSiteArgument__anon26093b6c2911::AANoAliasCallSiteArgument3124 AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3125 : AANoAliasImpl(IRP, A) {}
3126
3127 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2911::AANoAliasCallSiteArgument3128 void initialize(Attributor &A) override {
3129 // See callsite argument attribute and callee argument attribute.
3130 const auto &CB = cast<CallBase>(getAnchorValue());
3131 if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3132 indicateOptimisticFixpoint();
3133 Value &Val = getAssociatedValue();
3134 if (isa<ConstantPointerNull>(Val) &&
3135 !NullPointerIsDefined(getAnchorScope(),
3136 Val.getType()->getPointerAddressSpace()))
3137 indicateOptimisticFixpoint();
3138 }
3139
3140 /// Determine if the underlying value may alias with the call site argument
3141 /// \p OtherArgNo of \p ICS (= the underlying call site).
mayAliasWithArgument__anon26093b6c2911::AANoAliasCallSiteArgument3142 bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3143 const AAMemoryBehavior &MemBehaviorAA,
3144 const CallBase &CB, unsigned OtherArgNo) {
3145 // We do not need to worry about aliasing with the underlying IRP.
3146 if (this->getCalleeArgNo() == (int)OtherArgNo)
3147 return false;
3148
3149 // If it is not a pointer or pointer vector we do not alias.
3150 const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3151 if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3152 return false;
3153
3154 auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3155 *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3156
3157 // If the argument is readnone, there is no read-write aliasing.
3158 if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3159 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3160 return false;
3161 }
3162
3163 // If the argument is readonly and the underlying value is readonly, there
3164 // is no read-write aliasing.
3165 bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3166 if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3167 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3168 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3169 return false;
3170 }
3171
3172 // We have to utilize actual alias analysis queries so we need the object.
3173 if (!AAR)
3174 AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3175
3176 // Try to rule it out at the call site.
3177 bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3178 LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3179 "callsite arguments: "
3180 << getAssociatedValue() << " " << *ArgOp << " => "
3181 << (IsAliasing ? "" : "no-") << "alias \n");
3182
3183 return IsAliasing;
3184 }
3185
3186 bool
isKnownNoAliasDueToNoAliasPreservation__anon26093b6c2911::AANoAliasCallSiteArgument3187 isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3188 const AAMemoryBehavior &MemBehaviorAA,
3189 const AANoAlias &NoAliasAA) {
3190 // We can deduce "noalias" if the following conditions hold.
3191 // (i) Associated value is assumed to be noalias in the definition.
3192 // (ii) Associated value is assumed to be no-capture in all the uses
3193 // possibly executed before this callsite.
3194 // (iii) There is no other pointer argument which could alias with the
3195 // value.
3196
3197 bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3198 if (!AssociatedValueIsNoAliasAtDef) {
3199 LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3200 << " is not no-alias at the definition\n");
3201 return false;
3202 }
3203
3204 auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
3205 const auto &DerefAA = A.getAAFor<AADereferenceable>(
3206 *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
3207 return DerefAA.getAssumedDereferenceableBytes();
3208 };
3209
3210 A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3211
3212 const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3213 const Function *ScopeFn = VIRP.getAnchorScope();
3214 auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3215 // Check whether the value is captured in the scope using AANoCapture.
3216 // Look at CFG and check only uses possibly executed before this
3217 // callsite.
3218 auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3219 Instruction *UserI = cast<Instruction>(U.getUser());
3220
3221 // If UserI is the curr instruction and there is a single potential use of
3222 // the value in UserI we allow the use.
3223 // TODO: We should inspect the operands and allow those that cannot alias
3224 // with the value.
3225 if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3226 return true;
3227
3228 if (ScopeFn) {
3229 if (auto *CB = dyn_cast<CallBase>(UserI)) {
3230 if (CB->isArgOperand(&U)) {
3231
3232 unsigned ArgNo = CB->getArgOperandNo(&U);
3233
3234 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3235 *this, IRPosition::callsite_argument(*CB, ArgNo),
3236 DepClassTy::OPTIONAL);
3237
3238 if (NoCaptureAA.isAssumedNoCapture())
3239 return true;
3240 }
3241 }
3242
3243 if (!AA::isPotentiallyReachable(
3244 A, *UserI, *getCtxI(), *this,
3245 [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
3246 return true;
3247 }
3248
3249 // TODO: We should track the capturing uses in AANoCapture but the problem
3250 // is CGSCC runs. For those we would need to "allow" AANoCapture for
3251 // a value in the module slice.
3252 switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
3253 case UseCaptureKind::NO_CAPTURE:
3254 return true;
3255 case UseCaptureKind::MAY_CAPTURE:
3256 LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
3257 << "\n");
3258 return false;
3259 case UseCaptureKind::PASSTHROUGH:
3260 Follow = true;
3261 return true;
3262 }
3263 llvm_unreachable("unknown UseCaptureKind");
3264 };
3265
3266 if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3267 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3268 LLVM_DEBUG(
3269 dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3270 << " cannot be noalias as it is potentially captured\n");
3271 return false;
3272 }
3273 }
3274 A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3275
3276 // Check there is no other pointer argument which could alias with the
3277 // value passed at this call site.
3278 // TODO: AbstractCallSite
3279 const auto &CB = cast<CallBase>(getAnchorValue());
3280 for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3281 if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3282 return false;
3283
3284 return true;
3285 }
3286
3287 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2911::AANoAliasCallSiteArgument3288 ChangeStatus updateImpl(Attributor &A) override {
3289 // If the argument is readnone we are done as there are no accesses via the
3290 // argument.
3291 auto &MemBehaviorAA =
3292 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3293 if (MemBehaviorAA.isAssumedReadNone()) {
3294 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3295 return ChangeStatus::UNCHANGED;
3296 }
3297
3298 const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3299 const auto &NoAliasAA =
3300 A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3301
3302 AAResults *AAR = nullptr;
3303 if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3304 NoAliasAA)) {
3305 LLVM_DEBUG(
3306 dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3307 return ChangeStatus::UNCHANGED;
3308 }
3309
3310 return indicatePessimisticFixpoint();
3311 }
3312
3313 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2911::AANoAliasCallSiteArgument3314 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3315 };
3316
3317 /// NoAlias attribute for function return value.
3318 struct AANoAliasReturned final : AANoAliasImpl {
AANoAliasReturned__anon26093b6c2911::AANoAliasReturned3319 AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3320 : AANoAliasImpl(IRP, A) {}
3321
3322 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2911::AANoAliasReturned3323 void initialize(Attributor &A) override {
3324 AANoAliasImpl::initialize(A);
3325 Function *F = getAssociatedFunction();
3326 if (!F || F->isDeclaration())
3327 indicatePessimisticFixpoint();
3328 }
3329
3330 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2911::AANoAliasReturned3331 ChangeStatus updateImpl(Attributor &A) override {
3332
3333 auto CheckReturnValue = [&](Value &RV) -> bool {
3334 if (Constant *C = dyn_cast<Constant>(&RV))
3335 if (C->isNullValue() || isa<UndefValue>(C))
3336 return true;
3337
3338 /// For now, we can only deduce noalias if we have call sites.
3339 /// FIXME: add more support.
3340 if (!isa<CallBase>(&RV))
3341 return false;
3342
3343 const IRPosition &RVPos = IRPosition::value(RV);
3344 const auto &NoAliasAA =
3345 A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3346 if (!NoAliasAA.isAssumedNoAlias())
3347 return false;
3348
3349 const auto &NoCaptureAA =
3350 A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3351 return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3352 };
3353
3354 if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3355 return indicatePessimisticFixpoint();
3356
3357 return ChangeStatus::UNCHANGED;
3358 }
3359
3360 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2911::AANoAliasReturned3361 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3362 };
3363
3364 /// NoAlias attribute deduction for a call site return value.
3365 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
AANoAliasCallSiteReturned__anon26093b6c2911::AANoAliasCallSiteReturned3366 AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3367 : AANoAliasImpl(IRP, A) {}
3368
3369 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2911::AANoAliasCallSiteReturned3370 void initialize(Attributor &A) override {
3371 AANoAliasImpl::initialize(A);
3372 Function *F = getAssociatedFunction();
3373 if (!F || F->isDeclaration())
3374 indicatePessimisticFixpoint();
3375 }
3376
3377 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2911::AANoAliasCallSiteReturned3378 ChangeStatus updateImpl(Attributor &A) override {
3379 // TODO: Once we have call site specific value information we can provide
3380 // call site specific liveness information and then it makes
3381 // sense to specialize attributes for call sites arguments instead of
3382 // redirecting requests to the callee argument.
3383 Function *F = getAssociatedFunction();
3384 const IRPosition &FnPos = IRPosition::returned(*F);
3385 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3386 return clampStateAndIndicateChange(getState(), FnAA.getState());
3387 }
3388
3389 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2911::AANoAliasCallSiteReturned3390 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3391 };
3392 } // namespace
3393
3394 /// -------------------AAIsDead Function Attribute-----------------------
3395
3396 namespace {
3397 struct AAIsDeadValueImpl : public AAIsDead {
AAIsDeadValueImpl__anon26093b6c2f11::AAIsDeadValueImpl3398 AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3399
3400 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadValueImpl3401 void initialize(Attributor &A) override {
3402 if (auto *Scope = getAnchorScope())
3403 if (!A.isRunOn(*Scope))
3404 indicatePessimisticFixpoint();
3405 }
3406
3407 /// See AAIsDead::isAssumedDead().
isAssumedDead__anon26093b6c2f11::AAIsDeadValueImpl3408 bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3409
3410 /// See AAIsDead::isKnownDead().
isKnownDead__anon26093b6c2f11::AAIsDeadValueImpl3411 bool isKnownDead() const override { return isKnown(IS_DEAD); }
3412
3413 /// See AAIsDead::isAssumedDead(BasicBlock *).
isAssumedDead__anon26093b6c2f11::AAIsDeadValueImpl3414 bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3415
3416 /// See AAIsDead::isKnownDead(BasicBlock *).
isKnownDead__anon26093b6c2f11::AAIsDeadValueImpl3417 bool isKnownDead(const BasicBlock *BB) const override { return false; }
3418
3419 /// See AAIsDead::isAssumedDead(Instruction *I).
isAssumedDead__anon26093b6c2f11::AAIsDeadValueImpl3420 bool isAssumedDead(const Instruction *I) const override {
3421 return I == getCtxI() && isAssumedDead();
3422 }
3423
3424 /// See AAIsDead::isKnownDead(Instruction *I).
isKnownDead__anon26093b6c2f11::AAIsDeadValueImpl3425 bool isKnownDead(const Instruction *I) const override {
3426 return isAssumedDead(I) && isKnownDead();
3427 }
3428
3429 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c2f11::AAIsDeadValueImpl3430 const std::string getAsStr() const override {
3431 return isAssumedDead() ? "assumed-dead" : "assumed-live";
3432 }
3433
3434 /// Check if all uses are assumed dead.
areAllUsesAssumedDead__anon26093b6c2f11::AAIsDeadValueImpl3435 bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3436 // Callers might not check the type, void has no uses.
3437 if (V.getType()->isVoidTy() || V.use_empty())
3438 return true;
3439
3440 // If we replace a value with a constant there are no uses left afterwards.
3441 if (!isa<Constant>(V)) {
3442 if (auto *I = dyn_cast<Instruction>(&V))
3443 if (!A.isRunOn(*I->getFunction()))
3444 return false;
3445 bool UsedAssumedInformation = false;
3446 Optional<Constant *> C =
3447 A.getAssumedConstant(V, *this, UsedAssumedInformation);
3448 if (!C || *C)
3449 return true;
3450 }
3451
3452 auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3453 // Explicitly set the dependence class to required because we want a long
3454 // chain of N dependent instructions to be considered live as soon as one is
3455 // without going through N update cycles. This is not required for
3456 // correctness.
3457 return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3458 DepClassTy::REQUIRED,
3459 /* IgnoreDroppableUses */ false);
3460 }
3461
3462 /// Determine if \p I is assumed to be side-effect free.
isAssumedSideEffectFree__anon26093b6c2f11::AAIsDeadValueImpl3463 bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3464 if (!I || wouldInstructionBeTriviallyDead(I))
3465 return true;
3466
3467 auto *CB = dyn_cast<CallBase>(I);
3468 if (!CB || isa<IntrinsicInst>(CB))
3469 return false;
3470
3471 const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3472 const auto &NoUnwindAA =
3473 A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3474 if (!NoUnwindAA.isAssumedNoUnwind())
3475 return false;
3476 if (!NoUnwindAA.isKnownNoUnwind())
3477 A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3478
3479 bool IsKnown;
3480 return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3481 }
3482 };
3483
3484 struct AAIsDeadFloating : public AAIsDeadValueImpl {
AAIsDeadFloating__anon26093b6c2f11::AAIsDeadFloating3485 AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3486 : AAIsDeadValueImpl(IRP, A) {}
3487
3488 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadFloating3489 void initialize(Attributor &A) override {
3490 AAIsDeadValueImpl::initialize(A);
3491
3492 if (isa<UndefValue>(getAssociatedValue())) {
3493 indicatePessimisticFixpoint();
3494 return;
3495 }
3496
3497 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3498 if (!isAssumedSideEffectFree(A, I)) {
3499 if (!isa_and_nonnull<StoreInst>(I))
3500 indicatePessimisticFixpoint();
3501 else
3502 removeAssumedBits(HAS_NO_EFFECT);
3503 }
3504 }
3505
isDeadStore__anon26093b6c2f11::AAIsDeadFloating3506 bool isDeadStore(Attributor &A, StoreInst &SI) {
3507 // Lang ref now states volatile store is not UB/dead, let's skip them.
3508 if (SI.isVolatile())
3509 return false;
3510
3511 bool UsedAssumedInformation = false;
3512 SmallSetVector<Value *, 4> PotentialCopies;
3513 if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3514 UsedAssumedInformation))
3515 return false;
3516 return llvm::all_of(PotentialCopies, [&](Value *V) {
3517 return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3518 UsedAssumedInformation);
3519 });
3520 }
3521
3522 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c2f11::AAIsDeadFloating3523 const std::string getAsStr() const override {
3524 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3525 if (isa_and_nonnull<StoreInst>(I))
3526 if (isValidState())
3527 return "assumed-dead-store";
3528 return AAIsDeadValueImpl::getAsStr();
3529 }
3530
3531 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2f11::AAIsDeadFloating3532 ChangeStatus updateImpl(Attributor &A) override {
3533 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3534 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3535 if (!isDeadStore(A, *SI))
3536 return indicatePessimisticFixpoint();
3537 } else {
3538 if (!isAssumedSideEffectFree(A, I))
3539 return indicatePessimisticFixpoint();
3540 if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3541 return indicatePessimisticFixpoint();
3542 }
3543 return ChangeStatus::UNCHANGED;
3544 }
3545
isRemovableStore__anon26093b6c2f11::AAIsDeadFloating3546 bool isRemovableStore() const override {
3547 return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
3548 }
3549
3550 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c2f11::AAIsDeadFloating3551 ChangeStatus manifest(Attributor &A) override {
3552 Value &V = getAssociatedValue();
3553 if (auto *I = dyn_cast<Instruction>(&V)) {
3554 // If we get here we basically know the users are all dead. We check if
3555 // isAssumedSideEffectFree returns true here again because it might not be
3556 // the case and only the users are dead but the instruction (=call) is
3557 // still needed.
3558 if (isa<StoreInst>(I) ||
3559 (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3560 A.deleteAfterManifest(*I);
3561 return ChangeStatus::CHANGED;
3562 }
3563 }
3564 return ChangeStatus::UNCHANGED;
3565 }
3566
3567 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadFloating3568 void trackStatistics() const override {
3569 STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3570 }
3571 };
3572
3573 struct AAIsDeadArgument : public AAIsDeadFloating {
AAIsDeadArgument__anon26093b6c2f11::AAIsDeadArgument3574 AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3575 : AAIsDeadFloating(IRP, A) {}
3576
3577 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadArgument3578 void initialize(Attributor &A) override {
3579 AAIsDeadFloating::initialize(A);
3580 if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3581 indicatePessimisticFixpoint();
3582 }
3583
3584 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c2f11::AAIsDeadArgument3585 ChangeStatus manifest(Attributor &A) override {
3586 Argument &Arg = *getAssociatedArgument();
3587 if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3588 if (A.registerFunctionSignatureRewrite(
3589 Arg, /* ReplacementTypes */ {},
3590 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3591 Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3592 return ChangeStatus::CHANGED;
3593 }
3594 return ChangeStatus::UNCHANGED;
3595 }
3596
3597 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadArgument3598 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3599 };
3600
3601 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
AAIsDeadCallSiteArgument__anon26093b6c2f11::AAIsDeadCallSiteArgument3602 AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3603 : AAIsDeadValueImpl(IRP, A) {}
3604
3605 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadCallSiteArgument3606 void initialize(Attributor &A) override {
3607 AAIsDeadValueImpl::initialize(A);
3608 if (isa<UndefValue>(getAssociatedValue()))
3609 indicatePessimisticFixpoint();
3610 }
3611
3612 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2f11::AAIsDeadCallSiteArgument3613 ChangeStatus updateImpl(Attributor &A) override {
3614 // TODO: Once we have call site specific value information we can provide
3615 // call site specific liveness information and then it makes
3616 // sense to specialize attributes for call sites arguments instead of
3617 // redirecting requests to the callee argument.
3618 Argument *Arg = getAssociatedArgument();
3619 if (!Arg)
3620 return indicatePessimisticFixpoint();
3621 const IRPosition &ArgPos = IRPosition::argument(*Arg);
3622 auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3623 return clampStateAndIndicateChange(getState(), ArgAA.getState());
3624 }
3625
3626 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c2f11::AAIsDeadCallSiteArgument3627 ChangeStatus manifest(Attributor &A) override {
3628 CallBase &CB = cast<CallBase>(getAnchorValue());
3629 Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3630 assert(!isa<UndefValue>(U.get()) &&
3631 "Expected undef values to be filtered out!");
3632 UndefValue &UV = *UndefValue::get(U->getType());
3633 if (A.changeUseAfterManifest(U, UV))
3634 return ChangeStatus::CHANGED;
3635 return ChangeStatus::UNCHANGED;
3636 }
3637
3638 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadCallSiteArgument3639 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3640 };
3641
3642 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
AAIsDeadCallSiteReturned__anon26093b6c2f11::AAIsDeadCallSiteReturned3643 AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3644 : AAIsDeadFloating(IRP, A) {}
3645
3646 /// See AAIsDead::isAssumedDead().
isAssumedDead__anon26093b6c2f11::AAIsDeadCallSiteReturned3647 bool isAssumedDead() const override {
3648 return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3649 }
3650
3651 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadCallSiteReturned3652 void initialize(Attributor &A) override {
3653 AAIsDeadFloating::initialize(A);
3654 if (isa<UndefValue>(getAssociatedValue())) {
3655 indicatePessimisticFixpoint();
3656 return;
3657 }
3658
3659 // We track this separately as a secondary state.
3660 IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3661 }
3662
3663 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2f11::AAIsDeadCallSiteReturned3664 ChangeStatus updateImpl(Attributor &A) override {
3665 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3666 if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3667 IsAssumedSideEffectFree = false;
3668 Changed = ChangeStatus::CHANGED;
3669 }
3670 if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3671 return indicatePessimisticFixpoint();
3672 return Changed;
3673 }
3674
3675 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadCallSiteReturned3676 void trackStatistics() const override {
3677 if (IsAssumedSideEffectFree)
3678 STATS_DECLTRACK_CSRET_ATTR(IsDead)
3679 else
3680 STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3681 }
3682
3683 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c2f11::AAIsDeadCallSiteReturned3684 const std::string getAsStr() const override {
3685 return isAssumedDead()
3686 ? "assumed-dead"
3687 : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3688 }
3689
3690 private:
3691 bool IsAssumedSideEffectFree = true;
3692 };
3693
3694 struct AAIsDeadReturned : public AAIsDeadValueImpl {
AAIsDeadReturned__anon26093b6c2f11::AAIsDeadReturned3695 AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3696 : AAIsDeadValueImpl(IRP, A) {}
3697
3698 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2f11::AAIsDeadReturned3699 ChangeStatus updateImpl(Attributor &A) override {
3700
3701 bool UsedAssumedInformation = false;
3702 A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3703 {Instruction::Ret}, UsedAssumedInformation);
3704
3705 auto PredForCallSite = [&](AbstractCallSite ACS) {
3706 if (ACS.isCallbackCall() || !ACS.getInstruction())
3707 return false;
3708 return areAllUsesAssumedDead(A, *ACS.getInstruction());
3709 };
3710
3711 if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3712 UsedAssumedInformation))
3713 return indicatePessimisticFixpoint();
3714
3715 return ChangeStatus::UNCHANGED;
3716 }
3717
3718 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c2f11::AAIsDeadReturned3719 ChangeStatus manifest(Attributor &A) override {
3720 // TODO: Rewrite the signature to return void?
3721 bool AnyChange = false;
3722 UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3723 auto RetInstPred = [&](Instruction &I) {
3724 ReturnInst &RI = cast<ReturnInst>(I);
3725 if (!isa<UndefValue>(RI.getReturnValue()))
3726 AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3727 return true;
3728 };
3729 bool UsedAssumedInformation = false;
3730 A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3731 UsedAssumedInformation);
3732 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3733 }
3734
3735 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadReturned3736 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3737 };
3738
3739 struct AAIsDeadFunction : public AAIsDead {
AAIsDeadFunction__anon26093b6c2f11::AAIsDeadFunction3740 AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3741
3742 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadFunction3743 void initialize(Attributor &A) override {
3744 Function *F = getAnchorScope();
3745 if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
3746 indicatePessimisticFixpoint();
3747 return;
3748 }
3749 ToBeExploredFrom.insert(&F->getEntryBlock().front());
3750 assumeLive(A, F->getEntryBlock());
3751 }
3752
3753 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c2f11::AAIsDeadFunction3754 const std::string getAsStr() const override {
3755 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3756 std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3757 std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3758 std::to_string(KnownDeadEnds.size()) + "]";
3759 }
3760
3761 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c2f11::AAIsDeadFunction3762 ChangeStatus manifest(Attributor &A) override {
3763 assert(getState().isValidState() &&
3764 "Attempted to manifest an invalid state!");
3765
3766 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3767 Function &F = *getAnchorScope();
3768
3769 if (AssumedLiveBlocks.empty()) {
3770 A.deleteAfterManifest(F);
3771 return ChangeStatus::CHANGED;
3772 }
3773
3774 // Flag to determine if we can change an invoke to a call assuming the
3775 // callee is nounwind. This is not possible if the personality of the
3776 // function allows to catch asynchronous exceptions.
3777 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3778
3779 KnownDeadEnds.set_union(ToBeExploredFrom);
3780 for (const Instruction *DeadEndI : KnownDeadEnds) {
3781 auto *CB = dyn_cast<CallBase>(DeadEndI);
3782 if (!CB)
3783 continue;
3784 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3785 *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3786 bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3787 if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3788 continue;
3789
3790 if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3791 A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3792 else
3793 A.changeToUnreachableAfterManifest(
3794 const_cast<Instruction *>(DeadEndI->getNextNode()));
3795 HasChanged = ChangeStatus::CHANGED;
3796 }
3797
3798 STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3799 for (BasicBlock &BB : F)
3800 if (!AssumedLiveBlocks.count(&BB)) {
3801 A.deleteAfterManifest(BB);
3802 ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3803 HasChanged = ChangeStatus::CHANGED;
3804 }
3805
3806 return HasChanged;
3807 }
3808
3809 /// See AbstractAttribute::updateImpl(...).
3810 ChangeStatus updateImpl(Attributor &A) override;
3811
isEdgeDead__anon26093b6c2f11::AAIsDeadFunction3812 bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3813 assert(From->getParent() == getAnchorScope() &&
3814 To->getParent() == getAnchorScope() &&
3815 "Used AAIsDead of the wrong function");
3816 return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3817 }
3818
3819 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadFunction3820 void trackStatistics() const override {}
3821
3822 /// Returns true if the function is assumed dead.
isAssumedDead__anon26093b6c2f11::AAIsDeadFunction3823 bool isAssumedDead() const override { return false; }
3824
3825 /// See AAIsDead::isKnownDead().
isKnownDead__anon26093b6c2f11::AAIsDeadFunction3826 bool isKnownDead() const override { return false; }
3827
3828 /// See AAIsDead::isAssumedDead(BasicBlock *).
isAssumedDead__anon26093b6c2f11::AAIsDeadFunction3829 bool isAssumedDead(const BasicBlock *BB) const override {
3830 assert(BB->getParent() == getAnchorScope() &&
3831 "BB must be in the same anchor scope function.");
3832
3833 if (!getAssumed())
3834 return false;
3835 return !AssumedLiveBlocks.count(BB);
3836 }
3837
3838 /// See AAIsDead::isKnownDead(BasicBlock *).
isKnownDead__anon26093b6c2f11::AAIsDeadFunction3839 bool isKnownDead(const BasicBlock *BB) const override {
3840 return getKnown() && isAssumedDead(BB);
3841 }
3842
3843 /// See AAIsDead::isAssumed(Instruction *I).
isAssumedDead__anon26093b6c2f11::AAIsDeadFunction3844 bool isAssumedDead(const Instruction *I) const override {
3845 assert(I->getParent()->getParent() == getAnchorScope() &&
3846 "Instruction must be in the same anchor scope function.");
3847
3848 if (!getAssumed())
3849 return false;
3850
3851 // If it is not in AssumedLiveBlocks then it for sure dead.
3852 // Otherwise, it can still be after noreturn call in a live block.
3853 if (!AssumedLiveBlocks.count(I->getParent()))
3854 return true;
3855
3856 // If it is not after a liveness barrier it is live.
3857 const Instruction *PrevI = I->getPrevNode();
3858 while (PrevI) {
3859 if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3860 return true;
3861 PrevI = PrevI->getPrevNode();
3862 }
3863 return false;
3864 }
3865
3866 /// See AAIsDead::isKnownDead(Instruction *I).
isKnownDead__anon26093b6c2f11::AAIsDeadFunction3867 bool isKnownDead(const Instruction *I) const override {
3868 return getKnown() && isAssumedDead(I);
3869 }
3870
3871 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3872 /// that internal function called from \p BB should now be looked at.
assumeLive__anon26093b6c2f11::AAIsDeadFunction3873 bool assumeLive(Attributor &A, const BasicBlock &BB) {
3874 if (!AssumedLiveBlocks.insert(&BB).second)
3875 return false;
3876
3877 // We assume that all of BB is (probably) live now and if there are calls to
3878 // internal functions we will assume that those are now live as well. This
3879 // is a performance optimization for blocks with calls to a lot of internal
3880 // functions. It can however cause dead functions to be treated as live.
3881 for (const Instruction &I : BB)
3882 if (const auto *CB = dyn_cast<CallBase>(&I))
3883 if (const Function *F = CB->getCalledFunction())
3884 if (F->hasLocalLinkage())
3885 A.markLiveInternalFunction(*F);
3886 return true;
3887 }
3888
3889 /// Collection of instructions that need to be explored again, e.g., we
3890 /// did assume they do not transfer control to (one of their) successors.
3891 SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3892
3893 /// Collection of instructions that are known to not transfer control.
3894 SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3895
3896 /// Collection of all assumed live edges
3897 DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3898
3899 /// Collection of all assumed live BasicBlocks.
3900 DenseSet<const BasicBlock *> AssumedLiveBlocks;
3901 };
3902
3903 static bool
identifyAliveSuccessors(Attributor & A,const CallBase & CB,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3904 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3905 AbstractAttribute &AA,
3906 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3907 const IRPosition &IPos = IRPosition::callsite_function(CB);
3908
3909 const auto &NoReturnAA =
3910 A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3911 if (NoReturnAA.isAssumedNoReturn())
3912 return !NoReturnAA.isKnownNoReturn();
3913 if (CB.isTerminator())
3914 AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3915 else
3916 AliveSuccessors.push_back(CB.getNextNode());
3917 return false;
3918 }
3919
3920 static bool
identifyAliveSuccessors(Attributor & A,const InvokeInst & II,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3921 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3922 AbstractAttribute &AA,
3923 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3924 bool UsedAssumedInformation =
3925 identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3926
3927 // First, determine if we can change an invoke to a call assuming the
3928 // callee is nounwind. This is not possible if the personality of the
3929 // function allows to catch asynchronous exceptions.
3930 if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3931 AliveSuccessors.push_back(&II.getUnwindDest()->front());
3932 } else {
3933 const IRPosition &IPos = IRPosition::callsite_function(II);
3934 const auto &AANoUnw =
3935 A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3936 if (AANoUnw.isAssumedNoUnwind()) {
3937 UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3938 } else {
3939 AliveSuccessors.push_back(&II.getUnwindDest()->front());
3940 }
3941 }
3942 return UsedAssumedInformation;
3943 }
3944
3945 static bool
identifyAliveSuccessors(Attributor & A,const BranchInst & BI,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3946 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3947 AbstractAttribute &AA,
3948 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3949 bool UsedAssumedInformation = false;
3950 if (BI.getNumSuccessors() == 1) {
3951 AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3952 } else {
3953 Optional<Constant *> C =
3954 A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3955 if (!C || isa_and_nonnull<UndefValue>(*C)) {
3956 // No value yet, assume both edges are dead.
3957 } else if (isa_and_nonnull<ConstantInt>(*C)) {
3958 const BasicBlock *SuccBB =
3959 BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3960 AliveSuccessors.push_back(&SuccBB->front());
3961 } else {
3962 AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3963 AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3964 UsedAssumedInformation = false;
3965 }
3966 }
3967 return UsedAssumedInformation;
3968 }
3969
3970 static bool
identifyAliveSuccessors(Attributor & A,const SwitchInst & SI,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3971 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3972 AbstractAttribute &AA,
3973 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3974 bool UsedAssumedInformation = false;
3975 Optional<Constant *> C =
3976 A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3977 if (!C || isa_and_nonnull<UndefValue>(C.value())) {
3978 // No value yet, assume all edges are dead.
3979 } else if (isa_and_nonnull<ConstantInt>(C.value())) {
3980 for (auto &CaseIt : SI.cases()) {
3981 if (CaseIt.getCaseValue() == C.value()) {
3982 AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3983 return UsedAssumedInformation;
3984 }
3985 }
3986 AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3987 return UsedAssumedInformation;
3988 } else {
3989 for (const BasicBlock *SuccBB : successors(SI.getParent()))
3990 AliveSuccessors.push_back(&SuccBB->front());
3991 }
3992 return UsedAssumedInformation;
3993 }
3994
updateImpl(Attributor & A)3995 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3996 ChangeStatus Change = ChangeStatus::UNCHANGED;
3997
3998 LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3999 << getAnchorScope()->size() << "] BBs and "
4000 << ToBeExploredFrom.size() << " exploration points and "
4001 << KnownDeadEnds.size() << " known dead ends\n");
4002
4003 // Copy and clear the list of instructions we need to explore from. It is
4004 // refilled with instructions the next update has to look at.
4005 SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4006 ToBeExploredFrom.end());
4007 decltype(ToBeExploredFrom) NewToBeExploredFrom;
4008
4009 SmallVector<const Instruction *, 8> AliveSuccessors;
4010 while (!Worklist.empty()) {
4011 const Instruction *I = Worklist.pop_back_val();
4012 LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4013
4014 // Fast forward for uninteresting instructions. We could look for UB here
4015 // though.
4016 while (!I->isTerminator() && !isa<CallBase>(I))
4017 I = I->getNextNode();
4018
4019 AliveSuccessors.clear();
4020
4021 bool UsedAssumedInformation = false;
4022 switch (I->getOpcode()) {
4023 // TODO: look for (assumed) UB to backwards propagate "deadness".
4024 default:
4025 assert(I->isTerminator() &&
4026 "Expected non-terminators to be handled already!");
4027 for (const BasicBlock *SuccBB : successors(I->getParent()))
4028 AliveSuccessors.push_back(&SuccBB->front());
4029 break;
4030 case Instruction::Call:
4031 UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4032 *this, AliveSuccessors);
4033 break;
4034 case Instruction::Invoke:
4035 UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4036 *this, AliveSuccessors);
4037 break;
4038 case Instruction::Br:
4039 UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4040 *this, AliveSuccessors);
4041 break;
4042 case Instruction::Switch:
4043 UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4044 *this, AliveSuccessors);
4045 break;
4046 }
4047
4048 if (UsedAssumedInformation) {
4049 NewToBeExploredFrom.insert(I);
4050 } else if (AliveSuccessors.empty() ||
4051 (I->isTerminator() &&
4052 AliveSuccessors.size() < I->getNumSuccessors())) {
4053 if (KnownDeadEnds.insert(I))
4054 Change = ChangeStatus::CHANGED;
4055 }
4056
4057 LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4058 << AliveSuccessors.size() << " UsedAssumedInformation: "
4059 << UsedAssumedInformation << "\n");
4060
4061 for (const Instruction *AliveSuccessor : AliveSuccessors) {
4062 if (!I->isTerminator()) {
4063 assert(AliveSuccessors.size() == 1 &&
4064 "Non-terminator expected to have a single successor!");
4065 Worklist.push_back(AliveSuccessor);
4066 } else {
4067 // record the assumed live edge
4068 auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4069 if (AssumedLiveEdges.insert(Edge).second)
4070 Change = ChangeStatus::CHANGED;
4071 if (assumeLive(A, *AliveSuccessor->getParent()))
4072 Worklist.push_back(AliveSuccessor);
4073 }
4074 }
4075 }
4076
4077 // Check if the content of ToBeExploredFrom changed, ignore the order.
4078 if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4079 llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4080 return !ToBeExploredFrom.count(I);
4081 })) {
4082 Change = ChangeStatus::CHANGED;
4083 ToBeExploredFrom = std::move(NewToBeExploredFrom);
4084 }
4085
4086 // If we know everything is live there is no need to query for liveness.
4087 // Instead, indicating a pessimistic fixpoint will cause the state to be
4088 // "invalid" and all queries to be answered conservatively without lookups.
4089 // To be in this state we have to (1) finished the exploration and (3) not
4090 // discovered any non-trivial dead end and (2) not ruled unreachable code
4091 // dead.
