1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/IR/GlobalValue.h"
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/SCCIterator.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetOperations.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Assumptions.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/NoFolder.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Alignment.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/GraphWriter.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/ValueMapper.h"
57 #include <cassert>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "attributor"
62 
63 static cl::opt<bool> ManifestInternal(
64     "attributor-manifest-internal", cl::Hidden,
65     cl::desc("Manifest Attributor internal string attributes."),
66     cl::init(false));
67 
68 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
69                                        cl::Hidden);
70 
71 template <>
72 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
73 
74 static cl::opt<unsigned, true> MaxPotentialValues(
75     "attributor-max-potential-values", cl::Hidden,
76     cl::desc("Maximum number of potential values to be "
77              "tracked for each position."),
78     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
79     cl::init(7));
80 
81 static cl::opt<unsigned> MaxInterferingAccesses(
82     "attributor-max-interfering-accesses", cl::Hidden,
83     cl::desc("Maximum number of interfering accesses to "
84              "check before assuming all might interfere."),
85     cl::init(6));
86 
87 STATISTIC(NumAAs, "Number of abstract attributes created");
88 
89 // Some helper macros to deal with statistics tracking.
90 //
91 // Usage:
92 // For simple IR attribute tracking overload trackStatistics in the abstract
93 // attribute and choose the right STATS_DECLTRACK_********* macro,
94 // e.g.,:
95 //  void trackStatistics() const override {
96 //    STATS_DECLTRACK_ARG_ATTR(returned)
97 //  }
98 // If there is a single "increment" side one can use the macro
99 // STATS_DECLTRACK with a custom message. If there are multiple increment
100 // sides, STATS_DECL and STATS_TRACK can also be used separately.
101 //
102 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
103   ("Number of " #TYPE " marked '" #NAME "'")
104 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
105 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
106 #define STATS_DECL(NAME, TYPE, MSG)                                            \
107   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
108 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
109 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
110   {                                                                            \
111     STATS_DECL(NAME, TYPE, MSG)                                                \
112     STATS_TRACK(NAME, TYPE)                                                    \
113   }
114 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
115   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
116 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
117   STATS_DECLTRACK(NAME, CSArguments,                                           \
118                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
119 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
120   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
121 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
122   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
123 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
124   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
125                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
126 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
127   STATS_DECLTRACK(NAME, CSReturn,                                              \
128                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
129 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
130   STATS_DECLTRACK(NAME, Floating,                                              \
131                   ("Number of floating values known to be '" #NAME "'"))
132 
133 // Specialization of the operator<< for abstract attributes subclasses. This
134 // disambiguates situations where multiple operators are applicable.
135 namespace llvm {
136 #define PIPE_OPERATOR(CLASS)                                                   \
137   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
138     return OS << static_cast<const AbstractAttribute &>(AA);                   \
139   }
140 
141 PIPE_OPERATOR(AAIsDead)
142 PIPE_OPERATOR(AANoUnwind)
143 PIPE_OPERATOR(AANoSync)
144 PIPE_OPERATOR(AANoRecurse)
145 PIPE_OPERATOR(AAWillReturn)
146 PIPE_OPERATOR(AANoReturn)
147 PIPE_OPERATOR(AAReturnedValues)
148 PIPE_OPERATOR(AANonNull)
149 PIPE_OPERATOR(AANoAlias)
150 PIPE_OPERATOR(AADereferenceable)
151 PIPE_OPERATOR(AAAlign)
152 PIPE_OPERATOR(AAInstanceInfo)
153 PIPE_OPERATOR(AANoCapture)
154 PIPE_OPERATOR(AAValueSimplify)
155 PIPE_OPERATOR(AANoFree)
156 PIPE_OPERATOR(AAHeapToStack)
157 PIPE_OPERATOR(AAReachability)
158 PIPE_OPERATOR(AAMemoryBehavior)
159 PIPE_OPERATOR(AAMemoryLocation)
160 PIPE_OPERATOR(AAValueConstantRange)
161 PIPE_OPERATOR(AAPrivatizablePtr)
162 PIPE_OPERATOR(AAUndefinedBehavior)
163 PIPE_OPERATOR(AAPotentialValues)
164 PIPE_OPERATOR(AANoUndef)
165 PIPE_OPERATOR(AACallEdges)
166 PIPE_OPERATOR(AAFunctionReachability)
167 PIPE_OPERATOR(AAPointerInfo)
168 PIPE_OPERATOR(AAAssumptionInfo)
169 
170 #undef PIPE_OPERATOR
171 
172 template <>
173 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
174                                                      const DerefState &R) {
175   ChangeStatus CS0 =
176       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
177   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
178   return CS0 | CS1;
179 }
180 
181 } // namespace llvm
182 
183 /// Get pointer operand of memory accessing instruction. If \p I is
184 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
185 /// is set to false and the instruction is volatile, return nullptr.
186 static const Value *getPointerOperand(const Instruction *I,
187                                       bool AllowVolatile) {
188   if (!AllowVolatile && I->isVolatile())
189     return nullptr;
190 
191   if (auto *LI = dyn_cast<LoadInst>(I)) {
192     return LI->getPointerOperand();
193   }
194 
195   if (auto *SI = dyn_cast<StoreInst>(I)) {
196     return SI->getPointerOperand();
197   }
198 
199   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
200     return CXI->getPointerOperand();
201   }
202 
203   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
204     return RMWI->getPointerOperand();
205   }
206 
207   return nullptr;
208 }
209 
210 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
211 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
212 /// getelement pointer instructions that traverse the natural type of \p Ptr if
213 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
214 /// through a cast to i8*.
215 ///
216 /// TODO: This could probably live somewhere more prominantly if it doesn't
217 ///       already exist.
218 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
219                                int64_t Offset, IRBuilder<NoFolder> &IRB,
220                                const DataLayout &DL) {
221   assert(Offset >= 0 && "Negative offset not supported yet!");
222   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
223                     << "-bytes as " << *ResTy << "\n");
224 
225   if (Offset) {
226     Type *Ty = PtrElemTy;
227     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
228     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
229 
230     SmallVector<Value *, 4> ValIndices;
231     std::string GEPName = Ptr->getName().str();
232     for (const APInt &Index : IntIndices) {
233       ValIndices.push_back(IRB.getInt(Index));
234       GEPName += "." + std::to_string(Index.getZExtValue());
235     }
236 
237     // Create a GEP for the indices collected above.
238     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
239 
240     // If an offset is left we use byte-wise adjustment.
241     if (IntOffset != 0) {
242       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
243       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
244                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
245     }
246   }
247 
248   // Ensure the result has the requested type.
249   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
250                                                 Ptr->getName() + ".cast");
251 
252   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
253   return Ptr;
254 }
255 
256 /// Recursively visit all values that might become \p IRP at some point. This
257 /// will be done by looking through cast instructions, selects, phis, and calls
258 /// with the "returned" attribute. Once we cannot look through the value any
259 /// further, the callback \p VisitValueCB is invoked and passed the current
260 /// value, the \p State, and a flag to indicate if we stripped anything.
261 /// Stripped means that we unpacked the value associated with \p IRP at least
262 /// once. Note that the value used for the callback may still be the value
263 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
264 /// we will never visit more values than specified by \p MaxValues.
265 /// If \p Intraprocedural is set to true only values valid in the scope of
266 /// \p CtxI will be visited and simplification into other scopes is prevented.
267 template <typename StateTy>
268 static bool genericValueTraversal(
269     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
270     StateTy &State,
271     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
272         VisitValueCB,
273     const Instruction *CtxI, bool &UsedAssumedInformation,
274     bool UseValueSimplify = true, int MaxValues = 16,
275     function_ref<Value *(Value *)> StripCB = nullptr,
276     bool Intraprocedural = false) {
277 
278   struct LivenessInfo {
279     const AAIsDead *LivenessAA = nullptr;
280     bool AnyDead = false;
281   };
282   SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
283   auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
284     LivenessInfo &LI = LivenessAAs[&F];
285     if (!LI.LivenessAA)
286       LI.LivenessAA = &A.getAAFor<AAIsDead>(QueryingAA, IRPosition::function(F),
287                                             DepClassTy::NONE);
288     return LI;
289   };
290 
291   Value *InitialV = &IRP.getAssociatedValue();
292   using Item = std::pair<Value *, const Instruction *>;
293   SmallSet<Item, 16> Visited;
294   SmallVector<Item, 16> Worklist;
295   Worklist.push_back({InitialV, CtxI});
296 
297   int Iteration = 0;
298   do {
299     Item I = Worklist.pop_back_val();
300     Value *V = I.first;
301     CtxI = I.second;
302     if (StripCB)
303       V = StripCB(V);
304 
305     // Check if we should process the current value. To prevent endless
306     // recursion keep a record of the values we followed!
307     if (!Visited.insert(I).second)
308       continue;
309 
310     // Make sure we limit the compile time for complex expressions.
311     if (Iteration++ >= MaxValues) {
312       LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
313                         << Iteration << "!\n");
314       return false;
315     }
316 
317     // Explicitly look through calls with a "returned" attribute if we do
318     // not have a pointer as stripPointerCasts only works on them.
319     Value *NewV = nullptr;
320     if (V->getType()->isPointerTy()) {
321       NewV = V->stripPointerCasts();
322     } else {
323       auto *CB = dyn_cast<CallBase>(V);
324       if (CB && CB->getCalledFunction()) {
325         for (Argument &Arg : CB->getCalledFunction()->args())
326           if (Arg.hasReturnedAttr()) {
327             NewV = CB->getArgOperand(Arg.getArgNo());
328             break;
329           }
330       }
331     }
332     if (NewV && NewV != V) {
333       Worklist.push_back({NewV, CtxI});
334       continue;
335     }
336 
337     // Look through select instructions, visit assumed potential values.
338     if (auto *SI = dyn_cast<SelectInst>(V)) {
339       Optional<Constant *> C = A.getAssumedConstant(
340           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
341       bool NoValueYet = !C.hasValue();
342       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
343         continue;
344       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
345         if (CI->isZero())
346           Worklist.push_back({SI->getFalseValue(), CtxI});
347         else
348           Worklist.push_back({SI->getTrueValue(), CtxI});
349         continue;
350       }
351       // We could not simplify the condition, assume both values.(
352       Worklist.push_back({SI->getTrueValue(), CtxI});
353       Worklist.push_back({SI->getFalseValue(), CtxI});
354       continue;
355     }
356 
357     // Look through phi nodes, visit all live operands.
358     if (auto *PHI = dyn_cast<PHINode>(V)) {
359       LivenessInfo &LI = GetLivenessInfo(*PHI->getFunction());
360       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
361         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
362         if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI->getParent())) {
363           LI.AnyDead = true;
364           UsedAssumedInformation |= !LI.LivenessAA->isAtFixpoint();
365           continue;
366         }
367         Worklist.push_back(
368             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
369       }
370       continue;
371     }
372 
373     if (auto *Arg = dyn_cast<Argument>(V)) {
374       if (!Intraprocedural && !Arg->hasPassPointeeByValueCopyAttr()) {
375         SmallVector<Item> CallSiteValues;
376         bool UsedAssumedInformation = false;
377         if (A.checkForAllCallSites(
378                 [&](AbstractCallSite ACS) {
379                   // Callbacks might not have a corresponding call site operand,
380                   // stick with the argument in that case.
381                   Value *CSOp = ACS.getCallArgOperand(*Arg);
382                   if (!CSOp)
383                     return false;
384                   CallSiteValues.push_back({CSOp, ACS.getInstruction()});
385                   return true;
386                 },
387                 *Arg->getParent(), true, &QueryingAA, UsedAssumedInformation)) {
388           Worklist.append(CallSiteValues);
389           continue;
390         }
391       }
392     }
393 
394     if (UseValueSimplify && !isa<Constant>(V)) {
395       Optional<Value *> SimpleV =
396           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
397       if (!SimpleV.hasValue())
398         continue;
399       Value *NewV = SimpleV.getValue();
400       if (NewV && NewV != V) {
401         if (!Intraprocedural || !CtxI ||
402             AA::isValidInScope(*NewV, CtxI->getFunction())) {
403           Worklist.push_back({NewV, CtxI});
404           continue;
405         }
406       }
407     }
408 
409     if (auto *LI = dyn_cast<LoadInst>(V)) {
410       bool UsedAssumedInformation = false;
411       // If we ask for the potentially loaded values from the initial pointer we
412       // will simply end up here again. The load is as far as we can make it.
413       if (LI->getPointerOperand() != InitialV) {
414         SmallSetVector<Value *, 4> PotentialCopies;
415         SmallSetVector<Instruction *, 4> PotentialValueOrigins;
416         if (AA::getPotentiallyLoadedValues(A, *LI, PotentialCopies,
417                                            PotentialValueOrigins, QueryingAA,
418                                            UsedAssumedInformation,
419                                            /* OnlyExact */ true)) {
420           // Values have to be dynamically unique or we loose the fact that a
421           // single llvm::Value might represent two runtime values (e.g., stack
422           // locations in different recursive calls).
423           bool DynamicallyUnique =
424               llvm::all_of(PotentialCopies, [&A, &QueryingAA](Value *PC) {
425                 return AA::isDynamicallyUnique(A, QueryingAA, *PC);
426               });
427           if (DynamicallyUnique &&
428               (!Intraprocedural || !CtxI ||
429                llvm::all_of(PotentialCopies, [CtxI](Value *PC) {
430                  return AA::isValidInScope(*PC, CtxI->getFunction());
431                }))) {
432             for (auto *PotentialCopy : PotentialCopies)
433               Worklist.push_back({PotentialCopy, CtxI});
434             continue;
435           }
436         }
437       }
438     }
439 
440     // Once a leaf is reached we inform the user through the callback.
441     if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) {
442       LLVM_DEBUG(dbgs() << "Generic value traversal visit callback failed for: "
443                         << *V << "!\n");
444       return false;
445     }
446   } while (!Worklist.empty());
447 
448   // If we actually used liveness information so we have to record a dependence.
449   for (auto &It : LivenessAAs)
450     if (It.second.AnyDead)
451       A.recordDependence(*It.second.LivenessAA, QueryingAA,
452                          DepClassTy::OPTIONAL);
453 
454   // All values have been visited.
455   return true;
456 }
457 
458 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
459                                      SmallVectorImpl<Value *> &Objects,
460                                      const AbstractAttribute &QueryingAA,
461                                      const Instruction *CtxI,
462                                      bool &UsedAssumedInformation,
463                                      bool Intraprocedural) {
464   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
465   SmallPtrSet<Value *, 8> SeenObjects;
466   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
467                                      SmallVectorImpl<Value *> &Objects,
468                                      bool) -> bool {
469     if (SeenObjects.insert(&Val).second)
470       Objects.push_back(&Val);
471     return true;
472   };
473   if (!genericValueTraversal<decltype(Objects)>(
474           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
475           UsedAssumedInformation, true, 32, StripCB, Intraprocedural))
476     return false;
477   return true;
478 }
479 
480 static const Value *
481 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
482                           const Value *Val, const DataLayout &DL, APInt &Offset,
483                           bool GetMinOffset, bool AllowNonInbounds,
484                           bool UseAssumed = false) {
485 
486   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
487     const IRPosition &Pos = IRPosition::value(V);
488     // Only track dependence if we are going to use the assumed info.
489     const AAValueConstantRange &ValueConstantRangeAA =
490         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
491                                          UseAssumed ? DepClassTy::OPTIONAL
492                                                     : DepClassTy::NONE);
493     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
494                                      : ValueConstantRangeAA.getKnown();
495     if (Range.isFullSet())
496       return false;
497 
498     // We can only use the lower part of the range because the upper part can
499     // be higher than what the value can really be.
500     if (GetMinOffset)
501       ROffset = Range.getSignedMin();
502     else
503       ROffset = Range.getSignedMax();
504     return true;
505   };
506 
507   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
508                                                 /* AllowInvariant */ true,
509                                                 AttributorAnalysis);
510 }
511 
512 static const Value *
513 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
514                         const Value *Ptr, int64_t &BytesOffset,
515                         const DataLayout &DL, bool AllowNonInbounds = false) {
516   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
517   const Value *Base =
518       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
519                                 /* GetMinOffset */ true, AllowNonInbounds);
520 
521   BytesOffset = OffsetAPInt.getSExtValue();
522   return Base;
523 }
524 
525 /// Clamp the information known for all returned values of a function
526 /// (identified by \p QueryingAA) into \p S.
527 template <typename AAType, typename StateType = typename AAType::StateType>
528 static void clampReturnedValueStates(
529     Attributor &A, const AAType &QueryingAA, StateType &S,
530     const IRPosition::CallBaseContext *CBContext = nullptr) {
531   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
532                     << QueryingAA << " into " << S << "\n");
533 
534   assert((QueryingAA.getIRPosition().getPositionKind() ==
535               IRPosition::IRP_RETURNED ||
536           QueryingAA.getIRPosition().getPositionKind() ==
537               IRPosition::IRP_CALL_SITE_RETURNED) &&
538          "Can only clamp returned value states for a function returned or call "
539          "site returned position!");
540 
541   // Use an optional state as there might not be any return values and we want
542   // to join (IntegerState::operator&) the state of all there are.
543   Optional<StateType> T;
544 
545   // Callback for each possibly returned value.
546   auto CheckReturnValue = [&](Value &RV) -> bool {
547     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
548     const AAType &AA =
549         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
550     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
551                       << " @ " << RVPos << "\n");
552     const StateType &AAS = AA.getState();
553     if (T.hasValue())
554       *T &= AAS;
555     else
556       T = AAS;
557     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
558                       << "\n");
559     return T->isValidState();
560   };
561 
562   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
563     S.indicatePessimisticFixpoint();
564   else if (T.hasValue())
565     S ^= *T;
566 }
567 
568 namespace {
569 /// Helper class for generic deduction: return value -> returned position.
570 template <typename AAType, typename BaseType,
571           typename StateType = typename BaseType::StateType,
572           bool PropagateCallBaseContext = false>
573 struct AAReturnedFromReturnedValues : public BaseType {
574   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
575       : BaseType(IRP, A) {}
576 
577   /// See AbstractAttribute::updateImpl(...).
578   ChangeStatus updateImpl(Attributor &A) override {
579     StateType S(StateType::getBestState(this->getState()));
580     clampReturnedValueStates<AAType, StateType>(
581         A, *this, S,
582         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
583     // TODO: If we know we visited all returned values, thus no are assumed
584     // dead, we can take the known information from the state T.
585     return clampStateAndIndicateChange<StateType>(this->getState(), S);
586   }
587 };
588 
589 /// Clamp the information known at all call sites for a given argument
590 /// (identified by \p QueryingAA) into \p S.
591 template <typename AAType, typename StateType = typename AAType::StateType>
592 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
593                                         StateType &S) {
594   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
595                     << QueryingAA << " into " << S << "\n");
596 
597   assert(QueryingAA.getIRPosition().getPositionKind() ==
598              IRPosition::IRP_ARGUMENT &&
599          "Can only clamp call site argument states for an argument position!");
600 
601   // Use an optional state as there might not be any return values and we want
602   // to join (IntegerState::operator&) the state of all there are.
603   Optional<StateType> T;
604 
605   // The argument number which is also the call site argument number.
606   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
607 
608   auto CallSiteCheck = [&](AbstractCallSite ACS) {
609     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
610     // Check if a coresponding argument was found or if it is on not associated
611     // (which can happen for callback calls).
612     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
613       return false;
614 
615     const AAType &AA =
616         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
617     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
618                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
619     const StateType &AAS = AA.getState();
620     if (T.hasValue())
621       *T &= AAS;
622     else
623       T = AAS;
624     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
625                       << "\n");
626     return T->isValidState();
627   };
628 
629   bool UsedAssumedInformation = false;
630   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
631                               UsedAssumedInformation))
632     S.indicatePessimisticFixpoint();
633   else if (T.hasValue())
634     S ^= *T;
635 }
636 
637 /// This function is the bridge between argument position and the call base
638 /// context.
639 template <typename AAType, typename BaseType,
640           typename StateType = typename AAType::StateType>
641 bool getArgumentStateFromCallBaseContext(Attributor &A,
642                                          BaseType &QueryingAttribute,
643                                          IRPosition &Pos, StateType &State) {
644   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
645          "Expected an 'argument' position !");
646   const CallBase *CBContext = Pos.getCallBaseContext();
647   if (!CBContext)
648     return false;
649 
650   int ArgNo = Pos.getCallSiteArgNo();
651   assert(ArgNo >= 0 && "Invalid Arg No!");
652 
653   const auto &AA = A.getAAFor<AAType>(
654       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
655       DepClassTy::REQUIRED);
656   const StateType &CBArgumentState =
657       static_cast<const StateType &>(AA.getState());
658 
659   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
660                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
661                     << "\n");
662 
663   // NOTE: If we want to do call site grouping it should happen here.
664   State ^= CBArgumentState;
665   return true;
666 }
667 
668 /// Helper class for generic deduction: call site argument -> argument position.
669 template <typename AAType, typename BaseType,
670           typename StateType = typename AAType::StateType,
671           bool BridgeCallBaseContext = false>
672 struct AAArgumentFromCallSiteArguments : public BaseType {
673   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
674       : BaseType(IRP, A) {}
675 
676   /// See AbstractAttribute::updateImpl(...).
677   ChangeStatus updateImpl(Attributor &A) override {
678     StateType S = StateType::getBestState(this->getState());
679 
680     if (BridgeCallBaseContext) {
681       bool Success =
682           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
683               A, *this, this->getIRPosition(), S);
684       if (Success)
685         return clampStateAndIndicateChange<StateType>(this->getState(), S);
686     }
687     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
688 
689     // TODO: If we know we visited all incoming values, thus no are assumed
690     // dead, we can take the known information from the state T.
691     return clampStateAndIndicateChange<StateType>(this->getState(), S);
692   }
693 };
694 
695 /// Helper class for generic replication: function returned -> cs returned.
696 template <typename AAType, typename BaseType,
697           typename StateType = typename BaseType::StateType,
698           bool IntroduceCallBaseContext = false>
699 struct AACallSiteReturnedFromReturned : public BaseType {
700   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
701       : BaseType(IRP, A) {}
702 
703   /// See AbstractAttribute::updateImpl(...).
704   ChangeStatus updateImpl(Attributor &A) override {
705     assert(this->getIRPosition().getPositionKind() ==
706                IRPosition::IRP_CALL_SITE_RETURNED &&
707            "Can only wrap function returned positions for call site returned "
708            "positions!");
709     auto &S = this->getState();
710 
711     const Function *AssociatedFunction =
712         this->getIRPosition().getAssociatedFunction();
713     if (!AssociatedFunction)
714       return S.indicatePessimisticFixpoint();
715 
716     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
717     if (IntroduceCallBaseContext)
718       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
719                         << CBContext << "\n");
720 
721     IRPosition FnPos = IRPosition::returned(
722         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
723     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
724     return clampStateAndIndicateChange(S, AA.getState());
725   }
726 };
727 
728 /// Helper function to accumulate uses.
729 template <class AAType, typename StateType = typename AAType::StateType>
730 static void followUsesInContext(AAType &AA, Attributor &A,
731                                 MustBeExecutedContextExplorer &Explorer,
732                                 const Instruction *CtxI,
733                                 SetVector<const Use *> &Uses,
734                                 StateType &State) {
735   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
736   for (unsigned u = 0; u < Uses.size(); ++u) {
737     const Use *U = Uses[u];
738     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
739       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
740       if (Found && AA.followUseInMBEC(A, U, UserI, State))
741         for (const Use &Us : UserI->uses())
742           Uses.insert(&Us);
743     }
744   }
745 }
746 
747 /// Use the must-be-executed-context around \p I to add information into \p S.
748 /// The AAType class is required to have `followUseInMBEC` method with the
749 /// following signature and behaviour:
750 ///
751 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
752 /// U - Underlying use.
753 /// I - The user of the \p U.
754 /// Returns true if the value should be tracked transitively.
755 ///
756 template <class AAType, typename StateType = typename AAType::StateType>
757 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
758                              Instruction &CtxI) {
759 
760   // Container for (transitive) uses of the associated value.
761   SetVector<const Use *> Uses;
762   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
763     Uses.insert(&U);
764 
765   MustBeExecutedContextExplorer &Explorer =
766       A.getInfoCache().getMustBeExecutedContextExplorer();
767 
768   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
769 
770   if (S.isAtFixpoint())
771     return;
772 
773   SmallVector<const BranchInst *, 4> BrInsts;
774   auto Pred = [&](const Instruction *I) {
775     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
776       if (Br->isConditional())
777         BrInsts.push_back(Br);
778     return true;
779   };
780 
781   // Here, accumulate conditional branch instructions in the context. We
782   // explore the child paths and collect the known states. The disjunction of
783   // those states can be merged to its own state. Let ParentState_i be a state
784   // to indicate the known information for an i-th branch instruction in the
785   // context. ChildStates are created for its successors respectively.
786   //
787   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
788   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
789   //      ...
790   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
791   //
792   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
793   //
794   // FIXME: Currently, recursive branches are not handled. For example, we
795   // can't deduce that ptr must be dereferenced in below function.
796   //
797   // void f(int a, int c, int *ptr) {
798   //    if(a)
799   //      if (b) {
800   //        *ptr = 0;
801   //      } else {
802   //        *ptr = 1;
803   //      }
804   //    else {
805   //      if (b) {
806   //        *ptr = 0;
807   //      } else {
808   //        *ptr = 1;
809   //      }
810   //    }
811   // }
812 
813   Explorer.checkForAllContext(&CtxI, Pred);
814   for (const BranchInst *Br : BrInsts) {
815     StateType ParentState;
816 
817     // The known state of the parent state is a conjunction of children's
818     // known states so it is initialized with a best state.
