1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumeBundleQueries.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/NoFolder.h"
43 #include "llvm/Support/Alignment.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include <cassert>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "attributor"
57 
58 static cl::opt<bool> ManifestInternal(
59     "attributor-manifest-internal", cl::Hidden,
60     cl::desc("Manifest Attributor internal string attributes."),
61     cl::init(false));
62 
63 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
64                                        cl::Hidden);
65 
66 template <>
67 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
68 
69 static cl::opt<unsigned, true> MaxPotentialValues(
70     "attributor-max-potential-values", cl::Hidden,
71     cl::desc("Maximum number of potential values to be "
72              "tracked for each position."),
73     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
74     cl::init(7));
75 
76 static cl::opt<unsigned>
77     MaxInterferingWrites("attributor-max-interfering-writes", cl::Hidden,
78                          cl::desc("Maximum number of interfering writes to "
79                                   "check before assuming all might interfere."),
80                          cl::init(6));
81 
82 STATISTIC(NumAAs, "Number of abstract attributes created");
83 
84 // Some helper macros to deal with statistics tracking.
85 //
86 // Usage:
87 // For simple IR attribute tracking overload trackStatistics in the abstract
88 // attribute and choose the right STATS_DECLTRACK_********* macro,
89 // e.g.,:
90 //  void trackStatistics() const override {
91 //    STATS_DECLTRACK_ARG_ATTR(returned)
92 //  }
93 // If there is a single "increment" side one can use the macro
94 // STATS_DECLTRACK with a custom message. If there are multiple increment
95 // sides, STATS_DECL and STATS_TRACK can also be used separately.
96 //
97 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
98   ("Number of " #TYPE " marked '" #NAME "'")
99 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
100 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
101 #define STATS_DECL(NAME, TYPE, MSG)                                            \
102   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
103 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
104 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
105   {                                                                            \
106     STATS_DECL(NAME, TYPE, MSG)                                                \
107     STATS_TRACK(NAME, TYPE)                                                    \
108   }
109 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
110   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
111 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
112   STATS_DECLTRACK(NAME, CSArguments,                                           \
113                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
114 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
115   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
116 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
117   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
118 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
119   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
120                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
121 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
122   STATS_DECLTRACK(NAME, CSReturn,                                              \
123                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
124 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
125   STATS_DECLTRACK(NAME, Floating,                                              \
126                   ("Number of floating values known to be '" #NAME "'"))
127 
128 // Specialization of the operator<< for abstract attributes subclasses. This
129 // disambiguates situations where multiple operators are applicable.
130 namespace llvm {
131 #define PIPE_OPERATOR(CLASS)                                                   \
132   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
133     return OS << static_cast<const AbstractAttribute &>(AA);                   \
134   }
135 
136 PIPE_OPERATOR(AAIsDead)
137 PIPE_OPERATOR(AANoUnwind)
138 PIPE_OPERATOR(AANoSync)
139 PIPE_OPERATOR(AANoRecurse)
140 PIPE_OPERATOR(AAWillReturn)
141 PIPE_OPERATOR(AANoReturn)
142 PIPE_OPERATOR(AAReturnedValues)
143 PIPE_OPERATOR(AANonNull)
144 PIPE_OPERATOR(AANoAlias)
145 PIPE_OPERATOR(AADereferenceable)
146 PIPE_OPERATOR(AAAlign)
147 PIPE_OPERATOR(AANoCapture)
148 PIPE_OPERATOR(AAValueSimplify)
149 PIPE_OPERATOR(AANoFree)
150 PIPE_OPERATOR(AAHeapToStack)
151 PIPE_OPERATOR(AAReachability)
152 PIPE_OPERATOR(AAMemoryBehavior)
153 PIPE_OPERATOR(AAMemoryLocation)
154 PIPE_OPERATOR(AAValueConstantRange)
155 PIPE_OPERATOR(AAPrivatizablePtr)
156 PIPE_OPERATOR(AAUndefinedBehavior)
157 PIPE_OPERATOR(AAPotentialValues)
158 PIPE_OPERATOR(AANoUndef)
159 PIPE_OPERATOR(AACallEdges)
160 PIPE_OPERATOR(AAFunctionReachability)
161 PIPE_OPERATOR(AAPointerInfo)
162 PIPE_OPERATOR(AAAssumptionInfo)
163 
164 #undef PIPE_OPERATOR
165 
166 template <>
167 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
168                                                      const DerefState &R) {
169   ChangeStatus CS0 =
170       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
171   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
172   return CS0 | CS1;
173 }
174 
175 } // namespace llvm
176 
177 /// Get pointer operand of memory accessing instruction. If \p I is
178 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
179 /// is set to false and the instruction is volatile, return nullptr.
180 static const Value *getPointerOperand(const Instruction *I,
181                                       bool AllowVolatile) {
182   if (!AllowVolatile && I->isVolatile())
183     return nullptr;
184 
185   if (auto *LI = dyn_cast<LoadInst>(I)) {
186     return LI->getPointerOperand();
187   }
188 
189   if (auto *SI = dyn_cast<StoreInst>(I)) {
190     return SI->getPointerOperand();
191   }
192 
193   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
194     return CXI->getPointerOperand();
195   }
196 
197   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
198     return RMWI->getPointerOperand();
199   }
200 
201   return nullptr;
202 }
203 
204 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
205 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
206 /// getelement pointer instructions that traverse the natural type of \p Ptr if
207 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
208 /// through a cast to i8*.
209 ///
210 /// TODO: This could probably live somewhere more prominantly if it doesn't
211 ///       already exist.
212 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
213                                int64_t Offset, IRBuilder<NoFolder> &IRB,
214                                const DataLayout &DL) {
215   assert(Offset >= 0 && "Negative offset not supported yet!");
216   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
217                     << "-bytes as " << *ResTy << "\n");
218 
219   if (Offset) {
220     Type *Ty = PtrElemTy;
221     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
222     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
223 
224     SmallVector<Value *, 4> ValIndices;
225     std::string GEPName = Ptr->getName().str();
226     for (const APInt &Index : IntIndices) {
227       ValIndices.push_back(IRB.getInt(Index));
228       GEPName += "." + std::to_string(Index.getZExtValue());
229     }
230 
231     // Create a GEP for the indices collected above.
232     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
233 
234     // If an offset is left we use byte-wise adjustment.
235     if (IntOffset != 0) {
236       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
237       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
238                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
239     }
240   }
241 
242   // Ensure the result has the requested type.
243   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
244                                                 Ptr->getName() + ".cast");
245 
246   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
247   return Ptr;
248 }
249 
250 /// Recursively visit all values that might become \p IRP at some point. This
251 /// will be done by looking through cast instructions, selects, phis, and calls
252 /// with the "returned" attribute. Once we cannot look through the value any
253 /// further, the callback \p VisitValueCB is invoked and passed the current
254 /// value, the \p State, and a flag to indicate if we stripped anything.
255 /// Stripped means that we unpacked the value associated with \p IRP at least
256 /// once. Note that the value used for the callback may still be the value
257 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
258 /// we will never visit more values than specified by \p MaxValues.
259 /// If \p Intraprocedural is set to true only values valid in the scope of
260 /// \p CtxI will be visited and simplification into other scopes is prevented.
261 template <typename StateTy>
262 static bool genericValueTraversal(
263     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
264     StateTy &State,
265     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
266         VisitValueCB,
267     const Instruction *CtxI, bool &UsedAssumedInformation,
268     bool UseValueSimplify = true, int MaxValues = 16,
269     function_ref<Value *(Value *)> StripCB = nullptr,
270     bool Intraprocedural = false) {
271 
272   struct LivenessInfo {
273     const AAIsDead *LivenessAA = nullptr;
274     bool AnyDead = false;
275   };
276   SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
277   auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
278     LivenessInfo &LI = LivenessAAs[&F];
279     if (!LI.LivenessAA)
280       LI.LivenessAA = &A.getAAFor<AAIsDead>(QueryingAA, IRPosition::function(F),
281                                             DepClassTy::NONE);
282     return LI;
283   };
284 
285   Value *InitialV = &IRP.getAssociatedValue();
286   using Item = std::pair<Value *, const Instruction *>;
287   SmallSet<Item, 16> Visited;
288   SmallVector<Item, 16> Worklist;
289   Worklist.push_back({InitialV, CtxI});
290 
291   int Iteration = 0;
292   do {
293     Item I = Worklist.pop_back_val();
294     Value *V = I.first;
295     CtxI = I.second;
296     if (StripCB)
297       V = StripCB(V);
298 
299     // Check if we should process the current value. To prevent endless
300     // recursion keep a record of the values we followed!
301     if (!Visited.insert(I).second)
302       continue;
303 
304     // Make sure we limit the compile time for complex expressions.
305     if (Iteration++ >= MaxValues) {
306       LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
307                         << Iteration << "!\n");
308       return false;
309     }
310 
311     // Explicitly look through calls with a "returned" attribute if we do
312     // not have a pointer as stripPointerCasts only works on them.
313     Value *NewV = nullptr;
314     if (V->getType()->isPointerTy()) {
315       NewV = V->stripPointerCasts();
316     } else {
317       auto *CB = dyn_cast<CallBase>(V);
318       if (CB && CB->getCalledFunction()) {
319         for (Argument &Arg : CB->getCalledFunction()->args())
320           if (Arg.hasReturnedAttr()) {
321             NewV = CB->getArgOperand(Arg.getArgNo());
322             break;
323           }
324       }
325     }
326     if (NewV && NewV != V) {
327       Worklist.push_back({NewV, CtxI});
328       continue;
329     }
330 
331     // Look through select instructions, visit assumed potential values.
332     if (auto *SI = dyn_cast<SelectInst>(V)) {
333       Optional<Constant *> C = A.getAssumedConstant(
334           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
335       bool NoValueYet = !C.hasValue();
336       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
337         continue;
338       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
339         if (CI->isZero())
340           Worklist.push_back({SI->getFalseValue(), CtxI});
341         else
342           Worklist.push_back({SI->getTrueValue(), CtxI});
343         continue;
344       }
345       // We could not simplify the condition, assume both values.(
346       Worklist.push_back({SI->getTrueValue(), CtxI});
347       Worklist.push_back({SI->getFalseValue(), CtxI});
348       continue;
349     }
350 
351     // Look through phi nodes, visit all live operands.
352     if (auto *PHI = dyn_cast<PHINode>(V)) {
353       LivenessInfo &LI = GetLivenessInfo(*PHI->getFunction());
354       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
355         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
356         if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI->getParent())) {
357           LI.AnyDead = true;
358           UsedAssumedInformation |= !LI.LivenessAA->isAtFixpoint();
359           continue;
360         }
361         Worklist.push_back(
362             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
363       }
364       continue;
365     }
366 
367     if (auto *Arg = dyn_cast<Argument>(V)) {
368       if (!Intraprocedural && !Arg->hasPassPointeeByValueCopyAttr()) {
369         SmallVector<Item> CallSiteValues;
370         bool UsedAssumedInformation = false;
371         if (A.checkForAllCallSites(
372                 [&](AbstractCallSite ACS) {
373                   // Callbacks might not have a corresponding call site operand,
374                   // stick with the argument in that case.
375                   Value *CSOp = ACS.getCallArgOperand(*Arg);
376                   if (!CSOp)
377                     return false;
378                   CallSiteValues.push_back({CSOp, ACS.getInstruction()});
379                   return true;
380                 },
381                 *Arg->getParent(), true, &QueryingAA, UsedAssumedInformation)) {
382           Worklist.append(CallSiteValues);
383           continue;
384         }
385       }
386     }
387 
388     if (UseValueSimplify && !isa<Constant>(V)) {
389       Optional<Value *> SimpleV =
390           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
391       if (!SimpleV.hasValue())
392         continue;
393       Value *NewV = SimpleV.getValue();
394       if (NewV && NewV != V) {
395         if (!Intraprocedural || !CtxI ||
396             AA::isValidInScope(*NewV, CtxI->getFunction())) {
397           Worklist.push_back({NewV, CtxI});
398           continue;
399         }
400       }
401     }
402 
403     // Once a leaf is reached we inform the user through the callback.
404     if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) {
405       LLVM_DEBUG(dbgs() << "Generic value traversal visit callback failed for: "
406                         << *V << "!\n");
407       return false;
408     }
409   } while (!Worklist.empty());
410 
411   // If we actually used liveness information so we have to record a dependence.
412   for (auto &It : LivenessAAs)
413     if (It.second.AnyDead)
414       A.recordDependence(*It.second.LivenessAA, QueryingAA,
415                          DepClassTy::OPTIONAL);
416 
417   // All values have been visited.
418   return true;
419 }
420 
421 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
422                                      SmallVectorImpl<Value *> &Objects,
423                                      const AbstractAttribute &QueryingAA,
424                                      const Instruction *CtxI,
425                                      bool &UsedAssumedInformation,
426                                      bool Intraprocedural) {
427   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
428   SmallPtrSet<Value *, 8> SeenObjects;
429   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
430                                      SmallVectorImpl<Value *> &Objects,
431                                      bool) -> bool {
432     if (SeenObjects.insert(&Val).second)
433       Objects.push_back(&Val);
434     return true;
435   };
436   if (!genericValueTraversal<decltype(Objects)>(
437           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
438           UsedAssumedInformation, true, 32, StripCB, Intraprocedural))
439     return false;
440   return true;
441 }
442 
443 const Value *stripAndAccumulateMinimalOffsets(
444     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
445     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
446     bool UseAssumed = false) {
447 
448   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
449     const IRPosition &Pos = IRPosition::value(V);
450     // Only track dependence if we are going to use the assumed info.
451     const AAValueConstantRange &ValueConstantRangeAA =
452         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
453                                          UseAssumed ? DepClassTy::OPTIONAL
454                                                     : DepClassTy::NONE);
455     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
456                                      : ValueConstantRangeAA.getKnown();
457     // We can only use the lower part of the range because the upper part can
458     // be higher than what the value can really be.
459     ROffset = Range.getSignedMin();
460     return true;
461   };
462 
463   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
464                                                 /* AllowInvariant */ false,
465                                                 AttributorAnalysis);
466 }
467 
468 static const Value *
469 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
470                         const Value *Ptr, int64_t &BytesOffset,
471                         const DataLayout &DL, bool AllowNonInbounds = false) {
472   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
473   const Value *Base = stripAndAccumulateMinimalOffsets(
474       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
475 
476   BytesOffset = OffsetAPInt.getSExtValue();
477   return Base;
478 }
479 
480 /// Clamp the information known for all returned values of a function
481 /// (identified by \p QueryingAA) into \p S.
482 template <typename AAType, typename StateType = typename AAType::StateType>
483 static void clampReturnedValueStates(
484     Attributor &A, const AAType &QueryingAA, StateType &S,
485     const IRPosition::CallBaseContext *CBContext = nullptr) {
486   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
487                     << QueryingAA << " into " << S << "\n");
488 
489   assert((QueryingAA.getIRPosition().getPositionKind() ==
490               IRPosition::IRP_RETURNED ||
491           QueryingAA.getIRPosition().getPositionKind() ==
492               IRPosition::IRP_CALL_SITE_RETURNED) &&
493          "Can only clamp returned value states for a function returned or call "
494          "site returned position!");
495 
496   // Use an optional state as there might not be any return values and we want
497   // to join (IntegerState::operator&) the state of all there are.
498   Optional<StateType> T;
499 
500   // Callback for each possibly returned value.
501   auto CheckReturnValue = [&](Value &RV) -> bool {
502     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
503     const AAType &AA =
504         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
505     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
506                       << " @ " << RVPos << "\n");
507     const StateType &AAS = AA.getState();
508     if (T.hasValue())
509       *T &= AAS;
510     else
511       T = AAS;
512     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
513                       << "\n");
514     return T->isValidState();
515   };
516 
517   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
518     S.indicatePessimisticFixpoint();
519   else if (T.hasValue())
520     S ^= *T;
521 }
522 
523 namespace {
524 /// Helper class for generic deduction: return value -> returned position.
525 template <typename AAType, typename BaseType,
526           typename StateType = typename BaseType::StateType,
527           bool PropagateCallBaseContext = false>
528 struct AAReturnedFromReturnedValues : public BaseType {
529   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
530       : BaseType(IRP, A) {}
531 
532   /// See AbstractAttribute::updateImpl(...).
533   ChangeStatus updateImpl(Attributor &A) override {
534     StateType S(StateType::getBestState(this->getState()));
535     clampReturnedValueStates<AAType, StateType>(
536         A, *this, S,
537         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
538     // TODO: If we know we visited all returned values, thus no are assumed
539     // dead, we can take the known information from the state T.
540     return clampStateAndIndicateChange<StateType>(this->getState(), S);
541   }
542 };
543 
544 /// Clamp the information known at all call sites for a given argument
545 /// (identified by \p QueryingAA) into \p S.
546 template <typename AAType, typename StateType = typename AAType::StateType>
547 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
548                                         StateType &S) {
549   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
550                     << QueryingAA << " into " << S << "\n");
551 
552   assert(QueryingAA.getIRPosition().getPositionKind() ==
553              IRPosition::IRP_ARGUMENT &&
554          "Can only clamp call site argument states for an argument position!");
555 
556   // Use an optional state as there might not be any return values and we want
557   // to join (IntegerState::operator&) the state of all there are.
558   Optional<StateType> T;
559 
560   // The argument number which is also the call site argument number.
561   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
562 
563   auto CallSiteCheck = [&](AbstractCallSite ACS) {
564     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
565     // Check if a coresponding argument was found or if it is on not associated
566     // (which can happen for callback calls).
567     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
568       return false;
569 
570     const AAType &AA =
571         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
572     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
573                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
574     const StateType &AAS = AA.getState();
575     if (T.hasValue())
576       *T &= AAS;
577     else
578       T = AAS;
579     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
580                       << "\n");
581     return T->isValidState();
582   };
583 
584   bool UsedAssumedInformation = false;
585   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
586                               UsedAssumedInformation))
587     S.indicatePessimisticFixpoint();
588   else if (T.hasValue())
589     S ^= *T;
590 }
591 
592 /// This function is the bridge between argument position and the call base
593 /// context.
594 template <typename AAType, typename BaseType,
595           typename StateType = typename AAType::StateType>
596 bool getArgumentStateFromCallBaseContext(Attributor &A,
597                                          BaseType &QueryingAttribute,
598                                          IRPosition &Pos, StateType &State) {
599   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
600          "Expected an 'argument' position !");
601   const CallBase *CBContext = Pos.getCallBaseContext();
602   if (!CBContext)
603     return false;
604 
605   int ArgNo = Pos.getCallSiteArgNo();
606   assert(ArgNo >= 0 && "Invalid Arg No!");
607 
608   const auto &AA = A.getAAFor<AAType>(
609       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
610       DepClassTy::REQUIRED);
611   const StateType &CBArgumentState =
612       static_cast<const StateType &>(AA.getState());
613 
614   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
615                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
616                     << "\n");
617 
618   // NOTE: If we want to do call site grouping it should happen here.
619   State ^= CBArgumentState;
620   return true;
621 }
622 
623 /// Helper class for generic deduction: call site argument -> argument position.
624 template <typename AAType, typename BaseType,
625           typename StateType = typename AAType::StateType,
626           bool BridgeCallBaseContext = false>
627 struct AAArgumentFromCallSiteArguments : public BaseType {
628   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
629       : BaseType(IRP, A) {}
630 
631   /// See AbstractAttribute::updateImpl(...).
632   ChangeStatus updateImpl(Attributor &A) override {
633     StateType S = StateType::getBestState(this->getState());
634 
635     if (BridgeCallBaseContext) {
636       bool Success =
637           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
638               A, *this, this->getIRPosition(), S);
639       if (Success)
640         return clampStateAndIndicateChange<StateType>(this->getState(), S);
641     }
642     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
643 
644     // TODO: If we know we visited all incoming values, thus no are assumed
645     // dead, we can take the known information from the state T.
646     return clampStateAndIndicateChange<StateType>(this->getState(), S);
647   }
648 };
649 
650 /// Helper class for generic replication: function returned -> cs returned.
651 template <typename AAType, typename BaseType,
652           typename StateType = typename BaseType::StateType,
653           bool IntroduceCallBaseContext = false>
654 struct AACallSiteReturnedFromReturned : public BaseType {
655   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
656       : BaseType(IRP, A) {}
657 
658   /// See AbstractAttribute::updateImpl(...).
659   ChangeStatus updateImpl(Attributor &A) override {
660     assert(this->getIRPosition().getPositionKind() ==
661                IRPosition::IRP_CALL_SITE_RETURNED &&
662            "Can only wrap function returned positions for call site returned "
663            "positions!");
664     auto &S = this->getState();
665 
666     const Function *AssociatedFunction =
667         this->getIRPosition().getAssociatedFunction();
668     if (!AssociatedFunction)
669       return S.indicatePessimisticFixpoint();
670 
671     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
672     if (IntroduceCallBaseContext)
673       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
674                         << CBContext << "\n");
675 
676     IRPosition FnPos = IRPosition::returned(
677         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
678     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
679     return clampStateAndIndicateChange(S, AA.getState());
680   }
681 };
682 } // namespace
683 
684 /// Helper function to accumulate uses.
685 template <class AAType, typename StateType = typename AAType::StateType>
686 static void followUsesInContext(AAType &AA, Attributor &A,
687                                 MustBeExecutedContextExplorer &Explorer,
688                                 const Instruction *CtxI,
689                                 SetVector<const Use *> &Uses,
690                                 StateType &State) {
691   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
692   for (unsigned u = 0; u < Uses.size(); ++u) {
693     const Use *U = Uses[u];
694     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
695       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
696       if (Found && AA.followUseInMBEC(A, U, UserI, State))
697         for (const Use &Us : UserI->uses())
698           Uses.insert(&Us);
699     }
700   }
701 }
702 
703 /// Use the must-be-executed-context around \p I to add information into \p S.
704 /// The AAType class is required to have `followUseInMBEC` method with the
705 /// following signature and behaviour:
706 ///
707 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
708 /// U - Underlying use.
709 /// I - The user of the \p U.
710 /// Returns true if the value should be tracked transitively.
711 ///
712 template <class AAType, typename StateType = typename AAType::StateType>
713 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
714                              Instruction &CtxI) {
715 
716   // Container for (transitive) uses of the associated value.
717   SetVector<const Use *> Uses;
718   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
719     Uses.insert(&U);
720 
721   MustBeExecutedContextExplorer &Explorer =
722       A.getInfoCache().getMustBeExecutedContextExplorer();
723 
724   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
725 
726   if (S.isAtFixpoint())
727     return;
728 
729   SmallVector<const BranchInst *, 4> BrInsts;
730   auto Pred = [&](const Instruction *I) {
731     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
732       if (Br->isConditional())
733         BrInsts.push_back(Br);
734     return true;
735   };
736 
737   // Here, accumulate conditional branch instructions in the context. We
738   // explore the child paths and collect the known states. The disjunction of
739   // those states can be merged to its own state. Let ParentState_i be a state
740   // to indicate the known information for an i-th branch instruction in the
741   // context. ChildStates are created for its successors respectively.
742   //
743   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
744   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
745   //      ...
746   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
747   //
748   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
749   //
750   // FIXME: Currently, recursive branches are not handled. For example, we
751   // can't deduce that ptr must be dereferenced in below function.
752   //
753   // void f(int a, int c, int *ptr) {
754   //    if(a)
755   //      if (b) {
756   //        *ptr = 0;
757   //      } else {
758   //        *ptr = 1;
759   //      }
760   //    else {
761   //      if (b) {
762   //        *ptr = 0;
763   //      } else {
764   //        *ptr = 1;
765   //      }
766   //    }
767   // }
768 
769   Explorer.checkForAllContext(&CtxI, Pred);
770   for (const BranchInst *Br : BrInsts) {
771     StateType ParentState;
772 
773     // The known state of the parent state is a conjunction of children's
774     // known states so it is initialized with a best state.
775     ParentState.indicateOptimisticFixpoint();
776 
777     for (const BasicBlock *BB : Br->successors()) {
778       StateType ChildState;
779 
780       size_t BeforeSize = Uses.size();
781       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
782 
783       // Erase uses which only appear in the child.
784       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
785         It = Uses.erase(It);
786 
787       ParentState &= ChildState;
788     }
789 
790     // Use only known state.
791     S += ParentState;
792   }
793 }
794 
795 /// ------------------------ PointerInfo ---------------------------------------
796 
797 namespace llvm {
798 namespace AA {
799 namespace PointerInfo {
800 
801 struct State;
802 
803 } // namespace PointerInfo
804 } // namespace AA
805 
806 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
807 template <>
808 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
809   using Access = AAPointerInfo::Access;
810   static inline Access getEmptyKey();
811   static inline Access getTombstoneKey();
812   static unsigned getHashValue(const Access &A);
813   static bool isEqual(const Access &LHS, const Access &RHS);
814 };
815 
816 /// Helper that allows OffsetAndSize as a key in a DenseMap.
817 template <>
818 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
819     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
820 
821 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
822 /// but the instruction
823 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
824   using Base = DenseMapInfo<Instruction *>;
825   using Access = AAPointerInfo::Access;
826   static inline Access getEmptyKey();
827   static inline Access getTombstoneKey();
828   static unsigned getHashValue(const Access &A);
829   static bool isEqual(const Access &LHS, const Access &RHS);
830 };
831 
832 } // namespace llvm
833 
834 /// Implementation of the DenseMapInfo.
835 ///
836 ///{
837 inline llvm::AccessAsInstructionInfo::Access
838 llvm::AccessAsInstructionInfo::getEmptyKey() {
839   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
840 }
841 inline llvm::AccessAsInstructionInfo::Access
842 llvm::AccessAsInstructionInfo::getTombstoneKey() {
843   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
844                 nullptr);
845 }
846 unsigned llvm::AccessAsInstructionInfo::getHashValue(
847     const llvm::AccessAsInstructionInfo::Access &A) {
848   return Base::getHashValue(A.getRemoteInst());
849 }
850 bool llvm::AccessAsInstructionInfo::isEqual(
851     const llvm::AccessAsInstructionInfo::Access &LHS,
852     const llvm::AccessAsInstructionInfo::Access &RHS) {
853   return LHS.getRemoteInst() == RHS.getRemoteInst();
854 }
855 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
856 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
857   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
858                                nullptr);
859 }
860 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
861 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
862   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
863                                nullptr);
864 }
865 
866 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
867     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
868   return detail::combineHashValue(
869              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
870              (A.isWrittenValueYetUndetermined()
871                   ? ~0
872                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
873          A.getKind();
874 }
875 
876 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
877     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
878     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
879   return LHS == RHS;
880 }
881 ///}
882 
883 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
884 struct AA::PointerInfo::State : public AbstractState {
885 
886   /// Return the best possible representable state.
887   static State getBestState(const State &SIS) { return State(); }
888 
889   /// Return the worst possible representable state.
890   static State getWorstState(const State &SIS) {
891     State R;
892     R.indicatePessimisticFixpoint();
893     return R;
894   }
895 
896   State() = default;
897   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
898   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
899 
900   const State &getAssumed() const { return *this; }
901 
902   /// See AbstractState::isValidState().
903   bool isValidState() const override { return BS.isValidState(); }
904 
905   /// See AbstractState::isAtFixpoint().
906   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
907 
908   /// See AbstractState::indicateOptimisticFixpoint().
909   ChangeStatus indicateOptimisticFixpoint() override {
910     BS.indicateOptimisticFixpoint();
911     return ChangeStatus::UNCHANGED;
912   }
913 
914   /// See AbstractState::indicatePessimisticFixpoint().
915   ChangeStatus indicatePessimisticFixpoint() override {
916     BS.indicatePessimisticFixpoint();
917     return ChangeStatus::CHANGED;
918   }
919 
920   State &operator=(const State &R) {
921     if (this == &R)
922       return *this;
923     BS = R.BS;
924     AccessBins = R.AccessBins;
925     return *this;
926   }
927 
928   State &operator=(State &&R) {
929     if (this == &R)
930       return *this;
931     std::swap(BS, R.BS);
932     std::swap(AccessBins, R.AccessBins);
933     return *this;
934   }
935 
936   bool operator==(const State &R) const {
937     if (BS != R.BS)
938       return false;
939     if (AccessBins.size() != R.AccessBins.size())
940       return false;
941     auto It = begin(), RIt = R.begin(), E = end();
942     while (It != E) {
943       if (It->getFirst() != RIt->getFirst())
944         return false;
945       auto &Accs = It->getSecond();
946       auto &RAccs = RIt->getSecond();
947       if (Accs.size() != RAccs.size())
948         return false;
949       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
950       while (AccIt != AccE) {
951         if (*AccIt != *RAccIt)
952           return false;
953         ++AccIt;
954         ++RAccIt;
955       }
956       ++It;
957       ++RIt;
958     }
959     return true;
960   }
961   bool operator!=(const State &R) const { return !(*this == R); }
962 
963   /// We store accesses in a set with the instruction as key.
964   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
965 
966   /// We store all accesses in bins denoted by their offset and size.
967   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses>;
968 
969   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
970   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
971 
972 protected:
973   /// The bins with all the accesses for the associated pointer.
974   DenseMap<AAPointerInfo::OffsetAndSize, Accesses> AccessBins;
975 
976   /// Add a new access to the state at offset \p Offset and with size \p Size.
977   /// The access is associated with \p I, writes \p Content (if anything), and
978   /// is of kind \p Kind.
979   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
980   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
981                          Optional<Value *> Content,
982                          AAPointerInfo::AccessKind Kind, Type *Ty,
983                          Instruction *RemoteI = nullptr,
984                          Accesses *BinPtr = nullptr) {
985     AAPointerInfo::OffsetAndSize Key{Offset, Size};
986     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
987     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
988     // Check if we have an access for this instruction in this bin, if not,
989     // simply add it.
990     auto It = Bin.find(Acc);
991     if (It == Bin.end()) {
992       Bin.insert(Acc);
993       return ChangeStatus::CHANGED;
994     }
995     // If the existing access is the same as then new one, nothing changed.
996     AAPointerInfo::Access Before = *It;
997     // The new one will be combined with the existing one.
998     *It &= Acc;
999     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1000   }
1001 
1002   /// See AAPointerInfo::forallInterferingAccesses.
1003   bool forallInterferingAccesses(
1004       AAPointerInfo::OffsetAndSize OAS,
1005       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1006     if (!isValidState())
1007       return false;
1008 
1009     for (auto &It : AccessBins) {
1010       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
1011       if (!OAS.mayOverlap(ItOAS))
1012         continue;
1013       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1014       for (auto &Access : It.getSecond())
1015         if (!CB(Access, IsExact))
1016           return false;
1017     }
1018     return true;
1019   }
1020 
1021   /// See AAPointerInfo::forallInterferingAccesses.
1022   bool forallInterferingAccesses(
1023       Instruction &I,
1024       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1025     if (!isValidState())
1026       return false;
1027 
1028     // First find the offset and size of I.
1029     AAPointerInfo::OffsetAndSize OAS(-1, -1);
1030     for (auto &It : AccessBins) {
1031       for (auto &Access : It.getSecond()) {
1032         if (Access.getRemoteInst() == &I) {
1033           OAS = It.getFirst();
1034           break;
1035         }
1036       }
1037       if (OAS.getSize() != -1)
1038         break;
1039     }
1040     // No access for I was found, we are done.
1041     if (OAS.getSize() == -1)
1042       return true;
1043 
1044     // Now that we have an offset and size, find all overlapping ones and use
1045     // the callback on the accesses.
1046     return forallInterferingAccesses(OAS, CB);
1047   }
1048 
1049 private:
1050   /// State to track fixpoint and validity.
1051   BooleanState BS;
1052 };
1053 
1054 struct AAPointerInfoImpl
1055     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1056   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1057   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1058 
1059   /// See AbstractAttribute::initialize(...).
1060   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1061 
1062   /// See AbstractAttribute::getAsStr().
1063   const std::string getAsStr() const override {
1064     return std::string("PointerInfo ") +
1065            (isValidState() ? (std::string("#") +
1066                               std::to_string(AccessBins.size()) + " bins")
1067                            : "<invalid>");
1068   }
1069 
1070   /// See AbstractAttribute::manifest(...).
1071   ChangeStatus manifest(Attributor &A) override {
1072     return AAPointerInfo::manifest(A);
1073   }
1074 
1075   bool forallInterferingAccesses(
1076       OffsetAndSize OAS,
1077       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1078       const override {
1079     return State::forallInterferingAccesses(OAS, CB);
1080   }
1081   bool forallInterferingAccesses(
1082       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1083       const override {
1084     return State::forallInterferingAccesses(LI, CB);
1085   }
1086   bool forallInterferingAccesses(
1087       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1088       const override {
1089     return State::forallInterferingAccesses(SI, CB);
1090   }
1091   bool forallInterferingWrites(
1092       Attributor &A, const AbstractAttribute &QueryingAA, LoadInst &LI,
1093       function_ref<bool(const Access &, bool)> UserCB) const override {
1094     SmallPtrSet<const Access *, 8> DominatingWrites;
1095     SmallVector<std::pair<const Access *, bool>, 8> InterferingWrites;
1096 
1097     Function &Scope = *LI.getFunction();
1098     const auto &NoSyncAA = A.getAAFor<AANoSync>(
1099         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1100     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1101         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
1102     const bool NoSync = NoSyncAA.isAssumedNoSync();
1103 
1104     // Helper to determine if we need to consider threading, which we cannot
1105     // right now. However, if the function is (assumed) nosync or the thread
1106     // executing all instructions is the main thread only we can ignore
1107     // threading.
1108     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
1109       if (NoSync)
1110         return true;
1111       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
1112         return true;
1113       return false;
1114     };
1115 
1116     // Helper to determine if the access is executed by the same thread as the
1117     // load, for now it is sufficient to avoid any potential threading effects
1118     // as we cannot deal with them anyway.
1119     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
1120       return CanIgnoreThreading(*Acc.getLocalInst());
1121     };
1122 
1123     // TODO: Use inter-procedural reachability and dominance.
1124     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1125         QueryingAA, IRPosition::function(*LI.getFunction()),
1126         DepClassTy::OPTIONAL);
1127 
1128     const bool CanUseCFGResoning = CanIgnoreThreading(LI);
1129     InformationCache &InfoCache = A.getInfoCache();
1130     const DominatorTree *DT =
1131         NoRecurseAA.isKnownNoRecurse()
1132             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1133                   Scope)
1134             : nullptr;
1135 
1136     enum GPUAddressSpace : unsigned {
1137       Generic = 0,
1138       Global = 1,
1139       Shared = 3,
1140       Constant = 4,
1141       Local = 5,
1142     };
1143 
1144     // Helper to check if a value has "kernel lifetime", that is it will not
1145     // outlive a GPU kernel. This is true for shared, constant, and local
1146     // globals on AMD and NVIDIA GPUs.
1147     auto HasKernelLifetime = [&](Value *V, Module &M) {
1148       Triple T(M.getTargetTriple());
1149       if (!(T.isAMDGPU() || T.isNVPTX()))
1150         return false;
1151       switch (V->getType()->getPointerAddressSpace()) {
1152       case GPUAddressSpace::Shared:
1153       case GPUAddressSpace::Constant:
1154       case GPUAddressSpace::Local:
1155         return true;
1156       default:
1157         return false;
1158       };
1159     };
1160 
1161     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1162     // to determine if we should look at reachability from the callee. For
1163     // certain pointers we know the lifetime and we do not have to step into the
1164     // callee to determine reachability as the pointer would be dead in the
1165     // callee. See the conditional initialization below.
1166     std::function<bool(const Function &)> IsLiveInCalleeCB;
1167 
1168     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1169       // If the alloca containing function is not recursive the alloca
1170       // must be dead in the callee.
1171       const Function *AIFn = AI->getFunction();
1172       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1173           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1174       if (NoRecurseAA.isAssumedNoRecurse()) {
1175         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1176       }
1177     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1178       // If the global has kernel lifetime we can stop if we reach a kernel
1179       // as it is "dead" in the (unknown) callees.
1180       if (HasKernelLifetime(GV, *GV->getParent()))
1181         IsLiveInCalleeCB = [](const Function &Fn) {
1182           return !Fn.hasFnAttribute("kernel");
1183         };
1184     }
1185 
1186     auto AccessCB = [&](const Access &Acc, bool Exact) {
1187       if (!Acc.isWrite())
1188         return true;
1189 
1190       // For now we only filter accesses based on CFG reasoning which does not
1191       // work yet if we have threading effects, or the access is complicated.
1192       if (CanUseCFGResoning) {
1193         if (!AA::isPotentiallyReachable(A, *Acc.getLocalInst(), LI, QueryingAA,
1194                                         IsLiveInCalleeCB))
1195           return true;
1196         if (DT && Exact &&
1197             (Acc.getLocalInst()->getFunction() == LI.getFunction()) &&
1198             IsSameThreadAsLoad(Acc)) {
1199           if (DT->dominates(Acc.getLocalInst(), &LI))
1200             DominatingWrites.insert(&Acc);
1201         }
1202       }
1203 
1204       InterferingWrites.push_back({&Acc, Exact});
1205       return true;
1206     };
1207     if (!State::forallInterferingAccesses(LI, AccessCB))
1208       return false;
1209 
1210     // If we cannot use CFG reasoning we only filter the non-write accesses
1211     // and are done here.
1212     if (!CanUseCFGResoning) {
1213       for (auto &It : InterferingWrites)
1214         if (!UserCB(*It.first, It.second))
1215           return false;
1216       return true;
1217     }
1218 
1219     // Helper to determine if we can skip a specific write access. This is in
1220     // the worst case quadratic as we are looking for another write that will
1221     // hide the effect of this one.
1222     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1223       if (!IsSameThreadAsLoad(Acc))
1224         return false;
1225       if (!DominatingWrites.count(&Acc))
1226         return false;
1227       for (const Access *DomAcc : DominatingWrites) {
1228         assert(Acc.getLocalInst()->getFunction() ==
1229                    DomAcc->getLocalInst()->getFunction() &&
1230                "Expected dominating writes to be in the same function!");
1231 
1232         if (DomAcc != &Acc &&
1233             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1234           return true;
1235         }
1236       }
1237       return false;
1238     };
1239 
1240     // Run the user callback on all writes we cannot skip and return if that
1241     // succeeded for all or not.
1242     unsigned NumInterferingWrites = InterferingWrites.size();
1243     for (auto &It : InterferingWrites) {
1244       if (!DT || NumInterferingWrites > MaxInterferingWrites ||
1245           !CanSkipAccess(*It.first, It.second)) {
1246         if (!UserCB(*It.first, It.second))
1247           return false;
1248       }
1249     }
1250     return true;
1251   }
1252 
1253   ChangeStatus translateAndAddCalleeState(Attributor &A,
1254                                           const AAPointerInfo &CalleeAA,
1255                                           int64_t CallArgOffset, CallBase &CB) {
1256     using namespace AA::PointerInfo;
1257     if (!CalleeAA.getState().isValidState() || !isValidState())
1258       return indicatePessimisticFixpoint();
1259 
1260     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1261     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1262 
1263     // Combine the accesses bin by bin.
1264     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1265     for (auto &It : CalleeImplAA.getState()) {
1266       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1267       if (CallArgOffset != OffsetAndSize::Unknown)
1268         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1269                             It.first.getSize());
1270       Accesses &Bin = AccessBins[OAS];
1271       for (const AAPointerInfo::Access &RAcc : It.second) {
1272         if (IsByval && !RAcc.isRead())
1273           continue;
1274         bool UsedAssumedInformation = false;
1275         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1276             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1277         AccessKind AK =
1278             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1279                                                  : AccessKind::AK_READ_WRITE));
1280         Changed =
1281             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1282                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1283       }
1284     }
1285     return Changed;
1286   }
1287 
1288   /// Statistic tracking for all AAPointerInfo implementations.
1289   /// See AbstractAttribute::trackStatistics().