4092 if (ToBeExploredFrom.empty() &&
4093 getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4094 llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4095 return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4096 }))
4097 return indicatePessimisticFixpoint();
4098 return Change;
4099 }
4100
4101 /// Liveness information for a call sites.
4102 struct AAIsDeadCallSite final : AAIsDeadFunction {
AAIsDeadCallSite__anon26093b6c2f11::AAIsDeadCallSite4103 AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4104 : AAIsDeadFunction(IRP, A) {}
4105
4106 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c2f11::AAIsDeadCallSite4107 void initialize(Attributor &A) override {
4108 // TODO: Once we have call site specific value information we can provide
4109 // call site specific liveness information and then it makes
4110 // sense to specialize attributes for call sites instead of
4111 // redirecting requests to the callee.
4112 llvm_unreachable("Abstract attributes for liveness are not "
4113 "supported for call sites yet!");
4114 }
4115
4116 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c2f11::AAIsDeadCallSite4117 ChangeStatus updateImpl(Attributor &A) override {
4118 return indicatePessimisticFixpoint();
4119 }
4120
4121 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c2f11::AAIsDeadCallSite4122 void trackStatistics() const override {}
4123 };
4124 } // namespace
4125
4126 /// -------------------- Dereferenceable Argument Attribute --------------------
4127
4128 namespace {
4129 struct AADereferenceableImpl : AADereferenceable {
AADereferenceableImpl__anon26093b6c3811::AADereferenceableImpl4130 AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4131 : AADereferenceable(IRP, A) {}
4132 using StateType = DerefState;
4133
4134 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3811::AADereferenceableImpl4135 void initialize(Attributor &A) override {
4136 Value &V = *getAssociatedValue().stripPointerCasts();
4137 SmallVector<Attribute, 4> Attrs;
4138 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4139 Attrs, /* IgnoreSubsumingPositions */ false, &A);
4140 for (const Attribute &Attr : Attrs)
4141 takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4142
4143 const IRPosition &IRP = this->getIRPosition();
4144 NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4145
4146 bool CanBeNull, CanBeFreed;
4147 takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
4148 A.getDataLayout(), CanBeNull, CanBeFreed));
4149
4150 bool IsFnInterface = IRP.isFnInterfaceKind();
4151 Function *FnScope = IRP.getAnchorScope();
4152 if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4153 indicatePessimisticFixpoint();
4154 return;
4155 }
4156
4157 if (Instruction *CtxI = getCtxI())
4158 followUsesInMBEC(*this, A, getState(), *CtxI);
4159 }
4160
4161 /// See AbstractAttribute::getState()
4162 /// {
getState__anon26093b6c3811::AADereferenceableImpl4163 StateType &getState() override { return *this; }
getState__anon26093b6c3811::AADereferenceableImpl4164 const StateType &getState() const override { return *this; }
4165 /// }
4166
4167 /// Helper function for collecting accessed bytes in must-be-executed-context
addAccessedBytesForUse__anon26093b6c3811::AADereferenceableImpl4168 void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4169 DerefState &State) {
4170 const Value *UseV = U->get();
4171 if (!UseV->getType()->isPointerTy())
4172 return;
4173
4174 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4175 if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4176 return;
4177
4178 int64_t Offset;
4179 const Value *Base = GetPointerBaseWithConstantOffset(
4180 Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4181 if (Base && Base == &getAssociatedValue())
4182 State.addAccessedBytes(Offset, Loc->Size.getValue());
4183 }
4184
4185 /// See followUsesInMBEC
followUseInMBEC__anon26093b6c3811::AADereferenceableImpl4186 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4187 AADereferenceable::StateType &State) {
4188 bool IsNonNull = false;
4189 bool TrackUse = false;
4190 int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4191 A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4192 LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4193 << " for instruction " << *I << "\n");
4194
4195 addAccessedBytesForUse(A, U, I, State);
4196 State.takeKnownDerefBytesMaximum(DerefBytes);
4197 return TrackUse;
4198 }
4199
4200 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c3811::AADereferenceableImpl4201 ChangeStatus manifest(Attributor &A) override {
4202 ChangeStatus Change = AADereferenceable::manifest(A);
4203 if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4204 removeAttrs({Attribute::DereferenceableOrNull});
4205 return ChangeStatus::CHANGED;
4206 }
4207 return Change;
4208 }
4209
getDeducedAttributes__anon26093b6c3811::AADereferenceableImpl4210 void getDeducedAttributes(LLVMContext &Ctx,
4211 SmallVectorImpl<Attribute> &Attrs) const override {
4212 // TODO: Add *_globally support
4213 if (isAssumedNonNull())
4214 Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4215 Ctx, getAssumedDereferenceableBytes()));
4216 else
4217 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4218 Ctx, getAssumedDereferenceableBytes()));
4219 }
4220
4221 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c3811::AADereferenceableImpl4222 const std::string getAsStr() const override {
4223 if (!getAssumedDereferenceableBytes())
4224 return "unknown-dereferenceable";
4225 return std::string("dereferenceable") +
4226 (isAssumedNonNull() ? "" : "_or_null") +
4227 (isAssumedGlobal() ? "_globally" : "") + "<" +
4228 std::to_string(getKnownDereferenceableBytes()) + "-" +
4229 std::to_string(getAssumedDereferenceableBytes()) + ">";
4230 }
4231 };
4232
4233 /// Dereferenceable attribute for a floating value.
4234 struct AADereferenceableFloating : AADereferenceableImpl {
AADereferenceableFloating__anon26093b6c3811::AADereferenceableFloating4235 AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4236 : AADereferenceableImpl(IRP, A) {}
4237
4238 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3811::AADereferenceableFloating4239 ChangeStatus updateImpl(Attributor &A) override {
4240
4241 bool Stripped;
4242 bool UsedAssumedInformation = false;
4243 SmallVector<AA::ValueAndContext> Values;
4244 if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4245 AA::AnyScope, UsedAssumedInformation)) {
4246 Values.push_back({getAssociatedValue(), getCtxI()});
4247 Stripped = false;
4248 } else {
4249 Stripped = Values.size() != 1 ||
4250 Values.front().getValue() != &getAssociatedValue();
4251 }
4252
4253 const DataLayout &DL = A.getDataLayout();
4254 DerefState T;
4255
4256 auto VisitValueCB = [&](const Value &V) -> bool {
4257 unsigned IdxWidth =
4258 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4259 APInt Offset(IdxWidth, 0);
4260 const Value *Base = stripAndAccumulateOffsets(
4261 A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4262 /* AllowNonInbounds */ true);
4263
4264 const auto &AA = A.getAAFor<AADereferenceable>(
4265 *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4266 int64_t DerefBytes = 0;
4267 if (!Stripped && this == &AA) {
4268 // Use IR information if we did not strip anything.
4269 // TODO: track globally.
4270 bool CanBeNull, CanBeFreed;
4271 DerefBytes =
4272 Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4273 T.GlobalState.indicatePessimisticFixpoint();
4274 } else {
4275 const DerefState &DS = AA.getState();
4276 DerefBytes = DS.DerefBytesState.getAssumed();
4277 T.GlobalState &= DS.GlobalState;
4278 }
4279
4280 // For now we do not try to "increase" dereferenceability due to negative
4281 // indices as we first have to come up with code to deal with loops and
4282 // for overflows of the dereferenceable bytes.
4283 int64_t OffsetSExt = Offset.getSExtValue();
4284 if (OffsetSExt < 0)
4285 OffsetSExt = 0;
4286
4287 T.takeAssumedDerefBytesMinimum(
4288 std::max(int64_t(0), DerefBytes - OffsetSExt));
4289
4290 if (this == &AA) {
4291 if (!Stripped) {
4292 // If nothing was stripped IR information is all we got.
4293 T.takeKnownDerefBytesMaximum(
4294 std::max(int64_t(0), DerefBytes - OffsetSExt));
4295 T.indicatePessimisticFixpoint();
4296 } else if (OffsetSExt > 0) {
4297 // If something was stripped but there is circular reasoning we look
4298 // for the offset. If it is positive we basically decrease the
4299 // dereferenceable bytes in a circluar loop now, which will simply
4300 // drive them down to the known value in a very slow way which we
4301 // can accelerate.
4302 T.indicatePessimisticFixpoint();
4303 }
4304 }
4305
4306 return T.isValidState();
4307 };
4308
4309 for (const auto &VAC : Values)
4310 if (!VisitValueCB(*VAC.getValue()))
4311 return indicatePessimisticFixpoint();
4312
4313 return clampStateAndIndicateChange(getState(), T);
4314 }
4315
4316 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3811::AADereferenceableFloating4317 void trackStatistics() const override {
4318 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4319 }
4320 };
4321
4322 /// Dereferenceable attribute for a return value.
4323 struct AADereferenceableReturned final
4324 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
AADereferenceableReturned__anon26093b6c3811::AADereferenceableReturned4325 AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4326 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4327 IRP, A) {}
4328
4329 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3811::AADereferenceableReturned4330 void trackStatistics() const override {
4331 STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4332 }
4333 };
4334
4335 /// Dereferenceable attribute for an argument
4336 struct AADereferenceableArgument final
4337 : AAArgumentFromCallSiteArguments<AADereferenceable,
4338 AADereferenceableImpl> {
4339 using Base =
4340 AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
AADereferenceableArgument__anon26093b6c3811::AADereferenceableArgument4341 AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4342 : Base(IRP, A) {}
4343
4344 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3811::AADereferenceableArgument4345 void trackStatistics() const override {
4346 STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4347 }
4348 };
4349
4350 /// Dereferenceable attribute for a call site argument.
4351 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
AADereferenceableCallSiteArgument__anon26093b6c3811::AADereferenceableCallSiteArgument4352 AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4353 : AADereferenceableFloating(IRP, A) {}
4354
4355 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3811::AADereferenceableCallSiteArgument4356 void trackStatistics() const override {
4357 STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4358 }
4359 };
4360
4361 /// Dereferenceable attribute deduction for a call site return value.
4362 struct AADereferenceableCallSiteReturned final
4363 : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4364 using Base =
4365 AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
AADereferenceableCallSiteReturned__anon26093b6c3811::AADereferenceableCallSiteReturned4366 AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4367 : Base(IRP, A) {}
4368
4369 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3811::AADereferenceableCallSiteReturned4370 void trackStatistics() const override {
4371 STATS_DECLTRACK_CS_ATTR(dereferenceable);
4372 }
4373 };
4374 } // namespace
4375
4376 // ------------------------ Align Argument Attribute ------------------------
4377
4378 namespace {
getKnownAlignForUse(Attributor & A,AAAlign & QueryingAA,Value & AssociatedValue,const Use * U,const Instruction * I,bool & TrackUse)4379 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4380 Value &AssociatedValue, const Use *U,
4381 const Instruction *I, bool &TrackUse) {
4382 // We need to follow common pointer manipulation uses to the accesses they
4383 // feed into.
4384 if (isa<CastInst>(I)) {
4385 // Follow all but ptr2int casts.
4386 TrackUse = !isa<PtrToIntInst>(I);
4387 return 0;
4388 }
4389 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4390 if (GEP->hasAllConstantIndices())
4391 TrackUse = true;
4392 return 0;
4393 }
4394
4395 MaybeAlign MA;
4396 if (const auto *CB = dyn_cast<CallBase>(I)) {
4397 if (CB->isBundleOperand(U) || CB->isCallee(U))
4398 return 0;
4399
4400 unsigned ArgNo = CB->getArgOperandNo(U);
4401 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4402 // As long as we only use known information there is no need to track
4403 // dependences here.
4404 auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4405 MA = MaybeAlign(AlignAA.getKnownAlign());
4406 }
4407
4408 const DataLayout &DL = A.getDataLayout();
4409 const Value *UseV = U->get();
4410 if (auto *SI = dyn_cast<StoreInst>(I)) {
4411 if (SI->getPointerOperand() == UseV)
4412 MA = SI->getAlign();
4413 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4414 if (LI->getPointerOperand() == UseV)
4415 MA = LI->getAlign();
4416 }
4417
4418 if (!MA || *MA <= QueryingAA.getKnownAlign())
4419 return 0;
4420
4421 unsigned Alignment = MA->value();
4422 int64_t Offset;
4423
4424 if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4425 if (Base == &AssociatedValue) {
4426 // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4427 // So we can say that the maximum power of two which is a divisor of
4428 // gcd(Offset, Alignment) is an alignment.
4429
4430 uint32_t gcd =
4431 greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4432 Alignment = llvm::PowerOf2Floor(gcd);
4433 }
4434 }
4435
4436 return Alignment;
4437 }
4438
4439 struct AAAlignImpl : AAAlign {
AAAlignImpl__anon26093b6c3a11::AAAlignImpl4440 AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4441
4442 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3a11::AAAlignImpl4443 void initialize(Attributor &A) override {
4444 SmallVector<Attribute, 4> Attrs;
4445 getAttrs({Attribute::Alignment}, Attrs);
4446 for (const Attribute &Attr : Attrs)
4447 takeKnownMaximum(Attr.getValueAsInt());
4448
4449 Value &V = *getAssociatedValue().stripPointerCasts();
4450 takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4451
4452 if (getIRPosition().isFnInterfaceKind() &&
4453 (!getAnchorScope() ||
4454 !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4455 indicatePessimisticFixpoint();
4456 return;
4457 }
4458
4459 if (Instruction *CtxI = getCtxI())
4460 followUsesInMBEC(*this, A, getState(), *CtxI);
4461 }
4462
4463 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c3a11::AAAlignImpl4464 ChangeStatus manifest(Attributor &A) override {
4465 ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4466
4467 // Check for users that allow alignment annotations.
4468 Value &AssociatedValue = getAssociatedValue();
4469 for (const Use &U : AssociatedValue.uses()) {
4470 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4471 if (SI->getPointerOperand() == &AssociatedValue)
4472 if (SI->getAlign() < getAssumedAlign()) {
4473 STATS_DECLTRACK(AAAlign, Store,
4474 "Number of times alignment added to a store");
4475 SI->setAlignment(getAssumedAlign());
4476 LoadStoreChanged = ChangeStatus::CHANGED;
4477 }
4478 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4479 if (LI->getPointerOperand() == &AssociatedValue)
4480 if (LI->getAlign() < getAssumedAlign()) {
4481 LI->setAlignment(getAssumedAlign());
4482 STATS_DECLTRACK(AAAlign, Load,
4483 "Number of times alignment added to a load");
4484 LoadStoreChanged = ChangeStatus::CHANGED;
4485 }
4486 }
4487 }
4488
4489 ChangeStatus Changed = AAAlign::manifest(A);
4490
4491 Align InheritAlign =
4492 getAssociatedValue().getPointerAlignment(A.getDataLayout());
4493 if (InheritAlign >= getAssumedAlign())
4494 return LoadStoreChanged;
4495 return Changed | LoadStoreChanged;
4496 }
4497
4498 // TODO: Provide a helper to determine the implied ABI alignment and check in
4499 // the existing manifest method and a new one for AAAlignImpl that value
4500 // to avoid making the alignment explicit if it did not improve.
4501
4502 /// See AbstractAttribute::getDeducedAttributes
getDeducedAttributes__anon26093b6c3a11::AAAlignImpl4503 void getDeducedAttributes(LLVMContext &Ctx,
4504 SmallVectorImpl<Attribute> &Attrs) const override {
4505 if (getAssumedAlign() > 1)
4506 Attrs.emplace_back(
4507 Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4508 }
4509
4510 /// See followUsesInMBEC
followUseInMBEC__anon26093b6c3a11::AAAlignImpl4511 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4512 AAAlign::StateType &State) {
4513 bool TrackUse = false;
4514
4515 unsigned int KnownAlign =
4516 getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4517 State.takeKnownMaximum(KnownAlign);
4518
4519 return TrackUse;
4520 }
4521
4522 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c3a11::AAAlignImpl4523 const std::string getAsStr() const override {
4524 return "align<" + std::to_string(getKnownAlign().value()) + "-" +
4525 std::to_string(getAssumedAlign().value()) + ">";
4526 }
4527 };
4528
4529 /// Align attribute for a floating value.
4530 struct AAAlignFloating : AAAlignImpl {
AAAlignFloating__anon26093b6c3a11::AAAlignFloating4531 AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4532
4533 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3a11::AAAlignFloating4534 ChangeStatus updateImpl(Attributor &A) override {
4535 const DataLayout &DL = A.getDataLayout();
4536
4537 bool Stripped;
4538 bool UsedAssumedInformation = false;
4539 SmallVector<AA::ValueAndContext> Values;
4540 if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4541 AA::AnyScope, UsedAssumedInformation)) {
4542 Values.push_back({getAssociatedValue(), getCtxI()});
4543 Stripped = false;
4544 } else {
4545 Stripped = Values.size() != 1 ||
4546 Values.front().getValue() != &getAssociatedValue();
4547 }
4548
4549 StateType T;
4550 auto VisitValueCB = [&](Value &V) -> bool {
4551 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4552 return true;
4553 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4554 DepClassTy::REQUIRED);
4555 if (!Stripped && this == &AA) {
4556 int64_t Offset;
4557 unsigned Alignment = 1;
4558 if (const Value *Base =
4559 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4560 // TODO: Use AAAlign for the base too.
4561 Align PA = Base->getPointerAlignment(DL);
4562 // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4563 // So we can say that the maximum power of two which is a divisor of
4564 // gcd(Offset, Alignment) is an alignment.
4565
4566 uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4567 uint32_t(PA.value()));
4568 Alignment = llvm::PowerOf2Floor(gcd);
4569 } else {
4570 Alignment = V.getPointerAlignment(DL).value();
4571 }
4572 // Use only IR information if we did not strip anything.
4573 T.takeKnownMaximum(Alignment);
4574 T.indicatePessimisticFixpoint();
4575 } else {
4576 // Use abstract attribute information.
4577 const AAAlign::StateType &DS = AA.getState();
4578 T ^= DS;
4579 }
4580 return T.isValidState();
4581 };
4582
4583 for (const auto &VAC : Values) {
4584 if (!VisitValueCB(*VAC.getValue()))
4585 return indicatePessimisticFixpoint();
4586 }
4587
4588 // TODO: If we know we visited all incoming values, thus no are assumed
4589 // dead, we can take the known information from the state T.
4590 return clampStateAndIndicateChange(getState(), T);
4591 }
4592
4593 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3a11::AAAlignFloating4594 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4595 };
4596
4597 /// Align attribute for function return value.
4598 struct AAAlignReturned final
4599 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4600 using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
AAAlignReturned__anon26093b6c3a11::AAAlignReturned4601 AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4602
4603 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3a11::AAAlignReturned4604 void initialize(Attributor &A) override {
4605 Base::initialize(A);
4606 Function *F = getAssociatedFunction();
4607 if (!F || F->isDeclaration())
4608 indicatePessimisticFixpoint();
4609 }
4610
4611 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3a11::AAAlignReturned4612 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4613 };
4614
4615 /// Align attribute for function argument.
4616 struct AAAlignArgument final
4617 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4618 using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
AAAlignArgument__anon26093b6c3a11::AAAlignArgument4619 AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4620
4621 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c3a11::AAAlignArgument4622 ChangeStatus manifest(Attributor &A) override {
4623 // If the associated argument is involved in a must-tail call we give up
4624 // because we would need to keep the argument alignments of caller and
4625 // callee in-sync. Just does not seem worth the trouble right now.
4626 if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4627 return ChangeStatus::UNCHANGED;
4628 return Base::manifest(A);
4629 }
4630
4631 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3a11::AAAlignArgument4632 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4633 };
4634
4635 struct AAAlignCallSiteArgument final : AAAlignFloating {
AAAlignCallSiteArgument__anon26093b6c3a11::AAAlignCallSiteArgument4636 AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4637 : AAAlignFloating(IRP, A) {}
4638
4639 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c3a11::AAAlignCallSiteArgument4640 ChangeStatus manifest(Attributor &A) override {
4641 // If the associated argument is involved in a must-tail call we give up
4642 // because we would need to keep the argument alignments of caller and
4643 // callee in-sync. Just does not seem worth the trouble right now.
4644 if (Argument *Arg = getAssociatedArgument())
4645 if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4646 return ChangeStatus::UNCHANGED;
4647 ChangeStatus Changed = AAAlignImpl::manifest(A);
4648 Align InheritAlign =
4649 getAssociatedValue().getPointerAlignment(A.getDataLayout());
4650 if (InheritAlign >= getAssumedAlign())
4651 Changed = ChangeStatus::UNCHANGED;
4652 return Changed;
4653 }
4654
4655 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon26093b6c3a11::AAAlignCallSiteArgument4656 ChangeStatus updateImpl(Attributor &A) override {
4657 ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4658 if (Argument *Arg = getAssociatedArgument()) {
4659 // We only take known information from the argument
4660 // so we do not need to track a dependence.
4661 const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4662 *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4663 takeKnownMaximum(ArgAlignAA.getKnownAlign().value());
4664 }
4665 return Changed;
4666 }
4667
4668 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3a11::AAAlignCallSiteArgument4669 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4670 };
4671
4672 /// Align attribute deduction for a call site return value.
4673 struct AAAlignCallSiteReturned final
4674 : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4675 using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
AAAlignCallSiteReturned__anon26093b6c3a11::AAAlignCallSiteReturned4676 AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4677 : Base(IRP, A) {}
4678
4679 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3a11::AAAlignCallSiteReturned4680 void initialize(Attributor &A) override {
4681 Base::initialize(A);
4682 Function *F = getAssociatedFunction();
4683 if (!F || F->isDeclaration())
4684 indicatePessimisticFixpoint();
4685 }
4686
4687 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3a11::AAAlignCallSiteReturned4688 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4689 };
4690 } // namespace
4691
4692 /// ------------------ Function No-Return Attribute ----------------------------
4693 namespace {
4694 struct AANoReturnImpl : public AANoReturn {
AANoReturnImpl__anon26093b6c3c11::AANoReturnImpl4695 AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4696
4697 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3c11::AANoReturnImpl4698 void initialize(Attributor &A) override {
4699 AANoReturn::initialize(A);
4700 Function *F = getAssociatedFunction();
4701 if (!F || F->isDeclaration())
4702 indicatePessimisticFixpoint();
4703 }
4704
4705 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c3c11::AANoReturnImpl4706 const std::string getAsStr() const override {
4707 return getAssumed() ? "noreturn" : "may-return";
4708 }
4709
4710 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon26093b6c3c11::AANoReturnImpl4711 ChangeStatus updateImpl(Attributor &A) override {
4712 auto CheckForNoReturn = [](Instruction &) { return false; };
4713 bool UsedAssumedInformation = false;
4714 if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4715 {(unsigned)Instruction::Ret},
4716 UsedAssumedInformation))
4717 return indicatePessimisticFixpoint();
4718 return ChangeStatus::UNCHANGED;
4719 }
4720 };
4721
4722 struct AANoReturnFunction final : AANoReturnImpl {
AANoReturnFunction__anon26093b6c3c11::AANoReturnFunction4723 AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4724 : AANoReturnImpl(IRP, A) {}
4725
4726 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3c11::AANoReturnFunction4727 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4728 };
4729
4730 /// NoReturn attribute deduction for a call sites.
4731 struct AANoReturnCallSite final : AANoReturnImpl {
AANoReturnCallSite__anon26093b6c3c11::AANoReturnCallSite4732 AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4733 : AANoReturnImpl(IRP, A) {}
4734
4735 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3c11::AANoReturnCallSite4736 void initialize(Attributor &A) override {
4737 AANoReturnImpl::initialize(A);
4738 if (Function *F = getAssociatedFunction()) {
4739 const IRPosition &FnPos = IRPosition::function(*F);
4740 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4741 if (!FnAA.isAssumedNoReturn())
4742 indicatePessimisticFixpoint();
4743 }
4744 }
4745
4746 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3c11::AANoReturnCallSite4747 ChangeStatus updateImpl(Attributor &A) override {
4748 // TODO: Once we have call site specific value information we can provide
4749 // call site specific liveness information and then it makes
4750 // sense to specialize attributes for call sites arguments instead of
4751 // redirecting requests to the callee argument.
4752 Function *F = getAssociatedFunction();
4753 const IRPosition &FnPos = IRPosition::function(*F);
4754 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4755 return clampStateAndIndicateChange(getState(), FnAA.getState());
4756 }
4757
4758 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3c11::AANoReturnCallSite4759 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4760 };
4761 } // namespace
4762
4763 /// ----------------------- Instance Info ---------------------------------
4764
4765 namespace {
4766 /// A class to hold the state of for no-capture attributes.
4767 struct AAInstanceInfoImpl : public AAInstanceInfo {
AAInstanceInfoImpl__anon26093b6c3e11::AAInstanceInfoImpl4768 AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
4769 : AAInstanceInfo(IRP, A) {}
4770
4771 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3e11::AAInstanceInfoImpl4772 void initialize(Attributor &A) override {
4773 Value &V = getAssociatedValue();
4774 if (auto *C = dyn_cast<Constant>(&V)) {
4775 if (C->isThreadDependent())
4776 indicatePessimisticFixpoint();
4777 else
4778 indicateOptimisticFixpoint();
4779 return;
4780 }
4781 if (auto *CB = dyn_cast<CallBase>(&V))
4782 if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
4783 !CB->mayReadFromMemory()) {
4784 indicateOptimisticFixpoint();
4785 return;
4786 }
4787 }
4788
4789 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3e11::AAInstanceInfoImpl4790 ChangeStatus updateImpl(Attributor &A) override {
4791 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4792
4793 Value &V = getAssociatedValue();
4794 const Function *Scope = nullptr;
4795 if (auto *I = dyn_cast<Instruction>(&V))
4796 Scope = I->getFunction();
4797 if (auto *A = dyn_cast<Argument>(&V)) {
4798 Scope = A->getParent();
4799 if (!Scope->hasLocalLinkage())
4800 return Changed;
4801 }
4802 if (!Scope)
4803 return indicateOptimisticFixpoint();
4804
4805 auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
4806 *this, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
4807 if (NoRecurseAA.isAssumedNoRecurse())
4808 return Changed;
4809
4810 auto UsePred = [&](const Use &U, bool &Follow) {
4811 const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
4812 if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
4813 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4814 Follow = true;
4815 return true;
4816 }
4817 if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
4818 (isa<StoreInst>(UserI) &&
4819 cast<StoreInst>(UserI)->getValueOperand() != U.get()))
4820 return true;
4821 if (auto *CB = dyn_cast<CallBase>(UserI)) {
4822 // This check is not guaranteeing uniqueness but for now that we cannot
4823 // end up with two versions of \p U thinking it was one.
4824 if (!CB->getCalledFunction() ||
4825 !CB->getCalledFunction()->hasLocalLinkage())
4826 return true;
4827 if (!CB->isArgOperand(&U))
4828 return false;
4829 const auto &ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
4830 *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
4831 DepClassTy::OPTIONAL);
4832 if (!ArgInstanceInfoAA.isAssumedUniqueForAnalysis())
4833 return false;
4834 // If this call base might reach the scope again we might forward the
4835 // argument back here. This is very conservative.
4836 if (AA::isPotentiallyReachable(
4837 A, *CB, *Scope, *this,
4838 [Scope](const Function &Fn) { return &Fn != Scope; }))
4839 return false;
4840 return true;
4841 }
4842 return false;
4843 };
4844
4845 auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
4846 if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
4847 auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
4848 if (isa<AllocaInst>(Ptr) && AA::isDynamicallyUnique(A, *this, *Ptr))
4849 return true;
4850 auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(
4851 *SI->getFunction());
4852 if (isAllocationFn(Ptr, TLI) && AA::isDynamicallyUnique(A, *this, *Ptr))
4853 return true;
4854 }
4855 return false;
4856 };
4857
4858 if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
4859 DepClassTy::OPTIONAL,
4860 /* IgnoreDroppableUses */ true, EquivalentUseCB))
4861 return indicatePessimisticFixpoint();
4862
4863 return Changed;
4864 }
4865
4866 /// See AbstractState::getAsStr().
getAsStr__anon26093b6c3e11::AAInstanceInfoImpl4867 const std::string getAsStr() const override {
4868 return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
4869 }
4870
4871 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c3e11::AAInstanceInfoImpl4872 void trackStatistics() const override {}
4873 };
4874
4875 /// InstanceInfo attribute for floating values.
4876 struct AAInstanceInfoFloating : AAInstanceInfoImpl {
AAInstanceInfoFloating__anon26093b6c3e11::AAInstanceInfoFloating4877 AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
4878 : AAInstanceInfoImpl(IRP, A) {}
4879 };
4880
4881 /// NoCapture attribute for function arguments.
4882 struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
AAInstanceInfoArgument__anon26093b6c3e11::AAInstanceInfoArgument4883 AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
4884 : AAInstanceInfoFloating(IRP, A) {}
4885 };
4886
4887 /// InstanceInfo attribute for call site arguments.
4888 struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
AAInstanceInfoCallSiteArgument__anon26093b6c3e11::AAInstanceInfoCallSiteArgument4889 AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
4890 : AAInstanceInfoImpl(IRP, A) {}
4891
4892 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3e11::AAInstanceInfoCallSiteArgument4893 ChangeStatus updateImpl(Attributor &A) override {
4894 // TODO: Once we have call site specific value information we can provide
4895 // call site specific liveness information and then it makes
4896 // sense to specialize attributes for call sites arguments instead of
4897 // redirecting requests to the callee argument.
4898 Argument *Arg = getAssociatedArgument();
4899 if (!Arg)
4900 return indicatePessimisticFixpoint();
4901 const IRPosition &ArgPos = IRPosition::argument(*Arg);
4902 auto &ArgAA =
4903 A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
4904 return clampStateAndIndicateChange(getState(), ArgAA.getState());
4905 }
4906 };
4907
4908 /// InstanceInfo attribute for function return value.
4909 struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
AAInstanceInfoReturned__anon26093b6c3e11::AAInstanceInfoReturned4910 AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
4911 : AAInstanceInfoImpl(IRP, A) {
4912 llvm_unreachable("InstanceInfo is not applicable to function returns!");
4913 }
4914
4915 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c3e11::AAInstanceInfoReturned4916 void initialize(Attributor &A) override {
4917 llvm_unreachable("InstanceInfo is not applicable to function returns!");
4918 }
4919
4920 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c3e11::AAInstanceInfoReturned4921 ChangeStatus updateImpl(Attributor &A) override {
4922 llvm_unreachable("InstanceInfo is not applicable to function returns!");
4923 }
4924 };
4925
4926 /// InstanceInfo attribute deduction for a call site return value.
4927 struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
AAInstanceInfoCallSiteReturned__anon26093b6c3e11::AAInstanceInfoCallSiteReturned4928 AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
4929 : AAInstanceInfoFloating(IRP, A) {}
4930 };
4931 } // namespace
4932
4933 /// ----------------------- Variable Capturing ---------------------------------
4934
4935 namespace {
4936 /// A class to hold the state of for no-capture attributes.
4937 struct AANoCaptureImpl : public AANoCapture {
AANoCaptureImpl__anon26093b6c4211::AANoCaptureImpl4938 AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4939
4940 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4211::AANoCaptureImpl4941 void initialize(Attributor &A) override {
4942 if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4943 indicateOptimisticFixpoint();
4944 return;
4945 }
4946 Function *AnchorScope = getAnchorScope();
4947 if (isFnInterfaceKind() &&
4948 (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4949 indicatePessimisticFixpoint();
4950 return;
4951 }
4952
4953 // You cannot "capture" null in the default address space.
4954 if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4955 getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4956 indicateOptimisticFixpoint();
4957 return;
4958 }
4959
4960 const Function *F =
4961 isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4962
4963 // Check what state the associated function can actually capture.
4964 if (F)
4965 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4966 else
4967 indicatePessimisticFixpoint();
4968 }
4969
4970 /// See AbstractAttribute::updateImpl(...).
4971 ChangeStatus updateImpl(Attributor &A) override;
4972
4973 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
getDeducedAttributes__anon26093b6c4211::AANoCaptureImpl4974 void getDeducedAttributes(LLVMContext &Ctx,
4975 SmallVectorImpl<Attribute> &Attrs) const override {
4976 if (!isAssumedNoCaptureMaybeReturned())
4977 return;
4978
4979 if (isArgumentPosition()) {
4980 if (isAssumedNoCapture())
4981 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4982 else if (ManifestInternal)
4983 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4984 }
4985 }
4986
4987 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4988 /// depending on the ability of the function associated with \p IRP to capture
4989 /// state in memory and through "returning/throwing", respectively.
determineFunctionCaptureCapabilities__anon26093b6c4211::AANoCaptureImpl4990 static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4991 const Function &F,
4992 BitIntegerState &State) {
4993 // TODO: Once we have memory behavior attributes we should use them here.
4994
4995 // If we know we cannot communicate or write to memory, we do not care about
4996 // ptr2int anymore.
4997 if (F.onlyReadsMemory() && F.doesNotThrow() &&
4998 F.getReturnType()->isVoidTy()) {
4999 State.addKnownBits(NO_CAPTURE);
5000 return;
5001 }
5002
5003 // A function cannot capture state in memory if it only reads memory, it can
5004 // however return/throw state and the state might be influenced by the
5005 // pointer value, e.g., loading from a returned pointer might reveal a bit.
5006 if (F.onlyReadsMemory())
5007 State.addKnownBits(NOT_CAPTURED_IN_MEM);
5008
5009 // A function cannot communicate state back if it does not through
5010 // exceptions and doesn not return values.
5011 if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
5012 State.addKnownBits(NOT_CAPTURED_IN_RET);
5013
5014 // Check existing "returned" attributes.