819     ParentState.indicateOptimisticFixpoint();
820 
821     for (const BasicBlock *BB : Br->successors()) {
822       StateType ChildState;
823 
824       size_t BeforeSize = Uses.size();
825       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
826 
827       // Erase uses which only appear in the child.
828       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
829         It = Uses.erase(It);
830 
831       ParentState &= ChildState;
832     }
833 
834     // Use only known state.
835     S += ParentState;
836   }
837 }
838 } // namespace
839 
840 /// ------------------------ PointerInfo ---------------------------------------
841 
842 namespace llvm {
843 namespace AA {
844 namespace PointerInfo {
845 
846 struct State;
847 
848 } // namespace PointerInfo
849 } // namespace AA
850 
851 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
852 template <>
853 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
854   using Access = AAPointerInfo::Access;
855   static inline Access getEmptyKey();
856   static inline Access getTombstoneKey();
857   static unsigned getHashValue(const Access &A);
858   static bool isEqual(const Access &LHS, const Access &RHS);
859 };
860 
861 /// Helper that allows OffsetAndSize as a key in a DenseMap.
862 template <>
863 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
864     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
865 
866 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
867 /// but the instruction
868 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
869   using Base = DenseMapInfo<Instruction *>;
870   using Access = AAPointerInfo::Access;
871   static inline Access getEmptyKey();
872   static inline Access getTombstoneKey();
873   static unsigned getHashValue(const Access &A);
874   static bool isEqual(const Access &LHS, const Access &RHS);
875 };
876 
877 } // namespace llvm
878 
879 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
880 struct AA::PointerInfo::State : public AbstractState {
881 
882   ~State() {
883     // We do not delete the Accesses objects but need to destroy them still.
884     for (auto &It : AccessBins)
885       It.second->~Accesses();
886   }
887 
888   /// Return the best possible representable state.
889   static State getBestState(const State &SIS) { return State(); }
890 
891   /// Return the worst possible representable state.
892   static State getWorstState(const State &SIS) {
893     State R;
894     R.indicatePessimisticFixpoint();
895     return R;
896   }
897 
898   State() = default;
899   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {
900     SIS.AccessBins.clear();
901   }
902 
903   const State &getAssumed() const { return *this; }
904 
905   /// See AbstractState::isValidState().
906   bool isValidState() const override { return BS.isValidState(); }
907 
908   /// See AbstractState::isAtFixpoint().
909   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
910 
911   /// See AbstractState::indicateOptimisticFixpoint().
912   ChangeStatus indicateOptimisticFixpoint() override {
913     BS.indicateOptimisticFixpoint();
914     return ChangeStatus::UNCHANGED;
915   }
916 
917   /// See AbstractState::indicatePessimisticFixpoint().
918   ChangeStatus indicatePessimisticFixpoint() override {
919     BS.indicatePessimisticFixpoint();
920     return ChangeStatus::CHANGED;
921   }
922 
923   State &operator=(const State &R) {
924     if (this == &R)
925       return *this;
926     BS = R.BS;
927     AccessBins = R.AccessBins;
928     return *this;
929   }
930 
931   State &operator=(State &&R) {
932     if (this == &R)
933       return *this;
934     std::swap(BS, R.BS);
935     std::swap(AccessBins, R.AccessBins);
936     return *this;
937   }
938 
939   bool operator==(const State &R) const {
940     if (BS != R.BS)
941       return false;
942     if (AccessBins.size() != R.AccessBins.size())
943       return false;
944     auto It = begin(), RIt = R.begin(), E = end();
945     while (It != E) {
946       if (It->getFirst() != RIt->getFirst())
947         return false;
948       auto &Accs = It->getSecond();
949       auto &RAccs = RIt->getSecond();
950       if (Accs->size() != RAccs->size())
951         return false;
952       for (const auto &ZipIt : llvm::zip(*Accs, *RAccs))
953         if (std::get<0>(ZipIt) != std::get<1>(ZipIt))
954           return false;
955       ++It;
956       ++RIt;
957     }
958     return true;
959   }
960   bool operator!=(const State &R) const { return !(*this == R); }
961 
962   /// We store accesses in a set with the instruction as key.
963   struct Accesses {
964     SmallVector<AAPointerInfo::Access, 4> Accesses;
965     DenseMap<const Instruction *, unsigned> Map;
966 
967     unsigned size() const { return Accesses.size(); }
968 
969     using vec_iterator = decltype(Accesses)::iterator;
970     vec_iterator begin() { return Accesses.begin(); }
971     vec_iterator end() { return Accesses.end(); }
972 
973     using iterator = decltype(Map)::const_iterator;
974     iterator find(AAPointerInfo::Access &Acc) {
975       return Map.find(Acc.getRemoteInst());
976     }
977     iterator find_end() { return Map.end(); }
978 
979     AAPointerInfo::Access &get(iterator &It) {
980       return Accesses[It->getSecond()];
981     }
982 
983     void insert(AAPointerInfo::Access &Acc) {
984       Map[Acc.getRemoteInst()] = Accesses.size();
985       Accesses.push_back(Acc);
986     }
987   };
988 
989   /// We store all accesses in bins denoted by their offset and size.
990   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses *>;
991 
992   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
993   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
994 
995 protected:
996   /// The bins with all the accesses for the associated pointer.
997   AccessBinsTy AccessBins;
998 
999   /// Add a new access to the state at offset \p Offset and with size \p Size.
1000   /// The access is associated with \p I, writes \p Content (if anything), and
1001   /// is of kind \p Kind.
1002   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
1003   ChangeStatus addAccess(Attributor &A, int64_t Offset, int64_t Size,
1004                          Instruction &I, Optional<Value *> Content,
1005                          AAPointerInfo::AccessKind Kind, Type *Ty,
1006                          Instruction *RemoteI = nullptr,
1007                          Accesses *BinPtr = nullptr) {
1008     AAPointerInfo::OffsetAndSize Key{Offset, Size};
1009     Accesses *&Bin = BinPtr ? BinPtr : AccessBins[Key];
1010     if (!Bin)
1011       Bin = new (A.Allocator) Accesses;
1012     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1013     // Check if we have an access for this instruction in this bin, if not,
1014     // simply add it.
1015     auto It = Bin->find(Acc);
1016     if (It == Bin->find_end()) {
1017       Bin->insert(Acc);
1018       return ChangeStatus::CHANGED;
1019     }
1020     // If the existing access is the same as then new one, nothing changed.
1021     AAPointerInfo::Access &Current = Bin->get(It);
1022     AAPointerInfo::Access Before = Current;
1023     // The new one will be combined with the existing one.
1024     Current &= Acc;
1025     return Current == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1026   }
1027 
1028   /// See AAPointerInfo::forallInterferingAccesses.
1029   bool forallInterferingAccesses(
1030       AAPointerInfo::OffsetAndSize OAS,
1031       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1032     if (!isValidState())
1033       return false;
1034 
1035     for (auto &It : AccessBins) {
1036       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
1037       if (!OAS.mayOverlap(ItOAS))
1038         continue;
1039       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1040       for (auto &Access : *It.getSecond())
1041         if (!CB(Access, IsExact))
1042           return false;
1043     }
1044     return true;
1045   }
1046 
1047   /// See AAPointerInfo::forallInterferingAccesses.
1048   bool forallInterferingAccesses(
1049       Instruction &I,
1050       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1051     if (!isValidState())
1052       return false;
1053 
1054     // First find the offset and size of I.
1055     AAPointerInfo::OffsetAndSize OAS(-1, -1);
1056     for (auto &It : AccessBins) {
1057       for (auto &Access : *It.getSecond()) {
1058         if (Access.getRemoteInst() == &I) {
1059           OAS = It.getFirst();
1060           break;
1061         }
1062       }
1063       if (OAS.getSize() != -1)
1064         break;
1065     }
1066     // No access for I was found, we are done.
1067     if (OAS.getSize() == -1)
1068       return true;
1069 
1070     // Now that we have an offset and size, find all overlapping ones and use
1071     // the callback on the accesses.
1072     return forallInterferingAccesses(OAS, CB);
1073   }
1074 
1075 private:
1076   /// State to track fixpoint and validity.
1077   BooleanState BS;
1078 };
1079 
1080 namespace {
1081 struct AAPointerInfoImpl
1082     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1083   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1084   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1085 
1086   /// See AbstractAttribute::initialize(...).
1087   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1088 
1089   /// See AbstractAttribute::getAsStr().
1090   const std::string getAsStr() const override {
1091     return std::string("PointerInfo ") +
1092            (isValidState() ? (std::string("#") +
1093                               std::to_string(AccessBins.size()) + " bins")
1094                            : "<invalid>");
1095   }
1096 
1097   /// See AbstractAttribute::manifest(...).
1098   ChangeStatus manifest(Attributor &A) override {
1099     return AAPointerInfo::manifest(A);
1100   }
1101 
1102   bool forallInterferingAccesses(
1103       OffsetAndSize OAS,
1104       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1105       const override {
1106     return State::forallInterferingAccesses(OAS, CB);
1107   }
1108   bool forallInterferingAccesses(
1109       Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
1110       function_ref<bool(const Access &, bool)> UserCB) const override {
1111     SmallPtrSet<const Access *, 8> DominatingWrites;
1112     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
1113 
1114     Function &Scope = *I.getFunction();
1115     const auto &NoSyncAA = A.getAAFor<AANoSync>(
1116         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1117     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1118         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
1119     const bool NoSync = NoSyncAA.isAssumedNoSync();
1120 
1121     // Helper to determine if we need to consider threading, which we cannot
1122     // right now. However, if the function is (assumed) nosync or the thread
1123     // executing all instructions is the main thread only we can ignore
1124     // threading.
1125     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
1126       if (NoSync)
1127         return true;
1128       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
1129         return true;
1130       return false;
1131     };
1132 
1133     // Helper to determine if the access is executed by the same thread as the
1134     // load, for now it is sufficient to avoid any potential threading effects
1135     // as we cannot deal with them anyway.
1136     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
1137       return CanIgnoreThreading(*Acc.getLocalInst());
1138     };
1139 
1140     // TODO: Use inter-procedural reachability and dominance.
1141     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1142         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1143 
1144     const bool FindInterferingWrites = I.mayReadFromMemory();
1145     const bool FindInterferingReads = I.mayWriteToMemory();
1146     const bool UseDominanceReasoning = FindInterferingWrites;
1147     const bool CanUseCFGResoning = CanIgnoreThreading(I);
1148     InformationCache &InfoCache = A.getInfoCache();
1149     const DominatorTree *DT =
1150         NoRecurseAA.isKnownNoRecurse() && UseDominanceReasoning
1151             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1152                   Scope)
1153             : nullptr;
1154 
1155     enum GPUAddressSpace : unsigned {
1156       Generic = 0,
1157       Global = 1,
1158       Shared = 3,
1159       Constant = 4,
1160       Local = 5,
1161     };
1162 
1163     // Helper to check if a value has "kernel lifetime", that is it will not
1164     // outlive a GPU kernel. This is true for shared, constant, and local
1165     // globals on AMD and NVIDIA GPUs.
1166     auto HasKernelLifetime = [&](Value *V, Module &M) {
1167       Triple T(M.getTargetTriple());
1168       if (!(T.isAMDGPU() || T.isNVPTX()))
1169         return false;
1170       switch (V->getType()->getPointerAddressSpace()) {
1171       case GPUAddressSpace::Shared:
1172       case GPUAddressSpace::Constant:
1173       case GPUAddressSpace::Local:
1174         return true;
1175       default:
1176         return false;
1177       };
1178     };
1179 
1180     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1181     // to determine if we should look at reachability from the callee. For
1182     // certain pointers we know the lifetime and we do not have to step into the
1183     // callee to determine reachability as the pointer would be dead in the
1184     // callee. See the conditional initialization below.
1185     std::function<bool(const Function &)> IsLiveInCalleeCB;
1186 
1187     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1188       // If the alloca containing function is not recursive the alloca
1189       // must be dead in the callee.
1190       const Function *AIFn = AI->getFunction();
1191       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1192           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1193       if (NoRecurseAA.isAssumedNoRecurse()) {
1194         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1195       }
1196     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1197       // If the global has kernel lifetime we can stop if we reach a kernel
1198       // as it is "dead" in the (unknown) callees.
1199       if (HasKernelLifetime(GV, *GV->getParent()))
1200         IsLiveInCalleeCB = [](const Function &Fn) {
1201           return !Fn.hasFnAttribute("kernel");
1202         };
1203     }
1204 
1205     auto AccessCB = [&](const Access &Acc, bool Exact) {
1206       if ((!FindInterferingWrites || !Acc.isWrite()) &&
1207           (!FindInterferingReads || !Acc.isRead()))
1208         return true;
1209 
1210       // For now we only filter accesses based on CFG reasoning which does not
1211       // work yet if we have threading effects, or the access is complicated.
1212       if (CanUseCFGResoning) {
1213         if ((!Acc.isWrite() ||
1214              !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1215                                          IsLiveInCalleeCB)) &&
1216             (!Acc.isRead() ||
1217              !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1218                                          IsLiveInCalleeCB)))
1219           return true;
1220         if (DT && Exact && (Acc.getLocalInst()->getFunction() == &Scope) &&
1221             IsSameThreadAsLoad(Acc)) {
1222           if (DT->dominates(Acc.getLocalInst(), &I))
1223             DominatingWrites.insert(&Acc);
1224         }
1225       }
1226 
1227       InterferingAccesses.push_back({&Acc, Exact});
1228       return true;
1229     };
1230     if (!State::forallInterferingAccesses(I, AccessCB))
1231       return false;
1232 
1233     // If we cannot use CFG reasoning we only filter the non-write accesses
1234     // and are done here.
1235     if (!CanUseCFGResoning) {
1236       for (auto &It : InterferingAccesses)
1237         if (!UserCB(*It.first, It.second))
1238           return false;
1239       return true;
1240     }
1241 
1242     // Helper to determine if we can skip a specific write access. This is in
1243     // the worst case quadratic as we are looking for another write that will
1244     // hide the effect of this one.
1245     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1246       if (!IsSameThreadAsLoad(Acc))
1247         return false;
1248       if (!DominatingWrites.count(&Acc))
1249         return false;
1250       for (const Access *DomAcc : DominatingWrites) {
1251         assert(Acc.getLocalInst()->getFunction() ==
1252                    DomAcc->getLocalInst()->getFunction() &&
1253                "Expected dominating writes to be in the same function!");
1254 
1255         if (DomAcc != &Acc &&
1256             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1257           return true;
1258         }
1259       }
1260       return false;
1261     };
1262 
1263     // Run the user callback on all accesses we cannot skip and return if that
1264     // succeeded for all or not.
1265     unsigned NumInterferingAccesses = InterferingAccesses.size();
1266     for (auto &It : InterferingAccesses) {
1267       if (!DT || NumInterferingAccesses > MaxInterferingAccesses ||
1268           !CanSkipAccess(*It.first, It.second)) {
1269         if (!UserCB(*It.first, It.second))
1270           return false;
1271       }
1272     }
1273     return true;
1274   }
1275 
1276   ChangeStatus translateAndAddCalleeState(Attributor &A,
1277                                           const AAPointerInfo &CalleeAA,
1278                                           int64_t CallArgOffset, CallBase &CB) {
1279     using namespace AA::PointerInfo;
1280     if (!CalleeAA.getState().isValidState() || !isValidState())
1281       return indicatePessimisticFixpoint();
1282 
1283     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1284     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1285 
1286     // Combine the accesses bin by bin.
1287     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1288     for (auto &It : CalleeImplAA.getState()) {
1289       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1290       if (CallArgOffset != OffsetAndSize::Unknown)
1291         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1292                             It.first.getSize());
1293       Accesses *Bin = AccessBins[OAS];
1294       for (const AAPointerInfo::Access &RAcc : *It.second) {
1295         if (IsByval && !RAcc.isRead())
1296           continue;
1297         bool UsedAssumedInformation = false;
1298         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1299             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1300         AccessKind AK =
1301             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1302                                                  : AccessKind::AK_READ_WRITE));
1303         Changed =
1304             Changed | addAccess(A, OAS.getOffset(), OAS.getSize(), CB, Content,
1305                                 AK, RAcc.getType(), RAcc.getRemoteInst(), Bin);
1306       }
1307     }
1308     return Changed;
1309   }
1310 
1311   /// Statistic tracking for all AAPointerInfo implementations.
1312   /// See AbstractAttribute::trackStatistics().
1313   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1314 };
1315 
1316 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1317   using AccessKind = AAPointerInfo::AccessKind;
1318   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1319       : AAPointerInfoImpl(IRP, A) {}
1320 
1321   /// See AbstractAttribute::initialize(...).
1322   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1323 
1324   /// Deal with an access and signal if it was handled successfully.
1325   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1326                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1327                     ChangeStatus &Changed, Type *Ty,
1328                     int64_t Size = OffsetAndSize::Unknown) {
1329     using namespace AA::PointerInfo;
1330     // No need to find a size if one is given or the offset is unknown.
1331     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1332         Ty) {
1333       const DataLayout &DL = A.getDataLayout();
1334       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1335       if (!AccessSize.isScalable())
1336         Size = AccessSize.getFixedSize();
1337     }
1338     Changed = Changed | addAccess(A, Offset, Size, I, Content, Kind, Ty);
1339     return true;
1340   };
1341 
1342   /// Helper struct, will support ranges eventually.
1343   struct OffsetInfo {
1344     int64_t Offset = OffsetAndSize::Unknown;
1345 
1346     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1347   };
1348 
1349   /// See AbstractAttribute::updateImpl(...).
1350   ChangeStatus updateImpl(Attributor &A) override {
1351     using namespace AA::PointerInfo;
1352     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1353     Value &AssociatedValue = getAssociatedValue();
1354 
1355     const DataLayout &DL = A.getDataLayout();
1356     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1357     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1358 
1359     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo PtrOI,
1360                                      bool &Follow) {
1361       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1362       UsrOI = PtrOI;
1363       Follow = true;
1364       return true;
1365     };
1366 
1367     const auto *TLI = getAnchorScope()
1368                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1369                                 *getAnchorScope())
1370                           : nullptr;
1371     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1372       Value *CurPtr = U.get();
1373       User *Usr = U.getUser();
1374       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1375                         << *Usr << "\n");
1376       assert(OffsetInfoMap.count(CurPtr) &&
1377              "The current pointer offset should have been seeded!");
1378 
1379       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1380         if (CE->isCast())
1381           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1382         if (CE->isCompare())
1383           return true;
1384         if (!isa<GEPOperator>(CE)) {
1385           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1386                             << "\n");
1387           return false;
1388         }
1389       }
1390       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1391         // Note the order here, the Usr access might change the map, CurPtr is
1392         // already in it though.
1393         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1394         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1395         UsrOI = PtrOI;
1396 
1397         // TODO: Use range information.
1398         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1399             !GEP->hasAllConstantIndices()) {
1400           UsrOI.Offset = OffsetAndSize::Unknown;
1401           Follow = true;
1402           return true;
1403         }
1404 
1405         SmallVector<Value *, 8> Indices;
1406         for (Use &Idx : GEP->indices()) {
1407           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1408             Indices.push_back(CIdx);
1409             continue;
1410           }
1411 
1412           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1413                             << " : " << *Idx << "\n");
1414           return false;
1415         }
1416         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1417                                           GEP->getSourceElementType(), Indices);
1418         Follow = true;
1419         return true;
1420       }
1421       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1422         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1423 
1424       // For PHIs we need to take care of the recurrence explicitly as the value
1425       // might change while we iterate through a loop. For now, we give up if
1426       // the PHI is not invariant.
1427       if (isa<PHINode>(Usr)) {
1428         // Note the order here, the Usr access might change the map, CurPtr is
1429         // already in it though.
1430         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1431         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1432         // Check if the PHI is invariant (so far).
1433         if (UsrOI == PtrOI)
1434           return true;
1435 
1436         // Check if the PHI operand has already an unknown offset as we can't
1437         // improve on that anymore.
1438         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1439           UsrOI = PtrOI;
1440           Follow = true;
1441           return true;
1442         }
1443 
1444         // Check if the PHI operand is not dependent on the PHI itself.
1445         // TODO: This is not great as we look at the pointer type. However, it
1446         // is unclear where the Offset size comes from with typeless pointers.
1447         APInt Offset(
1448             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1449             0);
1450         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1451                                     DL, Offset, /* AllowNonInbounds */ true)) {
1452           if (Offset != PtrOI.Offset) {
1453             LLVM_DEBUG(dbgs()
1454                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1455                        << *CurPtr << " in " << *Usr << "\n");
1456             return false;
1457           }
1458           return HandlePassthroughUser(Usr, PtrOI, Follow);
1459         }
1460 
1461         // TODO: Approximate in case we know the direction of the recurrence.
1462         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1463                           << *CurPtr << " in " << *Usr << "\n");
1464         UsrOI = PtrOI;
1465         UsrOI.Offset = OffsetAndSize::Unknown;
1466         Follow = true;
1467         return true;
1468       }
1469 
1470       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1471         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1472                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1473                             Changed, LoadI->getType());
1474       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1475         if (StoreI->getValueOperand() == CurPtr) {
1476           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1477                             << *StoreI << "\n");
1478           return false;
1479         }
1480         bool UsedAssumedInformation = false;
1481         Optional<Value *> Content = A.getAssumedSimplified(
1482             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1483         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1484                             OffsetInfoMap[CurPtr].Offset, Changed,
1485                             StoreI->getValueOperand()->getType());
1486       }
1487       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1488         if (CB->isLifetimeStartOrEnd())
1489           return true;
1490         if (TLI && isFreeCall(CB, TLI))
1491           return true;
1492         if (CB->isArgOperand(&U)) {
1493           unsigned ArgNo = CB->getArgOperandNo(&U);
1494           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1495               *this, IRPosition::callsite_argument(*CB, ArgNo),
1496               DepClassTy::REQUIRED);
1497           Changed = translateAndAddCalleeState(
1498                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1499                     Changed;
1500           return true;
1501         }
1502         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1503                           << "\n");
1504         // TODO: Allow some call uses
1505         return false;
1506       }
1507 
1508       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1509       return false;
1510     };
1511     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1512       if (OffsetInfoMap.count(NewU))
1513         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1514       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1515       return true;
1516     };
1517     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1518                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1519                            /* IgnoreDroppableUses */ true, EquivalentUseCB))
1520       return indicatePessimisticFixpoint();
1521 
1522     LLVM_DEBUG({
1523       dbgs() << "Accesses by bin after update:\n";
1524       for (auto &It : AccessBins) {
1525         dbgs() << "[" << It.first.getOffset() << "-"
1526                << It.first.getOffset() + It.first.getSize()
1527                << "] : " << It.getSecond()->size() << "\n";
1528         for (auto &Acc : *It.getSecond()) {
1529           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1530                  << "\n";
1531           if (Acc.getLocalInst() != Acc.getRemoteInst())
1532             dbgs() << "     -->                         "
1533                    << *Acc.getRemoteInst() << "\n";
1534           if (!Acc.isWrittenValueYetUndetermined()) {
1535             if (Acc.getWrittenValue())
1536               dbgs() << "       - c: " << *Acc.getWrittenValue() << "\n";
1537             else
1538               dbgs() << "       - c: <unknown>\n";
1539           }
1540         }
1541       }
1542     });
1543 
1544     return Changed;
1545   }
1546 
1547   /// See AbstractAttribute::trackStatistics()
1548   void trackStatistics() const override {
1549     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1550   }
1551 };
1552 
1553 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1554   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1555       : AAPointerInfoImpl(IRP, A) {}
1556 
1557   /// See AbstractAttribute::updateImpl(...).
1558   ChangeStatus updateImpl(Attributor &A) override {
1559     return indicatePessimisticFixpoint();
1560   }
1561 
1562   /// See AbstractAttribute::trackStatistics()
1563   void trackStatistics() const override {
1564     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1565   }
1566 };
1567 
1568 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1569   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1570       : AAPointerInfoFloating(IRP, A) {}
1571 
1572   /// See AbstractAttribute::initialize(...).
1573   void initialize(Attributor &A) override {
1574     AAPointerInfoFloating::initialize(A);
1575     if (getAnchorScope()->isDeclaration())
1576       indicatePessimisticFixpoint();
1577   }
1578 
1579   /// See AbstractAttribute::trackStatistics()
1580   void trackStatistics() const override {
1581     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1582   }
1583 };
1584 
1585 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1586   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1587       : AAPointerInfoFloating(IRP, A) {}
1588 
1589   /// See AbstractAttribute::updateImpl(...).
1590   ChangeStatus updateImpl(Attributor &A) override {
1591     using namespace AA::PointerInfo;
1592     // We handle memory intrinsics explicitly, at least the first (=
1593     // destination) and second (=source) arguments as we know how they are
1594     // accessed.
1595     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1596       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1597       int64_t LengthVal = OffsetAndSize::Unknown;
1598       if (Length)
1599         LengthVal = Length->getSExtValue();
1600       Value &Ptr = getAssociatedValue();
1601       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1602       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1603       if (ArgNo == 0) {
1604         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1605                      nullptr, LengthVal);
1606       } else if (ArgNo == 1) {
1607         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1608                      nullptr, LengthVal);
1609       } else {
1610         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1611                           << *MI << "\n");
1612         return indicatePessimisticFixpoint();
1613       }
1614       return Changed;
1615     }
1616 
1617     // TODO: Once we have call site specific value information we can provide
1618     //       call site specific liveness information and then it makes
1619     //       sense to specialize attributes for call sites arguments instead of
1620     //       redirecting requests to the callee argument.