1290   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1291 };
1292 
1293 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1294   using AccessKind = AAPointerInfo::AccessKind;
1295   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1296       : AAPointerInfoImpl(IRP, A) {}
1297 
1298   /// See AbstractAttribute::initialize(...).
1299   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1300 
1301   /// Deal with an access and signal if it was handled successfully.
1302   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1303                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1304                     ChangeStatus &Changed, Type *Ty,
1305                     int64_t Size = OffsetAndSize::Unknown) {
1306     using namespace AA::PointerInfo;
1307     // No need to find a size if one is given or the offset is unknown.
1308     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1309         Ty) {
1310       const DataLayout &DL = A.getDataLayout();
1311       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1312       if (!AccessSize.isScalable())
1313         Size = AccessSize.getFixedSize();
1314     }
1315     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1316     return true;
1317   };
1318 
1319   /// Helper struct, will support ranges eventually.
1320   struct OffsetInfo {
1321     int64_t Offset = OffsetAndSize::Unknown;
1322 
1323     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1324   };
1325 
1326   /// See AbstractAttribute::updateImpl(...).
1327   ChangeStatus updateImpl(Attributor &A) override {
1328     using namespace AA::PointerInfo;
1329     State S = getState();
1330     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1331     Value &AssociatedValue = getAssociatedValue();
1332 
1333     const DataLayout &DL = A.getDataLayout();
1334     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1335     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1336 
1337     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1338                                      bool &Follow) {
1339       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1340       UsrOI = PtrOI;
1341       Follow = true;
1342       return true;
1343     };
1344 
1345     const auto *TLI = getAnchorScope()
1346                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1347                                 *getAnchorScope())
1348                           : nullptr;
1349     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1350       Value *CurPtr = U.get();
1351       User *Usr = U.getUser();
1352       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1353                         << *Usr << "\n");
1354       assert(OffsetInfoMap.count(CurPtr) &&
1355              "The current pointer offset should have been seeded!");
1356 
1357       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1358         if (CE->isCast())
1359           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1360         if (CE->isCompare())
1361           return true;
1362         if (!isa<GEPOperator>(CE)) {
1363           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1364                             << "\n");
1365           return false;
1366         }
1367       }
1368       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1369         // Note the order here, the Usr access might change the map, CurPtr is
1370         // already in it though.
1371         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1372         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1373         UsrOI = PtrOI;
1374 
1375         // TODO: Use range information.
1376         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1377             !GEP->hasAllConstantIndices()) {
1378           UsrOI.Offset = OffsetAndSize::Unknown;
1379           Follow = true;
1380           return true;
1381         }
1382 
1383         SmallVector<Value *, 8> Indices;
1384         for (Use &Idx : GEP->indices()) {
1385           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1386             Indices.push_back(CIdx);
1387             continue;
1388           }
1389 
1390           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1391                             << " : " << *Idx << "\n");
1392           return false;
1393         }
1394         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1395                                           GEP->getSourceElementType(), Indices);
1396         Follow = true;
1397         return true;
1398       }
1399       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1400         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1401 
1402       // For PHIs we need to take care of the recurrence explicitly as the value
1403       // might change while we iterate through a loop. For now, we give up if
1404       // the PHI is not invariant.
1405       if (isa<PHINode>(Usr)) {
1406         // Note the order here, the Usr access might change the map, CurPtr is
1407         // already in it though.
1408         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1409         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1410         // Check if the PHI is invariant (so far).
1411         if (UsrOI == PtrOI)
1412           return true;
1413 
1414         // Check if the PHI operand has already an unknown offset as we can't
1415         // improve on that anymore.
1416         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1417           UsrOI = PtrOI;
1418           Follow = true;
1419           return true;
1420         }
1421 
1422         // Check if the PHI operand is not dependent on the PHI itself.
1423         // TODO: This is not great as we look at the pointer type. However, it
1424         // is unclear where the Offset size comes from with typeless pointers.
1425         APInt Offset(
1426             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1427             0);
1428         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1429                                     DL, Offset, /* AllowNonInbounds */ true)) {
1430           if (Offset != PtrOI.Offset) {
1431             LLVM_DEBUG(dbgs()
1432                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1433                        << *CurPtr << " in " << *Usr << "\n");
1434             return false;
1435           }
1436           return HandlePassthroughUser(Usr, PtrOI, Follow);
1437         }
1438 
1439         // TODO: Approximate in case we know the direction of the recurrence.
1440         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1441                           << *CurPtr << " in " << *Usr << "\n");
1442         UsrOI = PtrOI;
1443         UsrOI.Offset = OffsetAndSize::Unknown;
1444         Follow = true;
1445         return true;
1446       }
1447 
1448       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1449         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1450                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1451                             Changed, LoadI->getType());
1452       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1453         if (StoreI->getValueOperand() == CurPtr) {
1454           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1455                             << *StoreI << "\n");
1456           return false;
1457         }
1458         bool UsedAssumedInformation = false;
1459         Optional<Value *> Content = A.getAssumedSimplified(
1460             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1461         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1462                             OffsetInfoMap[CurPtr].Offset, Changed,
1463                             StoreI->getValueOperand()->getType());
1464       }
1465       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1466         if (CB->isLifetimeStartOrEnd())
1467           return true;
1468         if (TLI && isFreeCall(CB, TLI))
1469           return true;
1470         if (CB->isArgOperand(&U)) {
1471           unsigned ArgNo = CB->getArgOperandNo(&U);
1472           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1473               *this, IRPosition::callsite_argument(*CB, ArgNo),
1474               DepClassTy::REQUIRED);
1475           Changed = translateAndAddCalleeState(
1476                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1477                     Changed;
1478           return true;
1479         }
1480         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1481                           << "\n");
1482         // TODO: Allow some call uses
1483         return false;
1484       }
1485 
1486       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1487       return false;
1488     };
1489     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1490       if (OffsetInfoMap.count(NewU))
1491         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1492       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1493       return true;
1494     };
1495     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1496                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1497                            EquivalentUseCB))
1498       return indicatePessimisticFixpoint();
1499 
1500     LLVM_DEBUG({
1501       dbgs() << "Accesses by bin after update:\n";
1502       for (auto &It : AccessBins) {
1503         dbgs() << "[" << It.first.getOffset() << "-"
1504                << It.first.getOffset() + It.first.getSize()
1505                << "] : " << It.getSecond().size() << "\n";
1506         for (auto &Acc : It.getSecond()) {
1507           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1508                  << "\n";
1509           if (Acc.getLocalInst() != Acc.getRemoteInst())
1510             dbgs() << "     -->                         "
1511                    << *Acc.getRemoteInst() << "\n";
1512           if (!Acc.isWrittenValueYetUndetermined())
1513             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1514         }
1515       }
1516     });
1517 
1518     return Changed;
1519   }
1520 
1521   /// See AbstractAttribute::trackStatistics()
1522   void trackStatistics() const override {
1523     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1524   }
1525 };
1526 
1527 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1528   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1529       : AAPointerInfoImpl(IRP, A) {}
1530 
1531   /// See AbstractAttribute::updateImpl(...).
1532   ChangeStatus updateImpl(Attributor &A) override {
1533     return indicatePessimisticFixpoint();
1534   }
1535 
1536   /// See AbstractAttribute::trackStatistics()
1537   void trackStatistics() const override {
1538     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1539   }
1540 };
1541 
1542 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1543   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1544       : AAPointerInfoFloating(IRP, A) {}
1545 
1546   /// See AbstractAttribute::initialize(...).
1547   void initialize(Attributor &A) override {
1548     AAPointerInfoFloating::initialize(A);
1549     if (getAnchorScope()->isDeclaration())
1550       indicatePessimisticFixpoint();
1551   }
1552 
1553   /// See AbstractAttribute::trackStatistics()
1554   void trackStatistics() const override {
1555     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1556   }
1557 };
1558 
1559 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1560   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1561       : AAPointerInfoFloating(IRP, A) {}
1562 
1563   /// See AbstractAttribute::updateImpl(...).
1564   ChangeStatus updateImpl(Attributor &A) override {
1565     using namespace AA::PointerInfo;
1566     // We handle memory intrinsics explicitly, at least the first (=
1567     // destination) and second (=source) arguments as we know how they are
1568     // accessed.
1569     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1570       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1571       int64_t LengthVal = OffsetAndSize::Unknown;
1572       if (Length)
1573         LengthVal = Length->getSExtValue();
1574       Value &Ptr = getAssociatedValue();
1575       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1576       ChangeStatus Changed;
1577       if (ArgNo == 0) {
1578         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1579                      nullptr, LengthVal);
1580       } else if (ArgNo == 1) {
1581         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1582                      nullptr, LengthVal);
1583       } else {
1584         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1585                           << *MI << "\n");
1586         return indicatePessimisticFixpoint();
1587       }
1588       return Changed;
1589     }
1590 
1591     // TODO: Once we have call site specific value information we can provide
1592     //       call site specific liveness information and then it makes
1593     //       sense to specialize attributes for call sites arguments instead of
1594     //       redirecting requests to the callee argument.
1595     Argument *Arg = getAssociatedArgument();
1596     if (!Arg)
1597       return indicatePessimisticFixpoint();
1598     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1599     auto &ArgAA =
1600         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1601     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1602   }
1603 
1604   /// See AbstractAttribute::trackStatistics()
1605   void trackStatistics() const override {
1606     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1607   }
1608 };
1609 
1610 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1611   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1612       : AAPointerInfoFloating(IRP, A) {}
1613 
1614   /// See AbstractAttribute::trackStatistics()
1615   void trackStatistics() const override {
1616     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1617   }
1618 };
1619 
1620 /// -----------------------NoUnwind Function Attribute--------------------------
1621 
1622 struct AANoUnwindImpl : AANoUnwind {
1623   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1624 
1625   const std::string getAsStr() const override {
1626     return getAssumed() ? "nounwind" : "may-unwind";
1627   }
1628 
1629   /// See AbstractAttribute::updateImpl(...).
1630   ChangeStatus updateImpl(Attributor &A) override {
1631     auto Opcodes = {
1632         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1633         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1634         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1635 
1636     auto CheckForNoUnwind = [&](Instruction &I) {
1637       if (!I.mayThrow())
1638         return true;
1639 
1640       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1641         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1642             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1643         return NoUnwindAA.isAssumedNoUnwind();
1644       }
1645       return false;
1646     };
1647 
1648     bool UsedAssumedInformation = false;
1649     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1650                                    UsedAssumedInformation))
1651       return indicatePessimisticFixpoint();
1652 
1653     return ChangeStatus::UNCHANGED;
1654   }
1655 };
1656 
1657 struct AANoUnwindFunction final : public AANoUnwindImpl {
1658   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1659       : AANoUnwindImpl(IRP, A) {}
1660 
1661   /// See AbstractAttribute::trackStatistics()
1662   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1663 };
1664 
1665 /// NoUnwind attribute deduction for a call sites.
1666 struct AANoUnwindCallSite final : AANoUnwindImpl {
1667   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1668       : AANoUnwindImpl(IRP, A) {}
1669 
1670   /// See AbstractAttribute::initialize(...).
1671   void initialize(Attributor &A) override {
1672     AANoUnwindImpl::initialize(A);
1673     Function *F = getAssociatedFunction();
1674     if (!F || F->isDeclaration())
1675       indicatePessimisticFixpoint();
1676   }
1677 
1678   /// See AbstractAttribute::updateImpl(...).
1679   ChangeStatus updateImpl(Attributor &A) override {
1680     // TODO: Once we have call site specific value information we can provide
1681     //       call site specific liveness information and then it makes
1682     //       sense to specialize attributes for call sites arguments instead of
1683     //       redirecting requests to the callee argument.
1684     Function *F = getAssociatedFunction();
1685     const IRPosition &FnPos = IRPosition::function(*F);
1686     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1687     return clampStateAndIndicateChange(getState(), FnAA.getState());
1688   }
1689 
1690   /// See AbstractAttribute::trackStatistics()
1691   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1692 };
1693 
1694 /// --------------------- Function Return Values -------------------------------
1695 
1696 /// "Attribute" that collects all potential returned values and the return
1697 /// instructions that they arise from.
1698 ///
1699 /// If there is a unique returned value R, the manifest method will:
1700 ///   - mark R with the "returned" attribute, if R is an argument.
1701 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1702 
1703   /// Mapping of values potentially returned by the associated function to the
1704   /// return instructions that might return them.
1705   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1706 
1707   /// State flags
1708   ///
1709   ///{
1710   bool IsFixed = false;
1711   bool IsValidState = true;
1712   ///}
1713 
1714 public:
1715   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1716       : AAReturnedValues(IRP, A) {}
1717 
1718   /// See AbstractAttribute::initialize(...).
1719   void initialize(Attributor &A) override {
1720     // Reset the state.
1721     IsFixed = false;
1722     IsValidState = true;
1723     ReturnedValues.clear();
1724 
1725     Function *F = getAssociatedFunction();
1726     if (!F || F->isDeclaration()) {
1727       indicatePessimisticFixpoint();
1728       return;
1729     }
1730     assert(!F->getReturnType()->isVoidTy() &&
1731            "Did not expect a void return type!");
1732 
1733     // The map from instruction opcodes to those instructions in the function.
1734     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1735 
1736     // Look through all arguments, if one is marked as returned we are done.
1737     for (Argument &Arg : F->args()) {
1738       if (Arg.hasReturnedAttr()) {
1739         auto &ReturnInstSet = ReturnedValues[&Arg];
1740         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1741           for (Instruction *RI : *Insts)
1742             ReturnInstSet.insert(cast<ReturnInst>(RI));
1743 
1744         indicateOptimisticFixpoint();
1745         return;
1746       }
1747     }
1748 
1749     if (!A.isFunctionIPOAmendable(*F))
1750       indicatePessimisticFixpoint();
1751   }
1752 
1753   /// See AbstractAttribute::manifest(...).
1754   ChangeStatus manifest(Attributor &A) override;
1755 
1756   /// See AbstractAttribute::getState(...).
1757   AbstractState &getState() override { return *this; }
1758 
1759   /// See AbstractAttribute::getState(...).
1760   const AbstractState &getState() const override { return *this; }
1761 
1762   /// See AbstractAttribute::updateImpl(Attributor &A).
1763   ChangeStatus updateImpl(Attributor &A) override;
1764 
1765   llvm::iterator_range<iterator> returned_values() override {
1766     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1767   }
1768 
1769   llvm::iterator_range<const_iterator> returned_values() const override {
1770     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1771   }
1772 
1773   /// Return the number of potential return values, -1 if unknown.
1774   size_t getNumReturnValues() const override {
1775     return isValidState() ? ReturnedValues.size() : -1;
1776   }
1777 
1778   /// Return an assumed unique return value if a single candidate is found. If
1779   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1780   /// Optional::NoneType.
1781   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1782 
1783   /// See AbstractState::checkForAllReturnedValues(...).
1784   bool checkForAllReturnedValuesAndReturnInsts(
1785       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1786       const override;
1787 
1788   /// Pretty print the attribute similar to the IR representation.
1789   const std::string getAsStr() const override;
1790 
1791   /// See AbstractState::isAtFixpoint().
1792   bool isAtFixpoint() const override { return IsFixed; }
1793 
1794   /// See AbstractState::isValidState().
1795   bool isValidState() const override { return IsValidState; }
1796 
1797   /// See AbstractState::indicateOptimisticFixpoint(...).
1798   ChangeStatus indicateOptimisticFixpoint() override {
1799     IsFixed = true;
1800     return ChangeStatus::UNCHANGED;
1801   }
1802 
1803   ChangeStatus indicatePessimisticFixpoint() override {
1804     IsFixed = true;
1805     IsValidState = false;
1806     return ChangeStatus::CHANGED;
1807   }
1808 };
1809 
1810 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1811   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1812 
1813   // Bookkeeping.
1814   assert(isValidState());
1815   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1816                   "Number of function with known return values");
1817 
1818   // Check if we have an assumed unique return value that we could manifest.
1819   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1820 
1821   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1822     return Changed;
1823 
1824   // Bookkeeping.
1825   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1826                   "Number of function with unique return");
1827   // If the assumed unique return value is an argument, annotate it.
1828   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1829     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1830             getAssociatedFunction()->getReturnType())) {
1831       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1832       Changed = IRAttribute::manifest(A);
1833     }
1834   }
1835   return Changed;
1836 }
1837 
1838 const std::string AAReturnedValuesImpl::getAsStr() const {
1839   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1840          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1841 }
1842 
1843 Optional<Value *>
1844 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1845   // If checkForAllReturnedValues provides a unique value, ignoring potential
1846   // undef values that can also be present, it is assumed to be the actual
1847   // return value and forwarded to the caller of this method. If there are
1848   // multiple, a nullptr is returned indicating there cannot be a unique
1849   // returned value.
1850   Optional<Value *> UniqueRV;
1851   Type *Ty = getAssociatedFunction()->getReturnType();
1852 
1853   auto Pred = [&](Value &RV) -> bool {
1854     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1855     return UniqueRV != Optional<Value *>(nullptr);
1856   };
1857 
1858   if (!A.checkForAllReturnedValues(Pred, *this))
1859     UniqueRV = nullptr;
1860 
1861   return UniqueRV;
1862 }
1863 
1864 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1865     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1866     const {
1867   if (!isValidState())
1868     return false;
1869 
1870   // Check all returned values but ignore call sites as long as we have not
1871   // encountered an overdefined one during an update.
1872   for (auto &It : ReturnedValues) {
1873     Value *RV = It.first;
1874     if (!Pred(*RV, It.second))
1875       return false;
1876   }
1877 
1878   return true;
1879 }
1880 
1881 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1882   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1883 
1884   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1885                            bool) -> bool {
1886     assert(AA::isValidInScope(V, Ret.getFunction()) &&
1887            "Assumed returned value should be valid in function scope!");
1888     if (ReturnedValues[&V].insert(&Ret))
1889       Changed = ChangeStatus::CHANGED;
1890     return true;
1891   };
1892 
1893   bool UsedAssumedInformation = false;
1894   auto ReturnInstCB = [&](Instruction &I) {
1895     ReturnInst &Ret = cast<ReturnInst>(I);
1896     return genericValueTraversal<ReturnInst>(
1897         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1898         &I, UsedAssumedInformation, /* UseValueSimplify */ true,
1899         /* MaxValues */ 16,
1900         /* StripCB */ nullptr, /* Intraprocedural */ true);
1901   };
1902 
1903   // Discover returned values from all live returned instructions in the
1904   // associated function.
1905   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1906                                  UsedAssumedInformation))
1907     return indicatePessimisticFixpoint();
1908   return Changed;
1909 }
1910 
1911 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1912   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1913       : AAReturnedValuesImpl(IRP, A) {}
1914 
1915   /// See AbstractAttribute::trackStatistics()
1916   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1917 };
1918 
1919 /// Returned values information for a call sites.
1920 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1921   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1922       : AAReturnedValuesImpl(IRP, A) {}
1923 
1924   /// See AbstractAttribute::initialize(...).
1925   void initialize(Attributor &A) override {
1926     // TODO: Once we have call site specific value information we can provide
1927     //       call site specific liveness information and then it makes
1928     //       sense to specialize attributes for call sites instead of
1929     //       redirecting requests to the callee.
1930     llvm_unreachable("Abstract attributes for returned values are not "
1931                      "supported for call sites yet!");
1932   }
1933 
1934   /// See AbstractAttribute::updateImpl(...).
1935   ChangeStatus updateImpl(Attributor &A) override {
1936     return indicatePessimisticFixpoint();
1937   }
1938 
1939   /// See AbstractAttribute::trackStatistics()
1940   void trackStatistics() const override {}
1941 };
1942 
1943 /// ------------------------ NoSync Function Attribute -------------------------
1944 
1945 struct AANoSyncImpl : AANoSync {
1946   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1947 
1948   const std::string getAsStr() const override {
1949     return getAssumed() ? "nosync" : "may-sync";
1950   }
1951 
1952   /// See AbstractAttribute::updateImpl(...).
1953   ChangeStatus updateImpl(Attributor &A) override;
1954 };
1955 
1956 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1957   if (!I->isAtomic())
1958     return false;
1959 
1960   if (auto *FI = dyn_cast<FenceInst>(I))
1961     // All legal orderings for fence are stronger than monotonic.
1962     return FI->getSyncScopeID() != SyncScope::SingleThread;
1963   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1964     // Unordered is not a legal ordering for cmpxchg.
1965     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1966             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1967   }
1968 
1969   AtomicOrdering Ordering;
1970   switch (I->getOpcode()) {
1971   case Instruction::AtomicRMW:
1972     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1973     break;
1974   case Instruction::Store:
1975     Ordering = cast<StoreInst>(I)->getOrdering();
1976     break;
1977   case Instruction::Load:
1978     Ordering = cast<LoadInst>(I)->getOrdering();
1979     break;
1980   default:
1981     llvm_unreachable(
1982         "New atomic operations need to be known in the attributor.");
1983   }
1984 
1985   return (Ordering != AtomicOrdering::Unordered &&
1986           Ordering != AtomicOrdering::Monotonic);
1987 }
1988 
1989 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1990 /// which would be nosync except that they have a volatile flag.  All other
1991 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1992 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
1993   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1994     return !MI->isVolatile();
1995   return false;
1996 }
1997 
1998 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1999 
2000   auto CheckRWInstForNoSync = [&](Instruction &I) {
2001     return AA::isNoSyncInst(A, I, *this);
2002   };
2003 
2004   auto CheckForNoSync = [&](Instruction &I) {
2005     // At this point we handled all read/write effects and they are all
2006     // nosync, so they can be skipped.
2007     if (I.mayReadOrWriteMemory())
2008       return true;
2009 
2010     // non-convergent and readnone imply nosync.
2011     return !cast<CallBase>(I).isConvergent();
2012   };
2013 
2014   bool UsedAssumedInformation = false;
2015   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2016                                           UsedAssumedInformation) ||
2017       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2018                                          UsedAssumedInformation))
2019     return indicatePessimisticFixpoint();
2020 
2021   return ChangeStatus::UNCHANGED;
2022 }
2023 
2024 struct AANoSyncFunction final : public AANoSyncImpl {
2025   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2026       : AANoSyncImpl(IRP, A) {}
2027 
2028   /// See AbstractAttribute::trackStatistics()
2029   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2030 };
2031 
2032 /// NoSync attribute deduction for a call sites.
2033 struct AANoSyncCallSite final : AANoSyncImpl {
2034   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2035       : AANoSyncImpl(IRP, A) {}
2036 
2037   /// See AbstractAttribute::initialize(...).
2038   void initialize(Attributor &A) override {
2039     AANoSyncImpl::initialize(A);
2040     Function *F = getAssociatedFunction();
2041     if (!F || F->isDeclaration())
2042       indicatePessimisticFixpoint();
2043   }
2044 
2045   /// See AbstractAttribute::updateImpl(...).
2046   ChangeStatus updateImpl(Attributor &A) override {
2047     // TODO: Once we have call site specific value information we can provide
2048     //       call site specific liveness information and then it makes
2049     //       sense to specialize attributes for call sites arguments instead of
2050     //       redirecting requests to the callee argument.
2051     Function *F = getAssociatedFunction();
2052     const IRPosition &FnPos = IRPosition::function(*F);
2053     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
2054     return clampStateAndIndicateChange(getState(), FnAA.getState());
2055   }
2056 
2057   /// See AbstractAttribute::trackStatistics()
2058   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2059 };
2060 
2061 /// ------------------------ No-Free Attributes ----------------------------
2062 
2063 struct AANoFreeImpl : public AANoFree {
2064   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2065 
2066   /// See AbstractAttribute::updateImpl(...).
2067   ChangeStatus updateImpl(Attributor &A) override {
2068     auto CheckForNoFree = [&](Instruction &I) {
2069       const auto &CB = cast<CallBase>(I);
2070       if (CB.hasFnAttr(Attribute::NoFree))
2071         return true;
2072 
2073       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2074           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2075       return NoFreeAA.isAssumedNoFree();
2076     };
2077 
2078     bool UsedAssumedInformation = false;
2079     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2080                                            UsedAssumedInformation))
2081       return indicatePessimisticFixpoint();
2082     return ChangeStatus::UNCHANGED;
2083   }
2084 
2085   /// See AbstractAttribute::getAsStr().
2086   const std::string getAsStr() const override {
2087     return getAssumed() ? "nofree" : "may-free";
2088   }
2089 };
2090 
2091 struct AANoFreeFunction final : public AANoFreeImpl {
2092   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2093       : AANoFreeImpl(IRP, A) {}
2094 
2095   /// See AbstractAttribute::trackStatistics()
2096   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2097 };
2098 
2099 /// NoFree attribute deduction for a call sites.
2100 struct AANoFreeCallSite final : AANoFreeImpl {
2101   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2102       : AANoFreeImpl(IRP, A) {}
2103 
2104   /// See AbstractAttribute::initialize(...).
2105   void initialize(Attributor &A) override {
2106     AANoFreeImpl::initialize(A);
2107     Function *F = getAssociatedFunction();
2108     if (!F || F->isDeclaration())
2109       indicatePessimisticFixpoint();
2110   }
2111 
2112   /// See AbstractAttribute::updateImpl(...).
2113   ChangeStatus updateImpl(Attributor &A) override {
2114     // TODO: Once we have call site specific value information we can provide
2115     //       call site specific liveness information and then it makes
2116     //       sense to specialize attributes for call sites arguments instead of
2117     //       redirecting requests to the callee argument.
2118     Function *F = getAssociatedFunction();
2119     const IRPosition &FnPos = IRPosition::function(*F);
2120     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2121     return clampStateAndIndicateChange(getState(), FnAA.getState());
2122   }
2123 
2124   /// See AbstractAttribute::trackStatistics()
2125   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2126 };
2127 
2128 /// NoFree attribute for floating values.
2129 struct AANoFreeFloating : AANoFreeImpl {
2130   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2131       : AANoFreeImpl(IRP, A) {}
2132 
2133   /// See AbstractAttribute::trackStatistics()
2134   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2135 
2136   /// See Abstract Attribute::updateImpl(...).
2137   ChangeStatus updateImpl(Attributor &A) override {
2138     const IRPosition &IRP = getIRPosition();
2139 
2140     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2141         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2142     if (NoFreeAA.isAssumedNoFree())
2143       return ChangeStatus::UNCHANGED;
2144 
2145     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2146     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2147       Instruction *UserI = cast<Instruction>(U.getUser());
2148       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2149         if (CB->isBundleOperand(&U))
2150           return false;
2151         if (!CB->isArgOperand(&U))
2152           return true;
2153         unsigned ArgNo = CB->getArgOperandNo(&U);
2154 
2155         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2156             *this, IRPosition::callsite_argument(*CB, ArgNo),
2157             DepClassTy::REQUIRED);
2158         return NoFreeArg.isAssumedNoFree();
2159       }
2160 
2161       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2162           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2163         Follow = true;
2164         return true;
2165       }
2166       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2167           isa<ReturnInst>(UserI))
2168         return true;
2169 
2170       // Unknown user.
2171       return false;
2172     };
2173     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2174       return indicatePessimisticFixpoint();
2175 
2176     return ChangeStatus::UNCHANGED;
2177   }
2178 };
2179 
2180 /// NoFree attribute for a call site argument.
2181 struct AANoFreeArgument final : AANoFreeFloating {
2182   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2183       : AANoFreeFloating(IRP, A) {}
2184 
2185   /// See AbstractAttribute::trackStatistics()
2186   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2187 };
2188 
2189 /// NoFree attribute for call site arguments.
2190 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2191   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2192       : AANoFreeFloating(IRP, A) {}
2193 
2194   /// See AbstractAttribute::updateImpl(...).
2195   ChangeStatus updateImpl(Attributor &A) override {
2196     // TODO: Once we have call site specific value information we can provide
2197     //       call site specific liveness information and then it makes
2198     //       sense to specialize attributes for call sites arguments instead of
2199     //       redirecting requests to the callee argument.
2200     Argument *Arg = getAssociatedArgument();
2201     if (!Arg)
2202       return indicatePessimisticFixpoint();
2203     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2204     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2205     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2206   }
2207 
2208   /// See AbstractAttribute::trackStatistics()
2209   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2210 };
2211 
2212 /// NoFree attribute for function return value.
2213 struct AANoFreeReturned final : AANoFreeFloating {
2214   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2215       : AANoFreeFloating(IRP, A) {
2216     llvm_unreachable("NoFree is not applicable to function returns!");
2217   }
2218 
2219   /// See AbstractAttribute::initialize(...).
2220   void initialize(Attributor &A) override {
2221     llvm_unreachable("NoFree is not applicable to function returns!");
2222   }
2223 
2224   /// See AbstractAttribute::updateImpl(...).
2225   ChangeStatus updateImpl(Attributor &A) override {
2226     llvm_unreachable("NoFree is not applicable to function returns!");
2227   }
2228 
2229   /// See AbstractAttribute::trackStatistics()
2230   void trackStatistics() const override {}
2231 };
2232 
2233 /// NoFree attribute deduction for a call site return value.
2234 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2235   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2236       : AANoFreeFloating(IRP, A) {}
2237 
2238   ChangeStatus manifest(Attributor &A) override {
2239     return ChangeStatus::UNCHANGED;
2240   }
2241   /// See AbstractAttribute::trackStatistics()
2242   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2243 };
2244 
2245 /// ------------------------ NonNull Argument Attribute ------------------------
2246 static int64_t getKnownNonNullAndDerefBytesForUse(
2247     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2248     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2249   TrackUse = false;
2250 
2251   const Value *UseV = U->get();
2252   if (!UseV->getType()->isPointerTy())
2253     return 0;
2254 
2255   // We need to follow common pointer manipulation uses to the accesses they
2256   // feed into. We can try to be smart to avoid looking through things we do not
2257   // like for now, e.g., non-inbounds GEPs.
2258   if (isa<CastInst>(I)) {
2259     TrackUse = true;
2260     return 0;
2261   }
2262 
2263   if (isa<GetElementPtrInst>(I)) {
2264     TrackUse = true;
2265     return 0;
2266   }
2267 
2268   Type *PtrTy = UseV->getType();
2269   const Function *F = I->getFunction();
2270   bool NullPointerIsDefined =
2271       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2272   const DataLayout &DL = A.getInfoCache().getDL();
2273   if (const auto *CB = dyn_cast<CallBase>(I)) {
2274     if (CB->isBundleOperand(U)) {
2275       if (RetainedKnowledge RK = getKnowledgeFromUse(
2276               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2277         IsNonNull |=
2278             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2279         return RK.ArgValue;
2280       }
2281       return 0;
2282     }
2283 
2284     if (CB->isCallee(U)) {
2285       IsNonNull |= !NullPointerIsDefined;
2286       return 0;
2287     }
2288 
2289     unsigned ArgNo = CB->getArgOperandNo(U);
2290     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2291     // As long as we only use known information there is no need to track
2292     // dependences here.
2293     auto &DerefAA =
2294         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2295     IsNonNull |= DerefAA.isKnownNonNull();
2296     return DerefAA.getKnownDereferenceableBytes();
2297   }
2298 
2299   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2300   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2301     return 0;
2302 
2303   int64_t Offset;
2304   const Value *Base =
2305       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2306   if (Base && Base == &AssociatedValue) {
2307     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2308     IsNonNull |= !NullPointerIsDefined;
2309     return std::max(int64_t(0), DerefBytes);
2310   }
2311 
2312   /// Corner case when an offset is 0.
2313   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2314                                           /*AllowNonInbounds*/ true);
2315   if (Base && Base == &AssociatedValue && Offset == 0) {
2316     int64_t DerefBytes = Loc->Size.getValue();
2317     IsNonNull |= !NullPointerIsDefined;
2318     return std::max(int64_t(0), DerefBytes);
2319   }
2320 
2321   return 0;
2322 }
2323 
2324 struct AANonNullImpl : AANonNull {
2325   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2326       : AANonNull(IRP, A),
2327         NullIsDefined(NullPointerIsDefined(
2328             getAnchorScope(),
2329             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2330 
2331   /// See AbstractAttribute::initialize(...).
2332   void initialize(Attributor &A) override {
2333     Value &V = getAssociatedValue();
2334     if (!NullIsDefined &&
2335         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2336                 /* IgnoreSubsumingPositions */ false, &A)) {
2337       indicateOptimisticFixpoint();
2338       return;
2339     }
2340 
2341     if (isa<ConstantPointerNull>(V)) {
2342       indicatePessimisticFixpoint();
2343       return;
2344     }
2345 
2346     AANonNull::initialize(A);
2347 
2348     bool CanBeNull, CanBeFreed;
2349     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2350                                          CanBeFreed)) {
2351       if (!CanBeNull) {
2352         indicateOptimisticFixpoint();
2353         return;
2354       }
2355     }
2356 
2357     if (isa<GlobalValue>(&getAssociatedValue())) {
2358       indicatePessimisticFixpoint();
2359       return;
2360     }
2361 
2362     if (Instruction *CtxI = getCtxI())
2363       followUsesInMBEC(*this, A, getState(), *CtxI);
2364   }
2365 
2366   /// See followUsesInMBEC
2367   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2368                        AANonNull::StateType &State) {
2369     bool IsNonNull = false;
2370     bool TrackUse = false;
2371     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2372                                        IsNonNull, TrackUse);
2373     State.setKnown(IsNonNull);
2374     return TrackUse;
2375   }
2376 
2377   /// See AbstractAttribute::getAsStr().
2378   const std::string getAsStr() const override {
2379     return getAssumed() ? "nonnull" : "may-null";
2380   }
2381 
2382   /// Flag to determine if the underlying value can be null and still allow
2383   /// valid accesses.
2384   const bool NullIsDefined;
2385 };
2386 
2387 /// NonNull attribute for a floating value.
2388 struct AANonNullFloating : public AANonNullImpl {
2389   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2390       : AANonNullImpl(IRP, A) {}
2391 
2392   /// See AbstractAttribute::updateImpl(...).
2393   ChangeStatus updateImpl(Attributor &A) override {
2394     const DataLayout &DL = A.getDataLayout();
2395 
2396     DominatorTree *DT = nullptr;
2397     AssumptionCache *AC = nullptr;
2398     InformationCache &InfoCache = A.getInfoCache();
2399     if (const Function *Fn = getAnchorScope()) {
2400       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2401       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2402     }
2403 
2404     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2405                             AANonNull::StateType &T, bool Stripped) -> bool {
2406       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2407                                              DepClassTy::REQUIRED);
2408       if (!Stripped && this == &AA) {
2409         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2410           T.indicatePessimisticFixpoint();
2411       } else {
2412         // Use abstract attribute information.
2413         const AANonNull::StateType &NS = AA.getState();
2414         T ^= NS;
2415       }
2416       return T.isValidState();
2417     };
2418 
2419     StateType T;
2420     bool UsedAssumedInformation = false;
2421     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2422                                           VisitValueCB, getCtxI(),
2423                                           UsedAssumedInformation))
2424       return indicatePessimisticFixpoint();
2425 
2426     return clampStateAndIndicateChange(getState(), T);
2427   }
2428 
2429   /// See AbstractAttribute::trackStatistics()
2430   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2431 };
2432 
2433 /// NonNull attribute for function return value.
2434 struct AANonNullReturned final
2435     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2436   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2437       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2438 
2439   /// See AbstractAttribute::getAsStr().
2440   const std::string getAsStr() const override {
2441     return getAssumed() ? "nonnull" : "may-null";
2442   }
2443 
2444   /// See AbstractAttribute::trackStatistics()
2445   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2446 };
2447 
2448 /// NonNull attribute for function argument.
2449 struct AANonNullArgument final
2450     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2451   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2452       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2453 
2454   /// See AbstractAttribute::trackStatistics()
2455   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2456 };
2457 
2458 struct AANonNullCallSiteArgument final : AANonNullFloating {
2459   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2460       : AANonNullFloating(IRP, A) {}
2461 
2462   /// See AbstractAttribute::trackStatistics()
2463   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2464 };
2465 
2466 /// NonNull attribute for a call site return position.
2467 struct AANonNullCallSiteReturned final
2468     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2469   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2470       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2471 
2472   /// See AbstractAttribute::trackStatistics()
2473   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2474 };
2475 
2476 /// ------------------------ No-Recurse Attributes ----------------------------
2477 
2478 struct AANoRecurseImpl : public AANoRecurse {
2479   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2480 
2481   /// See AbstractAttribute::getAsStr()
2482   const std::string getAsStr() const override {
2483     return getAssumed() ? "norecurse" : "may-recurse";
2484   }
2485 };
2486 
2487 struct AANoRecurseFunction final : AANoRecurseImpl {
2488   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2489       : AANoRecurseImpl(IRP, A) {}
2490 
2491   /// See AbstractAttribute::updateImpl(...).
2492   ChangeStatus updateImpl(Attributor &A) override {
2493 
2494     // If all live call sites are known to be no-recurse, we are as well.
2495     auto CallSitePred = [&](AbstractCallSite ACS) {
2496       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2497           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2498           DepClassTy::NONE);
2499       return NoRecurseAA.isKnownNoRecurse();
2500     };
2501     bool UsedAssumedInformation = false;
2502     if (A.checkForAllCallSites(CallSitePred, *this, true,
2503                                UsedAssumedInformation)) {
2504       // If we know all call sites and all are known no-recurse, we are done.
2505       // If all known call sites, which might not be all that exist, are known
2506       // to be no-recurse, we are not done but we can continue to assume
2507       // no-recurse. If one of the call sites we have not visited will become
2508       // live, another update is triggered.
2509       if (!UsedAssumedInformation)
2510         indicateOptimisticFixpoint();
2511       return ChangeStatus::UNCHANGED;
2512     }
2513 
2514     const AAFunctionReachability &EdgeReachability =
2515         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2516                                            DepClassTy::REQUIRED);
2517     if (EdgeReachability.canReach(A, *getAnchorScope()))
2518       return indicatePessimisticFixpoint();
2519     return ChangeStatus::UNCHANGED;
2520   }
2521 
2522   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2523 };
2524 
2525 /// NoRecurse attribute deduction for a call sites.
2526 struct AANoRecurseCallSite final : AANoRecurseImpl {
2527   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2528       : AANoRecurseImpl(IRP, A) {}
2529 
2530   /// See AbstractAttribute::initialize(...).
2531   void initialize(Attributor &A) override {
2532     AANoRecurseImpl::initialize(A);
2533     Function *F = getAssociatedFunction();
2534     if (!F || F->isDeclaration())
2535       indicatePessimisticFixpoint();
2536   }
2537 
2538   /// See AbstractAttribute::updateImpl(...).
2539   ChangeStatus updateImpl(Attributor &A) override {
2540     // TODO: Once we have call site specific value information we can provide
2541     //       call site specific liveness information and then it makes
2542     //       sense to specialize attributes for call sites arguments instead of
2543     //       redirecting requests to the callee argument.
2544     Function *F = getAssociatedFunction();
2545     const IRPosition &FnPos = IRPosition::function(*F);
2546     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2547     return clampStateAndIndicateChange(getState(), FnAA.getState());
2548   }
2549 
2550   /// See AbstractAttribute::trackStatistics()
2551   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2552 };
2553 
2554 /// -------------------- Undefined-Behavior Attributes ------------------------
2555 
2556 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2557   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2558       : AAUndefinedBehavior(IRP, A) {}
2559 
2560   /// See AbstractAttribute::updateImpl(...).
2561   // through a pointer (i.e. also branches etc.)
2562   ChangeStatus updateImpl(Attributor &A) override {
2563     const size_t UBPrevSize = KnownUBInsts.size();
2564     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2565 
2566     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2567       // Lang ref now states volatile store is not UB, let's skip them.
2568       if (I.isVolatile() && I.mayWriteToMemory())
2569         return true;
2570 
2571       // Skip instructions that are already saved.
2572       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2573         return true;
2574 
2575       // If we reach here, we know we have an instruction
2576       // that accesses memory through a pointer operand,
2577       // for which getPointerOperand() should give it to us.