5015 int ArgNo = IRP.getCalleeArgNo();
5016 if (F.doesNotThrow() && ArgNo >= 0) {
5017 for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
5018 if (F.hasParamAttribute(u, Attribute::Returned)) {
5019 if (u == unsigned(ArgNo))
5020 State.removeAssumedBits(NOT_CAPTURED_IN_RET);
5021 else if (F.onlyReadsMemory())
5022 State.addKnownBits(NO_CAPTURE);
5023 else
5024 State.addKnownBits(NOT_CAPTURED_IN_RET);
5025 break;
5026 }
5027 }
5028 }
5029
5030 /// See AbstractState::getAsStr().
getAsStr__anon26093b6c4211::AANoCaptureImpl5031 const std::string getAsStr() const override {
5032 if (isKnownNoCapture())
5033 return "known not-captured";
5034 if (isAssumedNoCapture())
5035 return "assumed not-captured";
5036 if (isKnownNoCaptureMaybeReturned())
5037 return "known not-captured-maybe-returned";
5038 if (isAssumedNoCaptureMaybeReturned())
5039 return "assumed not-captured-maybe-returned";
5040 return "assumed-captured";
5041 }
5042
5043 /// Check the use \p U and update \p State accordingly. Return true if we
5044 /// should continue to update the state.
checkUse__anon26093b6c4211::AANoCaptureImpl5045 bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
5046 bool &Follow) {
5047 Instruction *UInst = cast<Instruction>(U.getUser());
5048 LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
5049 << *UInst << "\n");
5050
5051 // Deal with ptr2int by following uses.
5052 if (isa<PtrToIntInst>(UInst)) {
5053 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5054 return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5055 /* Return */ true);
5056 }
5057
5058 // For stores we already checked if we can follow them, if they make it
5059 // here we give up.
5060 if (isa<StoreInst>(UInst))
5061 return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
5062 /* Return */ false);
5063
5064 // Explicitly catch return instructions.
5065 if (isa<ReturnInst>(UInst)) {
5066 if (UInst->getFunction() == getAnchorScope())
5067 return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5068 /* Return */ true);
5069 return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5070 /* Return */ true);
5071 }
5072
5073 // For now we only use special logic for call sites. However, the tracker
5074 // itself knows about a lot of other non-capturing cases already.
5075 auto *CB = dyn_cast<CallBase>(UInst);
5076 if (!CB || !CB->isArgOperand(&U))
5077 return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5078 /* Return */ true);
5079
5080 unsigned ArgNo = CB->getArgOperandNo(&U);
5081 const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5082 // If we have a abstract no-capture attribute for the argument we can use
5083 // it to justify a non-capture attribute here. This allows recursion!
5084 auto &ArgNoCaptureAA =
5085 A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
5086 if (ArgNoCaptureAA.isAssumedNoCapture())
5087 return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5088 /* Return */ false);
5089 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5090 Follow = true;
5091 return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5092 /* Return */ false);
5093 }
5094
5095 // Lastly, we could not find a reason no-capture can be assumed so we don't.
5096 return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5097 /* Return */ true);
5098 }
5099
5100 /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
5101 /// \p CapturedInRet, then return true if we should continue updating the
5102 /// state.
isCapturedIn__anon26093b6c4211::AANoCaptureImpl5103 static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
5104 bool CapturedInInt, bool CapturedInRet) {
5105 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5106 << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5107 if (CapturedInMem)
5108 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5109 if (CapturedInInt)
5110 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5111 if (CapturedInRet)
5112 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5113 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5114 }
5115 };
5116
updateImpl(Attributor & A)5117 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5118 const IRPosition &IRP = getIRPosition();
5119 Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5120 : &IRP.getAssociatedValue();
5121 if (!V)
5122 return indicatePessimisticFixpoint();
5123
5124 const Function *F =
5125 isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5126 assert(F && "Expected a function!");
5127 const IRPosition &FnPos = IRPosition::function(*F);
5128
5129 AANoCapture::StateType T;
5130
5131 // Readonly means we cannot capture through memory.
5132 bool IsKnown;
5133 if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5134 T.addKnownBits(NOT_CAPTURED_IN_MEM);
5135 if (IsKnown)
5136 addKnownBits(NOT_CAPTURED_IN_MEM);
5137 }
5138
5139 // Make sure all returned values are different than the underlying value.
5140 // TODO: we could do this in a more sophisticated way inside
5141 // AAReturnedValues, e.g., track all values that escape through returns
5142 // directly somehow.
5143 auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5144 if (!RVAA.getState().isValidState())
5145 return false;
5146 bool SeenConstant = false;
5147 for (auto &It : RVAA.returned_values()) {
5148 if (isa<Constant>(It.first)) {
5149 if (SeenConstant)
5150 return false;
5151 SeenConstant = true;
5152 } else if (!isa<Argument>(It.first) ||
5153 It.first == getAssociatedArgument())
5154 return false;
5155 }
5156 return true;
5157 };
5158
5159 const auto &NoUnwindAA =
5160 A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5161 if (NoUnwindAA.isAssumedNoUnwind()) {
5162 bool IsVoidTy = F->getReturnType()->isVoidTy();
5163 const AAReturnedValues *RVAA =
5164 IsVoidTy ? nullptr
5165 : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5166
5167 DepClassTy::OPTIONAL);
5168 if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5169 T.addKnownBits(NOT_CAPTURED_IN_RET);
5170 if (T.isKnown(NOT_CAPTURED_IN_MEM))
5171 return ChangeStatus::UNCHANGED;
5172 if (NoUnwindAA.isKnownNoUnwind() &&
5173 (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5174 addKnownBits(NOT_CAPTURED_IN_RET);
5175 if (isKnown(NOT_CAPTURED_IN_MEM))
5176 return indicateOptimisticFixpoint();
5177 }
5178 }
5179 }
5180
5181 auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5182 const auto &DerefAA = A.getAAFor<AADereferenceable>(
5183 *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5184 return DerefAA.getAssumedDereferenceableBytes();
5185 };
5186
5187 auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5188 switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5189 case UseCaptureKind::NO_CAPTURE:
5190 return true;
5191 case UseCaptureKind::MAY_CAPTURE:
5192 return checkUse(A, T, U, Follow);
5193 case UseCaptureKind::PASSTHROUGH:
5194 Follow = true;
5195 return true;
5196 }
5197 llvm_unreachable("Unexpected use capture kind!");
5198 };
5199
5200 if (!A.checkForAllUses(UseCheck, *this, *V))
5201 return indicatePessimisticFixpoint();
5202
5203 AANoCapture::StateType &S = getState();
5204 auto Assumed = S.getAssumed();
5205 S.intersectAssumedBits(T.getAssumed());
5206 if (!isAssumedNoCaptureMaybeReturned())
5207 return indicatePessimisticFixpoint();
5208 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5209 : ChangeStatus::CHANGED;
5210 }
5211
5212 /// NoCapture attribute for function arguments.
5213 struct AANoCaptureArgument final : AANoCaptureImpl {
AANoCaptureArgument__anon26093b6c4211::AANoCaptureArgument5214 AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5215 : AANoCaptureImpl(IRP, A) {}
5216
5217 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4211::AANoCaptureArgument5218 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5219 };
5220
5221 /// NoCapture attribute for call site arguments.
5222 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
AANoCaptureCallSiteArgument__anon26093b6c4211::AANoCaptureCallSiteArgument5223 AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5224 : AANoCaptureImpl(IRP, A) {}
5225
5226 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4211::AANoCaptureCallSiteArgument5227 void initialize(Attributor &A) override {
5228 if (Argument *Arg = getAssociatedArgument())
5229 if (Arg->hasByValAttr())
5230 indicateOptimisticFixpoint();
5231 AANoCaptureImpl::initialize(A);
5232 }
5233
5234 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4211::AANoCaptureCallSiteArgument5235 ChangeStatus updateImpl(Attributor &A) override {
5236 // TODO: Once we have call site specific value information we can provide
5237 // call site specific liveness information and then it makes
5238 // sense to specialize attributes for call sites arguments instead of
5239 // redirecting requests to the callee argument.
5240 Argument *Arg = getAssociatedArgument();
5241 if (!Arg)
5242 return indicatePessimisticFixpoint();
5243 const IRPosition &ArgPos = IRPosition::argument(*Arg);
5244 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5245 return clampStateAndIndicateChange(getState(), ArgAA.getState());
5246 }
5247
5248 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4211::AANoCaptureCallSiteArgument5249 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5250 };
5251
5252 /// NoCapture attribute for floating values.
5253 struct AANoCaptureFloating final : AANoCaptureImpl {
AANoCaptureFloating__anon26093b6c4211::AANoCaptureFloating5254 AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5255 : AANoCaptureImpl(IRP, A) {}
5256
5257 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4211::AANoCaptureFloating5258 void trackStatistics() const override {
5259 STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5260 }
5261 };
5262
5263 /// NoCapture attribute for function return value.
5264 struct AANoCaptureReturned final : AANoCaptureImpl {
AANoCaptureReturned__anon26093b6c4211::AANoCaptureReturned5265 AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5266 : AANoCaptureImpl(IRP, A) {
5267 llvm_unreachable("NoCapture is not applicable to function returns!");
5268 }
5269
5270 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4211::AANoCaptureReturned5271 void initialize(Attributor &A) override {
5272 llvm_unreachable("NoCapture is not applicable to function returns!");
5273 }
5274
5275 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4211::AANoCaptureReturned5276 ChangeStatus updateImpl(Attributor &A) override {
5277 llvm_unreachable("NoCapture is not applicable to function returns!");
5278 }
5279
5280 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4211::AANoCaptureReturned5281 void trackStatistics() const override {}
5282 };
5283
5284 /// NoCapture attribute deduction for a call site return value.
5285 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
AANoCaptureCallSiteReturned__anon26093b6c4211::AANoCaptureCallSiteReturned5286 AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5287 : AANoCaptureImpl(IRP, A) {}
5288
5289 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4211::AANoCaptureCallSiteReturned5290 void initialize(Attributor &A) override {
5291 const Function *F = getAnchorScope();
5292 // Check what state the associated function can actually capture.
5293 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5294 }
5295
5296 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4211::AANoCaptureCallSiteReturned5297 void trackStatistics() const override {
5298 STATS_DECLTRACK_CSRET_ATTR(nocapture)
5299 }
5300 };
5301 } // namespace
5302
5303 /// ------------------ Value Simplify Attribute ----------------------------
5304
unionAssumed(Optional<Value * > Other)5305 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5306 // FIXME: Add a typecast support.
5307 SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5308 SimplifiedAssociatedValue, Other, Ty);
5309 if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5310 return false;
5311
5312 LLVM_DEBUG({
5313 if (SimplifiedAssociatedValue)
5314 dbgs() << "[ValueSimplify] is assumed to be "
5315 << **SimplifiedAssociatedValue << "\n";
5316 else
5317 dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5318 });
5319 return true;
5320 }
5321
5322 namespace {
5323 struct AAValueSimplifyImpl : AAValueSimplify {
AAValueSimplifyImpl__anon26093b6c4611::AAValueSimplifyImpl5324 AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5325 : AAValueSimplify(IRP, A) {}
5326
5327 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4611::AAValueSimplifyImpl5328 void initialize(Attributor &A) override {
5329 if (getAssociatedValue().getType()->isVoidTy())
5330 indicatePessimisticFixpoint();
5331 if (A.hasSimplificationCallback(getIRPosition()))
5332 indicatePessimisticFixpoint();
5333 }
5334
5335 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c4611::AAValueSimplifyImpl5336 const std::string getAsStr() const override {
5337 LLVM_DEBUG({
5338 dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
5339 if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5340 dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5341 });
5342 return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5343 : "not-simple";
5344 }
5345
5346 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyImpl5347 void trackStatistics() const override {}
5348
5349 /// See AAValueSimplify::getAssumedSimplifiedValue()
getAssumedSimplifiedValue__anon26093b6c4611::AAValueSimplifyImpl5350 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5351 return SimplifiedAssociatedValue;
5352 }
5353
5354 /// Ensure the return value is \p V with type \p Ty, if not possible return
5355 /// nullptr. If \p Check is true we will only verify such an operation would
5356 /// suceed and return a non-nullptr value if that is the case. No IR is
5357 /// generated or modified.
ensureType__anon26093b6c4611::AAValueSimplifyImpl5358 static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
5359 bool Check) {
5360 if (auto *TypedV = AA::getWithType(V, Ty))
5361 return TypedV;
5362 if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
5363 return Check ? &V
5364 : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
5365 "", CtxI);
5366 return nullptr;
5367 }
5368
5369 /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
5370 /// If \p Check is true we will only verify such an operation would suceed and
5371 /// return a non-nullptr value if that is the case. No IR is generated or
5372 /// modified.
reproduceInst__anon26093b6c4611::AAValueSimplifyImpl5373 static Value *reproduceInst(Attributor &A,
5374 const AbstractAttribute &QueryingAA,
5375 Instruction &I, Type &Ty, Instruction *CtxI,
5376 bool Check, ValueToValueMapTy &VMap) {
5377 assert(CtxI && "Cannot reproduce an instruction without context!");
5378 if (Check && (I.mayReadFromMemory() ||
5379 !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
5380 /* TLI */ nullptr)))
5381 return nullptr;
5382 for (Value *Op : I.operands()) {
5383 Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
5384 if (!NewOp) {
5385 assert(Check && "Manifest of new value unexpectedly failed!");
5386 return nullptr;
5387 }
5388 if (!Check)
5389 VMap[Op] = NewOp;
5390 }
5391 if (Check)
5392 return &I;
5393
5394 Instruction *CloneI = I.clone();
5395 // TODO: Try to salvage debug information here.
5396 CloneI->setDebugLoc(DebugLoc());
5397 VMap[&I] = CloneI;
5398 CloneI->insertBefore(CtxI);
5399 RemapInstruction(CloneI, VMap);
5400 return CloneI;
5401 }
5402
5403 /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
5404 /// If \p Check is true we will only verify such an operation would suceed and
5405 /// return a non-nullptr value if that is the case. No IR is generated or
5406 /// modified.
reproduceValue__anon26093b6c4611::AAValueSimplifyImpl5407 static Value *reproduceValue(Attributor &A,
5408 const AbstractAttribute &QueryingAA, Value &V,
5409 Type &Ty, Instruction *CtxI, bool Check,
5410 ValueToValueMapTy &VMap) {
5411 if (const auto &NewV = VMap.lookup(&V))
5412 return NewV;
5413 bool UsedAssumedInformation = false;
5414 Optional<Value *> SimpleV = A.getAssumedSimplified(
5415 V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5416 if (!SimpleV.has_value())
5417 return PoisonValue::get(&Ty);
5418 Value *EffectiveV = &V;
5419 if (SimpleV.value())
5420 EffectiveV = SimpleV.value();
5421 if (auto *C = dyn_cast<Constant>(EffectiveV))
5422 return C;
5423 if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
5424 A.getInfoCache()))
5425 return ensureType(A, *EffectiveV, Ty, CtxI, Check);
5426 if (auto *I = dyn_cast<Instruction>(EffectiveV))
5427 if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
5428 return ensureType(A, *NewV, Ty, CtxI, Check);
5429 return nullptr;
5430 }
5431
5432 /// Return a value we can use as replacement for the associated one, or
5433 /// nullptr if we don't have one that makes sense.
manifestReplacementValue__anon26093b6c4611::AAValueSimplifyImpl5434 Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
5435 Value *NewV = SimplifiedAssociatedValue
5436 ? SimplifiedAssociatedValue.value()
5437 : UndefValue::get(getAssociatedType());
5438 if (NewV && NewV != &getAssociatedValue()) {
5439 ValueToValueMapTy VMap;
5440 // First verify we can reprduce the value with the required type at the
5441 // context location before we actually start modifying the IR.
5442 if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5443 /* CheckOnly */ true, VMap))
5444 return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5445 /* CheckOnly */ false, VMap);
5446 }
5447 return nullptr;
5448 }
5449
5450 /// Helper function for querying AAValueSimplify and updating candicate.
5451 /// \param IRP The value position we are trying to unify with SimplifiedValue
checkAndUpdate__anon26093b6c4611::AAValueSimplifyImpl5452 bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5453 const IRPosition &IRP, bool Simplify = true) {
5454 bool UsedAssumedInformation = false;
5455 Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5456 if (Simplify)
5457 QueryingValueSimplified = A.getAssumedSimplified(
5458 IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5459 return unionAssumed(QueryingValueSimplified);
5460 }
5461
5462 /// Returns a candidate is found or not
askSimplifiedValueFor__anon26093b6c4611::AAValueSimplifyImpl5463 template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5464 if (!getAssociatedValue().getType()->isIntegerTy())
5465 return false;
5466
5467 // This will also pass the call base context.
5468 const auto &AA =
5469 A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5470
5471 Optional<Constant *> COpt = AA.getAssumedConstant(A);
5472
5473 if (!COpt) {
5474 SimplifiedAssociatedValue = llvm::None;
5475 A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5476 return true;
5477 }
5478 if (auto *C = *COpt) {
5479 SimplifiedAssociatedValue = C;
5480 A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5481 return true;
5482 }
5483 return false;
5484 }
5485
askSimplifiedValueForOtherAAs__anon26093b6c4611::AAValueSimplifyImpl5486 bool askSimplifiedValueForOtherAAs(Attributor &A) {
5487 if (askSimplifiedValueFor<AAValueConstantRange>(A))
5488 return true;
5489 if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
5490 return true;
5491 return false;
5492 }
5493
5494 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c4611::AAValueSimplifyImpl5495 ChangeStatus manifest(Attributor &A) override {
5496 ChangeStatus Changed = ChangeStatus::UNCHANGED;
5497 for (auto &U : getAssociatedValue().uses()) {
5498 // Check if we need to adjust the insertion point to make sure the IR is
5499 // valid.
5500 Instruction *IP = dyn_cast<Instruction>(U.getUser());
5501 if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
5502 IP = PHI->getIncomingBlock(U)->getTerminator();
5503 if (auto *NewV = manifestReplacementValue(A, IP)) {
5504 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
5505 << " -> " << *NewV << " :: " << *this << "\n");
5506 if (A.changeUseAfterManifest(U, *NewV))
5507 Changed = ChangeStatus::CHANGED;
5508 }
5509 }
5510
5511 return Changed | AAValueSimplify::manifest(A);
5512 }
5513
5514 /// See AbstractState::indicatePessimisticFixpoint(...).
indicatePessimisticFixpoint__anon26093b6c4611::AAValueSimplifyImpl5515 ChangeStatus indicatePessimisticFixpoint() override {
5516 SimplifiedAssociatedValue = &getAssociatedValue();
5517 return AAValueSimplify::indicatePessimisticFixpoint();
5518 }
5519 };
5520
5521 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
AAValueSimplifyArgument__anon26093b6c4611::AAValueSimplifyArgument5522 AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5523 : AAValueSimplifyImpl(IRP, A) {}
5524
initialize__anon26093b6c4611::AAValueSimplifyArgument5525 void initialize(Attributor &A) override {
5526 AAValueSimplifyImpl::initialize(A);
5527 if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5528 indicatePessimisticFixpoint();
5529 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5530 Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5531 /* IgnoreSubsumingPositions */ true))
5532 indicatePessimisticFixpoint();
5533 }
5534
5535 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4611::AAValueSimplifyArgument5536 ChangeStatus updateImpl(Attributor &A) override {
5537 // Byval is only replacable if it is readonly otherwise we would write into
5538 // the replaced value and not the copy that byval creates implicitly.
5539 Argument *Arg = getAssociatedArgument();
5540 if (Arg->hasByValAttr()) {
5541 // TODO: We probably need to verify synchronization is not an issue, e.g.,
5542 // there is no race by not copying a constant byval.
5543 bool IsKnown;
5544 if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5545 return indicatePessimisticFixpoint();
5546 }
5547
5548 auto Before = SimplifiedAssociatedValue;
5549
5550 auto PredForCallSite = [&](AbstractCallSite ACS) {
5551 const IRPosition &ACSArgPos =
5552 IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5553 // Check if a coresponding argument was found or if it is on not
5554 // associated (which can happen for callback calls).
5555 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5556 return false;
5557
5558 // Simplify the argument operand explicitly and check if the result is
5559 // valid in the current scope. This avoids refering to simplified values
5560 // in other functions, e.g., we don't want to say a an argument in a
5561 // static function is actually an argument in a different function.
5562 bool UsedAssumedInformation = false;
5563 Optional<Constant *> SimpleArgOp =
5564 A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5565 if (!SimpleArgOp)
5566 return true;
5567 if (!SimpleArgOp.value())
5568 return false;
5569 if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5570 return false;
5571 return unionAssumed(*SimpleArgOp);
5572 };
5573
5574 // Generate a answer specific to a call site context.
5575 bool Success;
5576 bool UsedAssumedInformation = false;
5577 if (hasCallBaseContext() &&
5578 getCallBaseContext()->getCalledFunction() == Arg->getParent())
5579 Success = PredForCallSite(
5580 AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5581 else
5582 Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5583 UsedAssumedInformation);
5584
5585 if (!Success)
5586 if (!askSimplifiedValueForOtherAAs(A))
5587 return indicatePessimisticFixpoint();
5588
5589 // If a candicate was found in this update, return CHANGED.
5590 return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5591 : ChangeStatus ::CHANGED;
5592 }
5593
5594 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyArgument5595 void trackStatistics() const override {
5596 STATS_DECLTRACK_ARG_ATTR(value_simplify)
5597 }
5598 };
5599
5600 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
AAValueSimplifyReturned__anon26093b6c4611::AAValueSimplifyReturned5601 AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5602 : AAValueSimplifyImpl(IRP, A) {}
5603
5604 /// See AAValueSimplify::getAssumedSimplifiedValue()
getAssumedSimplifiedValue__anon26093b6c4611::AAValueSimplifyReturned5605 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5606 if (!isValidState())
5607 return nullptr;
5608 return SimplifiedAssociatedValue;
5609 }
5610
5611 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4611::AAValueSimplifyReturned5612 ChangeStatus updateImpl(Attributor &A) override {
5613 auto Before = SimplifiedAssociatedValue;
5614
5615 auto ReturnInstCB = [&](Instruction &I) {
5616 auto &RI = cast<ReturnInst>(I);
5617 return checkAndUpdate(
5618 A, *this,
5619 IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
5620 };
5621
5622 bool UsedAssumedInformation = false;
5623 if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
5624 UsedAssumedInformation))
5625 if (!askSimplifiedValueForOtherAAs(A))
5626 return indicatePessimisticFixpoint();
5627
5628 // If a candicate was found in this update, return CHANGED.
5629 return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5630 : ChangeStatus ::CHANGED;
5631 }
5632
manifest__anon26093b6c4611::AAValueSimplifyReturned5633 ChangeStatus manifest(Attributor &A) override {
5634 // We queried AAValueSimplify for the returned values so they will be
5635 // replaced if a simplified form was found. Nothing to do here.
5636 return ChangeStatus::UNCHANGED;
5637 }
5638
5639 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyReturned5640 void trackStatistics() const override {
5641 STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5642 }
5643 };
5644
5645 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
AAValueSimplifyFloating__anon26093b6c4611::AAValueSimplifyFloating5646 AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5647 : AAValueSimplifyImpl(IRP, A) {}
5648
5649 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4611::AAValueSimplifyFloating5650 void initialize(Attributor &A) override {
5651 AAValueSimplifyImpl::initialize(A);
5652 Value &V = getAnchorValue();
5653
5654 // TODO: add other stuffs
5655 if (isa<Constant>(V))
5656 indicatePessimisticFixpoint();
5657 }
5658
5659 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4611::AAValueSimplifyFloating5660 ChangeStatus updateImpl(Attributor &A) override {
5661 auto Before = SimplifiedAssociatedValue;
5662 if (!askSimplifiedValueForOtherAAs(A))
5663 return indicatePessimisticFixpoint();
5664
5665 // If a candicate was found in this update, return CHANGED.
5666 return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5667 : ChangeStatus ::CHANGED;
5668 }
5669
5670 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyFloating5671 void trackStatistics() const override {
5672 STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5673 }
5674 };
5675
5676 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
AAValueSimplifyFunction__anon26093b6c4611::AAValueSimplifyFunction5677 AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5678 : AAValueSimplifyImpl(IRP, A) {}
5679
5680 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c4611::AAValueSimplifyFunction5681 void initialize(Attributor &A) override {
5682 SimplifiedAssociatedValue = nullptr;
5683 indicateOptimisticFixpoint();
5684 }
5685 /// See AbstractAttribute::initialize(...).
updateImpl__anon26093b6c4611::AAValueSimplifyFunction5686 ChangeStatus updateImpl(Attributor &A) override {
5687 llvm_unreachable(
5688 "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5689 }
5690 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyFunction5691 void trackStatistics() const override {
5692 STATS_DECLTRACK_FN_ATTR(value_simplify)
5693 }
5694 };
5695
5696 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
AAValueSimplifyCallSite__anon26093b6c4611::AAValueSimplifyCallSite5697 AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5698 : AAValueSimplifyFunction(IRP, A) {}
5699 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c4611::AAValueSimplifyCallSite5700 void trackStatistics() const override {
5701 STATS_DECLTRACK_CS_ATTR(value_simplify)
5702 }
5703 };
5704
5705 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
AAValueSimplifyCallSiteReturned__anon26093b6c4611::AAValueSimplifyCallSiteReturned5706 AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5707 : AAValueSimplifyImpl(IRP, A) {}
5708
initialize__anon26093b6c4611::AAValueSimplifyCallSiteReturned5709 void initialize(Attributor &A) override {
5710 AAValueSimplifyImpl::initialize(A);
5711 Function *Fn = getAssociatedFunction();
5712 if (!Fn) {
5713 indicatePessimisticFixpoint();
5714 return;
5715 }
5716 for (Argument &Arg : Fn->args()) {
5717 if (Arg.hasReturnedAttr()) {
5718 auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
5719 Arg.getArgNo());
5720 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
5721 checkAndUpdate(A, *this, IRP))
5722 indicateOptimisticFixpoint();
5723 else
5724 indicatePessimisticFixpoint();
5725 return;
5726 }
5727 }
5728 }
5729
5730 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c4611::AAValueSimplifyCallSiteReturned5731 ChangeStatus updateImpl(Attributor &A) override {
5732 auto Before = SimplifiedAssociatedValue;
5733 auto &RetAA = A.getAAFor<AAReturnedValues>(
5734 *this, IRPosition::function(*getAssociatedFunction()),
5735 DepClassTy::REQUIRED);
5736 auto PredForReturned =
5737 [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5738 bool UsedAssumedInformation = false;
5739 Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5740 &RetVal, *cast<CallBase>(getCtxI()), *this,
5741 UsedAssumedInformation);
5742 SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5743 SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5744 return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5745 };
5746 if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5747 if (!askSimplifiedValueForOtherAAs(A))
5748 return indicatePessimisticFixpoint();
5749 return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5750 : ChangeStatus ::CHANGED;
5751 }
5752
trackStatistics__anon26093b6c4611::AAValueSimplifyCallSiteReturned5753 void trackStatistics() const override {
5754 STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5755 }
5756 };
5757
5758 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
AAValueSimplifyCallSiteArgument__anon26093b6c4611::AAValueSimplifyCallSiteArgument5759 AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5760 : AAValueSimplifyFloating(IRP, A) {}
5761
5762 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c4611::AAValueSimplifyCallSiteArgument5763 ChangeStatus manifest(Attributor &A) override {
5764 ChangeStatus Changed = ChangeStatus::UNCHANGED;
5765 // TODO: We should avoid simplification duplication to begin with.
5766 auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
5767 IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
5768 if (FloatAA && FloatAA->getState().isValidState())
5769 return Changed;
5770
5771 if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
5772 Use &U = cast<CallBase>(&getAnchorValue())
5773 ->getArgOperandUse(getCallSiteArgNo());
5774 if (A.changeUseAfterManifest(U, *NewV))
5775 Changed = ChangeStatus::CHANGED;
5776 }
5777
5778 return Changed | AAValueSimplify::manifest(A);
5779 }
5780
trackStatistics__anon26093b6c4611::AAValueSimplifyCallSiteArgument5781 void trackStatistics() const override {
5782 STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5783 }
5784 };
5785 } // namespace
5786
5787 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5788 namespace {
5789 struct AAHeapToStackFunction final : public AAHeapToStack {
5790
5791 struct AllocationInfo {
5792 /// The call that allocates the memory.
5793 CallBase *const CB;
5794
5795 /// The library function id for the allocation.
5796 LibFunc LibraryFunctionId = NotLibFunc;
5797
5798 /// The status wrt. a rewrite.
5799 enum {
5800 STACK_DUE_TO_USE,
5801 STACK_DUE_TO_FREE,
5802 INVALID,
5803 } Status = STACK_DUE_TO_USE;
5804
5805 /// Flag to indicate if we encountered a use that might free this allocation
5806 /// but which is not in the deallocation infos.
5807 bool HasPotentiallyFreeingUnknownUses = false;
5808
5809 /// Flag to indicate that we should place the new alloca in the function
5810 /// entry block rather than where the call site (CB) is.
5811 bool MoveAllocaIntoEntry = true;
5812
5813 /// The set of free calls that use this allocation.
5814 SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
5815 };
5816
5817 struct DeallocationInfo {
5818 /// The call that deallocates the memory.
5819 CallBase *const CB;
5820 /// The value freed by the call.
5821 Value *FreedOp;
5822
5823 /// Flag to indicate if we don't know all objects this deallocation might
5824 /// free.
5825 bool MightFreeUnknownObjects = false;
5826
5827 /// The set of allocation calls that are potentially freed.
5828 SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
5829 };
5830
AAHeapToStackFunction__anon26093b6c4a11::AAHeapToStackFunction5831 AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5832 : AAHeapToStack(IRP, A) {}
5833
~AAHeapToStackFunction__anon26093b6c4a11::AAHeapToStackFunction5834 ~AAHeapToStackFunction() {
5835 // Ensure we call the destructor so we release any memory allocated in the
5836 // sets.
5837 for (auto &It : AllocationInfos)
5838 It.second->~AllocationInfo();
5839 for (auto &It : DeallocationInfos)
5840 It.second->~DeallocationInfo();
5841 }
5842
initialize__anon26093b6c4a11::AAHeapToStackFunction5843 void initialize(Attributor &A) override {
5844 AAHeapToStack::initialize(A);
5845
5846 const Function *F = getAnchorScope();
5847 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5848
5849 auto AllocationIdentifierCB = [&](Instruction &I) {
5850 CallBase *CB = dyn_cast<CallBase>(&I);
5851 if (!CB)
5852 return true;
5853 if (Value *FreedOp = getFreedOperand(CB, TLI)) {
5854 DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
5855 return true;
5856 }
5857 // To do heap to stack, we need to know that the allocation itself is
5858 // removable once uses are rewritten, and that we can initialize the
5859 // alloca to the same pattern as the original allocation result.
5860 if (isRemovableAlloc(CB, TLI)) {
5861 auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5862 if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5863 AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5864 AllocationInfos[CB] = AI;
5865 if (TLI)
5866 TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5867 }
5868 }
5869 return true;
5870 };
5871
5872 bool UsedAssumedInformation = false;
5873 bool Success = A.checkForAllCallLikeInstructions(
5874 AllocationIdentifierCB, *this, UsedAssumedInformation,
5875 /* CheckBBLivenessOnly */ false,
5876 /* CheckPotentiallyDead */ true);
5877 (void)Success;
5878 assert(Success && "Did not expect the call base visit callback to fail!");
5879
5880 Attributor::SimplifictionCallbackTy SCB =
5881 [](const IRPosition &, const AbstractAttribute *,
5882 bool &) -> Optional<Value *> { return nullptr; };
5883 for (const auto &It : AllocationInfos)
5884 A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5885 SCB);
5886 for (const auto &It : DeallocationInfos)
5887 A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5888 SCB);
5889 }
5890
getAsStr__anon26093b6c4a11::AAHeapToStackFunction5891 const std::string getAsStr() const override {
5892 unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5893 for (const auto &It : AllocationInfos) {
5894 if (It.second->Status == AllocationInfo::INVALID)
5895 ++NumInvalidMallocs;
5896 else
5897 ++NumH2SMallocs;
5898 }
5899 return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5900 std::to_string(NumInvalidMallocs);
5901 }
5902
5903 /// See AbstractAttribute::trackStatistics().
trackStatistics__anon26093b6c4a11::AAHeapToStackFunction5904 void trackStatistics() const override {
5905 STATS_DECL(
5906 MallocCalls, Function,
5907 "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5908 for (auto &It : AllocationInfos)
5909 if (It.second->Status != AllocationInfo::INVALID)
5910 ++BUILD_STAT_NAME(MallocCalls, Function);
5911 }
5912
isAssumedHeapToStack__anon26093b6c4a11::AAHeapToStackFunction5913 bool isAssumedHeapToStack(const CallBase &CB) const override {
5914 if (isValidState())
5915 if (AllocationInfo *AI =
5916 AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
5917 return AI->Status != AllocationInfo::INVALID;
5918 return false;
5919 }
5920
isAssumedHeapToStackRemovedFree__anon26093b6c4a11::AAHeapToStackFunction5921 bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5922 if (!isValidState())
5923 return false;
5924
5925 for (auto &It : AllocationInfos) {
5926 AllocationInfo &AI = *It.second;
5927 if (AI.Status == AllocationInfo::INVALID)
5928 continue;
5929
5930 if (AI.PotentialFreeCalls.count(&CB))
5931 return true;
5932 }
5933
5934 return false;
5935 }
5936
manifest__anon26093b6c4a11::AAHeapToStackFunction5937 ChangeStatus manifest(Attributor &A) override {
5938 assert(getState().isValidState() &&
5939 "Attempted to manifest an invalid state!");
5940
5941 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5942 Function *F = getAnchorScope();
5943 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5944
5945 for (auto &It : AllocationInfos) {
5946 AllocationInfo &AI = *It.second;
5947 if (AI.Status == AllocationInfo::INVALID)
5948 continue;
5949
5950 for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5951 LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5952 A.deleteAfterManifest(*FreeCall);
5953 HasChanged = ChangeStatus::CHANGED;
5954 }
5955
5956 LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5957 << "\n");
5958
5959 auto Remark = [&](OptimizationRemark OR) {
5960 LibFunc IsAllocShared;
5961 if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5962 if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5963 return OR << "Moving globalized variable to the stack.";
5964 return OR << "Moving memory allocation from the heap to the stack.";
5965 };
5966 if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5967 A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5968 else
5969 A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5970
5971 const DataLayout &DL = A.getInfoCache().getDL();
5972 Value *Size;
5973 Optional<APInt> SizeAPI = getSize(A, *this, AI);
5974 if (SizeAPI) {
5975 Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5976 } else {
5977 LLVMContext &Ctx = AI.CB->getContext();
5978 ObjectSizeOpts Opts;
5979 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
5980 SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
5981 assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
5982 cast<ConstantInt>(SizeOffsetPair.second)->isZero());
5983 Size = SizeOffsetPair.first;
5984 }
5985
5986 Instruction *IP =
5987 AI.MoveAllocaIntoEntry ? &F->getEntryBlock().front() : AI.CB;
5988
5989 Align Alignment(1);
5990 if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5991 Alignment = std::max(Alignment, *RetAlign);
5992 if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
5993 Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
5994 assert(AlignmentAPI && AlignmentAPI.value().getZExtValue() > 0 &&
5995 "Expected an alignment during manifest!");
5996 Alignment = std::max(
5997 Alignment, assumeAligned(AlignmentAPI.value().getZExtValue()));
5998 }
5999
6000 // TODO: Hoist the alloca towards the function entry.