1621     Argument *Arg = getAssociatedArgument();
1622     if (!Arg)
1623       return indicatePessimisticFixpoint();
1624     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1625     auto &ArgAA =
1626         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1627     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1628   }
1629 
1630   /// See AbstractAttribute::trackStatistics()
1631   void trackStatistics() const override {
1632     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1633   }
1634 };
1635 
1636 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1637   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1638       : AAPointerInfoFloating(IRP, A) {}
1639 
1640   /// See AbstractAttribute::trackStatistics()
1641   void trackStatistics() const override {
1642     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1643   }
1644 };
1645 } // namespace
1646 
1647 /// -----------------------NoUnwind Function Attribute--------------------------
1648 
1649 namespace {
1650 struct AANoUnwindImpl : AANoUnwind {
1651   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1652 
1653   const std::string getAsStr() const override {
1654     return getAssumed() ? "nounwind" : "may-unwind";
1655   }
1656 
1657   /// See AbstractAttribute::updateImpl(...).
1658   ChangeStatus updateImpl(Attributor &A) override {
1659     auto Opcodes = {
1660         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1661         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1662         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1663 
1664     auto CheckForNoUnwind = [&](Instruction &I) {
1665       if (!I.mayThrow())
1666         return true;
1667 
1668       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1669         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1670             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1671         return NoUnwindAA.isAssumedNoUnwind();
1672       }
1673       return false;
1674     };
1675 
1676     bool UsedAssumedInformation = false;
1677     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1678                                    UsedAssumedInformation))
1679       return indicatePessimisticFixpoint();
1680 
1681     return ChangeStatus::UNCHANGED;
1682   }
1683 };
1684 
1685 struct AANoUnwindFunction final : public AANoUnwindImpl {
1686   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1687       : AANoUnwindImpl(IRP, A) {}
1688 
1689   /// See AbstractAttribute::trackStatistics()
1690   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1691 };
1692 
1693 /// NoUnwind attribute deduction for a call sites.
1694 struct AANoUnwindCallSite final : AANoUnwindImpl {
1695   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1696       : AANoUnwindImpl(IRP, A) {}
1697 
1698   /// See AbstractAttribute::initialize(...).
1699   void initialize(Attributor &A) override {
1700     AANoUnwindImpl::initialize(A);
1701     Function *F = getAssociatedFunction();
1702     if (!F || F->isDeclaration())
1703       indicatePessimisticFixpoint();
1704   }
1705 
1706   /// See AbstractAttribute::updateImpl(...).
1707   ChangeStatus updateImpl(Attributor &A) override {
1708     // TODO: Once we have call site specific value information we can provide
1709     //       call site specific liveness information and then it makes
1710     //       sense to specialize attributes for call sites arguments instead of
1711     //       redirecting requests to the callee argument.
1712     Function *F = getAssociatedFunction();
1713     const IRPosition &FnPos = IRPosition::function(*F);
1714     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1715     return clampStateAndIndicateChange(getState(), FnAA.getState());
1716   }
1717 
1718   /// See AbstractAttribute::trackStatistics()
1719   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1720 };
1721 } // namespace
1722 
1723 /// --------------------- Function Return Values -------------------------------
1724 
1725 namespace {
1726 /// "Attribute" that collects all potential returned values and the return
1727 /// instructions that they arise from.
1728 ///
1729 /// If there is a unique returned value R, the manifest method will:
1730 ///   - mark R with the "returned" attribute, if R is an argument.
1731 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1732 
1733   /// Mapping of values potentially returned by the associated function to the
1734   /// return instructions that might return them.
1735   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1736 
1737   /// State flags
1738   ///
1739   ///{
1740   bool IsFixed = false;
1741   bool IsValidState = true;
1742   ///}
1743 
1744 public:
1745   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1746       : AAReturnedValues(IRP, A) {}
1747 
1748   /// See AbstractAttribute::initialize(...).
1749   void initialize(Attributor &A) override {
1750     // Reset the state.
1751     IsFixed = false;
1752     IsValidState = true;
1753     ReturnedValues.clear();
1754 
1755     Function *F = getAssociatedFunction();
1756     if (!F || F->isDeclaration()) {
1757       indicatePessimisticFixpoint();
1758       return;
1759     }
1760     assert(!F->getReturnType()->isVoidTy() &&
1761            "Did not expect a void return type!");
1762 
1763     // The map from instruction opcodes to those instructions in the function.
1764     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1765 
1766     // Look through all arguments, if one is marked as returned we are done.
1767     for (Argument &Arg : F->args()) {
1768       if (Arg.hasReturnedAttr()) {
1769         auto &ReturnInstSet = ReturnedValues[&Arg];
1770         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1771           for (Instruction *RI : *Insts)
1772             ReturnInstSet.insert(cast<ReturnInst>(RI));
1773 
1774         indicateOptimisticFixpoint();
1775         return;
1776       }
1777     }
1778 
1779     if (!A.isFunctionIPOAmendable(*F))
1780       indicatePessimisticFixpoint();
1781   }
1782 
1783   /// See AbstractAttribute::manifest(...).
1784   ChangeStatus manifest(Attributor &A) override;
1785 
1786   /// See AbstractAttribute::getState(...).
1787   AbstractState &getState() override { return *this; }
1788 
1789   /// See AbstractAttribute::getState(...).
1790   const AbstractState &getState() const override { return *this; }
1791 
1792   /// See AbstractAttribute::updateImpl(Attributor &A).
1793   ChangeStatus updateImpl(Attributor &A) override;
1794 
1795   llvm::iterator_range<iterator> returned_values() override {
1796     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1797   }
1798 
1799   llvm::iterator_range<const_iterator> returned_values() const override {
1800     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1801   }
1802 
1803   /// Return the number of potential return values, -1 if unknown.
1804   size_t getNumReturnValues() const override {
1805     return isValidState() ? ReturnedValues.size() : -1;
1806   }
1807 
1808   /// Return an assumed unique return value if a single candidate is found. If
1809   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1810   /// Optional::NoneType.
1811   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1812 
1813   /// See AbstractState::checkForAllReturnedValues(...).
1814   bool checkForAllReturnedValuesAndReturnInsts(
1815       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1816       const override;
1817 
1818   /// Pretty print the attribute similar to the IR representation.
1819   const std::string getAsStr() const override;
1820 
1821   /// See AbstractState::isAtFixpoint().
1822   bool isAtFixpoint() const override { return IsFixed; }
1823 
1824   /// See AbstractState::isValidState().
1825   bool isValidState() const override { return IsValidState; }
1826 
1827   /// See AbstractState::indicateOptimisticFixpoint(...).
1828   ChangeStatus indicateOptimisticFixpoint() override {
1829     IsFixed = true;
1830     return ChangeStatus::UNCHANGED;
1831   }
1832 
1833   ChangeStatus indicatePessimisticFixpoint() override {
1834     IsFixed = true;
1835     IsValidState = false;
1836     return ChangeStatus::CHANGED;
1837   }
1838 };
1839 
1840 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1841   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1842 
1843   // Bookkeeping.
1844   assert(isValidState());
1845   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1846                   "Number of function with known return values");
1847 
1848   // Check if we have an assumed unique return value that we could manifest.
1849   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1850 
1851   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1852     return Changed;
1853 
1854   // Bookkeeping.
1855   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1856                   "Number of function with unique return");
1857   // If the assumed unique return value is an argument, annotate it.
1858   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1859     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1860             getAssociatedFunction()->getReturnType())) {
1861       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1862       Changed = IRAttribute::manifest(A);
1863     }
1864   }
1865   return Changed;
1866 }
1867 
1868 const std::string AAReturnedValuesImpl::getAsStr() const {
1869   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1870          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1871 }
1872 
1873 Optional<Value *>
1874 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1875   // If checkForAllReturnedValues provides a unique value, ignoring potential
1876   // undef values that can also be present, it is assumed to be the actual
1877   // return value and forwarded to the caller of this method. If there are
1878   // multiple, a nullptr is returned indicating there cannot be a unique
1879   // returned value.
1880   Optional<Value *> UniqueRV;
1881   Type *Ty = getAssociatedFunction()->getReturnType();
1882 
1883   auto Pred = [&](Value &RV) -> bool {
1884     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1885     return UniqueRV != Optional<Value *>(nullptr);
1886   };
1887 
1888   if (!A.checkForAllReturnedValues(Pred, *this))
1889     UniqueRV = nullptr;
1890 
1891   return UniqueRV;
1892 }
1893 
1894 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1895     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1896     const {
1897   if (!isValidState())
1898     return false;
1899 
1900   // Check all returned values but ignore call sites as long as we have not
1901   // encountered an overdefined one during an update.
1902   for (auto &It : ReturnedValues) {
1903     Value *RV = It.first;
1904     if (!Pred(*RV, It.second))
1905       return false;
1906   }
1907 
1908   return true;
1909 }
1910 
1911 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1912   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1913 
1914   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1915                            bool) -> bool {
1916     assert(AA::isValidInScope(V, Ret.getFunction()) &&
1917            "Assumed returned value should be valid in function scope!");
1918     if (ReturnedValues[&V].insert(&Ret))
1919       Changed = ChangeStatus::CHANGED;
1920     return true;
1921   };
1922 
1923   bool UsedAssumedInformation = false;
1924   auto ReturnInstCB = [&](Instruction &I) {
1925     ReturnInst &Ret = cast<ReturnInst>(I);
1926     return genericValueTraversal<ReturnInst>(
1927         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1928         &I, UsedAssumedInformation, /* UseValueSimplify */ true,
1929         /* MaxValues */ 16,
1930         /* StripCB */ nullptr, /* Intraprocedural */ true);
1931   };
1932 
1933   // Discover returned values from all live returned instructions in the
1934   // associated function.
1935   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1936                                  UsedAssumedInformation))
1937     return indicatePessimisticFixpoint();
1938   return Changed;
1939 }
1940 
1941 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1942   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1943       : AAReturnedValuesImpl(IRP, A) {}
1944 
1945   /// See AbstractAttribute::trackStatistics()
1946   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1947 };
1948 
1949 /// Returned values information for a call sites.
1950 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1951   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1952       : AAReturnedValuesImpl(IRP, A) {}
1953 
1954   /// See AbstractAttribute::initialize(...).
1955   void initialize(Attributor &A) override {
1956     // TODO: Once we have call site specific value information we can provide
1957     //       call site specific liveness information and then it makes
1958     //       sense to specialize attributes for call sites instead of
1959     //       redirecting requests to the callee.
1960     llvm_unreachable("Abstract attributes for returned values are not "
1961                      "supported for call sites yet!");
1962   }
1963 
1964   /// See AbstractAttribute::updateImpl(...).
1965   ChangeStatus updateImpl(Attributor &A) override {
1966     return indicatePessimisticFixpoint();
1967   }
1968 
1969   /// See AbstractAttribute::trackStatistics()
1970   void trackStatistics() const override {}
1971 };
1972 } // namespace
1973 
1974 /// ------------------------ NoSync Function Attribute -------------------------
1975 
1976 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1977   if (!I->isAtomic())
1978     return false;
1979 
1980   if (auto *FI = dyn_cast<FenceInst>(I))
1981     // All legal orderings for fence are stronger than monotonic.
1982     return FI->getSyncScopeID() != SyncScope::SingleThread;
1983   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1984     // Unordered is not a legal ordering for cmpxchg.
1985     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1986             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1987   }
1988 
1989   AtomicOrdering Ordering;
1990   switch (I->getOpcode()) {
1991   case Instruction::AtomicRMW:
1992     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1993     break;
1994   case Instruction::Store:
1995     Ordering = cast<StoreInst>(I)->getOrdering();
1996     break;
1997   case Instruction::Load:
1998     Ordering = cast<LoadInst>(I)->getOrdering();
1999     break;
2000   default:
2001     llvm_unreachable(
2002         "New atomic operations need to be known in the attributor.");
2003   }
2004 
2005   return (Ordering != AtomicOrdering::Unordered &&
2006           Ordering != AtomicOrdering::Monotonic);
2007 }
2008 
2009 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
2010 /// which would be nosync except that they have a volatile flag.  All other
2011 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
2012 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
2013   if (auto *MI = dyn_cast<MemIntrinsic>(I))
2014     return !MI->isVolatile();
2015   return false;
2016 }
2017 
2018 namespace {
2019 struct AANoSyncImpl : AANoSync {
2020   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
2021 
2022   const std::string getAsStr() const override {
2023     return getAssumed() ? "nosync" : "may-sync";
2024   }
2025 
2026   /// See AbstractAttribute::updateImpl(...).
2027   ChangeStatus updateImpl(Attributor &A) override;
2028 };
2029 
2030 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
2031 
2032   auto CheckRWInstForNoSync = [&](Instruction &I) {
2033     return AA::isNoSyncInst(A, I, *this);
2034   };
2035 
2036   auto CheckForNoSync = [&](Instruction &I) {
2037     // At this point we handled all read/write effects and they are all
2038     // nosync, so they can be skipped.
2039     if (I.mayReadOrWriteMemory())
2040       return true;
2041 
2042     // non-convergent and readnone imply nosync.
2043     return !cast<CallBase>(I).isConvergent();
2044   };
2045 
2046   bool UsedAssumedInformation = false;
2047   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2048                                           UsedAssumedInformation) ||
2049       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2050                                          UsedAssumedInformation))
2051     return indicatePessimisticFixpoint();
2052 
2053   return ChangeStatus::UNCHANGED;
2054 }
2055 
2056 struct AANoSyncFunction final : public AANoSyncImpl {
2057   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2058       : AANoSyncImpl(IRP, A) {}
2059 
2060   /// See AbstractAttribute::trackStatistics()
2061   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2062 };
2063 
2064 /// NoSync attribute deduction for a call sites.
2065 struct AANoSyncCallSite final : AANoSyncImpl {
2066   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2067       : AANoSyncImpl(IRP, A) {}
2068 
2069   /// See AbstractAttribute::initialize(...).
2070   void initialize(Attributor &A) override {
2071     AANoSyncImpl::initialize(A);
2072     Function *F = getAssociatedFunction();
2073     if (!F || F->isDeclaration())
2074       indicatePessimisticFixpoint();
2075   }
2076 
2077   /// See AbstractAttribute::updateImpl(...).
2078   ChangeStatus updateImpl(Attributor &A) override {
2079     // TODO: Once we have call site specific value information we can provide
2080     //       call site specific liveness information and then it makes
2081     //       sense to specialize attributes for call sites arguments instead of
2082     //       redirecting requests to the callee argument.
2083     Function *F = getAssociatedFunction();
2084     const IRPosition &FnPos = IRPosition::function(*F);
2085     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
2086     return clampStateAndIndicateChange(getState(), FnAA.getState());
2087   }
2088 
2089   /// See AbstractAttribute::trackStatistics()
2090   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2091 };
2092 } // namespace
2093 
2094 /// ------------------------ No-Free Attributes ----------------------------
2095 
2096 namespace {
2097 struct AANoFreeImpl : public AANoFree {
2098   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2099 
2100   /// See AbstractAttribute::updateImpl(...).
2101   ChangeStatus updateImpl(Attributor &A) override {
2102     auto CheckForNoFree = [&](Instruction &I) {
2103       const auto &CB = cast<CallBase>(I);
2104       if (CB.hasFnAttr(Attribute::NoFree))
2105         return true;
2106 
2107       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2108           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2109       return NoFreeAA.isAssumedNoFree();
2110     };
2111 
2112     bool UsedAssumedInformation = false;
2113     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2114                                            UsedAssumedInformation))
2115       return indicatePessimisticFixpoint();
2116     return ChangeStatus::UNCHANGED;
2117   }
2118 
2119   /// See AbstractAttribute::getAsStr().
2120   const std::string getAsStr() const override {
2121     return getAssumed() ? "nofree" : "may-free";
2122   }
2123 };
2124 
2125 struct AANoFreeFunction final : public AANoFreeImpl {
2126   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2127       : AANoFreeImpl(IRP, A) {}
2128 
2129   /// See AbstractAttribute::trackStatistics()
2130   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2131 };
2132 
2133 /// NoFree attribute deduction for a call sites.
2134 struct AANoFreeCallSite final : AANoFreeImpl {
2135   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2136       : AANoFreeImpl(IRP, A) {}
2137 
2138   /// See AbstractAttribute::initialize(...).
2139   void initialize(Attributor &A) override {
2140     AANoFreeImpl::initialize(A);
2141     Function *F = getAssociatedFunction();
2142     if (!F || F->isDeclaration())
2143       indicatePessimisticFixpoint();
2144   }
2145 
2146   /// See AbstractAttribute::updateImpl(...).
2147   ChangeStatus updateImpl(Attributor &A) override {
2148     // TODO: Once we have call site specific value information we can provide
2149     //       call site specific liveness information and then it makes
2150     //       sense to specialize attributes for call sites arguments instead of
2151     //       redirecting requests to the callee argument.
2152     Function *F = getAssociatedFunction();
2153     const IRPosition &FnPos = IRPosition::function(*F);
2154     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2155     return clampStateAndIndicateChange(getState(), FnAA.getState());
2156   }
2157 
2158   /// See AbstractAttribute::trackStatistics()
2159   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2160 };
2161 
2162 /// NoFree attribute for floating values.
2163 struct AANoFreeFloating : AANoFreeImpl {
2164   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2165       : AANoFreeImpl(IRP, A) {}
2166 
2167   /// See AbstractAttribute::trackStatistics()
2168   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2169 
2170   /// See Abstract Attribute::updateImpl(...).
2171   ChangeStatus updateImpl(Attributor &A) override {
2172     const IRPosition &IRP = getIRPosition();
2173 
2174     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2175         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2176     if (NoFreeAA.isAssumedNoFree())
2177       return ChangeStatus::UNCHANGED;
2178 
2179     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2180     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2181       Instruction *UserI = cast<Instruction>(U.getUser());
2182       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2183         if (CB->isBundleOperand(&U))
2184           return false;
2185         if (!CB->isArgOperand(&U))
2186           return true;
2187         unsigned ArgNo = CB->getArgOperandNo(&U);
2188 
2189         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2190             *this, IRPosition::callsite_argument(*CB, ArgNo),
2191             DepClassTy::REQUIRED);
2192         return NoFreeArg.isAssumedNoFree();
2193       }
2194 
2195       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2196           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2197         Follow = true;
2198         return true;
2199       }
2200       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2201           isa<ReturnInst>(UserI))
2202         return true;
2203 
2204       // Unknown user.
2205       return false;
2206     };
2207     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2208       return indicatePessimisticFixpoint();
2209 
2210     return ChangeStatus::UNCHANGED;
2211   }
2212 };
2213 
2214 /// NoFree attribute for a call site argument.
2215 struct AANoFreeArgument final : AANoFreeFloating {
2216   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2217       : AANoFreeFloating(IRP, A) {}
2218 
2219   /// See AbstractAttribute::trackStatistics()
2220   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2221 };
2222 
2223 /// NoFree attribute for call site arguments.
2224 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2225   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2226       : AANoFreeFloating(IRP, A) {}
2227 
2228   /// See AbstractAttribute::updateImpl(...).
2229   ChangeStatus updateImpl(Attributor &A) override {
2230     // TODO: Once we have call site specific value information we can provide
2231     //       call site specific liveness information and then it makes
2232     //       sense to specialize attributes for call sites arguments instead of
2233     //       redirecting requests to the callee argument.
2234     Argument *Arg = getAssociatedArgument();
2235     if (!Arg)
2236       return indicatePessimisticFixpoint();
2237     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2238     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2239     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2240   }
2241 
2242   /// See AbstractAttribute::trackStatistics()
2243   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2244 };
2245 
2246 /// NoFree attribute for function return value.
2247 struct AANoFreeReturned final : AANoFreeFloating {
2248   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2249       : AANoFreeFloating(IRP, A) {
2250     llvm_unreachable("NoFree is not applicable to function returns!");
2251   }
2252 
2253   /// See AbstractAttribute::initialize(...).
2254   void initialize(Attributor &A) override {
2255     llvm_unreachable("NoFree is not applicable to function returns!");
2256   }
2257 
2258   /// See AbstractAttribute::updateImpl(...).
2259   ChangeStatus updateImpl(Attributor &A) override {
2260     llvm_unreachable("NoFree is not applicable to function returns!");
2261   }
2262 
2263   /// See AbstractAttribute::trackStatistics()
2264   void trackStatistics() const override {}
2265 };
2266 
2267 /// NoFree attribute deduction for a call site return value.
2268 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2269   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2270       : AANoFreeFloating(IRP, A) {}
2271 
2272   ChangeStatus manifest(Attributor &A) override {
2273     return ChangeStatus::UNCHANGED;
2274   }
2275   /// See AbstractAttribute::trackStatistics()
2276   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2277 };
2278 } // namespace
2279 
2280 /// ------------------------ NonNull Argument Attribute ------------------------
2281 namespace {
2282 static int64_t getKnownNonNullAndDerefBytesForUse(
2283     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2284     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2285   TrackUse = false;
2286 
2287   const Value *UseV = U->get();
2288   if (!UseV->getType()->isPointerTy())
2289     return 0;
2290 
2291   // We need to follow common pointer manipulation uses to the accesses they
2292   // feed into. We can try to be smart to avoid looking through things we do not
2293   // like for now, e.g., non-inbounds GEPs.
2294   if (isa<CastInst>(I)) {
2295     TrackUse = true;
2296     return 0;
2297   }
2298 
2299   if (isa<GetElementPtrInst>(I)) {
2300     TrackUse = true;
2301     return 0;
2302   }
2303 
2304   Type *PtrTy = UseV->getType();
2305   const Function *F = I->getFunction();
2306   bool NullPointerIsDefined =
2307       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2308   const DataLayout &DL = A.getInfoCache().getDL();
2309   if (const auto *CB = dyn_cast<CallBase>(I)) {
2310     if (CB->isBundleOperand(U)) {
2311       if (RetainedKnowledge RK = getKnowledgeFromUse(
2312               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2313         IsNonNull |=
2314             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2315         return RK.ArgValue;
2316       }
2317       return 0;
2318     }
2319 
2320     if (CB->isCallee(U)) {
2321       IsNonNull |= !NullPointerIsDefined;
2322       return 0;
2323     }
2324 
2325     unsigned ArgNo = CB->getArgOperandNo(U);
2326     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2327     // As long as we only use known information there is no need to track
2328     // dependences here.
2329     auto &DerefAA =
2330         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2331     IsNonNull |= DerefAA.isKnownNonNull();
2332     return DerefAA.getKnownDereferenceableBytes();
2333   }
2334 
2335   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2336   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2337     return 0;
2338 
2339   int64_t Offset;
2340   const Value *Base =
2341       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2342   if (Base && Base == &AssociatedValue) {
2343     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2344     IsNonNull |= !NullPointerIsDefined;
2345     return std::max(int64_t(0), DerefBytes);
2346   }
2347 
2348   /// Corner case when an offset is 0.
2349   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2350                                           /*AllowNonInbounds*/ true);
2351   if (Base && Base == &AssociatedValue && Offset == 0) {
2352     int64_t DerefBytes = Loc->Size.getValue();
2353     IsNonNull |= !NullPointerIsDefined;
2354     return std::max(int64_t(0), DerefBytes);
2355   }
2356 
2357   return 0;
2358 }
2359 
2360 struct AANonNullImpl : AANonNull {
2361   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2362       : AANonNull(IRP, A),
2363         NullIsDefined(NullPointerIsDefined(
2364             getAnchorScope(),
2365             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2366 
2367   /// See AbstractAttribute::initialize(...).
2368   void initialize(Attributor &A) override {
2369     Value &V = getAssociatedValue();
2370     if (!NullIsDefined &&
2371         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2372                 /* IgnoreSubsumingPositions */ false, &A)) {
2373       indicateOptimisticFixpoint();
2374       return;
2375     }
2376 
2377     if (isa<ConstantPointerNull>(V)) {
2378       indicatePessimisticFixpoint();
2379       return;
2380     }
2381 
2382     AANonNull::initialize(A);
2383 
2384     bool CanBeNull, CanBeFreed;
2385     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2386                                          CanBeFreed)) {
2387       if (!CanBeNull) {
2388         indicateOptimisticFixpoint();
2389         return;
2390       }
2391     }
2392 
2393     if (isa<GlobalValue>(&getAssociatedValue())) {
2394       indicatePessimisticFixpoint();
2395       return;
2396     }
2397 
2398     if (Instruction *CtxI = getCtxI())
2399       followUsesInMBEC(*this, A, getState(), *CtxI);
2400   }
2401 
2402   /// See followUsesInMBEC
2403   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2404                        AANonNull::StateType &State) {
2405     bool IsNonNull = false;
2406     bool TrackUse = false;
2407     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2408                                        IsNonNull, TrackUse);
2409     State.setKnown(IsNonNull);
2410     return TrackUse;
2411   }
2412 
2413   /// See AbstractAttribute::getAsStr().
2414   const std::string getAsStr() const override {
2415     return getAssumed() ? "nonnull" : "may-null";
2416   }
2417 
2418   /// Flag to determine if the underlying value can be null and still allow
2419   /// valid accesses.
2420   const bool NullIsDefined;
2421 };
2422 
2423 /// NonNull attribute for a floating value.