2578       Value *PtrOp =
2579           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2580       assert(PtrOp &&
2581              "Expected pointer operand of memory accessing instruction");
2582 
2583       // Either we stopped and the appropriate action was taken,
2584       // or we got back a simplified value to continue.
2585       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2586       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2587         return true;
2588       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2589 
2590       // A memory access through a pointer is considered UB
2591       // only if the pointer has constant null value.
2592       // TODO: Expand it to not only check constant values.
2593       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2594         AssumedNoUBInsts.insert(&I);
2595         return true;
2596       }
2597       const Type *PtrTy = PtrOpVal->getType();
2598 
2599       // Because we only consider instructions inside functions,
2600       // assume that a parent function exists.
2601       const Function *F = I.getFunction();
2602 
2603       // A memory access using constant null pointer is only considered UB
2604       // if null pointer is _not_ defined for the target platform.
2605       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2606         AssumedNoUBInsts.insert(&I);
2607       else
2608         KnownUBInsts.insert(&I);
2609       return true;
2610     };
2611 
2612     auto InspectBrInstForUB = [&](Instruction &I) {
2613       // A conditional branch instruction is considered UB if it has `undef`
2614       // condition.
2615 
2616       // Skip instructions that are already saved.
2617       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2618         return true;
2619 
2620       // We know we have a branch instruction.
2621       auto *BrInst = cast<BranchInst>(&I);
2622 
2623       // Unconditional branches are never considered UB.
2624       if (BrInst->isUnconditional())
2625         return true;
2626 
2627       // Either we stopped and the appropriate action was taken,
2628       // or we got back a simplified value to continue.
2629       Optional<Value *> SimplifiedCond =
2630           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2631       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2632         return true;
2633       AssumedNoUBInsts.insert(&I);
2634       return true;
2635     };
2636 
2637     auto InspectCallSiteForUB = [&](Instruction &I) {
2638       // Check whether a callsite always cause UB or not
2639 
2640       // Skip instructions that are already saved.
2641       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2642         return true;
2643 
2644       // Check nonnull and noundef argument attribute violation for each
2645       // callsite.
2646       CallBase &CB = cast<CallBase>(I);
2647       Function *Callee = CB.getCalledFunction();
2648       if (!Callee)
2649         return true;
2650       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2651         // If current argument is known to be simplified to null pointer and the
2652         // corresponding argument position is known to have nonnull attribute,
2653         // the argument is poison. Furthermore, if the argument is poison and
2654         // the position is known to have noundef attriubte, this callsite is
2655         // considered UB.
2656         if (idx >= Callee->arg_size())
2657           break;
2658         Value *ArgVal = CB.getArgOperand(idx);
2659         if (!ArgVal)
2660           continue;
2661         // Here, we handle three cases.
2662         //   (1) Not having a value means it is dead. (we can replace the value
2663         //       with undef)
2664         //   (2) Simplified to undef. The argument violate noundef attriubte.
2665         //   (3) Simplified to null pointer where known to be nonnull.
2666         //       The argument is a poison value and violate noundef attribute.
2667         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2668         auto &NoUndefAA =
2669             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2670         if (!NoUndefAA.isKnownNoUndef())
2671           continue;
2672         bool UsedAssumedInformation = false;
2673         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2674             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2675         if (UsedAssumedInformation)
2676           continue;
2677         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2678           return true;
2679         if (!SimplifiedVal.hasValue() ||
2680             isa<UndefValue>(*SimplifiedVal.getValue())) {
2681           KnownUBInsts.insert(&I);
2682           continue;
2683         }
2684         if (!ArgVal->getType()->isPointerTy() ||
2685             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2686           continue;
2687         auto &NonNullAA =
2688             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2689         if (NonNullAA.isKnownNonNull())
2690           KnownUBInsts.insert(&I);
2691       }
2692       return true;
2693     };
2694 
2695     auto InspectReturnInstForUB = [&](Instruction &I) {
2696       auto &RI = cast<ReturnInst>(I);
2697       // Either we stopped and the appropriate action was taken,
2698       // or we got back a simplified return value to continue.
2699       Optional<Value *> SimplifiedRetValue =
2700           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2701       if (!SimplifiedRetValue.hasValue() || !SimplifiedRetValue.getValue())
2702         return true;
2703 
2704       // Check if a return instruction always cause UB or not
2705       // Note: It is guaranteed that the returned position of the anchor
2706       //       scope has noundef attribute when this is called.
2707       //       We also ensure the return position is not "assumed dead"
2708       //       because the returned value was then potentially simplified to
2709       //       `undef` in AAReturnedValues without removing the `noundef`
2710       //       attribute yet.
2711 
2712       // When the returned position has noundef attriubte, UB occurs in the
2713       // following cases.
2714       //   (1) Returned value is known to be undef.
2715       //   (2) The value is known to be a null pointer and the returned
2716       //       position has nonnull attribute (because the returned value is
2717       //       poison).
2718       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2719         auto &NonNullAA = A.getAAFor<AANonNull>(
2720             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2721         if (NonNullAA.isKnownNonNull())
2722           KnownUBInsts.insert(&I);
2723       }
2724 
2725       return true;
2726     };
2727 
2728     bool UsedAssumedInformation = false;
2729     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2730                               {Instruction::Load, Instruction::Store,
2731                                Instruction::AtomicCmpXchg,
2732                                Instruction::AtomicRMW},
2733                               UsedAssumedInformation,
2734                               /* CheckBBLivenessOnly */ true);
2735     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2736                               UsedAssumedInformation,
2737                               /* CheckBBLivenessOnly */ true);
2738     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2739                                       UsedAssumedInformation);
2740 
2741     // If the returned position of the anchor scope has noundef attriubte, check
2742     // all returned instructions.
2743     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2744       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2745       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2746         auto &RetPosNoUndefAA =
2747             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2748         if (RetPosNoUndefAA.isKnownNoUndef())
2749           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2750                                     {Instruction::Ret}, UsedAssumedInformation,
2751                                     /* CheckBBLivenessOnly */ true);
2752       }
2753     }
2754 
2755     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2756         UBPrevSize != KnownUBInsts.size())
2757       return ChangeStatus::CHANGED;
2758     return ChangeStatus::UNCHANGED;
2759   }
2760 
2761   bool isKnownToCauseUB(Instruction *I) const override {
2762     return KnownUBInsts.count(I);
2763   }
2764 
2765   bool isAssumedToCauseUB(Instruction *I) const override {
2766     // In simple words, if an instruction is not in the assumed to _not_
2767     // cause UB, then it is assumed UB (that includes those
2768     // in the KnownUBInsts set). The rest is boilerplate
2769     // is to ensure that it is one of the instructions we test
2770     // for UB.
2771 
2772     switch (I->getOpcode()) {
2773     case Instruction::Load:
2774     case Instruction::Store:
2775     case Instruction::AtomicCmpXchg:
2776     case Instruction::AtomicRMW:
2777       return !AssumedNoUBInsts.count(I);
2778     case Instruction::Br: {
2779       auto BrInst = cast<BranchInst>(I);
2780       if (BrInst->isUnconditional())
2781         return false;
2782       return !AssumedNoUBInsts.count(I);
2783     } break;
2784     default:
2785       return false;
2786     }
2787     return false;
2788   }
2789 
2790   ChangeStatus manifest(Attributor &A) override {
2791     if (KnownUBInsts.empty())
2792       return ChangeStatus::UNCHANGED;
2793     for (Instruction *I : KnownUBInsts)
2794       A.changeToUnreachableAfterManifest(I);
2795     return ChangeStatus::CHANGED;
2796   }
2797 
2798   /// See AbstractAttribute::getAsStr()
2799   const std::string getAsStr() const override {
2800     return getAssumed() ? "undefined-behavior" : "no-ub";
2801   }
2802 
2803   /// Note: The correctness of this analysis depends on the fact that the
2804   /// following 2 sets will stop changing after some point.
2805   /// "Change" here means that their size changes.
2806   /// The size of each set is monotonically increasing
2807   /// (we only add items to them) and it is upper bounded by the number of
2808   /// instructions in the processed function (we can never save more
2809   /// elements in either set than this number). Hence, at some point,
2810   /// they will stop increasing.
2811   /// Consequently, at some point, both sets will have stopped
2812   /// changing, effectively making the analysis reach a fixpoint.
2813 
2814   /// Note: These 2 sets are disjoint and an instruction can be considered
2815   /// one of 3 things:
2816   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2817   ///    the KnownUBInsts set.
2818   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2819   ///    has a reason to assume it).
2820   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2821   ///    could not find a reason to assume or prove that it can cause UB,
2822   ///    hence it assumes it doesn't. We have a set for these instructions
2823   ///    so that we don't reprocess them in every update.
2824   ///    Note however that instructions in this set may cause UB.
2825 
2826 protected:
2827   /// A set of all live instructions _known_ to cause UB.
2828   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2829 
2830 private:
2831   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2832   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2833 
2834   // Should be called on updates in which if we're processing an instruction
2835   // \p I that depends on a value \p V, one of the following has to happen:
2836   // - If the value is assumed, then stop.
2837   // - If the value is known but undef, then consider it UB.
2838   // - Otherwise, do specific processing with the simplified value.
2839   // We return None in the first 2 cases to signify that an appropriate
2840   // action was taken and the caller should stop.
2841   // Otherwise, we return the simplified value that the caller should
2842   // use for specific processing.
2843   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2844                                          Instruction *I) {
2845     bool UsedAssumedInformation = false;
2846     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2847         IRPosition::value(*V), *this, UsedAssumedInformation);
2848     if (!UsedAssumedInformation) {
2849       // Don't depend on assumed values.
2850       if (!SimplifiedV.hasValue()) {
2851         // If it is known (which we tested above) but it doesn't have a value,
2852         // then we can assume `undef` and hence the instruction is UB.
2853         KnownUBInsts.insert(I);
2854         return llvm::None;
2855       }
2856       if (!SimplifiedV.getValue())
2857         return nullptr;
2858       V = *SimplifiedV;
2859     }
2860     if (isa<UndefValue>(V)) {
2861       KnownUBInsts.insert(I);
2862       return llvm::None;
2863     }
2864     return V;
2865   }
2866 };
2867 
2868 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2869   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2870       : AAUndefinedBehaviorImpl(IRP, A) {}
2871 
2872   /// See AbstractAttribute::trackStatistics()
2873   void trackStatistics() const override {
2874     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2875                "Number of instructions known to have UB");
2876     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2877         KnownUBInsts.size();
2878   }
2879 };
2880 
2881 /// ------------------------ Will-Return Attributes ----------------------------
2882 
2883 // Helper function that checks whether a function has any cycle which we don't
2884 // know if it is bounded or not.
2885 // Loops with maximum trip count are considered bounded, any other cycle not.
2886 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2887   ScalarEvolution *SE =
2888       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2889   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2890   // If either SCEV or LoopInfo is not available for the function then we assume
2891   // any cycle to be unbounded cycle.
2892   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2893   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2894   if (!SE || !LI) {
2895     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2896       if (SCCI.hasCycle())
2897         return true;
2898     return false;
2899   }
2900 
2901   // If there's irreducible control, the function may contain non-loop cycles.
2902   if (mayContainIrreducibleControl(F, LI))
2903     return true;
2904 
2905   // Any loop that does not have a max trip count is considered unbounded cycle.
2906   for (auto *L : LI->getLoopsInPreorder()) {
2907     if (!SE->getSmallConstantMaxTripCount(L))
2908       return true;
2909   }
2910   return false;
2911 }
2912 
2913 struct AAWillReturnImpl : public AAWillReturn {
2914   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2915       : AAWillReturn(IRP, A) {}
2916 
2917   /// See AbstractAttribute::initialize(...).
2918   void initialize(Attributor &A) override {
2919     AAWillReturn::initialize(A);
2920 
2921     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2922       indicateOptimisticFixpoint();
2923       return;
2924     }
2925   }
2926 
2927   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2928   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2929     // Check for `mustprogress` in the scope and the associated function which
2930     // might be different if this is a call site.
2931     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2932         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2933       return false;
2934 
2935     bool IsKnown;
2936     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2937       return IsKnown || !KnownOnly;
2938     return false;
2939   }
2940 
2941   /// See AbstractAttribute::updateImpl(...).
2942   ChangeStatus updateImpl(Attributor &A) override {
2943     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2944       return ChangeStatus::UNCHANGED;
2945 
2946     auto CheckForWillReturn = [&](Instruction &I) {
2947       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2948       const auto &WillReturnAA =
2949           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2950       if (WillReturnAA.isKnownWillReturn())
2951         return true;
2952       if (!WillReturnAA.isAssumedWillReturn())
2953         return false;
2954       const auto &NoRecurseAA =
2955           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2956       return NoRecurseAA.isAssumedNoRecurse();
2957     };
2958 
2959     bool UsedAssumedInformation = false;
2960     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2961                                            UsedAssumedInformation))
2962       return indicatePessimisticFixpoint();
2963 
2964     return ChangeStatus::UNCHANGED;
2965   }
2966 
2967   /// See AbstractAttribute::getAsStr()
2968   const std::string getAsStr() const override {
2969     return getAssumed() ? "willreturn" : "may-noreturn";
2970   }
2971 };
2972 
2973 struct AAWillReturnFunction final : AAWillReturnImpl {
2974   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2975       : AAWillReturnImpl(IRP, A) {}
2976 
2977   /// See AbstractAttribute::initialize(...).
2978   void initialize(Attributor &A) override {
2979     AAWillReturnImpl::initialize(A);
2980 
2981     Function *F = getAnchorScope();
2982     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2983       indicatePessimisticFixpoint();
2984   }
2985 
2986   /// See AbstractAttribute::trackStatistics()
2987   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2988 };
2989 
2990 /// WillReturn attribute deduction for a call sites.
2991 struct AAWillReturnCallSite final : AAWillReturnImpl {
2992   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2993       : AAWillReturnImpl(IRP, A) {}
2994 
2995   /// See AbstractAttribute::initialize(...).
2996   void initialize(Attributor &A) override {
2997     AAWillReturnImpl::initialize(A);
2998     Function *F = getAssociatedFunction();
2999     if (!F || !A.isFunctionIPOAmendable(*F))
3000       indicatePessimisticFixpoint();
3001   }
3002 
3003   /// See AbstractAttribute::updateImpl(...).
3004   ChangeStatus updateImpl(Attributor &A) override {
3005     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3006       return ChangeStatus::UNCHANGED;
3007 
3008     // TODO: Once we have call site specific value information we can provide
3009     //       call site specific liveness information and then it makes
3010     //       sense to specialize attributes for call sites arguments instead of
3011     //       redirecting requests to the callee argument.
3012     Function *F = getAssociatedFunction();
3013     const IRPosition &FnPos = IRPosition::function(*F);
3014     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
3015     return clampStateAndIndicateChange(getState(), FnAA.getState());
3016   }
3017 
3018   /// See AbstractAttribute::trackStatistics()
3019   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3020 };
3021 
3022 /// -------------------AAReachability Attribute--------------------------
3023 
3024 struct AAReachabilityImpl : AAReachability {
3025   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
3026       : AAReachability(IRP, A) {}
3027 
3028   const std::string getAsStr() const override {
3029     // TODO: Return the number of reachable queries.
3030     return "reachable";
3031   }
3032 
3033   /// See AbstractAttribute::updateImpl(...).
3034   ChangeStatus updateImpl(Attributor &A) override {
3035     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
3036         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
3037     if (!NoRecurseAA.isAssumedNoRecurse())
3038       return indicatePessimisticFixpoint();
3039     return ChangeStatus::UNCHANGED;
3040   }
3041 };
3042 
3043 struct AAReachabilityFunction final : public AAReachabilityImpl {
3044   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
3045       : AAReachabilityImpl(IRP, A) {}
3046 
3047   /// See AbstractAttribute::trackStatistics()
3048   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3049 };
3050 
3051 /// ------------------------ NoAlias Argument Attribute ------------------------
3052 
3053 struct AANoAliasImpl : AANoAlias {
3054   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3055     assert(getAssociatedType()->isPointerTy() &&
3056            "Noalias is a pointer attribute");
3057   }
3058 
3059   const std::string getAsStr() const override {
3060     return getAssumed() ? "noalias" : "may-alias";
3061   }
3062 };
3063 
3064 /// NoAlias attribute for a floating value.
3065 struct AANoAliasFloating final : AANoAliasImpl {
3066   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3067       : AANoAliasImpl(IRP, A) {}
3068 
3069   /// See AbstractAttribute::initialize(...).
3070   void initialize(Attributor &A) override {
3071     AANoAliasImpl::initialize(A);
3072     Value *Val = &getAssociatedValue();
3073     do {
3074       CastInst *CI = dyn_cast<CastInst>(Val);
3075       if (!CI)
3076         break;
3077       Value *Base = CI->getOperand(0);
3078       if (!Base->hasOneUse())
3079         break;
3080       Val = Base;
3081     } while (true);
3082 
3083     if (!Val->getType()->isPointerTy()) {
3084       indicatePessimisticFixpoint();
3085       return;
3086     }
3087 
3088     if (isa<AllocaInst>(Val))
3089       indicateOptimisticFixpoint();
3090     else if (isa<ConstantPointerNull>(Val) &&
3091              !NullPointerIsDefined(getAnchorScope(),
3092                                    Val->getType()->getPointerAddressSpace()))
3093       indicateOptimisticFixpoint();
3094     else if (Val != &getAssociatedValue()) {
3095       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3096           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3097       if (ValNoAliasAA.isKnownNoAlias())
3098         indicateOptimisticFixpoint();
3099     }
3100   }
3101 
3102   /// See AbstractAttribute::updateImpl(...).
3103   ChangeStatus updateImpl(Attributor &A) override {
3104     // TODO: Implement this.
3105     return indicatePessimisticFixpoint();
3106   }
3107 
3108   /// See AbstractAttribute::trackStatistics()
3109   void trackStatistics() const override {
3110     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3111   }
3112 };
3113 
3114 /// NoAlias attribute for an argument.
3115 struct AANoAliasArgument final
3116     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3117   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3118   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3119 
3120   /// See AbstractAttribute::initialize(...).
3121   void initialize(Attributor &A) override {
3122     Base::initialize(A);
3123     // See callsite argument attribute and callee argument attribute.
3124     if (hasAttr({Attribute::ByVal}))
3125       indicateOptimisticFixpoint();
3126   }
3127 
3128   /// See AbstractAttribute::update(...).
3129   ChangeStatus updateImpl(Attributor &A) override {
3130     // We have to make sure no-alias on the argument does not break
3131     // synchronization when this is a callback argument, see also [1] below.
3132     // If synchronization cannot be affected, we delegate to the base updateImpl
3133     // function, otherwise we give up for now.
3134 
3135     // If the function is no-sync, no-alias cannot break synchronization.
3136     const auto &NoSyncAA =
3137         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3138                              DepClassTy::OPTIONAL);
3139     if (NoSyncAA.isAssumedNoSync())
3140       return Base::updateImpl(A);
3141 
3142     // If the argument is read-only, no-alias cannot break synchronization.
3143     bool IsKnown;
3144     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3145       return Base::updateImpl(A);
3146 
3147     // If the argument is never passed through callbacks, no-alias cannot break
3148     // synchronization.
3149     bool UsedAssumedInformation = false;
3150     if (A.checkForAllCallSites(
3151             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3152             true, UsedAssumedInformation))
3153       return Base::updateImpl(A);
3154 
3155     // TODO: add no-alias but make sure it doesn't break synchronization by
3156     // introducing fake uses. See:
3157     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3158     //     International Workshop on OpenMP 2018,
3159     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3160 
3161     return indicatePessimisticFixpoint();
3162   }
3163 
3164   /// See AbstractAttribute::trackStatistics()
3165   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3166 };
3167 
3168 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3169   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3170       : AANoAliasImpl(IRP, A) {}
3171 
3172   /// See AbstractAttribute::initialize(...).
3173   void initialize(Attributor &A) override {
3174     // See callsite argument attribute and callee argument attribute.
3175     const auto &CB = cast<CallBase>(getAnchorValue());
3176     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3177       indicateOptimisticFixpoint();
3178     Value &Val = getAssociatedValue();
3179     if (isa<ConstantPointerNull>(Val) &&
3180         !NullPointerIsDefined(getAnchorScope(),
3181                               Val.getType()->getPointerAddressSpace()))
3182       indicateOptimisticFixpoint();
3183   }
3184 
3185   /// Determine if the underlying value may alias with the call site argument
3186   /// \p OtherArgNo of \p ICS (= the underlying call site).
3187   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3188                             const AAMemoryBehavior &MemBehaviorAA,
3189                             const CallBase &CB, unsigned OtherArgNo) {
3190     // We do not need to worry about aliasing with the underlying IRP.
3191     if (this->getCalleeArgNo() == (int)OtherArgNo)
3192       return false;
3193 
3194     // If it is not a pointer or pointer vector we do not alias.
3195     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3196     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3197       return false;
3198 
3199     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3200         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3201 
3202     // If the argument is readnone, there is no read-write aliasing.
3203     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3204       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3205       return false;
3206     }
3207 
3208     // If the argument is readonly and the underlying value is readonly, there
3209     // is no read-write aliasing.
3210     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3211     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3212       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3213       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3214       return false;
3215     }
3216 
3217     // We have to utilize actual alias analysis queries so we need the object.
3218     if (!AAR)
3219       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3220 
3221     // Try to rule it out at the call site.
3222     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3223     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3224                          "callsite arguments: "
3225                       << getAssociatedValue() << " " << *ArgOp << " => "
3226                       << (IsAliasing ? "" : "no-") << "alias \n");
3227 
3228     return IsAliasing;
3229   }
3230 
3231   bool
3232   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3233                                          const AAMemoryBehavior &MemBehaviorAA,
3234                                          const AANoAlias &NoAliasAA) {
3235     // We can deduce "noalias" if the following conditions hold.
3236     // (i)   Associated value is assumed to be noalias in the definition.
3237     // (ii)  Associated value is assumed to be no-capture in all the uses
3238     //       possibly executed before this callsite.
3239     // (iii) There is no other pointer argument which could alias with the
3240     //       value.
3241 
3242     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3243     if (!AssociatedValueIsNoAliasAtDef) {
3244       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3245                         << " is not no-alias at the definition\n");
3246       return false;
3247     }
3248 
3249     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3250 
3251     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3252     const Function *ScopeFn = VIRP.getAnchorScope();
3253     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3254     // Check whether the value is captured in the scope using AANoCapture.
3255     //      Look at CFG and check only uses possibly executed before this
3256     //      callsite.
3257     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3258       Instruction *UserI = cast<Instruction>(U.getUser());
3259 
3260       // If UserI is the curr instruction and there is a single potential use of
3261       // the value in UserI we allow the use.
3262       // TODO: We should inspect the operands and allow those that cannot alias
3263       //       with the value.
3264       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3265         return true;
3266 
3267       if (ScopeFn) {
3268         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3269             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3270 
3271         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3272           return true;
3273 
3274         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3275           if (CB->isArgOperand(&U)) {
3276 
3277             unsigned ArgNo = CB->getArgOperandNo(&U);
3278 
3279             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3280                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3281                 DepClassTy::OPTIONAL);
3282 
3283             if (NoCaptureAA.isAssumedNoCapture())
3284               return true;
3285           }
3286         }
3287       }
3288 
3289       // For cases which can potentially have more users
3290       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3291           isa<SelectInst>(U)) {
3292         Follow = true;
3293         return true;
3294       }
3295 
3296       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3297       return false;
3298     };
3299 
3300     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3301       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3302         LLVM_DEBUG(
3303             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3304                    << " cannot be noalias as it is potentially captured\n");
3305         return false;
3306       }
3307     }
3308     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3309 
3310     // Check there is no other pointer argument which could alias with the
3311     // value passed at this call site.
3312     // TODO: AbstractCallSite
3313     const auto &CB = cast<CallBase>(getAnchorValue());
3314     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3315       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3316         return false;
3317 
3318     return true;
3319   }
3320 
3321   /// See AbstractAttribute::updateImpl(...).
3322   ChangeStatus updateImpl(Attributor &A) override {
3323     // If the argument is readnone we are done as there are no accesses via the
3324     // argument.
3325     auto &MemBehaviorAA =
3326         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3327     if (MemBehaviorAA.isAssumedReadNone()) {
3328       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3329       return ChangeStatus::UNCHANGED;
3330     }
3331 
3332     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3333     const auto &NoAliasAA =
3334         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3335 
3336     AAResults *AAR = nullptr;
3337     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3338                                                NoAliasAA)) {
3339       LLVM_DEBUG(
3340           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3341       return ChangeStatus::UNCHANGED;
3342     }
3343 
3344     return indicatePessimisticFixpoint();
3345   }
3346 
3347   /// See AbstractAttribute::trackStatistics()
3348   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3349 };
3350 
3351 /// NoAlias attribute for function return value.
3352 struct AANoAliasReturned final : AANoAliasImpl {
3353   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3354       : AANoAliasImpl(IRP, A) {}
3355 
3356   /// See AbstractAttribute::initialize(...).
3357   void initialize(Attributor &A) override {
3358     AANoAliasImpl::initialize(A);
3359     Function *F = getAssociatedFunction();
3360     if (!F || F->isDeclaration())
3361       indicatePessimisticFixpoint();
3362   }
3363 
3364   /// See AbstractAttribute::updateImpl(...).
3365   virtual ChangeStatus updateImpl(Attributor &A) override {
3366 
3367     auto CheckReturnValue = [&](Value &RV) -> bool {
3368       if (Constant *C = dyn_cast<Constant>(&RV))
3369         if (C->isNullValue() || isa<UndefValue>(C))
3370           return true;
3371 
3372       /// For now, we can only deduce noalias if we have call sites.
3373       /// FIXME: add more support.
3374       if (!isa<CallBase>(&RV))
3375         return false;
3376 
3377       const IRPosition &RVPos = IRPosition::value(RV);
3378       const auto &NoAliasAA =
3379           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3380       if (!NoAliasAA.isAssumedNoAlias())
3381         return false;
3382 
3383       const auto &NoCaptureAA =
3384           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3385       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3386     };
3387 
3388     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3389       return indicatePessimisticFixpoint();
3390 
3391     return ChangeStatus::UNCHANGED;
3392   }
3393 
3394   /// See AbstractAttribute::trackStatistics()
3395   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3396 };
3397 
3398 /// NoAlias attribute deduction for a call site return value.
3399 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3400   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3401       : AANoAliasImpl(IRP, A) {}
3402 
3403   /// See AbstractAttribute::initialize(...).
3404   void initialize(Attributor &A) override {
3405     AANoAliasImpl::initialize(A);
3406     Function *F = getAssociatedFunction();
3407     if (!F || F->isDeclaration())
3408       indicatePessimisticFixpoint();
3409   }
3410 
3411   /// See AbstractAttribute::updateImpl(...).
3412   ChangeStatus updateImpl(Attributor &A) override {
3413     // TODO: Once we have call site specific value information we can provide
3414     //       call site specific liveness information and then it makes
3415     //       sense to specialize attributes for call sites arguments instead of
3416     //       redirecting requests to the callee argument.
3417     Function *F = getAssociatedFunction();
3418     const IRPosition &FnPos = IRPosition::returned(*F);
3419     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3420     return clampStateAndIndicateChange(getState(), FnAA.getState());
3421   }
3422 
3423   /// See AbstractAttribute::trackStatistics()
3424   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3425 };
3426 
3427 /// -------------------AAIsDead Function Attribute-----------------------
3428 
3429 struct AAIsDeadValueImpl : public AAIsDead {
3430   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3431 
3432   /// See AAIsDead::isAssumedDead().
3433   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3434 
3435   /// See AAIsDead::isKnownDead().
3436   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3437 
3438   /// See AAIsDead::isAssumedDead(BasicBlock *).
3439   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3440 
3441   /// See AAIsDead::isKnownDead(BasicBlock *).
3442   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3443 
3444   /// See AAIsDead::isAssumedDead(Instruction *I).
3445   bool isAssumedDead(const Instruction *I) const override {
3446     return I == getCtxI() && isAssumedDead();
3447   }
3448 
3449   /// See AAIsDead::isKnownDead(Instruction *I).
3450   bool isKnownDead(const Instruction *I) const override {
3451     return isAssumedDead(I) && isKnownDead();
3452   }
3453 
3454   /// See AbstractAttribute::getAsStr().
3455   const std::string getAsStr() const override {
3456     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3457   }
3458 
3459   /// Check if all uses are assumed dead.
3460   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3461     // Callers might not check the type, void has no uses.
3462     if (V.getType()->isVoidTy())
3463       return true;
3464 
3465     // If we replace a value with a constant there are no uses left afterwards.
3466     if (!isa<Constant>(V)) {
3467       bool UsedAssumedInformation = false;
3468       Optional<Constant *> C =
3469           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3470       if (!C.hasValue() || *C)
3471         return true;
3472     }
3473 
3474     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3475     // Explicitly set the dependence class to required because we want a long
3476     // chain of N dependent instructions to be considered live as soon as one is
3477     // without going through N update cycles. This is not required for
3478     // correctness.
3479     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3480                              DepClassTy::REQUIRED);
3481   }
3482 
3483   /// Determine if \p I is assumed to be side-effect free.
3484   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3485     if (!I || wouldInstructionBeTriviallyDead(I))
3486       return true;
3487 
3488     auto *CB = dyn_cast<CallBase>(I);
3489     if (!CB || isa<IntrinsicInst>(CB))
3490       return false;
3491 
3492     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3493     const auto &NoUnwindAA =
3494         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3495     if (!NoUnwindAA.isAssumedNoUnwind())
3496       return false;
3497     if (!NoUnwindAA.isKnownNoUnwind())
3498       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3499 
3500     bool IsKnown;
3501     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3502   }
3503 };
3504 
3505 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3506   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3507       : AAIsDeadValueImpl(IRP, A) {}
3508 
3509   /// See AbstractAttribute::initialize(...).
3510   void initialize(Attributor &A) override {
3511     if (isa<UndefValue>(getAssociatedValue())) {
3512       indicatePessimisticFixpoint();
3513       return;
3514     }
3515 
3516     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3517     if (!isAssumedSideEffectFree(A, I)) {
3518       if (!isa_and_nonnull<StoreInst>(I))
3519         indicatePessimisticFixpoint();
3520       else
3521         removeAssumedBits(HAS_NO_EFFECT);
3522     }
3523   }
3524 
3525   bool isDeadStore(Attributor &A, StoreInst &SI) {
3526     // Lang ref now states volatile store is not UB/dead, let's skip them.
3527     if (SI.isVolatile())
3528       return false;
3529 
3530     bool UsedAssumedInformation = false;
3531     SmallSetVector<Value *, 4> PotentialCopies;
3532     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3533                                              UsedAssumedInformation))
3534       return false;
3535     return llvm::all_of(PotentialCopies, [&](Value *V) {
3536       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3537                              UsedAssumedInformation);
3538     });
3539   }
3540 
3541   /// See AbstractAttribute::updateImpl(...).
3542   ChangeStatus updateImpl(Attributor &A) override {
3543     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3544     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3545       if (!isDeadStore(A, *SI))
3546         return indicatePessimisticFixpoint();
3547     } else {
3548       if (!isAssumedSideEffectFree(A, I))
3549         return indicatePessimisticFixpoint();
3550       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3551         return indicatePessimisticFixpoint();
3552     }
3553     return ChangeStatus::UNCHANGED;
3554   }
3555 
3556   /// See AbstractAttribute::manifest(...).
3557   ChangeStatus manifest(Attributor &A) override {
3558     Value &V = getAssociatedValue();
3559     if (auto *I = dyn_cast<Instruction>(&V)) {
3560       // If we get here we basically know the users are all dead. We check if
3561       // isAssumedSideEffectFree returns true here again because it might not be
3562       // the case and only the users are dead but the instruction (=call) is
3563       // still needed.
3564       if (isa<StoreInst>(I) ||
3565           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3566         A.deleteAfterManifest(*I);
3567         return ChangeStatus::CHANGED;
3568       }
3569     }
3570     if (V.use_empty())
3571       return ChangeStatus::UNCHANGED;
3572 
3573     bool UsedAssumedInformation = false;
3574     Optional<Constant *> C =
3575         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3576     if (C.hasValue() && C.getValue())
3577       return ChangeStatus::UNCHANGED;
3578 
3579     // Replace the value with undef as it is dead but keep droppable uses around
3580     // as they provide information we don't want to give up on just yet.
3581     UndefValue &UV = *UndefValue::get(V.getType());
3582     bool AnyChange =
3583         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3584     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3585   }
3586 
3587   /// See AbstractAttribute::trackStatistics()
3588   void trackStatistics() const override {
3589     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3590   }
3591 };
3592 
3593 struct AAIsDeadArgument : public AAIsDeadFloating {
3594   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3595       : AAIsDeadFloating(IRP, A) {}
3596 
3597   /// See AbstractAttribute::initialize(...).
3598   void initialize(Attributor &A) override {
3599     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3600       indicatePessimisticFixpoint();
3601   }
3602 
3603   /// See AbstractAttribute::manifest(...).
3604   ChangeStatus manifest(Attributor &A) override {
3605     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3606     Argument &Arg = *getAssociatedArgument();
3607     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3608       if (A.registerFunctionSignatureRewrite(
3609               Arg, /* ReplacementTypes */ {},
3610               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3611               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3612         Arg.dropDroppableUses();
3613         return ChangeStatus::CHANGED;
3614       }
3615     return Changed;
3616   }
3617 
3618   /// See AbstractAttribute::trackStatistics()
3619   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3620 };
3621 
3622 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3623   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3624       : AAIsDeadValueImpl(IRP, A) {}
3625 
3626   /// See AbstractAttribute::initialize(...).
3627   void initialize(Attributor &A) override {
3628     if (isa<UndefValue>(getAssociatedValue()))
3629       indicatePessimisticFixpoint();
3630   }
3631 
3632   /// See AbstractAttribute::updateImpl(...).
3633   ChangeStatus updateImpl(Attributor &A) override {
3634     // TODO: Once we have call site specific value information we can provide
3635     //       call site specific liveness information and then it makes
3636     //       sense to specialize attributes for call sites arguments instead of
3637     //       redirecting requests to the callee argument.
3638     Argument *Arg = getAssociatedArgument();
3639     if (!Arg)
3640       return indicatePessimisticFixpoint();
3641     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3642     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3643     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3644   }
3645 
3646   /// See AbstractAttribute::manifest(...).
3647   ChangeStatus manifest(Attributor &A) override {
3648     CallBase &CB = cast<CallBase>(getAnchorValue());
3649     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3650     assert(!isa<UndefValue>(U.get()) &&
3651            "Expected undef values to be filtered out!");
3652     UndefValue &UV = *UndefValue::get(U->getType());
3653     if (A.changeUseAfterManifest(U, UV))
3654       return ChangeStatus::CHANGED;
3655     return ChangeStatus::UNCHANGED;
3656   }
3657 
3658   /// See AbstractAttribute::trackStatistics()
3659   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3660 };
3661 
3662 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3663   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3664       : AAIsDeadFloating(IRP, A) {}
3665 
3666   /// See AAIsDead::isAssumedDead().
3667   bool isAssumedDead() const override {
3668     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3669   }
3670 
3671   /// See AbstractAttribute::initialize(...).
3672   void initialize(Attributor &A) override {
3673     if (isa<UndefValue>(getAssociatedValue())) {
3674       indicatePessimisticFixpoint();
3675       return;
3676     }
3677 
3678     // We track this separately as a secondary state.
3679     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3680   }
3681 
3682   /// See AbstractAttribute::updateImpl(...).
3683   ChangeStatus updateImpl(Attributor &A) override {
3684     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3685     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3686       IsAssumedSideEffectFree = false;
3687       Changed = ChangeStatus::CHANGED;
3688     }
3689     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3690       return indicatePessimisticFixpoint();
3691     return Changed;
3692   }
3693 
3694   /// See AbstractAttribute::trackStatistics()
3695   void trackStatistics() const override {
3696     if (IsAssumedSideEffectFree)
3697       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3698     else
3699       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3700   }
3701 
3702   /// See AbstractAttribute::getAsStr().
3703   const std::string getAsStr() const override {
3704     return isAssumedDead()
3705                ? "assumed-dead"
3706                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3707   }
3708 
3709 private:
3710   bool IsAssumedSideEffectFree = true;
3711 };
3712 
3713 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3714   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3715       : AAIsDeadValueImpl(IRP, A) {}
3716 
3717   /// See AbstractAttribute::updateImpl(...).
3718   ChangeStatus updateImpl(Attributor &A) override {
3719 
3720     bool UsedAssumedInformation = false;
3721     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3722                               {Instruction::Ret}, UsedAssumedInformation);
3723 
3724     auto PredForCallSite = [&](AbstractCallSite ACS) {
3725       if (ACS.isCallbackCall() || !ACS.getInstruction())
3726         return false;
3727       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3728     };
3729 
3730     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3731                                 UsedAssumedInformation))
3732       return indicatePessimisticFixpoint();
3733 
3734     return ChangeStatus::UNCHANGED;
3735   }
3736 
3737   /// See AbstractAttribute::manifest(...).
3738   ChangeStatus manifest(Attributor &A) override {
3739     // TODO: Rewrite the signature to return void?
3740     bool AnyChange = false;
3741     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3742     auto RetInstPred = [&](Instruction &I) {
3743       ReturnInst &RI = cast<ReturnInst>(I);
3744       if (!isa<UndefValue>(RI.getReturnValue()))
3745         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3746       return true;
3747     };
3748     bool UsedAssumedInformation = false;
3749     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3750                               UsedAssumedInformation);
3751     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3752   }
3753 
3754   /// See AbstractAttribute::trackStatistics()
3755   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3756 };
3757 
3758 struct AAIsDeadFunction : public AAIsDead {
3759   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3760 
3761   /// See AbstractAttribute::initialize(...).
3762   void initialize(Attributor &A) override {
3763     const Function *F = getAnchorScope();
3764     if (F && !F->isDeclaration()) {
3765       // We only want to compute liveness once. If the function is not part of
3766       // the SCC, skip it.
3767       if (A.isRunOn(*const_cast<Function *>(F))) {
3768         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3769         assumeLive(A, F->getEntryBlock());
3770       } else {
3771         indicatePessimisticFixpoint();
3772       }
3773     }
3774   }
3775 
3776   /// See AbstractAttribute::getAsStr().
3777   const std::string getAsStr() const override {
3778     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3779            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3780            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3781            std::to_string(KnownDeadEnds.size()) + "]";
3782   }
3783 
3784   /// See AbstractAttribute::manifest(...).
3785   ChangeStatus manifest(Attributor &A) override {
3786     assert(getState().isValidState() &&
3787            "Attempted to manifest an invalid state!");
3788 
3789     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3790     Function &F = *getAnchorScope();
3791 
3792     if (AssumedLiveBlocks.empty()) {
3793       A.deleteAfterManifest(F);
3794       return ChangeStatus::CHANGED;
3795     }
3796 
3797     // Flag to determine if we can change an invoke to a call assuming the
3798     // callee is nounwind. This is not possible if the personality of the
3799     // function allows to catch asynchronous exceptions.
3800     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3801 
3802     KnownDeadEnds.set_union(ToBeExploredFrom);
3803     for (const Instruction *DeadEndI : KnownDeadEnds) {
3804       auto *CB = dyn_cast<CallBase>(DeadEndI);
3805       if (!CB)
3806         continue;
3807       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3808           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3809       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3810       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3811         continue;
3812 
3813       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3814         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3815       else
3816         A.changeToUnreachableAfterManifest(
3817             const_cast<Instruction *>(DeadEndI->getNextNode()));
3818       HasChanged = ChangeStatus::CHANGED;
3819     }
3820 
3821     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3822     for (BasicBlock &BB : F)
3823       if (!AssumedLiveBlocks.count(&BB)) {
3824         A.deleteAfterManifest(BB);
3825         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3826         HasChanged = ChangeStatus::CHANGED;
3827       }
3828 
3829     return HasChanged;
3830   }
3831 
3832   /// See AbstractAttribute::updateImpl(...).