6001 unsigned AS = DL.getAllocaAddrSpace();
6002 Instruction *Alloca =
6003 new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
6004 AI.CB->getName() + ".h2s", IP);
6005
6006 if (Alloca->getType() != AI.CB->getType())
6007 Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6008 Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6009
6010 auto *I8Ty = Type::getInt8Ty(F->getContext());
6011 auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6012 assert(InitVal &&
6013 "Must be able to materialize initial memory state of allocation");
6014
6015 A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
6016
6017 if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6018 auto *NBB = II->getNormalDest();
6019 BranchInst::Create(NBB, AI.CB->getParent());
6020 A.deleteAfterManifest(*AI.CB);
6021 } else {
6022 A.deleteAfterManifest(*AI.CB);
6023 }
6024
6025 // Initialize the alloca with the same value as used by the allocation
6026 // function. We can skip undef as the initial value of an alloc is
6027 // undef, and the memset would simply end up being DSEd.
6028 if (!isa<UndefValue>(InitVal)) {
6029 IRBuilder<> Builder(Alloca->getNextNode());
6030 // TODO: Use alignment above if align!=1
6031 Builder.CreateMemSet(Alloca, InitVal, Size, None);
6032 }
6033 HasChanged = ChangeStatus::CHANGED;
6034 }
6035
6036 return HasChanged;
6037 }
6038
getAPInt__anon26093b6c4a11::AAHeapToStackFunction6039 Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6040 Value &V) {
6041 bool UsedAssumedInformation = false;
6042 Optional<Constant *> SimpleV =
6043 A.getAssumedConstant(V, AA, UsedAssumedInformation);
6044 if (!SimpleV)
6045 return APInt(64, 0);
6046 if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.value()))
6047 return CI->getValue();
6048 return llvm::None;
6049 }
6050
getSize__anon26093b6c4a11::AAHeapToStackFunction6051 Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6052 AllocationInfo &AI) {
6053 auto Mapper = [&](const Value *V) -> const Value * {
6054 bool UsedAssumedInformation = false;
6055 if (Optional<Constant *> SimpleV =
6056 A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6057 if (*SimpleV)
6058 return *SimpleV;
6059 return V;
6060 };
6061
6062 const Function *F = getAnchorScope();
6063 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6064 return getAllocSize(AI.CB, TLI, Mapper);
6065 }
6066
6067 /// Collection of all malloc-like calls in a function with associated
6068 /// information.
6069 MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6070
6071 /// Collection of all free-like calls in a function with associated
6072 /// information.
6073 MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6074
6075 ChangeStatus updateImpl(Attributor &A) override;
6076 };
6077
updateImpl(Attributor & A)6078 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6079 ChangeStatus Changed = ChangeStatus::UNCHANGED;
6080 const Function *F = getAnchorScope();
6081 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6082
6083 const auto &LivenessAA =
6084 A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6085
6086 MustBeExecutedContextExplorer &Explorer =
6087 A.getInfoCache().getMustBeExecutedContextExplorer();
6088
6089 bool StackIsAccessibleByOtherThreads =
6090 A.getInfoCache().stackIsAccessibleByOtherThreads();
6091
6092 LoopInfo *LI =
6093 A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
6094 Optional<bool> MayContainIrreducibleControl;
6095 auto IsInLoop = [&](BasicBlock &BB) {
6096 if (&F->getEntryBlock() == &BB)
6097 return false;
6098 if (!MayContainIrreducibleControl.has_value())
6099 MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
6100 if (MayContainIrreducibleControl.value())
6101 return true;
6102 if (!LI)
6103 return true;
6104 return LI->getLoopFor(&BB) != nullptr;
6105 };
6106
6107 // Flag to ensure we update our deallocation information at most once per
6108 // updateImpl call and only if we use the free check reasoning.
6109 bool HasUpdatedFrees = false;
6110
6111 auto UpdateFrees = [&]() {
6112 HasUpdatedFrees = true;
6113
6114 for (auto &It : DeallocationInfos) {
6115 DeallocationInfo &DI = *It.second;
6116 // For now we cannot use deallocations that have unknown inputs, skip
6117 // them.
6118 if (DI.MightFreeUnknownObjects)
6119 continue;
6120
6121 // No need to analyze dead calls, ignore them instead.
6122 bool UsedAssumedInformation = false;
6123 if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6124 /* CheckBBLivenessOnly */ true))
6125 continue;
6126
6127 // Use the non-optimistic version to get the freed object.
6128 Value *Obj = getUnderlyingObject(DI.FreedOp);
6129 if (!Obj) {
6130 LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
6131 DI.MightFreeUnknownObjects = true;
6132 continue;
6133 }
6134
6135 // Free of null and undef can be ignored as no-ops (or UB in the latter
6136 // case).
6137 if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6138 continue;
6139
6140 CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6141 if (!ObjCB) {
6142 LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
6143 << "\n");
6144 DI.MightFreeUnknownObjects = true;
6145 continue;
6146 }
6147
6148 AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6149 if (!AI) {
6150 LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6151 << "\n");
6152 DI.MightFreeUnknownObjects = true;
6153 continue;
6154 }
6155
6156 DI.PotentialAllocationCalls.insert(ObjCB);
6157 }
6158 };
6159
6160 auto FreeCheck = [&](AllocationInfo &AI) {
6161 // If the stack is not accessible by other threads, the "must-free" logic
6162 // doesn't apply as the pointer could be shared and needs to be places in
6163 // "shareable" memory.
6164 if (!StackIsAccessibleByOtherThreads) {
6165 auto &NoSyncAA =
6166 A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6167 if (!NoSyncAA.isAssumedNoSync()) {
6168 LLVM_DEBUG(
6169 dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6170 "other threads and function is not nosync:\n");
6171 return false;
6172 }
6173 }
6174 if (!HasUpdatedFrees)
6175 UpdateFrees();
6176
6177 // TODO: Allow multi exit functions that have different free calls.
6178 if (AI.PotentialFreeCalls.size() != 1) {
6179 LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6180 << AI.PotentialFreeCalls.size() << "\n");
6181 return false;
6182 }
6183 CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6184 DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6185 if (!DI) {
6186 LLVM_DEBUG(
6187 dbgs() << "[H2S] unique free call was not known as deallocation call "
6188 << *UniqueFree << "\n");
6189 return false;
6190 }
6191 if (DI->MightFreeUnknownObjects) {
6192 LLVM_DEBUG(
6193 dbgs() << "[H2S] unique free call might free unknown allocations\n");
6194 return false;
6195 }
6196 if (DI->PotentialAllocationCalls.empty())
6197 return true;
6198 if (DI->PotentialAllocationCalls.size() > 1) {
6199 LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6200 << DI->PotentialAllocationCalls.size()
6201 << " different allocations\n");
6202 return false;
6203 }
6204 if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6205 LLVM_DEBUG(
6206 dbgs()
6207 << "[H2S] unique free call not known to free this allocation but "
6208 << **DI->PotentialAllocationCalls.begin() << "\n");
6209 return false;
6210 }
6211 Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6212 if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6213 LLVM_DEBUG(
6214 dbgs()
6215 << "[H2S] unique free call might not be executed with the allocation "
6216 << *UniqueFree << "\n");
6217 return false;
6218 }
6219 return true;
6220 };
6221
6222 auto UsesCheck = [&](AllocationInfo &AI) {
6223 bool ValidUsesOnly = true;
6224
6225 auto Pred = [&](const Use &U, bool &Follow) -> bool {
6226 Instruction *UserI = cast<Instruction>(U.getUser());
6227 if (isa<LoadInst>(UserI))
6228 return true;
6229 if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6230 if (SI->getValueOperand() == U.get()) {
6231 LLVM_DEBUG(dbgs()
6232 << "[H2S] escaping store to memory: " << *UserI << "\n");
6233 ValidUsesOnly = false;
6234 } else {
6235 // A store into the malloc'ed memory is fine.
6236 }
6237 return true;
6238 }
6239 if (auto *CB = dyn_cast<CallBase>(UserI)) {
6240 if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6241 return true;
6242 if (DeallocationInfos.count(CB)) {
6243 AI.PotentialFreeCalls.insert(CB);
6244 return true;
6245 }
6246
6247 unsigned ArgNo = CB->getArgOperandNo(&U);
6248
6249 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6250 *this, IRPosition::callsite_argument(*CB, ArgNo),
6251 DepClassTy::OPTIONAL);
6252
6253 // If a call site argument use is nofree, we are fine.
6254 const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6255 *this, IRPosition::callsite_argument(*CB, ArgNo),
6256 DepClassTy::OPTIONAL);
6257
6258 bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6259 bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6260 if (MaybeCaptured ||
6261 (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6262 MaybeFreed)) {
6263 AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6264
6265 // Emit a missed remark if this is missed OpenMP globalization.
6266 auto Remark = [&](OptimizationRemarkMissed ORM) {
6267 return ORM
6268 << "Could not move globalized variable to the stack. "
6269 "Variable is potentially captured in call. Mark "
6270 "parameter as `__attribute__((noescape))` to override.";
6271 };
6272
6273 if (ValidUsesOnly &&
6274 AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6275 A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6276
6277 LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6278 ValidUsesOnly = false;
6279 }
6280 return true;
6281 }
6282
6283 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6284 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6285 Follow = true;
6286 return true;
6287 }
6288 // Unknown user for which we can not track uses further (in a way that
6289 // makes sense).
6290 LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6291 ValidUsesOnly = false;
6292 return true;
6293 };
6294 if (!A.checkForAllUses(Pred, *this, *AI.CB))
6295 return false;
6296 return ValidUsesOnly;
6297 };
6298
6299 // The actual update starts here. We look at all allocations and depending on
6300 // their status perform the appropriate check(s).
6301 for (auto &It : AllocationInfos) {
6302 AllocationInfo &AI = *It.second;
6303 if (AI.Status == AllocationInfo::INVALID)
6304 continue;
6305
6306 if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6307 Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6308 if (!APAlign) {
6309 // Can't generate an alloca which respects the required alignment
6310 // on the allocation.
6311 LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6312 << "\n");
6313 AI.Status = AllocationInfo::INVALID;
6314 Changed = ChangeStatus::CHANGED;
6315 continue;
6316 }
6317 if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
6318 !APAlign->isPowerOf2()) {
6319 LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
6320 << "\n");
6321 AI.Status = AllocationInfo::INVALID;
6322 Changed = ChangeStatus::CHANGED;
6323 continue;
6324 }
6325 }
6326
6327 Optional<APInt> Size = getSize(A, *this, AI);
6328 if (MaxHeapToStackSize != -1) {
6329 if (!Size || Size.value().ugt(MaxHeapToStackSize)) {
6330 LLVM_DEBUG({
6331 if (!Size)
6332 dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6333 else
6334 dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6335 << MaxHeapToStackSize << "\n";
6336 });
6337
6338 AI.Status = AllocationInfo::INVALID;
6339 Changed = ChangeStatus::CHANGED;
6340 continue;
6341 }
6342 }
6343
6344 switch (AI.Status) {
6345 case AllocationInfo::STACK_DUE_TO_USE:
6346 if (UsesCheck(AI))
6347 break;
6348 AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6349 LLVM_FALLTHROUGH;
6350 case AllocationInfo::STACK_DUE_TO_FREE:
6351 if (FreeCheck(AI))
6352 break;
6353 AI.Status = AllocationInfo::INVALID;
6354 Changed = ChangeStatus::CHANGED;
6355 break;
6356 case AllocationInfo::INVALID:
6357 llvm_unreachable("Invalid allocations should never reach this point!");
6358 };
6359
6360 // Check if we still think we can move it into the entry block.
6361 if (AI.MoveAllocaIntoEntry &&
6362 (!Size.has_value() || IsInLoop(*AI.CB->getParent())))
6363 AI.MoveAllocaIntoEntry = false;
6364 }
6365
6366 return Changed;
6367 }
6368 } // namespace
6369
6370 /// ----------------------- Privatizable Pointers ------------------------------
6371 namespace {
6372 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
AAPrivatizablePtrImpl__anon26093b6c5611::AAPrivatizablePtrImpl6373 AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6374 : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6375
indicatePessimisticFixpoint__anon26093b6c5611::AAPrivatizablePtrImpl6376 ChangeStatus indicatePessimisticFixpoint() override {
6377 AAPrivatizablePtr::indicatePessimisticFixpoint();
6378 PrivatizableType = nullptr;
6379 return ChangeStatus::CHANGED;
6380 }
6381
6382 /// Identify the type we can chose for a private copy of the underlying
6383 /// argument. None means it is not clear yet, nullptr means there is none.
6384 virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6385
6386 /// Return a privatizable type that encloses both T0 and T1.
6387 /// TODO: This is merely a stub for now as we should manage a mapping as well.
combineTypes__anon26093b6c5611::AAPrivatizablePtrImpl6388 Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6389 if (!T0)
6390 return T1;
6391 if (!T1)
6392 return T0;
6393 if (T0 == T1)
6394 return T0;
6395 return nullptr;
6396 }
6397
getPrivatizableType__anon26093b6c5611::AAPrivatizablePtrImpl6398 Optional<Type *> getPrivatizableType() const override {
6399 return PrivatizableType;
6400 }
6401
getAsStr__anon26093b6c5611::AAPrivatizablePtrImpl6402 const std::string getAsStr() const override {
6403 return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6404 }
6405
6406 protected:
6407 Optional<Type *> PrivatizableType;
6408 };
6409
6410 // TODO: Do this for call site arguments (probably also other values) as well.
6411
6412 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
AAPrivatizablePtrArgument__anon26093b6c5611::AAPrivatizablePtrArgument6413 AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6414 : AAPrivatizablePtrImpl(IRP, A) {}
6415
6416 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
identifyPrivatizableType__anon26093b6c5611::AAPrivatizablePtrArgument6417 Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6418 // If this is a byval argument and we know all the call sites (so we can
6419 // rewrite them), there is no need to check them explicitly.
6420 bool UsedAssumedInformation = false;
6421 SmallVector<Attribute, 1> Attrs;
6422 getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
6423 if (!Attrs.empty() &&
6424 A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6425 true, UsedAssumedInformation))
6426 return Attrs[0].getValueAsType();
6427
6428 Optional<Type *> Ty;
6429 unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6430
6431 // Make sure the associated call site argument has the same type at all call
6432 // sites and it is an allocation we know is safe to privatize, for now that
6433 // means we only allow alloca instructions.
6434 // TODO: We can additionally analyze the accesses in the callee to create
6435 // the type from that information instead. That is a little more
6436 // involved and will be done in a follow up patch.
6437 auto CallSiteCheck = [&](AbstractCallSite ACS) {
6438 IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6439 // Check if a coresponding argument was found or if it is one not
6440 // associated (which can happen for callback calls).
6441 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6442 return false;
6443
6444 // Check that all call sites agree on a type.
6445 auto &PrivCSArgAA =
6446 A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6447 Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6448
6449 LLVM_DEBUG({
6450 dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6451 if (CSTy && CSTy.value())
6452 CSTy.value()->print(dbgs());
6453 else if (CSTy)
6454 dbgs() << "<nullptr>";
6455 else
6456 dbgs() << "<none>";
6457 });
6458
6459 Ty = combineTypes(Ty, CSTy);
6460
6461 LLVM_DEBUG({
6462 dbgs() << " : New Type: ";
6463 if (Ty && Ty.value())
6464 Ty.value()->print(dbgs());
6465 else if (Ty)
6466 dbgs() << "<nullptr>";
6467 else
6468 dbgs() << "<none>";
6469 dbgs() << "\n";
6470 });
6471
6472 return !Ty || Ty.value();
6473 };
6474
6475 if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6476 UsedAssumedInformation))
6477 return nullptr;
6478 return Ty;
6479 }
6480
6481 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c5611::AAPrivatizablePtrArgument6482 ChangeStatus updateImpl(Attributor &A) override {
6483 PrivatizableType = identifyPrivatizableType(A);
6484 if (!PrivatizableType)
6485 return ChangeStatus::UNCHANGED;
6486 if (!PrivatizableType.value())
6487 return indicatePessimisticFixpoint();
6488
6489 // The dependence is optional so we don't give up once we give up on the
6490 // alignment.
6491 A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6492 DepClassTy::OPTIONAL);
6493
6494 // Avoid arguments with padding for now.
6495 if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6496 !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
6497 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6498 return indicatePessimisticFixpoint();
6499 }
6500
6501 // Collect the types that will replace the privatizable type in the function
6502 // signature.
6503 SmallVector<Type *, 16> ReplacementTypes;
6504 identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6505
6506 // Verify callee and caller agree on how the promoted argument would be
6507 // passed.
6508 Function &Fn = *getIRPosition().getAnchorScope();
6509 const auto *TTI =
6510 A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6511 if (!TTI) {
6512 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6513 << Fn.getName() << "\n");
6514 return indicatePessimisticFixpoint();
6515 }
6516
6517 auto CallSiteCheck = [&](AbstractCallSite ACS) {
6518 CallBase *CB = ACS.getInstruction();
6519 return TTI->areTypesABICompatible(
6520 CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6521 };
6522 bool UsedAssumedInformation = false;
6523 if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6524 UsedAssumedInformation)) {
6525 LLVM_DEBUG(
6526 dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6527 << Fn.getName() << "\n");
6528 return indicatePessimisticFixpoint();
6529 }
6530
6531 // Register a rewrite of the argument.
6532 Argument *Arg = getAssociatedArgument();
6533 if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6534 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6535 return indicatePessimisticFixpoint();
6536 }
6537
6538 unsigned ArgNo = Arg->getArgNo();
6539
6540 // Helper to check if for the given call site the associated argument is
6541 // passed to a callback where the privatization would be different.
6542 auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6543 SmallVector<const Use *, 4> CallbackUses;
6544 AbstractCallSite::getCallbackUses(CB, CallbackUses);
6545 for (const Use *U : CallbackUses) {
6546 AbstractCallSite CBACS(U);
6547 assert(CBACS && CBACS.isCallbackCall());
6548 for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6549 int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6550
6551 LLVM_DEBUG({
6552 dbgs()
6553 << "[AAPrivatizablePtr] Argument " << *Arg
6554 << "check if can be privatized in the context of its parent ("
6555 << Arg->getParent()->getName()
6556 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6557 "callback ("
6558 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6559 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6560 << CBACS.getCallArgOperand(CBArg) << " vs "
6561 << CB.getArgOperand(ArgNo) << "\n"
6562 << "[AAPrivatizablePtr] " << CBArg << " : "
6563 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6564 });
6565
6566 if (CBArgNo != int(ArgNo))
6567 continue;
6568 const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6569 *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6570 if (CBArgPrivAA.isValidState()) {
6571 auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6572 if (!CBArgPrivTy)
6573 continue;
6574 if (CBArgPrivTy.value() == PrivatizableType)
6575 continue;
6576 }
6577
6578 LLVM_DEBUG({
6579 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6580 << " cannot be privatized in the context of its parent ("
6581 << Arg->getParent()->getName()
6582 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6583 "callback ("
6584 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6585 << ").\n[AAPrivatizablePtr] for which the argument "
6586 "privatization is not compatible.\n";
6587 });
6588 return false;
6589 }
6590 }
6591 return true;
6592 };
6593
6594 // Helper to check if for the given call site the associated argument is
6595 // passed to a direct call where the privatization would be different.
6596 auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6597 CallBase *DC = cast<CallBase>(ACS.getInstruction());
6598 int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6599 assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6600 "Expected a direct call operand for callback call operand");
6601
6602 LLVM_DEBUG({
6603 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6604 << " check if be privatized in the context of its parent ("
6605 << Arg->getParent()->getName()
6606 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6607 "direct call of ("
6608 << DCArgNo << "@" << DC->getCalledFunction()->getName()
6609 << ").\n";
6610 });
6611
6612 Function *DCCallee = DC->getCalledFunction();
6613 if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6614 const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6615 *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6616 DepClassTy::REQUIRED);
6617 if (DCArgPrivAA.isValidState()) {
6618 auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6619 if (!DCArgPrivTy)
6620 return true;
6621 if (DCArgPrivTy.value() == PrivatizableType)
6622 return true;
6623 }
6624 }
6625
6626 LLVM_DEBUG({
6627 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6628 << " cannot be privatized in the context of its parent ("
6629 << Arg->getParent()->getName()
6630 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6631 "direct call of ("
6632 << ACS.getInstruction()->getCalledFunction()->getName()
6633 << ").\n[AAPrivatizablePtr] for which the argument "
6634 "privatization is not compatible.\n";
6635 });
6636 return false;
6637 };
6638
6639 // Helper to check if the associated argument is used at the given abstract
6640 // call site in a way that is incompatible with the privatization assumed
6641 // here.
6642 auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6643 if (ACS.isDirectCall())
6644 return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6645 if (ACS.isCallbackCall())
6646 return IsCompatiblePrivArgOfDirectCS(ACS);
6647 return false;
6648 };
6649
6650 if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6651 UsedAssumedInformation))
6652 return indicatePessimisticFixpoint();
6653
6654 return ChangeStatus::UNCHANGED;
6655 }
6656
6657 /// Given a type to private \p PrivType, collect the constituates (which are
6658 /// used) in \p ReplacementTypes.
6659 static void
identifyReplacementTypes__anon26093b6c5611::AAPrivatizablePtrArgument6660 identifyReplacementTypes(Type *PrivType,
6661 SmallVectorImpl<Type *> &ReplacementTypes) {
6662 // TODO: For now we expand the privatization type to the fullest which can
6663 // lead to dead arguments that need to be removed later.
6664 assert(PrivType && "Expected privatizable type!");
6665
6666 // Traverse the type, extract constituate types on the outermost level.
6667 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6668 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6669 ReplacementTypes.push_back(PrivStructType->getElementType(u));
6670 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6671 ReplacementTypes.append(PrivArrayType->getNumElements(),
6672 PrivArrayType->getElementType());
6673 } else {
6674 ReplacementTypes.push_back(PrivType);
6675 }
6676 }
6677
6678 /// Initialize \p Base according to the type \p PrivType at position \p IP.
6679 /// The values needed are taken from the arguments of \p F starting at
6680 /// position \p ArgNo.
createInitialization__anon26093b6c5611::AAPrivatizablePtrArgument6681 static void createInitialization(Type *PrivType, Value &Base, Function &F,
6682 unsigned ArgNo, Instruction &IP) {
6683 assert(PrivType && "Expected privatizable type!");
6684
6685 IRBuilder<NoFolder> IRB(&IP);
6686 const DataLayout &DL = F.getParent()->getDataLayout();
6687
6688 // Traverse the type, build GEPs and stores.
6689 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6690 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6691 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6692 Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6693 Value *Ptr =
6694 constructPointer(PointeeTy, PrivType, &Base,
6695 PrivStructLayout->getElementOffset(u), IRB, DL);
6696 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6697 }
6698 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6699 Type *PointeeTy = PrivArrayType->getElementType();
6700 Type *PointeePtrTy = PointeeTy->getPointerTo();
6701 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6702 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6703 Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6704 u * PointeeTySize, IRB, DL);
6705 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6706 }
6707 } else {
6708 new StoreInst(F.getArg(ArgNo), &Base, &IP);
6709 }
6710 }
6711
6712 /// Extract values from \p Base according to the type \p PrivType at the
6713 /// call position \p ACS. The values are appended to \p ReplacementValues.
createReplacementValues__anon26093b6c5611::AAPrivatizablePtrArgument6714 void createReplacementValues(Align Alignment, Type *PrivType,
6715 AbstractCallSite ACS, Value *Base,
6716 SmallVectorImpl<Value *> &ReplacementValues) {
6717 assert(Base && "Expected base value!");
6718 assert(PrivType && "Expected privatizable type!");
6719 Instruction *IP = ACS.getInstruction();
6720
6721 IRBuilder<NoFolder> IRB(IP);
6722 const DataLayout &DL = IP->getModule()->getDataLayout();
6723
6724 Type *PrivPtrType = PrivType->getPointerTo();
6725 if (Base->getType() != PrivPtrType)
6726 Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6727 Base, PrivPtrType, "", ACS.getInstruction());
6728
6729 // Traverse the type, build GEPs and loads.
6730 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6731 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6732 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6733 Type *PointeeTy = PrivStructType->getElementType(u);
6734 Value *Ptr =
6735 constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6736 PrivStructLayout->getElementOffset(u), IRB, DL);
6737 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6738 L->setAlignment(Alignment);
6739 ReplacementValues.push_back(L);
6740 }
6741 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6742 Type *PointeeTy = PrivArrayType->getElementType();
6743 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6744 Type *PointeePtrTy = PointeeTy->getPointerTo();
6745 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6746 Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6747 u * PointeeTySize, IRB, DL);
6748 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6749 L->setAlignment(Alignment);
6750 ReplacementValues.push_back(L);
6751 }
6752 } else {
6753 LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6754 L->setAlignment(Alignment);
6755 ReplacementValues.push_back(L);
6756 }
6757 }
6758
6759 /// See AbstractAttribute::manifest(...)
manifest__anon26093b6c5611::AAPrivatizablePtrArgument6760 ChangeStatus manifest(Attributor &A) override {
6761 if (!PrivatizableType)
6762 return ChangeStatus::UNCHANGED;
6763 assert(PrivatizableType.value() && "Expected privatizable type!");
6764
6765 // Collect all tail calls in the function as we cannot allow new allocas to
6766 // escape into tail recursion.
6767 // TODO: Be smarter about new allocas escaping into tail calls.
6768 SmallVector<CallInst *, 16> TailCalls;
6769 bool UsedAssumedInformation = false;
6770 if (!A.checkForAllInstructions(
6771 [&](Instruction &I) {
6772 CallInst &CI = cast<CallInst>(I);
6773 if (CI.isTailCall())
6774 TailCalls.push_back(&CI);
6775 return true;
6776 },
6777 *this, {Instruction::Call}, UsedAssumedInformation))
6778 return ChangeStatus::UNCHANGED;
6779
6780 Argument *Arg = getAssociatedArgument();
6781 // Query AAAlign attribute for alignment of associated argument to
6782 // determine the best alignment of loads.
6783 const auto &AlignAA =
6784 A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6785
6786 // Callback to repair the associated function. A new alloca is placed at the
6787 // beginning and initialized with the values passed through arguments. The
6788 // new alloca replaces the use of the old pointer argument.
6789 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6790 [=](const Attributor::ArgumentReplacementInfo &ARI,
6791 Function &ReplacementFn, Function::arg_iterator ArgIt) {
6792 BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6793 Instruction *IP = &*EntryBB.getFirstInsertionPt();
6794 const DataLayout &DL = IP->getModule()->getDataLayout();
6795 unsigned AS = DL.getAllocaAddrSpace();
6796 Instruction *AI = new AllocaInst(PrivatizableType.value(), AS,
6797 Arg->getName() + ".priv", IP);
6798 createInitialization(PrivatizableType.value(), *AI, ReplacementFn,
6799 ArgIt->getArgNo(), *IP);
6800
6801 if (AI->getType() != Arg->getType())
6802 AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6803 AI, Arg->getType(), "", IP);
6804 Arg->replaceAllUsesWith(AI);
6805
6806 for (CallInst *CI : TailCalls)
6807 CI->setTailCall(false);
6808 };
6809
6810 // Callback to repair a call site of the associated function. The elements
6811 // of the privatizable type are loaded prior to the call and passed to the
6812 // new function version.
6813 Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6814 [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6815 AbstractCallSite ACS,
6816 SmallVectorImpl<Value *> &NewArgOperands) {
6817 // When no alignment is specified for the load instruction,
6818 // natural alignment is assumed.
6819 createReplacementValues(
6820 AlignAA.getAssumedAlign(), *PrivatizableType, ACS,
6821 ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6822 NewArgOperands);
6823 };
6824
6825 // Collect the types that will replace the privatizable type in the function
6826 // signature.
6827 SmallVector<Type *, 16> ReplacementTypes;
6828 identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6829
6830 // Register a rewrite of the argument.
6831 if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6832 std::move(FnRepairCB),
6833 std::move(ACSRepairCB)))
6834 return ChangeStatus::CHANGED;
6835 return ChangeStatus::UNCHANGED;
6836 }
6837
6838 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c5611::AAPrivatizablePtrArgument6839 void trackStatistics() const override {
6840 STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6841 }
6842 };
6843
6844 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
AAPrivatizablePtrFloating__anon26093b6c5611::AAPrivatizablePtrFloating6845 AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6846 : AAPrivatizablePtrImpl(IRP, A) {}
6847
6848 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c5611::AAPrivatizablePtrFloating6849 void initialize(Attributor &A) override {
6850 // TODO: We can privatize more than arguments.
6851 indicatePessimisticFixpoint();
6852 }
6853
updateImpl__anon26093b6c5611::AAPrivatizablePtrFloating6854 ChangeStatus updateImpl(Attributor &A) override {
6855 llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6856 "updateImpl will not be called");
6857 }
6858
6859 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
identifyPrivatizableType__anon26093b6c5611::AAPrivatizablePtrFloating6860 Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6861 Value *Obj = getUnderlyingObject(&getAssociatedValue());
6862 if (!Obj) {
6863 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6864 return nullptr;
6865 }
6866
6867 if (auto *AI = dyn_cast<AllocaInst>(Obj))
6868 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6869 if (CI->isOne())
6870 return AI->getAllocatedType();
6871 if (auto *Arg = dyn_cast<Argument>(Obj)) {
6872 auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6873 *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6874 if (PrivArgAA.isAssumedPrivatizablePtr())
6875 return PrivArgAA.getPrivatizableType();
6876 }
6877
6878 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6879 "alloca nor privatizable argument: "
6880 << *Obj << "!\n");
6881 return nullptr;
6882 }
6883
6884 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c5611::AAPrivatizablePtrFloating6885 void trackStatistics() const override {
6886 STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6887 }
6888 };
6889
6890 struct AAPrivatizablePtrCallSiteArgument final
6891 : public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteArgument__anon26093b6c5611::AAPrivatizablePtrCallSiteArgument6892 AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6893 : AAPrivatizablePtrFloating(IRP, A) {}
6894
6895 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c5611::AAPrivatizablePtrCallSiteArgument6896 void initialize(Attributor &A) override {
6897 if (getIRPosition().hasAttr(Attribute::ByVal))
6898 indicateOptimisticFixpoint();
6899 }
6900
6901 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c5611::AAPrivatizablePtrCallSiteArgument6902 ChangeStatus updateImpl(Attributor &A) override {
6903 PrivatizableType = identifyPrivatizableType(A);
6904 if (!PrivatizableType)
6905 return ChangeStatus::UNCHANGED;
6906 if (!PrivatizableType.value())
6907 return indicatePessimisticFixpoint();
6908
6909 const IRPosition &IRP = getIRPosition();
6910 auto &NoCaptureAA =
6911 A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6912 if (!NoCaptureAA.isAssumedNoCapture()) {
6913 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6914 return indicatePessimisticFixpoint();
6915 }
6916
6917 auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6918 if (!NoAliasAA.isAssumedNoAlias()) {
6919 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6920 return indicatePessimisticFixpoint();
6921 }
6922
6923 bool IsKnown;
6924 if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
6925 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6926 return indicatePessimisticFixpoint();
6927 }
6928
6929 return ChangeStatus::UNCHANGED;
6930 }
6931
6932 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c5611::AAPrivatizablePtrCallSiteArgument6933 void trackStatistics() const override {
6934 STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6935 }
6936 };
6937
6938 struct AAPrivatizablePtrCallSiteReturned final
6939 : public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteReturned__anon26093b6c5611::AAPrivatizablePtrCallSiteReturned6940 AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6941 : AAPrivatizablePtrFloating(IRP, A) {}
6942
6943 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c5611::AAPrivatizablePtrCallSiteReturned6944 void initialize(Attributor &A) override {
6945 // TODO: We can privatize more than arguments.
6946 indicatePessimisticFixpoint();
6947 }
6948
6949 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c5611::AAPrivatizablePtrCallSiteReturned6950 void trackStatistics() const override {
6951 STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6952 }
6953 };
6954
6955 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
AAPrivatizablePtrReturned__anon26093b6c5611::AAPrivatizablePtrReturned6956 AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6957 : AAPrivatizablePtrFloating(IRP, A) {}
6958
6959 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c5611::AAPrivatizablePtrReturned6960 void initialize(Attributor &A) override {
6961 // TODO: We can privatize more than arguments.
6962 indicatePessimisticFixpoint();
6963 }
6964
6965 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c5611::AAPrivatizablePtrReturned6966 void trackStatistics() const override {
6967 STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6968 }
6969 };
6970 } // namespace
6971
6972 /// -------------------- Memory Behavior Attributes ----------------------------
6973 /// Includes read-none, read-only, and write-only.