2424 struct AANonNullFloating : public AANonNullImpl {
2425   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2426       : AANonNullImpl(IRP, A) {}
2427 
2428   /// See AbstractAttribute::updateImpl(...).
2429   ChangeStatus updateImpl(Attributor &A) override {
2430     const DataLayout &DL = A.getDataLayout();
2431 
2432     DominatorTree *DT = nullptr;
2433     AssumptionCache *AC = nullptr;
2434     InformationCache &InfoCache = A.getInfoCache();
2435     if (const Function *Fn = getAnchorScope()) {
2436       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2437       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2438     }
2439 
2440     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2441                             AANonNull::StateType &T, bool Stripped) -> bool {
2442       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2443                                              DepClassTy::REQUIRED);
2444       if (!Stripped && this == &AA) {
2445         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2446           T.indicatePessimisticFixpoint();
2447       } else {
2448         // Use abstract attribute information.
2449         const AANonNull::StateType &NS = AA.getState();
2450         T ^= NS;
2451       }
2452       return T.isValidState();
2453     };
2454 
2455     StateType T;
2456     bool UsedAssumedInformation = false;
2457     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2458                                           VisitValueCB, getCtxI(),
2459                                           UsedAssumedInformation))
2460       return indicatePessimisticFixpoint();
2461 
2462     return clampStateAndIndicateChange(getState(), T);
2463   }
2464 
2465   /// See AbstractAttribute::trackStatistics()
2466   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2467 };
2468 
2469 /// NonNull attribute for function return value.
2470 struct AANonNullReturned final
2471     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2472   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2473       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2474 
2475   /// See AbstractAttribute::getAsStr().
2476   const std::string getAsStr() const override {
2477     return getAssumed() ? "nonnull" : "may-null";
2478   }
2479 
2480   /// See AbstractAttribute::trackStatistics()
2481   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2482 };
2483 
2484 /// NonNull attribute for function argument.
2485 struct AANonNullArgument final
2486     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2487   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2488       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2489 
2490   /// See AbstractAttribute::trackStatistics()
2491   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2492 };
2493 
2494 struct AANonNullCallSiteArgument final : AANonNullFloating {
2495   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2496       : AANonNullFloating(IRP, A) {}
2497 
2498   /// See AbstractAttribute::trackStatistics()
2499   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2500 };
2501 
2502 /// NonNull attribute for a call site return position.
2503 struct AANonNullCallSiteReturned final
2504     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2505   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2506       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2507 
2508   /// See AbstractAttribute::trackStatistics()
2509   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2510 };
2511 } // namespace
2512 
2513 /// ------------------------ No-Recurse Attributes ----------------------------
2514 
2515 namespace {
2516 struct AANoRecurseImpl : public AANoRecurse {
2517   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2518 
2519   /// See AbstractAttribute::getAsStr()
2520   const std::string getAsStr() const override {
2521     return getAssumed() ? "norecurse" : "may-recurse";
2522   }
2523 };
2524 
2525 struct AANoRecurseFunction final : AANoRecurseImpl {
2526   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2527       : AANoRecurseImpl(IRP, A) {}
2528 
2529   /// See AbstractAttribute::updateImpl(...).
2530   ChangeStatus updateImpl(Attributor &A) override {
2531 
2532     // If all live call sites are known to be no-recurse, we are as well.
2533     auto CallSitePred = [&](AbstractCallSite ACS) {
2534       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2535           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2536           DepClassTy::NONE);
2537       return NoRecurseAA.isKnownNoRecurse();
2538     };
2539     bool UsedAssumedInformation = false;
2540     if (A.checkForAllCallSites(CallSitePred, *this, true,
2541                                UsedAssumedInformation)) {
2542       // If we know all call sites and all are known no-recurse, we are done.
2543       // If all known call sites, which might not be all that exist, are known
2544       // to be no-recurse, we are not done but we can continue to assume
2545       // no-recurse. If one of the call sites we have not visited will become
2546       // live, another update is triggered.
2547       if (!UsedAssumedInformation)
2548         indicateOptimisticFixpoint();
2549       return ChangeStatus::UNCHANGED;
2550     }
2551 
2552     const AAFunctionReachability &EdgeReachability =
2553         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2554                                            DepClassTy::REQUIRED);
2555     if (EdgeReachability.canReach(A, *getAnchorScope()))
2556       return indicatePessimisticFixpoint();
2557     return ChangeStatus::UNCHANGED;
2558   }
2559 
2560   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2561 };
2562 
2563 /// NoRecurse attribute deduction for a call sites.
2564 struct AANoRecurseCallSite final : AANoRecurseImpl {
2565   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2566       : AANoRecurseImpl(IRP, A) {}
2567 
2568   /// See AbstractAttribute::initialize(...).
2569   void initialize(Attributor &A) override {
2570     AANoRecurseImpl::initialize(A);
2571     Function *F = getAssociatedFunction();
2572     if (!F || F->isDeclaration())
2573       indicatePessimisticFixpoint();
2574   }
2575 
2576   /// See AbstractAttribute::updateImpl(...).
2577   ChangeStatus updateImpl(Attributor &A) override {
2578     // TODO: Once we have call site specific value information we can provide
2579     //       call site specific liveness information and then it makes
2580     //       sense to specialize attributes for call sites arguments instead of
2581     //       redirecting requests to the callee argument.
2582     Function *F = getAssociatedFunction();
2583     const IRPosition &FnPos = IRPosition::function(*F);
2584     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2585     return clampStateAndIndicateChange(getState(), FnAA.getState());
2586   }
2587 
2588   /// See AbstractAttribute::trackStatistics()
2589   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2590 };
2591 } // namespace
2592 
2593 /// -------------------- Undefined-Behavior Attributes ------------------------
2594 
2595 namespace {
2596 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2597   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2598       : AAUndefinedBehavior(IRP, A) {}
2599 
2600   /// See AbstractAttribute::updateImpl(...).
2601   // through a pointer (i.e. also branches etc.)
2602   ChangeStatus updateImpl(Attributor &A) override {
2603     const size_t UBPrevSize = KnownUBInsts.size();
2604     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2605 
2606     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2607       // Lang ref now states volatile store is not UB, let's skip them.
2608       if (I.isVolatile() && I.mayWriteToMemory())
2609         return true;
2610 
2611       // Skip instructions that are already saved.
2612       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2613         return true;
2614 
2615       // If we reach here, we know we have an instruction
2616       // that accesses memory through a pointer operand,
2617       // for which getPointerOperand() should give it to us.
2618       Value *PtrOp =
2619           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2620       assert(PtrOp &&
2621              "Expected pointer operand of memory accessing instruction");
2622 
2623       // Either we stopped and the appropriate action was taken,
2624       // or we got back a simplified value to continue.
2625       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2626       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2627         return true;
2628       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2629 
2630       // A memory access through a pointer is considered UB
2631       // only if the pointer has constant null value.
2632       // TODO: Expand it to not only check constant values.
2633       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2634         AssumedNoUBInsts.insert(&I);
2635         return true;
2636       }
2637       const Type *PtrTy = PtrOpVal->getType();
2638 
2639       // Because we only consider instructions inside functions,
2640       // assume that a parent function exists.
2641       const Function *F = I.getFunction();
2642 
2643       // A memory access using constant null pointer is only considered UB
2644       // if null pointer is _not_ defined for the target platform.
2645       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2646         AssumedNoUBInsts.insert(&I);
2647       else
2648         KnownUBInsts.insert(&I);
2649       return true;
2650     };
2651 
2652     auto InspectBrInstForUB = [&](Instruction &I) {
2653       // A conditional branch instruction is considered UB if it has `undef`
2654       // condition.
2655 
2656       // Skip instructions that are already saved.
2657       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2658         return true;
2659 
2660       // We know we have a branch instruction.
2661       auto *BrInst = cast<BranchInst>(&I);
2662 
2663       // Unconditional branches are never considered UB.
2664       if (BrInst->isUnconditional())
2665         return true;
2666 
2667       // Either we stopped and the appropriate action was taken,
2668       // or we got back a simplified value to continue.
2669       Optional<Value *> SimplifiedCond =
2670           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2671       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2672         return true;
2673       AssumedNoUBInsts.insert(&I);
2674       return true;
2675     };
2676 
2677     auto InspectCallSiteForUB = [&](Instruction &I) {
2678       // Check whether a callsite always cause UB or not
2679 
2680       // Skip instructions that are already saved.
2681       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2682         return true;
2683 
2684       // Check nonnull and noundef argument attribute violation for each
2685       // callsite.
2686       CallBase &CB = cast<CallBase>(I);
2687       Function *Callee = CB.getCalledFunction();
2688       if (!Callee)
2689         return true;
2690       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2691         // If current argument is known to be simplified to null pointer and the
2692         // corresponding argument position is known to have nonnull attribute,
2693         // the argument is poison. Furthermore, if the argument is poison and
2694         // the position is known to have noundef attriubte, this callsite is
2695         // considered UB.
2696         if (idx >= Callee->arg_size())
2697           break;
2698         Value *ArgVal = CB.getArgOperand(idx);
2699         if (!ArgVal)
2700           continue;
2701         // Here, we handle three cases.
2702         //   (1) Not having a value means it is dead. (we can replace the value
2703         //       with undef)
2704         //   (2) Simplified to undef. The argument violate noundef attriubte.
2705         //   (3) Simplified to null pointer where known to be nonnull.
2706         //       The argument is a poison value and violate noundef attribute.
2707         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2708         auto &NoUndefAA =
2709             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2710         if (!NoUndefAA.isKnownNoUndef())
2711           continue;
2712         bool UsedAssumedInformation = false;
2713         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2714             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2715         if (UsedAssumedInformation)
2716           continue;
2717         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2718           return true;
2719         if (!SimplifiedVal.hasValue() ||
2720             isa<UndefValue>(*SimplifiedVal.getValue())) {
2721           KnownUBInsts.insert(&I);
2722           continue;
2723         }
2724         if (!ArgVal->getType()->isPointerTy() ||
2725             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2726           continue;
2727         auto &NonNullAA =
2728             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2729         if (NonNullAA.isKnownNonNull())
2730           KnownUBInsts.insert(&I);
2731       }
2732       return true;
2733     };
2734 
2735     auto InspectReturnInstForUB = [&](Instruction &I) {
2736       auto &RI = cast<ReturnInst>(I);
2737       // Either we stopped and the appropriate action was taken,
2738       // or we got back a simplified return value to continue.
2739       Optional<Value *> SimplifiedRetValue =
2740           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2741       if (!SimplifiedRetValue.hasValue() || !SimplifiedRetValue.getValue())
2742         return true;
2743 
2744       // Check if a return instruction always cause UB or not
2745       // Note: It is guaranteed that the returned position of the anchor
2746       //       scope has noundef attribute when this is called.
2747       //       We also ensure the return position is not "assumed dead"
2748       //       because the returned value was then potentially simplified to
2749       //       `undef` in AAReturnedValues without removing the `noundef`
2750       //       attribute yet.
2751 
2752       // When the returned position has noundef attriubte, UB occurs in the
2753       // following cases.
2754       //   (1) Returned value is known to be undef.
2755       //   (2) The value is known to be a null pointer and the returned
2756       //       position has nonnull attribute (because the returned value is
2757       //       poison).
2758       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2759         auto &NonNullAA = A.getAAFor<AANonNull>(
2760             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2761         if (NonNullAA.isKnownNonNull())
2762           KnownUBInsts.insert(&I);
2763       }
2764 
2765       return true;
2766     };
2767 
2768     bool UsedAssumedInformation = false;
2769     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2770                               {Instruction::Load, Instruction::Store,
2771                                Instruction::AtomicCmpXchg,
2772                                Instruction::AtomicRMW},
2773                               UsedAssumedInformation,
2774                               /* CheckBBLivenessOnly */ true);
2775     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2776                               UsedAssumedInformation,
2777                               /* CheckBBLivenessOnly */ true);
2778     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2779                                       UsedAssumedInformation);
2780 
2781     // If the returned position of the anchor scope has noundef attriubte, check
2782     // all returned instructions.
2783     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2784       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2785       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2786         auto &RetPosNoUndefAA =
2787             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2788         if (RetPosNoUndefAA.isKnownNoUndef())
2789           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2790                                     {Instruction::Ret}, UsedAssumedInformation,
2791                                     /* CheckBBLivenessOnly */ true);
2792       }
2793     }
2794 
2795     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2796         UBPrevSize != KnownUBInsts.size())
2797       return ChangeStatus::CHANGED;
2798     return ChangeStatus::UNCHANGED;
2799   }
2800 
2801   bool isKnownToCauseUB(Instruction *I) const override {
2802     return KnownUBInsts.count(I);
2803   }
2804 
2805   bool isAssumedToCauseUB(Instruction *I) const override {
2806     // In simple words, if an instruction is not in the assumed to _not_
2807     // cause UB, then it is assumed UB (that includes those
2808     // in the KnownUBInsts set). The rest is boilerplate
2809     // is to ensure that it is one of the instructions we test
2810     // for UB.
2811 
2812     switch (I->getOpcode()) {
2813     case Instruction::Load:
2814     case Instruction::Store:
2815     case Instruction::AtomicCmpXchg:
2816     case Instruction::AtomicRMW:
2817       return !AssumedNoUBInsts.count(I);
2818     case Instruction::Br: {
2819       auto *BrInst = cast<BranchInst>(I);
2820       if (BrInst->isUnconditional())
2821         return false;
2822       return !AssumedNoUBInsts.count(I);
2823     } break;
2824     default:
2825       return false;
2826     }
2827     return false;
2828   }
2829 
2830   ChangeStatus manifest(Attributor &A) override {
2831     if (KnownUBInsts.empty())
2832       return ChangeStatus::UNCHANGED;
2833     for (Instruction *I : KnownUBInsts)
2834       A.changeToUnreachableAfterManifest(I);
2835     return ChangeStatus::CHANGED;
2836   }
2837 
2838   /// See AbstractAttribute::getAsStr()
2839   const std::string getAsStr() const override {
2840     return getAssumed() ? "undefined-behavior" : "no-ub";
2841   }
2842 
2843   /// Note: The correctness of this analysis depends on the fact that the
2844   /// following 2 sets will stop changing after some point.
2845   /// "Change" here means that their size changes.
2846   /// The size of each set is monotonically increasing
2847   /// (we only add items to them) and it is upper bounded by the number of
2848   /// instructions in the processed function (we can never save more
2849   /// elements in either set than this number). Hence, at some point,
2850   /// they will stop increasing.
2851   /// Consequently, at some point, both sets will have stopped
2852   /// changing, effectively making the analysis reach a fixpoint.
2853 
2854   /// Note: These 2 sets are disjoint and an instruction can be considered
2855   /// one of 3 things:
2856   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2857   ///    the KnownUBInsts set.
2858   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2859   ///    has a reason to assume it).
2860   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2861   ///    could not find a reason to assume or prove that it can cause UB,
2862   ///    hence it assumes it doesn't. We have a set for these instructions
2863   ///    so that we don't reprocess them in every update.
2864   ///    Note however that instructions in this set may cause UB.
2865 
2866 protected:
2867   /// A set of all live instructions _known_ to cause UB.
2868   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2869 
2870 private:
2871   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2872   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2873 
2874   // Should be called on updates in which if we're processing an instruction
2875   // \p I that depends on a value \p V, one of the following has to happen:
2876   // - If the value is assumed, then stop.
2877   // - If the value is known but undef, then consider it UB.
2878   // - Otherwise, do specific processing with the simplified value.
2879   // We return None in the first 2 cases to signify that an appropriate
2880   // action was taken and the caller should stop.
2881   // Otherwise, we return the simplified value that the caller should
2882   // use for specific processing.
2883   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2884                                          Instruction *I) {
2885     bool UsedAssumedInformation = false;
2886     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2887         IRPosition::value(*V), *this, UsedAssumedInformation);
2888     if (!UsedAssumedInformation) {
2889       // Don't depend on assumed values.
2890       if (!SimplifiedV.hasValue()) {
2891         // If it is known (which we tested above) but it doesn't have a value,
2892         // then we can assume `undef` and hence the instruction is UB.
2893         KnownUBInsts.insert(I);
2894         return llvm::None;
2895       }
2896       if (!SimplifiedV.getValue())
2897         return nullptr;
2898       V = *SimplifiedV;
2899     }
2900     if (isa<UndefValue>(V)) {
2901       KnownUBInsts.insert(I);
2902       return llvm::None;
2903     }
2904     return V;
2905   }
2906 };
2907 
2908 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2909   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2910       : AAUndefinedBehaviorImpl(IRP, A) {}
2911 
2912   /// See AbstractAttribute::trackStatistics()
2913   void trackStatistics() const override {
2914     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2915                "Number of instructions known to have UB");
2916     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2917         KnownUBInsts.size();
2918   }
2919 };
2920 } // namespace
2921 
2922 /// ------------------------ Will-Return Attributes ----------------------------
2923 
2924 namespace {
2925 // Helper function that checks whether a function has any cycle which we don't
2926 // know if it is bounded or not.
2927 // Loops with maximum trip count are considered bounded, any other cycle not.
2928 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2929   ScalarEvolution *SE =
2930       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2931   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2932   // If either SCEV or LoopInfo is not available for the function then we assume
2933   // any cycle to be unbounded cycle.
2934   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2935   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2936   if (!SE || !LI) {
2937     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2938       if (SCCI.hasCycle())
2939         return true;
2940     return false;
2941   }
2942 
2943   // If there's irreducible control, the function may contain non-loop cycles.
2944   if (mayContainIrreducibleControl(F, LI))
2945     return true;
2946 
2947   // Any loop that does not have a max trip count is considered unbounded cycle.
2948   for (auto *L : LI->getLoopsInPreorder()) {
2949     if (!SE->getSmallConstantMaxTripCount(L))
2950       return true;
2951   }
2952   return false;
2953 }
2954 
2955 struct AAWillReturnImpl : public AAWillReturn {
2956   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2957       : AAWillReturn(IRP, A) {}
2958 
2959   /// See AbstractAttribute::initialize(...).
2960   void initialize(Attributor &A) override {
2961     AAWillReturn::initialize(A);
2962 
2963     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2964       indicateOptimisticFixpoint();
2965       return;
2966     }
2967   }
2968 
2969   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2970   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2971     // Check for `mustprogress` in the scope and the associated function which
2972     // might be different if this is a call site.
2973     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2974         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2975       return false;
2976 
2977     bool IsKnown;
2978     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2979       return IsKnown || !KnownOnly;
2980     return false;
2981   }
2982 
2983   /// See AbstractAttribute::updateImpl(...).
2984   ChangeStatus updateImpl(Attributor &A) override {
2985     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2986       return ChangeStatus::UNCHANGED;
2987 
2988     auto CheckForWillReturn = [&](Instruction &I) {
2989       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2990       const auto &WillReturnAA =
2991           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2992       if (WillReturnAA.isKnownWillReturn())
2993         return true;
2994       if (!WillReturnAA.isAssumedWillReturn())
2995         return false;
2996       const auto &NoRecurseAA =
2997           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2998       return NoRecurseAA.isAssumedNoRecurse();
2999     };
3000 
3001     bool UsedAssumedInformation = false;
3002     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
3003                                            UsedAssumedInformation))
3004       return indicatePessimisticFixpoint();
3005 
3006     return ChangeStatus::UNCHANGED;
3007   }
3008 
3009   /// See AbstractAttribute::getAsStr()
3010   const std::string getAsStr() const override {
3011     return getAssumed() ? "willreturn" : "may-noreturn";
3012   }
3013 };
3014 
3015 struct AAWillReturnFunction final : AAWillReturnImpl {
3016   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
3017       : AAWillReturnImpl(IRP, A) {}
3018 
3019   /// See AbstractAttribute::initialize(...).
3020   void initialize(Attributor &A) override {
3021     AAWillReturnImpl::initialize(A);
3022 
3023     Function *F = getAnchorScope();
3024     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
3025       indicatePessimisticFixpoint();
3026   }
3027 
3028   /// See AbstractAttribute::trackStatistics()
3029   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
3030 };
3031 
3032 /// WillReturn attribute deduction for a call sites.
3033 struct AAWillReturnCallSite final : AAWillReturnImpl {
3034   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
3035       : AAWillReturnImpl(IRP, A) {}
3036 
3037   /// See AbstractAttribute::initialize(...).
3038   void initialize(Attributor &A) override {
3039     AAWillReturnImpl::initialize(A);
3040     Function *F = getAssociatedFunction();
3041     if (!F || !A.isFunctionIPOAmendable(*F))
3042       indicatePessimisticFixpoint();
3043   }
3044 
3045   /// See AbstractAttribute::updateImpl(...).
3046   ChangeStatus updateImpl(Attributor &A) override {
3047     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3048       return ChangeStatus::UNCHANGED;
3049 
3050     // TODO: Once we have call site specific value information we can provide
3051     //       call site specific liveness information and then it makes
3052     //       sense to specialize attributes for call sites arguments instead of
3053     //       redirecting requests to the callee argument.
3054     Function *F = getAssociatedFunction();
3055     const IRPosition &FnPos = IRPosition::function(*F);
3056     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
3057     return clampStateAndIndicateChange(getState(), FnAA.getState());
3058   }
3059 
3060   /// See AbstractAttribute::trackStatistics()
3061   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3062 };
3063 } // namespace
3064 
3065 /// -------------------AAReachability Attribute--------------------------
3066 
3067 namespace {
3068 struct AAReachabilityImpl : AAReachability {
3069   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
3070       : AAReachability(IRP, A) {}
3071 
3072   const std::string getAsStr() const override {
3073     // TODO: Return the number of reachable queries.
3074     return "reachable";
3075   }
3076 
3077   /// See AbstractAttribute::updateImpl(...).
3078   ChangeStatus updateImpl(Attributor &A) override {
3079     return ChangeStatus::UNCHANGED;
3080   }
3081 };
3082 
3083 struct AAReachabilityFunction final : public AAReachabilityImpl {
3084   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
3085       : AAReachabilityImpl(IRP, A) {}
3086 
3087   /// See AbstractAttribute::trackStatistics()
3088   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3089 };
3090 } // namespace
3091 
3092 /// ------------------------ NoAlias Argument Attribute ------------------------
3093 
3094 namespace {
3095 struct AANoAliasImpl : AANoAlias {
3096   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3097     assert(getAssociatedType()->isPointerTy() &&
3098            "Noalias is a pointer attribute");
3099   }
3100 
3101   const std::string getAsStr() const override {
3102     return getAssumed() ? "noalias" : "may-alias";
3103   }
3104 };
3105 
3106 /// NoAlias attribute for a floating value.
3107 struct AANoAliasFloating final : AANoAliasImpl {
3108   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3109       : AANoAliasImpl(IRP, A) {}
3110 
3111   /// See AbstractAttribute::initialize(...).
3112   void initialize(Attributor &A) override {
3113     AANoAliasImpl::initialize(A);
3114     Value *Val = &getAssociatedValue();
3115     do {
3116       CastInst *CI = dyn_cast<CastInst>(Val);
3117       if (!CI)
3118         break;
3119       Value *Base = CI->getOperand(0);
3120       if (!Base->hasOneUse())
3121         break;
3122       Val = Base;
3123     } while (true);
3124 
3125     if (!Val->getType()->isPointerTy()) {
3126       indicatePessimisticFixpoint();
3127       return;
3128     }
3129 
3130     if (isa<AllocaInst>(Val))
3131       indicateOptimisticFixpoint();
3132     else if (isa<ConstantPointerNull>(Val) &&
3133              !NullPointerIsDefined(getAnchorScope(),
3134                                    Val->getType()->getPointerAddressSpace()))
3135       indicateOptimisticFixpoint();
3136     else if (Val != &getAssociatedValue()) {
3137       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3138           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3139       if (ValNoAliasAA.isKnownNoAlias())
3140         indicateOptimisticFixpoint();
3141     }
3142   }
3143 
3144   /// See AbstractAttribute::updateImpl(...).
3145   ChangeStatus updateImpl(Attributor &A) override {
3146     // TODO: Implement this.
3147     return indicatePessimisticFixpoint();
3148   }
3149 
3150   /// See AbstractAttribute::trackStatistics()
3151   void trackStatistics() const override {
3152     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3153   }
3154 };
3155 
3156 /// NoAlias attribute for an argument.
3157 struct AANoAliasArgument final
3158     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3159   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3160   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3161 
3162   /// See AbstractAttribute::initialize(...).
3163   void initialize(Attributor &A) override {
3164     Base::initialize(A);
3165     // See callsite argument attribute and callee argument attribute.
3166     if (hasAttr({Attribute::ByVal}))
3167       indicateOptimisticFixpoint();
3168   }
3169 
3170   /// See AbstractAttribute::update(...).
3171   ChangeStatus updateImpl(Attributor &A) override {
3172     // We have to make sure no-alias on the argument does not break
3173     // synchronization when this is a callback argument, see also [1] below.
3174     // If synchronization cannot be affected, we delegate to the base updateImpl
3175     // function, otherwise we give up for now.
3176 
3177     // If the function is no-sync, no-alias cannot break synchronization.
3178     const auto &NoSyncAA =
3179         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3180                              DepClassTy::OPTIONAL);
3181     if (NoSyncAA.isAssumedNoSync())
3182       return Base::updateImpl(A);
3183 
3184     // If the argument is read-only, no-alias cannot break synchronization.
3185     bool IsKnown;
3186     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3187       return Base::updateImpl(A);
3188 
3189     // If the argument is never passed through callbacks, no-alias cannot break
3190     // synchronization.