3833   ChangeStatus updateImpl(Attributor &A) override;
3834 
3835   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3836     assert(From->getParent() == getAnchorScope() &&
3837            To->getParent() == getAnchorScope() &&
3838            "Used AAIsDead of the wrong function");
3839     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3840   }
3841 
3842   /// See AbstractAttribute::trackStatistics()
3843   void trackStatistics() const override {}
3844 
3845   /// Returns true if the function is assumed dead.
3846   bool isAssumedDead() const override { return false; }
3847 
3848   /// See AAIsDead::isKnownDead().
3849   bool isKnownDead() const override { return false; }
3850 
3851   /// See AAIsDead::isAssumedDead(BasicBlock *).
3852   bool isAssumedDead(const BasicBlock *BB) const override {
3853     assert(BB->getParent() == getAnchorScope() &&
3854            "BB must be in the same anchor scope function.");
3855 
3856     if (!getAssumed())
3857       return false;
3858     return !AssumedLiveBlocks.count(BB);
3859   }
3860 
3861   /// See AAIsDead::isKnownDead(BasicBlock *).
3862   bool isKnownDead(const BasicBlock *BB) const override {
3863     return getKnown() && isAssumedDead(BB);
3864   }
3865 
3866   /// See AAIsDead::isAssumed(Instruction *I).
3867   bool isAssumedDead(const Instruction *I) const override {
3868     assert(I->getParent()->getParent() == getAnchorScope() &&
3869            "Instruction must be in the same anchor scope function.");
3870 
3871     if (!getAssumed())
3872       return false;
3873 
3874     // If it is not in AssumedLiveBlocks then it for sure dead.
3875     // Otherwise, it can still be after noreturn call in a live block.
3876     if (!AssumedLiveBlocks.count(I->getParent()))
3877       return true;
3878 
3879     // If it is not after a liveness barrier it is live.
3880     const Instruction *PrevI = I->getPrevNode();
3881     while (PrevI) {
3882       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3883         return true;
3884       PrevI = PrevI->getPrevNode();
3885     }
3886     return false;
3887   }
3888 
3889   /// See AAIsDead::isKnownDead(Instruction *I).
3890   bool isKnownDead(const Instruction *I) const override {
3891     return getKnown() && isAssumedDead(I);
3892   }
3893 
3894   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3895   /// that internal function called from \p BB should now be looked at.
3896   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3897     if (!AssumedLiveBlocks.insert(&BB).second)
3898       return false;
3899 
3900     // We assume that all of BB is (probably) live now and if there are calls to
3901     // internal functions we will assume that those are now live as well. This
3902     // is a performance optimization for blocks with calls to a lot of internal
3903     // functions. It can however cause dead functions to be treated as live.
3904     for (const Instruction &I : BB)
3905       if (const auto *CB = dyn_cast<CallBase>(&I))
3906         if (const Function *F = CB->getCalledFunction())
3907           if (F->hasLocalLinkage())
3908             A.markLiveInternalFunction(*F);
3909     return true;
3910   }
3911 
3912   /// Collection of instructions that need to be explored again, e.g., we
3913   /// did assume they do not transfer control to (one of their) successors.
3914   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3915 
3916   /// Collection of instructions that are known to not transfer control.
3917   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3918 
3919   /// Collection of all assumed live edges
3920   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3921 
3922   /// Collection of all assumed live BasicBlocks.
3923   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3924 };
3925 
3926 static bool
3927 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3928                         AbstractAttribute &AA,
3929                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3930   const IRPosition &IPos = IRPosition::callsite_function(CB);
3931 
3932   const auto &NoReturnAA =
3933       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3934   if (NoReturnAA.isAssumedNoReturn())
3935     return !NoReturnAA.isKnownNoReturn();
3936   if (CB.isTerminator())
3937     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3938   else
3939     AliveSuccessors.push_back(CB.getNextNode());
3940   return false;
3941 }
3942 
3943 static bool
3944 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3945                         AbstractAttribute &AA,
3946                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3947   bool UsedAssumedInformation =
3948       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3949 
3950   // First, determine if we can change an invoke to a call assuming the
3951   // callee is nounwind. This is not possible if the personality of the
3952   // function allows to catch asynchronous exceptions.
3953   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3954     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3955   } else {
3956     const IRPosition &IPos = IRPosition::callsite_function(II);
3957     const auto &AANoUnw =
3958         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3959     if (AANoUnw.isAssumedNoUnwind()) {
3960       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3961     } else {
3962       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3963     }
3964   }
3965   return UsedAssumedInformation;
3966 }
3967 
3968 static bool
3969 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3970                         AbstractAttribute &AA,
3971                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3972   bool UsedAssumedInformation = false;
3973   if (BI.getNumSuccessors() == 1) {
3974     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3975   } else {
3976     Optional<Constant *> C =
3977         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3978     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3979       // No value yet, assume both edges are dead.
3980     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3981       const BasicBlock *SuccBB =
3982           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3983       AliveSuccessors.push_back(&SuccBB->front());
3984     } else {
3985       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3986       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3987       UsedAssumedInformation = false;
3988     }
3989   }
3990   return UsedAssumedInformation;
3991 }
3992 
3993 static bool
3994 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3995                         AbstractAttribute &AA,
3996                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3997   bool UsedAssumedInformation = false;
3998   Optional<Constant *> C =
3999       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
4000   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4001     // No value yet, assume all edges are dead.
4002   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
4003     for (auto &CaseIt : SI.cases()) {
4004       if (CaseIt.getCaseValue() == C.getValue()) {
4005         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
4006         return UsedAssumedInformation;
4007       }
4008     }
4009     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
4010     return UsedAssumedInformation;
4011   } else {
4012     for (const BasicBlock *SuccBB : successors(SI.getParent()))
4013       AliveSuccessors.push_back(&SuccBB->front());
4014   }
4015   return UsedAssumedInformation;
4016 }
4017 
4018 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4019   ChangeStatus Change = ChangeStatus::UNCHANGED;
4020 
4021   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4022                     << getAnchorScope()->size() << "] BBs and "
4023                     << ToBeExploredFrom.size() << " exploration points and "
4024                     << KnownDeadEnds.size() << " known dead ends\n");
4025 
4026   // Copy and clear the list of instructions we need to explore from. It is
4027   // refilled with instructions the next update has to look at.
4028   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4029                                                ToBeExploredFrom.end());
4030   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4031 
4032   SmallVector<const Instruction *, 8> AliveSuccessors;
4033   while (!Worklist.empty()) {
4034     const Instruction *I = Worklist.pop_back_val();
4035     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4036 
4037     // Fast forward for uninteresting instructions. We could look for UB here
4038     // though.
4039     while (!I->isTerminator() && !isa<CallBase>(I))
4040       I = I->getNextNode();
4041 
4042     AliveSuccessors.clear();
4043 
4044     bool UsedAssumedInformation = false;
4045     switch (I->getOpcode()) {
4046     // TODO: look for (assumed) UB to backwards propagate "deadness".
4047     default:
4048       assert(I->isTerminator() &&
4049              "Expected non-terminators to be handled already!");
4050       for (const BasicBlock *SuccBB : successors(I->getParent()))
4051         AliveSuccessors.push_back(&SuccBB->front());
4052       break;
4053     case Instruction::Call:
4054       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4055                                                        *this, AliveSuccessors);
4056       break;
4057     case Instruction::Invoke:
4058       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4059                                                        *this, AliveSuccessors);
4060       break;
4061     case Instruction::Br:
4062       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4063                                                        *this, AliveSuccessors);
4064       break;
4065     case Instruction::Switch:
4066       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4067                                                        *this, AliveSuccessors);
4068       break;
4069     }
4070 
4071     if (UsedAssumedInformation) {
4072       NewToBeExploredFrom.insert(I);
4073     } else if (AliveSuccessors.empty() ||
4074                (I->isTerminator() &&
4075                 AliveSuccessors.size() < I->getNumSuccessors())) {
4076       if (KnownDeadEnds.insert(I))
4077         Change = ChangeStatus::CHANGED;
4078     }
4079 
4080     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4081                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4082                       << UsedAssumedInformation << "\n");
4083 
4084     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4085       if (!I->isTerminator()) {
4086         assert(AliveSuccessors.size() == 1 &&
4087                "Non-terminator expected to have a single successor!");
4088         Worklist.push_back(AliveSuccessor);
4089       } else {
4090         // record the assumed live edge
4091         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4092         if (AssumedLiveEdges.insert(Edge).second)
4093           Change = ChangeStatus::CHANGED;
4094         if (assumeLive(A, *AliveSuccessor->getParent()))
4095           Worklist.push_back(AliveSuccessor);
4096       }
4097     }
4098   }
4099 
4100   // Check if the content of ToBeExploredFrom changed, ignore the order.
4101   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4102       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4103         return !ToBeExploredFrom.count(I);
4104       })) {
4105     Change = ChangeStatus::CHANGED;
4106     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4107   }
4108 
4109   // If we know everything is live there is no need to query for liveness.
4110   // Instead, indicating a pessimistic fixpoint will cause the state to be
4111   // "invalid" and all queries to be answered conservatively without lookups.
4112   // To be in this state we have to (1) finished the exploration and (3) not
4113   // discovered any non-trivial dead end and (2) not ruled unreachable code
4114   // dead.
4115   if (ToBeExploredFrom.empty() &&
4116       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4117       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4118         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4119       }))
4120     return indicatePessimisticFixpoint();
4121   return Change;
4122 }
4123 
4124 /// Liveness information for a call sites.
4125 struct AAIsDeadCallSite final : AAIsDeadFunction {
4126   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4127       : AAIsDeadFunction(IRP, A) {}
4128 
4129   /// See AbstractAttribute::initialize(...).
4130   void initialize(Attributor &A) override {
4131     // TODO: Once we have call site specific value information we can provide
4132     //       call site specific liveness information and then it makes
4133     //       sense to specialize attributes for call sites instead of
4134     //       redirecting requests to the callee.
4135     llvm_unreachable("Abstract attributes for liveness are not "
4136                      "supported for call sites yet!");
4137   }
4138 
4139   /// See AbstractAttribute::updateImpl(...).
4140   ChangeStatus updateImpl(Attributor &A) override {
4141     return indicatePessimisticFixpoint();
4142   }
4143 
4144   /// See AbstractAttribute::trackStatistics()
4145   void trackStatistics() const override {}
4146 };
4147 
4148 /// -------------------- Dereferenceable Argument Attribute --------------------
4149 
4150 struct AADereferenceableImpl : AADereferenceable {
4151   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4152       : AADereferenceable(IRP, A) {}
4153   using StateType = DerefState;
4154 
4155   /// See AbstractAttribute::initialize(...).
4156   void initialize(Attributor &A) override {
4157     SmallVector<Attribute, 4> Attrs;
4158     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4159              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4160     for (const Attribute &Attr : Attrs)
4161       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4162 
4163     const IRPosition &IRP = this->getIRPosition();
4164     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4165 
4166     bool CanBeNull, CanBeFreed;
4167     takeKnownDerefBytesMaximum(
4168         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4169             A.getDataLayout(), CanBeNull, CanBeFreed));
4170 
4171     bool IsFnInterface = IRP.isFnInterfaceKind();
4172     Function *FnScope = IRP.getAnchorScope();
4173     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4174       indicatePessimisticFixpoint();
4175       return;
4176     }
4177 
4178     if (Instruction *CtxI = getCtxI())
4179       followUsesInMBEC(*this, A, getState(), *CtxI);
4180   }
4181 
4182   /// See AbstractAttribute::getState()
4183   /// {
4184   StateType &getState() override { return *this; }
4185   const StateType &getState() const override { return *this; }
4186   /// }
4187 
4188   /// Helper function for collecting accessed bytes in must-be-executed-context
4189   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4190                               DerefState &State) {
4191     const Value *UseV = U->get();
4192     if (!UseV->getType()->isPointerTy())
4193       return;
4194 
4195     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4196     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4197       return;
4198 
4199     int64_t Offset;
4200     const Value *Base = GetPointerBaseWithConstantOffset(
4201         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4202     if (Base && Base == &getAssociatedValue())
4203       State.addAccessedBytes(Offset, Loc->Size.getValue());
4204   }
4205 
4206   /// See followUsesInMBEC
4207   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4208                        AADereferenceable::StateType &State) {
4209     bool IsNonNull = false;
4210     bool TrackUse = false;
4211     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4212         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4213     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4214                       << " for instruction " << *I << "\n");
4215 
4216     addAccessedBytesForUse(A, U, I, State);
4217     State.takeKnownDerefBytesMaximum(DerefBytes);
4218     return TrackUse;
4219   }
4220 
4221   /// See AbstractAttribute::manifest(...).
4222   ChangeStatus manifest(Attributor &A) override {
4223     ChangeStatus Change = AADereferenceable::manifest(A);
4224     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4225       removeAttrs({Attribute::DereferenceableOrNull});
4226       return ChangeStatus::CHANGED;
4227     }
4228     return Change;
4229   }
4230 
4231   void getDeducedAttributes(LLVMContext &Ctx,
4232                             SmallVectorImpl<Attribute> &Attrs) const override {
4233     // TODO: Add *_globally support
4234     if (isAssumedNonNull())
4235       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4236           Ctx, getAssumedDereferenceableBytes()));
4237     else
4238       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4239           Ctx, getAssumedDereferenceableBytes()));
4240   }
4241 
4242   /// See AbstractAttribute::getAsStr().
4243   const std::string getAsStr() const override {
4244     if (!getAssumedDereferenceableBytes())
4245       return "unknown-dereferenceable";
4246     return std::string("dereferenceable") +
4247            (isAssumedNonNull() ? "" : "_or_null") +
4248            (isAssumedGlobal() ? "_globally" : "") + "<" +
4249            std::to_string(getKnownDereferenceableBytes()) + "-" +
4250            std::to_string(getAssumedDereferenceableBytes()) + ">";
4251   }
4252 };
4253 
4254 /// Dereferenceable attribute for a floating value.
4255 struct AADereferenceableFloating : AADereferenceableImpl {
4256   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4257       : AADereferenceableImpl(IRP, A) {}
4258 
4259   /// See AbstractAttribute::updateImpl(...).
4260   ChangeStatus updateImpl(Attributor &A) override {
4261     const DataLayout &DL = A.getDataLayout();
4262 
4263     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4264                             bool Stripped) -> bool {
4265       unsigned IdxWidth =
4266           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4267       APInt Offset(IdxWidth, 0);
4268       const Value *Base =
4269           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4270 
4271       const auto &AA = A.getAAFor<AADereferenceable>(
4272           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4273       int64_t DerefBytes = 0;
4274       if (!Stripped && this == &AA) {
4275         // Use IR information if we did not strip anything.
4276         // TODO: track globally.
4277         bool CanBeNull, CanBeFreed;
4278         DerefBytes =
4279             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4280         T.GlobalState.indicatePessimisticFixpoint();
4281       } else {
4282         const DerefState &DS = AA.getState();
4283         DerefBytes = DS.DerefBytesState.getAssumed();
4284         T.GlobalState &= DS.GlobalState;
4285       }
4286 
4287       // For now we do not try to "increase" dereferenceability due to negative
4288       // indices as we first have to come up with code to deal with loops and
4289       // for overflows of the dereferenceable bytes.
4290       int64_t OffsetSExt = Offset.getSExtValue();
4291       if (OffsetSExt < 0)
4292         OffsetSExt = 0;
4293 
4294       T.takeAssumedDerefBytesMinimum(
4295           std::max(int64_t(0), DerefBytes - OffsetSExt));
4296 
4297       if (this == &AA) {
4298         if (!Stripped) {
4299           // If nothing was stripped IR information is all we got.
4300           T.takeKnownDerefBytesMaximum(
4301               std::max(int64_t(0), DerefBytes - OffsetSExt));
4302           T.indicatePessimisticFixpoint();
4303         } else if (OffsetSExt > 0) {
4304           // If something was stripped but there is circular reasoning we look
4305           // for the offset. If it is positive we basically decrease the
4306           // dereferenceable bytes in a circluar loop now, which will simply
4307           // drive them down to the known value in a very slow way which we
4308           // can accelerate.
4309           T.indicatePessimisticFixpoint();
4310         }
4311       }
4312 
4313       return T.isValidState();
4314     };
4315 
4316     DerefState T;
4317     bool UsedAssumedInformation = false;
4318     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4319                                            VisitValueCB, getCtxI(),
4320                                            UsedAssumedInformation))
4321       return indicatePessimisticFixpoint();
4322 
4323     return clampStateAndIndicateChange(getState(), T);
4324   }
4325 
4326   /// See AbstractAttribute::trackStatistics()
4327   void trackStatistics() const override {
4328     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4329   }
4330 };
4331 
4332 /// Dereferenceable attribute for a return value.
4333 struct AADereferenceableReturned final
4334     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4335   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4336       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4337             IRP, A) {}
4338 
4339   /// See AbstractAttribute::trackStatistics()
4340   void trackStatistics() const override {
4341     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4342   }
4343 };
4344 
4345 /// Dereferenceable attribute for an argument
4346 struct AADereferenceableArgument final
4347     : AAArgumentFromCallSiteArguments<AADereferenceable,
4348                                       AADereferenceableImpl> {
4349   using Base =
4350       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4351   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4352       : Base(IRP, A) {}
4353 
4354   /// See AbstractAttribute::trackStatistics()
4355   void trackStatistics() const override {
4356     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4357   }
4358 };
4359 
4360 /// Dereferenceable attribute for a call site argument.
4361 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4362   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4363       : AADereferenceableFloating(IRP, A) {}
4364 
4365   /// See AbstractAttribute::trackStatistics()
4366   void trackStatistics() const override {
4367     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4368   }
4369 };
4370 
4371 /// Dereferenceable attribute deduction for a call site return value.
4372 struct AADereferenceableCallSiteReturned final
4373     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4374   using Base =
4375       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4376   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4377       : Base(IRP, A) {}
4378 
4379   /// See AbstractAttribute::trackStatistics()
4380   void trackStatistics() const override {
4381     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4382   }
4383 };
4384 
4385 // ------------------------ Align Argument Attribute ------------------------
4386 
4387 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4388                                     Value &AssociatedValue, const Use *U,
4389                                     const Instruction *I, bool &TrackUse) {
4390   // We need to follow common pointer manipulation uses to the accesses they
4391   // feed into.
4392   if (isa<CastInst>(I)) {
4393     // Follow all but ptr2int casts.
4394     TrackUse = !isa<PtrToIntInst>(I);
4395     return 0;
4396   }
4397   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4398     if (GEP->hasAllConstantIndices())
4399       TrackUse = true;
4400     return 0;
4401   }
4402 
4403   MaybeAlign MA;
4404   if (const auto *CB = dyn_cast<CallBase>(I)) {
4405     if (CB->isBundleOperand(U) || CB->isCallee(U))
4406       return 0;
4407 
4408     unsigned ArgNo = CB->getArgOperandNo(U);
4409     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4410     // As long as we only use known information there is no need to track
4411     // dependences here.
4412     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4413     MA = MaybeAlign(AlignAA.getKnownAlign());
4414   }
4415 
4416   const DataLayout &DL = A.getDataLayout();
4417   const Value *UseV = U->get();
4418   if (auto *SI = dyn_cast<StoreInst>(I)) {
4419     if (SI->getPointerOperand() == UseV)
4420       MA = SI->getAlign();
4421   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4422     if (LI->getPointerOperand() == UseV)
4423       MA = LI->getAlign();
4424   }
4425 
4426   if (!MA || *MA <= QueryingAA.getKnownAlign())
4427     return 0;
4428 
4429   unsigned Alignment = MA->value();
4430   int64_t Offset;
4431 
4432   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4433     if (Base == &AssociatedValue) {
4434       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4435       // So we can say that the maximum power of two which is a divisor of
4436       // gcd(Offset, Alignment) is an alignment.
4437 
4438       uint32_t gcd =
4439           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4440       Alignment = llvm::PowerOf2Floor(gcd);
4441     }
4442   }
4443 
4444   return Alignment;
4445 }
4446 
4447 struct AAAlignImpl : AAAlign {
4448   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4449 
4450   /// See AbstractAttribute::initialize(...).
4451   void initialize(Attributor &A) override {
4452     SmallVector<Attribute, 4> Attrs;
4453     getAttrs({Attribute::Alignment}, Attrs);
4454     for (const Attribute &Attr : Attrs)
4455       takeKnownMaximum(Attr.getValueAsInt());
4456 
4457     Value &V = getAssociatedValue();
4458     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4459     //       use of the function pointer. This was caused by D73131. We want to
4460     //       avoid this for function pointers especially because we iterate
4461     //       their uses and int2ptr is not handled. It is not a correctness
4462     //       problem though!
4463     if (!V.getType()->getPointerElementType()->isFunctionTy())
4464       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4465 
4466     if (getIRPosition().isFnInterfaceKind() &&
4467         (!getAnchorScope() ||
4468          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4469       indicatePessimisticFixpoint();
4470       return;
4471     }
4472 
4473     if (Instruction *CtxI = getCtxI())
4474       followUsesInMBEC(*this, A, getState(), *CtxI);
4475   }
4476 
4477   /// See AbstractAttribute::manifest(...).
4478   ChangeStatus manifest(Attributor &A) override {
4479     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4480 
4481     // Check for users that allow alignment annotations.
4482     Value &AssociatedValue = getAssociatedValue();
4483     for (const Use &U : AssociatedValue.uses()) {
4484       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4485         if (SI->getPointerOperand() == &AssociatedValue)
4486           if (SI->getAlignment() < getAssumedAlign()) {
4487             STATS_DECLTRACK(AAAlign, Store,
4488                             "Number of times alignment added to a store");
4489             SI->setAlignment(Align(getAssumedAlign()));
4490             LoadStoreChanged = ChangeStatus::CHANGED;
4491           }
4492       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4493         if (LI->getPointerOperand() == &AssociatedValue)
4494           if (LI->getAlignment() < getAssumedAlign()) {
4495             LI->setAlignment(Align(getAssumedAlign()));
4496             STATS_DECLTRACK(AAAlign, Load,
4497                             "Number of times alignment added to a load");
4498             LoadStoreChanged = ChangeStatus::CHANGED;
4499           }
4500       }
4501     }
4502 
4503     ChangeStatus Changed = AAAlign::manifest(A);
4504 
4505     Align InheritAlign =
4506         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4507     if (InheritAlign >= getAssumedAlign())
4508       return LoadStoreChanged;
4509     return Changed | LoadStoreChanged;
4510   }
4511 
4512   // TODO: Provide a helper to determine the implied ABI alignment and check in
4513   //       the existing manifest method and a new one for AAAlignImpl that value
4514   //       to avoid making the alignment explicit if it did not improve.
4515 
4516   /// See AbstractAttribute::getDeducedAttributes
4517   virtual void
4518   getDeducedAttributes(LLVMContext &Ctx,
4519                        SmallVectorImpl<Attribute> &Attrs) const override {
4520     if (getAssumedAlign() > 1)
4521       Attrs.emplace_back(
4522           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4523   }
4524 
4525   /// See followUsesInMBEC
4526   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4527                        AAAlign::StateType &State) {
4528     bool TrackUse = false;
4529 
4530     unsigned int KnownAlign =
4531         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4532     State.takeKnownMaximum(KnownAlign);
4533 
4534     return TrackUse;
4535   }
4536 
4537   /// See AbstractAttribute::getAsStr().
4538   const std::string getAsStr() const override {
4539     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4540                                 "-" + std::to_string(getAssumedAlign()) + ">")
4541                              : "unknown-align";
4542   }
4543 };
4544 
4545 /// Align attribute for a floating value.
4546 struct AAAlignFloating : AAAlignImpl {
4547   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4548 
4549   /// See AbstractAttribute::updateImpl(...).
4550   ChangeStatus updateImpl(Attributor &A) override {
4551     const DataLayout &DL = A.getDataLayout();
4552 
4553     auto VisitValueCB = [&](Value &V, const Instruction *,
4554                             AAAlign::StateType &T, bool Stripped) -> bool {
4555       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4556                                            DepClassTy::REQUIRED);
4557       if (!Stripped && this == &AA) {
4558         int64_t Offset;
4559         unsigned Alignment = 1;
4560         if (const Value *Base =
4561                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4562           Align PA = Base->getPointerAlignment(DL);
4563           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4564           // So we can say that the maximum power of two which is a divisor of
4565           // gcd(Offset, Alignment) is an alignment.
4566 
4567           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4568                                                uint32_t(PA.value()));
4569           Alignment = llvm::PowerOf2Floor(gcd);
4570         } else {
4571           Alignment = V.getPointerAlignment(DL).value();
4572         }
4573         // Use only IR information if we did not strip anything.
4574         T.takeKnownMaximum(Alignment);
4575         T.indicatePessimisticFixpoint();
4576       } else {
4577         // Use abstract attribute information.
4578         const AAAlign::StateType &DS = AA.getState();
4579         T ^= DS;
4580       }
4581       return T.isValidState();
4582     };
4583 
4584     StateType T;
4585     bool UsedAssumedInformation = false;
4586     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4587                                           VisitValueCB, getCtxI(),
4588                                           UsedAssumedInformation))
4589       return indicatePessimisticFixpoint();
4590 
4591     // TODO: If we know we visited all incoming values, thus no are assumed
4592     // dead, we can take the known information from the state T.
4593     return clampStateAndIndicateChange(getState(), T);
4594   }
4595 
4596   /// See AbstractAttribute::trackStatistics()
4597   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4598 };
4599 
4600 /// Align attribute for function return value.
4601 struct AAAlignReturned final
4602     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4603   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4604   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4605 
4606   /// See AbstractAttribute::initialize(...).
4607   void initialize(Attributor &A) override {
4608     Base::initialize(A);
4609     Function *F = getAssociatedFunction();
4610     if (!F || F->isDeclaration())
4611       indicatePessimisticFixpoint();
4612   }
4613 
4614   /// See AbstractAttribute::trackStatistics()
4615   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4616 };
4617 
4618 /// Align attribute for function argument.
4619 struct AAAlignArgument final
4620     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4621   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4622   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4623 
4624   /// See AbstractAttribute::manifest(...).
4625   ChangeStatus manifest(Attributor &A) override {
4626     // If the associated argument is involved in a must-tail call we give up
4627     // because we would need to keep the argument alignments of caller and
4628     // callee in-sync. Just does not seem worth the trouble right now.
4629     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4630       return ChangeStatus::UNCHANGED;
4631     return Base::manifest(A);
4632   }
4633 
4634   /// See AbstractAttribute::trackStatistics()
4635   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4636 };
4637 
4638 struct AAAlignCallSiteArgument final : AAAlignFloating {
4639   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4640       : AAAlignFloating(IRP, A) {}
4641 
4642   /// See AbstractAttribute::manifest(...).
4643   ChangeStatus manifest(Attributor &A) override {
4644     // If the associated argument is involved in a must-tail call we give up
4645     // because we would need to keep the argument alignments of caller and
4646     // callee in-sync. Just does not seem worth the trouble right now.
4647     if (Argument *Arg = getAssociatedArgument())
4648       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4649         return ChangeStatus::UNCHANGED;
4650     ChangeStatus Changed = AAAlignImpl::manifest(A);
4651     Align InheritAlign =
4652         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4653     if (InheritAlign >= getAssumedAlign())
4654       Changed = ChangeStatus::UNCHANGED;
4655     return Changed;
4656   }
4657 
4658   /// See AbstractAttribute::updateImpl(Attributor &A).
4659   ChangeStatus updateImpl(Attributor &A) override {
4660     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4661     if (Argument *Arg = getAssociatedArgument()) {
4662       // We only take known information from the argument
4663       // so we do not need to track a dependence.
4664       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4665           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4666       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4667     }
4668     return Changed;
4669   }
4670 
4671   /// See AbstractAttribute::trackStatistics()
4672   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4673 };
4674 
4675 /// Align attribute deduction for a call site return value.
4676 struct AAAlignCallSiteReturned final
4677     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4678   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4679   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4680       : Base(IRP, A) {}
4681 
4682   /// See AbstractAttribute::initialize(...).
4683   void initialize(Attributor &A) override {
4684     Base::initialize(A);
4685     Function *F = getAssociatedFunction();
4686     if (!F || F->isDeclaration())
4687       indicatePessimisticFixpoint();
4688   }
4689 
4690   /// See AbstractAttribute::trackStatistics()
4691   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4692 };
4693 
4694 /// ------------------ Function No-Return Attribute ----------------------------
4695 struct AANoReturnImpl : public AANoReturn {
4696   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4697 
4698   /// See AbstractAttribute::initialize(...).
4699   void initialize(Attributor &A) override {
4700     AANoReturn::initialize(A);
4701     Function *F = getAssociatedFunction();
4702     if (!F || F->isDeclaration())
4703       indicatePessimisticFixpoint();
4704   }
4705 
4706   /// See AbstractAttribute::getAsStr().
4707   const std::string getAsStr() const override {
4708     return getAssumed() ? "noreturn" : "may-return";
4709   }
4710 
4711   /// See AbstractAttribute::updateImpl(Attributor &A).
4712   virtual ChangeStatus updateImpl(Attributor &A) override {
4713     auto CheckForNoReturn = [](Instruction &) { return false; };
4714     bool UsedAssumedInformation = false;
4715     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4716                                    {(unsigned)Instruction::Ret},
4717                                    UsedAssumedInformation))
4718       return indicatePessimisticFixpoint();
4719     return ChangeStatus::UNCHANGED;
4720   }
4721 };
4722 
4723 struct AANoReturnFunction final : AANoReturnImpl {
4724   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4725       : AANoReturnImpl(IRP, A) {}
4726 
4727   /// See AbstractAttribute::trackStatistics()
4728   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4729 };
4730 
4731 /// NoReturn attribute deduction for a call sites.
4732 struct AANoReturnCallSite final : AANoReturnImpl {
4733   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4734       : AANoReturnImpl(IRP, A) {}
4735 
4736   /// See AbstractAttribute::initialize(...).
4737   void initialize(Attributor &A) override {
4738     AANoReturnImpl::initialize(A);
4739     if (Function *F = getAssociatedFunction()) {
4740       const IRPosition &FnPos = IRPosition::function(*F);
4741       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4742       if (!FnAA.isAssumedNoReturn())
4743         indicatePessimisticFixpoint();
4744     }
4745   }
4746 
4747   /// See AbstractAttribute::updateImpl(...).
4748   ChangeStatus updateImpl(Attributor &A) override {
4749     // TODO: Once we have call site specific value information we can provide
4750     //       call site specific liveness information and then it makes
4751     //       sense to specialize attributes for call sites arguments instead of
4752     //       redirecting requests to the callee argument.
4753     Function *F = getAssociatedFunction();
4754     const IRPosition &FnPos = IRPosition::function(*F);
4755     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4756     return clampStateAndIndicateChange(getState(), FnAA.getState());
4757   }
4758 
4759   /// See AbstractAttribute::trackStatistics()
4760   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4761 };
4762 
4763 /// ----------------------- Variable Capturing ---------------------------------
4764 
4765 /// A class to hold the state of for no-capture attributes.
4766 struct AANoCaptureImpl : public AANoCapture {
4767   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4768 
4769   /// See AbstractAttribute::initialize(...).
4770   void initialize(Attributor &A) override {
4771     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4772       indicateOptimisticFixpoint();
4773       return;
4774     }
4775     Function *AnchorScope = getAnchorScope();
4776     if (isFnInterfaceKind() &&
4777         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4778       indicatePessimisticFixpoint();
4779       return;
4780     }
4781 
4782     // You cannot "capture" null in the default address space.
4783     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4784         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4785       indicateOptimisticFixpoint();
4786       return;
4787     }
4788 
4789     const Function *F =
4790         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4791 
4792     // Check what state the associated function can actually capture.
4793     if (F)
4794       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4795     else
4796       indicatePessimisticFixpoint();
4797   }
4798 
4799   /// See AbstractAttribute::updateImpl(...).
4800   ChangeStatus updateImpl(Attributor &A) override;
4801 
4802   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4803   virtual void
4804   getDeducedAttributes(LLVMContext &Ctx,
4805                        SmallVectorImpl<Attribute> &Attrs) const override {
4806     if (!isAssumedNoCaptureMaybeReturned())
4807       return;
4808 
4809     if (isArgumentPosition()) {
4810       if (isAssumedNoCapture())
4811         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4812       else if (ManifestInternal)
4813         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4814     }
4815   }
4816 
4817   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4818   /// depending on the ability of the function associated with \p IRP to capture
4819   /// state in memory and through "returning/throwing", respectively.
4820   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4821                                                    const Function &F,
4822                                                    BitIntegerState &State) {
4823     // TODO: Once we have memory behavior attributes we should use them here.
4824 
4825     // If we know we cannot communicate or write to memory, we do not care about
4826     // ptr2int anymore.
4827     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4828         F.getReturnType()->isVoidTy()) {
4829       State.addKnownBits(NO_CAPTURE);
4830       return;
4831     }
4832 
4833     // A function cannot capture state in memory if it only reads memory, it can
4834     // however return/throw state and the state might be influenced by the
4835     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4836     if (F.onlyReadsMemory())
4837       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4838 
4839     // A function cannot communicate state back if it does not through
4840     // exceptions and doesn not return values.
4841     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4842       State.addKnownBits(NOT_CAPTURED_IN_RET);
4843 
4844     // Check existing "returned" attributes.
4845     int ArgNo = IRP.getCalleeArgNo();
4846     if (F.doesNotThrow() && ArgNo >= 0) {
4847       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4848         if (F.hasParamAttribute(u, Attribute::Returned)) {
4849           if (u == unsigned(ArgNo))
4850             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4851           else if (F.onlyReadsMemory())
4852             State.addKnownBits(NO_CAPTURE);
4853           else
4854             State.addKnownBits(NOT_CAPTURED_IN_RET);
4855           break;
4856         }
4857     }
4858   }
4859 
4860   /// See AbstractState::getAsStr().
4861   const std::string getAsStr() const override {
4862     if (isKnownNoCapture())
4863       return "known not-captured";
4864     if (isAssumedNoCapture())
4865       return "assumed not-captured";
4866     if (isKnownNoCaptureMaybeReturned())
4867       return "known not-captured-maybe-returned";
4868     if (isAssumedNoCaptureMaybeReturned())
4869       return "assumed not-captured-maybe-returned";
4870     return "assumed-captured";
4871   }
4872 };
4873 
4874 /// Attributor-aware capture tracker.
4875 struct AACaptureUseTracker final : public CaptureTracker {
4876 
4877   /// Create a capture tracker that can lookup in-flight abstract attributes
4878   /// through the Attributor \p A.
4879   ///
4880   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4881   /// search is stopped. If a use leads to a return instruction,
4882   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4883   /// If a use leads to a ptr2int which may capture the value,
4884   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4885   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4886   /// set. All values in \p PotentialCopies are later tracked as well. For every
4887   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4888   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4889   /// conservatively set to true.
4890   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4891                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4892                       SmallSetVector<Value *, 4> &PotentialCopies,
4893                       unsigned &RemainingUsesToExplore)
4894       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4895         PotentialCopies(PotentialCopies),
4896         RemainingUsesToExplore(RemainingUsesToExplore) {}
4897 
4898   /// Determine if \p V maybe captured. *Also updates the state!*
4899   bool valueMayBeCaptured(const Value *V) {
4900     if (V->getType()->isPointerTy()) {
4901       PointerMayBeCaptured(V, this);
4902     } else {
4903       State.indicatePessimisticFixpoint();
4904     }
4905     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4906   }
4907 
4908   /// See CaptureTracker::tooManyUses().
4909   void tooManyUses() override {
4910     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4911   }
4912 
4913   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4914     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4915       return true;
4916     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4917         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4918     return DerefAA.getAssumedDereferenceableBytes();
4919   }
4920 
4921   /// See CaptureTracker::captured(...).
4922   bool captured(const Use *U) override {
4923     Instruction *UInst = cast<Instruction>(U->getUser());
4924     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4925                       << "\n");
4926 
4927     // Because we may reuse the tracker multiple times we keep track of the
4928     // number of explored uses ourselves as well.
4929     if (RemainingUsesToExplore-- == 0) {
4930       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4931       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4932                           /* Return */ true);
4933     }
4934 
4935     // Deal with ptr2int by following uses.
4936     if (isa<PtrToIntInst>(UInst)) {
4937       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4938       return valueMayBeCaptured(UInst);
4939     }
4940 
4941     // For stores we check if we can follow the value through memory or not.
4942     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4943       if (SI->isVolatile())
4944         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4945                             /* Return */ false);
4946       bool UsedAssumedInformation = false;
4947       if (!AA::getPotentialCopiesOfStoredValue(
4948               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4949         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4950                             /* Return */ false);
4951       // Not captured directly, potential copies will be checked.
4952       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4953                           /* Return */ false);
4954     }
4955 
4956     // Explicitly catch return instructions.
4957     if (isa<ReturnInst>(UInst)) {
4958       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4959         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4960                             /* Return */ true);
4961       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4962                           /* Return */ true);
4963     }
4964 
4965     // For now we only use special logic for call sites. However, the tracker
4966     // itself knows about a lot of other non-capturing cases already.
4967     auto *CB = dyn_cast<CallBase>(UInst);
4968     if (!CB || !CB->isArgOperand(U))
4969       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4970                           /* Return */ true);
4971 
4972     unsigned ArgNo = CB->getArgOperandNo(U);
4973     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4974     // If we have a abstract no-capture attribute for the argument we can use
4975     // it to justify a non-capture attribute here. This allows recursion!
4976     auto &ArgNoCaptureAA =
4977         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4978     if (ArgNoCaptureAA.isAssumedNoCapture())
4979       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4980                           /* Return */ false);
4981     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4982       addPotentialCopy(*CB);
4983       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4984                           /* Return */ false);
4985     }
4986 
4987     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4988     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4989                         /* Return */ true);
4990   }
4991 
4992   /// Register \p CS as potential copy of the value we are checking.
4993   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4994 
4995   /// See CaptureTracker::shouldExplore(...).
4996   bool shouldExplore(const Use *U) override {
4997     // Check liveness and ignore droppable users.
4998     bool UsedAssumedInformation = false;
4999     return !U->getUser()->isDroppable() &&
5000            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
5001                             UsedAssumedInformation);
5002   }
5003 
5004   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
5005   /// \p CapturedInRet, then return the appropriate value for use in the
5006   /// CaptureTracker::captured() interface.
5007   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
5008                     bool CapturedInRet) {
5009     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5010                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5011     if (CapturedInMem)
5012       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5013     if (CapturedInInt)
5014       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5015     if (CapturedInRet)
5016       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5017     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5018   }
5019 
5020 private:
5021   /// The attributor providing in-flight abstract attributes.
5022   Attributor &A;
5023 
5024   /// The abstract attribute currently updated.
5025   AANoCapture &NoCaptureAA;
5026 
5027   /// The abstract liveness state.
5028   const AAIsDead &IsDeadAA;
5029 
5030   /// The state currently updated.
5031   AANoCapture::StateType &State;
5032 
5033   /// Set of potential copies of the tracked value.
5034   SmallSetVector<Value *, 4> &PotentialCopies;
5035 
5036   /// Global counter to limit the number of explored uses.
5037   unsigned &RemainingUsesToExplore;
5038 };
5039 
5040 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5041   const IRPosition &IRP = getIRPosition();
5042   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5043                                   : &IRP.getAssociatedValue();
5044   if (!V)
5045     return indicatePessimisticFixpoint();
5046 
5047   const Function *F =
5048       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5049   assert(F && "Expected a function!");
5050   const IRPosition &FnPos = IRPosition::function(*F);
5051   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
5052 
5053   AANoCapture::StateType T;
5054 
5055   // Readonly means we cannot capture through memory.