6974 /// ----------------------------------------------------------------------------
6975 namespace {
6976 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
AAMemoryBehaviorImpl__anon26093b6c6111::AAMemoryBehaviorImpl6977 AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6978 : AAMemoryBehavior(IRP, A) {}
6979
6980 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6111::AAMemoryBehaviorImpl6981 void initialize(Attributor &A) override {
6982 intersectAssumedBits(BEST_STATE);
6983 getKnownStateFromValue(getIRPosition(), getState());
6984 AAMemoryBehavior::initialize(A);
6985 }
6986
6987 /// Return the memory behavior information encoded in the IR for \p IRP.
getKnownStateFromValue__anon26093b6c6111::AAMemoryBehaviorImpl6988 static void getKnownStateFromValue(const IRPosition &IRP,
6989 BitIntegerState &State,
6990 bool IgnoreSubsumingPositions = false) {
6991 SmallVector<Attribute, 2> Attrs;
6992 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6993 for (const Attribute &Attr : Attrs) {
6994 switch (Attr.getKindAsEnum()) {
6995 case Attribute::ReadNone:
6996 State.addKnownBits(NO_ACCESSES);
6997 break;
6998 case Attribute::ReadOnly:
6999 State.addKnownBits(NO_WRITES);
7000 break;
7001 case Attribute::WriteOnly:
7002 State.addKnownBits(NO_READS);
7003 break;
7004 default:
7005 llvm_unreachable("Unexpected attribute!");
7006 }
7007 }
7008
7009 if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7010 if (!I->mayReadFromMemory())
7011 State.addKnownBits(NO_READS);
7012 if (!I->mayWriteToMemory())
7013 State.addKnownBits(NO_WRITES);
7014 }
7015 }
7016
7017 /// See AbstractAttribute::getDeducedAttributes(...).
getDeducedAttributes__anon26093b6c6111::AAMemoryBehaviorImpl7018 void getDeducedAttributes(LLVMContext &Ctx,
7019 SmallVectorImpl<Attribute> &Attrs) const override {
7020 assert(Attrs.size() == 0);
7021 if (isAssumedReadNone())
7022 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7023 else if (isAssumedReadOnly())
7024 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7025 else if (isAssumedWriteOnly())
7026 Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7027 assert(Attrs.size() <= 1);
7028 }
7029
7030 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c6111::AAMemoryBehaviorImpl7031 ChangeStatus manifest(Attributor &A) override {
7032 if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7033 return ChangeStatus::UNCHANGED;
7034
7035 const IRPosition &IRP = getIRPosition();
7036
7037 // Check if we would improve the existing attributes first.
7038 SmallVector<Attribute, 4> DeducedAttrs;
7039 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7040 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7041 return IRP.hasAttr(Attr.getKindAsEnum(),
7042 /* IgnoreSubsumingPositions */ true);
7043 }))
7044 return ChangeStatus::UNCHANGED;
7045
7046 // Clear existing attributes.
7047 IRP.removeAttrs(AttrKinds);
7048
7049 // Use the generic manifest method.
7050 return IRAttribute::manifest(A);
7051 }
7052
7053 /// See AbstractState::getAsStr().
getAsStr__anon26093b6c6111::AAMemoryBehaviorImpl7054 const std::string getAsStr() const override {
7055 if (isAssumedReadNone())
7056 return "readnone";
7057 if (isAssumedReadOnly())
7058 return "readonly";
7059 if (isAssumedWriteOnly())
7060 return "writeonly";
7061 return "may-read/write";
7062 }
7063
7064 /// The set of IR attributes AAMemoryBehavior deals with.
7065 static const Attribute::AttrKind AttrKinds[3];
7066 };
7067
7068 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7069 Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7070
7071 /// Memory behavior attribute for a floating value.
7072 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
AAMemoryBehaviorFloating__anon26093b6c6111::AAMemoryBehaviorFloating7073 AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7074 : AAMemoryBehaviorImpl(IRP, A) {}
7075
7076 /// See AbstractAttribute::updateImpl(...).
7077 ChangeStatus updateImpl(Attributor &A) override;
7078
7079 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorFloating7080 void trackStatistics() const override {
7081 if (isAssumedReadNone())
7082 STATS_DECLTRACK_FLOATING_ATTR(readnone)
7083 else if (isAssumedReadOnly())
7084 STATS_DECLTRACK_FLOATING_ATTR(readonly)
7085 else if (isAssumedWriteOnly())
7086 STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7087 }
7088
7089 private:
7090 /// Return true if users of \p UserI might access the underlying
7091 /// variable/location described by \p U and should therefore be analyzed.
7092 bool followUsersOfUseIn(Attributor &A, const Use &U,
7093 const Instruction *UserI);
7094
7095 /// Update the state according to the effect of use \p U in \p UserI.
7096 void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7097 };
7098
7099 /// Memory behavior attribute for function argument.
7100 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
AAMemoryBehaviorArgument__anon26093b6c6111::AAMemoryBehaviorArgument7101 AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7102 : AAMemoryBehaviorFloating(IRP, A) {}
7103
7104 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6111::AAMemoryBehaviorArgument7105 void initialize(Attributor &A) override {
7106 intersectAssumedBits(BEST_STATE);
7107 const IRPosition &IRP = getIRPosition();
7108 // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7109 // can query it when we use has/getAttr. That would allow us to reuse the
7110 // initialize of the base class here.
7111 bool HasByVal =
7112 IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7113 getKnownStateFromValue(IRP, getState(),
7114 /* IgnoreSubsumingPositions */ HasByVal);
7115
7116 // Initialize the use vector with all direct uses of the associated value.
7117 Argument *Arg = getAssociatedArgument();
7118 if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7119 indicatePessimisticFixpoint();
7120 }
7121
manifest__anon26093b6c6111::AAMemoryBehaviorArgument7122 ChangeStatus manifest(Attributor &A) override {
7123 // TODO: Pointer arguments are not supported on vectors of pointers yet.
7124 if (!getAssociatedValue().getType()->isPointerTy())
7125 return ChangeStatus::UNCHANGED;
7126
7127 // TODO: From readattrs.ll: "inalloca parameters are always
7128 // considered written"
7129 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7130 removeKnownBits(NO_WRITES);
7131 removeAssumedBits(NO_WRITES);
7132 }
7133 return AAMemoryBehaviorFloating::manifest(A);
7134 }
7135
7136 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorArgument7137 void trackStatistics() const override {
7138 if (isAssumedReadNone())
7139 STATS_DECLTRACK_ARG_ATTR(readnone)
7140 else if (isAssumedReadOnly())
7141 STATS_DECLTRACK_ARG_ATTR(readonly)
7142 else if (isAssumedWriteOnly())
7143 STATS_DECLTRACK_ARG_ATTR(writeonly)
7144 }
7145 };
7146
7147 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
AAMemoryBehaviorCallSiteArgument__anon26093b6c6111::AAMemoryBehaviorCallSiteArgument7148 AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7149 : AAMemoryBehaviorArgument(IRP, A) {}
7150
7151 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6111::AAMemoryBehaviorCallSiteArgument7152 void initialize(Attributor &A) override {
7153 // If we don't have an associated attribute this is either a variadic call
7154 // or an indirect call, either way, nothing to do here.
7155 Argument *Arg = getAssociatedArgument();
7156 if (!Arg) {
7157 indicatePessimisticFixpoint();
7158 return;
7159 }
7160 if (Arg->hasByValAttr()) {
7161 addKnownBits(NO_WRITES);
7162 removeKnownBits(NO_READS);
7163 removeAssumedBits(NO_READS);
7164 }
7165 AAMemoryBehaviorArgument::initialize(A);
7166 if (getAssociatedFunction()->isDeclaration())
7167 indicatePessimisticFixpoint();
7168 }
7169
7170 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6111::AAMemoryBehaviorCallSiteArgument7171 ChangeStatus updateImpl(Attributor &A) override {
7172 // TODO: Once we have call site specific value information we can provide
7173 // call site specific liveness liveness information and then it makes
7174 // sense to specialize attributes for call sites arguments instead of
7175 // redirecting requests to the callee argument.
7176 Argument *Arg = getAssociatedArgument();
7177 const IRPosition &ArgPos = IRPosition::argument(*Arg);
7178 auto &ArgAA =
7179 A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7180 return clampStateAndIndicateChange(getState(), ArgAA.getState());
7181 }
7182
7183 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorCallSiteArgument7184 void trackStatistics() const override {
7185 if (isAssumedReadNone())
7186 STATS_DECLTRACK_CSARG_ATTR(readnone)
7187 else if (isAssumedReadOnly())
7188 STATS_DECLTRACK_CSARG_ATTR(readonly)
7189 else if (isAssumedWriteOnly())
7190 STATS_DECLTRACK_CSARG_ATTR(writeonly)
7191 }
7192 };
7193
7194 /// Memory behavior attribute for a call site return position.
7195 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
AAMemoryBehaviorCallSiteReturned__anon26093b6c6111::AAMemoryBehaviorCallSiteReturned7196 AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7197 : AAMemoryBehaviorFloating(IRP, A) {}
7198
7199 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6111::AAMemoryBehaviorCallSiteReturned7200 void initialize(Attributor &A) override {
7201 AAMemoryBehaviorImpl::initialize(A);
7202 Function *F = getAssociatedFunction();
7203 if (!F || F->isDeclaration())
7204 indicatePessimisticFixpoint();
7205 }
7206
7207 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c6111::AAMemoryBehaviorCallSiteReturned7208 ChangeStatus manifest(Attributor &A) override {
7209 // We do not annotate returned values.
7210 return ChangeStatus::UNCHANGED;
7211 }
7212
7213 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorCallSiteReturned7214 void trackStatistics() const override {}
7215 };
7216
7217 /// An AA to represent the memory behavior function attributes.
7218 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
AAMemoryBehaviorFunction__anon26093b6c6111::AAMemoryBehaviorFunction7219 AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7220 : AAMemoryBehaviorImpl(IRP, A) {}
7221
7222 /// See AbstractAttribute::updateImpl(Attributor &A).
7223 ChangeStatus updateImpl(Attributor &A) override;
7224
7225 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c6111::AAMemoryBehaviorFunction7226 ChangeStatus manifest(Attributor &A) override {
7227 Function &F = cast<Function>(getAnchorValue());
7228 if (isAssumedReadNone()) {
7229 F.removeFnAttr(Attribute::ArgMemOnly);
7230 F.removeFnAttr(Attribute::InaccessibleMemOnly);
7231 F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7232 }
7233 return AAMemoryBehaviorImpl::manifest(A);
7234 }
7235
7236 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorFunction7237 void trackStatistics() const override {
7238 if (isAssumedReadNone())
7239 STATS_DECLTRACK_FN_ATTR(readnone)
7240 else if (isAssumedReadOnly())
7241 STATS_DECLTRACK_FN_ATTR(readonly)
7242 else if (isAssumedWriteOnly())
7243 STATS_DECLTRACK_FN_ATTR(writeonly)
7244 }
7245 };
7246
7247 /// AAMemoryBehavior attribute for call sites.
7248 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
AAMemoryBehaviorCallSite__anon26093b6c6111::AAMemoryBehaviorCallSite7249 AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7250 : AAMemoryBehaviorImpl(IRP, A) {}
7251
7252 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6111::AAMemoryBehaviorCallSite7253 void initialize(Attributor &A) override {
7254 AAMemoryBehaviorImpl::initialize(A);
7255 Function *F = getAssociatedFunction();
7256 if (!F || F->isDeclaration())
7257 indicatePessimisticFixpoint();
7258 }
7259
7260 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6111::AAMemoryBehaviorCallSite7261 ChangeStatus updateImpl(Attributor &A) override {
7262 // TODO: Once we have call site specific value information we can provide
7263 // call site specific liveness liveness information and then it makes
7264 // sense to specialize attributes for call sites arguments instead of
7265 // redirecting requests to the callee argument.
7266 Function *F = getAssociatedFunction();
7267 const IRPosition &FnPos = IRPosition::function(*F);
7268 auto &FnAA =
7269 A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7270 return clampStateAndIndicateChange(getState(), FnAA.getState());
7271 }
7272
7273 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6111::AAMemoryBehaviorCallSite7274 void trackStatistics() const override {
7275 if (isAssumedReadNone())
7276 STATS_DECLTRACK_CS_ATTR(readnone)
7277 else if (isAssumedReadOnly())
7278 STATS_DECLTRACK_CS_ATTR(readonly)
7279 else if (isAssumedWriteOnly())
7280 STATS_DECLTRACK_CS_ATTR(writeonly)
7281 }
7282 };
7283
updateImpl(Attributor & A)7284 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7285
7286 // The current assumed state used to determine a change.
7287 auto AssumedState = getAssumed();
7288
7289 auto CheckRWInst = [&](Instruction &I) {
7290 // If the instruction has an own memory behavior state, use it to restrict
7291 // the local state. No further analysis is required as the other memory
7292 // state is as optimistic as it gets.
7293 if (const auto *CB = dyn_cast<CallBase>(&I)) {
7294 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7295 *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7296 intersectAssumedBits(MemBehaviorAA.getAssumed());
7297 return !isAtFixpoint();
7298 }
7299
7300 // Remove access kind modifiers if necessary.
7301 if (I.mayReadFromMemory())
7302 removeAssumedBits(NO_READS);
7303 if (I.mayWriteToMemory())
7304 removeAssumedBits(NO_WRITES);
7305 return !isAtFixpoint();
7306 };
7307
7308 bool UsedAssumedInformation = false;
7309 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7310 UsedAssumedInformation))
7311 return indicatePessimisticFixpoint();
7312
7313 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7314 : ChangeStatus::UNCHANGED;
7315 }
7316
updateImpl(Attributor & A)7317 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7318
7319 const IRPosition &IRP = getIRPosition();
7320 const IRPosition &FnPos = IRPosition::function_scope(IRP);
7321 AAMemoryBehavior::StateType &S = getState();
7322
7323 // First, check the function scope. We take the known information and we avoid
7324 // work if the assumed information implies the current assumed information for
7325 // this attribute. This is a valid for all but byval arguments.
7326 Argument *Arg = IRP.getAssociatedArgument();
7327 AAMemoryBehavior::base_t FnMemAssumedState =
7328 AAMemoryBehavior::StateType::getWorstState();
7329 if (!Arg || !Arg->hasByValAttr()) {
7330 const auto &FnMemAA =
7331 A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7332 FnMemAssumedState = FnMemAA.getAssumed();
7333 S.addKnownBits(FnMemAA.getKnown());
7334 if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7335 return ChangeStatus::UNCHANGED;
7336 }
7337
7338 // The current assumed state used to determine a change.
7339 auto AssumedState = S.getAssumed();
7340
7341 // Make sure the value is not captured (except through "return"), if
7342 // it is, any information derived would be irrelevant anyway as we cannot
7343 // check the potential aliases introduced by the capture. However, no need
7344 // to fall back to anythign less optimistic than the function state.
7345 const auto &ArgNoCaptureAA =
7346 A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7347 if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7348 S.intersectAssumedBits(FnMemAssumedState);
7349 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7350 : ChangeStatus::UNCHANGED;
7351 }
7352
7353 // Visit and expand uses until all are analyzed or a fixpoint is reached.
7354 auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7355 Instruction *UserI = cast<Instruction>(U.getUser());
7356 LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7357 << " \n");
7358
7359 // Droppable users, e.g., llvm::assume does not actually perform any action.
7360 if (UserI->isDroppable())
7361 return true;
7362
7363 // Check if the users of UserI should also be visited.
7364 Follow = followUsersOfUseIn(A, U, UserI);
7365
7366 // If UserI might touch memory we analyze the use in detail.
7367 if (UserI->mayReadOrWriteMemory())
7368 analyzeUseIn(A, U, UserI);
7369
7370 return !isAtFixpoint();
7371 };
7372
7373 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7374 return indicatePessimisticFixpoint();
7375
7376 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7377 : ChangeStatus::UNCHANGED;
7378 }
7379
followUsersOfUseIn(Attributor & A,const Use & U,const Instruction * UserI)7380 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7381 const Instruction *UserI) {
7382 // The loaded value is unrelated to the pointer argument, no need to
7383 // follow the users of the load.
7384 if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
7385 return false;
7386
7387 // By default we follow all uses assuming UserI might leak information on U,
7388 // we have special handling for call sites operands though.
7389 const auto *CB = dyn_cast<CallBase>(UserI);
7390 if (!CB || !CB->isArgOperand(&U))
7391 return true;
7392
7393 // If the use is a call argument known not to be captured, the users of
7394 // the call do not need to be visited because they have to be unrelated to
7395 // the input. Note that this check is not trivial even though we disallow
7396 // general capturing of the underlying argument. The reason is that the
7397 // call might the argument "through return", which we allow and for which we
7398 // need to check call users.
7399 if (U.get()->getType()->isPointerTy()) {
7400 unsigned ArgNo = CB->getArgOperandNo(&U);
7401 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7402 *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7403 return !ArgNoCaptureAA.isAssumedNoCapture();
7404 }
7405
7406 return true;
7407 }
7408
analyzeUseIn(Attributor & A,const Use & U,const Instruction * UserI)7409 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7410 const Instruction *UserI) {
7411 assert(UserI->mayReadOrWriteMemory());
7412
7413 switch (UserI->getOpcode()) {
7414 default:
7415 // TODO: Handle all atomics and other side-effect operations we know of.
7416 break;
7417 case Instruction::Load:
7418 // Loads cause the NO_READS property to disappear.
7419 removeAssumedBits(NO_READS);
7420 return;
7421
7422 case Instruction::Store:
7423 // Stores cause the NO_WRITES property to disappear if the use is the
7424 // pointer operand. Note that while capturing was taken care of somewhere
7425 // else we need to deal with stores of the value that is not looked through.
7426 if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7427 removeAssumedBits(NO_WRITES);
7428 else
7429 indicatePessimisticFixpoint();
7430 return;
7431
7432 case Instruction::Call:
7433 case Instruction::CallBr:
7434 case Instruction::Invoke: {
7435 // For call sites we look at the argument memory behavior attribute (this
7436 // could be recursive!) in order to restrict our own state.
7437 const auto *CB = cast<CallBase>(UserI);
7438
7439 // Give up on operand bundles.
7440 if (CB->isBundleOperand(&U)) {
7441 indicatePessimisticFixpoint();
7442 return;
7443 }
7444
7445 // Calling a function does read the function pointer, maybe write it if the
7446 // function is self-modifying.
7447 if (CB->isCallee(&U)) {
7448 removeAssumedBits(NO_READS);
7449 break;
7450 }
7451
7452 // Adjust the possible access behavior based on the information on the
7453 // argument.
7454 IRPosition Pos;
7455 if (U.get()->getType()->isPointerTy())
7456 Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7457 else
7458 Pos = IRPosition::callsite_function(*CB);
7459 const auto &MemBehaviorAA =
7460 A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7461 // "assumed" has at most the same bits as the MemBehaviorAA assumed
7462 // and at least "known".
7463 intersectAssumedBits(MemBehaviorAA.getAssumed());
7464 return;
7465 }
7466 };
7467
7468 // Generally, look at the "may-properties" and adjust the assumed state if we
7469 // did not trigger special handling before.
7470 if (UserI->mayReadFromMemory())
7471 removeAssumedBits(NO_READS);
7472 if (UserI->mayWriteToMemory())
7473 removeAssumedBits(NO_WRITES);
7474 }
7475 } // namespace
7476
7477 /// -------------------- Memory Locations Attributes ---------------------------
7478 /// Includes read-none, argmemonly, inaccessiblememonly,
7479 /// inaccessiblememorargmemonly
7480 /// ----------------------------------------------------------------------------
7481
getMemoryLocationsAsStr(AAMemoryLocation::MemoryLocationsKind MLK)7482 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7483 AAMemoryLocation::MemoryLocationsKind MLK) {
7484 if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7485 return "all memory";
7486 if (MLK == AAMemoryLocation::NO_LOCATIONS)
7487 return "no memory";
7488 std::string S = "memory:";
7489 if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7490 S += "stack,";
7491 if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7492 S += "constant,";
7493 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7494 S += "internal global,";
7495 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7496 S += "external global,";
7497 if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7498 S += "argument,";
7499 if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7500 S += "inaccessible,";
7501 if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7502 S += "malloced,";
7503 if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7504 S += "unknown,";
7505 S.pop_back();
7506 return S;
7507 }
7508
7509 namespace {
7510 struct AAMemoryLocationImpl : public AAMemoryLocation {
7511
AAMemoryLocationImpl__anon26093b6c6511::AAMemoryLocationImpl7512 AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7513 : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7514 AccessKind2Accesses.fill(nullptr);
7515 }
7516
~AAMemoryLocationImpl__anon26093b6c6511::AAMemoryLocationImpl7517 ~AAMemoryLocationImpl() {
7518 // The AccessSets are allocated via a BumpPtrAllocator, we call
7519 // the destructor manually.
7520 for (AccessSet *AS : AccessKind2Accesses)
7521 if (AS)
7522 AS->~AccessSet();
7523 }
7524
7525 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6511::AAMemoryLocationImpl7526 void initialize(Attributor &A) override {
7527 intersectAssumedBits(BEST_STATE);
7528 getKnownStateFromValue(A, getIRPosition(), getState());
7529 AAMemoryLocation::initialize(A);
7530 }
7531
7532 /// Return the memory behavior information encoded in the IR for \p IRP.
getKnownStateFromValue__anon26093b6c6511::AAMemoryLocationImpl7533 static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7534 BitIntegerState &State,
7535 bool IgnoreSubsumingPositions = false) {
7536 // For internal functions we ignore `argmemonly` and
7537 // `inaccessiblememorargmemonly` as we might break it via interprocedural
7538 // constant propagation. It is unclear if this is the best way but it is
7539 // unlikely this will cause real performance problems. If we are deriving
7540 // attributes for the anchor function we even remove the attribute in
7541 // addition to ignoring it.
7542 bool UseArgMemOnly = true;
7543 Function *AnchorFn = IRP.getAnchorScope();
7544 if (AnchorFn && A.isRunOn(*AnchorFn))
7545 UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7546
7547 SmallVector<Attribute, 2> Attrs;
7548 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7549 for (const Attribute &Attr : Attrs) {
7550 switch (Attr.getKindAsEnum()) {
7551 case Attribute::ReadNone:
7552 State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7553 break;
7554 case Attribute::InaccessibleMemOnly:
7555 State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7556 break;
7557 case Attribute::ArgMemOnly:
7558 if (UseArgMemOnly)
7559 State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7560 else
7561 IRP.removeAttrs({Attribute::ArgMemOnly});
7562 break;
7563 case Attribute::InaccessibleMemOrArgMemOnly:
7564 if (UseArgMemOnly)
7565 State.addKnownBits(inverseLocation(
7566 NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7567 else
7568 IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7569 break;
7570 default:
7571 llvm_unreachable("Unexpected attribute!");
7572 }
7573 }
7574 }
7575
7576 /// See AbstractAttribute::getDeducedAttributes(...).
getDeducedAttributes__anon26093b6c6511::AAMemoryLocationImpl7577 void getDeducedAttributes(LLVMContext &Ctx,
7578 SmallVectorImpl<Attribute> &Attrs) const override {
7579 assert(Attrs.size() == 0);
7580 if (isAssumedReadNone()) {
7581 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7582 } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7583 if (isAssumedInaccessibleMemOnly())
7584 Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7585 else if (isAssumedArgMemOnly())
7586 Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7587 else if (isAssumedInaccessibleOrArgMemOnly())
7588 Attrs.push_back(
7589 Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7590 }
7591 assert(Attrs.size() <= 1);
7592 }
7593
7594 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c6511::AAMemoryLocationImpl7595 ChangeStatus manifest(Attributor &A) override {
7596 const IRPosition &IRP = getIRPosition();
7597
7598 // Check if we would improve the existing attributes first.
7599 SmallVector<Attribute, 4> DeducedAttrs;
7600 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7601 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7602 return IRP.hasAttr(Attr.getKindAsEnum(),
7603 /* IgnoreSubsumingPositions */ true);
7604 }))
7605 return ChangeStatus::UNCHANGED;
7606
7607 // Clear existing attributes.
7608 IRP.removeAttrs(AttrKinds);
7609 if (isAssumedReadNone())
7610 IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7611
7612 // Use the generic manifest method.
7613 return IRAttribute::manifest(A);
7614 }
7615
7616 /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
checkForAllAccessesToMemoryKind__anon26093b6c6511::AAMemoryLocationImpl7617 bool checkForAllAccessesToMemoryKind(
7618 function_ref<bool(const Instruction *, const Value *, AccessKind,
7619 MemoryLocationsKind)>
7620 Pred,
7621 MemoryLocationsKind RequestedMLK) const override {
7622 if (!isValidState())
7623 return false;
7624
7625 MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7626 if (AssumedMLK == NO_LOCATIONS)
7627 return true;
7628
7629 unsigned Idx = 0;
7630 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7631 CurMLK *= 2, ++Idx) {
7632 if (CurMLK & RequestedMLK)
7633 continue;
7634
7635 if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7636 for (const AccessInfo &AI : *Accesses)
7637 if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7638 return false;
7639 }
7640
7641 return true;
7642 }
7643
indicatePessimisticFixpoint__anon26093b6c6511::AAMemoryLocationImpl7644 ChangeStatus indicatePessimisticFixpoint() override {
7645 // If we give up and indicate a pessimistic fixpoint this instruction will
7646 // become an access for all potential access kinds:
7647 // TODO: Add pointers for argmemonly and globals to improve the results of
7648 // checkForAllAccessesToMemoryKind.
7649 bool Changed = false;
7650 MemoryLocationsKind KnownMLK = getKnown();
7651 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7652 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7653 if (!(CurMLK & KnownMLK))
7654 updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7655 getAccessKindFromInst(I));
7656 return AAMemoryLocation::indicatePessimisticFixpoint();
7657 }
7658
7659 protected:
7660 /// Helper struct to tie together an instruction that has a read or write
7661 /// effect with the pointer it accesses (if any).
7662 struct AccessInfo {
7663
7664 /// The instruction that caused the access.
7665 const Instruction *I;
7666
7667 /// The base pointer that is accessed, or null if unknown.
7668 const Value *Ptr;
7669
7670 /// The kind of access (read/write/read+write).
7671 AccessKind Kind;
7672
operator ==__anon26093b6c6511::AAMemoryLocationImpl::AccessInfo7673 bool operator==(const AccessInfo &RHS) const {
7674 return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7675 }
operator ()__anon26093b6c6511::AAMemoryLocationImpl::AccessInfo7676 bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7677 if (LHS.I != RHS.I)
7678 return LHS.I < RHS.I;
7679 if (LHS.Ptr != RHS.Ptr)
7680 return LHS.Ptr < RHS.Ptr;
7681 if (LHS.Kind != RHS.Kind)
7682 return LHS.Kind < RHS.Kind;
7683 return false;
7684 }
7685 };
7686
7687 /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7688 /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7689 using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7690 std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
7691
7692 /// Categorize the pointer arguments of CB that might access memory in
7693 /// AccessedLoc and update the state and access map accordingly.
7694 void
7695 categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7696 AAMemoryLocation::StateType &AccessedLocs,
7697 bool &Changed);
7698
7699 /// Return the kind(s) of location that may be accessed by \p V.
7700 AAMemoryLocation::MemoryLocationsKind
7701 categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7702
7703 /// Return the access kind as determined by \p I.
getAccessKindFromInst__anon26093b6c6511::AAMemoryLocationImpl7704 AccessKind getAccessKindFromInst(const Instruction *I) {
7705 AccessKind AK = READ_WRITE;
7706 if (I) {
7707 AK = I->mayReadFromMemory() ? READ : NONE;
7708 AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7709 }
7710 return AK;
7711 }
7712
7713 /// Update the state \p State and the AccessKind2Accesses given that \p I is
7714 /// an access of kind \p AK to a \p MLK memory location with the access
7715 /// pointer \p Ptr.
updateStateAndAccessesMap__anon26093b6c6511::AAMemoryLocationImpl7716 void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7717 MemoryLocationsKind MLK, const Instruction *I,
7718 const Value *Ptr, bool &Changed,
7719 AccessKind AK = READ_WRITE) {
7720
7721 assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7722 auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7723 if (!Accesses)
7724 Accesses = new (Allocator) AccessSet();
7725 Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7726 State.removeAssumedBits(MLK);
7727 }
7728
7729 /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7730 /// arguments, and update the state and access map accordingly.
7731 void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7732 AAMemoryLocation::StateType &State, bool &Changed);
7733
7734 /// Used to allocate access sets.
7735 BumpPtrAllocator &Allocator;
7736
7737 /// The set of IR attributes AAMemoryLocation deals with.
7738 static const Attribute::AttrKind AttrKinds[4];
7739 };
7740
7741 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7742 Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7743 Attribute::InaccessibleMemOrArgMemOnly};
7744
categorizePtrValue(Attributor & A,const Instruction & I,const Value & Ptr,AAMemoryLocation::StateType & State,bool & Changed)7745 void AAMemoryLocationImpl::categorizePtrValue(
7746 Attributor &A, const Instruction &I, const Value &Ptr,
7747 AAMemoryLocation::StateType &State, bool &Changed) {
7748 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7749 << Ptr << " ["
7750 << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7751
7752 SmallSetVector<Value *, 8> Objects;
7753 bool UsedAssumedInformation = false;
7754 if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7755 UsedAssumedInformation,
7756 AA::Intraprocedural)) {
7757 LLVM_DEBUG(
7758 dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7759 updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7760 getAccessKindFromInst(&I));
7761 return;
7762 }
7763
7764 for (Value *Obj : Objects) {
7765 // TODO: recognize the TBAA used for constant accesses.
7766 MemoryLocationsKind MLK = NO_LOCATIONS;
7767 if (isa<UndefValue>(Obj))
7768 continue;
7769 if (isa<Argument>(Obj)) {
7770 // TODO: For now we do not treat byval arguments as local copies performed
7771 // on the call edge, though, we should. To make that happen we need to
7772 // teach various passes, e.g., DSE, about the copy effect of a byval. That
7773 // would also allow us to mark functions only accessing byval arguments as
7774 // readnone again, atguably their acceses have no effect outside of the
7775 // function, like accesses to allocas.
7776 MLK = NO_ARGUMENT_MEM;
7777 } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7778 // Reading constant memory is not treated as a read "effect" by the
7779 // function attr pass so we won't neither. Constants defined by TBAA are
7780 // similar. (We know we do not write it because it is constant.)
7781 if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7782 if (GVar->isConstant())
7783 continue;
7784
7785 if (GV->hasLocalLinkage())
7786 MLK = NO_GLOBAL_INTERNAL_MEM;
7787 else
7788 MLK = NO_GLOBAL_EXTERNAL_MEM;
7789 } else if (isa<ConstantPointerNull>(Obj) &&
7790 !NullPointerIsDefined(getAssociatedFunction(),
7791 Ptr.getType()->getPointerAddressSpace())) {
7792 continue;
7793 } else if (isa<AllocaInst>(Obj)) {
7794 MLK = NO_LOCAL_MEM;
7795 } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7796 const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7797 *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7798 if (NoAliasAA.isAssumedNoAlias())
7799 MLK = NO_MALLOCED_MEM;
7800 else
7801 MLK = NO_UNKOWN_MEM;
7802 } else {
7803 MLK = NO_UNKOWN_MEM;
7804 }
7805
7806 assert(MLK != NO_LOCATIONS && "No location specified!");
7807 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7808 << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7809 << "\n");
7810 updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7811 getAccessKindFromInst(&I));
7812 }
7813
7814 LLVM_DEBUG(
7815 dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7816 << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7817 }
7818
categorizeArgumentPointerLocations(Attributor & A,CallBase & CB,AAMemoryLocation::StateType & AccessedLocs,bool & Changed)7819 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7820 Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7821 bool &Changed) {
7822 for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7823
7824 // Skip non-pointer arguments.
7825 const Value *ArgOp = CB.getArgOperand(ArgNo);
7826 if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7827 continue;
7828
7829 // Skip readnone arguments.
7830 const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7831 const auto &ArgOpMemLocationAA =
7832 A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7833
7834 if (ArgOpMemLocationAA.isAssumedReadNone())
7835 continue;
7836
7837 // Categorize potentially accessed pointer arguments as if there was an
7838 // access instruction with them as pointer.
7839 categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7840 }
7841 }
7842
7843 AAMemoryLocation::MemoryLocationsKind
categorizeAccessedLocations(Attributor & A,Instruction & I,bool & Changed)7844 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7845 bool &Changed) {
7846 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7847 << I << "\n");
7848
7849 AAMemoryLocation::StateType AccessedLocs;
7850 AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7851
7852 if (auto *CB = dyn_cast<CallBase>(&I)) {
7853
7854 // First check if we assume any memory is access is visible.
7855 const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7856 *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7857 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7858 << " [" << CBMemLocationAA << "]\n");
7859
7860 if (CBMemLocationAA.isAssumedReadNone())
7861 return NO_LOCATIONS;
7862
7863 if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7864 updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7865 Changed, getAccessKindFromInst(&I));
7866 return AccessedLocs.getAssumed();
7867 }
7868
7869 uint32_t CBAssumedNotAccessedLocs =
7870 CBMemLocationAA.getAssumedNotAccessedLocation();
7871
7872 // Set the argmemonly and global bit as we handle them separately below.
7873 uint32_t CBAssumedNotAccessedLocsNoArgMem =
7874 CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7875
7876 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7877 if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7878 continue;
7879 updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7880 getAccessKindFromInst(&I));
7881 }
7882
7883 // Now handle global memory if it might be accessed. This is slightly tricky
7884 // as NO_GLOBAL_MEM has multiple bits set.
7885 bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7886 if (HasGlobalAccesses) {
7887 auto AccessPred = [&](const Instruction *, const Value *Ptr,
7888 AccessKind Kind, MemoryLocationsKind MLK) {
7889 updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7890 getAccessKindFromInst(&I));
7891 return true;
7892 };
7893 if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7894 AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7895 return AccessedLocs.getWorstState();
7896 }
7897
7898 LLVM_DEBUG(
7899 dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7900 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7901
7902 // Now handle argument memory if it might be accessed.
7903 bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7904 if (HasArgAccesses)
7905 categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7906
7907 LLVM_DEBUG(
7908 dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7909 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7910
7911 return AccessedLocs.getAssumed();
7912 }
7913
7914 if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7915 LLVM_DEBUG(
7916 dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7917 << I << " [" << *Ptr << "]\n");
7918 categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7919 return AccessedLocs.getAssumed();
7920 }
7921
7922 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7923 << I << "\n");
7924 updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7925 getAccessKindFromInst(&I));
7926 return AccessedLocs.getAssumed();
7927 }
7928
7929 /// An AA to represent the memory behavior function attributes.