3191     bool UsedAssumedInformation = false;
3192     if (A.checkForAllCallSites(
3193             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3194             true, UsedAssumedInformation))
3195       return Base::updateImpl(A);
3196 
3197     // TODO: add no-alias but make sure it doesn't break synchronization by
3198     // introducing fake uses. See:
3199     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3200     //     International Workshop on OpenMP 2018,
3201     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3202 
3203     return indicatePessimisticFixpoint();
3204   }
3205 
3206   /// See AbstractAttribute::trackStatistics()
3207   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3208 };
3209 
3210 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3211   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3212       : AANoAliasImpl(IRP, A) {}
3213 
3214   /// See AbstractAttribute::initialize(...).
3215   void initialize(Attributor &A) override {
3216     // See callsite argument attribute and callee argument attribute.
3217     const auto &CB = cast<CallBase>(getAnchorValue());
3218     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3219       indicateOptimisticFixpoint();
3220     Value &Val = getAssociatedValue();
3221     if (isa<ConstantPointerNull>(Val) &&
3222         !NullPointerIsDefined(getAnchorScope(),
3223                               Val.getType()->getPointerAddressSpace()))
3224       indicateOptimisticFixpoint();
3225   }
3226 
3227   /// Determine if the underlying value may alias with the call site argument
3228   /// \p OtherArgNo of \p ICS (= the underlying call site).
3229   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3230                             const AAMemoryBehavior &MemBehaviorAA,
3231                             const CallBase &CB, unsigned OtherArgNo) {
3232     // We do not need to worry about aliasing with the underlying IRP.
3233     if (this->getCalleeArgNo() == (int)OtherArgNo)
3234       return false;
3235 
3236     // If it is not a pointer or pointer vector we do not alias.
3237     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3238     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3239       return false;
3240 
3241     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3242         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3243 
3244     // If the argument is readnone, there is no read-write aliasing.
3245     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3246       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3247       return false;
3248     }
3249 
3250     // If the argument is readonly and the underlying value is readonly, there
3251     // is no read-write aliasing.
3252     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3253     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3254       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3255       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3256       return false;
3257     }
3258 
3259     // We have to utilize actual alias analysis queries so we need the object.
3260     if (!AAR)
3261       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3262 
3263     // Try to rule it out at the call site.
3264     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3265     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3266                          "callsite arguments: "
3267                       << getAssociatedValue() << " " << *ArgOp << " => "
3268                       << (IsAliasing ? "" : "no-") << "alias \n");
3269 
3270     return IsAliasing;
3271   }
3272 
3273   bool
3274   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3275                                          const AAMemoryBehavior &MemBehaviorAA,
3276                                          const AANoAlias &NoAliasAA) {
3277     // We can deduce "noalias" if the following conditions hold.
3278     // (i)   Associated value is assumed to be noalias in the definition.
3279     // (ii)  Associated value is assumed to be no-capture in all the uses
3280     //       possibly executed before this callsite.
3281     // (iii) There is no other pointer argument which could alias with the
3282     //       value.
3283 
3284     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3285     if (!AssociatedValueIsNoAliasAtDef) {
3286       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3287                         << " is not no-alias at the definition\n");
3288       return false;
3289     }
3290 
3291     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3292 
3293     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3294     const Function *ScopeFn = VIRP.getAnchorScope();
3295     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3296     // Check whether the value is captured in the scope using AANoCapture.
3297     //      Look at CFG and check only uses possibly executed before this
3298     //      callsite.
3299     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3300       Instruction *UserI = cast<Instruction>(U.getUser());
3301 
3302       // If UserI is the curr instruction and there is a single potential use of
3303       // the value in UserI we allow the use.
3304       // TODO: We should inspect the operands and allow those that cannot alias
3305       //       with the value.
3306       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3307         return true;
3308 
3309       if (ScopeFn) {
3310         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3311           if (CB->isArgOperand(&U)) {
3312 
3313             unsigned ArgNo = CB->getArgOperandNo(&U);
3314 
3315             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3316                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3317                 DepClassTy::OPTIONAL);
3318 
3319             if (NoCaptureAA.isAssumedNoCapture())
3320               return true;
3321           }
3322         }
3323 
3324         if (!AA::isPotentiallyReachable(A, *UserI, *getCtxI(), *this))
3325           return true;
3326       }
3327 
3328       // For cases which can potentially have more users
3329       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3330           isa<SelectInst>(U)) {
3331         Follow = true;
3332         return true;
3333       }
3334 
3335       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3336       return false;
3337     };
3338 
3339     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3340       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3341         LLVM_DEBUG(
3342             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3343                    << " cannot be noalias as it is potentially captured\n");
3344         return false;
3345       }
3346     }
3347     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3348 
3349     // Check there is no other pointer argument which could alias with the
3350     // value passed at this call site.
3351     // TODO: AbstractCallSite
3352     const auto &CB = cast<CallBase>(getAnchorValue());
3353     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3354       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3355         return false;
3356 
3357     return true;
3358   }
3359 
3360   /// See AbstractAttribute::updateImpl(...).
3361   ChangeStatus updateImpl(Attributor &A) override {
3362     // If the argument is readnone we are done as there are no accesses via the
3363     // argument.
3364     auto &MemBehaviorAA =
3365         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3366     if (MemBehaviorAA.isAssumedReadNone()) {
3367       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3368       return ChangeStatus::UNCHANGED;
3369     }
3370 
3371     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3372     const auto &NoAliasAA =
3373         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3374 
3375     AAResults *AAR = nullptr;
3376     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3377                                                NoAliasAA)) {
3378       LLVM_DEBUG(
3379           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3380       return ChangeStatus::UNCHANGED;
3381     }
3382 
3383     return indicatePessimisticFixpoint();
3384   }
3385 
3386   /// See AbstractAttribute::trackStatistics()
3387   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3388 };
3389 
3390 /// NoAlias attribute for function return value.
3391 struct AANoAliasReturned final : AANoAliasImpl {
3392   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3393       : AANoAliasImpl(IRP, A) {}
3394 
3395   /// See AbstractAttribute::initialize(...).
3396   void initialize(Attributor &A) override {
3397     AANoAliasImpl::initialize(A);
3398     Function *F = getAssociatedFunction();
3399     if (!F || F->isDeclaration())
3400       indicatePessimisticFixpoint();
3401   }
3402 
3403   /// See AbstractAttribute::updateImpl(...).
3404   virtual ChangeStatus updateImpl(Attributor &A) override {
3405 
3406     auto CheckReturnValue = [&](Value &RV) -> bool {
3407       if (Constant *C = dyn_cast<Constant>(&RV))
3408         if (C->isNullValue() || isa<UndefValue>(C))
3409           return true;
3410 
3411       /// For now, we can only deduce noalias if we have call sites.
3412       /// FIXME: add more support.
3413       if (!isa<CallBase>(&RV))
3414         return false;
3415 
3416       const IRPosition &RVPos = IRPosition::value(RV);
3417       const auto &NoAliasAA =
3418           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3419       if (!NoAliasAA.isAssumedNoAlias())
3420         return false;
3421 
3422       const auto &NoCaptureAA =
3423           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3424       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3425     };
3426 
3427     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3428       return indicatePessimisticFixpoint();
3429 
3430     return ChangeStatus::UNCHANGED;
3431   }
3432 
3433   /// See AbstractAttribute::trackStatistics()
3434   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3435 };
3436 
3437 /// NoAlias attribute deduction for a call site return value.
3438 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3439   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3440       : AANoAliasImpl(IRP, A) {}
3441 
3442   /// See AbstractAttribute::initialize(...).
3443   void initialize(Attributor &A) override {
3444     AANoAliasImpl::initialize(A);
3445     Function *F = getAssociatedFunction();
3446     if (!F || F->isDeclaration())
3447       indicatePessimisticFixpoint();
3448   }
3449 
3450   /// See AbstractAttribute::updateImpl(...).
3451   ChangeStatus updateImpl(Attributor &A) override {
3452     // TODO: Once we have call site specific value information we can provide
3453     //       call site specific liveness information and then it makes
3454     //       sense to specialize attributes for call sites arguments instead of
3455     //       redirecting requests to the callee argument.
3456     Function *F = getAssociatedFunction();
3457     const IRPosition &FnPos = IRPosition::returned(*F);
3458     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3459     return clampStateAndIndicateChange(getState(), FnAA.getState());
3460   }
3461 
3462   /// See AbstractAttribute::trackStatistics()
3463   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3464 };
3465 } // namespace
3466 
3467 /// -------------------AAIsDead Function Attribute-----------------------
3468 
3469 namespace {
3470 struct AAIsDeadValueImpl : public AAIsDead {
3471   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3472 
3473   /// See AbstractAttribute::initialize(...).
3474   void initialize(Attributor &A) override {
3475     if (auto *Scope = getAnchorScope())
3476       if (!A.isRunOn(*Scope))
3477         indicatePessimisticFixpoint();
3478   }
3479 
3480   /// See AAIsDead::isAssumedDead().
3481   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3482 
3483   /// See AAIsDead::isKnownDead().
3484   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3485 
3486   /// See AAIsDead::isAssumedDead(BasicBlock *).
3487   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3488 
3489   /// See AAIsDead::isKnownDead(BasicBlock *).
3490   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3491 
3492   /// See AAIsDead::isAssumedDead(Instruction *I).
3493   bool isAssumedDead(const Instruction *I) const override {
3494     return I == getCtxI() && isAssumedDead();
3495   }
3496 
3497   /// See AAIsDead::isKnownDead(Instruction *I).
3498   bool isKnownDead(const Instruction *I) const override {
3499     return isAssumedDead(I) && isKnownDead();
3500   }
3501 
3502   /// See AbstractAttribute::getAsStr().
3503   virtual const std::string getAsStr() const override {
3504     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3505   }
3506 
3507   /// Check if all uses are assumed dead.
3508   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3509     // Callers might not check the type, void has no uses.
3510     if (V.getType()->isVoidTy() || V.use_empty())
3511       return true;
3512 
3513     // If we replace a value with a constant there are no uses left afterwards.
3514     if (!isa<Constant>(V)) {
3515       if (auto *I = dyn_cast<Instruction>(&V))
3516         if (!A.isRunOn(*I->getFunction()))
3517           return false;
3518       bool UsedAssumedInformation = false;
3519       Optional<Constant *> C =
3520           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3521       if (!C.hasValue() || *C)
3522         return true;
3523     }
3524 
3525     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3526     // Explicitly set the dependence class to required because we want a long
3527     // chain of N dependent instructions to be considered live as soon as one is
3528     // without going through N update cycles. This is not required for
3529     // correctness.
3530     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3531                              DepClassTy::REQUIRED,
3532                              /* IgnoreDroppableUses */ false);
3533   }
3534 
3535   /// Determine if \p I is assumed to be side-effect free.
3536   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3537     if (!I || wouldInstructionBeTriviallyDead(I))
3538       return true;
3539 
3540     auto *CB = dyn_cast<CallBase>(I);
3541     if (!CB || isa<IntrinsicInst>(CB))
3542       return false;
3543 
3544     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3545     const auto &NoUnwindAA =
3546         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3547     if (!NoUnwindAA.isAssumedNoUnwind())
3548       return false;
3549     if (!NoUnwindAA.isKnownNoUnwind())
3550       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3551 
3552     bool IsKnown;
3553     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3554   }
3555 };
3556 
3557 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3558   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3559       : AAIsDeadValueImpl(IRP, A) {}
3560 
3561   /// See AbstractAttribute::initialize(...).
3562   void initialize(Attributor &A) override {
3563     AAIsDeadValueImpl::initialize(A);
3564 
3565     if (isa<UndefValue>(getAssociatedValue())) {
3566       indicatePessimisticFixpoint();
3567       return;
3568     }
3569 
3570     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3571     if (!isAssumedSideEffectFree(A, I)) {
3572       if (!isa_and_nonnull<StoreInst>(I))
3573         indicatePessimisticFixpoint();
3574       else
3575         removeAssumedBits(HAS_NO_EFFECT);
3576     }
3577   }
3578 
3579   bool isDeadStore(Attributor &A, StoreInst &SI) {
3580     // Lang ref now states volatile store is not UB/dead, let's skip them.
3581     if (SI.isVolatile())
3582       return false;
3583 
3584     bool UsedAssumedInformation = false;
3585     SmallSetVector<Value *, 4> PotentialCopies;
3586     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3587                                              UsedAssumedInformation))
3588       return false;
3589     return llvm::all_of(PotentialCopies, [&](Value *V) {
3590       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3591                              UsedAssumedInformation);
3592     });
3593   }
3594 
3595   /// See AbstractAttribute::getAsStr().
3596   const std::string getAsStr() const override {
3597     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3598     if (isa_and_nonnull<StoreInst>(I))
3599       if (isValidState())
3600         return "assumed-dead-store";
3601     return AAIsDeadValueImpl::getAsStr();
3602   }
3603 
3604   /// See AbstractAttribute::updateImpl(...).
3605   ChangeStatus updateImpl(Attributor &A) override {
3606     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3607     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3608       if (!isDeadStore(A, *SI))
3609         return indicatePessimisticFixpoint();
3610     } else {
3611       if (!isAssumedSideEffectFree(A, I))
3612         return indicatePessimisticFixpoint();
3613       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3614         return indicatePessimisticFixpoint();
3615     }
3616     return ChangeStatus::UNCHANGED;
3617   }
3618 
3619   bool isRemovableStore() const override {
3620     return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
3621   }
3622 
3623   /// See AbstractAttribute::manifest(...).
3624   ChangeStatus manifest(Attributor &A) override {
3625     Value &V = getAssociatedValue();
3626     if (auto *I = dyn_cast<Instruction>(&V)) {
3627       // If we get here we basically know the users are all dead. We check if
3628       // isAssumedSideEffectFree returns true here again because it might not be
3629       // the case and only the users are dead but the instruction (=call) is
3630       // still needed.
3631       if (isa<StoreInst>(I) ||
3632           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3633         A.deleteAfterManifest(*I);
3634         return ChangeStatus::CHANGED;
3635       }
3636     }
3637     return ChangeStatus::UNCHANGED;
3638   }
3639 
3640   /// See AbstractAttribute::trackStatistics()
3641   void trackStatistics() const override {
3642     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3643   }
3644 };
3645 
3646 struct AAIsDeadArgument : public AAIsDeadFloating {
3647   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3648       : AAIsDeadFloating(IRP, A) {}
3649 
3650   /// See AbstractAttribute::initialize(...).
3651   void initialize(Attributor &A) override {
3652     AAIsDeadFloating::initialize(A);
3653     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3654       indicatePessimisticFixpoint();
3655   }
3656 
3657   /// See AbstractAttribute::manifest(...).
3658   ChangeStatus manifest(Attributor &A) override {
3659     Argument &Arg = *getAssociatedArgument();
3660     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3661       if (A.registerFunctionSignatureRewrite(
3662               Arg, /* ReplacementTypes */ {},
3663               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3664               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3665         return ChangeStatus::CHANGED;
3666       }
3667     return ChangeStatus::UNCHANGED;
3668   }
3669 
3670   /// See AbstractAttribute::trackStatistics()
3671   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3672 };
3673 
3674 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3675   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3676       : AAIsDeadValueImpl(IRP, A) {}
3677 
3678   /// See AbstractAttribute::initialize(...).
3679   void initialize(Attributor &A) override {
3680     AAIsDeadValueImpl::initialize(A);
3681     if (isa<UndefValue>(getAssociatedValue()))
3682       indicatePessimisticFixpoint();
3683   }
3684 
3685   /// See AbstractAttribute::updateImpl(...).
3686   ChangeStatus updateImpl(Attributor &A) override {
3687     // TODO: Once we have call site specific value information we can provide
3688     //       call site specific liveness information and then it makes
3689     //       sense to specialize attributes for call sites arguments instead of
3690     //       redirecting requests to the callee argument.
3691     Argument *Arg = getAssociatedArgument();
3692     if (!Arg)
3693       return indicatePessimisticFixpoint();
3694     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3695     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3696     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3697   }
3698 
3699   /// See AbstractAttribute::manifest(...).
3700   ChangeStatus manifest(Attributor &A) override {
3701     CallBase &CB = cast<CallBase>(getAnchorValue());
3702     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3703     assert(!isa<UndefValue>(U.get()) &&
3704            "Expected undef values to be filtered out!");
3705     UndefValue &UV = *UndefValue::get(U->getType());
3706     if (A.changeUseAfterManifest(U, UV))
3707       return ChangeStatus::CHANGED;
3708     return ChangeStatus::UNCHANGED;
3709   }
3710 
3711   /// See AbstractAttribute::trackStatistics()
3712   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3713 };
3714 
3715 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3716   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3717       : AAIsDeadFloating(IRP, A) {}
3718 
3719   /// See AAIsDead::isAssumedDead().
3720   bool isAssumedDead() const override {
3721     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3722   }
3723 
3724   /// See AbstractAttribute::initialize(...).
3725   void initialize(Attributor &A) override {
3726     AAIsDeadFloating::initialize(A);
3727     if (isa<UndefValue>(getAssociatedValue())) {
3728       indicatePessimisticFixpoint();
3729       return;
3730     }
3731 
3732     // We track this separately as a secondary state.
3733     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3734   }
3735 
3736   /// See AbstractAttribute::updateImpl(...).
3737   ChangeStatus updateImpl(Attributor &A) override {
3738     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3739     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3740       IsAssumedSideEffectFree = false;
3741       Changed = ChangeStatus::CHANGED;
3742     }
3743     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3744       return indicatePessimisticFixpoint();
3745     return Changed;
3746   }
3747 
3748   /// See AbstractAttribute::trackStatistics()
3749   void trackStatistics() const override {
3750     if (IsAssumedSideEffectFree)
3751       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3752     else
3753       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3754   }
3755 
3756   /// See AbstractAttribute::getAsStr().
3757   const std::string getAsStr() const override {
3758     return isAssumedDead()
3759                ? "assumed-dead"
3760                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3761   }
3762 
3763 private:
3764   bool IsAssumedSideEffectFree = true;
3765 };
3766 
3767 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3768   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3769       : AAIsDeadValueImpl(IRP, A) {}
3770 
3771   /// See AbstractAttribute::updateImpl(...).
3772   ChangeStatus updateImpl(Attributor &A) override {
3773 
3774     bool UsedAssumedInformation = false;
3775     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3776                               {Instruction::Ret}, UsedAssumedInformation);
3777 
3778     auto PredForCallSite = [&](AbstractCallSite ACS) {
3779       if (ACS.isCallbackCall() || !ACS.getInstruction())
3780         return false;
3781       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3782     };
3783 
3784     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3785                                 UsedAssumedInformation))
3786       return indicatePessimisticFixpoint();
3787 
3788     return ChangeStatus::UNCHANGED;
3789   }
3790 
3791   /// See AbstractAttribute::manifest(...).
3792   ChangeStatus manifest(Attributor &A) override {
3793     // TODO: Rewrite the signature to return void?
3794     bool AnyChange = false;
3795     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3796     auto RetInstPred = [&](Instruction &I) {
3797       ReturnInst &RI = cast<ReturnInst>(I);
3798       if (!isa<UndefValue>(RI.getReturnValue()))
3799         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3800       return true;
3801     };
3802     bool UsedAssumedInformation = false;
3803     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3804                               UsedAssumedInformation);
3805     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3806   }
3807 
3808   /// See AbstractAttribute::trackStatistics()
3809   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3810 };
3811 
3812 struct AAIsDeadFunction : public AAIsDead {
3813   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3814 
3815   /// See AbstractAttribute::initialize(...).
3816   void initialize(Attributor &A) override {
3817     Function *F = getAnchorScope();
3818     if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
3819       indicatePessimisticFixpoint();
3820       return;
3821     }
3822     ToBeExploredFrom.insert(&F->getEntryBlock().front());
3823     assumeLive(A, F->getEntryBlock());
3824   }
3825 
3826   /// See AbstractAttribute::getAsStr().
3827   const std::string getAsStr() const override {
3828     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3829            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3830            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3831            std::to_string(KnownDeadEnds.size()) + "]";
3832   }
3833 
3834   /// See AbstractAttribute::manifest(...).
3835   ChangeStatus manifest(Attributor &A) override {
3836     assert(getState().isValidState() &&
3837            "Attempted to manifest an invalid state!");
3838 
3839     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3840     Function &F = *getAnchorScope();
3841 
3842     if (AssumedLiveBlocks.empty()) {
3843       A.deleteAfterManifest(F);
3844       return ChangeStatus::CHANGED;
3845     }
3846 
3847     // Flag to determine if we can change an invoke to a call assuming the
3848     // callee is nounwind. This is not possible if the personality of the
3849     // function allows to catch asynchronous exceptions.
3850     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3851 
3852     KnownDeadEnds.set_union(ToBeExploredFrom);
3853     for (const Instruction *DeadEndI : KnownDeadEnds) {
3854       auto *CB = dyn_cast<CallBase>(DeadEndI);
3855       if (!CB)
3856         continue;
3857       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3858           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3859       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3860       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3861         continue;
3862 
3863       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3864         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3865       else
3866         A.changeToUnreachableAfterManifest(
3867             const_cast<Instruction *>(DeadEndI->getNextNode()));
3868       HasChanged = ChangeStatus::CHANGED;
3869     }
3870 
3871     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3872     for (BasicBlock &BB : F)
3873       if (!AssumedLiveBlocks.count(&BB)) {
3874         A.deleteAfterManifest(BB);
3875         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3876         HasChanged = ChangeStatus::CHANGED;
3877       }
3878 
3879     return HasChanged;
3880   }
3881 
3882   /// See AbstractAttribute::updateImpl(...).
3883   ChangeStatus updateImpl(Attributor &A) override;
3884 
3885   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3886     assert(From->getParent() == getAnchorScope() &&
3887            To->getParent() == getAnchorScope() &&
3888            "Used AAIsDead of the wrong function");
3889     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3890   }
3891 
3892   /// See AbstractAttribute::trackStatistics()
3893   void trackStatistics() const override {}
3894 
3895   /// Returns true if the function is assumed dead.
3896   bool isAssumedDead() const override { return false; }
3897 
3898   /// See AAIsDead::isKnownDead().
3899   bool isKnownDead() const override { return false; }
3900 
3901   /// See AAIsDead::isAssumedDead(BasicBlock *).
3902   bool isAssumedDead(const BasicBlock *BB) const override {
3903     assert(BB->getParent() == getAnchorScope() &&
3904            "BB must be in the same anchor scope function.");
3905 
3906     if (!getAssumed())
3907       return false;
3908     return !AssumedLiveBlocks.count(BB);
3909   }
3910 
3911   /// See AAIsDead::isKnownDead(BasicBlock *).
3912   bool isKnownDead(const BasicBlock *BB) const override {
3913     return getKnown() && isAssumedDead(BB);
3914   }
3915 
3916   /// See AAIsDead::isAssumed(Instruction *I).
3917   bool isAssumedDead(const Instruction *I) const override {
3918     assert(I->getParent()->getParent() == getAnchorScope() &&
3919            "Instruction must be in the same anchor scope function.");
3920 
3921     if (!getAssumed())
3922       return false;
3923 
3924     // If it is not in AssumedLiveBlocks then it for sure dead.
3925     // Otherwise, it can still be after noreturn call in a live block.
3926     if (!AssumedLiveBlocks.count(I->getParent()))
3927       return true;
3928 
3929     // If it is not after a liveness barrier it is live.
3930     const Instruction *PrevI = I->getPrevNode();
3931     while (PrevI) {
3932       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3933         return true;
3934       PrevI = PrevI->getPrevNode();
3935     }
3936     return false;
3937   }
3938 
3939   /// See AAIsDead::isKnownDead(Instruction *I).
3940   bool isKnownDead(const Instruction *I) const override {
3941     return getKnown() && isAssumedDead(I);
3942   }
3943 
3944   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3945   /// that internal function called from \p BB should now be looked at.
3946   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3947     if (!AssumedLiveBlocks.insert(&BB).second)
3948       return false;
3949 
3950     // We assume that all of BB is (probably) live now and if there are calls to
3951     // internal functions we will assume that those are now live as well. This
3952     // is a performance optimization for blocks with calls to a lot of internal
3953     // functions. It can however cause dead functions to be treated as live.
3954     for (const Instruction &I : BB)
3955       if (const auto *CB = dyn_cast<CallBase>(&I))
3956         if (const Function *F = CB->getCalledFunction())
3957           if (F->hasLocalLinkage())
3958             A.markLiveInternalFunction(*F);
3959     return true;
3960   }
3961 
3962   /// Collection of instructions that need to be explored again, e.g., we
3963   /// did assume they do not transfer control to (one of their) successors.
3964   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3965 
3966   /// Collection of instructions that are known to not transfer control.
3967   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3968 
3969   /// Collection of all assumed live edges
3970   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3971 
3972   /// Collection of all assumed live BasicBlocks.
3973   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3974 };
3975 
3976 static bool
3977 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3978                         AbstractAttribute &AA,
3979                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3980   const IRPosition &IPos = IRPosition::callsite_function(CB);
3981 
3982   const auto &NoReturnAA =
3983       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3984   if (NoReturnAA.isAssumedNoReturn())
3985     return !NoReturnAA.isKnownNoReturn();
3986   if (CB.isTerminator())
3987     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3988   else
3989     AliveSuccessors.push_back(CB.getNextNode());
3990   return false;
3991 }
3992 
3993 static bool
3994 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3995                         AbstractAttribute &AA,
3996                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3997   bool UsedAssumedInformation =
3998       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3999 
4000   // First, determine if we can change an invoke to a call assuming the
4001   // callee is nounwind. This is not possible if the personality of the
4002   // function allows to catch asynchronous exceptions.