5056   bool IsKnown;
5057   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5058     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5059     if (IsKnown)
5060       addKnownBits(NOT_CAPTURED_IN_MEM);
5061   }
5062 
5063   // Make sure all returned values are different than the underlying value.
5064   // TODO: we could do this in a more sophisticated way inside
5065   //       AAReturnedValues, e.g., track all values that escape through returns
5066   //       directly somehow.
5067   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5068     bool SeenConstant = false;
5069     for (auto &It : RVAA.returned_values()) {
5070       if (isa<Constant>(It.first)) {
5071         if (SeenConstant)
5072           return false;
5073         SeenConstant = true;
5074       } else if (!isa<Argument>(It.first) ||
5075                  It.first == getAssociatedArgument())
5076         return false;
5077     }
5078     return true;
5079   };
5080 
5081   const auto &NoUnwindAA =
5082       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5083   if (NoUnwindAA.isAssumedNoUnwind()) {
5084     bool IsVoidTy = F->getReturnType()->isVoidTy();
5085     const AAReturnedValues *RVAA =
5086         IsVoidTy ? nullptr
5087                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5088 
5089                                                  DepClassTy::OPTIONAL);
5090     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5091       T.addKnownBits(NOT_CAPTURED_IN_RET);
5092       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5093         return ChangeStatus::UNCHANGED;
5094       if (NoUnwindAA.isKnownNoUnwind() &&
5095           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5096         addKnownBits(NOT_CAPTURED_IN_RET);
5097         if (isKnown(NOT_CAPTURED_IN_MEM))
5098           return indicateOptimisticFixpoint();
5099       }
5100     }
5101   }
5102 
5103   // Use the CaptureTracker interface and logic with the specialized tracker,
5104   // defined in AACaptureUseTracker, that can look at in-flight abstract
5105   // attributes and directly updates the assumed state.
5106   SmallSetVector<Value *, 4> PotentialCopies;
5107   unsigned RemainingUsesToExplore =
5108       getDefaultMaxUsesToExploreForCaptureTracking();
5109   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
5110                               RemainingUsesToExplore);
5111 
5112   // Check all potential copies of the associated value until we can assume
5113   // none will be captured or we have to assume at least one might be.
5114   unsigned Idx = 0;
5115   PotentialCopies.insert(V);
5116   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
5117     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
5118 
5119   AANoCapture::StateType &S = getState();
5120   auto Assumed = S.getAssumed();
5121   S.intersectAssumedBits(T.getAssumed());
5122   if (!isAssumedNoCaptureMaybeReturned())
5123     return indicatePessimisticFixpoint();
5124   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5125                                    : ChangeStatus::CHANGED;
5126 }
5127 
5128 /// NoCapture attribute for function arguments.
5129 struct AANoCaptureArgument final : AANoCaptureImpl {
5130   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5131       : AANoCaptureImpl(IRP, A) {}
5132 
5133   /// See AbstractAttribute::trackStatistics()
5134   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5135 };
5136 
5137 /// NoCapture attribute for call site arguments.
5138 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5139   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5140       : AANoCaptureImpl(IRP, A) {}
5141 
5142   /// See AbstractAttribute::initialize(...).
5143   void initialize(Attributor &A) override {
5144     if (Argument *Arg = getAssociatedArgument())
5145       if (Arg->hasByValAttr())
5146         indicateOptimisticFixpoint();
5147     AANoCaptureImpl::initialize(A);
5148   }
5149 
5150   /// See AbstractAttribute::updateImpl(...).
5151   ChangeStatus updateImpl(Attributor &A) override {
5152     // TODO: Once we have call site specific value information we can provide
5153     //       call site specific liveness information and then it makes
5154     //       sense to specialize attributes for call sites arguments instead of
5155     //       redirecting requests to the callee argument.
5156     Argument *Arg = getAssociatedArgument();
5157     if (!Arg)
5158       return indicatePessimisticFixpoint();
5159     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5160     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5161     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5162   }
5163 
5164   /// See AbstractAttribute::trackStatistics()
5165   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5166 };
5167 
5168 /// NoCapture attribute for floating values.
5169 struct AANoCaptureFloating final : AANoCaptureImpl {
5170   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5171       : AANoCaptureImpl(IRP, A) {}
5172 
5173   /// See AbstractAttribute::trackStatistics()
5174   void trackStatistics() const override {
5175     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5176   }
5177 };
5178 
5179 /// NoCapture attribute for function return value.
5180 struct AANoCaptureReturned final : AANoCaptureImpl {
5181   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5182       : AANoCaptureImpl(IRP, A) {
5183     llvm_unreachable("NoCapture is not applicable to function returns!");
5184   }
5185 
5186   /// See AbstractAttribute::initialize(...).
5187   void initialize(Attributor &A) override {
5188     llvm_unreachable("NoCapture is not applicable to function returns!");
5189   }
5190 
5191   /// See AbstractAttribute::updateImpl(...).
5192   ChangeStatus updateImpl(Attributor &A) override {
5193     llvm_unreachable("NoCapture is not applicable to function returns!");
5194   }
5195 
5196   /// See AbstractAttribute::trackStatistics()
5197   void trackStatistics() const override {}
5198 };
5199 
5200 /// NoCapture attribute deduction for a call site return value.
5201 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5202   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5203       : AANoCaptureImpl(IRP, A) {}
5204 
5205   /// See AbstractAttribute::initialize(...).
5206   void initialize(Attributor &A) override {
5207     const Function *F = getAnchorScope();
5208     // Check what state the associated function can actually capture.
5209     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5210   }
5211 
5212   /// See AbstractAttribute::trackStatistics()
5213   void trackStatistics() const override {
5214     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5215   }
5216 };
5217 
5218 /// ------------------ Value Simplify Attribute ----------------------------
5219 
5220 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5221   // FIXME: Add a typecast support.
5222   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5223       SimplifiedAssociatedValue, Other, Ty);
5224   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5225     return false;
5226 
5227   LLVM_DEBUG({
5228     if (SimplifiedAssociatedValue.hasValue())
5229       dbgs() << "[ValueSimplify] is assumed to be "
5230              << **SimplifiedAssociatedValue << "\n";
5231     else
5232       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5233   });
5234   return true;
5235 }
5236 
5237 struct AAValueSimplifyImpl : AAValueSimplify {
5238   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5239       : AAValueSimplify(IRP, A) {}
5240 
5241   /// See AbstractAttribute::initialize(...).
5242   void initialize(Attributor &A) override {
5243     if (getAssociatedValue().getType()->isVoidTy())
5244       indicatePessimisticFixpoint();
5245     if (A.hasSimplificationCallback(getIRPosition()))
5246       indicatePessimisticFixpoint();
5247   }
5248 
5249   /// See AbstractAttribute::getAsStr().
5250   const std::string getAsStr() const override {
5251     LLVM_DEBUG({
5252       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5253       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5254         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5255     });
5256     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5257                           : "not-simple";
5258   }
5259 
5260   /// See AbstractAttribute::trackStatistics()
5261   void trackStatistics() const override {}
5262 
5263   /// See AAValueSimplify::getAssumedSimplifiedValue()
5264   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5265     return SimplifiedAssociatedValue;
5266   }
5267 
5268   /// Return a value we can use as replacement for the associated one, or
5269   /// nullptr if we don't have one that makes sense.
5270   Value *getReplacementValue(Attributor &A) const {
5271     Value *NewV;
5272     NewV = SimplifiedAssociatedValue.hasValue()
5273                ? SimplifiedAssociatedValue.getValue()
5274                : UndefValue::get(getAssociatedType());
5275     if (!NewV)
5276       return nullptr;
5277     NewV = AA::getWithType(*NewV, *getAssociatedType());
5278     if (!NewV || NewV == &getAssociatedValue())
5279       return nullptr;
5280     const Instruction *CtxI = getCtxI();
5281     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5282       return nullptr;
5283     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5284       return nullptr;
5285     return NewV;
5286   }
5287 
5288   /// Helper function for querying AAValueSimplify and updating candicate.
5289   /// \param IRP The value position we are trying to unify with SimplifiedValue
5290   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5291                       const IRPosition &IRP, bool Simplify = true) {
5292     bool UsedAssumedInformation = false;
5293     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5294     if (Simplify)
5295       QueryingValueSimplified =
5296           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5297     return unionAssumed(QueryingValueSimplified);
5298   }
5299 
5300   /// Returns a candidate is found or not
5301   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5302     if (!getAssociatedValue().getType()->isIntegerTy())
5303       return false;
5304 
5305     // This will also pass the call base context.
5306     const auto &AA =
5307         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5308 
5309     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5310 
5311     if (!COpt.hasValue()) {
5312       SimplifiedAssociatedValue = llvm::None;
5313       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5314       return true;
5315     }
5316     if (auto *C = COpt.getValue()) {
5317       SimplifiedAssociatedValue = C;
5318       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5319       return true;
5320     }
5321     return false;
5322   }
5323 
5324   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5325     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5326       return true;
5327     if (askSimplifiedValueFor<AAPotentialValues>(A))
5328       return true;
5329     return false;
5330   }
5331 
5332   /// See AbstractAttribute::manifest(...).
5333   ChangeStatus manifest(Attributor &A) override {
5334     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5335     if (getAssociatedValue().user_empty())
5336       return Changed;
5337 
5338     if (auto *NewV = getReplacementValue(A)) {
5339       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5340                         << *NewV << " :: " << *this << "\n");
5341       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5342         Changed = ChangeStatus::CHANGED;
5343     }
5344 
5345     return Changed | AAValueSimplify::manifest(A);
5346   }
5347 
5348   /// See AbstractState::indicatePessimisticFixpoint(...).
5349   ChangeStatus indicatePessimisticFixpoint() override {
5350     SimplifiedAssociatedValue = &getAssociatedValue();
5351     return AAValueSimplify::indicatePessimisticFixpoint();
5352   }
5353 
5354   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5355                          LoadInst &L, function_ref<bool(Value &)> Union) {
5356     auto UnionWrapper = [&](Value &V, Value &Obj) {
5357       if (isa<AllocaInst>(Obj))
5358         return Union(V);
5359       if (!AA::isDynamicallyUnique(A, AA, V))
5360         return false;
5361       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5362         return false;
5363       return Union(V);
5364     };
5365 
5366     Value &Ptr = *L.getPointerOperand();
5367     SmallVector<Value *, 8> Objects;
5368     bool UsedAssumedInformation = false;
5369     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L,
5370                                          UsedAssumedInformation))
5371       return false;
5372 
5373     const auto *TLI =
5374         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5375     for (Value *Obj : Objects) {
5376       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5377       if (isa<UndefValue>(Obj))
5378         continue;
5379       if (isa<ConstantPointerNull>(Obj)) {
5380         // A null pointer access can be undefined but any offset from null may
5381         // be OK. We do not try to optimize the latter.
5382         if (!NullPointerIsDefined(L.getFunction(),
5383                                   Ptr.getType()->getPointerAddressSpace()) &&
5384             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5385           continue;
5386         return false;
5387       }
5388       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5389       if (!InitialVal || !Union(*InitialVal))
5390         return false;
5391 
5392       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5393                            "propagation, checking accesses next.\n");
5394 
5395       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5396         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5397         if (Acc.isWrittenValueYetUndetermined())
5398           return true;
5399         Value *Content = Acc.getWrittenValue();
5400         if (!Content)
5401           return false;
5402         Value *CastedContent =
5403             AA::getWithType(*Content, *AA.getAssociatedType());
5404         if (!CastedContent)
5405           return false;
5406         if (IsExact)
5407           return UnionWrapper(*CastedContent, *Obj);
5408         if (auto *C = dyn_cast<Constant>(CastedContent))
5409           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5410             return UnionWrapper(*CastedContent, *Obj);
5411         return false;
5412       };
5413 
5414       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5415                                            DepClassTy::REQUIRED);
5416       if (!PI.forallInterferingWrites(A, AA, L, CheckAccess))
5417         return false;
5418     }
5419     return true;
5420   }
5421 };
5422 
5423 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5424   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5425       : AAValueSimplifyImpl(IRP, A) {}
5426 
5427   void initialize(Attributor &A) override {
5428     AAValueSimplifyImpl::initialize(A);
5429     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5430       indicatePessimisticFixpoint();
5431     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5432                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5433                 /* IgnoreSubsumingPositions */ true))
5434       indicatePessimisticFixpoint();
5435 
5436     // FIXME: This is a hack to prevent us from propagating function poiner in
5437     // the new pass manager CGSCC pass as it creates call edges the
5438     // CallGraphUpdater cannot handle yet.
5439     Value &V = getAssociatedValue();
5440     if (V.getType()->isPointerTy() &&
5441         V.getType()->getPointerElementType()->isFunctionTy() &&
5442         !A.isModulePass())
5443       indicatePessimisticFixpoint();
5444   }
5445 
5446   /// See AbstractAttribute::updateImpl(...).
5447   ChangeStatus updateImpl(Attributor &A) override {
5448     // Byval is only replacable if it is readonly otherwise we would write into
5449     // the replaced value and not the copy that byval creates implicitly.
5450     Argument *Arg = getAssociatedArgument();
5451     if (Arg->hasByValAttr()) {
5452       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5453       //       there is no race by not copying a constant byval.
5454       bool IsKnown;
5455       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5456         return indicatePessimisticFixpoint();
5457     }
5458 
5459     auto Before = SimplifiedAssociatedValue;
5460 
5461     auto PredForCallSite = [&](AbstractCallSite ACS) {
5462       const IRPosition &ACSArgPos =
5463           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5464       // Check if a coresponding argument was found or if it is on not
5465       // associated (which can happen for callback calls).
5466       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5467         return false;
5468 
5469       // Simplify the argument operand explicitly and check if the result is
5470       // valid in the current scope. This avoids refering to simplified values
5471       // in other functions, e.g., we don't want to say a an argument in a
5472       // static function is actually an argument in a different function.
5473       bool UsedAssumedInformation = false;
5474       Optional<Constant *> SimpleArgOp =
5475           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5476       if (!SimpleArgOp.hasValue())
5477         return true;
5478       if (!SimpleArgOp.getValue())
5479         return false;
5480       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5481         return false;
5482       return unionAssumed(*SimpleArgOp);
5483     };
5484 
5485     // Generate a answer specific to a call site context.
5486     bool Success;
5487     bool UsedAssumedInformation = false;
5488     if (hasCallBaseContext() &&
5489         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5490       Success = PredForCallSite(
5491           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5492     else
5493       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5494                                        UsedAssumedInformation);
5495 
5496     if (!Success)
5497       if (!askSimplifiedValueForOtherAAs(A))
5498         return indicatePessimisticFixpoint();
5499 
5500     // If a candicate was found in this update, return CHANGED.
5501     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5502                                                : ChangeStatus ::CHANGED;
5503   }
5504 
5505   /// See AbstractAttribute::trackStatistics()
5506   void trackStatistics() const override {
5507     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5508   }
5509 };
5510 
5511 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5512   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5513       : AAValueSimplifyImpl(IRP, A) {}
5514 
5515   /// See AAValueSimplify::getAssumedSimplifiedValue()
5516   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5517     if (!isValidState())
5518       return nullptr;
5519     return SimplifiedAssociatedValue;
5520   }
5521 
5522   /// See AbstractAttribute::updateImpl(...).
5523   ChangeStatus updateImpl(Attributor &A) override {
5524     auto Before = SimplifiedAssociatedValue;
5525 
5526     auto PredForReturned = [&](Value &V) {
5527       return checkAndUpdate(A, *this,
5528                             IRPosition::value(V, getCallBaseContext()));
5529     };
5530 
5531     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5532       if (!askSimplifiedValueForOtherAAs(A))
5533         return indicatePessimisticFixpoint();
5534 
5535     // If a candicate was found in this update, return CHANGED.
5536     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5537                                                : ChangeStatus ::CHANGED;
5538   }
5539 
5540   ChangeStatus manifest(Attributor &A) override {
5541     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5542 
5543     if (auto *NewV = getReplacementValue(A)) {
5544       auto PredForReturned =
5545           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5546             for (ReturnInst *RI : RetInsts) {
5547               Value *ReturnedVal = RI->getReturnValue();
5548               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5549                 return true;
5550               assert(RI->getFunction() == getAnchorScope() &&
5551                      "ReturnInst in wrong function!");
5552               LLVM_DEBUG(dbgs()
5553                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5554                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5555               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5556                 Changed = ChangeStatus::CHANGED;
5557             }
5558             return true;
5559           };
5560       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5561     }
5562 
5563     return Changed | AAValueSimplify::manifest(A);
5564   }
5565 
5566   /// See AbstractAttribute::trackStatistics()
5567   void trackStatistics() const override {
5568     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5569   }
5570 };
5571 
5572 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5573   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5574       : AAValueSimplifyImpl(IRP, A) {}
5575 
5576   /// See AbstractAttribute::initialize(...).
5577   void initialize(Attributor &A) override {
5578     AAValueSimplifyImpl::initialize(A);
5579     Value &V = getAnchorValue();
5580 
5581     // TODO: add other stuffs
5582     if (isa<Constant>(V))
5583       indicatePessimisticFixpoint();
5584   }
5585 
5586   /// Check if \p Cmp is a comparison we can simplify.
5587   ///
5588   /// We handle multiple cases, one in which at least one operand is an
5589   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5590   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5591   /// will be updated.
5592   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5593     auto Union = [&](Value &V) {
5594       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5595           SimplifiedAssociatedValue, &V, V.getType());
5596       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5597     };
5598 
5599     Value *LHS = Cmp.getOperand(0);
5600     Value *RHS = Cmp.getOperand(1);
5601 
5602     // Simplify the operands first.
5603     bool UsedAssumedInformation = false;
5604     const auto &SimplifiedLHS =
5605         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5606                                *this, UsedAssumedInformation);
5607     if (!SimplifiedLHS.hasValue())
5608       return true;
5609     if (!SimplifiedLHS.getValue())
5610       return false;
5611     LHS = *SimplifiedLHS;
5612 
5613     const auto &SimplifiedRHS =
5614         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5615                                *this, UsedAssumedInformation);
5616     if (!SimplifiedRHS.hasValue())
5617       return true;
5618     if (!SimplifiedRHS.getValue())
5619       return false;
5620     RHS = *SimplifiedRHS;
5621 
5622     LLVMContext &Ctx = Cmp.getContext();
5623     // Handle the trivial case first in which we don't even need to think about
5624     // null or non-null.
5625     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5626       Constant *NewVal =
5627           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5628       if (!Union(*NewVal))
5629         return false;
5630       if (!UsedAssumedInformation)
5631         indicateOptimisticFixpoint();
5632       return true;
5633     }
5634 
5635     // From now on we only handle equalities (==, !=).
5636     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5637     if (!ICmp || !ICmp->isEquality())
5638       return false;
5639 
5640     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5641     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5642     if (!LHSIsNull && !RHSIsNull)
5643       return false;
5644 
5645     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5646     // non-nullptr operand and if we assume it's non-null we can conclude the
5647     // result of the comparison.
5648     assert((LHSIsNull || RHSIsNull) &&
5649            "Expected nullptr versus non-nullptr comparison at this point");
5650 
5651     // The index is the operand that we assume is not null.
5652     unsigned PtrIdx = LHSIsNull;
5653     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5654         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5655         DepClassTy::REQUIRED);
5656     if (!PtrNonNullAA.isAssumedNonNull())
5657       return false;
5658     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5659 
5660     // The new value depends on the predicate, true for != and false for ==.
5661     Constant *NewVal = ConstantInt::get(
5662         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5663     if (!Union(*NewVal))
5664       return false;
5665 
5666     if (!UsedAssumedInformation)
5667       indicateOptimisticFixpoint();
5668 
5669     return true;
5670   }
5671 
5672   bool updateWithLoad(Attributor &A, LoadInst &L) {
5673     auto Union = [&](Value &V) {
5674       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5675           SimplifiedAssociatedValue, &V, L.getType());
5676       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5677     };
5678     return handleLoad(A, *this, L, Union);
5679   }
5680 
5681   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5682   /// simplify any operand of the instruction \p I. Return true if successful,
5683   /// in that case SimplifiedAssociatedValue will be updated.
5684   bool handleGenericInst(Attributor &A, Instruction &I) {
5685     bool SomeSimplified = false;
5686     bool UsedAssumedInformation = false;
5687 
5688     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5689     int Idx = 0;
5690     for (Value *Op : I.operands()) {
5691       const auto &SimplifiedOp =
5692           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5693                                  *this, UsedAssumedInformation);
5694       // If we are not sure about any operand we are not sure about the entire
5695       // instruction, we'll wait.
5696       if (!SimplifiedOp.hasValue())
5697         return true;
5698 
5699       if (SimplifiedOp.getValue())
5700         NewOps[Idx] = SimplifiedOp.getValue();
5701       else
5702         NewOps[Idx] = Op;
5703 
5704       SomeSimplified |= (NewOps[Idx] != Op);
5705       ++Idx;
5706     }
5707 
5708     // We won't bother with the InstSimplify interface if we didn't simplify any
5709     // operand ourselves.
5710     if (!SomeSimplified)
5711       return false;
5712 
5713     InformationCache &InfoCache = A.getInfoCache();
5714     Function *F = I.getFunction();
5715     const auto *DT =
5716         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5717     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5718     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5719     OptimizationRemarkEmitter *ORE = nullptr;
5720 
5721     const DataLayout &DL = I.getModule()->getDataLayout();
5722     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5723     if (Value *SimplifiedI =
5724             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5725       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5726           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5727       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5728     }
5729     return false;
5730   }
5731 
5732   /// See AbstractAttribute::updateImpl(...).
5733   ChangeStatus updateImpl(Attributor &A) override {
5734     auto Before = SimplifiedAssociatedValue;
5735 
5736     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5737                             bool Stripped) -> bool {
5738       auto &AA = A.getAAFor<AAValueSimplify>(
5739           *this, IRPosition::value(V, getCallBaseContext()),
5740           DepClassTy::REQUIRED);
5741       if (!Stripped && this == &AA) {
5742 
5743         if (auto *I = dyn_cast<Instruction>(&V)) {
5744           if (auto *LI = dyn_cast<LoadInst>(&V))
5745             if (updateWithLoad(A, *LI))
5746               return true;
5747           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5748             if (handleCmp(A, *Cmp))
5749               return true;
5750           if (handleGenericInst(A, *I))
5751             return true;
5752         }
5753         // TODO: Look the instruction and check recursively.
5754 
5755         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5756                           << "\n");
5757         return false;
5758       }
5759       return checkAndUpdate(A, *this,
5760                             IRPosition::value(V, getCallBaseContext()));
5761     };
5762 
5763     bool Dummy = false;
5764     bool UsedAssumedInformation = false;
5765     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5766                                      VisitValueCB, getCtxI(),
5767                                      UsedAssumedInformation,
5768                                      /* UseValueSimplify */ false))
5769       if (!askSimplifiedValueForOtherAAs(A))
5770         return indicatePessimisticFixpoint();
5771 
5772     // If a candicate was found in this update, return CHANGED.
5773     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5774                                                : ChangeStatus ::CHANGED;
5775   }
5776 
5777   /// See AbstractAttribute::trackStatistics()
5778   void trackStatistics() const override {
5779     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5780   }
5781 };
5782 
5783 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5784   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5785       : AAValueSimplifyImpl(IRP, A) {}
5786 
5787   /// See AbstractAttribute::initialize(...).
5788   void initialize(Attributor &A) override {
5789     SimplifiedAssociatedValue = nullptr;
5790     indicateOptimisticFixpoint();
5791   }
5792   /// See AbstractAttribute::initialize(...).
5793   ChangeStatus updateImpl(Attributor &A) override {
5794     llvm_unreachable(
5795         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5796   }
5797   /// See AbstractAttribute::trackStatistics()
5798   void trackStatistics() const override {
5799     STATS_DECLTRACK_FN_ATTR(value_simplify)
5800   }
5801 };
5802 
5803 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5804   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5805       : AAValueSimplifyFunction(IRP, A) {}
5806   /// See AbstractAttribute::trackStatistics()
5807   void trackStatistics() const override {
5808     STATS_DECLTRACK_CS_ATTR(value_simplify)
5809   }
5810 };
5811 
5812 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5813   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5814       : AAValueSimplifyImpl(IRP, A) {}
5815 
5816   void initialize(Attributor &A) override {
5817     AAValueSimplifyImpl::initialize(A);
5818     if (!getAssociatedFunction())
5819       indicatePessimisticFixpoint();
5820   }
5821 
5822   /// See AbstractAttribute::updateImpl(...).
5823   ChangeStatus updateImpl(Attributor &A) override {
5824     auto Before = SimplifiedAssociatedValue;
5825     auto &RetAA = A.getAAFor<AAReturnedValues>(
5826         *this, IRPosition::function(*getAssociatedFunction()),
5827         DepClassTy::REQUIRED);
5828     auto PredForReturned =
5829         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5830           bool UsedAssumedInformation = false;
5831           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5832               &RetVal, *cast<CallBase>(getCtxI()), *this,
5833               UsedAssumedInformation);
5834           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5835               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5836           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5837         };
5838     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5839       if (!askSimplifiedValueForOtherAAs(A))
5840         return indicatePessimisticFixpoint();
5841     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5842                                                : ChangeStatus ::CHANGED;
5843   }
5844 
5845   void trackStatistics() const override {
5846     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5847   }
5848 };
5849 
5850 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5851   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5852       : AAValueSimplifyFloating(IRP, A) {}
5853 
5854   /// See AbstractAttribute::manifest(...).
5855   ChangeStatus manifest(Attributor &A) override {
5856     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5857 
5858     if (auto *NewV = getReplacementValue(A)) {
5859       Use &U = cast<CallBase>(&getAnchorValue())
5860                    ->getArgOperandUse(getCallSiteArgNo());
5861       if (A.changeUseAfterManifest(U, *NewV))
5862         Changed = ChangeStatus::CHANGED;
5863     }
5864 
5865     return Changed | AAValueSimplify::manifest(A);
5866   }
5867 
5868   void trackStatistics() const override {
5869     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5870   }
5871 };
5872 
5873 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5874 struct AAHeapToStackFunction final : public AAHeapToStack {
5875 
5876   struct AllocationInfo {
5877     /// The call that allocates the memory.
5878     CallBase *const CB;
5879 
5880     /// The library function id for the allocation.
5881     LibFunc LibraryFunctionId = NotLibFunc;
5882 
5883     /// The status wrt. a rewrite.
5884     enum {
5885       STACK_DUE_TO_USE,
5886       STACK_DUE_TO_FREE,
5887       INVALID,
5888     } Status = STACK_DUE_TO_USE;
5889 
5890     /// Flag to indicate if we encountered a use that might free this allocation
5891     /// but which is not in the deallocation infos.
5892     bool HasPotentiallyFreeingUnknownUses = false;
5893 
5894     /// The set of free calls that use this allocation.
5895     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5896   };
5897 
5898   struct DeallocationInfo {
5899     /// The call that deallocates the memory.
5900     CallBase *const CB;
5901 
5902     /// Flag to indicate if we don't know all objects this deallocation might
5903     /// free.
5904     bool MightFreeUnknownObjects = false;
5905 
5906     /// The set of allocation calls that are potentially freed.
5907     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5908   };
5909 
5910   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5911       : AAHeapToStack(IRP, A) {}
5912 
5913   ~AAHeapToStackFunction() {
5914     // Ensure we call the destructor so we release any memory allocated in the
5915     // sets.
5916     for (auto &It : AllocationInfos)
5917       It.getSecond()->~AllocationInfo();
5918     for (auto &It : DeallocationInfos)
5919       It.getSecond()->~DeallocationInfo();
5920   }
5921 
5922   void initialize(Attributor &A) override {
5923     AAHeapToStack::initialize(A);
5924 
5925     const Function *F = getAnchorScope();
5926     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5927 
5928     auto AllocationIdentifierCB = [&](Instruction &I) {
5929       CallBase *CB = dyn_cast<CallBase>(&I);
5930       if (!CB)
5931         return true;
5932       if (isFreeCall(CB, TLI)) {
5933         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5934         return true;
5935       }
5936       // To do heap to stack, we need to know that the allocation itself is
5937       // removable once uses are rewritten, and that we can initialize the
5938       // alloca to the same pattern as the original allocation result.
5939       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5940         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5941         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5942           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5943           AllocationInfos[CB] = AI;
5944           TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5945         }
5946       }
5947       return true;
5948     };
5949 
5950     bool UsedAssumedInformation = false;
5951     bool Success = A.checkForAllCallLikeInstructions(
5952         AllocationIdentifierCB, *this, UsedAssumedInformation,
5953         /* CheckBBLivenessOnly */ false,
5954         /* CheckPotentiallyDead */ true);
5955     (void)Success;
5956     assert(Success && "Did not expect the call base visit callback to fail!");
5957   }
5958 
5959   const std::string getAsStr() const override {
5960     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5961     for (const auto &It : AllocationInfos) {
5962       if (It.second->Status == AllocationInfo::INVALID)
5963         ++NumInvalidMallocs;
5964       else
5965         ++NumH2SMallocs;
5966     }
5967     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5968            std::to_string(NumInvalidMallocs);
5969   }
5970 
5971   /// See AbstractAttribute::trackStatistics().
5972   void trackStatistics() const override {
5973     STATS_DECL(
5974         MallocCalls, Function,
5975         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5976     for (auto &It : AllocationInfos)
5977       if (It.second->Status != AllocationInfo::INVALID)
5978         ++BUILD_STAT_NAME(MallocCalls, Function);
5979   }
5980 
5981   bool isAssumedHeapToStack(const CallBase &CB) const override {
5982     if (isValidState())
5983       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5984         return AI->Status != AllocationInfo::INVALID;
5985     return false;
5986   }
5987 
5988   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5989     if (!isValidState())
5990       return false;
5991 
5992     for (auto &It : AllocationInfos) {
5993       AllocationInfo &AI = *It.second;
5994       if (AI.Status == AllocationInfo::INVALID)
5995         continue;
5996 
5997       if (AI.PotentialFreeCalls.count(&CB))
5998         return true;
5999     }
6000 
6001     return false;
6002   }
6003 
6004   ChangeStatus manifest(Attributor &A) override {
6005     assert(getState().isValidState() &&
6006            "Attempted to manifest an invalid state!");
6007 
6008     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
6009     Function *F = getAnchorScope();
6010     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6011 
6012     for (auto &It : AllocationInfos) {
6013       AllocationInfo &AI = *It.second;
6014       if (AI.Status == AllocationInfo::INVALID)
6015         continue;
6016 
6017       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
6018         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
6019         A.deleteAfterManifest(*FreeCall);
6020         HasChanged = ChangeStatus::CHANGED;
6021       }
6022 
6023       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
6024                         << "\n");
6025 
6026       auto Remark = [&](OptimizationRemark OR) {
6027         LibFunc IsAllocShared;
6028         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6029           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6030             return OR << "Moving globalized variable to the stack.";
6031         return OR << "Moving memory allocation from the heap to the stack.";
6032       };
6033       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6034         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6035       else
6036         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6037 
6038       const DataLayout &DL = A.getInfoCache().getDL();
6039       Value *Size;
6040       Optional<APInt> SizeAPI = getSize(A, *this, AI);
6041       if (SizeAPI.hasValue()) {
6042         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6043       } else {
6044         LLVMContext &Ctx = AI.CB->getContext();
6045         ObjectSizeOpts Opts;
6046         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6047         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6048         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6049                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6050         Size = SizeOffsetPair.first;
6051       }
6052 
6053       Align Alignment(1);
6054       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6055         Alignment = max(Alignment, RetAlign);
6056       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6057         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6058         assert(AlignmentAPI.hasValue() &&
6059                "Expected an alignment during manifest!");
6060         Alignment =
6061             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
6062       }
6063 
6064       // TODO: Hoist the alloca towards the function entry.
6065       unsigned AS = DL.getAllocaAddrSpace();
6066       Instruction *Alloca = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
6067                                            Size, Alignment, "", AI.CB);
6068 
6069       if (Alloca->getType() != AI.CB->getType())
6070         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6071             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6072 
6073       auto *I8Ty = Type::getInt8Ty(F->getContext());
6074       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6075       assert(InitVal &&
6076              "Must be able to materialize initial memory state of allocation");
6077 
6078       A.changeValueAfterManifest(*AI.CB, *Alloca);
6079 
6080       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6081         auto *NBB = II->getNormalDest();
6082         BranchInst::Create(NBB, AI.CB->getParent());
6083         A.deleteAfterManifest(*AI.CB);
6084       } else {
6085         A.deleteAfterManifest(*AI.CB);
6086       }
6087 
6088       // Initialize the alloca with the same value as used by the allocation
6089       // function.  We can skip undef as the initial value of an alloc is
6090       // undef, and the memset would simply end up being DSEd.
6091       if (!isa<UndefValue>(InitVal)) {
6092         IRBuilder<> Builder(Alloca->getNextNode());
6093         // TODO: Use alignment above if align!=1
6094         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6095       }
6096       HasChanged = ChangeStatus::CHANGED;
6097     }
6098 
6099     return HasChanged;
6100   }
6101 
6102   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6103                            Value &V) {
6104     bool UsedAssumedInformation = false;
6105     Optional<Constant *> SimpleV =
6106         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6107     if (!SimpleV.hasValue())
6108       return APInt(64, 0);
6109     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6110       return CI->getValue();
6111     return llvm::None;
6112   }
6113 
6114   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6115                           AllocationInfo &AI) {
6116     auto Mapper = [&](const Value *V) -> const Value * {
6117       bool UsedAssumedInformation = false;
6118       if (Optional<Constant *> SimpleV =
6119               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6120         if (*SimpleV)
6121           return *SimpleV;
6122       return V;
6123     };
6124 
6125     const Function *F = getAnchorScope();
6126     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6127     return getAllocSize(AI.CB, TLI, Mapper);
6128   }
6129 
6130   /// Collection of all malloc-like calls in a function with associated
6131   /// information.
6132   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6133 
6134   /// Collection of all free-like calls in a function with associated
6135   /// information.
6136   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6137 
6138   ChangeStatus updateImpl(Attributor &A) override;
6139 };
6140 
6141 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6142   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6143   const Function *F = getAnchorScope();
6144   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6145 
6146   const auto &LivenessAA =
6147       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6148 
6149   MustBeExecutedContextExplorer &Explorer =
6150       A.getInfoCache().getMustBeExecutedContextExplorer();
6151 
6152   bool StackIsAccessibleByOtherThreads =
6153       A.getInfoCache().stackIsAccessibleByOtherThreads();
6154 
6155   // Flag to ensure we update our deallocation information at most once per
6156   // updateImpl call and only if we use the free check reasoning.
6157   bool HasUpdatedFrees = false;
6158 
6159   auto UpdateFrees = [&]() {
6160     HasUpdatedFrees = true;
6161 
6162     for (auto &It : DeallocationInfos) {
6163       DeallocationInfo &DI = *It.second;
6164       // For now we cannot use deallocations that have unknown inputs, skip
6165       // them.
6166       if (DI.MightFreeUnknownObjects)
6167         continue;
6168 
6169       // No need to analyze dead calls, ignore them instead.
6170       bool UsedAssumedInformation = false;
6171       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6172                           /* CheckBBLivenessOnly */ true))
6173         continue;
6174 
6175       // Use the optimistic version to get the freed objects, ignoring dead
6176       // branches etc.
6177       SmallVector<Value *, 8> Objects;
6178       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6179                                            *this, DI.CB,
6180                                            UsedAssumedInformation)) {
6181         LLVM_DEBUG(
6182             dbgs()
6183             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6184         DI.MightFreeUnknownObjects = true;
6185         continue;
6186       }
6187 
6188       // Check each object explicitly.
6189       for (auto *Obj : Objects) {
6190         // Free of null and undef can be ignored as no-ops (or UB in the latter
6191         // case).
6192         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6193           continue;
6194 
6195         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6196         if (!ObjCB) {
6197           LLVM_DEBUG(dbgs()
6198                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6199           DI.MightFreeUnknownObjects = true;
6200           continue;
6201         }
6202 
6203         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6204         if (!AI) {
6205           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6206                             << "\n");
6207           DI.MightFreeUnknownObjects = true;
6208           continue;
6209         }
6210 
6211         DI.PotentialAllocationCalls.insert(ObjCB);
6212       }
6213     }
6214   };
6215 
6216   auto FreeCheck = [&](AllocationInfo &AI) {
6217     // If the stack is not accessible by other threads, the "must-free" logic
6218     // doesn't apply as the pointer could be shared and needs to be places in
6219     // "shareable" memory.
6220     if (!StackIsAccessibleByOtherThreads) {
6221       auto &NoSyncAA =
6222           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6223       if (!NoSyncAA.isAssumedNoSync()) {
6224         LLVM_DEBUG(
6225             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6226                       "other threads and function is not nosync:\n");
6227         return false;
6228       }
6229     }
6230     if (!HasUpdatedFrees)
6231       UpdateFrees();
6232 
6233     // TODO: Allow multi exit functions that have different free calls.
6234     if (AI.PotentialFreeCalls.size() != 1) {
6235       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6236                         << AI.PotentialFreeCalls.size() << "\n");
6237       return false;
6238     }
6239     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6240     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6241     if (!DI) {
6242       LLVM_DEBUG(
6243           dbgs() << "[H2S] unique free call was not known as deallocation call "
6244                  << *UniqueFree << "\n");
6245       return false;
6246     }
6247     if (DI->MightFreeUnknownObjects) {
6248       LLVM_DEBUG(
6249           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6250       return false;
6251     }
6252     if (DI->PotentialAllocationCalls.size() > 1) {
6253       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6254                         << DI->PotentialAllocationCalls.size()
6255                         << " different allocations\n");
6256       return false;
6257     }
6258     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6259       LLVM_DEBUG(
6260           dbgs()
6261           << "[H2S] unique free call not known to free this allocation but "
6262           << **DI->PotentialAllocationCalls.begin() << "\n");
6263       return false;
6264     }
6265     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6266     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6267       LLVM_DEBUG(
6268           dbgs()
6269           << "[H2S] unique free call might not be executed with the allocation "
6270           << *UniqueFree << "\n");
6271       return false;
6272     }
6273     return true;
6274   };
6275 
6276   auto UsesCheck = [&](AllocationInfo &AI) {
6277     bool ValidUsesOnly = true;
6278 
6279     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6280       Instruction *UserI = cast<Instruction>(U.getUser());
6281       if (isa<LoadInst>(UserI))
6282         return true;
6283       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6284         if (SI->getValueOperand() == U.get()) {
6285           LLVM_DEBUG(dbgs()
6286                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6287           ValidUsesOnly = false;
6288         } else {
6289           // A store into the malloc'ed memory is fine.
6290         }
6291         return true;
6292       }
6293       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6294         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6295           return true;
6296         if (DeallocationInfos.count(CB)) {
6297           AI.PotentialFreeCalls.insert(CB);
6298           return true;
6299         }
6300 
6301         unsigned ArgNo = CB->getArgOperandNo(&U);
6302 
6303         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6304             *this, IRPosition::callsite_argument(*CB, ArgNo),
6305             DepClassTy::OPTIONAL);
6306 
6307         // If a call site argument use is nofree, we are fine.
6308         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6309             *this, IRPosition::callsite_argument(*CB, ArgNo),
6310             DepClassTy::OPTIONAL);
6311 
6312         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6313         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6314         if (MaybeCaptured ||
6315             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6316              MaybeFreed)) {
6317           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6318 
6319           // Emit a missed remark if this is missed OpenMP globalization.
6320           auto Remark = [&](OptimizationRemarkMissed ORM) {
6321             return ORM
6322                    << "Could not move globalized variable to the stack. "
6323                       "Variable is potentially captured in call. Mark "
6324                       "parameter as `__attribute__((noescape))` to override.";
6325           };
6326 
6327           if (ValidUsesOnly &&
6328               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6329             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6330 
6331           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6332           ValidUsesOnly = false;
6333         }
6334         return true;
6335       }
6336 
6337       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6338           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6339         Follow = true;
6340         return true;
6341       }
6342       // Unknown user for which we can not track uses further (in a way that
6343       // makes sense).