7930 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
AAMemoryLocationFunction__anon26093b6c6511::AAMemoryLocationFunction7931 AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7932 : AAMemoryLocationImpl(IRP, A) {}
7933
7934 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon26093b6c6511::AAMemoryLocationFunction7935 ChangeStatus updateImpl(Attributor &A) override {
7936
7937 const auto &MemBehaviorAA =
7938 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7939 if (MemBehaviorAA.isAssumedReadNone()) {
7940 if (MemBehaviorAA.isKnownReadNone())
7941 return indicateOptimisticFixpoint();
7942 assert(isAssumedReadNone() &&
7943 "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7944 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7945 return ChangeStatus::UNCHANGED;
7946 }
7947
7948 // The current assumed state used to determine a change.
7949 auto AssumedState = getAssumed();
7950 bool Changed = false;
7951
7952 auto CheckRWInst = [&](Instruction &I) {
7953 MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7954 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7955 << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7956 removeAssumedBits(inverseLocation(MLK, false, false));
7957 // Stop once only the valid bit set in the *not assumed location*, thus
7958 // once we don't actually exclude any memory locations in the state.
7959 return getAssumedNotAccessedLocation() != VALID_STATE;
7960 };
7961
7962 bool UsedAssumedInformation = false;
7963 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7964 UsedAssumedInformation))
7965 return indicatePessimisticFixpoint();
7966
7967 Changed |= AssumedState != getAssumed();
7968 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7969 }
7970
7971 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6511::AAMemoryLocationFunction7972 void trackStatistics() const override {
7973 if (isAssumedReadNone())
7974 STATS_DECLTRACK_FN_ATTR(readnone)
7975 else if (isAssumedArgMemOnly())
7976 STATS_DECLTRACK_FN_ATTR(argmemonly)
7977 else if (isAssumedInaccessibleMemOnly())
7978 STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7979 else if (isAssumedInaccessibleOrArgMemOnly())
7980 STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7981 }
7982 };
7983
7984 /// AAMemoryLocation attribute for call sites.
7985 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
AAMemoryLocationCallSite__anon26093b6c6511::AAMemoryLocationCallSite7986 AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7987 : AAMemoryLocationImpl(IRP, A) {}
7988
7989 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6511::AAMemoryLocationCallSite7990 void initialize(Attributor &A) override {
7991 AAMemoryLocationImpl::initialize(A);
7992 Function *F = getAssociatedFunction();
7993 if (!F || F->isDeclaration())
7994 indicatePessimisticFixpoint();
7995 }
7996
7997 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6511::AAMemoryLocationCallSite7998 ChangeStatus updateImpl(Attributor &A) override {
7999 // TODO: Once we have call site specific value information we can provide
8000 // call site specific liveness liveness information and then it makes
8001 // sense to specialize attributes for call sites arguments instead of
8002 // redirecting requests to the callee argument.
8003 Function *F = getAssociatedFunction();
8004 const IRPosition &FnPos = IRPosition::function(*F);
8005 auto &FnAA =
8006 A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8007 bool Changed = false;
8008 auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8009 AccessKind Kind, MemoryLocationsKind MLK) {
8010 updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8011 getAccessKindFromInst(I));
8012 return true;
8013 };
8014 if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8015 return indicatePessimisticFixpoint();
8016 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8017 }
8018
8019 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6511::AAMemoryLocationCallSite8020 void trackStatistics() const override {
8021 if (isAssumedReadNone())
8022 STATS_DECLTRACK_CS_ATTR(readnone)
8023 }
8024 };
8025 } // namespace
8026
8027 /// ------------------ Value Constant Range Attribute -------------------------
8028
8029 namespace {
8030 struct AAValueConstantRangeImpl : AAValueConstantRange {
8031 using StateType = IntegerRangeState;
AAValueConstantRangeImpl__anon26093b6c6a11::AAValueConstantRangeImpl8032 AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8033 : AAValueConstantRange(IRP, A) {}
8034
8035 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6a11::AAValueConstantRangeImpl8036 void initialize(Attributor &A) override {
8037 if (A.hasSimplificationCallback(getIRPosition())) {
8038 indicatePessimisticFixpoint();
8039 return;
8040 }
8041
8042 // Intersect a range given by SCEV.
8043 intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8044
8045 // Intersect a range given by LVI.
8046 intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8047 }
8048
8049 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c6a11::AAValueConstantRangeImpl8050 const std::string getAsStr() const override {
8051 std::string Str;
8052 llvm::raw_string_ostream OS(Str);
8053 OS << "range(" << getBitWidth() << ")<";
8054 getKnown().print(OS);
8055 OS << " / ";
8056 getAssumed().print(OS);
8057 OS << ">";
8058 return OS.str();
8059 }
8060
8061 /// Helper function to get a SCEV expr for the associated value at program
8062 /// point \p I.
getSCEV__anon26093b6c6a11::AAValueConstantRangeImpl8063 const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8064 if (!getAnchorScope())
8065 return nullptr;
8066
8067 ScalarEvolution *SE =
8068 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8069 *getAnchorScope());
8070
8071 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8072 *getAnchorScope());
8073
8074 if (!SE || !LI)
8075 return nullptr;
8076
8077 const SCEV *S = SE->getSCEV(&getAssociatedValue());
8078 if (!I)
8079 return S;
8080
8081 return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8082 }
8083
8084 /// Helper function to get a range from SCEV for the associated value at
8085 /// program point \p I.
getConstantRangeFromSCEV__anon26093b6c6a11::AAValueConstantRangeImpl8086 ConstantRange getConstantRangeFromSCEV(Attributor &A,
8087 const Instruction *I = nullptr) const {
8088 if (!getAnchorScope())
8089 return getWorstState(getBitWidth());
8090
8091 ScalarEvolution *SE =
8092 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8093 *getAnchorScope());
8094
8095 const SCEV *S = getSCEV(A, I);
8096 if (!SE || !S)
8097 return getWorstState(getBitWidth());
8098
8099 return SE->getUnsignedRange(S);
8100 }
8101
8102 /// Helper function to get a range from LVI for the associated value at
8103 /// program point \p I.
8104 ConstantRange
getConstantRangeFromLVI__anon26093b6c6a11::AAValueConstantRangeImpl8105 getConstantRangeFromLVI(Attributor &A,
8106 const Instruction *CtxI = nullptr) const {
8107 if (!getAnchorScope())
8108 return getWorstState(getBitWidth());
8109
8110 LazyValueInfo *LVI =
8111 A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8112 *getAnchorScope());
8113
8114 if (!LVI || !CtxI)
8115 return getWorstState(getBitWidth());
8116 return LVI->getConstantRange(&getAssociatedValue(),
8117 const_cast<Instruction *>(CtxI));
8118 }
8119
8120 /// Return true if \p CtxI is valid for querying outside analyses.
8121 /// This basically makes sure we do not ask intra-procedural analysis
8122 /// about a context in the wrong function or a context that violates
8123 /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8124 /// if the original context of this AA is OK or should be considered invalid.
isValidCtxInstructionForOutsideAnalysis__anon26093b6c6a11::AAValueConstantRangeImpl8125 bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8126 const Instruction *CtxI,
8127 bool AllowAACtxI) const {
8128 if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8129 return false;
8130
8131 // Our context might be in a different function, neither intra-procedural
8132 // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8133 if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8134 return false;
8135
8136 // If the context is not dominated by the value there are paths to the
8137 // context that do not define the value. This cannot be handled by
8138 // LazyValueInfo so we need to bail.
8139 if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8140 InformationCache &InfoCache = A.getInfoCache();
8141 const DominatorTree *DT =
8142 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8143 *I->getFunction());
8144 return DT && DT->dominates(I, CtxI);
8145 }
8146
8147 return true;
8148 }
8149
8150 /// See AAValueConstantRange::getKnownConstantRange(..).
8151 ConstantRange
getKnownConstantRange__anon26093b6c6a11::AAValueConstantRangeImpl8152 getKnownConstantRange(Attributor &A,
8153 const Instruction *CtxI = nullptr) const override {
8154 if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8155 /* AllowAACtxI */ false))
8156 return getKnown();
8157
8158 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8159 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8160 return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8161 }
8162
8163 /// See AAValueConstantRange::getAssumedConstantRange(..).
8164 ConstantRange
getAssumedConstantRange__anon26093b6c6a11::AAValueConstantRangeImpl8165 getAssumedConstantRange(Attributor &A,
8166 const Instruction *CtxI = nullptr) const override {
8167 // TODO: Make SCEV use Attributor assumption.
8168 // We may be able to bound a variable range via assumptions in
8169 // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8170 // evolve to x^2 + x, then we can say that y is in [2, 12].
8171 if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8172 /* AllowAACtxI */ false))
8173 return getAssumed();
8174
8175 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8176 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8177 return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8178 }
8179
8180 /// Helper function to create MDNode for range metadata.
8181 static MDNode *
getMDNodeForConstantRange__anon26093b6c6a11::AAValueConstantRangeImpl8182 getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8183 const ConstantRange &AssumedConstantRange) {
8184 Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8185 Ty, AssumedConstantRange.getLower())),
8186 ConstantAsMetadata::get(ConstantInt::get(
8187 Ty, AssumedConstantRange.getUpper()))};
8188 return MDNode::get(Ctx, LowAndHigh);
8189 }
8190
8191 /// Return true if \p Assumed is included in \p KnownRanges.
isBetterRange__anon26093b6c6a11::AAValueConstantRangeImpl8192 static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8193
8194 if (Assumed.isFullSet())
8195 return false;
8196
8197 if (!KnownRanges)
8198 return true;
8199
8200 // If multiple ranges are annotated in IR, we give up to annotate assumed
8201 // range for now.
8202
8203 // TODO: If there exists a known range which containts assumed range, we
8204 // can say assumed range is better.
8205 if (KnownRanges->getNumOperands() > 2)
8206 return false;
8207
8208 ConstantInt *Lower =
8209 mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8210 ConstantInt *Upper =
8211 mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8212
8213 ConstantRange Known(Lower->getValue(), Upper->getValue());
8214 return Known.contains(Assumed) && Known != Assumed;
8215 }
8216
8217 /// Helper function to set range metadata.
8218 static bool
setRangeMetadataIfisBetterRange__anon26093b6c6a11::AAValueConstantRangeImpl8219 setRangeMetadataIfisBetterRange(Instruction *I,
8220 const ConstantRange &AssumedConstantRange) {
8221 auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8222 if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8223 if (!AssumedConstantRange.isEmptySet()) {
8224 I->setMetadata(LLVMContext::MD_range,
8225 getMDNodeForConstantRange(I->getType(), I->getContext(),
8226 AssumedConstantRange));
8227 return true;
8228 }
8229 }
8230 return false;
8231 }
8232
8233 /// See AbstractAttribute::manifest()
manifest__anon26093b6c6a11::AAValueConstantRangeImpl8234 ChangeStatus manifest(Attributor &A) override {
8235 ChangeStatus Changed = ChangeStatus::UNCHANGED;
8236 ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8237 assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8238
8239 auto &V = getAssociatedValue();
8240 if (!AssumedConstantRange.isEmptySet() &&
8241 !AssumedConstantRange.isSingleElement()) {
8242 if (Instruction *I = dyn_cast<Instruction>(&V)) {
8243 assert(I == getCtxI() && "Should not annotate an instruction which is "
8244 "not the context instruction");
8245 if (isa<CallInst>(I) || isa<LoadInst>(I))
8246 if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8247 Changed = ChangeStatus::CHANGED;
8248 }
8249 }
8250
8251 return Changed;
8252 }
8253 };
8254
8255 struct AAValueConstantRangeArgument final
8256 : AAArgumentFromCallSiteArguments<
8257 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8258 true /* BridgeCallBaseContext */> {
8259 using Base = AAArgumentFromCallSiteArguments<
8260 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8261 true /* BridgeCallBaseContext */>;
AAValueConstantRangeArgument__anon26093b6c6a11::AAValueConstantRangeArgument8262 AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8263 : Base(IRP, A) {}
8264
8265 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6a11::AAValueConstantRangeArgument8266 void initialize(Attributor &A) override {
8267 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8268 indicatePessimisticFixpoint();
8269 } else {
8270 Base::initialize(A);
8271 }
8272 }
8273
8274 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeArgument8275 void trackStatistics() const override {
8276 STATS_DECLTRACK_ARG_ATTR(value_range)
8277 }
8278 };
8279
8280 struct AAValueConstantRangeReturned
8281 : AAReturnedFromReturnedValues<AAValueConstantRange,
8282 AAValueConstantRangeImpl,
8283 AAValueConstantRangeImpl::StateType,
8284 /* PropogateCallBaseContext */ true> {
8285 using Base =
8286 AAReturnedFromReturnedValues<AAValueConstantRange,
8287 AAValueConstantRangeImpl,
8288 AAValueConstantRangeImpl::StateType,
8289 /* PropogateCallBaseContext */ true>;
AAValueConstantRangeReturned__anon26093b6c6a11::AAValueConstantRangeReturned8290 AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8291 : Base(IRP, A) {}
8292
8293 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6a11::AAValueConstantRangeReturned8294 void initialize(Attributor &A) override {}
8295
8296 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeReturned8297 void trackStatistics() const override {
8298 STATS_DECLTRACK_FNRET_ATTR(value_range)
8299 }
8300 };
8301
8302 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
AAValueConstantRangeFloating__anon26093b6c6a11::AAValueConstantRangeFloating8303 AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8304 : AAValueConstantRangeImpl(IRP, A) {}
8305
8306 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6a11::AAValueConstantRangeFloating8307 void initialize(Attributor &A) override {
8308 AAValueConstantRangeImpl::initialize(A);
8309 if (isAtFixpoint())
8310 return;
8311
8312 Value &V = getAssociatedValue();
8313
8314 if (auto *C = dyn_cast<ConstantInt>(&V)) {
8315 unionAssumed(ConstantRange(C->getValue()));
8316 indicateOptimisticFixpoint();
8317 return;
8318 }
8319
8320 if (isa<UndefValue>(&V)) {
8321 // Collapse the undef state to 0.
8322 unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8323 indicateOptimisticFixpoint();
8324 return;
8325 }
8326
8327 if (isa<CallBase>(&V))
8328 return;
8329
8330 if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8331 return;
8332
8333 // If it is a load instruction with range metadata, use it.
8334 if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8335 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8336 intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8337 return;
8338 }
8339
8340 // We can work with PHI and select instruction as we traverse their operands
8341 // during update.
8342 if (isa<SelectInst>(V) || isa<PHINode>(V))
8343 return;
8344
8345 // Otherwise we give up.
8346 indicatePessimisticFixpoint();
8347
8348 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8349 << getAssociatedValue() << "\n");
8350 }
8351
calculateBinaryOperator__anon26093b6c6a11::AAValueConstantRangeFloating8352 bool calculateBinaryOperator(
8353 Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8354 const Instruction *CtxI,
8355 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8356 Value *LHS = BinOp->getOperand(0);
8357 Value *RHS = BinOp->getOperand(1);
8358
8359 // Simplify the operands first.
8360 bool UsedAssumedInformation = false;
8361 const auto &SimplifiedLHS = A.getAssumedSimplified(
8362 IRPosition::value(*LHS, getCallBaseContext()), *this,
8363 UsedAssumedInformation, AA::Interprocedural);
8364 if (!SimplifiedLHS.has_value())
8365 return true;
8366 if (!SimplifiedLHS.value())
8367 return false;
8368 LHS = *SimplifiedLHS;
8369
8370 const auto &SimplifiedRHS = A.getAssumedSimplified(
8371 IRPosition::value(*RHS, getCallBaseContext()), *this,
8372 UsedAssumedInformation, AA::Interprocedural);
8373 if (!SimplifiedRHS.has_value())
8374 return true;
8375 if (!SimplifiedRHS.value())
8376 return false;
8377 RHS = *SimplifiedRHS;
8378
8379 // TODO: Allow non integers as well.
8380 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8381 return false;
8382
8383 auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8384 *this, IRPosition::value(*LHS, getCallBaseContext()),
8385 DepClassTy::REQUIRED);
8386 QuerriedAAs.push_back(&LHSAA);
8387 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8388
8389 auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8390 *this, IRPosition::value(*RHS, getCallBaseContext()),
8391 DepClassTy::REQUIRED);
8392 QuerriedAAs.push_back(&RHSAA);
8393 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8394
8395 auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8396
8397 T.unionAssumed(AssumedRange);
8398
8399 // TODO: Track a known state too.
8400
8401 return T.isValidState();
8402 }
8403
calculateCastInst__anon26093b6c6a11::AAValueConstantRangeFloating8404 bool calculateCastInst(
8405 Attributor &A, CastInst *CastI, IntegerRangeState &T,
8406 const Instruction *CtxI,
8407 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8408 assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8409 // TODO: Allow non integers as well.
8410 Value *OpV = CastI->getOperand(0);
8411
8412 // Simplify the operand first.
8413 bool UsedAssumedInformation = false;
8414 const auto &SimplifiedOpV = A.getAssumedSimplified(
8415 IRPosition::value(*OpV, getCallBaseContext()), *this,
8416 UsedAssumedInformation, AA::Interprocedural);
8417 if (!SimplifiedOpV.has_value())
8418 return true;
8419 if (!SimplifiedOpV.value())
8420 return false;
8421 OpV = *SimplifiedOpV;
8422
8423 if (!OpV->getType()->isIntegerTy())
8424 return false;
8425
8426 auto &OpAA = A.getAAFor<AAValueConstantRange>(
8427 *this, IRPosition::value(*OpV, getCallBaseContext()),
8428 DepClassTy::REQUIRED);
8429 QuerriedAAs.push_back(&OpAA);
8430 T.unionAssumed(
8431 OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8432 return T.isValidState();
8433 }
8434
8435 bool
calculateCmpInst__anon26093b6c6a11::AAValueConstantRangeFloating8436 calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8437 const Instruction *CtxI,
8438 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8439 Value *LHS = CmpI->getOperand(0);
8440 Value *RHS = CmpI->getOperand(1);
8441
8442 // Simplify the operands first.
8443 bool UsedAssumedInformation = false;
8444 const auto &SimplifiedLHS = A.getAssumedSimplified(
8445 IRPosition::value(*LHS, getCallBaseContext()), *this,
8446 UsedAssumedInformation, AA::Interprocedural);
8447 if (!SimplifiedLHS.has_value())
8448 return true;
8449 if (!SimplifiedLHS.value())
8450 return false;
8451 LHS = *SimplifiedLHS;
8452
8453 const auto &SimplifiedRHS = A.getAssumedSimplified(
8454 IRPosition::value(*RHS, getCallBaseContext()), *this,
8455 UsedAssumedInformation, AA::Interprocedural);
8456 if (!SimplifiedRHS.has_value())
8457 return true;
8458 if (!SimplifiedRHS.value())
8459 return false;
8460 RHS = *SimplifiedRHS;
8461
8462 // TODO: Allow non integers as well.
8463 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8464 return false;
8465
8466 auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8467 *this, IRPosition::value(*LHS, getCallBaseContext()),
8468 DepClassTy::REQUIRED);
8469 QuerriedAAs.push_back(&LHSAA);
8470 auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8471 *this, IRPosition::value(*RHS, getCallBaseContext()),
8472 DepClassTy::REQUIRED);
8473 QuerriedAAs.push_back(&RHSAA);
8474 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8475 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8476
8477 // If one of them is empty set, we can't decide.
8478 if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8479 return true;
8480
8481 bool MustTrue = false, MustFalse = false;
8482
8483 auto AllowedRegion =
8484 ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8485
8486 if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8487 MustFalse = true;
8488
8489 if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8490 MustTrue = true;
8491
8492 assert((!MustTrue || !MustFalse) &&
8493 "Either MustTrue or MustFalse should be false!");
8494
8495 if (MustTrue)
8496 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8497 else if (MustFalse)
8498 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8499 else
8500 T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8501
8502 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8503 << " " << RHSAA << "\n");
8504
8505 // TODO: Track a known state too.
8506 return T.isValidState();
8507 }
8508
8509 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6a11::AAValueConstantRangeFloating8510 ChangeStatus updateImpl(Attributor &A) override {
8511
8512 IntegerRangeState T(getBitWidth());
8513 auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
8514 Instruction *I = dyn_cast<Instruction>(&V);
8515 if (!I || isa<CallBase>(I)) {
8516
8517 // Simplify the operand first.
8518 bool UsedAssumedInformation = false;
8519 const auto &SimplifiedOpV = A.getAssumedSimplified(
8520 IRPosition::value(V, getCallBaseContext()), *this,
8521 UsedAssumedInformation, AA::Interprocedural);
8522 if (!SimplifiedOpV.has_value())
8523 return true;
8524 if (!SimplifiedOpV.value())
8525 return false;
8526 Value *VPtr = *SimplifiedOpV;
8527
8528 // If the value is not instruction, we query AA to Attributor.
8529 const auto &AA = A.getAAFor<AAValueConstantRange>(
8530 *this, IRPosition::value(*VPtr, getCallBaseContext()),
8531 DepClassTy::REQUIRED);
8532
8533 // Clamp operator is not used to utilize a program point CtxI.
8534 T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8535
8536 return T.isValidState();
8537 }
8538
8539 SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8540 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8541 if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8542 return false;
8543 } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8544 if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8545 return false;
8546 } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8547 if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8548 return false;
8549 } else {
8550 // Give up with other instructions.
8551 // TODO: Add other instructions
8552
8553 T.indicatePessimisticFixpoint();
8554 return false;
8555 }
8556
8557 // Catch circular reasoning in a pessimistic way for now.
8558 // TODO: Check how the range evolves and if we stripped anything, see also
8559 // AADereferenceable or AAAlign for similar situations.
8560 for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8561 if (QueriedAA != this)
8562 continue;
8563 // If we are in a stady state we do not need to worry.
8564 if (T.getAssumed() == getState().getAssumed())
8565 continue;
8566 T.indicatePessimisticFixpoint();
8567 }
8568
8569 return T.isValidState();
8570 };
8571
8572 if (!VisitValueCB(getAssociatedValue(), getCtxI()))
8573 return indicatePessimisticFixpoint();
8574
8575 // Ensure that long def-use chains can't cause circular reasoning either by
8576 // introducing a cutoff below.
8577 if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8578 return ChangeStatus::UNCHANGED;
8579 if (++NumChanges > MaxNumChanges) {
8580 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8581 << " but only " << MaxNumChanges
8582 << " are allowed to avoid cyclic reasoning.");
8583 return indicatePessimisticFixpoint();
8584 }
8585 return ChangeStatus::CHANGED;
8586 }
8587
8588 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeFloating8589 void trackStatistics() const override {
8590 STATS_DECLTRACK_FLOATING_ATTR(value_range)
8591 }
8592
8593 /// Tracker to bail after too many widening steps of the constant range.
8594 int NumChanges = 0;
8595
8596 /// Upper bound for the number of allowed changes (=widening steps) for the
8597 /// constant range before we give up.
8598 static constexpr int MaxNumChanges = 5;
8599 };
8600
8601 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
AAValueConstantRangeFunction__anon26093b6c6a11::AAValueConstantRangeFunction8602 AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8603 : AAValueConstantRangeImpl(IRP, A) {}
8604
8605 /// See AbstractAttribute::initialize(...).
updateImpl__anon26093b6c6a11::AAValueConstantRangeFunction8606 ChangeStatus updateImpl(Attributor &A) override {
8607 llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8608 "not be called");
8609 }
8610
8611 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeFunction8612 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8613 };
8614
8615 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
AAValueConstantRangeCallSite__anon26093b6c6a11::AAValueConstantRangeCallSite8616 AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8617 : AAValueConstantRangeFunction(IRP, A) {}
8618
8619 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeCallSite8620 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8621 };
8622
8623 struct AAValueConstantRangeCallSiteReturned
8624 : AACallSiteReturnedFromReturned<AAValueConstantRange,
8625 AAValueConstantRangeImpl,
8626 AAValueConstantRangeImpl::StateType,
8627 /* IntroduceCallBaseContext */ true> {
AAValueConstantRangeCallSiteReturned__anon26093b6c6a11::AAValueConstantRangeCallSiteReturned8628 AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8629 : AACallSiteReturnedFromReturned<AAValueConstantRange,
8630 AAValueConstantRangeImpl,
8631 AAValueConstantRangeImpl::StateType,
8632 /* IntroduceCallBaseContext */ true>(IRP,
8633 A) {
8634 }
8635
8636 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6a11::AAValueConstantRangeCallSiteReturned8637 void initialize(Attributor &A) override {
8638 // If it is a load instruction with range metadata, use the metadata.
8639 if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8640 if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8641 intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8642
8643 AAValueConstantRangeImpl::initialize(A);
8644 }
8645
8646 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeCallSiteReturned8647 void trackStatistics() const override {
8648 STATS_DECLTRACK_CSRET_ATTR(value_range)
8649 }
8650 };
8651 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
AAValueConstantRangeCallSiteArgument__anon26093b6c6a11::AAValueConstantRangeCallSiteArgument8652 AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8653 : AAValueConstantRangeFloating(IRP, A) {}
8654
8655 /// See AbstractAttribute::manifest()
manifest__anon26093b6c6a11::AAValueConstantRangeCallSiteArgument8656 ChangeStatus manifest(Attributor &A) override {
8657 return ChangeStatus::UNCHANGED;
8658 }
8659
8660 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6a11::AAValueConstantRangeCallSiteArgument8661 void trackStatistics() const override {
8662 STATS_DECLTRACK_CSARG_ATTR(value_range)
8663 }
8664 };
8665 } // namespace
8666
8667 /// ------------------ Potential Values Attribute -------------------------
8668
8669 namespace {
8670 struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
8671 using StateType = PotentialConstantIntValuesState;
8672
AAPotentialConstantValuesImpl__anon26093b6c6c11::AAPotentialConstantValuesImpl8673 AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
8674 : AAPotentialConstantValues(IRP, A) {}
8675
8676 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6c11::AAPotentialConstantValuesImpl8677 void initialize(Attributor &A) override {
8678 if (A.hasSimplificationCallback(getIRPosition()))
8679 indicatePessimisticFixpoint();
8680 else
8681 AAPotentialConstantValues::initialize(A);
8682 }
8683
fillSetWithConstantValues__anon26093b6c6c11::AAPotentialConstantValuesImpl8684 bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
8685 bool &ContainsUndef) {
8686 SmallVector<AA::ValueAndContext> Values;
8687 bool UsedAssumedInformation = false;
8688 if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
8689 UsedAssumedInformation)) {
8690 if (!IRP.getAssociatedType()->isIntegerTy())
8691 return false;
8692 auto &PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
8693 *this, IRP, DepClassTy::REQUIRED);
8694 if (!PotentialValuesAA.getState().isValidState())
8695 return false;
8696 ContainsUndef = PotentialValuesAA.getState().undefIsContained();
8697 S = PotentialValuesAA.getState().getAssumedSet();
8698 return true;
8699 }
8700
8701 for (auto &It : Values) {
8702 if (isa<UndefValue>(It.getValue()))
8703 continue;
8704 auto *CI = dyn_cast<ConstantInt>(It.getValue());
8705 if (!CI)
8706 return false;
8707 S.insert(CI->getValue());
8708 }
8709 ContainsUndef = S.empty();
8710
8711 return true;
8712 }
8713
8714 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c6c11::AAPotentialConstantValuesImpl8715 const std::string getAsStr() const override {
8716 std::string Str;
8717 llvm::raw_string_ostream OS(Str);
8718 OS << getState();
8719 return OS.str();
8720 }
8721
8722 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AAPotentialConstantValuesImpl8723 ChangeStatus updateImpl(Attributor &A) override {
8724 return indicatePessimisticFixpoint();
8725 }
8726 };
8727
8728 struct AAPotentialConstantValuesArgument final
8729 : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8730 AAPotentialConstantValuesImpl,
8731 PotentialConstantIntValuesState> {
8732 using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8733 AAPotentialConstantValuesImpl,
8734 PotentialConstantIntValuesState>;
AAPotentialConstantValuesArgument__anon26093b6c6c11::AAPotentialConstantValuesArgument8735 AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
8736 : Base(IRP, A) {}
8737
8738 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6c11::AAPotentialConstantValuesArgument8739 void initialize(Attributor &A) override {
8740 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8741 indicatePessimisticFixpoint();
8742 } else {
8743 Base::initialize(A);
8744 }
8745 }
8746
8747 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesArgument8748 void trackStatistics() const override {
8749 STATS_DECLTRACK_ARG_ATTR(potential_values)
8750 }
8751 };
8752
8753 struct AAPotentialConstantValuesReturned
8754 : AAReturnedFromReturnedValues<AAPotentialConstantValues,
8755 AAPotentialConstantValuesImpl> {
8756 using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
8757 AAPotentialConstantValuesImpl>;
AAPotentialConstantValuesReturned__anon26093b6c6c11::AAPotentialConstantValuesReturned8758 AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
8759 : Base(IRP, A) {}
8760
8761 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesReturned8762 void trackStatistics() const override {
8763 STATS_DECLTRACK_FNRET_ATTR(potential_values)
8764 }
8765 };
8766
8767 struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
AAPotentialConstantValuesFloating__anon26093b6c6c11::AAPotentialConstantValuesFloating8768 AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
8769 : AAPotentialConstantValuesImpl(IRP, A) {}
8770
8771 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6c11::AAPotentialConstantValuesFloating8772 void initialize(Attributor &A) override {
8773 AAPotentialConstantValuesImpl::initialize(A);
8774 if (isAtFixpoint())
8775 return;
8776
8777 Value &V = getAssociatedValue();
8778
8779 if (auto *C = dyn_cast<ConstantInt>(&V)) {
8780 unionAssumed(C->getValue());
8781 indicateOptimisticFixpoint();
8782 return;
8783 }
8784
8785 if (isa<UndefValue>(&V)) {
8786 unionAssumedWithUndef();
8787 indicateOptimisticFixpoint();
8788 return;
8789 }
8790
8791 if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8792 return;
8793
8794 if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8795 return;
8796
8797 indicatePessimisticFixpoint();
8798
8799 LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
8800 << getAssociatedValue() << "\n");
8801 }
8802
calculateICmpInst__anon26093b6c6c11::AAPotentialConstantValuesFloating8803 static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8804 const APInt &RHS) {
8805 return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8806 }
8807
calculateCastInst__anon26093b6c6c11::AAPotentialConstantValuesFloating8808 static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8809 uint32_t ResultBitWidth) {
8810 Instruction::CastOps CastOp = CI->getOpcode();
8811 switch (CastOp) {
8812 default:
8813 llvm_unreachable("unsupported or not integer cast");
8814 case Instruction::Trunc:
8815 return Src.trunc(ResultBitWidth);
8816 case Instruction::SExt:
8817 return Src.sext(ResultBitWidth);
8818 case Instruction::ZExt:
8819 return Src.zext(ResultBitWidth);
8820 case Instruction::BitCast:
8821 return Src;
8822 }
8823 }
8824
calculateBinaryOperator__anon26093b6c6c11::AAPotentialConstantValuesFloating8825 static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8826 const APInt &LHS, const APInt &RHS,
8827 bool &SkipOperation, bool &Unsupported) {
8828 Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8829 // Unsupported is set to true when the binary operator is not supported.
8830 // SkipOperation is set to true when UB occur with the given operand pair
8831 // (LHS, RHS).
8832 // TODO: we should look at nsw and nuw keywords to handle operations
8833 // that create poison or undef value.
8834 switch (BinOpcode) {
8835 default:
8836 Unsupported = true;
8837 return LHS;
8838 case Instruction::Add:
8839 return LHS + RHS;
8840 case Instruction::Sub:
8841 return LHS - RHS;
8842 case Instruction::Mul:
8843 return LHS * RHS;
8844 case Instruction::UDiv:
8845 if (RHS.isZero()) {
8846 SkipOperation = true;
8847 return LHS;
8848 }
8849 return LHS.udiv(RHS);
8850 case Instruction::SDiv:
8851 if (RHS.isZero()) {
8852 SkipOperation = true;
8853 return LHS;
8854 }
8855 return LHS.sdiv(RHS);
8856 case Instruction::URem:
8857 if (RHS.isZero()) {
8858 SkipOperation = true;
8859 return LHS;
8860 }
8861 return LHS.urem(RHS);
8862 case Instruction::SRem:
8863 if (RHS.isZero()) {
8864 SkipOperation = true;
8865 return LHS;
8866 }
8867 return LHS.srem(RHS);
8868 case Instruction::Shl:
8869 return LHS.shl(RHS);
8870 case Instruction::LShr:
8871 return LHS.lshr(RHS);
8872 case Instruction::AShr:
8873 return LHS.ashr(RHS);
8874 case Instruction::And:
8875 return LHS & RHS;
8876 case Instruction::Or:
8877 return LHS | RHS;
8878 case Instruction::Xor:
8879 return LHS ^ RHS;
8880 }
8881 }
8882
calculateBinaryOperatorAndTakeUnion__anon26093b6c6c11::AAPotentialConstantValuesFloating8883 bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8884 const APInt &LHS, const APInt &RHS) {
8885 bool SkipOperation = false;
8886 bool Unsupported = false;
8887 APInt Result =
8888 calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8889 if (Unsupported)
8890 return false;
8891 // If SkipOperation is true, we can ignore this operand pair (L, R).
8892 if (!SkipOperation)
8893 unionAssumed(Result);
8894 return isValidState();
8895 }
8896
updateWithICmpInst__anon26093b6c6c11::AAPotentialConstantValuesFloating8897 ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8898 auto AssumedBefore = getAssumed();
8899 Value *LHS = ICI->getOperand(0);
8900 Value *RHS = ICI->getOperand(1);
8901
8902 bool LHSContainsUndef = false, RHSContainsUndef = false;
8903 SetTy LHSAAPVS, RHSAAPVS;
8904 if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
8905 LHSContainsUndef) ||
8906 !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
8907 RHSContainsUndef))
8908 return indicatePessimisticFixpoint();
8909
8910 // TODO: make use of undef flag to limit potential values aggressively.
8911 bool MaybeTrue = false, MaybeFalse = false;
8912 const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8913 if (LHSContainsUndef && RHSContainsUndef) {
8914 // The result of any comparison between undefs can be soundly replaced
8915 // with undef.