4003   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
4004     AliveSuccessors.push_back(&II.getUnwindDest()->front());
4005   } else {
4006     const IRPosition &IPos = IRPosition::callsite_function(II);
4007     const auto &AANoUnw =
4008         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
4009     if (AANoUnw.isAssumedNoUnwind()) {
4010       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
4011     } else {
4012       AliveSuccessors.push_back(&II.getUnwindDest()->front());
4013     }
4014   }
4015   return UsedAssumedInformation;
4016 }
4017 
4018 static bool
4019 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
4020                         AbstractAttribute &AA,
4021                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4022   bool UsedAssumedInformation = false;
4023   if (BI.getNumSuccessors() == 1) {
4024     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4025   } else {
4026     Optional<Constant *> C =
4027         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
4028     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4029       // No value yet, assume both edges are dead.
4030     } else if (isa_and_nonnull<ConstantInt>(*C)) {
4031       const BasicBlock *SuccBB =
4032           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
4033       AliveSuccessors.push_back(&SuccBB->front());
4034     } else {
4035       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4036       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
4037       UsedAssumedInformation = false;
4038     }
4039   }
4040   return UsedAssumedInformation;
4041 }
4042 
4043 static bool
4044 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
4045                         AbstractAttribute &AA,
4046                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4047   bool UsedAssumedInformation = false;
4048   Optional<Constant *> C =
4049       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
4050   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4051     // No value yet, assume all edges are dead.
4052   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
4053     for (auto &CaseIt : SI.cases()) {
4054       if (CaseIt.getCaseValue() == C.getValue()) {
4055         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
4056         return UsedAssumedInformation;
4057       }
4058     }
4059     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
4060     return UsedAssumedInformation;
4061   } else {
4062     for (const BasicBlock *SuccBB : successors(SI.getParent()))
4063       AliveSuccessors.push_back(&SuccBB->front());
4064   }
4065   return UsedAssumedInformation;
4066 }
4067 
4068 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4069   ChangeStatus Change = ChangeStatus::UNCHANGED;
4070 
4071   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4072                     << getAnchorScope()->size() << "] BBs and "
4073                     << ToBeExploredFrom.size() << " exploration points and "
4074                     << KnownDeadEnds.size() << " known dead ends\n");
4075 
4076   // Copy and clear the list of instructions we need to explore from. It is
4077   // refilled with instructions the next update has to look at.
4078   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4079                                                ToBeExploredFrom.end());
4080   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4081 
4082   SmallVector<const Instruction *, 8> AliveSuccessors;
4083   while (!Worklist.empty()) {
4084     const Instruction *I = Worklist.pop_back_val();
4085     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4086 
4087     // Fast forward for uninteresting instructions. We could look for UB here
4088     // though.
4089     while (!I->isTerminator() && !isa<CallBase>(I))
4090       I = I->getNextNode();
4091 
4092     AliveSuccessors.clear();
4093 
4094     bool UsedAssumedInformation = false;
4095     switch (I->getOpcode()) {
4096     // TODO: look for (assumed) UB to backwards propagate "deadness".
4097     default:
4098       assert(I->isTerminator() &&
4099              "Expected non-terminators to be handled already!");
4100       for (const BasicBlock *SuccBB : successors(I->getParent()))
4101         AliveSuccessors.push_back(&SuccBB->front());
4102       break;
4103     case Instruction::Call:
4104       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4105                                                        *this, AliveSuccessors);
4106       break;
4107     case Instruction::Invoke:
4108       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4109                                                        *this, AliveSuccessors);
4110       break;
4111     case Instruction::Br:
4112       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4113                                                        *this, AliveSuccessors);
4114       break;
4115     case Instruction::Switch:
4116       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4117                                                        *this, AliveSuccessors);
4118       break;
4119     }
4120 
4121     if (UsedAssumedInformation) {
4122       NewToBeExploredFrom.insert(I);
4123     } else if (AliveSuccessors.empty() ||
4124                (I->isTerminator() &&
4125                 AliveSuccessors.size() < I->getNumSuccessors())) {
4126       if (KnownDeadEnds.insert(I))
4127         Change = ChangeStatus::CHANGED;
4128     }
4129 
4130     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4131                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4132                       << UsedAssumedInformation << "\n");
4133 
4134     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4135       if (!I->isTerminator()) {
4136         assert(AliveSuccessors.size() == 1 &&
4137                "Non-terminator expected to have a single successor!");
4138         Worklist.push_back(AliveSuccessor);
4139       } else {
4140         // record the assumed live edge
4141         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4142         if (AssumedLiveEdges.insert(Edge).second)
4143           Change = ChangeStatus::CHANGED;
4144         if (assumeLive(A, *AliveSuccessor->getParent()))
4145           Worklist.push_back(AliveSuccessor);
4146       }
4147     }
4148   }
4149 
4150   // Check if the content of ToBeExploredFrom changed, ignore the order.
4151   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4152       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4153         return !ToBeExploredFrom.count(I);
4154       })) {
4155     Change = ChangeStatus::CHANGED;
4156     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4157   }
4158 
4159   // If we know everything is live there is no need to query for liveness.
4160   // Instead, indicating a pessimistic fixpoint will cause the state to be
4161   // "invalid" and all queries to be answered conservatively without lookups.
4162   // To be in this state we have to (1) finished the exploration and (3) not
4163   // discovered any non-trivial dead end and (2) not ruled unreachable code
4164   // dead.
4165   if (ToBeExploredFrom.empty() &&
4166       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4167       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4168         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4169       }))
4170     return indicatePessimisticFixpoint();
4171   return Change;
4172 }
4173 
4174 /// Liveness information for a call sites.
4175 struct AAIsDeadCallSite final : AAIsDeadFunction {
4176   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4177       : AAIsDeadFunction(IRP, A) {}
4178 
4179   /// See AbstractAttribute::initialize(...).
4180   void initialize(Attributor &A) override {
4181     // TODO: Once we have call site specific value information we can provide
4182     //       call site specific liveness information and then it makes
4183     //       sense to specialize attributes for call sites instead of
4184     //       redirecting requests to the callee.
4185     llvm_unreachable("Abstract attributes for liveness are not "
4186                      "supported for call sites yet!");
4187   }
4188 
4189   /// See AbstractAttribute::updateImpl(...).
4190   ChangeStatus updateImpl(Attributor &A) override {
4191     return indicatePessimisticFixpoint();
4192   }
4193 
4194   /// See AbstractAttribute::trackStatistics()
4195   void trackStatistics() const override {}
4196 };
4197 } // namespace
4198 
4199 /// -------------------- Dereferenceable Argument Attribute --------------------
4200 
4201 namespace {
4202 struct AADereferenceableImpl : AADereferenceable {
4203   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4204       : AADereferenceable(IRP, A) {}
4205   using StateType = DerefState;
4206 
4207   /// See AbstractAttribute::initialize(...).
4208   void initialize(Attributor &A) override {
4209     SmallVector<Attribute, 4> Attrs;
4210     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4211              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4212     for (const Attribute &Attr : Attrs)
4213       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4214 
4215     const IRPosition &IRP = this->getIRPosition();
4216     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4217 
4218     bool CanBeNull, CanBeFreed;
4219     takeKnownDerefBytesMaximum(
4220         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4221             A.getDataLayout(), CanBeNull, CanBeFreed));
4222 
4223     bool IsFnInterface = IRP.isFnInterfaceKind();
4224     Function *FnScope = IRP.getAnchorScope();
4225     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4226       indicatePessimisticFixpoint();
4227       return;
4228     }
4229 
4230     if (Instruction *CtxI = getCtxI())
4231       followUsesInMBEC(*this, A, getState(), *CtxI);
4232   }
4233 
4234   /// See AbstractAttribute::getState()
4235   /// {
4236   StateType &getState() override { return *this; }
4237   const StateType &getState() const override { return *this; }
4238   /// }
4239 
4240   /// Helper function for collecting accessed bytes in must-be-executed-context
4241   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4242                               DerefState &State) {
4243     const Value *UseV = U->get();
4244     if (!UseV->getType()->isPointerTy())
4245       return;
4246 
4247     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4248     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4249       return;
4250 
4251     int64_t Offset;
4252     const Value *Base = GetPointerBaseWithConstantOffset(
4253         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4254     if (Base && Base == &getAssociatedValue())
4255       State.addAccessedBytes(Offset, Loc->Size.getValue());
4256   }
4257 
4258   /// See followUsesInMBEC
4259   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4260                        AADereferenceable::StateType &State) {
4261     bool IsNonNull = false;
4262     bool TrackUse = false;
4263     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4264         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4265     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4266                       << " for instruction " << *I << "\n");
4267 
4268     addAccessedBytesForUse(A, U, I, State);
4269     State.takeKnownDerefBytesMaximum(DerefBytes);
4270     return TrackUse;
4271   }
4272 
4273   /// See AbstractAttribute::manifest(...).
4274   ChangeStatus manifest(Attributor &A) override {
4275     ChangeStatus Change = AADereferenceable::manifest(A);
4276     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4277       removeAttrs({Attribute::DereferenceableOrNull});
4278       return ChangeStatus::CHANGED;
4279     }
4280     return Change;
4281   }
4282 
4283   void getDeducedAttributes(LLVMContext &Ctx,
4284                             SmallVectorImpl<Attribute> &Attrs) const override {
4285     // TODO: Add *_globally support
4286     if (isAssumedNonNull())
4287       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4288           Ctx, getAssumedDereferenceableBytes()));
4289     else
4290       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4291           Ctx, getAssumedDereferenceableBytes()));
4292   }
4293 
4294   /// See AbstractAttribute::getAsStr().
4295   const std::string getAsStr() const override {
4296     if (!getAssumedDereferenceableBytes())
4297       return "unknown-dereferenceable";
4298     return std::string("dereferenceable") +
4299            (isAssumedNonNull() ? "" : "_or_null") +
4300            (isAssumedGlobal() ? "_globally" : "") + "<" +
4301            std::to_string(getKnownDereferenceableBytes()) + "-" +
4302            std::to_string(getAssumedDereferenceableBytes()) + ">";
4303   }
4304 };
4305 
4306 /// Dereferenceable attribute for a floating value.
4307 struct AADereferenceableFloating : AADereferenceableImpl {
4308   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4309       : AADereferenceableImpl(IRP, A) {}
4310 
4311   /// See AbstractAttribute::updateImpl(...).
4312   ChangeStatus updateImpl(Attributor &A) override {
4313     const DataLayout &DL = A.getDataLayout();
4314 
4315     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4316                             bool Stripped) -> bool {
4317       unsigned IdxWidth =
4318           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4319       APInt Offset(IdxWidth, 0);
4320       const Value *Base = stripAndAccumulateOffsets(
4321           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4322           /* AllowNonInbounds */ true);
4323 
4324       const auto &AA = A.getAAFor<AADereferenceable>(
4325           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4326       int64_t DerefBytes = 0;
4327       if (!Stripped && this == &AA) {
4328         // Use IR information if we did not strip anything.
4329         // TODO: track globally.
4330         bool CanBeNull, CanBeFreed;
4331         DerefBytes =
4332             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4333         T.GlobalState.indicatePessimisticFixpoint();
4334       } else {
4335         const DerefState &DS = AA.getState();
4336         DerefBytes = DS.DerefBytesState.getAssumed();
4337         T.GlobalState &= DS.GlobalState;
4338       }
4339 
4340       // For now we do not try to "increase" dereferenceability due to negative
4341       // indices as we first have to come up with code to deal with loops and
4342       // for overflows of the dereferenceable bytes.
4343       int64_t OffsetSExt = Offset.getSExtValue();
4344       if (OffsetSExt < 0)
4345         OffsetSExt = 0;
4346 
4347       T.takeAssumedDerefBytesMinimum(
4348           std::max(int64_t(0), DerefBytes - OffsetSExt));
4349 
4350       if (this == &AA) {
4351         if (!Stripped) {
4352           // If nothing was stripped IR information is all we got.
4353           T.takeKnownDerefBytesMaximum(
4354               std::max(int64_t(0), DerefBytes - OffsetSExt));
4355           T.indicatePessimisticFixpoint();
4356         } else if (OffsetSExt > 0) {
4357           // If something was stripped but there is circular reasoning we look
4358           // for the offset. If it is positive we basically decrease the
4359           // dereferenceable bytes in a circluar loop now, which will simply
4360           // drive them down to the known value in a very slow way which we
4361           // can accelerate.
4362           T.indicatePessimisticFixpoint();
4363         }
4364       }
4365 
4366       return T.isValidState();
4367     };
4368 
4369     DerefState T;
4370     bool UsedAssumedInformation = false;
4371     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4372                                            VisitValueCB, getCtxI(),
4373                                            UsedAssumedInformation))
4374       return indicatePessimisticFixpoint();
4375 
4376     return clampStateAndIndicateChange(getState(), T);
4377   }
4378 
4379   /// See AbstractAttribute::trackStatistics()
4380   void trackStatistics() const override {
4381     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4382   }
4383 };
4384 
4385 /// Dereferenceable attribute for a return value.
4386 struct AADereferenceableReturned final
4387     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4388   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4389       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4390             IRP, A) {}
4391 
4392   /// See AbstractAttribute::trackStatistics()
4393   void trackStatistics() const override {
4394     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4395   }
4396 };
4397 
4398 /// Dereferenceable attribute for an argument
4399 struct AADereferenceableArgument final
4400     : AAArgumentFromCallSiteArguments<AADereferenceable,
4401                                       AADereferenceableImpl> {
4402   using Base =
4403       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4404   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4405       : Base(IRP, A) {}
4406 
4407   /// See AbstractAttribute::trackStatistics()
4408   void trackStatistics() const override {
4409     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4410   }
4411 };
4412 
4413 /// Dereferenceable attribute for a call site argument.
4414 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4415   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4416       : AADereferenceableFloating(IRP, A) {}
4417 
4418   /// See AbstractAttribute::trackStatistics()
4419   void trackStatistics() const override {
4420     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4421   }
4422 };
4423 
4424 /// Dereferenceable attribute deduction for a call site return value.
4425 struct AADereferenceableCallSiteReturned final
4426     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4427   using Base =
4428       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4429   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4430       : Base(IRP, A) {}
4431 
4432   /// See AbstractAttribute::trackStatistics()
4433   void trackStatistics() const override {
4434     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4435   }
4436 };
4437 } // namespace
4438 
4439 // ------------------------ Align Argument Attribute ------------------------
4440 
4441 namespace {
4442 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4443                                     Value &AssociatedValue, const Use *U,
4444                                     const Instruction *I, bool &TrackUse) {
4445   // We need to follow common pointer manipulation uses to the accesses they
4446   // feed into.
4447   if (isa<CastInst>(I)) {
4448     // Follow all but ptr2int casts.
4449     TrackUse = !isa<PtrToIntInst>(I);
4450     return 0;
4451   }
4452   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4453     if (GEP->hasAllConstantIndices())
4454       TrackUse = true;
4455     return 0;
4456   }
4457 
4458   MaybeAlign MA;
4459   if (const auto *CB = dyn_cast<CallBase>(I)) {
4460     if (CB->isBundleOperand(U) || CB->isCallee(U))
4461       return 0;
4462 
4463     unsigned ArgNo = CB->getArgOperandNo(U);
4464     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4465     // As long as we only use known information there is no need to track
4466     // dependences here.
4467     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4468     MA = MaybeAlign(AlignAA.getKnownAlign());
4469   }
4470 
4471   const DataLayout &DL = A.getDataLayout();
4472   const Value *UseV = U->get();
4473   if (auto *SI = dyn_cast<StoreInst>(I)) {
4474     if (SI->getPointerOperand() == UseV)
4475       MA = SI->getAlign();
4476   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4477     if (LI->getPointerOperand() == UseV)
4478       MA = LI->getAlign();
4479   }
4480 
4481   if (!MA || *MA <= QueryingAA.getKnownAlign())
4482     return 0;
4483 
4484   unsigned Alignment = MA->value();
4485   int64_t Offset;
4486 
4487   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4488     if (Base == &AssociatedValue) {
4489       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4490       // So we can say that the maximum power of two which is a divisor of
4491       // gcd(Offset, Alignment) is an alignment.
4492 
4493       uint32_t gcd =
4494           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4495       Alignment = llvm::PowerOf2Floor(gcd);
4496     }
4497   }
4498 
4499   return Alignment;
4500 }
4501 
4502 struct AAAlignImpl : AAAlign {
4503   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4504 
4505   /// See AbstractAttribute::initialize(...).
4506   void initialize(Attributor &A) override {
4507     SmallVector<Attribute, 4> Attrs;
4508     getAttrs({Attribute::Alignment}, Attrs);
4509     for (const Attribute &Attr : Attrs)
4510       takeKnownMaximum(Attr.getValueAsInt());
4511 
4512     Value &V = getAssociatedValue();
4513     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4514 
4515     if (getIRPosition().isFnInterfaceKind() &&
4516         (!getAnchorScope() ||
4517          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4518       indicatePessimisticFixpoint();
4519       return;
4520     }
4521 
4522     if (Instruction *CtxI = getCtxI())
4523       followUsesInMBEC(*this, A, getState(), *CtxI);
4524   }
4525 
4526   /// See AbstractAttribute::manifest(...).
4527   ChangeStatus manifest(Attributor &A) override {
4528     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4529 
4530     // Check for users that allow alignment annotations.
4531     Value &AssociatedValue = getAssociatedValue();
4532     for (const Use &U : AssociatedValue.uses()) {
4533       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4534         if (SI->getPointerOperand() == &AssociatedValue)
4535           if (SI->getAlignment() < getAssumedAlign()) {
4536             STATS_DECLTRACK(AAAlign, Store,
4537                             "Number of times alignment added to a store");
4538             SI->setAlignment(Align(getAssumedAlign()));
4539             LoadStoreChanged = ChangeStatus::CHANGED;
4540           }
4541       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4542         if (LI->getPointerOperand() == &AssociatedValue)
4543           if (LI->getAlignment() < getAssumedAlign()) {
4544             LI->setAlignment(Align(getAssumedAlign()));
4545             STATS_DECLTRACK(AAAlign, Load,
4546                             "Number of times alignment added to a load");
4547             LoadStoreChanged = ChangeStatus::CHANGED;
4548           }
4549       }
4550     }
4551 
4552     ChangeStatus Changed = AAAlign::manifest(A);
4553 
4554     Align InheritAlign =
4555         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4556     if (InheritAlign >= getAssumedAlign())
4557       return LoadStoreChanged;
4558     return Changed | LoadStoreChanged;
4559   }
4560 
4561   // TODO: Provide a helper to determine the implied ABI alignment and check in
4562   //       the existing manifest method and a new one for AAAlignImpl that value
4563   //       to avoid making the alignment explicit if it did not improve.
4564 
4565   /// See AbstractAttribute::getDeducedAttributes
4566   virtual void
4567   getDeducedAttributes(LLVMContext &Ctx,
4568                        SmallVectorImpl<Attribute> &Attrs) const override {
4569     if (getAssumedAlign() > 1)
4570       Attrs.emplace_back(
4571           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4572   }
4573 
4574   /// See followUsesInMBEC
4575   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4576                        AAAlign::StateType &State) {
4577     bool TrackUse = false;
4578 
4579     unsigned int KnownAlign =
4580         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4581     State.takeKnownMaximum(KnownAlign);
4582 
4583     return TrackUse;
4584   }
4585 
4586   /// See AbstractAttribute::getAsStr().
4587   const std::string getAsStr() const override {
4588     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4589                                 "-" + std::to_string(getAssumedAlign()) + ">")
4590                              : "unknown-align";
4591   }
4592 };
4593 
4594 /// Align attribute for a floating value.
4595 struct AAAlignFloating : AAAlignImpl {
4596   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4597 
4598   /// See AbstractAttribute::updateImpl(...).
4599   ChangeStatus updateImpl(Attributor &A) override {
4600     const DataLayout &DL = A.getDataLayout();
4601 
4602     auto VisitValueCB = [&](Value &V, const Instruction *,
4603                             AAAlign::StateType &T, bool Stripped) -> bool {
4604       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4605         return true;
4606       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4607                                            DepClassTy::REQUIRED);
4608       if (!Stripped && this == &AA) {
4609         int64_t Offset;
4610         unsigned Alignment = 1;
4611         if (const Value *Base =
4612                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4613           // TODO: Use AAAlign for the base too.
4614           Align PA = Base->getPointerAlignment(DL);
4615           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4616           // So we can say that the maximum power of two which is a divisor of
4617           // gcd(Offset, Alignment) is an alignment.
4618 
4619           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4620                                                uint32_t(PA.value()));
4621           Alignment = llvm::PowerOf2Floor(gcd);
4622         } else {
4623           Alignment = V.getPointerAlignment(DL).value();
4624         }
4625         // Use only IR information if we did not strip anything.
4626         T.takeKnownMaximum(Alignment);
4627         T.indicatePessimisticFixpoint();
4628       } else {
4629         // Use abstract attribute information.
4630         const AAAlign::StateType &DS = AA.getState();
4631         T ^= DS;
4632       }
4633       return T.isValidState();
4634     };
4635 
4636     StateType T;
4637     bool UsedAssumedInformation = false;
4638     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4639                                           VisitValueCB, getCtxI(),
4640                                           UsedAssumedInformation))
4641       return indicatePessimisticFixpoint();
4642 
4643     // TODO: If we know we visited all incoming values, thus no are assumed
4644     // dead, we can take the known information from the state T.
4645     return clampStateAndIndicateChange(getState(), T);
4646   }
4647 
4648   /// See AbstractAttribute::trackStatistics()
4649   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4650 };
4651 
4652 /// Align attribute for function return value.
4653 struct AAAlignReturned final
4654     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4655   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4656   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4657 
4658   /// See AbstractAttribute::initialize(...).
4659   void initialize(Attributor &A) override {
4660     Base::initialize(A);
4661     Function *F = getAssociatedFunction();
4662     if (!F || F->isDeclaration())
4663       indicatePessimisticFixpoint();
4664   }
4665 
4666   /// See AbstractAttribute::trackStatistics()
4667   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4668 };
4669 
4670 /// Align attribute for function argument.
4671 struct AAAlignArgument final
4672     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4673   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4674   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4675 
4676   /// See AbstractAttribute::manifest(...).
4677   ChangeStatus manifest(Attributor &A) override {
4678     // If the associated argument is involved in a must-tail call we give up
4679     // because we would need to keep the argument alignments of caller and
4680     // callee in-sync. Just does not seem worth the trouble right now.
4681     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4682       return ChangeStatus::UNCHANGED;
4683     return Base::manifest(A);
4684   }
4685 
4686   /// See AbstractAttribute::trackStatistics()
4687   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4688 };
4689 
4690 struct AAAlignCallSiteArgument final : AAAlignFloating {
4691   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4692       : AAAlignFloating(IRP, A) {}
4693 
4694   /// See AbstractAttribute::manifest(...).
4695   ChangeStatus manifest(Attributor &A) override {
4696     // If the associated argument is involved in a must-tail call we give up
4697     // because we would need to keep the argument alignments of caller and
4698     // callee in-sync. Just does not seem worth the trouble right now.
4699     if (Argument *Arg = getAssociatedArgument())
4700       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4701         return ChangeStatus::UNCHANGED;
4702     ChangeStatus Changed = AAAlignImpl::manifest(A);
4703     Align InheritAlign =
4704         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4705     if (InheritAlign >= getAssumedAlign())
4706       Changed = ChangeStatus::UNCHANGED;
4707     return Changed;
4708   }
4709 
4710   /// See AbstractAttribute::updateImpl(Attributor &A).
4711   ChangeStatus updateImpl(Attributor &A) override {
4712     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4713     if (Argument *Arg = getAssociatedArgument()) {
4714       // We only take known information from the argument
4715       // so we do not need to track a dependence.
4716       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4717           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4718       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4719     }
4720     return Changed;
4721   }
4722 
4723   /// See AbstractAttribute::trackStatistics()
4724   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4725 };
4726 
4727 /// Align attribute deduction for a call site return value.
4728 struct AAAlignCallSiteReturned final
4729     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4730   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4731   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4732       : Base(IRP, A) {}
4733 
4734   /// See AbstractAttribute::initialize(...).
4735   void initialize(Attributor &A) override {
4736     Base::initialize(A);
4737     Function *F = getAssociatedFunction();
4738     if (!F || F->isDeclaration())
4739       indicatePessimisticFixpoint();
4740   }
4741 
4742   /// See AbstractAttribute::trackStatistics()
4743   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4744 };
4745 } // namespace
4746 
4747 /// ------------------ Function No-Return Attribute ----------------------------
4748 namespace {
4749 struct AANoReturnImpl : public AANoReturn {
4750   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4751 
4752   /// See AbstractAttribute::initialize(...).
4753   void initialize(Attributor &A) override {
4754     AANoReturn::initialize(A);
4755     Function *F = getAssociatedFunction();
4756     if (!F || F->isDeclaration())
4757       indicatePessimisticFixpoint();
4758   }
4759 
4760   /// See AbstractAttribute::getAsStr().
4761   const std::string getAsStr() const override {
4762     return getAssumed() ? "noreturn" : "may-return";
4763   }
4764 
4765   /// See AbstractAttribute::updateImpl(Attributor &A).