6344       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6345       ValidUsesOnly = false;
6346       return true;
6347     };
6348     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6349       return false;
6350     return ValidUsesOnly;
6351   };
6352 
6353   // The actual update starts here. We look at all allocations and depending on
6354   // their status perform the appropriate check(s).
6355   for (auto &It : AllocationInfos) {
6356     AllocationInfo &AI = *It.second;
6357     if (AI.Status == AllocationInfo::INVALID)
6358       continue;
6359 
6360     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6361       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6362       if (!APAlign) {
6363         // Can't generate an alloca which respects the required alignment
6364         // on the allocation.
6365         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6366                           << "\n");
6367         AI.Status = AllocationInfo::INVALID;
6368         Changed = ChangeStatus::CHANGED;
6369         continue;
6370       } else {
6371         if (APAlign->ugt(llvm::Value::MaximumAlignment) || !APAlign->isPowerOf2()) {
6372           LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign << "\n");
6373           AI.Status = AllocationInfo::INVALID;
6374           Changed = ChangeStatus::CHANGED;
6375           continue;
6376         }
6377       }
6378     }
6379 
6380     if (MaxHeapToStackSize != -1) {
6381       Optional<APInt> Size = getSize(A, *this, AI);
6382       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6383         LLVM_DEBUG({
6384           if (!Size.hasValue())
6385             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6386           else
6387             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6388                    << MaxHeapToStackSize << "\n";
6389         });
6390 
6391         AI.Status = AllocationInfo::INVALID;
6392         Changed = ChangeStatus::CHANGED;
6393         continue;
6394       }
6395     }
6396 
6397     switch (AI.Status) {
6398     case AllocationInfo::STACK_DUE_TO_USE:
6399       if (UsesCheck(AI))
6400         continue;
6401       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6402       LLVM_FALLTHROUGH;
6403     case AllocationInfo::STACK_DUE_TO_FREE:
6404       if (FreeCheck(AI))
6405         continue;
6406       AI.Status = AllocationInfo::INVALID;
6407       Changed = ChangeStatus::CHANGED;
6408       continue;
6409     case AllocationInfo::INVALID:
6410       llvm_unreachable("Invalid allocations should never reach this point!");
6411     };
6412   }
6413 
6414   return Changed;
6415 }
6416 
6417 /// ----------------------- Privatizable Pointers ------------------------------
6418 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6419   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6420       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6421 
6422   ChangeStatus indicatePessimisticFixpoint() override {
6423     AAPrivatizablePtr::indicatePessimisticFixpoint();
6424     PrivatizableType = nullptr;
6425     return ChangeStatus::CHANGED;
6426   }
6427 
6428   /// Identify the type we can chose for a private copy of the underlying
6429   /// argument. None means it is not clear yet, nullptr means there is none.
6430   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6431 
6432   /// Return a privatizable type that encloses both T0 and T1.
6433   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6434   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6435     if (!T0.hasValue())
6436       return T1;
6437     if (!T1.hasValue())
6438       return T0;
6439     if (T0 == T1)
6440       return T0;
6441     return nullptr;
6442   }
6443 
6444   Optional<Type *> getPrivatizableType() const override {
6445     return PrivatizableType;
6446   }
6447 
6448   const std::string getAsStr() const override {
6449     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6450   }
6451 
6452 protected:
6453   Optional<Type *> PrivatizableType;
6454 };
6455 
6456 // TODO: Do this for call site arguments (probably also other values) as well.
6457 
6458 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6459   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6460       : AAPrivatizablePtrImpl(IRP, A) {}
6461 
6462   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6463   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6464     // If this is a byval argument and we know all the call sites (so we can
6465     // rewrite them), there is no need to check them explicitly.
6466     bool UsedAssumedInformation = false;
6467     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6468         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6469                                true, UsedAssumedInformation))
6470       return getAssociatedValue().getType()->getPointerElementType();
6471 
6472     Optional<Type *> Ty;
6473     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6474 
6475     // Make sure the associated call site argument has the same type at all call
6476     // sites and it is an allocation we know is safe to privatize, for now that
6477     // means we only allow alloca instructions.
6478     // TODO: We can additionally analyze the accesses in the callee to  create
6479     //       the type from that information instead. That is a little more
6480     //       involved and will be done in a follow up patch.
6481     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6482       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6483       // Check if a coresponding argument was found or if it is one not
6484       // associated (which can happen for callback calls).
6485       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6486         return false;
6487 
6488       // Check that all call sites agree on a type.
6489       auto &PrivCSArgAA =
6490           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6491       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6492 
6493       LLVM_DEBUG({
6494         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6495         if (CSTy.hasValue() && CSTy.getValue())
6496           CSTy.getValue()->print(dbgs());
6497         else if (CSTy.hasValue())
6498           dbgs() << "<nullptr>";
6499         else
6500           dbgs() << "<none>";
6501       });
6502 
6503       Ty = combineTypes(Ty, CSTy);
6504 
6505       LLVM_DEBUG({
6506         dbgs() << " : New Type: ";
6507         if (Ty.hasValue() && Ty.getValue())
6508           Ty.getValue()->print(dbgs());
6509         else if (Ty.hasValue())
6510           dbgs() << "<nullptr>";
6511         else
6512           dbgs() << "<none>";
6513         dbgs() << "\n";
6514       });
6515 
6516       return !Ty.hasValue() || Ty.getValue();
6517     };
6518 
6519     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6520                                 UsedAssumedInformation))
6521       return nullptr;
6522     return Ty;
6523   }
6524 
6525   /// See AbstractAttribute::updateImpl(...).
6526   ChangeStatus updateImpl(Attributor &A) override {
6527     PrivatizableType = identifyPrivatizableType(A);
6528     if (!PrivatizableType.hasValue())
6529       return ChangeStatus::UNCHANGED;
6530     if (!PrivatizableType.getValue())
6531       return indicatePessimisticFixpoint();
6532 
6533     // The dependence is optional so we don't give up once we give up on the
6534     // alignment.
6535     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6536                         DepClassTy::OPTIONAL);
6537 
6538     // Avoid arguments with padding for now.
6539     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6540         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6541                                                 A.getInfoCache().getDL())) {
6542       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6543       return indicatePessimisticFixpoint();
6544     }
6545 
6546     // Collect the types that will replace the privatizable type in the function
6547     // signature.
6548     SmallVector<Type *, 16> ReplacementTypes;
6549     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6550 
6551     // Verify callee and caller agree on how the promoted argument would be
6552     // passed.
6553     Function &Fn = *getIRPosition().getAnchorScope();
6554     const auto *TTI =
6555         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6556     if (!TTI) {
6557       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6558                         << Fn.getName() << "\n");
6559       return indicatePessimisticFixpoint();
6560     }
6561 
6562     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6563       CallBase *CB = ACS.getInstruction();
6564       return TTI->areTypesABICompatible(
6565           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6566     };
6567     bool UsedAssumedInformation = false;
6568     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6569                                 UsedAssumedInformation)) {
6570       LLVM_DEBUG(
6571           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6572                  << Fn.getName() << "\n");
6573       return indicatePessimisticFixpoint();
6574     }
6575 
6576     // Register a rewrite of the argument.
6577     Argument *Arg = getAssociatedArgument();
6578     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6579       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6580       return indicatePessimisticFixpoint();
6581     }
6582 
6583     unsigned ArgNo = Arg->getArgNo();
6584 
6585     // Helper to check if for the given call site the associated argument is
6586     // passed to a callback where the privatization would be different.
6587     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6588       SmallVector<const Use *, 4> CallbackUses;
6589       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6590       for (const Use *U : CallbackUses) {
6591         AbstractCallSite CBACS(U);
6592         assert(CBACS && CBACS.isCallbackCall());
6593         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6594           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6595 
6596           LLVM_DEBUG({
6597             dbgs()
6598                 << "[AAPrivatizablePtr] Argument " << *Arg
6599                 << "check if can be privatized in the context of its parent ("
6600                 << Arg->getParent()->getName()
6601                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6602                    "callback ("
6603                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6604                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6605                 << CBACS.getCallArgOperand(CBArg) << " vs "
6606                 << CB.getArgOperand(ArgNo) << "\n"
6607                 << "[AAPrivatizablePtr] " << CBArg << " : "
6608                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6609           });
6610 
6611           if (CBArgNo != int(ArgNo))
6612             continue;
6613           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6614               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6615           if (CBArgPrivAA.isValidState()) {
6616             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6617             if (!CBArgPrivTy.hasValue())
6618               continue;
6619             if (CBArgPrivTy.getValue() == PrivatizableType)
6620               continue;
6621           }
6622 
6623           LLVM_DEBUG({
6624             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6625                    << " cannot be privatized in the context of its parent ("
6626                    << Arg->getParent()->getName()
6627                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6628                       "callback ("
6629                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6630                    << ").\n[AAPrivatizablePtr] for which the argument "
6631                       "privatization is not compatible.\n";
6632           });
6633           return false;
6634         }
6635       }
6636       return true;
6637     };
6638 
6639     // Helper to check if for the given call site the associated argument is
6640     // passed to a direct call where the privatization would be different.
6641     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6642       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6643       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6644       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6645              "Expected a direct call operand for callback call operand");
6646 
6647       LLVM_DEBUG({
6648         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6649                << " check if be privatized in the context of its parent ("
6650                << Arg->getParent()->getName()
6651                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6652                   "direct call of ("
6653                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6654                << ").\n";
6655       });
6656 
6657       Function *DCCallee = DC->getCalledFunction();
6658       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6659         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6660             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6661             DepClassTy::REQUIRED);
6662         if (DCArgPrivAA.isValidState()) {
6663           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6664           if (!DCArgPrivTy.hasValue())
6665             return true;
6666           if (DCArgPrivTy.getValue() == PrivatizableType)
6667             return true;
6668         }
6669       }
6670 
6671       LLVM_DEBUG({
6672         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6673                << " cannot be privatized in the context of its parent ("
6674                << Arg->getParent()->getName()
6675                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6676                   "direct call of ("
6677                << ACS.getInstruction()->getCalledFunction()->getName()
6678                << ").\n[AAPrivatizablePtr] for which the argument "
6679                   "privatization is not compatible.\n";
6680       });
6681       return false;
6682     };
6683 
6684     // Helper to check if the associated argument is used at the given abstract
6685     // call site in a way that is incompatible with the privatization assumed
6686     // here.
6687     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6688       if (ACS.isDirectCall())
6689         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6690       if (ACS.isCallbackCall())
6691         return IsCompatiblePrivArgOfDirectCS(ACS);
6692       return false;
6693     };
6694 
6695     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6696                                 UsedAssumedInformation))
6697       return indicatePessimisticFixpoint();
6698 
6699     return ChangeStatus::UNCHANGED;
6700   }
6701 
6702   /// Given a type to private \p PrivType, collect the constituates (which are
6703   /// used) in \p ReplacementTypes.
6704   static void
6705   identifyReplacementTypes(Type *PrivType,
6706                            SmallVectorImpl<Type *> &ReplacementTypes) {
6707     // TODO: For now we expand the privatization type to the fullest which can
6708     //       lead to dead arguments that need to be removed later.
6709     assert(PrivType && "Expected privatizable type!");
6710 
6711     // Traverse the type, extract constituate types on the outermost level.
6712     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6713       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6714         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6715     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6716       ReplacementTypes.append(PrivArrayType->getNumElements(),
6717                               PrivArrayType->getElementType());
6718     } else {
6719       ReplacementTypes.push_back(PrivType);
6720     }
6721   }
6722 
6723   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6724   /// The values needed are taken from the arguments of \p F starting at
6725   /// position \p ArgNo.
6726   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6727                                    unsigned ArgNo, Instruction &IP) {
6728     assert(PrivType && "Expected privatizable type!");
6729 
6730     IRBuilder<NoFolder> IRB(&IP);
6731     const DataLayout &DL = F.getParent()->getDataLayout();
6732 
6733     // Traverse the type, build GEPs and stores.
6734     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6735       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6736       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6737         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6738         Value *Ptr =
6739             constructPointer(PointeeTy, PrivType, &Base,
6740                              PrivStructLayout->getElementOffset(u), IRB, DL);
6741         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6742       }
6743     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6744       Type *PointeeTy = PrivArrayType->getElementType();
6745       Type *PointeePtrTy = PointeeTy->getPointerTo();
6746       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6747       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6748         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6749                                       u * PointeeTySize, IRB, DL);
6750         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6751       }
6752     } else {
6753       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6754     }
6755   }
6756 
6757   /// Extract values from \p Base according to the type \p PrivType at the
6758   /// call position \p ACS. The values are appended to \p ReplacementValues.
6759   void createReplacementValues(Align Alignment, Type *PrivType,
6760                                AbstractCallSite ACS, Value *Base,
6761                                SmallVectorImpl<Value *> &ReplacementValues) {
6762     assert(Base && "Expected base value!");
6763     assert(PrivType && "Expected privatizable type!");
6764     Instruction *IP = ACS.getInstruction();
6765 
6766     IRBuilder<NoFolder> IRB(IP);
6767     const DataLayout &DL = IP->getModule()->getDataLayout();
6768 
6769     Type *PrivPtrType = PrivType->getPointerTo();
6770     if (Base->getType() != PrivPtrType)
6771       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6772           Base, PrivPtrType, "", ACS.getInstruction());
6773 
6774     // Traverse the type, build GEPs and loads.
6775     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6776       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6777       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6778         Type *PointeeTy = PrivStructType->getElementType(u);
6779         Value *Ptr =
6780             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6781                              PrivStructLayout->getElementOffset(u), IRB, DL);
6782         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6783         L->setAlignment(Alignment);
6784         ReplacementValues.push_back(L);
6785       }
6786     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6787       Type *PointeeTy = PrivArrayType->getElementType();
6788       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6789       Type *PointeePtrTy = PointeeTy->getPointerTo();
6790       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6791         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6792                                       u * PointeeTySize, IRB, DL);
6793         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6794         L->setAlignment(Alignment);
6795         ReplacementValues.push_back(L);
6796       }
6797     } else {
6798       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6799       L->setAlignment(Alignment);
6800       ReplacementValues.push_back(L);
6801     }
6802   }
6803 
6804   /// See AbstractAttribute::manifest(...)
6805   ChangeStatus manifest(Attributor &A) override {
6806     if (!PrivatizableType.hasValue())
6807       return ChangeStatus::UNCHANGED;
6808     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6809 
6810     // Collect all tail calls in the function as we cannot allow new allocas to
6811     // escape into tail recursion.
6812     // TODO: Be smarter about new allocas escaping into tail calls.
6813     SmallVector<CallInst *, 16> TailCalls;
6814     bool UsedAssumedInformation = false;
6815     if (!A.checkForAllInstructions(
6816             [&](Instruction &I) {
6817               CallInst &CI = cast<CallInst>(I);
6818               if (CI.isTailCall())
6819                 TailCalls.push_back(&CI);
6820               return true;
6821             },
6822             *this, {Instruction::Call}, UsedAssumedInformation))
6823       return ChangeStatus::UNCHANGED;
6824 
6825     Argument *Arg = getAssociatedArgument();
6826     // Query AAAlign attribute for alignment of associated argument to
6827     // determine the best alignment of loads.
6828     const auto &AlignAA =
6829         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6830 
6831     // Callback to repair the associated function. A new alloca is placed at the
6832     // beginning and initialized with the values passed through arguments. The
6833     // new alloca replaces the use of the old pointer argument.
6834     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6835         [=](const Attributor::ArgumentReplacementInfo &ARI,
6836             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6837           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6838           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6839           const DataLayout &DL = IP->getModule()->getDataLayout();
6840           unsigned AS = DL.getAllocaAddrSpace();
6841           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), AS,
6842                                            Arg->getName() + ".priv", IP);
6843           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6844                                ArgIt->getArgNo(), *IP);
6845 
6846           if (AI->getType() != Arg->getType())
6847             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6848                 AI, Arg->getType(), "", IP);
6849           Arg->replaceAllUsesWith(AI);
6850 
6851           for (CallInst *CI : TailCalls)
6852             CI->setTailCall(false);
6853         };
6854 
6855     // Callback to repair a call site of the associated function. The elements
6856     // of the privatizable type are loaded prior to the call and passed to the
6857     // new function version.
6858     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6859         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6860                       AbstractCallSite ACS,
6861                       SmallVectorImpl<Value *> &NewArgOperands) {
6862           // When no alignment is specified for the load instruction,
6863           // natural alignment is assumed.
6864           createReplacementValues(
6865               assumeAligned(AlignAA.getAssumedAlign()),
6866               PrivatizableType.getValue(), ACS,
6867               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6868               NewArgOperands);
6869         };
6870 
6871     // Collect the types that will replace the privatizable type in the function
6872     // signature.
6873     SmallVector<Type *, 16> ReplacementTypes;
6874     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6875 
6876     // Register a rewrite of the argument.
6877     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6878                                            std::move(FnRepairCB),
6879                                            std::move(ACSRepairCB)))
6880       return ChangeStatus::CHANGED;
6881     return ChangeStatus::UNCHANGED;
6882   }
6883 
6884   /// See AbstractAttribute::trackStatistics()
6885   void trackStatistics() const override {
6886     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6887   }
6888 };
6889 
6890 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6891   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6892       : AAPrivatizablePtrImpl(IRP, A) {}
6893 
6894   /// See AbstractAttribute::initialize(...).
6895   virtual void initialize(Attributor &A) override {
6896     // TODO: We can privatize more than arguments.
6897     indicatePessimisticFixpoint();
6898   }
6899 
6900   ChangeStatus updateImpl(Attributor &A) override {
6901     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6902                      "updateImpl will not be called");
6903   }
6904 
6905   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6906   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6907     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6908     if (!Obj) {
6909       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6910       return nullptr;
6911     }
6912 
6913     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6914       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6915         if (CI->isOne())
6916           return AI->getAllocatedType();
6917     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6918       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6919           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6920       if (PrivArgAA.isAssumedPrivatizablePtr())
6921         return Obj->getType()->getPointerElementType();
6922     }
6923 
6924     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6925                          "alloca nor privatizable argument: "
6926                       << *Obj << "!\n");
6927     return nullptr;
6928   }
6929 
6930   /// See AbstractAttribute::trackStatistics()
6931   void trackStatistics() const override {
6932     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6933   }
6934 };
6935 
6936 struct AAPrivatizablePtrCallSiteArgument final
6937     : public AAPrivatizablePtrFloating {
6938   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6939       : AAPrivatizablePtrFloating(IRP, A) {}
6940 
6941   /// See AbstractAttribute::initialize(...).
6942   void initialize(Attributor &A) override {
6943     if (getIRPosition().hasAttr(Attribute::ByVal))
6944       indicateOptimisticFixpoint();
6945   }
6946 
6947   /// See AbstractAttribute::updateImpl(...).
6948   ChangeStatus updateImpl(Attributor &A) override {
6949     PrivatizableType = identifyPrivatizableType(A);
6950     if (!PrivatizableType.hasValue())
6951       return ChangeStatus::UNCHANGED;
6952     if (!PrivatizableType.getValue())
6953       return indicatePessimisticFixpoint();
6954 
6955     const IRPosition &IRP = getIRPosition();
6956     auto &NoCaptureAA =
6957         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6958     if (!NoCaptureAA.isAssumedNoCapture()) {
6959       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6960       return indicatePessimisticFixpoint();
6961     }
6962 
6963     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6964     if (!NoAliasAA.isAssumedNoAlias()) {
6965       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6966       return indicatePessimisticFixpoint();
6967     }
6968 
6969     bool IsKnown;
6970     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
6971       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6972       return indicatePessimisticFixpoint();
6973     }
6974 
6975     return ChangeStatus::UNCHANGED;
6976   }
6977 
6978   /// See AbstractAttribute::trackStatistics()
6979   void trackStatistics() const override {
6980     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6981   }
6982 };
6983 
6984 struct AAPrivatizablePtrCallSiteReturned final
6985     : public AAPrivatizablePtrFloating {
6986   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6987       : AAPrivatizablePtrFloating(IRP, A) {}
6988 
6989   /// See AbstractAttribute::initialize(...).
6990   void initialize(Attributor &A) override {
6991     // TODO: We can privatize more than arguments.
6992     indicatePessimisticFixpoint();
6993   }
6994 
6995   /// See AbstractAttribute::trackStatistics()
6996   void trackStatistics() const override {
6997     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6998   }
6999 };
7000 
7001 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
7002   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
7003       : AAPrivatizablePtrFloating(IRP, A) {}
7004 
7005   /// See AbstractAttribute::initialize(...).
7006   void initialize(Attributor &A) override {
7007     // TODO: We can privatize more than arguments.
7008     indicatePessimisticFixpoint();
7009   }
7010 
7011   /// See AbstractAttribute::trackStatistics()
7012   void trackStatistics() const override {
7013     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
7014   }
7015 };
7016 
7017 /// -------------------- Memory Behavior Attributes ----------------------------
7018 /// Includes read-none, read-only, and write-only.
7019 /// ----------------------------------------------------------------------------
7020 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
7021   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
7022       : AAMemoryBehavior(IRP, A) {}
7023 
7024   /// See AbstractAttribute::initialize(...).
7025   void initialize(Attributor &A) override {
7026     intersectAssumedBits(BEST_STATE);
7027     getKnownStateFromValue(getIRPosition(), getState());
7028     AAMemoryBehavior::initialize(A);
7029   }
7030 
7031   /// Return the memory behavior information encoded in the IR for \p IRP.
7032   static void getKnownStateFromValue(const IRPosition &IRP,
7033                                      BitIntegerState &State,
7034                                      bool IgnoreSubsumingPositions = false) {
7035     SmallVector<Attribute, 2> Attrs;
7036     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7037     for (const Attribute &Attr : Attrs) {
7038       switch (Attr.getKindAsEnum()) {
7039       case Attribute::ReadNone:
7040         State.addKnownBits(NO_ACCESSES);
7041         break;
7042       case Attribute::ReadOnly:
7043         State.addKnownBits(NO_WRITES);
7044         break;
7045       case Attribute::WriteOnly:
7046         State.addKnownBits(NO_READS);
7047         break;
7048       default:
7049         llvm_unreachable("Unexpected attribute!");
7050       }
7051     }
7052 
7053     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7054       if (!I->mayReadFromMemory())
7055         State.addKnownBits(NO_READS);
7056       if (!I->mayWriteToMemory())
7057         State.addKnownBits(NO_WRITES);
7058     }
7059   }
7060 
7061   /// See AbstractAttribute::getDeducedAttributes(...).
7062   void getDeducedAttributes(LLVMContext &Ctx,
7063                             SmallVectorImpl<Attribute> &Attrs) const override {
7064     assert(Attrs.size() == 0);
7065     if (isAssumedReadNone())
7066       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7067     else if (isAssumedReadOnly())
7068       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7069     else if (isAssumedWriteOnly())
7070       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7071     assert(Attrs.size() <= 1);
7072   }
7073 
7074   /// See AbstractAttribute::manifest(...).
7075   ChangeStatus manifest(Attributor &A) override {
7076     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7077       return ChangeStatus::UNCHANGED;
7078 
7079     const IRPosition &IRP = getIRPosition();
7080 
7081     // Check if we would improve the existing attributes first.
7082     SmallVector<Attribute, 4> DeducedAttrs;
7083     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7084     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7085           return IRP.hasAttr(Attr.getKindAsEnum(),
7086                              /* IgnoreSubsumingPositions */ true);
7087         }))
7088       return ChangeStatus::UNCHANGED;
7089 
7090     // Clear existing attributes.
7091     IRP.removeAttrs(AttrKinds);
7092 
7093     // Use the generic manifest method.
7094     return IRAttribute::manifest(A);
7095   }
7096 
7097   /// See AbstractState::getAsStr().
7098   const std::string getAsStr() const override {
7099     if (isAssumedReadNone())
7100       return "readnone";
7101     if (isAssumedReadOnly())
7102       return "readonly";
7103     if (isAssumedWriteOnly())
7104       return "writeonly";
7105     return "may-read/write";
7106   }
7107 
7108   /// The set of IR attributes AAMemoryBehavior deals with.
7109   static const Attribute::AttrKind AttrKinds[3];
7110 };
7111 
7112 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7113     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7114 
7115 /// Memory behavior attribute for a floating value.
7116 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7117   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7118       : AAMemoryBehaviorImpl(IRP, A) {}
7119 
7120   /// See AbstractAttribute::updateImpl(...).
7121   ChangeStatus updateImpl(Attributor &A) override;
7122 
7123   /// See AbstractAttribute::trackStatistics()
7124   void trackStatistics() const override {
7125     if (isAssumedReadNone())
7126       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7127     else if (isAssumedReadOnly())
7128       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7129     else if (isAssumedWriteOnly())
7130       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7131   }
7132 
7133 private:
7134   /// Return true if users of \p UserI might access the underlying
7135   /// variable/location described by \p U and should therefore be analyzed.
7136   bool followUsersOfUseIn(Attributor &A, const Use &U,
7137                           const Instruction *UserI);
7138 
7139   /// Update the state according to the effect of use \p U in \p UserI.
7140   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7141 };
7142 
7143 /// Memory behavior attribute for function argument.
7144 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7145   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7146       : AAMemoryBehaviorFloating(IRP, A) {}
7147 
7148   /// See AbstractAttribute::initialize(...).
7149   void initialize(Attributor &A) override {
7150     intersectAssumedBits(BEST_STATE);
7151     const IRPosition &IRP = getIRPosition();
7152     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7153     // can query it when we use has/getAttr. That would allow us to reuse the
7154     // initialize of the base class here.
7155     bool HasByVal =
7156         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7157     getKnownStateFromValue(IRP, getState(),
7158                            /* IgnoreSubsumingPositions */ HasByVal);
7159 
7160     // Initialize the use vector with all direct uses of the associated value.
7161     Argument *Arg = getAssociatedArgument();
7162     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7163       indicatePessimisticFixpoint();
7164   }
7165 
7166   ChangeStatus manifest(Attributor &A) override {
7167     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7168     if (!getAssociatedValue().getType()->isPointerTy())
7169       return ChangeStatus::UNCHANGED;
7170 
7171     // TODO: From readattrs.ll: "inalloca parameters are always
7172     //                           considered written"
7173     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7174       removeKnownBits(NO_WRITES);
7175       removeAssumedBits(NO_WRITES);
7176     }
7177     return AAMemoryBehaviorFloating::manifest(A);
7178   }
7179 
7180   /// See AbstractAttribute::trackStatistics()
7181   void trackStatistics() const override {
7182     if (isAssumedReadNone())
7183       STATS_DECLTRACK_ARG_ATTR(readnone)
7184     else if (isAssumedReadOnly())
7185       STATS_DECLTRACK_ARG_ATTR(readonly)
7186     else if (isAssumedWriteOnly())
7187       STATS_DECLTRACK_ARG_ATTR(writeonly)
7188   }
7189 };
7190 
7191 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7192   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7193       : AAMemoryBehaviorArgument(IRP, A) {}
7194 
7195   /// See AbstractAttribute::initialize(...).
7196   void initialize(Attributor &A) override {
7197     // If we don't have an associated attribute this is either a variadic call
7198     // or an indirect call, either way, nothing to do here.
7199     Argument *Arg = getAssociatedArgument();
7200     if (!Arg) {
7201       indicatePessimisticFixpoint();
7202       return;
7203     }
7204     if (Arg->hasByValAttr()) {
7205       addKnownBits(NO_WRITES);
7206       removeKnownBits(NO_READS);
7207       removeAssumedBits(NO_READS);
7208     }
7209     AAMemoryBehaviorArgument::initialize(A);
7210     if (getAssociatedFunction()->isDeclaration())
7211       indicatePessimisticFixpoint();
7212   }
7213 
7214   /// See AbstractAttribute::updateImpl(...).
7215   ChangeStatus updateImpl(Attributor &A) override {
7216     // TODO: Once we have call site specific value information we can provide
7217     //       call site specific liveness liveness information and then it makes
7218     //       sense to specialize attributes for call sites arguments instead of
7219     //       redirecting requests to the callee argument.
7220     Argument *Arg = getAssociatedArgument();
7221     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7222     auto &ArgAA =
7223         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7224     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7225   }
7226 
7227   /// See AbstractAttribute::trackStatistics()
7228   void trackStatistics() const override {
7229     if (isAssumedReadNone())
7230       STATS_DECLTRACK_CSARG_ATTR(readnone)
7231     else if (isAssumedReadOnly())
7232       STATS_DECLTRACK_CSARG_ATTR(readonly)
7233     else if (isAssumedWriteOnly())
7234       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7235   }
7236 };
7237 
7238 /// Memory behavior attribute for a call site return position.
7239 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7240   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7241       : AAMemoryBehaviorFloating(IRP, A) {}
7242 
7243   /// See AbstractAttribute::initialize(...).
7244   void initialize(Attributor &A) override {
7245     AAMemoryBehaviorImpl::initialize(A);
7246     Function *F = getAssociatedFunction();
7247     if (!F || F->isDeclaration())
7248       indicatePessimisticFixpoint();
7249   }
7250 
7251   /// See AbstractAttribute::manifest(...).
7252   ChangeStatus manifest(Attributor &A) override {
7253     // We do not annotate returned values.
7254     return ChangeStatus::UNCHANGED;
7255   }
7256 
7257   /// See AbstractAttribute::trackStatistics()
7258   void trackStatistics() const override {}
7259 };
7260 
7261 /// An AA to represent the memory behavior function attributes.
7262 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7263   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7264       : AAMemoryBehaviorImpl(IRP, A) {}
7265 
7266   /// See AbstractAttribute::updateImpl(Attributor &A).
7267   virtual ChangeStatus updateImpl(Attributor &A) override;
7268 
7269   /// See AbstractAttribute::manifest(...).
7270   ChangeStatus manifest(Attributor &A) override {
7271     Function &F = cast<Function>(getAnchorValue());
7272     if (isAssumedReadNone()) {
7273       F.removeFnAttr(Attribute::ArgMemOnly);
7274       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7275       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7276     }
7277     return AAMemoryBehaviorImpl::manifest(A);
7278   }
7279 
7280   /// See AbstractAttribute::trackStatistics()
7281   void trackStatistics() const override {
7282     if (isAssumedReadNone())
7283       STATS_DECLTRACK_FN_ATTR(readnone)
7284     else if (isAssumedReadOnly())
7285       STATS_DECLTRACK_FN_ATTR(readonly)
7286     else if (isAssumedWriteOnly())
7287       STATS_DECLTRACK_FN_ATTR(writeonly)
7288   }
7289 };
7290 
7291 /// AAMemoryBehavior attribute for call sites.
7292 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7293   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7294       : AAMemoryBehaviorImpl(IRP, A) {}
7295 
7296   /// See AbstractAttribute::initialize(...).
7297   void initialize(Attributor &A) override {
7298     AAMemoryBehaviorImpl::initialize(A);
7299     Function *F = getAssociatedFunction();
7300     if (!F || F->isDeclaration())
7301       indicatePessimisticFixpoint();
7302   }
7303 
7304   /// See AbstractAttribute::updateImpl(...).
7305   ChangeStatus updateImpl(Attributor &A) override {
7306     // TODO: Once we have call site specific value information we can provide
7307     //       call site specific liveness liveness information and then it makes
7308     //       sense to specialize attributes for call sites arguments instead of
7309     //       redirecting requests to the callee argument.
7310     Function *F = getAssociatedFunction();
7311     const IRPosition &FnPos = IRPosition::function(*F);
7312     auto &FnAA =
7313         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7314     return clampStateAndIndicateChange(getState(), FnAA.getState());
7315   }
7316 
7317   /// See AbstractAttribute::trackStatistics()
7318   void trackStatistics() const override {
7319     if (isAssumedReadNone())
7320       STATS_DECLTRACK_CS_ATTR(readnone)
7321     else if (isAssumedReadOnly())
7322       STATS_DECLTRACK_CS_ATTR(readonly)
7323     else if (isAssumedWriteOnly())
7324       STATS_DECLTRACK_CS_ATTR(writeonly)
7325   }
7326 };
7327 
7328 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7329 
7330   // The current assumed state used to determine a change.
7331   auto AssumedState = getAssumed();
7332 
7333   auto CheckRWInst = [&](Instruction &I) {
7334     // If the instruction has an own memory behavior state, use it to restrict
7335     // the local state. No further analysis is required as the other memory
7336     // state is as optimistic as it gets.
7337     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7338       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7339           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7340       intersectAssumedBits(MemBehaviorAA.getAssumed());
7341       return !isAtFixpoint();
7342     }
7343 
7344     // Remove access kind modifiers if necessary.
7345     if (I.mayReadFromMemory())
7346       removeAssumedBits(NO_READS);
7347     if (I.mayWriteToMemory())
7348       removeAssumedBits(NO_WRITES);
7349     return !isAtFixpoint();
7350   };
7351 
7352   bool UsedAssumedInformation = false;
7353   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7354                                           UsedAssumedInformation))
7355     return indicatePessimisticFixpoint();
7356 
7357   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7358                                         : ChangeStatus::UNCHANGED;
7359 }
7360 
7361 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7362 
7363   const IRPosition &IRP = getIRPosition();
7364   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7365   AAMemoryBehavior::StateType &S = getState();
7366 
7367   // First, check the function scope. We take the known information and we avoid
7368   // work if the assumed information implies the current assumed information for
7369   // this attribute. This is a valid for all but byval arguments.
7370   Argument *Arg = IRP.getAssociatedArgument();
7371   AAMemoryBehavior::base_t FnMemAssumedState =
7372       AAMemoryBehavior::StateType::getWorstState();
7373   if (!Arg || !Arg->hasByValAttr()) {
7374     const auto &FnMemAA =
7375         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7376     FnMemAssumedState = FnMemAA.getAssumed();
7377     S.addKnownBits(FnMemAA.getKnown());
7378     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7379       return ChangeStatus::UNCHANGED;
7380   }
7381 
7382   // The current assumed state used to determine a change.
7383   auto AssumedState = S.getAssumed();
7384 
7385   // Make sure the value is not captured (except through "return"), if
7386   // it is, any information derived would be irrelevant anyway as we cannot
7387   // check the potential aliases introduced by the capture. However, no need
7388   // to fall back to anythign less optimistic than the function state.
7389   const auto &ArgNoCaptureAA =
7390       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7391   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7392     S.intersectAssumedBits(FnMemAssumedState);
7393     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7394                                           : ChangeStatus::UNCHANGED;
7395   }
7396 
7397   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7398   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7399     Instruction *UserI = cast<Instruction>(U.getUser());
7400     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7401                       << " \n");
7402 
7403     // Droppable users, e.g., llvm::assume does not actually perform any action.
7404     if (UserI->isDroppable())
7405       return true;
7406 
7407     // Check if the users of UserI should also be visited.
7408     Follow = followUsersOfUseIn(A, U, UserI);
7409 
7410     // If UserI might touch memory we analyze the use in detail.
7411     if (UserI->mayReadOrWriteMemory())
7412       analyzeUseIn(A, U, UserI);
7413 
7414     return !isAtFixpoint();
7415   };
7416 
7417   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7418     return indicatePessimisticFixpoint();
7419 
7420   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7421                                         : ChangeStatus::UNCHANGED;
7422 }
7423 
7424 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7425                                                   const Instruction *UserI) {
7426   // The loaded value is unrelated to the pointer argument, no need to
7427   // follow the users of the load.
7428   if (isa<LoadInst>(UserI))
7429     return false;
7430 
7431   // By default we follow all uses assuming UserI might leak information on U,
7432   // we have special handling for call sites operands though.
7433   const auto *CB = dyn_cast<CallBase>(UserI);
7434   if (!CB || !CB->isArgOperand(&U))
7435     return true;
7436 
7437   // If the use is a call argument known not to be captured, the users of
7438   // the call do not need to be visited because they have to be unrelated to
7439   // the input. Note that this check is not trivial even though we disallow
7440   // general capturing of the underlying argument. The reason is that the
7441   // call might the argument "through return", which we allow and for which we
7442   // need to check call users.
7443   if (U.get()->getType()->isPointerTy()) {
7444     unsigned ArgNo = CB->getArgOperandNo(&U);
7445     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7446         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7447     return !ArgNoCaptureAA.isAssumedNoCapture();
7448   }
7449 
7450   return true;
7451 }
7452 
7453 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7454                                             const Instruction *UserI) {
7455   assert(UserI->mayReadOrWriteMemory());
7456 
7457   switch (UserI->getOpcode()) {
7458   default:
7459     // TODO: Handle all atomics and other side-effect operations we know of.
7460     break;
7461   case Instruction::Load:
7462     // Loads cause the NO_READS property to disappear.
7463     removeAssumedBits(NO_READS);
7464     return;
7465 
7466   case Instruction::Store:
7467     // Stores cause the NO_WRITES property to disappear if the use is the
7468     // pointer operand. Note that while capturing was taken care of somewhere
7469     // else we need to deal with stores of the value that is not looked through.
7470     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7471       removeAssumedBits(NO_WRITES);
7472     else
7473       indicatePessimisticFixpoint();
7474     return;
7475 
7476   case Instruction::Call:
7477   case Instruction::CallBr:
7478   case Instruction::Invoke: {
7479     // For call sites we look at the argument memory behavior attribute (this
7480     // could be recursive!) in order to restrict our own state.
7481     const auto *CB = cast<CallBase>(UserI);
7482 
7483     // Give up on operand bundles.
7484     if (CB->isBundleOperand(&U)) {
7485       indicatePessimisticFixpoint();
7486       return;
7487     }
7488 
7489     // Calling a function does read the function pointer, maybe write it if the
7490     // function is self-modifying.
7491     if (CB->isCallee(&U)) {
7492       removeAssumedBits(NO_READS);
7493       break;
7494     }
7495 
7496     // Adjust the possible access behavior based on the information on the
7497     // argument.
7498     IRPosition Pos;
7499     if (U.get()->getType()->isPointerTy())
7500       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7501     else
7502       Pos = IRPosition::callsite_function(*CB);
7503     const auto &MemBehaviorAA =
7504         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7505     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7506     // and at least "known".
7507     intersectAssumedBits(MemBehaviorAA.getAssumed());
7508     return;
7509   }
7510   };
7511 
7512   // Generally, look at the "may-properties" and adjust the assumed state if we
7513   // did not trigger special handling before.
7514   if (UserI->mayReadFromMemory())
7515     removeAssumedBits(NO_READS);
7516   if (UserI->mayWriteToMemory())
7517     removeAssumedBits(NO_WRITES);
7518 }
7519 
7520 /// -------------------- Memory Locations Attributes ---------------------------
7521 /// Includes read-none, argmemonly, inaccessiblememonly,
7522 /// inaccessiblememorargmemonly
7523 /// ----------------------------------------------------------------------------
7524 
7525 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7526     AAMemoryLocation::MemoryLocationsKind MLK) {
7527   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7528     return "all memory";
7529   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7530     return "no memory";
7531   std::string S = "memory:";
7532   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7533     S += "stack,";
7534   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7535     S += "constant,";
7536   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7537     S += "internal global,";
7538   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7539     S += "external global,";
7540   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7541     S += "argument,";
7542   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7543     S += "inaccessible,";
7544   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7545     S += "malloced,";
7546   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7547     S += "unknown,";
7548   S.pop_back();
7549   return S;
7550 }
7551 
7552 struct AAMemoryLocationImpl : public AAMemoryLocation {
7553 
7554   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7555       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7556     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7557       AccessKind2Accesses[u] = nullptr;
7558   }
7559 
7560   ~AAMemoryLocationImpl() {
7561     // The AccessSets are allocated via a BumpPtrAllocator, we call
7562     // the destructor manually.
7563     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7564       if (AccessKind2Accesses[u])
7565         AccessKind2Accesses[u]->~AccessSet();
7566   }
7567 
7568   /// See AbstractAttribute::initialize(...).