8916 unionAssumedWithUndef();
8917 } else if (LHSContainsUndef) {
8918 for (const APInt &R : RHSAAPVS) {
8919 bool CmpResult = calculateICmpInst(ICI, Zero, R);
8920 MaybeTrue |= CmpResult;
8921 MaybeFalse |= !CmpResult;
8922 if (MaybeTrue & MaybeFalse)
8923 return indicatePessimisticFixpoint();
8924 }
8925 } else if (RHSContainsUndef) {
8926 for (const APInt &L : LHSAAPVS) {
8927 bool CmpResult = calculateICmpInst(ICI, L, Zero);
8928 MaybeTrue |= CmpResult;
8929 MaybeFalse |= !CmpResult;
8930 if (MaybeTrue & MaybeFalse)
8931 return indicatePessimisticFixpoint();
8932 }
8933 } else {
8934 for (const APInt &L : LHSAAPVS) {
8935 for (const APInt &R : RHSAAPVS) {
8936 bool CmpResult = calculateICmpInst(ICI, L, R);
8937 MaybeTrue |= CmpResult;
8938 MaybeFalse |= !CmpResult;
8939 if (MaybeTrue & MaybeFalse)
8940 return indicatePessimisticFixpoint();
8941 }
8942 }
8943 }
8944 if (MaybeTrue)
8945 unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8946 if (MaybeFalse)
8947 unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8948 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8949 : ChangeStatus::CHANGED;
8950 }
8951
updateWithSelectInst__anon26093b6c6c11::AAPotentialConstantValuesFloating8952 ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8953 auto AssumedBefore = getAssumed();
8954 Value *LHS = SI->getTrueValue();
8955 Value *RHS = SI->getFalseValue();
8956
8957 bool UsedAssumedInformation = false;
8958 Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8959 UsedAssumedInformation);
8960
8961 // Check if we only need one operand.
8962 bool OnlyLeft = false, OnlyRight = false;
8963 if (C && *C && (*C)->isOneValue())
8964 OnlyLeft = true;
8965 else if (C && *C && (*C)->isZeroValue())
8966 OnlyRight = true;
8967
8968 bool LHSContainsUndef = false, RHSContainsUndef = false;
8969 SetTy LHSAAPVS, RHSAAPVS;
8970 if (!OnlyRight && !fillSetWithConstantValues(A, IRPosition::value(*LHS),
8971 LHSAAPVS, LHSContainsUndef))
8972 return indicatePessimisticFixpoint();
8973
8974 if (!OnlyLeft && !fillSetWithConstantValues(A, IRPosition::value(*RHS),
8975 RHSAAPVS, RHSContainsUndef))
8976 return indicatePessimisticFixpoint();
8977
8978 if (OnlyLeft || OnlyRight) {
8979 // select (true/false), lhs, rhs
8980 auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
8981 auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
8982
8983 if (Undef)
8984 unionAssumedWithUndef();
8985 else {
8986 for (auto &It : *OpAA)
8987 unionAssumed(It);
8988 }
8989
8990 } else if (LHSContainsUndef && RHSContainsUndef) {
8991 // select i1 *, undef , undef => undef
8992 unionAssumedWithUndef();
8993 } else {
8994 for (auto &It : LHSAAPVS)
8995 unionAssumed(It);
8996 for (auto &It : RHSAAPVS)
8997 unionAssumed(It);
8998 }
8999 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9000 : ChangeStatus::CHANGED;
9001 }
9002
updateWithCastInst__anon26093b6c6c11::AAPotentialConstantValuesFloating9003 ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9004 auto AssumedBefore = getAssumed();
9005 if (!CI->isIntegerCast())
9006 return indicatePessimisticFixpoint();
9007 assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9008 uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9009 Value *Src = CI->getOperand(0);
9010
9011 bool SrcContainsUndef = false;
9012 SetTy SrcPVS;
9013 if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
9014 SrcContainsUndef))
9015 return indicatePessimisticFixpoint();
9016
9017 if (SrcContainsUndef)
9018 unionAssumedWithUndef();
9019 else {
9020 for (const APInt &S : SrcPVS) {
9021 APInt T = calculateCastInst(CI, S, ResultBitWidth);
9022 unionAssumed(T);
9023 }
9024 }
9025 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9026 : ChangeStatus::CHANGED;
9027 }
9028
updateWithBinaryOperator__anon26093b6c6c11::AAPotentialConstantValuesFloating9029 ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9030 auto AssumedBefore = getAssumed();
9031 Value *LHS = BinOp->getOperand(0);
9032 Value *RHS = BinOp->getOperand(1);
9033
9034 bool LHSContainsUndef = false, RHSContainsUndef = false;
9035 SetTy LHSAAPVS, RHSAAPVS;
9036 if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9037 LHSContainsUndef) ||
9038 !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9039 RHSContainsUndef))
9040 return indicatePessimisticFixpoint();
9041
9042 const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9043
9044 // TODO: make use of undef flag to limit potential values aggressively.
9045 if (LHSContainsUndef && RHSContainsUndef) {
9046 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9047 return indicatePessimisticFixpoint();
9048 } else if (LHSContainsUndef) {
9049 for (const APInt &R : RHSAAPVS) {
9050 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9051 return indicatePessimisticFixpoint();
9052 }
9053 } else if (RHSContainsUndef) {
9054 for (const APInt &L : LHSAAPVS) {
9055 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9056 return indicatePessimisticFixpoint();
9057 }
9058 } else {
9059 for (const APInt &L : LHSAAPVS) {
9060 for (const APInt &R : RHSAAPVS) {
9061 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9062 return indicatePessimisticFixpoint();
9063 }
9064 }
9065 }
9066 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9067 : ChangeStatus::CHANGED;
9068 }
9069
9070 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AAPotentialConstantValuesFloating9071 ChangeStatus updateImpl(Attributor &A) override {
9072 Value &V = getAssociatedValue();
9073 Instruction *I = dyn_cast<Instruction>(&V);
9074
9075 if (auto *ICI = dyn_cast<ICmpInst>(I))
9076 return updateWithICmpInst(A, ICI);
9077
9078 if (auto *SI = dyn_cast<SelectInst>(I))
9079 return updateWithSelectInst(A, SI);
9080
9081 if (auto *CI = dyn_cast<CastInst>(I))
9082 return updateWithCastInst(A, CI);
9083
9084 if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9085 return updateWithBinaryOperator(A, BinOp);
9086
9087 return indicatePessimisticFixpoint();
9088 }
9089
9090 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesFloating9091 void trackStatistics() const override {
9092 STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9093 }
9094 };
9095
9096 struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
AAPotentialConstantValuesFunction__anon26093b6c6c11::AAPotentialConstantValuesFunction9097 AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
9098 : AAPotentialConstantValuesImpl(IRP, A) {}
9099
9100 /// See AbstractAttribute::initialize(...).
updateImpl__anon26093b6c6c11::AAPotentialConstantValuesFunction9101 ChangeStatus updateImpl(Attributor &A) override {
9102 llvm_unreachable(
9103 "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
9104 "not be called");
9105 }
9106
9107 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesFunction9108 void trackStatistics() const override {
9109 STATS_DECLTRACK_FN_ATTR(potential_values)
9110 }
9111 };
9112
9113 struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
AAPotentialConstantValuesCallSite__anon26093b6c6c11::AAPotentialConstantValuesCallSite9114 AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
9115 : AAPotentialConstantValuesFunction(IRP, A) {}
9116
9117 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesCallSite9118 void trackStatistics() const override {
9119 STATS_DECLTRACK_CS_ATTR(potential_values)
9120 }
9121 };
9122
9123 struct AAPotentialConstantValuesCallSiteReturned
9124 : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9125 AAPotentialConstantValuesImpl> {
AAPotentialConstantValuesCallSiteReturned__anon26093b6c6c11::AAPotentialConstantValuesCallSiteReturned9126 AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
9127 Attributor &A)
9128 : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9129 AAPotentialConstantValuesImpl>(IRP, A) {}
9130
9131 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesCallSiteReturned9132 void trackStatistics() const override {
9133 STATS_DECLTRACK_CSRET_ATTR(potential_values)
9134 }
9135 };
9136
9137 struct AAPotentialConstantValuesCallSiteArgument
9138 : AAPotentialConstantValuesFloating {
AAPotentialConstantValuesCallSiteArgument__anon26093b6c6c11::AAPotentialConstantValuesCallSiteArgument9139 AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
9140 Attributor &A)
9141 : AAPotentialConstantValuesFloating(IRP, A) {}
9142
9143 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c6c11::AAPotentialConstantValuesCallSiteArgument9144 void initialize(Attributor &A) override {
9145 AAPotentialConstantValuesImpl::initialize(A);
9146 if (isAtFixpoint())
9147 return;
9148
9149 Value &V = getAssociatedValue();
9150
9151 if (auto *C = dyn_cast<ConstantInt>(&V)) {
9152 unionAssumed(C->getValue());
9153 indicateOptimisticFixpoint();
9154 return;
9155 }
9156
9157 if (isa<UndefValue>(&V)) {
9158 unionAssumedWithUndef();
9159 indicateOptimisticFixpoint();
9160 return;
9161 }
9162 }
9163
9164 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AAPotentialConstantValuesCallSiteArgument9165 ChangeStatus updateImpl(Attributor &A) override {
9166 Value &V = getAssociatedValue();
9167 auto AssumedBefore = getAssumed();
9168 auto &AA = A.getAAFor<AAPotentialConstantValues>(
9169 *this, IRPosition::value(V), DepClassTy::REQUIRED);
9170 const auto &S = AA.getAssumed();
9171 unionAssumed(S);
9172 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9173 : ChangeStatus::CHANGED;
9174 }
9175
9176 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AAPotentialConstantValuesCallSiteArgument9177 void trackStatistics() const override {
9178 STATS_DECLTRACK_CSARG_ATTR(potential_values)
9179 }
9180 };
9181
9182 /// ------------------------ NoUndef Attribute ---------------------------------
9183 struct AANoUndefImpl : AANoUndef {
AANoUndefImpl__anon26093b6c6c11::AANoUndefImpl9184 AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9185
9186 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6c11::AANoUndefImpl9187 void initialize(Attributor &A) override {
9188 if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9189 indicateOptimisticFixpoint();
9190 return;
9191 }
9192 Value &V = getAssociatedValue();
9193 if (isa<UndefValue>(V))
9194 indicatePessimisticFixpoint();
9195 else if (isa<FreezeInst>(V))
9196 indicateOptimisticFixpoint();
9197 else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9198 isGuaranteedNotToBeUndefOrPoison(&V))
9199 indicateOptimisticFixpoint();
9200 else
9201 AANoUndef::initialize(A);
9202 }
9203
9204 /// See followUsesInMBEC
followUseInMBEC__anon26093b6c6c11::AANoUndefImpl9205 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9206 AANoUndef::StateType &State) {
9207 const Value *UseV = U->get();
9208 const DominatorTree *DT = nullptr;
9209 AssumptionCache *AC = nullptr;
9210 InformationCache &InfoCache = A.getInfoCache();
9211 if (Function *F = getAnchorScope()) {
9212 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9213 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9214 }
9215 State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9216 bool TrackUse = false;
9217 // Track use for instructions which must produce undef or poison bits when
9218 // at least one operand contains such bits.
9219 if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9220 TrackUse = true;
9221 return TrackUse;
9222 }
9223
9224 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c6c11::AANoUndefImpl9225 const std::string getAsStr() const override {
9226 return getAssumed() ? "noundef" : "may-undef-or-poison";
9227 }
9228
manifest__anon26093b6c6c11::AANoUndefImpl9229 ChangeStatus manifest(Attributor &A) override {
9230 // We don't manifest noundef attribute for dead positions because the
9231 // associated values with dead positions would be replaced with undef
9232 // values.
9233 bool UsedAssumedInformation = false;
9234 if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9235 UsedAssumedInformation))
9236 return ChangeStatus::UNCHANGED;
9237 // A position whose simplified value does not have any value is
9238 // considered to be dead. We don't manifest noundef in such positions for
9239 // the same reason above.
9240 if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
9241 AA::Interprocedural)
9242 .has_value())
9243 return ChangeStatus::UNCHANGED;
9244 return AANoUndef::manifest(A);
9245 }
9246 };
9247
9248 struct AANoUndefFloating : public AANoUndefImpl {
AANoUndefFloating__anon26093b6c6c11::AANoUndefFloating9249 AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9250 : AANoUndefImpl(IRP, A) {}
9251
9252 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c6c11::AANoUndefFloating9253 void initialize(Attributor &A) override {
9254 AANoUndefImpl::initialize(A);
9255 if (!getState().isAtFixpoint())
9256 if (Instruction *CtxI = getCtxI())
9257 followUsesInMBEC(*this, A, getState(), *CtxI);
9258 }
9259
9260 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AANoUndefFloating9261 ChangeStatus updateImpl(Attributor &A) override {
9262
9263 SmallVector<AA::ValueAndContext> Values;
9264 bool UsedAssumedInformation = false;
9265 if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
9266 AA::AnyScope, UsedAssumedInformation)) {
9267 Values.push_back({getAssociatedValue(), getCtxI()});
9268 }
9269
9270 StateType T;
9271 auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
9272 const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9273 DepClassTy::REQUIRED);
9274 if (this == &AA) {
9275 T.indicatePessimisticFixpoint();
9276 } else {
9277 const AANoUndef::StateType &S =
9278 static_cast<const AANoUndef::StateType &>(AA.getState());
9279 T ^= S;
9280 }
9281 return T.isValidState();
9282 };
9283
9284 for (const auto &VAC : Values)
9285 if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
9286 return indicatePessimisticFixpoint();
9287
9288 return clampStateAndIndicateChange(getState(), T);
9289 }
9290
9291 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AANoUndefFloating9292 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9293 };
9294
9295 struct AANoUndefReturned final
9296 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
AANoUndefReturned__anon26093b6c6c11::AANoUndefReturned9297 AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9298 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9299
9300 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AANoUndefReturned9301 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9302 };
9303
9304 struct AANoUndefArgument final
9305 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
AANoUndefArgument__anon26093b6c6c11::AANoUndefArgument9306 AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9307 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9308
9309 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AANoUndefArgument9310 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9311 };
9312
9313 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
AANoUndefCallSiteArgument__anon26093b6c6c11::AANoUndefCallSiteArgument9314 AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9315 : AANoUndefFloating(IRP, A) {}
9316
9317 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AANoUndefCallSiteArgument9318 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9319 };
9320
9321 struct AANoUndefCallSiteReturned final
9322 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
AANoUndefCallSiteReturned__anon26093b6c6c11::AANoUndefCallSiteReturned9323 AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9324 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9325
9326 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c6c11::AANoUndefCallSiteReturned9327 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9328 };
9329
9330 struct AACallEdgesImpl : public AACallEdges {
AACallEdgesImpl__anon26093b6c6c11::AACallEdgesImpl9331 AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9332
getOptimisticEdges__anon26093b6c6c11::AACallEdgesImpl9333 const SetVector<Function *> &getOptimisticEdges() const override {
9334 return CalledFunctions;
9335 }
9336
hasUnknownCallee__anon26093b6c6c11::AACallEdgesImpl9337 bool hasUnknownCallee() const override { return HasUnknownCallee; }
9338
hasNonAsmUnknownCallee__anon26093b6c6c11::AACallEdgesImpl9339 bool hasNonAsmUnknownCallee() const override {
9340 return HasUnknownCalleeNonAsm;
9341 }
9342
getAsStr__anon26093b6c6c11::AACallEdgesImpl9343 const std::string getAsStr() const override {
9344 return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9345 std::to_string(CalledFunctions.size()) + "]";
9346 }
9347
trackStatistics__anon26093b6c6c11::AACallEdgesImpl9348 void trackStatistics() const override {}
9349
9350 protected:
addCalledFunction__anon26093b6c6c11::AACallEdgesImpl9351 void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9352 if (CalledFunctions.insert(Fn)) {
9353 Change = ChangeStatus::CHANGED;
9354 LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9355 << "\n");
9356 }
9357 }
9358
setHasUnknownCallee__anon26093b6c6c11::AACallEdgesImpl9359 void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9360 if (!HasUnknownCallee)
9361 Change = ChangeStatus::CHANGED;
9362 if (NonAsm && !HasUnknownCalleeNonAsm)
9363 Change = ChangeStatus::CHANGED;
9364 HasUnknownCalleeNonAsm |= NonAsm;
9365 HasUnknownCallee = true;
9366 }
9367
9368 private:
9369 /// Optimistic set of functions that might be called by this position.
9370 SetVector<Function *> CalledFunctions;
9371
9372 /// Is there any call with a unknown callee.
9373 bool HasUnknownCallee = false;
9374
9375 /// Is there any call with a unknown callee, excluding any inline asm.
9376 bool HasUnknownCalleeNonAsm = false;
9377 };
9378
9379 struct AACallEdgesCallSite : public AACallEdgesImpl {
AACallEdgesCallSite__anon26093b6c6c11::AACallEdgesCallSite9380 AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9381 : AACallEdgesImpl(IRP, A) {}
9382 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AACallEdgesCallSite9383 ChangeStatus updateImpl(Attributor &A) override {
9384 ChangeStatus Change = ChangeStatus::UNCHANGED;
9385
9386 auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
9387 if (Function *Fn = dyn_cast<Function>(&V)) {
9388 addCalledFunction(Fn, Change);
9389 } else {
9390 LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9391 setHasUnknownCallee(true, Change);
9392 }
9393
9394 // Explore all values.
9395 return true;
9396 };
9397
9398 SmallVector<AA::ValueAndContext> Values;
9399 // Process any value that we might call.
9400 auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
9401 bool UsedAssumedInformation = false;
9402 Values.clear();
9403 if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
9404 AA::AnyScope, UsedAssumedInformation)) {
9405 Values.push_back({*V, CtxI});
9406 }
9407 for (auto &VAC : Values)
9408 VisitValue(*VAC.getValue(), VAC.getCtxI());
9409 };
9410
9411 CallBase *CB = cast<CallBase>(getCtxI());
9412
9413 if (CB->isInlineAsm()) {
9414 if (!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
9415 !hasAssumption(*CB, "ompx_no_call_asm"))
9416 setHasUnknownCallee(false, Change);
9417 return Change;
9418 }
9419
9420 // Process callee metadata if available.
9421 if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9422 for (auto &Op : MD->operands()) {
9423 Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9424 if (Callee)
9425 addCalledFunction(Callee, Change);
9426 }
9427 return Change;
9428 }
9429
9430 // The most simple case.
9431 ProcessCalledOperand(CB->getCalledOperand(), CB);
9432
9433 // Process callback functions.
9434 SmallVector<const Use *, 4u> CallbackUses;
9435 AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9436 for (const Use *U : CallbackUses)
9437 ProcessCalledOperand(U->get(), CB);
9438
9439 return Change;
9440 }
9441 };
9442
9443 struct AACallEdgesFunction : public AACallEdgesImpl {
AACallEdgesFunction__anon26093b6c6c11::AACallEdgesFunction9444 AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9445 : AACallEdgesImpl(IRP, A) {}
9446
9447 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AACallEdgesFunction9448 ChangeStatus updateImpl(Attributor &A) override {
9449 ChangeStatus Change = ChangeStatus::UNCHANGED;
9450
9451 auto ProcessCallInst = [&](Instruction &Inst) {
9452 CallBase &CB = cast<CallBase>(Inst);
9453
9454 auto &CBEdges = A.getAAFor<AACallEdges>(
9455 *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9456 if (CBEdges.hasNonAsmUnknownCallee())
9457 setHasUnknownCallee(true, Change);
9458 if (CBEdges.hasUnknownCallee())
9459 setHasUnknownCallee(false, Change);
9460
9461 for (Function *F : CBEdges.getOptimisticEdges())
9462 addCalledFunction(F, Change);
9463
9464 return true;
9465 };
9466
9467 // Visit all callable instructions.
9468 bool UsedAssumedInformation = false;
9469 if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9470 UsedAssumedInformation,
9471 /* CheckBBLivenessOnly */ true)) {
9472 // If we haven't looked at all call like instructions, assume that there
9473 // are unknown callees.
9474 setHasUnknownCallee(true, Change);
9475 }
9476
9477 return Change;
9478 }
9479 };
9480
9481 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9482 private:
9483 struct QuerySet {
markReachable__anon26093b6c6c11::AAFunctionReachabilityFunction::QuerySet9484 void markReachable(const Function &Fn) {
9485 Reachable.insert(&Fn);
9486 Unreachable.erase(&Fn);
9487 }
9488
9489 /// If there is no information about the function None is returned.
isCachedReachable__anon26093b6c6c11::AAFunctionReachabilityFunction::QuerySet9490 Optional<bool> isCachedReachable(const Function &Fn) {
9491 // Assume that we can reach the function.
9492 // TODO: Be more specific with the unknown callee.
9493 if (CanReachUnknownCallee)
9494 return true;
9495
9496 if (Reachable.count(&Fn))
9497 return true;
9498
9499 if (Unreachable.count(&Fn))
9500 return false;
9501
9502 return llvm::None;
9503 }
9504
9505 /// Set of functions that we know for sure is reachable.
9506 DenseSet<const Function *> Reachable;
9507
9508 /// Set of functions that are unreachable, but might become reachable.
9509 DenseSet<const Function *> Unreachable;
9510
9511 /// If we can reach a function with a call to a unknown function we assume
9512 /// that we can reach any function.
9513 bool CanReachUnknownCallee = false;
9514 };
9515
9516 struct QueryResolver : public QuerySet {
update__anon26093b6c6c11::AAFunctionReachabilityFunction::QueryResolver9517 ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9518 ArrayRef<const AACallEdges *> AAEdgesList) {
9519 ChangeStatus Change = ChangeStatus::UNCHANGED;
9520
9521 for (auto *AAEdges : AAEdgesList) {
9522 if (AAEdges->hasUnknownCallee()) {
9523 if (!CanReachUnknownCallee) {
9524 LLVM_DEBUG(dbgs()
9525 << "[QueryResolver] Edges include unknown callee!\n");
9526 Change = ChangeStatus::CHANGED;
9527 }
9528 CanReachUnknownCallee = true;
9529 return Change;
9530 }
9531 }
9532
9533 for (const Function *Fn : make_early_inc_range(Unreachable)) {
9534 if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9535 Change = ChangeStatus::CHANGED;
9536 markReachable(*Fn);
9537 }
9538 }
9539 return Change;
9540 }
9541
isReachable__anon26093b6c6c11::AAFunctionReachabilityFunction::QueryResolver9542 bool isReachable(Attributor &A, AAFunctionReachability &AA,
9543 ArrayRef<const AACallEdges *> AAEdgesList,
9544 const Function &Fn) {
9545 Optional<bool> Cached = isCachedReachable(Fn);
9546 if (Cached)
9547 return Cached.value();
9548
9549 // The query was not cached, thus it is new. We need to request an update
9550 // explicitly to make sure this the information is properly run to a
9551 // fixpoint.
9552 A.registerForUpdate(AA);
9553
9554 // We need to assume that this function can't reach Fn to prevent
9555 // an infinite loop if this function is recursive.
9556 Unreachable.insert(&Fn);
9557
9558 bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9559 if (Result)
9560 markReachable(Fn);
9561 return Result;
9562 }
9563
checkIfReachable__anon26093b6c6c11::AAFunctionReachabilityFunction::QueryResolver9564 bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9565 ArrayRef<const AACallEdges *> AAEdgesList,
9566 const Function &Fn) const {
9567
9568 // Handle the most trivial case first.
9569 for (auto *AAEdges : AAEdgesList) {
9570 const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9571
9572 if (Edges.count(const_cast<Function *>(&Fn)))
9573 return true;
9574 }
9575
9576 SmallVector<const AAFunctionReachability *, 8> Deps;
9577 for (auto &AAEdges : AAEdgesList) {
9578 const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9579
9580 for (Function *Edge : Edges) {
9581 // Functions that do not call back into the module can be ignored.
9582 if (Edge->hasFnAttribute(Attribute::NoCallback))
9583 continue;
9584
9585 // We don't need a dependency if the result is reachable.
9586 const AAFunctionReachability &EdgeReachability =
9587 A.getAAFor<AAFunctionReachability>(
9588 AA, IRPosition::function(*Edge), DepClassTy::NONE);
9589 Deps.push_back(&EdgeReachability);
9590
9591 if (EdgeReachability.canReach(A, Fn))
9592 return true;
9593 }
9594 }
9595
9596 // The result is false for now, set dependencies and leave.
9597 for (auto *Dep : Deps)
9598 A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9599
9600 return false;
9601 }
9602 };
9603
9604 /// Get call edges that can be reached by this instruction.
getReachableCallEdges__anon26093b6c6c11::AAFunctionReachabilityFunction9605 bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9606 const Instruction &Inst,
9607 SmallVector<const AACallEdges *> &Result) const {
9608 // Determine call like instructions that we can reach from the inst.
9609 auto CheckCallBase = [&](Instruction &CBInst) {
9610 if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9611 return true;
9612
9613 auto &CB = cast<CallBase>(CBInst);
9614 const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9615 *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9616
9617 Result.push_back(&AAEdges);
9618 return true;
9619 };
9620
9621 bool UsedAssumedInformation = false;
9622 return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9623 UsedAssumedInformation,
9624 /* CheckBBLivenessOnly */ true);
9625 }
9626
9627 public:
AAFunctionReachabilityFunction__anon26093b6c6c11::AAFunctionReachabilityFunction9628 AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9629 : AAFunctionReachability(IRP, A) {}
9630
canReach__anon26093b6c6c11::AAFunctionReachabilityFunction9631 bool canReach(Attributor &A, const Function &Fn) const override {
9632 if (!isValidState())
9633 return true;
9634
9635 const AACallEdges &AAEdges =
9636 A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9637
9638 // Attributor returns attributes as const, so this function has to be
9639 // const for users of this attribute to use it without having to do
9640 // a const_cast.
9641 // This is a hack for us to be able to cache queries.
9642 auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9643 bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9644 {&AAEdges}, Fn);
9645
9646 return Result;
9647 }
9648
9649 /// Can \p CB reach \p Fn
canReach__anon26093b6c6c11::AAFunctionReachabilityFunction9650 bool canReach(Attributor &A, CallBase &CB,
9651 const Function &Fn) const override {
9652 if (!isValidState())
9653 return true;
9654
9655 const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9656 *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9657
9658 // Attributor returns attributes as const, so this function has to be
9659 // const for users of this attribute to use it without having to do
9660 // a const_cast.
9661 // This is a hack for us to be able to cache queries.
9662 auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9663 QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9664
9665 bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9666
9667 return Result;
9668 }
9669
instructionCanReach__anon26093b6c6c11::AAFunctionReachabilityFunction9670 bool instructionCanReach(Attributor &A, const Instruction &Inst,
9671 const Function &Fn) const override {
9672 if (!isValidState())
9673 return true;
9674
9675 const auto &Reachability = A.getAAFor<AAReachability>(
9676 *this, IRPosition::function(*getAssociatedFunction()),
9677 DepClassTy::REQUIRED);
9678
9679 SmallVector<const AACallEdges *> CallEdges;
9680 bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9681 // Attributor returns attributes as const, so this function has to be
9682 // const for users of this attribute to use it without having to do
9683 // a const_cast.
9684 // This is a hack for us to be able to cache queries.
9685 auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9686 QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9687 if (!AllKnown) {
9688 LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges known, "
9689 "may reach unknown callee!\n");
9690 InstQSet.CanReachUnknownCallee = true;
9691 }
9692
9693 return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9694 }
9695
9696 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c6c11::AAFunctionReachabilityFunction9697 ChangeStatus updateImpl(Attributor &A) override {
9698 const AACallEdges &AAEdges =
9699 A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9700 ChangeStatus Change = ChangeStatus::UNCHANGED;
9701
9702 Change |= WholeFunction.update(A, *this, {&AAEdges});
9703
9704 for (auto &CBPair : CBQueries) {
9705 const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9706 *this, IRPosition::callsite_function(*CBPair.first),
9707 DepClassTy::REQUIRED);
9708
9709 Change |= CBPair.second.update(A, *this, {&AAEdges});
9710 }
9711
9712 // Update the Instruction queries.
9713 if (!InstQueries.empty()) {
9714 const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9715 *this, IRPosition::function(*getAssociatedFunction()),
9716 DepClassTy::REQUIRED);
9717
9718 // Check for local callbases first.
9719 for (auto &InstPair : InstQueries) {
9720 SmallVector<const AACallEdges *> CallEdges;
9721 bool AllKnown =
9722 getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9723 // Update will return change if we this effects any queries.
9724 if (!AllKnown) {
9725 LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges "
9726 "known, may reach unknown callee!\n");
9727 InstPair.second.CanReachUnknownCallee = true;
9728 }
9729 Change |= InstPair.second.update(A, *this, CallEdges);
9730 }
9731 }
9732
9733 return Change;
9734 }
9735
getAsStr__anon26093b6c6c11::AAFunctionReachabilityFunction9736 const std::string getAsStr() const override {
9737 size_t QueryCount =
9738 WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9739
9740 return "FunctionReachability [" +
9741 (canReachUnknownCallee()
9742 ? "unknown"
9743 : (std::to_string(WholeFunction.Reachable.size()) + "," +
9744 std::to_string(QueryCount))) +
9745 "]";
9746 }
9747
trackStatistics__anon26093b6c6c11::AAFunctionReachabilityFunction9748 void trackStatistics() const override {}
9749
9750 private:
canReachUnknownCallee__anon26093b6c6c11::AAFunctionReachabilityFunction9751 bool canReachUnknownCallee() const override {
9752 return WholeFunction.CanReachUnknownCallee;
9753 }
9754
9755 /// Used to answer if a the whole function can reacha a specific function.
9756 QueryResolver WholeFunction;
9757
9758 /// Used to answer if a call base inside this function can reach a specific
9759 /// function.
9760 MapVector<const CallBase *, QueryResolver> CBQueries;
9761
9762 /// This is for instruction queries than scan "forward".
9763 MapVector<const Instruction *, QueryResolver> InstQueries;
9764 };
9765 } // namespace
9766
9767 template <typename AAType>
9768 static Optional<Constant *>
askForAssumedConstant(Attributor & A,const AbstractAttribute & QueryingAA,const IRPosition & IRP,Type & Ty)9769 askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
9770 const IRPosition &IRP, Type &Ty) {
9771 if (!Ty.isIntegerTy())
9772 return nullptr;
9773
9774 // This will also pass the call base context.
9775 const auto &AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
9776
9777 Optional<Constant *> COpt = AA.getAssumedConstant(A);
9778
9779 if (!COpt.has_value()) {
9780 A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9781 return llvm::None;
9782 }
9783 if (auto *C = COpt.value()) {
9784 A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9785 return C;
9786 }
9787 return nullptr;
9788 }
9789
getSingleValue(Attributor & A,const AbstractAttribute & AA,const IRPosition & IRP,SmallVectorImpl<AA::ValueAndContext> & Values)9790 Value *AAPotentialValues::getSingleValue(
9791 Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
9792 SmallVectorImpl<AA::ValueAndContext> &Values) {
9793 Type &Ty = *IRP.getAssociatedType();
9794 Optional<Value *> V;
9795 for (auto &It : Values) {
9796 V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
9797 if (V.has_value() && !V.value())
9798 break;
9799 }
9800 if (!V.has_value())
9801 return UndefValue::get(&Ty);
9802 return V.value();
9803 }
9804
9805 namespace {
9806 struct AAPotentialValuesImpl : AAPotentialValues {
9807 using StateType = PotentialLLVMValuesState;
9808
AAPotentialValuesImpl__anon26093b6c7211::AAPotentialValuesImpl9809 AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
9810 : AAPotentialValues(IRP, A) {}
9811
9812 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c7211::AAPotentialValuesImpl9813 void initialize(Attributor &A) override {
9814 if (A.hasSimplificationCallback(getIRPosition())) {
9815 indicatePessimisticFixpoint();
9816 return;
9817 }
9818 Value *Stripped = getAssociatedValue().stripPointerCasts();
9819 if (isa<Constant>(Stripped)) {
9820 addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
9821 getAnchorScope());
9822 indicateOptimisticFixpoint();
9823 return;
9824 }
9825 AAPotentialValues::initialize(A);
9826 }
9827
9828 /// See AbstractAttribute::getAsStr().
getAsStr__anon26093b6c7211::AAPotentialValuesImpl9829 const std::string getAsStr() const override {
9830 std::string Str;
9831 llvm::raw_string_ostream OS(Str);
9832 OS << getState();
9833 return OS.str();
9834 }
9835
9836 template <typename AAType>
askOtherAA__anon26093b6c7211::AAPotentialValuesImpl9837 static Optional<Value *> askOtherAA(Attributor &A,
9838 const AbstractAttribute &AA,
9839 const IRPosition &IRP, Type &Ty) {
9840 if (isa<Constant>(IRP.getAssociatedValue()))
9841 return &IRP.getAssociatedValue();
9842 Optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
9843 if (!C)
9844 return llvm::None;
9845 if (C.value())
9846 if (auto *CC = AA::getWithType(**C, Ty))
9847 return CC;
9848 return nullptr;
9849 }
9850
addValue__anon26093b6c7211::AAPotentialValuesImpl9851 void addValue(Attributor &A, StateType &State, Value &V,
9852 const Instruction *CtxI, AA::ValueScope S,
9853 Function *AnchorScope) const {
9854
9855 IRPosition ValIRP = IRPosition::value(V);
9856 if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
9857 for (auto &U : CB->args()) {
9858 if (U.get() != &V)
9859 continue;
9860 ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
9861 break;
9862 }
9863 }
9864
9865 Value *VPtr = &V;
9866 if (ValIRP.getAssociatedType()->isIntegerTy()) {
9867 Type &Ty = *getAssociatedType();
9868 Optional<Value *> SimpleV =
9869 askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
9870 if (SimpleV.has_value() && !SimpleV.value()) {
9871 auto &PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
9872 *this, ValIRP, DepClassTy::OPTIONAL);
9873 if (PotentialConstantsAA.isValidState()) {
9874 for (auto &It : PotentialConstantsAA.getAssumedSet()) {
9875 State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
9876 }
9877 assert(!PotentialConstantsAA.undefIsContained() &&
9878 "Undef should be an explicit value!");
9879 return;
9880 }
9881 }
9882 if (!SimpleV.has_value())
9883 return;
9884
9885 if (SimpleV.value())
9886 VPtr = SimpleV.value();
9887 }
9888
9889 if (isa<ConstantInt>(VPtr))
9890 CtxI = nullptr;
9891 if (!AA::isValidInScope(*VPtr, AnchorScope))
9892 S = AA::ValueScope(S | AA::Interprocedural);
9893
9894 State.unionAssumed({{*VPtr, CtxI}, S});
9895 }
9896
9897 /// Helper struct to tie a value+context pair together with the scope for
9898 /// which this is the simplified version.