4766   virtual ChangeStatus updateImpl(Attributor &A) override {
4767     auto CheckForNoReturn = [](Instruction &) { return false; };
4768     bool UsedAssumedInformation = false;
4769     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4770                                    {(unsigned)Instruction::Ret},
4771                                    UsedAssumedInformation))
4772       return indicatePessimisticFixpoint();
4773     return ChangeStatus::UNCHANGED;
4774   }
4775 };
4776 
4777 struct AANoReturnFunction final : AANoReturnImpl {
4778   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4779       : AANoReturnImpl(IRP, A) {}
4780 
4781   /// See AbstractAttribute::trackStatistics()
4782   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4783 };
4784 
4785 /// NoReturn attribute deduction for a call sites.
4786 struct AANoReturnCallSite final : AANoReturnImpl {
4787   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4788       : AANoReturnImpl(IRP, A) {}
4789 
4790   /// See AbstractAttribute::initialize(...).
4791   void initialize(Attributor &A) override {
4792     AANoReturnImpl::initialize(A);
4793     if (Function *F = getAssociatedFunction()) {
4794       const IRPosition &FnPos = IRPosition::function(*F);
4795       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4796       if (!FnAA.isAssumedNoReturn())
4797         indicatePessimisticFixpoint();
4798     }
4799   }
4800 
4801   /// See AbstractAttribute::updateImpl(...).
4802   ChangeStatus updateImpl(Attributor &A) override {
4803     // TODO: Once we have call site specific value information we can provide
4804     //       call site specific liveness information and then it makes
4805     //       sense to specialize attributes for call sites arguments instead of
4806     //       redirecting requests to the callee argument.
4807     Function *F = getAssociatedFunction();
4808     const IRPosition &FnPos = IRPosition::function(*F);
4809     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4810     return clampStateAndIndicateChange(getState(), FnAA.getState());
4811   }
4812 
4813   /// See AbstractAttribute::trackStatistics()
4814   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4815 };
4816 } // namespace
4817 
4818 /// ----------------------- Instance Info ---------------------------------
4819 
4820 namespace {
4821 /// A class to hold the state of for no-capture attributes.
4822 struct AAInstanceInfoImpl : public AAInstanceInfo {
4823   AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
4824       : AAInstanceInfo(IRP, A) {}
4825 
4826   /// See AbstractAttribute::initialize(...).
4827   void initialize(Attributor &A) override {
4828     Value &V = getAssociatedValue();
4829     if (auto *C = dyn_cast<Constant>(&V)) {
4830       if (C->isThreadDependent())
4831         indicatePessimisticFixpoint();
4832       else
4833         indicateOptimisticFixpoint();
4834       return;
4835     }
4836     if (auto *CB = dyn_cast<CallBase>(&V))
4837       if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
4838           !CB->mayReadFromMemory()) {
4839         indicateOptimisticFixpoint();
4840         return;
4841       }
4842   }
4843 
4844   /// See AbstractAttribute::updateImpl(...).
4845   ChangeStatus updateImpl(Attributor &A) override {
4846     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4847 
4848     Value &V = getAssociatedValue();
4849     const Function *Scope = nullptr;
4850     if (auto *I = dyn_cast<Instruction>(&V))
4851       Scope = I->getFunction();
4852     if (auto *A = dyn_cast<Argument>(&V)) {
4853       Scope = A->getParent();
4854       if (!Scope->hasLocalLinkage())
4855         return Changed;
4856     }
4857     if (!Scope)
4858       return indicateOptimisticFixpoint();
4859 
4860     auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
4861         *this, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
4862     if (NoRecurseAA.isAssumedNoRecurse())
4863       return Changed;
4864 
4865     auto UsePred = [&](const Use &U, bool &Follow) {
4866       const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
4867       if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
4868           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4869         Follow = true;
4870         return true;
4871       }
4872       if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
4873           (isa<StoreInst>(UserI) &&
4874            cast<StoreInst>(UserI)->getValueOperand() != U.get()))
4875         return true;
4876       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4877         // This check is not guaranteeing uniqueness but for now that we cannot
4878         // end up with two versions of \p U thinking it was one.
4879         if (!CB->getCalledFunction() ||
4880             !CB->getCalledFunction()->hasLocalLinkage())
4881           return true;
4882         if (!CB->isArgOperand(&U))
4883           return false;
4884         const auto &ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
4885             *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
4886             DepClassTy::OPTIONAL);
4887         if (ArgInstanceInfoAA.isAssumedUniqueForAnalysis())
4888           return true;
4889       }
4890       return false;
4891     };
4892 
4893     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
4894       if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
4895         auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
4896         if (isa<AllocaInst>(Ptr) && AA::isDynamicallyUnique(A, *this, *Ptr))
4897           return true;
4898         auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(
4899             *SI->getFunction());
4900         if (isAllocationFn(Ptr, TLI) && AA::isDynamicallyUnique(A, *this, *Ptr))
4901           return true;
4902       }
4903       return false;
4904     };
4905 
4906     if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
4907                            DepClassTy::OPTIONAL,
4908                            /* IgnoreDroppableUses */ true, EquivalentUseCB))
4909       return indicatePessimisticFixpoint();
4910 
4911     return Changed;
4912   }
4913 
4914   /// See AbstractState::getAsStr().
4915   const std::string getAsStr() const override {
4916     return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
4917   }
4918 
4919   /// See AbstractAttribute::trackStatistics()
4920   void trackStatistics() const override {}
4921 };
4922 
4923 /// InstanceInfo attribute for floating values.
4924 struct AAInstanceInfoFloating : AAInstanceInfoImpl {
4925   AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
4926       : AAInstanceInfoImpl(IRP, A) {}
4927 };
4928 
4929 /// NoCapture attribute for function arguments.
4930 struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
4931   AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
4932       : AAInstanceInfoFloating(IRP, A) {}
4933 };
4934 
4935 /// InstanceInfo attribute for call site arguments.
4936 struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
4937   AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
4938       : AAInstanceInfoImpl(IRP, A) {}
4939 
4940   /// See AbstractAttribute::updateImpl(...).
4941   ChangeStatus updateImpl(Attributor &A) override {
4942     // TODO: Once we have call site specific value information we can provide
4943     //       call site specific liveness information and then it makes
4944     //       sense to specialize attributes for call sites arguments instead of
4945     //       redirecting requests to the callee argument.
4946     Argument *Arg = getAssociatedArgument();
4947     if (!Arg)
4948       return indicatePessimisticFixpoint();
4949     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4950     auto &ArgAA =
4951         A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
4952     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4953   }
4954 };
4955 
4956 /// InstanceInfo attribute for function return value.
4957 struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
4958   AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
4959       : AAInstanceInfoImpl(IRP, A) {
4960     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4961   }
4962 
4963   /// See AbstractAttribute::initialize(...).
4964   void initialize(Attributor &A) override {
4965     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4966   }
4967 
4968   /// See AbstractAttribute::updateImpl(...).
4969   ChangeStatus updateImpl(Attributor &A) override {
4970     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4971   }
4972 };
4973 
4974 /// InstanceInfo attribute deduction for a call site return value.
4975 struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
4976   AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
4977       : AAInstanceInfoFloating(IRP, A) {}
4978 };
4979 } // namespace
4980 
4981 /// ----------------------- Variable Capturing ---------------------------------
4982 
4983 namespace {
4984 /// A class to hold the state of for no-capture attributes.
4985 struct AANoCaptureImpl : public AANoCapture {
4986   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4987 
4988   /// See AbstractAttribute::initialize(...).
4989   void initialize(Attributor &A) override {
4990     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4991       indicateOptimisticFixpoint();
4992       return;
4993     }
4994     Function *AnchorScope = getAnchorScope();
4995     if (isFnInterfaceKind() &&
4996         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4997       indicatePessimisticFixpoint();
4998       return;
4999     }
5000 
5001     // You cannot "capture" null in the default address space.
5002     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
5003         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
5004       indicateOptimisticFixpoint();
5005       return;
5006     }
5007 
5008     const Function *F =
5009         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
5010 
5011     // Check what state the associated function can actually capture.
5012     if (F)
5013       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5014     else
5015       indicatePessimisticFixpoint();
5016   }
5017 
5018   /// See AbstractAttribute::updateImpl(...).
5019   ChangeStatus updateImpl(Attributor &A) override;
5020 
5021   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
5022   virtual void
5023   getDeducedAttributes(LLVMContext &Ctx,
5024                        SmallVectorImpl<Attribute> &Attrs) const override {
5025     if (!isAssumedNoCaptureMaybeReturned())
5026       return;
5027 
5028     if (isArgumentPosition()) {
5029       if (isAssumedNoCapture())
5030         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
5031       else if (ManifestInternal)
5032         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
5033     }
5034   }
5035 
5036   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
5037   /// depending on the ability of the function associated with \p IRP to capture
5038   /// state in memory and through "returning/throwing", respectively.
5039   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
5040                                                    const Function &F,
5041                                                    BitIntegerState &State) {
5042     // TODO: Once we have memory behavior attributes we should use them here.
5043 
5044     // If we know we cannot communicate or write to memory, we do not care about
5045     // ptr2int anymore.
5046     if (F.onlyReadsMemory() && F.doesNotThrow() &&
5047         F.getReturnType()->isVoidTy()) {
5048       State.addKnownBits(NO_CAPTURE);
5049       return;
5050     }
5051 
5052     // A function cannot capture state in memory if it only reads memory, it can
5053     // however return/throw state and the state might be influenced by the
5054     // pointer value, e.g., loading from a returned pointer might reveal a bit.
5055     if (F.onlyReadsMemory())
5056       State.addKnownBits(NOT_CAPTURED_IN_MEM);
5057 
5058     // A function cannot communicate state back if it does not through
5059     // exceptions and doesn not return values.
5060     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
5061       State.addKnownBits(NOT_CAPTURED_IN_RET);
5062 
5063     // Check existing "returned" attributes.
5064     int ArgNo = IRP.getCalleeArgNo();
5065     if (F.doesNotThrow() && ArgNo >= 0) {
5066       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
5067         if (F.hasParamAttribute(u, Attribute::Returned)) {
5068           if (u == unsigned(ArgNo))
5069             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
5070           else if (F.onlyReadsMemory())
5071             State.addKnownBits(NO_CAPTURE);
5072           else
5073             State.addKnownBits(NOT_CAPTURED_IN_RET);
5074           break;
5075         }
5076     }
5077   }
5078 
5079   /// See AbstractState::getAsStr().
5080   const std::string getAsStr() const override {
5081     if (isKnownNoCapture())
5082       return "known not-captured";
5083     if (isAssumedNoCapture())
5084       return "assumed not-captured";
5085     if (isKnownNoCaptureMaybeReturned())
5086       return "known not-captured-maybe-returned";
5087     if (isAssumedNoCaptureMaybeReturned())
5088       return "assumed not-captured-maybe-returned";
5089     return "assumed-captured";
5090   }
5091 
5092   /// Check the use \p U and update \p State accordingly. Return true if we
5093   /// should continue to update the state.
5094   bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
5095                 bool &Follow) {
5096     Instruction *UInst = cast<Instruction>(U.getUser());
5097     LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
5098                       << *UInst << "\n");
5099 
5100     // Deal with ptr2int by following uses.
5101     if (isa<PtrToIntInst>(UInst)) {
5102       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5103       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5104                           /* Return */ true);
5105     }
5106 
5107     // For stores we already checked if we can follow them, if they make it
5108     // here we give up.
5109     if (isa<StoreInst>(UInst))
5110       return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
5111                           /* Return */ false);
5112 
5113     // Explicitly catch return instructions.
5114     if (isa<ReturnInst>(UInst)) {
5115       if (UInst->getFunction() == getAnchorScope())
5116         return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5117                             /* Return */ true);
5118       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5119                           /* Return */ true);
5120     }
5121 
5122     // For now we only use special logic for call sites. However, the tracker
5123     // itself knows about a lot of other non-capturing cases already.
5124     auto *CB = dyn_cast<CallBase>(UInst);
5125     if (!CB || !CB->isArgOperand(&U))
5126       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5127                           /* Return */ true);
5128 
5129     unsigned ArgNo = CB->getArgOperandNo(&U);
5130     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5131     // If we have a abstract no-capture attribute for the argument we can use
5132     // it to justify a non-capture attribute here. This allows recursion!
5133     auto &ArgNoCaptureAA =
5134         A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
5135     if (ArgNoCaptureAA.isAssumedNoCapture())
5136       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5137                           /* Return */ false);
5138     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5139       Follow = true;
5140       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5141                           /* Return */ false);
5142     }
5143 
5144     // Lastly, we could not find a reason no-capture can be assumed so we don't.
5145     return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5146                         /* Return */ true);
5147   }
5148 
5149   /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
5150   /// \p CapturedInRet, then return true if we should continue updating the
5151   /// state.
5152   static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
5153                            bool CapturedInInt, bool CapturedInRet) {
5154     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5155                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5156     if (CapturedInMem)
5157       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5158     if (CapturedInInt)
5159       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5160     if (CapturedInRet)
5161       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5162     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5163   }
5164 };
5165 
5166 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5167   const IRPosition &IRP = getIRPosition();
5168   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5169                                   : &IRP.getAssociatedValue();
5170   if (!V)
5171     return indicatePessimisticFixpoint();
5172 
5173   const Function *F =
5174       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5175   assert(F && "Expected a function!");
5176   const IRPosition &FnPos = IRPosition::function(*F);
5177 
5178   AANoCapture::StateType T;
5179 
5180   // Readonly means we cannot capture through memory.
5181   bool IsKnown;
5182   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5183     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5184     if (IsKnown)
5185       addKnownBits(NOT_CAPTURED_IN_MEM);
5186   }
5187 
5188   // Make sure all returned values are different than the underlying value.
5189   // TODO: we could do this in a more sophisticated way inside
5190   //       AAReturnedValues, e.g., track all values that escape through returns
5191   //       directly somehow.
5192   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5193     bool SeenConstant = false;
5194     for (auto &It : RVAA.returned_values()) {
5195       if (isa<Constant>(It.first)) {
5196         if (SeenConstant)
5197           return false;
5198         SeenConstant = true;
5199       } else if (!isa<Argument>(It.first) ||
5200                  It.first == getAssociatedArgument())
5201         return false;
5202     }
5203     return true;
5204   };
5205 
5206   const auto &NoUnwindAA =
5207       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5208   if (NoUnwindAA.isAssumedNoUnwind()) {
5209     bool IsVoidTy = F->getReturnType()->isVoidTy();
5210     const AAReturnedValues *RVAA =
5211         IsVoidTy ? nullptr
5212                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5213 
5214                                                  DepClassTy::OPTIONAL);
5215     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5216       T.addKnownBits(NOT_CAPTURED_IN_RET);
5217       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5218         return ChangeStatus::UNCHANGED;
5219       if (NoUnwindAA.isKnownNoUnwind() &&
5220           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5221         addKnownBits(NOT_CAPTURED_IN_RET);
5222         if (isKnown(NOT_CAPTURED_IN_MEM))
5223           return indicateOptimisticFixpoint();
5224       }
5225     }
5226   }
5227 
5228   auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5229     const auto &DerefAA = A.getAAFor<AADereferenceable>(
5230         *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5231     return DerefAA.getAssumedDereferenceableBytes();
5232   };
5233 
5234   auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5235     switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5236     case UseCaptureKind::NO_CAPTURE:
5237       return true;
5238     case UseCaptureKind::MAY_CAPTURE:
5239       return checkUse(A, T, U, Follow);
5240     case UseCaptureKind::PASSTHROUGH:
5241       Follow = true;
5242       return true;
5243     }
5244     llvm_unreachable("Unexpected use capture kind!");
5245   };
5246 
5247   if (!A.checkForAllUses(UseCheck, *this, *V))
5248     return indicatePessimisticFixpoint();
5249 
5250   AANoCapture::StateType &S = getState();
5251   auto Assumed = S.getAssumed();
5252   S.intersectAssumedBits(T.getAssumed());
5253   if (!isAssumedNoCaptureMaybeReturned())
5254     return indicatePessimisticFixpoint();
5255   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5256                                    : ChangeStatus::CHANGED;
5257 }
5258 
5259 /// NoCapture attribute for function arguments.
5260 struct AANoCaptureArgument final : AANoCaptureImpl {
5261   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5262       : AANoCaptureImpl(IRP, A) {}
5263 
5264   /// See AbstractAttribute::trackStatistics()
5265   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5266 };
5267 
5268 /// NoCapture attribute for call site arguments.
5269 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5270   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5271       : AANoCaptureImpl(IRP, A) {}
5272 
5273   /// See AbstractAttribute::initialize(...).
5274   void initialize(Attributor &A) override {
5275     if (Argument *Arg = getAssociatedArgument())
5276       if (Arg->hasByValAttr())
5277         indicateOptimisticFixpoint();
5278     AANoCaptureImpl::initialize(A);
5279   }
5280 
5281   /// See AbstractAttribute::updateImpl(...).
5282   ChangeStatus updateImpl(Attributor &A) override {
5283     // TODO: Once we have call site specific value information we can provide
5284     //       call site specific liveness information and then it makes
5285     //       sense to specialize attributes for call sites arguments instead of
5286     //       redirecting requests to the callee argument.
5287     Argument *Arg = getAssociatedArgument();
5288     if (!Arg)
5289       return indicatePessimisticFixpoint();
5290     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5291     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5292     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5293   }
5294 
5295   /// See AbstractAttribute::trackStatistics()
5296   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5297 };
5298 
5299 /// NoCapture attribute for floating values.
5300 struct AANoCaptureFloating final : AANoCaptureImpl {
5301   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5302       : AANoCaptureImpl(IRP, A) {}
5303 
5304   /// See AbstractAttribute::trackStatistics()
5305   void trackStatistics() const override {
5306     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5307   }
5308 };
5309 
5310 /// NoCapture attribute for function return value.
5311 struct AANoCaptureReturned final : AANoCaptureImpl {
5312   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5313       : AANoCaptureImpl(IRP, A) {
5314     llvm_unreachable("NoCapture is not applicable to function returns!");
5315   }
5316 
5317   /// See AbstractAttribute::initialize(...).
5318   void initialize(Attributor &A) override {
5319     llvm_unreachable("NoCapture is not applicable to function returns!");
5320   }
5321 
5322   /// See AbstractAttribute::updateImpl(...).
5323   ChangeStatus updateImpl(Attributor &A) override {
5324     llvm_unreachable("NoCapture is not applicable to function returns!");
5325   }
5326 
5327   /// See AbstractAttribute::trackStatistics()
5328   void trackStatistics() const override {}
5329 };
5330 
5331 /// NoCapture attribute deduction for a call site return value.
5332 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5333   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5334       : AANoCaptureImpl(IRP, A) {}
5335 
5336   /// See AbstractAttribute::initialize(...).
5337   void initialize(Attributor &A) override {
5338     const Function *F = getAnchorScope();
5339     // Check what state the associated function can actually capture.
5340     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5341   }
5342 
5343   /// See AbstractAttribute::trackStatistics()
5344   void trackStatistics() const override {
5345     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5346   }
5347 };
5348 } // namespace
5349 
5350 /// ------------------ Value Simplify Attribute ----------------------------
5351 
5352 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5353   // FIXME: Add a typecast support.
5354   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5355       SimplifiedAssociatedValue, Other, Ty);
5356   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5357     return false;
5358 
5359   LLVM_DEBUG({
5360     if (SimplifiedAssociatedValue.hasValue())
5361       dbgs() << "[ValueSimplify] is assumed to be "
5362              << **SimplifiedAssociatedValue << "\n";
5363     else
5364       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5365   });
5366   return true;
5367 }
5368 
5369 namespace {
5370 struct AAValueSimplifyImpl : AAValueSimplify {
5371   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5372       : AAValueSimplify(IRP, A) {}
5373 
5374   /// See AbstractAttribute::initialize(...).
5375   void initialize(Attributor &A) override {
5376     if (getAssociatedValue().getType()->isVoidTy())
5377       indicatePessimisticFixpoint();
5378     if (A.hasSimplificationCallback(getIRPosition()))
5379       indicatePessimisticFixpoint();
5380   }
5381 
5382   /// See AbstractAttribute::getAsStr().
5383   const std::string getAsStr() const override {
5384     LLVM_DEBUG({
5385       errs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
5386       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5387         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5388     });
5389     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5390                           : "not-simple";
5391   }
5392 
5393   /// See AbstractAttribute::trackStatistics()
5394   void trackStatistics() const override {}
5395 
5396   /// See AAValueSimplify::getAssumedSimplifiedValue()
5397   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5398     return SimplifiedAssociatedValue;
5399   }
5400 
5401   /// Ensure the return value is \p V with type \p Ty, if not possible return
5402   /// nullptr. If \p Check is true we will only verify such an operation would
5403   /// suceed and return a non-nullptr value if that is the case. No IR is
5404   /// generated or modified.
5405   static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
5406                            bool Check) {
5407     if (auto *TypedV = AA::getWithType(V, Ty))
5408       return TypedV;
5409     if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
5410       return Check ? &V
5411                    : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
5412                                                                       "", CtxI);
5413     return nullptr;
5414   }
5415 
5416   /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
5417   /// If \p Check is true we will only verify such an operation would suceed and
5418   /// return a non-nullptr value if that is the case. No IR is generated or
5419   /// modified.
5420   static Value *reproduceInst(Attributor &A,
5421                               const AbstractAttribute &QueryingAA,
5422                               Instruction &I, Type &Ty, Instruction *CtxI,
5423                               bool Check, ValueToValueMapTy &VMap) {
5424     assert(CtxI && "Cannot reproduce an instruction without context!");
5425     if (Check && (I.mayReadFromMemory() ||
5426                   !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
5427                                                 /* TLI */ nullptr)))
5428       return nullptr;
5429     for (Value *Op : I.operands()) {
5430       Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
5431       if (!NewOp) {
5432         assert(Check && "Manifest of new value unexpectedly failed!");
5433         return nullptr;
5434       }
5435       if (!Check)
5436         VMap[Op] = NewOp;
5437     }
5438     if (Check)
5439       return &I;
5440 
5441     Instruction *CloneI = I.clone();
5442     VMap[&I] = CloneI;
5443     CloneI->insertBefore(CtxI);
5444     RemapInstruction(CloneI, VMap);
5445     return CloneI;
5446   }
5447 
5448   /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
5449   /// If \p Check is true we will only verify such an operation would suceed and
5450   /// return a non-nullptr value if that is the case. No IR is generated or
5451   /// modified.
5452   static Value *reproduceValue(Attributor &A,
5453                                const AbstractAttribute &QueryingAA, Value &V,
5454                                Type &Ty, Instruction *CtxI, bool Check,
5455                                ValueToValueMapTy &VMap) {
5456     if (const auto &NewV = VMap.lookup(&V))
5457       return NewV;
5458     bool UsedAssumedInformation = false;
5459     Optional<Value *> SimpleV =
5460         A.getAssumedSimplified(V, QueryingAA, UsedAssumedInformation);
5461     if (!SimpleV.hasValue())
5462       return PoisonValue::get(&Ty);
5463     Value *EffectiveV = &V;
5464     if (SimpleV.getValue())
5465       EffectiveV = SimpleV.getValue();
5466     if (auto *C = dyn_cast<Constant>(EffectiveV))
5467       if (!C->canTrap())
5468         return C;
5469     if (CtxI && AA::isValidAtPosition(*EffectiveV, *CtxI, A.getInfoCache()))
5470       return ensureType(A, *EffectiveV, Ty, CtxI, Check);
5471     if (auto *I = dyn_cast<Instruction>(EffectiveV))
5472       if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
5473         return ensureType(A, *NewV, Ty, CtxI, Check);
5474     return nullptr;
5475   }
5476 
5477   /// Return a value we can use as replacement for the associated one, or
5478   /// nullptr if we don't have one that makes sense.
5479   Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
5480     Value *NewV = SimplifiedAssociatedValue.hasValue()
5481                       ? SimplifiedAssociatedValue.getValue()
5482                       : UndefValue::get(getAssociatedType());
5483     if (NewV && NewV != &getAssociatedValue()) {
5484       ValueToValueMapTy VMap;
5485       // First verify we can reprduce the value with the required type at the
5486       // context location before we actually start modifying the IR.
5487       if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5488                          /* CheckOnly */ true, VMap))
5489         return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5490                               /* CheckOnly */ false, VMap);
5491     }
5492     return nullptr;
5493   }
5494 
5495   /// Helper function for querying AAValueSimplify and updating candicate.
5496   /// \param IRP The value position we are trying to unify with SimplifiedValue
5497   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5498                       const IRPosition &IRP, bool Simplify = true) {
5499     bool UsedAssumedInformation = false;
5500     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5501     if (Simplify)
5502       QueryingValueSimplified =
5503           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5504     return unionAssumed(QueryingValueSimplified);
5505   }
5506 
5507   /// Returns a candidate is found or not
5508   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5509     if (!getAssociatedValue().getType()->isIntegerTy())
5510       return false;
5511 
5512     // This will also pass the call base context.
5513     const auto &AA =
5514         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5515 
5516     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5517 
5518     if (!COpt.hasValue()) {
5519       SimplifiedAssociatedValue = llvm::None;
5520       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5521       return true;
5522     }
5523     if (auto *C = COpt.getValue()) {
5524       SimplifiedAssociatedValue = C;
5525       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5526       return true;
5527     }
5528     return false;
5529   }
5530 
5531   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5532     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5533       return true;
5534     if (askSimplifiedValueFor<AAPotentialValues>(A))
5535       return true;
5536     return false;
5537   }
5538 
5539   /// See AbstractAttribute::manifest(...).