7569   void initialize(Attributor &A) override {
7570     intersectAssumedBits(BEST_STATE);
7571     getKnownStateFromValue(A, getIRPosition(), getState());
7572     AAMemoryLocation::initialize(A);
7573   }
7574 
7575   /// Return the memory behavior information encoded in the IR for \p IRP.
7576   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7577                                      BitIntegerState &State,
7578                                      bool IgnoreSubsumingPositions = false) {
7579     // For internal functions we ignore `argmemonly` and
7580     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7581     // constant propagation. It is unclear if this is the best way but it is
7582     // unlikely this will cause real performance problems. If we are deriving
7583     // attributes for the anchor function we even remove the attribute in
7584     // addition to ignoring it.
7585     bool UseArgMemOnly = true;
7586     Function *AnchorFn = IRP.getAnchorScope();
7587     if (AnchorFn && A.isRunOn(*AnchorFn))
7588       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7589 
7590     SmallVector<Attribute, 2> Attrs;
7591     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7592     for (const Attribute &Attr : Attrs) {
7593       switch (Attr.getKindAsEnum()) {
7594       case Attribute::ReadNone:
7595         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7596         break;
7597       case Attribute::InaccessibleMemOnly:
7598         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7599         break;
7600       case Attribute::ArgMemOnly:
7601         if (UseArgMemOnly)
7602           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7603         else
7604           IRP.removeAttrs({Attribute::ArgMemOnly});
7605         break;
7606       case Attribute::InaccessibleMemOrArgMemOnly:
7607         if (UseArgMemOnly)
7608           State.addKnownBits(inverseLocation(
7609               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7610         else
7611           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7612         break;
7613       default:
7614         llvm_unreachable("Unexpected attribute!");
7615       }
7616     }
7617   }
7618 
7619   /// See AbstractAttribute::getDeducedAttributes(...).
7620   void getDeducedAttributes(LLVMContext &Ctx,
7621                             SmallVectorImpl<Attribute> &Attrs) const override {
7622     assert(Attrs.size() == 0);
7623     if (isAssumedReadNone()) {
7624       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7625     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7626       if (isAssumedInaccessibleMemOnly())
7627         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7628       else if (isAssumedArgMemOnly())
7629         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7630       else if (isAssumedInaccessibleOrArgMemOnly())
7631         Attrs.push_back(
7632             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7633     }
7634     assert(Attrs.size() <= 1);
7635   }
7636 
7637   /// See AbstractAttribute::manifest(...).
7638   ChangeStatus manifest(Attributor &A) override {
7639     const IRPosition &IRP = getIRPosition();
7640 
7641     // Check if we would improve the existing attributes first.
7642     SmallVector<Attribute, 4> DeducedAttrs;
7643     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7644     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7645           return IRP.hasAttr(Attr.getKindAsEnum(),
7646                              /* IgnoreSubsumingPositions */ true);
7647         }))
7648       return ChangeStatus::UNCHANGED;
7649 
7650     // Clear existing attributes.
7651     IRP.removeAttrs(AttrKinds);
7652     if (isAssumedReadNone())
7653       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7654 
7655     // Use the generic manifest method.
7656     return IRAttribute::manifest(A);
7657   }
7658 
7659   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7660   bool checkForAllAccessesToMemoryKind(
7661       function_ref<bool(const Instruction *, const Value *, AccessKind,
7662                         MemoryLocationsKind)>
7663           Pred,
7664       MemoryLocationsKind RequestedMLK) const override {
7665     if (!isValidState())
7666       return false;
7667 
7668     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7669     if (AssumedMLK == NO_LOCATIONS)
7670       return true;
7671 
7672     unsigned Idx = 0;
7673     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7674          CurMLK *= 2, ++Idx) {
7675       if (CurMLK & RequestedMLK)
7676         continue;
7677 
7678       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7679         for (const AccessInfo &AI : *Accesses)
7680           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7681             return false;
7682     }
7683 
7684     return true;
7685   }
7686 
7687   ChangeStatus indicatePessimisticFixpoint() override {
7688     // If we give up and indicate a pessimistic fixpoint this instruction will
7689     // become an access for all potential access kinds:
7690     // TODO: Add pointers for argmemonly and globals to improve the results of
7691     //       checkForAllAccessesToMemoryKind.
7692     bool Changed = false;
7693     MemoryLocationsKind KnownMLK = getKnown();
7694     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7695     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7696       if (!(CurMLK & KnownMLK))
7697         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7698                                   getAccessKindFromInst(I));
7699     return AAMemoryLocation::indicatePessimisticFixpoint();
7700   }
7701 
7702 protected:
7703   /// Helper struct to tie together an instruction that has a read or write
7704   /// effect with the pointer it accesses (if any).
7705   struct AccessInfo {
7706 
7707     /// The instruction that caused the access.
7708     const Instruction *I;
7709 
7710     /// The base pointer that is accessed, or null if unknown.
7711     const Value *Ptr;
7712 
7713     /// The kind of access (read/write/read+write).
7714     AccessKind Kind;
7715 
7716     bool operator==(const AccessInfo &RHS) const {
7717       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7718     }
7719     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7720       if (LHS.I != RHS.I)
7721         return LHS.I < RHS.I;
7722       if (LHS.Ptr != RHS.Ptr)
7723         return LHS.Ptr < RHS.Ptr;
7724       if (LHS.Kind != RHS.Kind)
7725         return LHS.Kind < RHS.Kind;
7726       return false;
7727     }
7728   };
7729 
7730   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7731   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7732   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7733   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7734 
7735   /// Categorize the pointer arguments of CB that might access memory in
7736   /// AccessedLoc and update the state and access map accordingly.
7737   void
7738   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7739                                      AAMemoryLocation::StateType &AccessedLocs,
7740                                      bool &Changed);
7741 
7742   /// Return the kind(s) of location that may be accessed by \p V.
7743   AAMemoryLocation::MemoryLocationsKind
7744   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7745 
7746   /// Return the access kind as determined by \p I.
7747   AccessKind getAccessKindFromInst(const Instruction *I) {
7748     AccessKind AK = READ_WRITE;
7749     if (I) {
7750       AK = I->mayReadFromMemory() ? READ : NONE;
7751       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7752     }
7753     return AK;
7754   }
7755 
7756   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7757   /// an access of kind \p AK to a \p MLK memory location with the access
7758   /// pointer \p Ptr.
7759   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7760                                  MemoryLocationsKind MLK, const Instruction *I,
7761                                  const Value *Ptr, bool &Changed,
7762                                  AccessKind AK = READ_WRITE) {
7763 
7764     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7765     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7766     if (!Accesses)
7767       Accesses = new (Allocator) AccessSet();
7768     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7769     State.removeAssumedBits(MLK);
7770   }
7771 
7772   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7773   /// arguments, and update the state and access map accordingly.
7774   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7775                           AAMemoryLocation::StateType &State, bool &Changed);
7776 
7777   /// Used to allocate access sets.
7778   BumpPtrAllocator &Allocator;
7779 
7780   /// The set of IR attributes AAMemoryLocation deals with.
7781   static const Attribute::AttrKind AttrKinds[4];
7782 };
7783 
7784 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7785     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7786     Attribute::InaccessibleMemOrArgMemOnly};
7787 
7788 void AAMemoryLocationImpl::categorizePtrValue(
7789     Attributor &A, const Instruction &I, const Value &Ptr,
7790     AAMemoryLocation::StateType &State, bool &Changed) {
7791   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7792                     << Ptr << " ["
7793                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7794 
7795   SmallVector<Value *, 8> Objects;
7796   bool UsedAssumedInformation = false;
7797   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7798                                        UsedAssumedInformation,
7799                                        /* Intraprocedural */ true)) {
7800     LLVM_DEBUG(
7801         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7802     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7803                               getAccessKindFromInst(&I));
7804     return;
7805   }
7806 
7807   for (Value *Obj : Objects) {
7808     // TODO: recognize the TBAA used for constant accesses.
7809     MemoryLocationsKind MLK = NO_LOCATIONS;
7810     if (isa<UndefValue>(Obj))
7811       continue;
7812     if (isa<Argument>(Obj)) {
7813       // TODO: For now we do not treat byval arguments as local copies performed
7814       // on the call edge, though, we should. To make that happen we need to
7815       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7816       // would also allow us to mark functions only accessing byval arguments as
7817       // readnone again, atguably their acceses have no effect outside of the
7818       // function, like accesses to allocas.
7819       MLK = NO_ARGUMENT_MEM;
7820     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7821       // Reading constant memory is not treated as a read "effect" by the
7822       // function attr pass so we won't neither. Constants defined by TBAA are
7823       // similar. (We know we do not write it because it is constant.)
7824       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7825         if (GVar->isConstant())
7826           continue;
7827 
7828       if (GV->hasLocalLinkage())
7829         MLK = NO_GLOBAL_INTERNAL_MEM;
7830       else
7831         MLK = NO_GLOBAL_EXTERNAL_MEM;
7832     } else if (isa<ConstantPointerNull>(Obj) &&
7833                !NullPointerIsDefined(getAssociatedFunction(),
7834                                      Ptr.getType()->getPointerAddressSpace())) {
7835       continue;
7836     } else if (isa<AllocaInst>(Obj)) {
7837       MLK = NO_LOCAL_MEM;
7838     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7839       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7840           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7841       if (NoAliasAA.isAssumedNoAlias())
7842         MLK = NO_MALLOCED_MEM;
7843       else
7844         MLK = NO_UNKOWN_MEM;
7845     } else {
7846       MLK = NO_UNKOWN_MEM;
7847     }
7848 
7849     assert(MLK != NO_LOCATIONS && "No location specified!");
7850     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7851                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7852                       << "\n");
7853     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7854                               getAccessKindFromInst(&I));
7855   }
7856 
7857   LLVM_DEBUG(
7858       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7859              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7860 }
7861 
7862 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7863     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7864     bool &Changed) {
7865   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7866 
7867     // Skip non-pointer arguments.
7868     const Value *ArgOp = CB.getArgOperand(ArgNo);
7869     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7870       continue;
7871 
7872     // Skip readnone arguments.
7873     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7874     const auto &ArgOpMemLocationAA =
7875         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7876 
7877     if (ArgOpMemLocationAA.isAssumedReadNone())
7878       continue;
7879 
7880     // Categorize potentially accessed pointer arguments as if there was an
7881     // access instruction with them as pointer.
7882     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7883   }
7884 }
7885 
7886 AAMemoryLocation::MemoryLocationsKind
7887 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7888                                                   bool &Changed) {
7889   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7890                     << I << "\n");
7891 
7892   AAMemoryLocation::StateType AccessedLocs;
7893   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7894 
7895   if (auto *CB = dyn_cast<CallBase>(&I)) {
7896 
7897     // First check if we assume any memory is access is visible.
7898     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7899         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7900     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7901                       << " [" << CBMemLocationAA << "]\n");
7902 
7903     if (CBMemLocationAA.isAssumedReadNone())
7904       return NO_LOCATIONS;
7905 
7906     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7907       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7908                                 Changed, getAccessKindFromInst(&I));
7909       return AccessedLocs.getAssumed();
7910     }
7911 
7912     uint32_t CBAssumedNotAccessedLocs =
7913         CBMemLocationAA.getAssumedNotAccessedLocation();
7914 
7915     // Set the argmemonly and global bit as we handle them separately below.
7916     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7917         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7918 
7919     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7920       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7921         continue;
7922       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7923                                 getAccessKindFromInst(&I));
7924     }
7925 
7926     // Now handle global memory if it might be accessed. This is slightly tricky
7927     // as NO_GLOBAL_MEM has multiple bits set.
7928     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7929     if (HasGlobalAccesses) {
7930       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7931                             AccessKind Kind, MemoryLocationsKind MLK) {
7932         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7933                                   getAccessKindFromInst(&I));
7934         return true;
7935       };
7936       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7937               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7938         return AccessedLocs.getWorstState();
7939     }
7940 
7941     LLVM_DEBUG(
7942         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7943                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7944 
7945     // Now handle argument memory if it might be accessed.
7946     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7947     if (HasArgAccesses)
7948       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7949 
7950     LLVM_DEBUG(
7951         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7952                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7953 
7954     return AccessedLocs.getAssumed();
7955   }
7956 
7957   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7958     LLVM_DEBUG(
7959         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7960                << I << " [" << *Ptr << "]\n");
7961     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7962     return AccessedLocs.getAssumed();
7963   }
7964 
7965   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7966                     << I << "\n");
7967   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7968                             getAccessKindFromInst(&I));
7969   return AccessedLocs.getAssumed();
7970 }
7971 
7972 /// An AA to represent the memory behavior function attributes.
7973 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7974   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7975       : AAMemoryLocationImpl(IRP, A) {}
7976 
7977   /// See AbstractAttribute::updateImpl(Attributor &A).
7978   virtual ChangeStatus updateImpl(Attributor &A) override {
7979 
7980     const auto &MemBehaviorAA =
7981         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7982     if (MemBehaviorAA.isAssumedReadNone()) {
7983       if (MemBehaviorAA.isKnownReadNone())
7984         return indicateOptimisticFixpoint();
7985       assert(isAssumedReadNone() &&
7986              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7987       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7988       return ChangeStatus::UNCHANGED;
7989     }
7990 
7991     // The current assumed state used to determine a change.
7992     auto AssumedState = getAssumed();
7993     bool Changed = false;
7994 
7995     auto CheckRWInst = [&](Instruction &I) {
7996       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7997       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7998                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7999       removeAssumedBits(inverseLocation(MLK, false, false));
8000       // Stop once only the valid bit set in the *not assumed location*, thus
8001       // once we don't actually exclude any memory locations in the state.
8002       return getAssumedNotAccessedLocation() != VALID_STATE;
8003     };
8004 
8005     bool UsedAssumedInformation = false;
8006     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8007                                             UsedAssumedInformation))
8008       return indicatePessimisticFixpoint();
8009 
8010     Changed |= AssumedState != getAssumed();
8011     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8012   }
8013 
8014   /// See AbstractAttribute::trackStatistics()
8015   void trackStatistics() const override {
8016     if (isAssumedReadNone())
8017       STATS_DECLTRACK_FN_ATTR(readnone)
8018     else if (isAssumedArgMemOnly())
8019       STATS_DECLTRACK_FN_ATTR(argmemonly)
8020     else if (isAssumedInaccessibleMemOnly())
8021       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
8022     else if (isAssumedInaccessibleOrArgMemOnly())
8023       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
8024   }
8025 };
8026 
8027 /// AAMemoryLocation attribute for call sites.
8028 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
8029   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
8030       : AAMemoryLocationImpl(IRP, A) {}
8031 
8032   /// See AbstractAttribute::initialize(...).
8033   void initialize(Attributor &A) override {
8034     AAMemoryLocationImpl::initialize(A);
8035     Function *F = getAssociatedFunction();
8036     if (!F || F->isDeclaration())
8037       indicatePessimisticFixpoint();
8038   }
8039 
8040   /// See AbstractAttribute::updateImpl(...).
8041   ChangeStatus updateImpl(Attributor &A) override {
8042     // TODO: Once we have call site specific value information we can provide
8043     //       call site specific liveness liveness information and then it makes
8044     //       sense to specialize attributes for call sites arguments instead of
8045     //       redirecting requests to the callee argument.
8046     Function *F = getAssociatedFunction();
8047     const IRPosition &FnPos = IRPosition::function(*F);
8048     auto &FnAA =
8049         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8050     bool Changed = false;
8051     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8052                           AccessKind Kind, MemoryLocationsKind MLK) {
8053       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8054                                 getAccessKindFromInst(I));
8055       return true;
8056     };
8057     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8058       return indicatePessimisticFixpoint();
8059     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8060   }
8061 
8062   /// See AbstractAttribute::trackStatistics()
8063   void trackStatistics() const override {
8064     if (isAssumedReadNone())
8065       STATS_DECLTRACK_CS_ATTR(readnone)
8066   }
8067 };
8068 
8069 /// ------------------ Value Constant Range Attribute -------------------------
8070 
8071 struct AAValueConstantRangeImpl : AAValueConstantRange {
8072   using StateType = IntegerRangeState;
8073   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8074       : AAValueConstantRange(IRP, A) {}
8075 
8076   /// See AbstractAttribute::initialize(..).
8077   void initialize(Attributor &A) override {
8078     if (A.hasSimplificationCallback(getIRPosition())) {
8079       indicatePessimisticFixpoint();
8080       return;
8081     }
8082 
8083     // Intersect a range given by SCEV.
8084     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8085 
8086     // Intersect a range given by LVI.
8087     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8088   }
8089 
8090   /// See AbstractAttribute::getAsStr().
8091   const std::string getAsStr() const override {
8092     std::string Str;
8093     llvm::raw_string_ostream OS(Str);
8094     OS << "range(" << getBitWidth() << ")<";
8095     getKnown().print(OS);
8096     OS << " / ";
8097     getAssumed().print(OS);
8098     OS << ">";
8099     return OS.str();
8100   }
8101 
8102   /// Helper function to get a SCEV expr for the associated value at program
8103   /// point \p I.
8104   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8105     if (!getAnchorScope())
8106       return nullptr;
8107 
8108     ScalarEvolution *SE =
8109         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8110             *getAnchorScope());
8111 
8112     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8113         *getAnchorScope());
8114 
8115     if (!SE || !LI)
8116       return nullptr;
8117 
8118     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8119     if (!I)
8120       return S;
8121 
8122     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8123   }
8124 
8125   /// Helper function to get a range from SCEV for the associated value at
8126   /// program point \p I.
8127   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8128                                          const Instruction *I = nullptr) const {
8129     if (!getAnchorScope())
8130       return getWorstState(getBitWidth());
8131 
8132     ScalarEvolution *SE =
8133         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8134             *getAnchorScope());
8135 
8136     const SCEV *S = getSCEV(A, I);
8137     if (!SE || !S)
8138       return getWorstState(getBitWidth());
8139 
8140     return SE->getUnsignedRange(S);
8141   }
8142 
8143   /// Helper function to get a range from LVI for the associated value at
8144   /// program point \p I.
8145   ConstantRange
8146   getConstantRangeFromLVI(Attributor &A,
8147                           const Instruction *CtxI = nullptr) const {
8148     if (!getAnchorScope())
8149       return getWorstState(getBitWidth());
8150 
8151     LazyValueInfo *LVI =
8152         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8153             *getAnchorScope());
8154 
8155     if (!LVI || !CtxI)
8156       return getWorstState(getBitWidth());
8157     return LVI->getConstantRange(&getAssociatedValue(),
8158                                  const_cast<Instruction *>(CtxI));
8159   }
8160 
8161   /// Return true if \p CtxI is valid for querying outside analyses.
8162   /// This basically makes sure we do not ask intra-procedural analysis
8163   /// about a context in the wrong function or a context that violates
8164   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8165   /// if the original context of this AA is OK or should be considered invalid.
8166   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8167                                                const Instruction *CtxI,
8168                                                bool AllowAACtxI) const {
8169     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8170       return false;
8171 
8172     // Our context might be in a different function, neither intra-procedural
8173     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8174     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8175       return false;
8176 
8177     // If the context is not dominated by the value there are paths to the
8178     // context that do not define the value. This cannot be handled by
8179     // LazyValueInfo so we need to bail.
8180     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8181       InformationCache &InfoCache = A.getInfoCache();
8182       const DominatorTree *DT =
8183           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8184               *I->getFunction());
8185       return DT && DT->dominates(I, CtxI);
8186     }
8187 
8188     return true;
8189   }
8190 
8191   /// See AAValueConstantRange::getKnownConstantRange(..).
8192   ConstantRange
8193   getKnownConstantRange(Attributor &A,
8194                         const Instruction *CtxI = nullptr) const override {
8195     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8196                                                  /* AllowAACtxI */ false))
8197       return getKnown();
8198 
8199     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8200     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8201     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8202   }
8203 
8204   /// See AAValueConstantRange::getAssumedConstantRange(..).
8205   ConstantRange
8206   getAssumedConstantRange(Attributor &A,
8207                           const Instruction *CtxI = nullptr) const override {
8208     // TODO: Make SCEV use Attributor assumption.
8209     //       We may be able to bound a variable range via assumptions in
8210     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8211     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8212     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8213                                                  /* AllowAACtxI */ false))
8214       return getAssumed();
8215 
8216     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8217     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8218     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8219   }
8220 
8221   /// Helper function to create MDNode for range metadata.
8222   static MDNode *
8223   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8224                             const ConstantRange &AssumedConstantRange) {
8225     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8226                                   Ty, AssumedConstantRange.getLower())),
8227                               ConstantAsMetadata::get(ConstantInt::get(
8228                                   Ty, AssumedConstantRange.getUpper()))};
8229     return MDNode::get(Ctx, LowAndHigh);
8230   }
8231 
8232   /// Return true if \p Assumed is included in \p KnownRanges.
8233   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8234 
8235     if (Assumed.isFullSet())
8236       return false;
8237 
8238     if (!KnownRanges)
8239       return true;
8240 
8241     // If multiple ranges are annotated in IR, we give up to annotate assumed
8242     // range for now.
8243 
8244     // TODO:  If there exists a known range which containts assumed range, we
8245     // can say assumed range is better.
8246     if (KnownRanges->getNumOperands() > 2)
8247       return false;
8248 
8249     ConstantInt *Lower =
8250         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8251     ConstantInt *Upper =
8252         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8253 
8254     ConstantRange Known(Lower->getValue(), Upper->getValue());
8255     return Known.contains(Assumed) && Known != Assumed;
8256   }
8257 
8258   /// Helper function to set range metadata.
8259   static bool
8260   setRangeMetadataIfisBetterRange(Instruction *I,
8261                                   const ConstantRange &AssumedConstantRange) {
8262     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8263     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8264       if (!AssumedConstantRange.isEmptySet()) {
8265         I->setMetadata(LLVMContext::MD_range,
8266                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8267                                                  AssumedConstantRange));
8268         return true;
8269       }
8270     }
8271     return false;
8272   }
8273 
8274   /// See AbstractAttribute::manifest()
8275   ChangeStatus manifest(Attributor &A) override {
8276     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8277     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8278     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8279 
8280     auto &V = getAssociatedValue();
8281     if (!AssumedConstantRange.isEmptySet() &&
8282         !AssumedConstantRange.isSingleElement()) {
8283       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8284         assert(I == getCtxI() && "Should not annotate an instruction which is "
8285                                  "not the context instruction");
8286         if (isa<CallInst>(I) || isa<LoadInst>(I))
8287           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8288             Changed = ChangeStatus::CHANGED;
8289       }
8290     }
8291 
8292     return Changed;
8293   }
8294 };
8295 
8296 struct AAValueConstantRangeArgument final
8297     : AAArgumentFromCallSiteArguments<
8298           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8299           true /* BridgeCallBaseContext */> {
8300   using Base = AAArgumentFromCallSiteArguments<
8301       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8302       true /* BridgeCallBaseContext */>;
8303   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8304       : Base(IRP, A) {}
8305 
8306   /// See AbstractAttribute::initialize(..).
8307   void initialize(Attributor &A) override {
8308     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8309       indicatePessimisticFixpoint();
8310     } else {
8311       Base::initialize(A);
8312     }
8313   }
8314 
8315   /// See AbstractAttribute::trackStatistics()
8316   void trackStatistics() const override {
8317     STATS_DECLTRACK_ARG_ATTR(value_range)
8318   }
8319 };
8320 
8321 struct AAValueConstantRangeReturned
8322     : AAReturnedFromReturnedValues<AAValueConstantRange,
8323                                    AAValueConstantRangeImpl,
8324                                    AAValueConstantRangeImpl::StateType,
8325                                    /* PropogateCallBaseContext */ true> {
8326   using Base =
8327       AAReturnedFromReturnedValues<AAValueConstantRange,
8328                                    AAValueConstantRangeImpl,
8329                                    AAValueConstantRangeImpl::StateType,
8330                                    /* PropogateCallBaseContext */ true>;
8331   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8332       : Base(IRP, A) {}
8333 
8334   /// See AbstractAttribute::initialize(...).
8335   void initialize(Attributor &A) override {}
8336 
8337   /// See AbstractAttribute::trackStatistics()
8338   void trackStatistics() const override {
8339     STATS_DECLTRACK_FNRET_ATTR(value_range)
8340   }
8341 };
8342 
8343 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8344   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8345       : AAValueConstantRangeImpl(IRP, A) {}
8346 
8347   /// See AbstractAttribute::initialize(...).
8348   void initialize(Attributor &A) override {
8349     AAValueConstantRangeImpl::initialize(A);
8350     if (isAtFixpoint())
8351       return;
8352 
8353     Value &V = getAssociatedValue();
8354 
8355     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8356       unionAssumed(ConstantRange(C->getValue()));
8357       indicateOptimisticFixpoint();
8358       return;
8359     }
8360 
8361     if (isa<UndefValue>(&V)) {
8362       // Collapse the undef state to 0.
8363       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8364       indicateOptimisticFixpoint();
8365       return;
8366     }
8367 
8368     if (isa<CallBase>(&V))
8369       return;
8370 
8371     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8372       return;
8373 
8374     // If it is a load instruction with range metadata, use it.
8375     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8376       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8377         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8378         return;
8379       }
8380 
8381     // We can work with PHI and select instruction as we traverse their operands
8382     // during update.
8383     if (isa<SelectInst>(V) || isa<PHINode>(V))
8384       return;
8385 
8386     // Otherwise we give up.
8387     indicatePessimisticFixpoint();
8388 
8389     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8390                       << getAssociatedValue() << "\n");
8391   }
8392 
8393   bool calculateBinaryOperator(
8394       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8395       const Instruction *CtxI,
8396       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8397     Value *LHS = BinOp->getOperand(0);
8398     Value *RHS = BinOp->getOperand(1);
8399 
8400     // Simplify the operands first.
8401     bool UsedAssumedInformation = false;
8402     const auto &SimplifiedLHS =
8403         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8404                                *this, UsedAssumedInformation);
8405     if (!SimplifiedLHS.hasValue())
8406       return true;
8407     if (!SimplifiedLHS.getValue())
8408       return false;
8409     LHS = *SimplifiedLHS;
8410 
8411     const auto &SimplifiedRHS =
8412         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8413                                *this, UsedAssumedInformation);
8414     if (!SimplifiedRHS.hasValue())
8415       return true;
8416     if (!SimplifiedRHS.getValue())
8417       return false;
8418     RHS = *SimplifiedRHS;
8419 
8420     // TODO: Allow non integers as well.
8421     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8422       return false;
8423 
8424     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8425         *this, IRPosition::value(*LHS, getCallBaseContext()),
8426         DepClassTy::REQUIRED);
8427     QuerriedAAs.push_back(&LHSAA);
8428     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8429 
8430     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8431         *this, IRPosition::value(*RHS, getCallBaseContext()),
8432         DepClassTy::REQUIRED);
8433     QuerriedAAs.push_back(&RHSAA);
8434     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8435 
8436     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8437 
8438     T.unionAssumed(AssumedRange);
8439 
8440     // TODO: Track a known state too.
8441 
8442     return T.isValidState();
8443   }
8444 
8445   bool calculateCastInst(
8446       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8447       const Instruction *CtxI,
8448       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8449     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8450     // TODO: Allow non integers as well.
8451     Value *OpV = CastI->getOperand(0);
8452 
8453     // Simplify the operand first.
8454     bool UsedAssumedInformation = false;
8455     const auto &SimplifiedOpV =
8456         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8457                                *this, UsedAssumedInformation);
8458     if (!SimplifiedOpV.hasValue())
8459       return true;
8460     if (!SimplifiedOpV.getValue())
8461       return false;
8462     OpV = *SimplifiedOpV;
8463 
8464     if (!OpV->getType()->isIntegerTy())
8465       return false;
8466 
8467     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8468         *this, IRPosition::value(*OpV, getCallBaseContext()),
8469         DepClassTy::REQUIRED);
8470     QuerriedAAs.push_back(&OpAA);
8471     T.unionAssumed(
8472         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8473     return T.isValidState();
8474   }
8475 
8476   bool
8477   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8478                    const Instruction *CtxI,
8479                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8480     Value *LHS = CmpI->getOperand(0);
8481     Value *RHS = CmpI->getOperand(1);
8482 
8483     // Simplify the operands first.
8484     bool UsedAssumedInformation = false;
8485     const auto &SimplifiedLHS =
8486         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8487                                *this, UsedAssumedInformation);
8488     if (!SimplifiedLHS.hasValue())
8489       return true;
8490     if (!SimplifiedLHS.getValue())
8491       return false;
8492     LHS = *SimplifiedLHS;
8493 
8494     const auto &SimplifiedRHS =
8495         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8496                                *this, UsedAssumedInformation);
8497     if (!SimplifiedRHS.hasValue())
8498       return true;
8499     if (!SimplifiedRHS.getValue())
8500       return false;
8501     RHS = *SimplifiedRHS;
8502 
8503     // TODO: Allow non integers as well.
8504     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8505       return false;
8506 
8507     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8508         *this, IRPosition::value(*LHS, getCallBaseContext()),
8509         DepClassTy::REQUIRED);
8510     QuerriedAAs.push_back(&LHSAA);
8511     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8512         *this, IRPosition::value(*RHS, getCallBaseContext()),
8513         DepClassTy::REQUIRED);
8514     QuerriedAAs.push_back(&RHSAA);
8515     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8516     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8517 
8518     // If one of them is empty set, we can't decide.
8519     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8520       return true;
8521 
8522     bool MustTrue = false, MustFalse = false;
8523 
8524     auto AllowedRegion =
8525         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8526 
8527     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8528       MustFalse = true;
8529 
8530     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8531       MustTrue = true;
8532 
8533     assert((!MustTrue || !MustFalse) &&
8534            "Either MustTrue or MustFalse should be false!");
8535 
8536     if (MustTrue)
8537       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8538     else if (MustFalse)
8539       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8540     else
8541       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8542 
8543     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8544                       << " " << RHSAA << "\n");
8545 
8546     // TODO: Track a known state too.
8547     return T.isValidState();
8548   }
8549 
8550   /// See AbstractAttribute::updateImpl(...).
8551   ChangeStatus updateImpl(Attributor &A) override {
8552     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8553                             IntegerRangeState &T, bool Stripped) -> bool {
8554       Instruction *I = dyn_cast<Instruction>(&V);
8555       if (!I || isa<CallBase>(I)) {
8556 
8557         // Simplify the operand first.
8558         bool UsedAssumedInformation = false;
8559         const auto &SimplifiedOpV =
8560             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8561                                    *this, UsedAssumedInformation);
8562         if (!SimplifiedOpV.hasValue())
8563           return true;
8564         if (!SimplifiedOpV.getValue())
8565           return false;
8566         Value *VPtr = *SimplifiedOpV;
8567 
8568         // If the value is not instruction, we query AA to Attributor.
8569         const auto &AA = A.getAAFor<AAValueConstantRange>(
8570             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8571             DepClassTy::REQUIRED);
8572 
8573         // Clamp operator is not used to utilize a program point CtxI.
8574         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8575 
8576         return T.isValidState();
8577       }
8578 
8579       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8580       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8581         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8582           return false;
8583       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8584         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8585           return false;
8586       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8587         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8588           return false;
8589       } else {
8590         // Give up with other instructions.
8591         // TODO: Add other instructions
8592 
8593         T.indicatePessimisticFixpoint();
8594         return false;
8595       }
8596 
8597       // Catch circular reasoning in a pessimistic way for now.
8598       // TODO: Check how the range evolves and if we stripped anything, see also
8599       //       AADereferenceable or AAAlign for similar situations.
8600       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8601         if (QueriedAA != this)
8602           continue;
8603         // If we are in a stady state we do not need to worry.
8604         if (T.getAssumed() == getState().getAssumed())
8605           continue;
8606         T.indicatePessimisticFixpoint();
8607       }
8608 
8609       return T.isValidState();
8610     };
8611 
8612     IntegerRangeState T(getBitWidth());
8613 
8614     bool UsedAssumedInformation = false;
8615     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8616                                                   VisitValueCB, getCtxI(),
8617                                                   UsedAssumedInformation,
8618                                                   /* UseValueSimplify */ false))
8619       return indicatePessimisticFixpoint();
8620 
8621     // Ensure that long def-use chains can't cause circular reasoning either by
8622     // introducing a cutoff below.
8623     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8624       return ChangeStatus::UNCHANGED;
8625     if (++NumChanges > MaxNumChanges) {
8626       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8627                         << " but only " << MaxNumChanges
8628                         << " are allowed to avoid cyclic reasoning.");
8629       return indicatePessimisticFixpoint();
8630     }
8631     return ChangeStatus::CHANGED;
8632   }
8633 
8634   /// See AbstractAttribute::trackStatistics()
8635   void trackStatistics() const override {
8636     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8637   }
8638 
8639   /// Tracker to bail after too many widening steps of the constant range.
8640   int NumChanges = 0;
8641 
8642   /// Upper bound for the number of allowed changes (=widening steps) for the
8643   /// constant range before we give up.
8644   static constexpr int MaxNumChanges = 5;
8645 };
8646 
8647 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8648   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8649       : AAValueConstantRangeImpl(IRP, A) {}
8650 
8651   /// See AbstractAttribute::initialize(...).
8652   ChangeStatus updateImpl(Attributor &A) override {
8653     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8654                      "not be called");
8655   }
8656 
8657   /// See AbstractAttribute::trackStatistics()
8658   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8659 };
8660 
8661 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8662   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8663       : AAValueConstantRangeFunction(IRP, A) {}
8664 
8665   /// See AbstractAttribute::trackStatistics()
8666   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8667 };
8668 
8669 struct AAValueConstantRangeCallSiteReturned
8670     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8671                                      AAValueConstantRangeImpl,
8672                                      AAValueConstantRangeImpl::StateType,
8673                                      /* IntroduceCallBaseContext */ true> {
8674   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8675       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8676                                        AAValueConstantRangeImpl,
8677                                        AAValueConstantRangeImpl::StateType,
8678                                        /* IntroduceCallBaseContext */ true>(IRP,
8679                                                                             A) {
8680   }
8681 
8682   /// See AbstractAttribute::initialize(...).
8683   void initialize(Attributor &A) override {
8684     // If it is a load instruction with range metadata, use the metadata.
8685     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8686       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8687         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8688 
8689     AAValueConstantRangeImpl::initialize(A);
8690   }
8691 
8692   /// See AbstractAttribute::trackStatistics()
8693   void trackStatistics() const override {
8694     STATS_DECLTRACK_CSRET_ATTR(value_range)
8695   }
8696 };
8697 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8698   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8699       : AAValueConstantRangeFloating(IRP, A) {}
8700 
8701   /// See AbstractAttribute::manifest()
8702   ChangeStatus manifest(Attributor &A) override {
8703     return ChangeStatus::UNCHANGED;
8704   }
8705 
8706   /// See AbstractAttribute::trackStatistics()
8707   void trackStatistics() const override {
8708     STATS_DECLTRACK_CSARG_ATTR(value_range)
8709   }
8710 };
8711 
8712 /// ------------------ Potential Values Attribute -------------------------
8713 
8714 struct AAPotentialValuesImpl : AAPotentialValues {
8715   using StateType = PotentialConstantIntValuesState;
8716 
8717   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8718       : AAPotentialValues(IRP, A) {}
8719 
8720   /// See AbstractAttribute::initialize(..).
8721   void initialize(Attributor &A) override {
8722     if (A.hasSimplificationCallback(getIRPosition()))
8723       indicatePessimisticFixpoint();
8724     else
8725       AAPotentialValues::initialize(A);
8726   }
8727 
8728   /// See AbstractAttribute::getAsStr().
8729   const std::string getAsStr() const override {
8730     std::string Str;
8731     llvm::raw_string_ostream OS(Str);
8732     OS << getState();
8733     return OS.str();
8734   }
8735 
8736   /// See AbstractAttribute::updateImpl(...).
8737   ChangeStatus updateImpl(Attributor &A) override {
8738     return indicatePessimisticFixpoint();
8739   }
8740 };
8741 
8742 struct AAPotentialValuesArgument final
8743     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8744                                       PotentialConstantIntValuesState> {
8745   using Base =
8746       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8747                                       PotentialConstantIntValuesState>;
8748   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8749       : Base(IRP, A) {}
8750 
8751   /// See AbstractAttribute::initialize(..).
8752   void initialize(Attributor &A) override {
8753     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8754       indicatePessimisticFixpoint();
8755     } else {
8756       Base::initialize(A);
8757     }
8758   }
8759 
8760   /// See AbstractAttribute::trackStatistics()
8761   void trackStatistics() const override {
8762     STATS_DECLTRACK_ARG_ATTR(potential_values)
8763   }
8764 };
8765 
8766 struct AAPotentialValuesReturned
8767     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8768   using Base =
8769       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8770   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8771       : Base(IRP, A) {}
8772 
8773   /// See AbstractAttribute::trackStatistics()
8774   void trackStatistics() const override {
8775     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8776   }
8777 };
8778 
8779 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8780   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8781       : AAPotentialValuesImpl(IRP, A) {}
8782 
8783   /// See AbstractAttribute::initialize(..).
8784   void initialize(Attributor &A) override {
8785     AAPotentialValuesImpl::initialize(A);
8786     if (isAtFixpoint())
8787       return;
8788 
8789     Value &V = getAssociatedValue();
8790 
8791     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8792       unionAssumed(C->getValue());
8793       indicateOptimisticFixpoint();
8794       return;
8795     }
8796 
8797     if (isa<UndefValue>(&V)) {
8798       unionAssumedWithUndef();
8799       indicateOptimisticFixpoint();
8800       return;
8801     }
8802 
8803     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8804       return;
8805 
8806     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8807       return;
8808 
8809     indicatePessimisticFixpoint();
8810 
8811     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8812                       << getAssociatedValue() << "\n");
8813   }
8814 
8815   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8816                                 const APInt &RHS) {
8817     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8818   }
8819 
8820   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8821                                  uint32_t ResultBitWidth) {
8822     Instruction::CastOps CastOp = CI->getOpcode();
8823     switch (CastOp) {
8824     default:
8825       llvm_unreachable("unsupported or not integer cast");
8826     case Instruction::Trunc:
8827       return Src.trunc(ResultBitWidth);
8828     case Instruction::SExt:
8829       return Src.sext(ResultBitWidth);
8830     case Instruction::ZExt:
8831       return Src.zext(ResultBitWidth);
8832     case Instruction::BitCast:
8833       return Src;
8834     }
8835   }
8836 
8837   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8838                                        const APInt &LHS, const APInt &RHS,
8839                                        bool &SkipOperation, bool &Unsupported) {
8840     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8841     // Unsupported is set to true when the binary operator is not supported.
8842     // SkipOperation is set to true when UB occur with the given operand pair
8843     // (LHS, RHS).
8844     // TODO: we should look at nsw and nuw keywords to handle operations
8845     //       that create poison or undef value.
8846     switch (BinOpcode) {
8847     default:
8848       Unsupported = true;
8849       return LHS;
8850     case Instruction::Add:
8851       return LHS + RHS;
8852     case Instruction::Sub:
8853       return LHS - RHS;
8854     case Instruction::Mul:
8855       return LHS * RHS;
8856     case Instruction::UDiv:
8857       if (RHS.isZero()) {
8858         SkipOperation = true;
8859         return LHS;
8860       }
8861       return LHS.udiv(RHS);
8862     case Instruction::SDiv:
8863       if (RHS.isZero()) {
8864         SkipOperation = true;
8865         return LHS;
8866       }
8867       return LHS.sdiv(RHS);
8868     case Instruction::URem:
8869       if (RHS.isZero()) {
8870         SkipOperation = true;
8871         return LHS;
8872       }
8873       return LHS.urem(RHS);
8874     case Instruction::SRem:
8875       if (RHS.isZero()) {
8876         SkipOperation = true;
8877         return LHS;
8878       }
8879       return LHS.srem(RHS);
8880     case Instruction::Shl:
8881       return LHS.shl(RHS);
8882     case Instruction::LShr:
8883       return LHS.lshr(RHS);
8884     case Instruction::AShr:
8885       return LHS.ashr(RHS);
8886     case Instruction::And:
8887       return LHS & RHS;
8888     case Instruction::Or:
8889       return LHS | RHS;
8890     case Instruction::Xor:
8891       return LHS ^ RHS;
8892     }
8893   }
8894 
8895   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8896                                            const APInt &LHS, const APInt &RHS) {
8897     bool SkipOperation = false;
8898     bool Unsupported = false;
8899     APInt Result =
8900         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8901     if (Unsupported)
8902       return false;
8903     // If SkipOperation is true, we can ignore this operand pair (L, R).