9899 struct ItemInfo {
9900 AA::ValueAndContext I;
9901 AA::ValueScope S;
9902
operator ==__anon26093b6c7211::AAPotentialValuesImpl::ItemInfo9903 bool operator==(const ItemInfo &II) const {
9904 return II.I == I && II.S == S;
9905 };
operator <__anon26093b6c7211::AAPotentialValuesImpl::ItemInfo9906 bool operator<(const ItemInfo &II) const {
9907 if (I == II.I)
9908 return S < II.S;
9909 return I < II.I;
9910 };
9911 };
9912
recurseForValue__anon26093b6c7211::AAPotentialValuesImpl9913 bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
9914 SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
9915 for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
9916 if (!(CS & S))
9917 continue;
9918
9919 bool UsedAssumedInformation = false;
9920 SmallVector<AA::ValueAndContext> Values;
9921 if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
9922 UsedAssumedInformation))
9923 return false;
9924
9925 for (auto &It : Values)
9926 ValueScopeMap[It] += CS;
9927 }
9928 for (auto &It : ValueScopeMap)
9929 addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
9930 AA::ValueScope(It.second), getAnchorScope());
9931
9932 return true;
9933 }
9934
giveUpOnIntraprocedural__anon26093b6c7211::AAPotentialValuesImpl9935 void giveUpOnIntraprocedural(Attributor &A) {
9936 auto NewS = StateType::getBestState(getState());
9937 for (auto &It : getAssumedSet()) {
9938 if (It.second == AA::Intraprocedural)
9939 continue;
9940 addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
9941 AA::Interprocedural, getAnchorScope());
9942 }
9943 assert(!undefIsContained() && "Undef should be an explicit value!");
9944 addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
9945 getAnchorScope());
9946 getState() = NewS;
9947 }
9948
9949 /// See AbstractState::indicatePessimisticFixpoint(...).
indicatePessimisticFixpoint__anon26093b6c7211::AAPotentialValuesImpl9950 ChangeStatus indicatePessimisticFixpoint() override {
9951 getState() = StateType::getBestState(getState());
9952 getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
9953 AAPotentialValues::indicateOptimisticFixpoint();
9954 return ChangeStatus::CHANGED;
9955 }
9956
9957 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7211::AAPotentialValuesImpl9958 ChangeStatus updateImpl(Attributor &A) override {
9959 return indicatePessimisticFixpoint();
9960 }
9961
9962 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c7211::AAPotentialValuesImpl9963 ChangeStatus manifest(Attributor &A) override {
9964 SmallVector<AA::ValueAndContext> Values;
9965 for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
9966 Values.clear();
9967 if (!getAssumedSimplifiedValues(A, Values, S))
9968 continue;
9969 Value &OldV = getAssociatedValue();
9970 if (isa<UndefValue>(OldV))
9971 continue;
9972 Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
9973 if (!NewV || NewV == &OldV)
9974 continue;
9975 if (getCtxI() &&
9976 !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
9977 continue;
9978 if (A.changeAfterManifest(getIRPosition(), *NewV))
9979 return ChangeStatus::CHANGED;
9980 }
9981 return ChangeStatus::UNCHANGED;
9982 }
9983
getAssumedSimplifiedValues__anon26093b6c7211::AAPotentialValuesImpl9984 bool getAssumedSimplifiedValues(Attributor &A,
9985 SmallVectorImpl<AA::ValueAndContext> &Values,
9986 AA::ValueScope S) const override {
9987 if (!isValidState())
9988 return false;
9989 for (auto &It : getAssumedSet())
9990 if (It.second & S)
9991 Values.push_back(It.first);
9992 assert(!undefIsContained() && "Undef should be an explicit value!");
9993 return true;
9994 }
9995 };
9996
9997 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
AAPotentialValuesFloating__anon26093b6c7211::AAPotentialValuesFloating9998 AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
9999 : AAPotentialValuesImpl(IRP, A) {}
10000
10001 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7211::AAPotentialValuesFloating10002 ChangeStatus updateImpl(Attributor &A) override {
10003 auto AssumedBefore = getAssumed();
10004
10005 genericValueTraversal(A);
10006
10007 return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10008 : ChangeStatus::CHANGED;
10009 }
10010
10011 /// Helper struct to remember which AAIsDead instances we actually used.
10012 struct LivenessInfo {
10013 const AAIsDead *LivenessAA = nullptr;
10014 bool AnyDead = false;
10015 };
10016
10017 /// Check if \p Cmp is a comparison we can simplify.
10018 ///
10019 /// We handle multiple cases, one in which at least one operand is an
10020 /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
10021 /// operand. Return true if successful, in that case Worklist will be updated.
handleCmp__anon26093b6c7211::AAPotentialValuesFloating10022 bool handleCmp(Attributor &A, CmpInst &Cmp, ItemInfo II,
10023 SmallVectorImpl<ItemInfo> &Worklist) {
10024 Value *LHS = Cmp.getOperand(0);
10025 Value *RHS = Cmp.getOperand(1);
10026
10027 // Simplify the operands first.
10028 bool UsedAssumedInformation = false;
10029 const auto &SimplifiedLHS = A.getAssumedSimplified(
10030 IRPosition::value(*LHS, getCallBaseContext()), *this,
10031 UsedAssumedInformation, AA::Intraprocedural);
10032 if (!SimplifiedLHS.has_value())
10033 return true;
10034 if (!SimplifiedLHS.value())
10035 return false;
10036 LHS = *SimplifiedLHS;
10037
10038 const auto &SimplifiedRHS = A.getAssumedSimplified(
10039 IRPosition::value(*RHS, getCallBaseContext()), *this,
10040 UsedAssumedInformation, AA::Intraprocedural);
10041 if (!SimplifiedRHS.has_value())
10042 return true;
10043 if (!SimplifiedRHS.value())
10044 return false;
10045 RHS = *SimplifiedRHS;
10046
10047 LLVMContext &Ctx = Cmp.getContext();
10048 // Handle the trivial case first in which we don't even need to think about
10049 // null or non-null.
10050 if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
10051 Constant *NewV =
10052 ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
10053 addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
10054 getAnchorScope());
10055 return true;
10056 }
10057
10058 // From now on we only handle equalities (==, !=).
10059 ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
10060 if (!ICmp || !ICmp->isEquality())
10061 return false;
10062
10063 bool LHSIsNull = isa<ConstantPointerNull>(LHS);
10064 bool RHSIsNull = isa<ConstantPointerNull>(RHS);
10065 if (!LHSIsNull && !RHSIsNull)
10066 return false;
10067
10068 // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
10069 // non-nullptr operand and if we assume it's non-null we can conclude the
10070 // result of the comparison.
10071 assert((LHSIsNull || RHSIsNull) &&
10072 "Expected nullptr versus non-nullptr comparison at this point");
10073
10074 // The index is the operand that we assume is not null.
10075 unsigned PtrIdx = LHSIsNull;
10076 auto &PtrNonNullAA = A.getAAFor<AANonNull>(
10077 *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
10078 DepClassTy::REQUIRED);
10079 if (!PtrNonNullAA.isAssumedNonNull())
10080 return false;
10081
10082 // The new value depends on the predicate, true for != and false for ==.
10083 Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
10084 ICmp->getPredicate() == CmpInst::ICMP_NE);
10085 addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S, getAnchorScope());
10086 return true;
10087 }
10088
handleSelectInst__anon26093b6c7211::AAPotentialValuesFloating10089 bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
10090 SmallVectorImpl<ItemInfo> &Worklist) {
10091 const Instruction *CtxI = II.I.getCtxI();
10092 bool UsedAssumedInformation = false;
10093
10094 Optional<Constant *> C =
10095 A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
10096 bool NoValueYet = !C.has_value();
10097 if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
10098 return true;
10099 if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
10100 if (CI->isZero())
10101 Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10102 else
10103 Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10104 } else {
10105 // We could not simplify the condition, assume both values.
10106 Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10107 Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10108 }
10109 return true;
10110 }
10111
handleLoadInst__anon26093b6c7211::AAPotentialValuesFloating10112 bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
10113 SmallVectorImpl<ItemInfo> &Worklist) {
10114 SmallSetVector<Value *, 4> PotentialCopies;
10115 SmallSetVector<Instruction *, 4> PotentialValueOrigins;
10116 bool UsedAssumedInformation = false;
10117 if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
10118 PotentialValueOrigins, *this,
10119 UsedAssumedInformation,
10120 /* OnlyExact */ true)) {
10121 LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
10122 "loaded values for load instruction "
10123 << LI << "\n");
10124 return false;
10125 }
10126
10127 // Do not simplify loads that are only used in llvm.assume if we cannot also
10128 // remove all stores that may feed into the load. The reason is that the
10129 // assume is probably worth something as long as the stores are around.
10130 InformationCache &InfoCache = A.getInfoCache();
10131 if (InfoCache.isOnlyUsedByAssume(LI)) {
10132 if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
10133 if (!I)
10134 return true;
10135 if (auto *SI = dyn_cast<StoreInst>(I))
10136 return A.isAssumedDead(SI->getOperandUse(0), this,
10137 /* LivenessAA */ nullptr,
10138 UsedAssumedInformation,
10139 /* CheckBBLivenessOnly */ false);
10140 return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
10141 UsedAssumedInformation,
10142 /* CheckBBLivenessOnly */ false);
10143 })) {
10144 LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
10145 "and we cannot delete all the stores: "
10146 << LI << "\n");
10147 return false;
10148 }
10149 }
10150
10151 // Values have to be dynamically unique or we loose the fact that a
10152 // single llvm::Value might represent two runtime values (e.g.,
10153 // stack locations in different recursive calls).
10154 const Instruction *CtxI = II.I.getCtxI();
10155 bool ScopeIsLocal = (II.S & AA::Intraprocedural);
10156 bool AllLocal = ScopeIsLocal;
10157 bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
10158 AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
10159 return AA::isDynamicallyUnique(A, *this, *PC);
10160 });
10161 if (!DynamicallyUnique) {
10162 LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
10163 "values are dynamically unique: "
10164 << LI << "\n");
10165 return false;
10166 }
10167
10168 for (auto *PotentialCopy : PotentialCopies) {
10169 if (AllLocal) {
10170 Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
10171 } else {
10172 Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
10173 }
10174 }
10175 if (!AllLocal && ScopeIsLocal)
10176 addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
10177 return true;
10178 }
10179
handlePHINode__anon26093b6c7211::AAPotentialValuesFloating10180 bool handlePHINode(
10181 Attributor &A, PHINode &PHI, ItemInfo II,
10182 SmallVectorImpl<ItemInfo> &Worklist,
10183 SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10184 auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
10185 LivenessInfo &LI = LivenessAAs[&F];
10186 if (!LI.LivenessAA)
10187 LI.LivenessAA = &A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
10188 DepClassTy::NONE);
10189 return LI;
10190 };
10191
10192 LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
10193 for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
10194 BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
10195 if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
10196 LI.AnyDead = true;
10197 continue;
10198 }
10199 Worklist.push_back(
10200 {{*PHI.getIncomingValue(u), IncomingBB->getTerminator()}, II.S});
10201 }
10202 return true;
10203 }
10204
10205 /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
10206 /// simplify any operand of the instruction \p I. Return true if successful,
10207 /// in that case Worklist will be updated.
handleGenericInst__anon26093b6c7211::AAPotentialValuesFloating10208 bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
10209 SmallVectorImpl<ItemInfo> &Worklist) {
10210 bool SomeSimplified = false;
10211 bool UsedAssumedInformation = false;
10212
10213 SmallVector<Value *, 8> NewOps(I.getNumOperands());
10214 int Idx = 0;
10215 for (Value *Op : I.operands()) {
10216 const auto &SimplifiedOp = A.getAssumedSimplified(
10217 IRPosition::value(*Op, getCallBaseContext()), *this,
10218 UsedAssumedInformation, AA::Intraprocedural);
10219 // If we are not sure about any operand we are not sure about the entire
10220 // instruction, we'll wait.
10221 if (!SimplifiedOp.has_value())
10222 return true;
10223
10224 if (SimplifiedOp.value())
10225 NewOps[Idx] = SimplifiedOp.value();
10226 else
10227 NewOps[Idx] = Op;
10228
10229 SomeSimplified |= (NewOps[Idx] != Op);
10230 ++Idx;
10231 }
10232
10233 // We won't bother with the InstSimplify interface if we didn't simplify any
10234 // operand ourselves.
10235 if (!SomeSimplified)
10236 return false;
10237
10238 InformationCache &InfoCache = A.getInfoCache();
10239 Function *F = I.getFunction();
10240 const auto *DT =
10241 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
10242 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
10243 auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
10244 OptimizationRemarkEmitter *ORE = nullptr;
10245
10246 const DataLayout &DL = I.getModule()->getDataLayout();
10247 SimplifyQuery Q(DL, TLI, DT, AC, &I);
10248 Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q, ORE);
10249 if (!NewV || NewV == &I)
10250 return false;
10251
10252 LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
10253 << *NewV << "\n");
10254 Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
10255 return true;
10256 }
10257
simplifyInstruction__anon26093b6c7211::AAPotentialValuesFloating10258 bool simplifyInstruction(
10259 Attributor &A, Instruction &I, ItemInfo II,
10260 SmallVectorImpl<ItemInfo> &Worklist,
10261 SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10262 if (auto *CI = dyn_cast<CmpInst>(&I))
10263 if (handleCmp(A, *CI, II, Worklist))
10264 return true;
10265
10266 switch (I.getOpcode()) {
10267 case Instruction::Select:
10268 return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
10269 case Instruction::PHI:
10270 return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
10271 case Instruction::Load:
10272 return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
10273 default:
10274 return handleGenericInst(A, I, II, Worklist);
10275 };
10276 return false;
10277 }
10278
genericValueTraversal__anon26093b6c7211::AAPotentialValuesFloating10279 void genericValueTraversal(Attributor &A) {
10280 SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
10281
10282 Value *InitialV = &getAssociatedValue();
10283 SmallSet<ItemInfo, 16> Visited;
10284 SmallVector<ItemInfo, 16> Worklist;
10285 Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
10286
10287 int Iteration = 0;
10288 do {
10289 ItemInfo II = Worklist.pop_back_val();
10290 Value *V = II.I.getValue();
10291 assert(V);
10292 const Instruction *CtxI = II.I.getCtxI();
10293 AA::ValueScope S = II.S;
10294
10295 // Check if we should process the current value. To prevent endless
10296 // recursion keep a record of the values we followed!
10297 if (!Visited.insert(II).second)
10298 continue;
10299
10300 // Make sure we limit the compile time for complex expressions.
10301 if (Iteration++ >= MaxPotentialValuesIterations) {
10302 LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
10303 << Iteration << "!\n");
10304 addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10305 continue;
10306 }
10307
10308 // Explicitly look through calls with a "returned" attribute if we do
10309 // not have a pointer as stripPointerCasts only works on them.
10310 Value *NewV = nullptr;
10311 if (V->getType()->isPointerTy()) {
10312 NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
10313 } else {
10314 auto *CB = dyn_cast<CallBase>(V);
10315 if (CB && CB->getCalledFunction()) {
10316 for (Argument &Arg : CB->getCalledFunction()->args())
10317 if (Arg.hasReturnedAttr()) {
10318 NewV = CB->getArgOperand(Arg.getArgNo());
10319 break;
10320 }
10321 }
10322 }
10323 if (NewV && NewV != V) {
10324 Worklist.push_back({{*NewV, CtxI}, S});
10325 continue;
10326 }
10327
10328 if (auto *I = dyn_cast<Instruction>(V)) {
10329 if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
10330 continue;
10331 }
10332
10333 if (V != InitialV || isa<Argument>(V))
10334 if (recurseForValue(A, IRPosition::value(*V), II.S))
10335 continue;
10336
10337 // If we haven't stripped anything we give up.
10338 if (V == InitialV && CtxI == getCtxI()) {
10339 indicatePessimisticFixpoint();
10340 return;
10341 }
10342
10343 addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10344 } while (!Worklist.empty());
10345
10346 // If we actually used liveness information so we have to record a
10347 // dependence.
10348 for (auto &It : LivenessAAs)
10349 if (It.second.AnyDead)
10350 A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
10351 }
10352
10353 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesFloating10354 void trackStatistics() const override {
10355 STATS_DECLTRACK_FLOATING_ATTR(potential_values)
10356 }
10357 };
10358
10359 struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
10360 using Base = AAPotentialValuesImpl;
AAPotentialValuesArgument__anon26093b6c7211::AAPotentialValuesArgument10361 AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
10362 : Base(IRP, A) {}
10363
10364 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c7211::AAPotentialValuesArgument10365 void initialize(Attributor &A) override {
10366 auto &Arg = cast<Argument>(getAssociatedValue());
10367 if (Arg.hasPointeeInMemoryValueAttr())
10368 indicatePessimisticFixpoint();
10369 }
10370
10371 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7211::AAPotentialValuesArgument10372 ChangeStatus updateImpl(Attributor &A) override {
10373 auto AssumedBefore = getAssumed();
10374
10375 unsigned CSArgNo = getCallSiteArgNo();
10376
10377 bool UsedAssumedInformation = false;
10378 SmallVector<AA::ValueAndContext> Values;
10379 auto CallSitePred = [&](AbstractCallSite ACS) {
10380 const auto CSArgIRP = IRPosition::callsite_argument(ACS, CSArgNo);
10381 if (CSArgIRP.getPositionKind() == IRP_INVALID)
10382 return false;
10383
10384 if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
10385 AA::Interprocedural,
10386 UsedAssumedInformation))
10387 return false;
10388
10389 return isValidState();
10390 };
10391
10392 if (!A.checkForAllCallSites(CallSitePred, *this,
10393 /* RequireAllCallSites */ true,
10394 UsedAssumedInformation))
10395 return indicatePessimisticFixpoint();
10396
10397 Function *Fn = getAssociatedFunction();
10398 bool AnyNonLocal = false;
10399 for (auto &It : Values) {
10400 if (isa<Constant>(It.getValue())) {
10401 addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10402 getAnchorScope());
10403 continue;
10404 }
10405 if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
10406 return indicatePessimisticFixpoint();
10407
10408 if (auto *Arg = dyn_cast<Argument>(It.getValue()))
10409 if (Arg->getParent() == Fn) {
10410 addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10411 getAnchorScope());
10412 continue;
10413 }
10414 addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
10415 getAnchorScope());
10416 AnyNonLocal = true;
10417 }
10418 if (undefIsContained())
10419 unionAssumedWithUndef();
10420 if (AnyNonLocal)
10421 giveUpOnIntraprocedural(A);
10422
10423 return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10424 : ChangeStatus::CHANGED;
10425 }
10426
10427 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesArgument10428 void trackStatistics() const override {
10429 STATS_DECLTRACK_ARG_ATTR(potential_values)
10430 }
10431 };
10432
10433 struct AAPotentialValuesReturned
10434 : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
10435 using Base =
10436 AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
AAPotentialValuesReturned__anon26093b6c7211::AAPotentialValuesReturned10437 AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
10438 : Base(IRP, A) {}
10439
10440 /// See AbstractAttribute::initialize(..).
initialize__anon26093b6c7211::AAPotentialValuesReturned10441 void initialize(Attributor &A) override {
10442 if (A.hasSimplificationCallback(getIRPosition()))
10443 indicatePessimisticFixpoint();
10444 else
10445 AAPotentialValues::initialize(A);
10446 }
10447
manifest__anon26093b6c7211::AAPotentialValuesReturned10448 ChangeStatus manifest(Attributor &A) override {
10449 // We queried AAValueSimplify for the returned values so they will be
10450 // replaced if a simplified form was found. Nothing to do here.
10451 return ChangeStatus::UNCHANGED;
10452 }
10453
indicatePessimisticFixpoint__anon26093b6c7211::AAPotentialValuesReturned10454 ChangeStatus indicatePessimisticFixpoint() override {
10455 return AAPotentialValues::indicatePessimisticFixpoint();
10456 }
10457
10458 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesReturned10459 void trackStatistics() const override {
10460 STATS_DECLTRACK_FNRET_ATTR(potential_values)
10461 }
10462 };
10463
10464 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
AAPotentialValuesFunction__anon26093b6c7211::AAPotentialValuesFunction10465 AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
10466 : AAPotentialValuesImpl(IRP, A) {}
10467
10468 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7211::AAPotentialValuesFunction10469 ChangeStatus updateImpl(Attributor &A) override {
10470 llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
10471 "not be called");
10472 }
10473
10474 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesFunction10475 void trackStatistics() const override {
10476 STATS_DECLTRACK_FN_ATTR(potential_values)
10477 }
10478 };
10479
10480 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
AAPotentialValuesCallSite__anon26093b6c7211::AAPotentialValuesCallSite10481 AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
10482 : AAPotentialValuesFunction(IRP, A) {}
10483
10484 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesCallSite10485 void trackStatistics() const override {
10486 STATS_DECLTRACK_CS_ATTR(potential_values)
10487 }
10488 };
10489
10490 struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
AAPotentialValuesCallSiteReturned__anon26093b6c7211::AAPotentialValuesCallSiteReturned10491 AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
10492 : AAPotentialValuesImpl(IRP, A) {}
10493
10494 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7211::AAPotentialValuesCallSiteReturned10495 ChangeStatus updateImpl(Attributor &A) override {
10496 auto AssumedBefore = getAssumed();
10497
10498 Function *Callee = getAssociatedFunction();
10499 if (!Callee)
10500 return indicatePessimisticFixpoint();
10501
10502 bool UsedAssumedInformation = false;
10503 auto *CB = cast<CallBase>(getCtxI());
10504 if (CB->isMustTailCall() &&
10505 !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
10506 UsedAssumedInformation))
10507 return indicatePessimisticFixpoint();
10508
10509 SmallVector<AA::ValueAndContext> Values;
10510 if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10511 Values, AA::Intraprocedural,
10512 UsedAssumedInformation))
10513 return indicatePessimisticFixpoint();
10514
10515 Function *Caller = CB->getCaller();
10516
10517 bool AnyNonLocal = false;
10518 for (auto &It : Values) {
10519 Value *V = It.getValue();
10520 Optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
10521 V, *CB, *this, UsedAssumedInformation);
10522 if (!CallerV.has_value()) {
10523 // Nothing to do as long as no value was determined.
10524 continue;
10525 }
10526 V = CallerV.value() ? CallerV.value() : V;
10527 if (AA::isDynamicallyUnique(A, *this, *V) &&
10528 AA::isValidInScope(*V, Caller)) {
10529 if (CallerV.value()) {
10530 SmallVector<AA::ValueAndContext> ArgValues;
10531 IRPosition IRP = IRPosition::value(*V);
10532 if (auto *Arg = dyn_cast<Argument>(V))
10533 if (Arg->getParent() == CB->getCalledFunction())
10534 IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
10535 if (recurseForValue(A, IRP, AA::AnyScope))
10536 continue;
10537 }
10538 addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10539 } else {
10540 AnyNonLocal = true;
10541 break;
10542 }
10543 }
10544 if (AnyNonLocal) {
10545 Values.clear();
10546 if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10547 Values, AA::Interprocedural,
10548 UsedAssumedInformation))
10549 return indicatePessimisticFixpoint();
10550 AnyNonLocal = false;
10551 getState() = PotentialLLVMValuesState::getBestState();
10552 for (auto &It : Values) {
10553 Value *V = It.getValue();
10554 if (!AA::isDynamicallyUnique(A, *this, *V))
10555 return indicatePessimisticFixpoint();
10556 if (AA::isValidInScope(*V, Caller)) {
10557 addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10558 } else {
10559 AnyNonLocal = true;
10560 addValue(A, getState(), *V, CB, AA::Interprocedural,
10561 getAnchorScope());
10562 }
10563 }
10564 if (AnyNonLocal)
10565 giveUpOnIntraprocedural(A);
10566 }
10567 return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10568 : ChangeStatus::CHANGED;
10569 }
10570
indicatePessimisticFixpoint__anon26093b6c7211::AAPotentialValuesCallSiteReturned10571 ChangeStatus indicatePessimisticFixpoint() override {
10572 return AAPotentialValues::indicatePessimisticFixpoint();
10573 }
10574
10575 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesCallSiteReturned10576 void trackStatistics() const override {
10577 STATS_DECLTRACK_CSRET_ATTR(potential_values)
10578 }
10579 };
10580
10581 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
AAPotentialValuesCallSiteArgument__anon26093b6c7211::AAPotentialValuesCallSiteArgument10582 AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
10583 : AAPotentialValuesFloating(IRP, A) {}
10584
10585 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7211::AAPotentialValuesCallSiteArgument10586 void trackStatistics() const override {
10587 STATS_DECLTRACK_CSARG_ATTR(potential_values)
10588 }
10589 };
10590 } // namespace
10591
10592 /// ---------------------- Assumption Propagation ------------------------------
10593 namespace {
10594 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
AAAssumptionInfoImpl__anon26093b6c7711::AAAssumptionInfoImpl10595 AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
10596 const DenseSet<StringRef> &Known)
10597 : AAAssumptionInfo(IRP, A, Known) {}
10598
hasAssumption__anon26093b6c7711::AAAssumptionInfoImpl10599 bool hasAssumption(const StringRef Assumption) const override {
10600 return isValidState() && setContains(Assumption);
10601 }
10602
10603 /// See AbstractAttribute::getAsStr()
getAsStr__anon26093b6c7711::AAAssumptionInfoImpl10604 const std::string getAsStr() const override {
10605 const SetContents &Known = getKnown();
10606 const SetContents &Assumed = getAssumed();
10607
10608 const std::string KnownStr =
10609 llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
10610 const std::string AssumedStr =
10611 (Assumed.isUniversal())
10612 ? "Universal"
10613 : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
10614
10615 return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
10616 }
10617 };
10618
10619 /// Propagates assumption information from parent functions to all of their
10620 /// successors. An assumption can be propagated if the containing function
10621 /// dominates the called function.
10622 ///
10623 /// We start with a "known" set of assumptions already valid for the associated
10624 /// function and an "assumed" set that initially contains all possible
10625 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10626 /// contents as concrete values are known. The concrete values are seeded by the
10627 /// first nodes that are either entries into the call graph, or contains no
10628 /// assumptions. Each node is updated as the intersection of the assumed state
10629 /// with all of its predecessors.
10630 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
AAAssumptionInfoFunction__anon26093b6c7711::AAAssumptionInfoFunction10631 AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10632 : AAAssumptionInfoImpl(IRP, A,
10633 getAssumptions(*IRP.getAssociatedFunction())) {}
10634
10635 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c7711::AAAssumptionInfoFunction10636 ChangeStatus manifest(Attributor &A) override {
10637 const auto &Assumptions = getKnown();
10638
10639 // Don't manifest a universal set if it somehow made it here.
10640 if (Assumptions.isUniversal())
10641 return ChangeStatus::UNCHANGED;
10642
10643 Function *AssociatedFunction = getAssociatedFunction();
10644
10645 bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10646
10647 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10648 }
10649
10650 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7711::AAAssumptionInfoFunction10651 ChangeStatus updateImpl(Attributor &A) override {
10652 bool Changed = false;
10653
10654 auto CallSitePred = [&](AbstractCallSite ACS) {
10655 const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10656 *this, IRPosition::callsite_function(*ACS.getInstruction()),
10657 DepClassTy::REQUIRED);
10658 // Get the set of assumptions shared by all of this function's callers.
10659 Changed |= getIntersection(AssumptionAA.getAssumed());
10660 return !getAssumed().empty() || !getKnown().empty();
10661 };
10662
10663 bool UsedAssumedInformation = false;
10664 // Get the intersection of all assumptions held by this node's predecessors.
10665 // If we don't know all the call sites then this is either an entry into the
10666 // call graph or an empty node. This node is known to only contain its own
10667 // assumptions and can be propagated to its successors.
10668 if (!A.checkForAllCallSites(CallSitePred, *this, true,
10669 UsedAssumedInformation))
10670 return indicatePessimisticFixpoint();
10671
10672 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10673 }
10674
trackStatistics__anon26093b6c7711::AAAssumptionInfoFunction10675 void trackStatistics() const override {}
10676 };
10677
10678 /// Assumption Info defined for call sites.
10679 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10680
AAAssumptionInfoCallSite__anon26093b6c7711::AAAssumptionInfoCallSite10681 AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10682 : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10683
10684 /// See AbstractAttribute::initialize(...).
initialize__anon26093b6c7711::AAAssumptionInfoCallSite10685 void initialize(Attributor &A) override {
10686 const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10687 A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10688 }
10689
10690 /// See AbstractAttribute::manifest(...).
manifest__anon26093b6c7711::AAAssumptionInfoCallSite10691 ChangeStatus manifest(Attributor &A) override {
10692 // Don't manifest a universal set if it somehow made it here.
10693 if (getKnown().isUniversal())
10694 return ChangeStatus::UNCHANGED;
10695
10696 CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10697 bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10698
10699 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10700 }
10701
10702 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon26093b6c7711::AAAssumptionInfoCallSite10703 ChangeStatus updateImpl(Attributor &A) override {
10704 const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10705 auto &AssumptionAA =
10706 A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10707 bool Changed = getIntersection(AssumptionAA.getAssumed());
10708 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10709 }
10710
10711 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon26093b6c7711::AAAssumptionInfoCallSite10712 void trackStatistics() const override {}
10713
10714 private:
10715 /// Helper to initialized the known set as all the assumptions this call and
10716 /// the callee contain.
getInitialAssumptions__anon26093b6c7711::AAAssumptionInfoCallSite10717 DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10718 const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10719 auto Assumptions = getAssumptions(CB);
10720 if (Function *F = IRP.getAssociatedFunction())
10721 set_union(Assumptions, getAssumptions(*F));
10722 if (Function *F = IRP.getAssociatedFunction())
10723 set_union(Assumptions, getAssumptions(*F));
10724 return Assumptions;
10725 }
10726 };
10727 } // namespace
10728
operator *() const10729 AACallGraphNode *AACallEdgeIterator::operator*() const {
10730 return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10731 &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10732 }
10733
print()10734 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10735
10736 const char AAReturnedValues::ID = 0;
10737 const char AANoUnwind::ID = 0;
10738 const char AANoSync::ID = 0;
10739 const char AANoFree::ID = 0;
10740 const char AANonNull::ID = 0;
10741 const char AANoRecurse::ID = 0;
10742 const char AAWillReturn::ID = 0;
10743 const char AAUndefinedBehavior::ID = 0;
10744 const char AANoAlias::ID = 0;
10745 const char AAReachability::ID = 0;
10746 const char AANoReturn::ID = 0;
10747 const char AAIsDead::ID = 0;
10748 const char AADereferenceable::ID = 0;
10749 const char AAAlign::ID = 0;
10750 const char AAInstanceInfo::ID = 0;
10751 const char AANoCapture::ID = 0;
10752 const char AAValueSimplify::ID = 0;
10753 const char AAHeapToStack::ID = 0;
10754 const char AAPrivatizablePtr::ID = 0;
10755 const char AAMemoryBehavior::ID = 0;
10756 const char AAMemoryLocation::ID = 0;
10757 const char AAValueConstantRange::ID = 0;
10758 const char AAPotentialConstantValues::ID = 0;
10759 const char AAPotentialValues::ID = 0;
10760 const char AANoUndef::ID = 0;
10761 const char AACallEdges::ID = 0;
10762 const char AAFunctionReachability::ID = 0;
10763 const char AAPointerInfo::ID = 0;
10764 const char AAAssumptionInfo::ID = 0;
10765
10766 // Macro magic to create the static generator function for attributes that
10767 // follow the naming scheme.
10768
10769 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
10770 case IRPosition::PK: \
10771 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10772
10773 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
10774 case IRPosition::PK: \
10775 AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \
10776 ++NumAAs; \
10777 break;
10778
10779 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
10780 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
10781 CLASS *AA = nullptr; \
10782 switch (IRP.getPositionKind()) { \
10783 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
10784 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
10785 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
10786 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
10787 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
10788 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
10789 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
10790 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
10791 } \
10792 return *AA; \
10793 }
10794
10795 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
10796 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
10797 CLASS *AA = nullptr; \
10798 switch (IRP.getPositionKind()) { \
10799 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
10800 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
10801 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
10802 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
10803 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
10804 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
10805 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
10806 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
10807 } \
10808 return *AA; \
10809 }
10810
10811 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
10812 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
10813 CLASS *AA = nullptr; \
10814 switch (IRP.getPositionKind()) { \
10815 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
10816 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
10817 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
10818 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
10819 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
10820 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
10821 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
10822 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
10823 } \
10824 return *AA; \
10825 }
10826
10827 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
10828 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
10829 CLASS *AA = nullptr; \
10830 switch (IRP.getPositionKind()) { \
10831 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
10832 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
10833 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
10834 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
10835 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
10836 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
10837 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
10838 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
10839 } \
10840 return *AA; \
10841 }
10842
10843 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
10844 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
10845 CLASS *AA = nullptr; \
10846 switch (IRP.getPositionKind()) { \
10847 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
10848 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
10849 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
10850 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
10851 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
10852 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
10853 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
10854 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
10855 } \
10856 return *AA; \
10857 }
10858
10859 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10860 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10861 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10862 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10863 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10864 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10865 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10866 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10867 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10868
10869 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10870 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10871 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10872 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10873 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10874 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
10875 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10876 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10877 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
10878 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10879 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10880 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10881
10882 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10883 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10884 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10885
10886 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10887 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10888 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10889 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10890
10891 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10892
10893 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10894 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10895 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10896 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10897 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10898 #undef SWITCH_PK_CREATE
10899 #undef SWITCH_PK_INV
10900