8904     if (!SkipOperation)
8905       unionAssumed(Result);
8906     return isValidState();
8907   }
8908 
8909   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8910     auto AssumedBefore = getAssumed();
8911     Value *LHS = ICI->getOperand(0);
8912     Value *RHS = ICI->getOperand(1);
8913 
8914     // Simplify the operands first.
8915     bool UsedAssumedInformation = false;
8916     const auto &SimplifiedLHS =
8917         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8918                                *this, UsedAssumedInformation);
8919     if (!SimplifiedLHS.hasValue())
8920       return ChangeStatus::UNCHANGED;
8921     if (!SimplifiedLHS.getValue())
8922       return indicatePessimisticFixpoint();
8923     LHS = *SimplifiedLHS;
8924 
8925     const auto &SimplifiedRHS =
8926         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8927                                *this, UsedAssumedInformation);
8928     if (!SimplifiedRHS.hasValue())
8929       return ChangeStatus::UNCHANGED;
8930     if (!SimplifiedRHS.getValue())
8931       return indicatePessimisticFixpoint();
8932     RHS = *SimplifiedRHS;
8933 
8934     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8935       return indicatePessimisticFixpoint();
8936 
8937     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8938                                                 DepClassTy::REQUIRED);
8939     if (!LHSAA.isValidState())
8940       return indicatePessimisticFixpoint();
8941 
8942     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8943                                                 DepClassTy::REQUIRED);
8944     if (!RHSAA.isValidState())
8945       return indicatePessimisticFixpoint();
8946 
8947     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8948     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8949 
8950     // TODO: make use of undef flag to limit potential values aggressively.
8951     bool MaybeTrue = false, MaybeFalse = false;
8952     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8953     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8954       // The result of any comparison between undefs can be soundly replaced
8955       // with undef.
8956       unionAssumedWithUndef();
8957     } else if (LHSAA.undefIsContained()) {
8958       for (const APInt &R : RHSAAPVS) {
8959         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8960         MaybeTrue |= CmpResult;
8961         MaybeFalse |= !CmpResult;
8962         if (MaybeTrue & MaybeFalse)
8963           return indicatePessimisticFixpoint();
8964       }
8965     } else if (RHSAA.undefIsContained()) {
8966       for (const APInt &L : LHSAAPVS) {
8967         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8968         MaybeTrue |= CmpResult;
8969         MaybeFalse |= !CmpResult;
8970         if (MaybeTrue & MaybeFalse)
8971           return indicatePessimisticFixpoint();
8972       }
8973     } else {
8974       for (const APInt &L : LHSAAPVS) {
8975         for (const APInt &R : RHSAAPVS) {
8976           bool CmpResult = calculateICmpInst(ICI, L, R);
8977           MaybeTrue |= CmpResult;
8978           MaybeFalse |= !CmpResult;
8979           if (MaybeTrue & MaybeFalse)
8980             return indicatePessimisticFixpoint();
8981         }
8982       }
8983     }
8984     if (MaybeTrue)
8985       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8986     if (MaybeFalse)
8987       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8988     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8989                                          : ChangeStatus::CHANGED;
8990   }
8991 
8992   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8993     auto AssumedBefore = getAssumed();
8994     Value *LHS = SI->getTrueValue();
8995     Value *RHS = SI->getFalseValue();
8996 
8997     // Simplify the operands first.
8998     bool UsedAssumedInformation = false;
8999     const auto &SimplifiedLHS =
9000         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9001                                *this, UsedAssumedInformation);
9002     if (!SimplifiedLHS.hasValue())
9003       return ChangeStatus::UNCHANGED;
9004     if (!SimplifiedLHS.getValue())
9005       return indicatePessimisticFixpoint();
9006     LHS = *SimplifiedLHS;
9007 
9008     const auto &SimplifiedRHS =
9009         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9010                                *this, UsedAssumedInformation);
9011     if (!SimplifiedRHS.hasValue())
9012       return ChangeStatus::UNCHANGED;
9013     if (!SimplifiedRHS.getValue())
9014       return indicatePessimisticFixpoint();
9015     RHS = *SimplifiedRHS;
9016 
9017     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9018       return indicatePessimisticFixpoint();
9019 
9020     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
9021                                                   UsedAssumedInformation);
9022 
9023     // Check if we only need one operand.
9024     bool OnlyLeft = false, OnlyRight = false;
9025     if (C.hasValue() && *C && (*C)->isOneValue())
9026       OnlyLeft = true;
9027     else if (C.hasValue() && *C && (*C)->isZeroValue())
9028       OnlyRight = true;
9029 
9030     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
9031     if (!OnlyRight) {
9032       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9033                                              DepClassTy::REQUIRED);
9034       if (!LHSAA->isValidState())
9035         return indicatePessimisticFixpoint();
9036     }
9037     if (!OnlyLeft) {
9038       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9039                                              DepClassTy::REQUIRED);
9040       if (!RHSAA->isValidState())
9041         return indicatePessimisticFixpoint();
9042     }
9043 
9044     if (!LHSAA || !RHSAA) {
9045       // select (true/false), lhs, rhs
9046       auto *OpAA = LHSAA ? LHSAA : RHSAA;
9047 
9048       if (OpAA->undefIsContained())
9049         unionAssumedWithUndef();
9050       else
9051         unionAssumed(*OpAA);
9052 
9053     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
9054       // select i1 *, undef , undef => undef
9055       unionAssumedWithUndef();
9056     } else {
9057       unionAssumed(*LHSAA);
9058       unionAssumed(*RHSAA);
9059     }
9060     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9061                                          : ChangeStatus::CHANGED;
9062   }
9063 
9064   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9065     auto AssumedBefore = getAssumed();
9066     if (!CI->isIntegerCast())
9067       return indicatePessimisticFixpoint();
9068     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9069     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9070     Value *Src = CI->getOperand(0);
9071 
9072     // Simplify the operand first.
9073     bool UsedAssumedInformation = false;
9074     const auto &SimplifiedSrc =
9075         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
9076                                *this, UsedAssumedInformation);
9077     if (!SimplifiedSrc.hasValue())
9078       return ChangeStatus::UNCHANGED;
9079     if (!SimplifiedSrc.getValue())
9080       return indicatePessimisticFixpoint();
9081     Src = *SimplifiedSrc;
9082 
9083     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
9084                                                 DepClassTy::REQUIRED);
9085     if (!SrcAA.isValidState())
9086       return indicatePessimisticFixpoint();
9087     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
9088     if (SrcAA.undefIsContained())
9089       unionAssumedWithUndef();
9090     else {
9091       for (const APInt &S : SrcAAPVS) {
9092         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9093         unionAssumed(T);
9094       }
9095     }
9096     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9097                                          : ChangeStatus::CHANGED;
9098   }
9099 
9100   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9101     auto AssumedBefore = getAssumed();
9102     Value *LHS = BinOp->getOperand(0);
9103     Value *RHS = BinOp->getOperand(1);
9104 
9105     // Simplify the operands first.
9106     bool UsedAssumedInformation = false;
9107     const auto &SimplifiedLHS =
9108         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9109                                *this, UsedAssumedInformation);
9110     if (!SimplifiedLHS.hasValue())
9111       return ChangeStatus::UNCHANGED;
9112     if (!SimplifiedLHS.getValue())
9113       return indicatePessimisticFixpoint();
9114     LHS = *SimplifiedLHS;
9115 
9116     const auto &SimplifiedRHS =
9117         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9118                                *this, UsedAssumedInformation);
9119     if (!SimplifiedRHS.hasValue())
9120       return ChangeStatus::UNCHANGED;
9121     if (!SimplifiedRHS.getValue())
9122       return indicatePessimisticFixpoint();
9123     RHS = *SimplifiedRHS;
9124 
9125     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9126       return indicatePessimisticFixpoint();
9127 
9128     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9129                                                 DepClassTy::REQUIRED);
9130     if (!LHSAA.isValidState())
9131       return indicatePessimisticFixpoint();
9132 
9133     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9134                                                 DepClassTy::REQUIRED);
9135     if (!RHSAA.isValidState())
9136       return indicatePessimisticFixpoint();
9137 
9138     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9139     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9140     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9141 
9142     // TODO: make use of undef flag to limit potential values aggressively.
9143     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9144       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9145         return indicatePessimisticFixpoint();
9146     } else if (LHSAA.undefIsContained()) {
9147       for (const APInt &R : RHSAAPVS) {
9148         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9149           return indicatePessimisticFixpoint();
9150       }
9151     } else if (RHSAA.undefIsContained()) {
9152       for (const APInt &L : LHSAAPVS) {
9153         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9154           return indicatePessimisticFixpoint();
9155       }
9156     } else {
9157       for (const APInt &L : LHSAAPVS) {
9158         for (const APInt &R : RHSAAPVS) {
9159           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9160             return indicatePessimisticFixpoint();
9161         }
9162       }
9163     }
9164     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9165                                          : ChangeStatus::CHANGED;
9166   }
9167 
9168   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9169     auto AssumedBefore = getAssumed();
9170     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9171       Value *IncomingValue = PHI->getIncomingValue(u);
9172 
9173       // Simplify the operand first.
9174       bool UsedAssumedInformation = false;
9175       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9176           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9177           UsedAssumedInformation);
9178       if (!SimplifiedIncomingValue.hasValue())
9179         continue;
9180       if (!SimplifiedIncomingValue.getValue())
9181         return indicatePessimisticFixpoint();
9182       IncomingValue = *SimplifiedIncomingValue;
9183 
9184       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9185           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9186       if (!PotentialValuesAA.isValidState())
9187         return indicatePessimisticFixpoint();
9188       if (PotentialValuesAA.undefIsContained())
9189         unionAssumedWithUndef();
9190       else
9191         unionAssumed(PotentialValuesAA.getAssumed());
9192     }
9193     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9194                                          : ChangeStatus::CHANGED;
9195   }
9196 
9197   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9198     if (!L.getType()->isIntegerTy())
9199       return indicatePessimisticFixpoint();
9200 
9201     auto Union = [&](Value &V) {
9202       if (isa<UndefValue>(V)) {
9203         unionAssumedWithUndef();
9204         return true;
9205       }
9206       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9207         unionAssumed(CI->getValue());
9208         return true;
9209       }
9210       return false;
9211     };
9212     auto AssumedBefore = getAssumed();
9213 
9214     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9215       return indicatePessimisticFixpoint();
9216 
9217     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9218                                          : ChangeStatus::CHANGED;
9219   }
9220 
9221   /// See AbstractAttribute::updateImpl(...).
9222   ChangeStatus updateImpl(Attributor &A) override {
9223     Value &V = getAssociatedValue();
9224     Instruction *I = dyn_cast<Instruction>(&V);
9225 
9226     if (auto *ICI = dyn_cast<ICmpInst>(I))
9227       return updateWithICmpInst(A, ICI);
9228 
9229     if (auto *SI = dyn_cast<SelectInst>(I))
9230       return updateWithSelectInst(A, SI);
9231 
9232     if (auto *CI = dyn_cast<CastInst>(I))
9233       return updateWithCastInst(A, CI);
9234 
9235     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9236       return updateWithBinaryOperator(A, BinOp);
9237 
9238     if (auto *PHI = dyn_cast<PHINode>(I))
9239       return updateWithPHINode(A, PHI);
9240 
9241     if (auto *L = dyn_cast<LoadInst>(I))
9242       return updateWithLoad(A, *L);
9243 
9244     return indicatePessimisticFixpoint();
9245   }
9246 
9247   /// See AbstractAttribute::trackStatistics()
9248   void trackStatistics() const override {
9249     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9250   }
9251 };
9252 
9253 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9254   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9255       : AAPotentialValuesImpl(IRP, A) {}
9256 
9257   /// See AbstractAttribute::initialize(...).
9258   ChangeStatus updateImpl(Attributor &A) override {
9259     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9260                      "not be called");
9261   }
9262 
9263   /// See AbstractAttribute::trackStatistics()
9264   void trackStatistics() const override {
9265     STATS_DECLTRACK_FN_ATTR(potential_values)
9266   }
9267 };
9268 
9269 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9270   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9271       : AAPotentialValuesFunction(IRP, A) {}
9272 
9273   /// See AbstractAttribute::trackStatistics()
9274   void trackStatistics() const override {
9275     STATS_DECLTRACK_CS_ATTR(potential_values)
9276   }
9277 };
9278 
9279 struct AAPotentialValuesCallSiteReturned
9280     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9281   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9282       : AACallSiteReturnedFromReturned<AAPotentialValues,
9283                                        AAPotentialValuesImpl>(IRP, A) {}
9284 
9285   /// See AbstractAttribute::trackStatistics()
9286   void trackStatistics() const override {
9287     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9288   }
9289 };
9290 
9291 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9292   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9293       : AAPotentialValuesFloating(IRP, A) {}
9294 
9295   /// See AbstractAttribute::initialize(..).
9296   void initialize(Attributor &A) override {
9297     AAPotentialValuesImpl::initialize(A);
9298     if (isAtFixpoint())
9299       return;
9300 
9301     Value &V = getAssociatedValue();
9302 
9303     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9304       unionAssumed(C->getValue());
9305       indicateOptimisticFixpoint();
9306       return;
9307     }
9308 
9309     if (isa<UndefValue>(&V)) {
9310       unionAssumedWithUndef();
9311       indicateOptimisticFixpoint();
9312       return;
9313     }
9314   }
9315 
9316   /// See AbstractAttribute::updateImpl(...).
9317   ChangeStatus updateImpl(Attributor &A) override {
9318     Value &V = getAssociatedValue();
9319     auto AssumedBefore = getAssumed();
9320     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9321                                              DepClassTy::REQUIRED);
9322     const auto &S = AA.getAssumed();
9323     unionAssumed(S);
9324     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9325                                          : ChangeStatus::CHANGED;
9326   }
9327 
9328   /// See AbstractAttribute::trackStatistics()
9329   void trackStatistics() const override {
9330     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9331   }
9332 };
9333 
9334 /// ------------------------ NoUndef Attribute ---------------------------------
9335 struct AANoUndefImpl : AANoUndef {
9336   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9337 
9338   /// See AbstractAttribute::initialize(...).
9339   void initialize(Attributor &A) override {
9340     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9341       indicateOptimisticFixpoint();
9342       return;
9343     }
9344     Value &V = getAssociatedValue();
9345     if (isa<UndefValue>(V))
9346       indicatePessimisticFixpoint();
9347     else if (isa<FreezeInst>(V))
9348       indicateOptimisticFixpoint();
9349     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9350              isGuaranteedNotToBeUndefOrPoison(&V))
9351       indicateOptimisticFixpoint();
9352     else
9353       AANoUndef::initialize(A);
9354   }
9355 
9356   /// See followUsesInMBEC
9357   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9358                        AANoUndef::StateType &State) {
9359     const Value *UseV = U->get();
9360     const DominatorTree *DT = nullptr;
9361     AssumptionCache *AC = nullptr;
9362     InformationCache &InfoCache = A.getInfoCache();
9363     if (Function *F = getAnchorScope()) {
9364       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9365       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9366     }
9367     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9368     bool TrackUse = false;
9369     // Track use for instructions which must produce undef or poison bits when
9370     // at least one operand contains such bits.
9371     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9372       TrackUse = true;
9373     return TrackUse;
9374   }
9375 
9376   /// See AbstractAttribute::getAsStr().
9377   const std::string getAsStr() const override {
9378     return getAssumed() ? "noundef" : "may-undef-or-poison";
9379   }
9380 
9381   ChangeStatus manifest(Attributor &A) override {
9382     // We don't manifest noundef attribute for dead positions because the
9383     // associated values with dead positions would be replaced with undef
9384     // values.
9385     bool UsedAssumedInformation = false;
9386     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9387                         UsedAssumedInformation))
9388       return ChangeStatus::UNCHANGED;
9389     // A position whose simplified value does not have any value is
9390     // considered to be dead. We don't manifest noundef in such positions for
9391     // the same reason above.
9392     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9393              .hasValue())
9394       return ChangeStatus::UNCHANGED;
9395     return AANoUndef::manifest(A);
9396   }
9397 };
9398 
9399 struct AANoUndefFloating : public AANoUndefImpl {
9400   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9401       : AANoUndefImpl(IRP, A) {}
9402 
9403   /// See AbstractAttribute::initialize(...).
9404   void initialize(Attributor &A) override {
9405     AANoUndefImpl::initialize(A);
9406     if (!getState().isAtFixpoint())
9407       if (Instruction *CtxI = getCtxI())
9408         followUsesInMBEC(*this, A, getState(), *CtxI);
9409   }
9410 
9411   /// See AbstractAttribute::updateImpl(...).
9412   ChangeStatus updateImpl(Attributor &A) override {
9413     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9414                             AANoUndef::StateType &T, bool Stripped) -> bool {
9415       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9416                                              DepClassTy::REQUIRED);
9417       if (!Stripped && this == &AA) {
9418         T.indicatePessimisticFixpoint();
9419       } else {
9420         const AANoUndef::StateType &S =
9421             static_cast<const AANoUndef::StateType &>(AA.getState());
9422         T ^= S;
9423       }
9424       return T.isValidState();
9425     };
9426 
9427     StateType T;
9428     bool UsedAssumedInformation = false;
9429     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9430                                           VisitValueCB, getCtxI(),
9431                                           UsedAssumedInformation))
9432       return indicatePessimisticFixpoint();
9433 
9434     return clampStateAndIndicateChange(getState(), T);
9435   }
9436 
9437   /// See AbstractAttribute::trackStatistics()
9438   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9439 };
9440 
9441 struct AANoUndefReturned final
9442     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9443   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9444       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9445 
9446   /// See AbstractAttribute::trackStatistics()
9447   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9448 };
9449 
9450 struct AANoUndefArgument final
9451     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9452   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9453       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9454 
9455   /// See AbstractAttribute::trackStatistics()
9456   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9457 };
9458 
9459 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9460   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9461       : AANoUndefFloating(IRP, A) {}
9462 
9463   /// See AbstractAttribute::trackStatistics()
9464   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9465 };
9466 
9467 struct AANoUndefCallSiteReturned final
9468     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9469   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9470       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9471 
9472   /// See AbstractAttribute::trackStatistics()
9473   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9474 };
9475 
9476 struct AACallEdgesImpl : public AACallEdges {
9477   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9478 
9479   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9480     return CalledFunctions;
9481   }
9482 
9483   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9484 
9485   virtual bool hasNonAsmUnknownCallee() const override {
9486     return HasUnknownCalleeNonAsm;
9487   }
9488 
9489   const std::string getAsStr() const override {
9490     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9491            std::to_string(CalledFunctions.size()) + "]";
9492   }
9493 
9494   void trackStatistics() const override {}
9495 
9496 protected:
9497   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9498     if (CalledFunctions.insert(Fn)) {
9499       Change = ChangeStatus::CHANGED;
9500       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9501                         << "\n");
9502     }
9503   }
9504 
9505   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9506     if (!HasUnknownCallee)
9507       Change = ChangeStatus::CHANGED;
9508     if (NonAsm && !HasUnknownCalleeNonAsm)
9509       Change = ChangeStatus::CHANGED;
9510     HasUnknownCalleeNonAsm |= NonAsm;
9511     HasUnknownCallee = true;
9512   }
9513 
9514 private:
9515   /// Optimistic set of functions that might be called by this position.
9516   SetVector<Function *> CalledFunctions;
9517 
9518   /// Is there any call with a unknown callee.
9519   bool HasUnknownCallee = false;
9520 
9521   /// Is there any call with a unknown callee, excluding any inline asm.
9522   bool HasUnknownCalleeNonAsm = false;
9523 };
9524 
9525 struct AACallEdgesCallSite : public AACallEdgesImpl {
9526   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9527       : AACallEdgesImpl(IRP, A) {}
9528   /// See AbstractAttribute::updateImpl(...).
9529   ChangeStatus updateImpl(Attributor &A) override {
9530     ChangeStatus Change = ChangeStatus::UNCHANGED;
9531 
9532     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9533                           bool Stripped) -> bool {
9534       if (Function *Fn = dyn_cast<Function>(&V)) {
9535         addCalledFunction(Fn, Change);
9536       } else {
9537         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9538         setHasUnknownCallee(true, Change);
9539       }
9540 
9541       // Explore all values.
9542       return true;
9543     };
9544 
9545     // Process any value that we might call.
9546     auto ProcessCalledOperand = [&](Value *V) {
9547       bool DummyValue = false;
9548       bool UsedAssumedInformation = false;
9549       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9550                                        DummyValue, VisitValue, nullptr,
9551                                        UsedAssumedInformation, false)) {
9552         // If we haven't gone through all values, assume that there are unknown
9553         // callees.
9554         setHasUnknownCallee(true, Change);
9555       }
9556     };
9557 
9558     CallBase *CB = cast<CallBase>(getCtxI());
9559 
9560     if (CB->isInlineAsm()) {
9561       setHasUnknownCallee(false, Change);
9562       return Change;
9563     }
9564 
9565     // Process callee metadata if available.
9566     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9567       for (auto &Op : MD->operands()) {
9568         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9569         if (Callee)
9570           addCalledFunction(Callee, Change);
9571       }
9572       return Change;
9573     }
9574 
9575     // The most simple case.
9576     ProcessCalledOperand(CB->getCalledOperand());
9577 
9578     // Process callback functions.
9579     SmallVector<const Use *, 4u> CallbackUses;
9580     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9581     for (const Use *U : CallbackUses)
9582       ProcessCalledOperand(U->get());
9583 
9584     return Change;
9585   }
9586 };
9587 
9588 struct AACallEdgesFunction : public AACallEdgesImpl {
9589   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9590       : AACallEdgesImpl(IRP, A) {}
9591 
9592   /// See AbstractAttribute::updateImpl(...).
9593   ChangeStatus updateImpl(Attributor &A) override {
9594     ChangeStatus Change = ChangeStatus::UNCHANGED;
9595 
9596     auto ProcessCallInst = [&](Instruction &Inst) {
9597       CallBase &CB = cast<CallBase>(Inst);
9598 
9599       auto &CBEdges = A.getAAFor<AACallEdges>(
9600           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9601       if (CBEdges.hasNonAsmUnknownCallee())
9602         setHasUnknownCallee(true, Change);
9603       if (CBEdges.hasUnknownCallee())
9604         setHasUnknownCallee(false, Change);
9605 
9606       for (Function *F : CBEdges.getOptimisticEdges())
9607         addCalledFunction(F, Change);
9608 
9609       return true;
9610     };
9611 
9612     // Visit all callable instructions.
9613     bool UsedAssumedInformation = false;
9614     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9615                                            UsedAssumedInformation,
9616                                            /* CheckBBLivenessOnly */ true)) {
9617       // If we haven't looked at all call like instructions, assume that there
9618       // are unknown callees.
9619       setHasUnknownCallee(true, Change);
9620     }
9621 
9622     return Change;
9623   }
9624 };
9625 
9626 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9627 private:
9628   struct QuerySet {
9629     void markReachable(const Function &Fn) {
9630       Reachable.insert(&Fn);
9631       Unreachable.erase(&Fn);
9632     }
9633 
9634     /// If there is no information about the function None is returned.
9635     Optional<bool> isCachedReachable(const Function &Fn) {
9636       // Assume that we can reach the function.
9637       // TODO: Be more specific with the unknown callee.
9638       if (CanReachUnknownCallee)
9639         return true;
9640 
9641       if (Reachable.count(&Fn))
9642         return true;
9643 
9644       if (Unreachable.count(&Fn))
9645         return false;
9646 
9647       return llvm::None;
9648     }
9649 
9650     /// Set of functions that we know for sure is reachable.
9651     DenseSet<const Function *> Reachable;
9652 
9653     /// Set of functions that are unreachable, but might become reachable.
9654     DenseSet<const Function *> Unreachable;
9655 
9656     /// If we can reach a function with a call to a unknown function we assume
9657     /// that we can reach any function.
9658     bool CanReachUnknownCallee = false;
9659   };
9660 
9661   struct QueryResolver : public QuerySet {
9662     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9663                         ArrayRef<const AACallEdges *> AAEdgesList) {
9664       ChangeStatus Change = ChangeStatus::UNCHANGED;
9665 
9666       for (auto *AAEdges : AAEdgesList) {
9667         if (AAEdges->hasUnknownCallee()) {
9668           if (!CanReachUnknownCallee)
9669             Change = ChangeStatus::CHANGED;
9670           CanReachUnknownCallee = true;
9671           return Change;
9672         }
9673       }
9674 
9675       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9676         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9677           Change = ChangeStatus::CHANGED;
9678           markReachable(*Fn);
9679         }
9680       }
9681       return Change;
9682     }
9683 
9684     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9685                      ArrayRef<const AACallEdges *> AAEdgesList,
9686                      const Function &Fn) {
9687       Optional<bool> Cached = isCachedReachable(Fn);
9688       if (Cached.hasValue())
9689         return Cached.getValue();
9690 
9691       // The query was not cached, thus it is new. We need to request an update
9692       // explicitly to make sure this the information is properly run to a
9693       // fixpoint.
9694       A.registerForUpdate(AA);
9695 
9696       // We need to assume that this function can't reach Fn to prevent
9697       // an infinite loop if this function is recursive.
9698       Unreachable.insert(&Fn);
9699 
9700       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9701       if (Result)
9702         markReachable(Fn);
9703       return Result;
9704     }
9705 
9706     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9707                           ArrayRef<const AACallEdges *> AAEdgesList,
9708                           const Function &Fn) const {
9709 
9710       // Handle the most trivial case first.
9711       for (auto *AAEdges : AAEdgesList) {
9712         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9713 
9714         if (Edges.count(const_cast<Function *>(&Fn)))
9715           return true;
9716       }
9717 
9718       SmallVector<const AAFunctionReachability *, 8> Deps;
9719       for (auto &AAEdges : AAEdgesList) {
9720         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9721 
9722         for (Function *Edge : Edges) {
9723           // We don't need a dependency if the result is reachable.
9724           const AAFunctionReachability &EdgeReachability =
9725               A.getAAFor<AAFunctionReachability>(
9726                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9727           Deps.push_back(&EdgeReachability);
9728 
9729           if (EdgeReachability.canReach(A, Fn))
9730             return true;
9731         }
9732       }
9733 
9734       // The result is false for now, set dependencies and leave.
9735       for (auto *Dep : Deps)
9736         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9737 
9738       return false;
9739     }
9740   };
9741 
9742   /// Get call edges that can be reached by this instruction.
9743   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9744                              const Instruction &Inst,
9745                              SmallVector<const AACallEdges *> &Result) const {
9746     // Determine call like instructions that we can reach from the inst.
9747     auto CheckCallBase = [&](Instruction &CBInst) {
9748       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9749         return true;
9750 
9751       auto &CB = cast<CallBase>(CBInst);
9752       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9753           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9754 
9755       Result.push_back(&AAEdges);
9756       return true;
9757     };
9758 
9759     bool UsedAssumedInformation = false;
9760     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9761                                              UsedAssumedInformation,
9762                                              /* CheckBBLivenessOnly */ true);
9763   }
9764 
9765 public:
9766   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9767       : AAFunctionReachability(IRP, A) {}
9768 
9769   bool canReach(Attributor &A, const Function &Fn) const override {
9770     if (!isValidState())
9771       return true;
9772 
9773     const AACallEdges &AAEdges =
9774         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9775 
9776     // Attributor returns attributes as const, so this function has to be
9777     // const for users of this attribute to use it without having to do
9778     // a const_cast.
9779     // This is a hack for us to be able to cache queries.
9780     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9781     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9782                                                           {&AAEdges}, Fn);
9783 
9784     return Result;
9785   }
9786 
9787   /// Can \p CB reach \p Fn
9788   bool canReach(Attributor &A, CallBase &CB,
9789                 const Function &Fn) const override {
9790     if (!isValidState())
9791       return true;
9792 
9793     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9794         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9795 
9796     // Attributor returns attributes as const, so this function has to be
9797     // const for users of this attribute to use it without having to do
9798     // a const_cast.
9799     // This is a hack for us to be able to cache queries.
9800     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9801     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9802 
9803     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9804 
9805     return Result;
9806   }
9807 
9808   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9809                            const Function &Fn,
9810                            bool UseBackwards) const override {
9811     if (!isValidState())
9812       return true;
9813 
9814     if (UseBackwards)
9815       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9816 
9817     const auto &Reachability = A.getAAFor<AAReachability>(
9818         *this, IRPosition::function(*getAssociatedFunction()),
9819         DepClassTy::REQUIRED);
9820 
9821     SmallVector<const AACallEdges *> CallEdges;
9822     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9823     // Attributor returns attributes as const, so this function has to be
9824     // const for users of this attribute to use it without having to do
9825     // a const_cast.
9826     // This is a hack for us to be able to cache queries.
9827     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9828     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9829     if (!AllKnown)
9830       InstQSet.CanReachUnknownCallee = true;
9831 
9832     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9833   }
9834 
9835   /// See AbstractAttribute::updateImpl(...).
9836   ChangeStatus updateImpl(Attributor &A) override {
9837     const AACallEdges &AAEdges =
9838         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9839     ChangeStatus Change = ChangeStatus::UNCHANGED;
9840 
9841     Change |= WholeFunction.update(A, *this, {&AAEdges});
9842 
9843     for (auto &CBPair : CBQueries) {
9844       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9845           *this, IRPosition::callsite_function(*CBPair.first),
9846           DepClassTy::REQUIRED);
9847 
9848       Change |= CBPair.second.update(A, *this, {&AAEdges});
9849     }
9850 
9851     // Update the Instruction queries.
9852     if (!InstQueries.empty()) {
9853       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9854           *this, IRPosition::function(*getAssociatedFunction()),
9855           DepClassTy::REQUIRED);
9856 
9857       // Check for local callbases first.
9858       for (auto &InstPair : InstQueries) {
9859         SmallVector<const AACallEdges *> CallEdges;
9860         bool AllKnown =
9861             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9862         // Update will return change if we this effects any queries.
9863         if (!AllKnown)
9864           InstPair.second.CanReachUnknownCallee = true;
9865         Change |= InstPair.second.update(A, *this, CallEdges);
9866       }
9867     }
9868 
9869     return Change;
9870   }
9871 
9872   const std::string getAsStr() const override {
9873     size_t QueryCount =
9874         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9875 
9876     return "FunctionReachability [" +
9877            std::to_string(WholeFunction.Reachable.size()) + "," +
9878            std::to_string(QueryCount) + "]";
9879   }
9880 
9881   void trackStatistics() const override {}
9882 
9883 private:
9884   bool canReachUnknownCallee() const override {
9885     return WholeFunction.CanReachUnknownCallee;
9886   }
9887 
9888   /// Used to answer if a the whole function can reacha a specific function.
9889   QueryResolver WholeFunction;
9890 
9891   /// Used to answer if a call base inside this function can reach a specific
9892   /// function.
9893   DenseMap<const CallBase *, QueryResolver> CBQueries;
9894 
9895   /// This is for instruction queries than scan "forward".
9896   DenseMap<const Instruction *, QueryResolver> InstQueries;
9897 };
9898 
9899 /// ---------------------- Assumption Propagation ------------------------------
9900 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9901   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9902                        const DenseSet<StringRef> &Known)
9903       : AAAssumptionInfo(IRP, A, Known) {}
9904 
9905   bool hasAssumption(const StringRef Assumption) const override {
9906     return isValidState() && setContains(Assumption);
9907   }
9908 
9909   /// See AbstractAttribute::getAsStr()
9910   const std::string getAsStr() const override {
9911     const SetContents &Known = getKnown();
9912     const SetContents &Assumed = getAssumed();
9913 
9914     const std::string KnownStr =
9915         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9916     const std::string AssumedStr =
9917         (Assumed.isUniversal())
9918             ? "Universal"
9919             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9920 
9921     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9922   }
9923 };
9924 
9925 /// Propagates assumption information from parent functions to all of their
9926 /// successors. An assumption can be propagated if the containing function
9927 /// dominates the called function.
9928 ///
9929 /// We start with a "known" set of assumptions already valid for the associated
9930 /// function and an "assumed" set that initially contains all possible
9931 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
9932 /// contents as concrete values are known. The concrete values are seeded by the
9933 /// first nodes that are either entries into the call graph, or contains no
9934 /// assumptions. Each node is updated as the intersection of the assumed state
9935 /// with all of its predecessors.
9936 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
9937   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
9938       : AAAssumptionInfoImpl(IRP, A,
9939                              getAssumptions(*IRP.getAssociatedFunction())) {}
9940 
9941   /// See AbstractAttribute::manifest(...).
9942   ChangeStatus manifest(Attributor &A) override {
9943     const auto &Assumptions = getKnown();
9944 
9945     // Don't manifest a universal set if it somehow made it here.
9946     if (Assumptions.isUniversal())
9947       return ChangeStatus::UNCHANGED;
9948 
9949     Function *AssociatedFunction = getAssociatedFunction();
9950 
9951     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
9952 
9953     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9954   }
9955 
9956   /// See AbstractAttribute::updateImpl(...).
9957   ChangeStatus updateImpl(Attributor &A) override {
9958     bool Changed = false;
9959 
9960     auto CallSitePred = [&](AbstractCallSite ACS) {
9961       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
9962           *this, IRPosition::callsite_function(*ACS.getInstruction()),
9963           DepClassTy::REQUIRED);
9964       // Get the set of assumptions shared by all of this function's callers.
9965       Changed |= getIntersection(AssumptionAA.getAssumed());
9966       return !getAssumed().empty() || !getKnown().empty();
9967     };
9968 
9969     bool UsedAssumedInformation = false;
9970     // Get the intersection of all assumptions held by this node's predecessors.
9971     // If we don't know all the call sites then this is either an entry into the
9972     // call graph or an empty node. This node is known to only contain its own
9973     // assumptions and can be propagated to its successors.
9974     if (!A.checkForAllCallSites(CallSitePred, *this, true,
9975                                 UsedAssumedInformation))
9976       return indicatePessimisticFixpoint();
9977 
9978     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9979   }
9980 
9981   void trackStatistics() const override {}
9982 };
9983 
9984 /// Assumption Info defined for call sites.
9985 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
9986 
9987   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
9988       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
9989 
9990   /// See AbstractAttribute::initialize(...).
9991   void initialize(Attributor &A) override {
9992     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9993     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9994   }
9995 
9996   /// See AbstractAttribute::manifest(...).
9997   ChangeStatus manifest(Attributor &A) override {
9998     // Don't manifest a universal set if it somehow made it here.
9999     if (getKnown().isUniversal())
10000       return ChangeStatus::UNCHANGED;
10001 
10002     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10003     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10004 
10005     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10006   }
10007 
10008   /// See AbstractAttribute::updateImpl(...).
10009   ChangeStatus updateImpl(Attributor &A) override {
10010     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10011     auto &AssumptionAA =
10012         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10013     bool Changed = getIntersection(AssumptionAA.getAssumed());
10014     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10015   }
10016 
10017   /// See AbstractAttribute::trackStatistics()
10018   void trackStatistics() const override {}
10019 
10020 private:
10021   /// Helper to initialized the known set as all the assumptions this call and
10022   /// the callee contain.
10023   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10024     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10025     auto Assumptions = getAssumptions(CB);
10026     if (Function *F = IRP.getAssociatedFunction())
10027       set_union(Assumptions, getAssumptions(*F));
10028     if (Function *F = IRP.getAssociatedFunction())
10029       set_union(Assumptions, getAssumptions(*F));
10030     return Assumptions;
10031   }
10032 };
10033 
10034 AACallGraphNode *AACallEdgeIterator::operator*() const {
10035   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10036       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10037 }
10038 
10039 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10040 
10041 const char AAReturnedValues::ID = 0;
10042 const char AANoUnwind::ID = 0;
10043 const char AANoSync::ID = 0;
10044 const char AANoFree::ID = 0;
10045 const char AANonNull::ID = 0;
10046 const char AANoRecurse::ID = 0;
10047 const char AAWillReturn::ID = 0;
10048 const char AAUndefinedBehavior::ID = 0;
10049 const char AANoAlias::ID = 0;
10050 const char AAReachability::ID = 0;
10051 const char AANoReturn::ID = 0;
10052 const char AAIsDead::ID = 0;
10053 const char AADereferenceable::ID = 0;
10054 const char AAAlign::ID = 0;
10055 const char AANoCapture::ID = 0;
10056 const char AAValueSimplify::ID = 0;
10057 const char AAHeapToStack::ID = 0;
10058 const char AAPrivatizablePtr::ID = 0;
10059 const char AAMemoryBehavior::ID = 0;
10060 const char AAMemoryLocation::ID = 0;
10061 const char AAValueConstantRange::ID = 0;
10062 const char AAPotentialValues::ID = 0;
10063 const char AANoUndef::ID = 0;
10064 const char AACallEdges::ID = 0;
10065 const char AAFunctionReachability::ID = 0;
10066 const char AAPointerInfo::ID = 0;
10067 const char AAAssumptionInfo::ID = 0;
10068 
10069 // Macro magic to create the static generator function for attributes that
10070 // follow the naming scheme.
10071 
10072 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10073   case IRPosition::PK:                                                         \
10074     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10075 
10076 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10077   case IRPosition::PK:                                                         \
10078     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10079     ++NumAAs;                                                                  \
10080     break;
10081 
10082 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10083   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10084     CLASS *AA = nullptr;                                                       \
10085     switch (IRP.getPositionKind()) {                                           \
10086       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10087       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10088       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10089       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10090       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10091       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10092       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10093       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10094     }                                                                          \
10095     return *AA;                                                                \
10096   }
10097 
10098 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10099   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10100     CLASS *AA = nullptr;                                                       \
10101     switch (IRP.getPositionKind()) {                                           \
10102       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10103       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10104       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10105       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10106       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10107       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10108       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10109       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10110     }                                                                          \
10111     return *AA;                                                                \
10112   }
10113 
10114 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10115   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10116     CLASS *AA = nullptr;                                                       \
10117     switch (IRP.getPositionKind()) {                                           \
10118       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10119       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10120       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10121       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10122       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10123       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10124       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10125       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10126     }                                                                          \
10127     return *AA;                                                                \
10128   }
10129 
10130 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10131   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10132     CLASS *AA = nullptr;                                                       \
10133     switch (IRP.getPositionKind()) {                                           \
10134       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10135       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10136       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10137       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10138       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10139       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10140       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10141       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10142     }                                                                          \
10143     return *AA;                                                                \
10144   }
10145 
10146 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10147   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10148     CLASS *AA = nullptr;                                                       \
10149     switch (IRP.getPositionKind()) {                                           \
10150       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10151       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10152       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10153       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10154       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10155       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10156       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10157       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10158     }                                                                          \
10159     return *AA;                                                                \
10160   }
10161 
10162 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10163 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10164 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10165 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10166 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10167 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10168 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10169 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10170 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10171 
10172 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10173 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10174 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10175 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10176 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10177 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10178 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10179 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10180 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10181 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10182 
10183 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10184 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10185 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10186 
10187 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10188 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10189 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10190 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10191 
10192 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10193 
10194 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10195 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10196 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10197 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10198 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10199 #undef SWITCH_PK_CREATE
10200 #undef SWITCH_PK_INV
10201