5540   ChangeStatus manifest(Attributor &A) override {
5541     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5542     for (auto &U : getAssociatedValue().uses()) {
5543       // Check if we need to adjust the insertion point to make sure the IR is
5544       // valid.
5545       Instruction *IP = dyn_cast<Instruction>(U.getUser());
5546       if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
5547         IP = PHI->getIncomingBlock(U)->getTerminator();
5548       if (auto *NewV = manifestReplacementValue(A, IP)) {
5549         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
5550                           << " -> " << *NewV << " :: " << *this << "\n");
5551         if (A.changeUseAfterManifest(U, *NewV))
5552           Changed = ChangeStatus::CHANGED;
5553       }
5554     }
5555 
5556     return Changed | AAValueSimplify::manifest(A);
5557   }
5558 
5559   /// See AbstractState::indicatePessimisticFixpoint(...).
5560   ChangeStatus indicatePessimisticFixpoint() override {
5561     SimplifiedAssociatedValue = &getAssociatedValue();
5562     return AAValueSimplify::indicatePessimisticFixpoint();
5563   }
5564 };
5565 
5566 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5567   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5568       : AAValueSimplifyImpl(IRP, A) {}
5569 
5570   void initialize(Attributor &A) override {
5571     AAValueSimplifyImpl::initialize(A);
5572     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5573       indicatePessimisticFixpoint();
5574     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5575                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5576                 /* IgnoreSubsumingPositions */ true))
5577       indicatePessimisticFixpoint();
5578   }
5579 
5580   /// See AbstractAttribute::updateImpl(...).
5581   ChangeStatus updateImpl(Attributor &A) override {
5582     // Byval is only replacable if it is readonly otherwise we would write into
5583     // the replaced value and not the copy that byval creates implicitly.
5584     Argument *Arg = getAssociatedArgument();
5585     if (Arg->hasByValAttr()) {
5586       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5587       //       there is no race by not copying a constant byval.
5588       bool IsKnown;
5589       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5590         return indicatePessimisticFixpoint();
5591     }
5592 
5593     auto Before = SimplifiedAssociatedValue;
5594 
5595     auto PredForCallSite = [&](AbstractCallSite ACS) {
5596       const IRPosition &ACSArgPos =
5597           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5598       // Check if a coresponding argument was found or if it is on not
5599       // associated (which can happen for callback calls).
5600       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5601         return false;
5602 
5603       // Simplify the argument operand explicitly and check if the result is
5604       // valid in the current scope. This avoids refering to simplified values
5605       // in other functions, e.g., we don't want to say a an argument in a
5606       // static function is actually an argument in a different function.
5607       bool UsedAssumedInformation = false;
5608       Optional<Constant *> SimpleArgOp =
5609           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5610       if (!SimpleArgOp.hasValue())
5611         return true;
5612       if (!SimpleArgOp.getValue())
5613         return false;
5614       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5615         return false;
5616       return unionAssumed(*SimpleArgOp);
5617     };
5618 
5619     // Generate a answer specific to a call site context.
5620     bool Success;
5621     bool UsedAssumedInformation = false;
5622     if (hasCallBaseContext() &&
5623         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5624       Success = PredForCallSite(
5625           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5626     else
5627       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5628                                        UsedAssumedInformation);
5629 
5630     if (!Success)
5631       if (!askSimplifiedValueForOtherAAs(A))
5632         return indicatePessimisticFixpoint();
5633 
5634     // If a candicate was found in this update, return CHANGED.
5635     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5636                                                : ChangeStatus ::CHANGED;
5637   }
5638 
5639   /// See AbstractAttribute::trackStatistics()
5640   void trackStatistics() const override {
5641     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5642   }
5643 };
5644 
5645 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5646   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5647       : AAValueSimplifyImpl(IRP, A) {}
5648 
5649   /// See AAValueSimplify::getAssumedSimplifiedValue()
5650   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5651     if (!isValidState())
5652       return nullptr;
5653     return SimplifiedAssociatedValue;
5654   }
5655 
5656   /// See AbstractAttribute::updateImpl(...).
5657   ChangeStatus updateImpl(Attributor &A) override {
5658     auto Before = SimplifiedAssociatedValue;
5659 
5660     auto ReturnInstCB = [&](Instruction &I) {
5661       auto &RI = cast<ReturnInst>(I);
5662       return checkAndUpdate(
5663           A, *this,
5664           IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
5665     };
5666 
5667     bool UsedAssumedInformation = false;
5668     if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
5669                                    UsedAssumedInformation))
5670       if (!askSimplifiedValueForOtherAAs(A))
5671         return indicatePessimisticFixpoint();
5672 
5673     // If a candicate was found in this update, return CHANGED.
5674     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5675                                                : ChangeStatus ::CHANGED;
5676   }
5677 
5678   ChangeStatus manifest(Attributor &A) override {
5679     // We queried AAValueSimplify for the returned values so they will be
5680     // replaced if a simplified form was found. Nothing to do here.
5681     return ChangeStatus::UNCHANGED;
5682   }
5683 
5684   /// See AbstractAttribute::trackStatistics()
5685   void trackStatistics() const override {
5686     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5687   }
5688 };
5689 
5690 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5691   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5692       : AAValueSimplifyImpl(IRP, A) {}
5693 
5694   /// See AbstractAttribute::initialize(...).
5695   void initialize(Attributor &A) override {
5696     AAValueSimplifyImpl::initialize(A);
5697     Value &V = getAnchorValue();
5698 
5699     // TODO: add other stuffs
5700     if (isa<Constant>(V))
5701       indicatePessimisticFixpoint();
5702   }
5703 
5704   /// Check if \p Cmp is a comparison we can simplify.
5705   ///
5706   /// We handle multiple cases, one in which at least one operand is an
5707   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5708   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5709   /// will be updated.
5710   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5711     auto Union = [&](Value &V) {
5712       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5713           SimplifiedAssociatedValue, &V, V.getType());
5714       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5715     };
5716 
5717     Value *LHS = Cmp.getOperand(0);
5718     Value *RHS = Cmp.getOperand(1);
5719 
5720     // Simplify the operands first.
5721     bool UsedAssumedInformation = false;
5722     const auto &SimplifiedLHS =
5723         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5724                                *this, UsedAssumedInformation);
5725     if (!SimplifiedLHS.hasValue())
5726       return true;
5727     if (!SimplifiedLHS.getValue())
5728       return false;
5729     LHS = *SimplifiedLHS;
5730 
5731     const auto &SimplifiedRHS =
5732         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5733                                *this, UsedAssumedInformation);
5734     if (!SimplifiedRHS.hasValue())
5735       return true;
5736     if (!SimplifiedRHS.getValue())
5737       return false;
5738     RHS = *SimplifiedRHS;
5739 
5740     LLVMContext &Ctx = Cmp.getContext();
5741     // Handle the trivial case first in which we don't even need to think about
5742     // null or non-null.
5743     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5744       Constant *NewVal =
5745           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5746       if (!Union(*NewVal))
5747         return false;
5748       if (!UsedAssumedInformation)
5749         indicateOptimisticFixpoint();
5750       return true;
5751     }
5752 
5753     // From now on we only handle equalities (==, !=).
5754     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5755     if (!ICmp || !ICmp->isEquality())
5756       return false;
5757 
5758     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5759     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5760     if (!LHSIsNull && !RHSIsNull)
5761       return false;
5762 
5763     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5764     // non-nullptr operand and if we assume it's non-null we can conclude the
5765     // result of the comparison.
5766     assert((LHSIsNull || RHSIsNull) &&
5767            "Expected nullptr versus non-nullptr comparison at this point");
5768 
5769     // The index is the operand that we assume is not null.
5770     unsigned PtrIdx = LHSIsNull;
5771     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5772         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5773         DepClassTy::REQUIRED);
5774     if (!PtrNonNullAA.isAssumedNonNull())
5775       return false;
5776     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5777 
5778     // The new value depends on the predicate, true for != and false for ==.
5779     Constant *NewVal = ConstantInt::get(
5780         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5781     if (!Union(*NewVal))
5782       return false;
5783 
5784     if (!UsedAssumedInformation)
5785       indicateOptimisticFixpoint();
5786 
5787     return true;
5788   }
5789 
5790   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5791   /// simplify any operand of the instruction \p I. Return true if successful,
5792   /// in that case SimplifiedAssociatedValue will be updated.
5793   bool handleGenericInst(Attributor &A, Instruction &I) {
5794     bool SomeSimplified = false;
5795     bool UsedAssumedInformation = false;
5796 
5797     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5798     int Idx = 0;
5799     for (Value *Op : I.operands()) {
5800       const auto &SimplifiedOp =
5801           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5802                                  *this, UsedAssumedInformation);
5803       // If we are not sure about any operand we are not sure about the entire
5804       // instruction, we'll wait.
5805       if (!SimplifiedOp.hasValue())
5806         return true;
5807 
5808       if (SimplifiedOp.getValue())
5809         NewOps[Idx] = SimplifiedOp.getValue();
5810       else
5811         NewOps[Idx] = Op;
5812 
5813       SomeSimplified |= (NewOps[Idx] != Op);
5814       ++Idx;
5815     }
5816 
5817     // We won't bother with the InstSimplify interface if we didn't simplify any
5818     // operand ourselves.
5819     if (!SomeSimplified)
5820       return false;
5821 
5822     InformationCache &InfoCache = A.getInfoCache();
5823     Function *F = I.getFunction();
5824     const auto *DT =
5825         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5826     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5827     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5828     OptimizationRemarkEmitter *ORE = nullptr;
5829 
5830     const DataLayout &DL = I.getModule()->getDataLayout();
5831     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5832     if (Value *SimplifiedI =
5833             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5834       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5835           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5836       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5837     }
5838     return false;
5839   }
5840 
5841   /// See AbstractAttribute::updateImpl(...).
5842   ChangeStatus updateImpl(Attributor &A) override {
5843     auto Before = SimplifiedAssociatedValue;
5844 
5845     // Do not simplify loads that are only used in llvm.assume if we cannot also
5846     // remove all stores that may feed into the load. The reason is that the
5847     // assume is probably worth something as long as the stores are around.
5848     if (auto *LI = dyn_cast<LoadInst>(&getAssociatedValue())) {
5849       InformationCache &InfoCache = A.getInfoCache();
5850       if (InfoCache.isOnlyUsedByAssume(*LI)) {
5851         SmallSetVector<Value *, 4> PotentialCopies;
5852         SmallSetVector<Instruction *, 4> PotentialValueOrigins;
5853         bool UsedAssumedInformation = false;
5854         if (AA::getPotentiallyLoadedValues(A, *LI, PotentialCopies,
5855                                            PotentialValueOrigins, *this,
5856                                            UsedAssumedInformation,
5857                                            /* OnlyExact */ true)) {
5858           if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
5859                 if (!I)
5860                   return true;
5861                 if (auto *SI = dyn_cast<StoreInst>(I))
5862                   return A.isAssumedDead(SI->getOperandUse(0), this,
5863                                          /* LivenessAA */ nullptr,
5864                                          UsedAssumedInformation,
5865                                          /* CheckBBLivenessOnly */ false);
5866                 return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
5867                                        UsedAssumedInformation,
5868                                        /* CheckBBLivenessOnly */ false);
5869               }))
5870             return indicatePessimisticFixpoint();
5871         }
5872       }
5873     }
5874 
5875     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5876                             bool Stripped) -> bool {
5877       auto &AA = A.getAAFor<AAValueSimplify>(
5878           *this, IRPosition::value(V, getCallBaseContext()),
5879           DepClassTy::REQUIRED);
5880       if (!Stripped && this == &AA) {
5881 
5882         if (auto *I = dyn_cast<Instruction>(&V)) {
5883           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5884             if (handleCmp(A, *Cmp))
5885               return true;
5886           if (handleGenericInst(A, *I))
5887             return true;
5888         }
5889         // TODO: Look the instruction and check recursively.
5890 
5891         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5892                           << "\n");
5893         return false;
5894       }
5895       return checkAndUpdate(A, *this,
5896                             IRPosition::value(V, getCallBaseContext()));
5897     };
5898 
5899     bool Dummy = false;
5900     bool UsedAssumedInformation = false;
5901     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5902                                      VisitValueCB, getCtxI(),
5903                                      UsedAssumedInformation,
5904                                      /* UseValueSimplify */ false))
5905       if (!askSimplifiedValueForOtherAAs(A))
5906         return indicatePessimisticFixpoint();
5907 
5908     // If a candicate was found in this update, return CHANGED.
5909     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5910                                                : ChangeStatus ::CHANGED;
5911   }
5912 
5913   /// See AbstractAttribute::trackStatistics()
5914   void trackStatistics() const override {
5915     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5916   }
5917 };
5918 
5919 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5920   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5921       : AAValueSimplifyImpl(IRP, A) {}
5922 
5923   /// See AbstractAttribute::initialize(...).
5924   void initialize(Attributor &A) override {
5925     SimplifiedAssociatedValue = nullptr;
5926     indicateOptimisticFixpoint();
5927   }
5928   /// See AbstractAttribute::initialize(...).
5929   ChangeStatus updateImpl(Attributor &A) override {
5930     llvm_unreachable(
5931         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5932   }
5933   /// See AbstractAttribute::trackStatistics()
5934   void trackStatistics() const override {
5935     STATS_DECLTRACK_FN_ATTR(value_simplify)
5936   }
5937 };
5938 
5939 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5940   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5941       : AAValueSimplifyFunction(IRP, A) {}
5942   /// See AbstractAttribute::trackStatistics()
5943   void trackStatistics() const override {
5944     STATS_DECLTRACK_CS_ATTR(value_simplify)
5945   }
5946 };
5947 
5948 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5949   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5950       : AAValueSimplifyImpl(IRP, A) {}
5951 
5952   void initialize(Attributor &A) override {
5953     AAValueSimplifyImpl::initialize(A);
5954     Function *Fn = getAssociatedFunction();
5955     if (!Fn) {
5956       indicatePessimisticFixpoint();
5957       return;
5958     }
5959     for (Argument &Arg : Fn->args()) {
5960       if (Arg.hasReturnedAttr()) {
5961         auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
5962                                                  Arg.getArgNo());
5963         if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
5964             checkAndUpdate(A, *this, IRP))
5965           indicateOptimisticFixpoint();
5966         else
5967           indicatePessimisticFixpoint();
5968         return;
5969       }
5970     }
5971   }
5972 
5973   /// See AbstractAttribute::updateImpl(...).
5974   ChangeStatus updateImpl(Attributor &A) override {
5975     auto Before = SimplifiedAssociatedValue;
5976     auto &RetAA = A.getAAFor<AAReturnedValues>(
5977         *this, IRPosition::function(*getAssociatedFunction()),
5978         DepClassTy::REQUIRED);
5979     auto PredForReturned =
5980         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5981           bool UsedAssumedInformation = false;
5982           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5983               &RetVal, *cast<CallBase>(getCtxI()), *this,
5984               UsedAssumedInformation);
5985           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5986               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5987           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5988         };
5989     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5990       if (!askSimplifiedValueForOtherAAs(A))
5991         return indicatePessimisticFixpoint();
5992     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5993                                                : ChangeStatus ::CHANGED;
5994   }
5995 
5996   void trackStatistics() const override {
5997     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5998   }
5999 };
6000 
6001 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
6002   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
6003       : AAValueSimplifyFloating(IRP, A) {}
6004 
6005   /// See AbstractAttribute::manifest(...).
6006   ChangeStatus manifest(Attributor &A) override {
6007     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6008 
6009     if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
6010       Use &U = cast<CallBase>(&getAnchorValue())
6011                    ->getArgOperandUse(getCallSiteArgNo());
6012       if (A.changeUseAfterManifest(U, *NewV))
6013         Changed = ChangeStatus::CHANGED;
6014     }
6015 
6016     return Changed | AAValueSimplify::manifest(A);
6017   }
6018 
6019   void trackStatistics() const override {
6020     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
6021   }
6022 };
6023 } // namespace
6024 
6025 /// ----------------------- Heap-To-Stack Conversion ---------------------------
6026 namespace {
6027 struct AAHeapToStackFunction final : public AAHeapToStack {
6028 
6029   struct AllocationInfo {
6030     /// The call that allocates the memory.
6031     CallBase *const CB;
6032 
6033     /// The library function id for the allocation.
6034     LibFunc LibraryFunctionId = NotLibFunc;
6035 
6036     /// The status wrt. a rewrite.
6037     enum {
6038       STACK_DUE_TO_USE,
6039       STACK_DUE_TO_FREE,
6040       INVALID,
6041     } Status = STACK_DUE_TO_USE;
6042 
6043     /// Flag to indicate if we encountered a use that might free this allocation
6044     /// but which is not in the deallocation infos.
6045     bool HasPotentiallyFreeingUnknownUses = false;
6046 
6047     /// The set of free calls that use this allocation.
6048     SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
6049   };
6050 
6051   struct DeallocationInfo {
6052     /// The call that deallocates the memory.
6053     CallBase *const CB;
6054 
6055     /// Flag to indicate if we don't know all objects this deallocation might
6056     /// free.
6057     bool MightFreeUnknownObjects = false;
6058 
6059     /// The set of allocation calls that are potentially freed.
6060     SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
6061   };
6062 
6063   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
6064       : AAHeapToStack(IRP, A) {}
6065 
6066   ~AAHeapToStackFunction() {
6067     // Ensure we call the destructor so we release any memory allocated in the
6068     // sets.
6069     for (auto &It : AllocationInfos)
6070       It.second->~AllocationInfo();
6071     for (auto &It : DeallocationInfos)
6072       It.second->~DeallocationInfo();
6073   }
6074 
6075   void initialize(Attributor &A) override {
6076     AAHeapToStack::initialize(A);
6077 
6078     const Function *F = getAnchorScope();
6079     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6080 
6081     auto AllocationIdentifierCB = [&](Instruction &I) {
6082       CallBase *CB = dyn_cast<CallBase>(&I);
6083       if (!CB)
6084         return true;
6085       if (isFreeCall(CB, TLI)) {
6086         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
6087         return true;
6088       }
6089       // To do heap to stack, we need to know that the allocation itself is
6090       // removable once uses are rewritten, and that we can initialize the
6091       // alloca to the same pattern as the original allocation result.
6092       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
6093         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
6094         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
6095           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
6096           AllocationInfos[CB] = AI;
6097           if (TLI)
6098             TLI->getLibFunc(*CB, AI->LibraryFunctionId);
6099         }
6100       }
6101       return true;
6102     };
6103 
6104     bool UsedAssumedInformation = false;
6105     bool Success = A.checkForAllCallLikeInstructions(
6106         AllocationIdentifierCB, *this, UsedAssumedInformation,
6107         /* CheckBBLivenessOnly */ false,
6108         /* CheckPotentiallyDead */ true);
6109     (void)Success;
6110     assert(Success && "Did not expect the call base visit callback to fail!");
6111 
6112     Attributor::SimplifictionCallbackTy SCB =
6113         [](const IRPosition &, const AbstractAttribute *,
6114            bool &) -> Optional<Value *> { return nullptr; };
6115     for (const auto &It : AllocationInfos)
6116       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6117                                        SCB);
6118     for (const auto &It : DeallocationInfos)
6119       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6120                                        SCB);
6121   }
6122 
6123   const std::string getAsStr() const override {
6124     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
6125     for (const auto &It : AllocationInfos) {
6126       if (It.second->Status == AllocationInfo::INVALID)
6127         ++NumInvalidMallocs;
6128       else
6129         ++NumH2SMallocs;
6130     }
6131     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
6132            std::to_string(NumInvalidMallocs);
6133   }
6134 
6135   /// See AbstractAttribute::trackStatistics().
6136   void trackStatistics() const override {
6137     STATS_DECL(
6138         MallocCalls, Function,
6139         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
6140     for (auto &It : AllocationInfos)
6141       if (It.second->Status != AllocationInfo::INVALID)
6142         ++BUILD_STAT_NAME(MallocCalls, Function);
6143   }
6144 
6145   bool isAssumedHeapToStack(const CallBase &CB) const override {
6146     if (isValidState())
6147       if (AllocationInfo *AI =
6148               AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
6149         return AI->Status != AllocationInfo::INVALID;
6150     return false;
6151   }
6152 
6153   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
6154     if (!isValidState())
6155       return false;
6156 
6157     for (auto &It : AllocationInfos) {
6158       AllocationInfo &AI = *It.second;
6159       if (AI.Status == AllocationInfo::INVALID)
6160         continue;
6161 
6162       if (AI.PotentialFreeCalls.count(&CB))
6163         return true;
6164     }
6165 
6166     return false;
6167   }
6168 
6169   ChangeStatus manifest(Attributor &A) override {
6170     assert(getState().isValidState() &&
6171            "Attempted to manifest an invalid state!");
6172 
6173     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
6174     Function *F = getAnchorScope();
6175     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6176 
6177     for (auto &It : AllocationInfos) {
6178       AllocationInfo &AI = *It.second;
6179       if (AI.Status == AllocationInfo::INVALID)
6180         continue;
6181 
6182       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
6183         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
6184         A.deleteAfterManifest(*FreeCall);
6185         HasChanged = ChangeStatus::CHANGED;
6186       }
6187 
6188       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
6189                         << "\n");
6190 
6191       auto Remark = [&](OptimizationRemark OR) {
6192         LibFunc IsAllocShared;
6193         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6194           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6195             return OR << "Moving globalized variable to the stack.";
6196         return OR << "Moving memory allocation from the heap to the stack.";
6197       };
6198       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6199         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6200       else
6201         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6202 
6203       const DataLayout &DL = A.getInfoCache().getDL();
6204       Value *Size;
6205       Optional<APInt> SizeAPI = getSize(A, *this, AI);
6206       if (SizeAPI.hasValue()) {
6207         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6208       } else {
6209         LLVMContext &Ctx = AI.CB->getContext();
6210         ObjectSizeOpts Opts;
6211         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6212         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6213         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6214                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6215         Size = SizeOffsetPair.first;
6216       }
6217 
6218       Align Alignment(1);
6219       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6220         Alignment = max(Alignment, RetAlign);
6221       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6222         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6223         assert(AlignmentAPI.hasValue() &&
6224                "Expected an alignment during manifest!");
6225         Alignment =
6226             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
6227       }
6228 
6229       // TODO: Hoist the alloca towards the function entry.
6230       unsigned AS = DL.getAllocaAddrSpace();
6231       Instruction *Alloca = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
6232                                            Size, Alignment, "", AI.CB);
6233 
6234       if (Alloca->getType() != AI.CB->getType())
6235         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6236             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6237 
6238       auto *I8Ty = Type::getInt8Ty(F->getContext());
6239       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6240       assert(InitVal &&
6241              "Must be able to materialize initial memory state of allocation");
6242 
6243       A.changeValueAfterManifest(*AI.CB, *Alloca);
6244 
6245       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6246         auto *NBB = II->getNormalDest();
6247         BranchInst::Create(NBB, AI.CB->getParent());
6248         A.deleteAfterManifest(*AI.CB);
6249       } else {
6250         A.deleteAfterManifest(*AI.CB);
6251       }
6252 
6253       // Initialize the alloca with the same value as used by the allocation
6254       // function.  We can skip undef as the initial value of an alloc is
6255       // undef, and the memset would simply end up being DSEd.
6256       if (!isa<UndefValue>(InitVal)) {
6257         IRBuilder<> Builder(Alloca->getNextNode());
6258         // TODO: Use alignment above if align!=1
6259         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6260       }
6261       HasChanged = ChangeStatus::CHANGED;
6262     }
6263 
6264     return HasChanged;
6265   }
6266 
6267   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6268                            Value &V) {
6269     bool UsedAssumedInformation = false;
6270     Optional<Constant *> SimpleV =
6271         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6272     if (!SimpleV.hasValue())
6273       return APInt(64, 0);
6274     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6275       return CI->getValue();
6276     return llvm::None;
6277   }
6278 
6279   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6280                           AllocationInfo &AI) {
6281     auto Mapper = [&](const Value *V) -> const Value * {
6282       bool UsedAssumedInformation = false;
6283       if (Optional<Constant *> SimpleV =
6284               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6285         if (*SimpleV)
6286           return *SimpleV;
6287       return V;
6288     };
6289 
6290     const Function *F = getAnchorScope();
6291     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6292     return getAllocSize(AI.CB, TLI, Mapper);
6293   }
6294 
6295   /// Collection of all malloc-like calls in a function with associated
6296   /// information.
6297   MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6298 
6299   /// Collection of all free-like calls in a function with associated
6300   /// information.
6301   MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6302 
6303   ChangeStatus updateImpl(Attributor &A) override;
6304 };
6305 
6306 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6307   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6308   const Function *F = getAnchorScope();
6309   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6310 
6311   const auto &LivenessAA =
6312       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6313 
6314   MustBeExecutedContextExplorer &Explorer =
6315       A.getInfoCache().getMustBeExecutedContextExplorer();
6316 
6317   bool StackIsAccessibleByOtherThreads =
6318       A.getInfoCache().stackIsAccessibleByOtherThreads();
6319 
6320   // Flag to ensure we update our deallocation information at most once per
6321   // updateImpl call and only if we use the free check reasoning.
6322   bool HasUpdatedFrees = false;
6323 
6324   auto UpdateFrees = [&]() {
6325     HasUpdatedFrees = true;
6326 
6327     for (auto &It : DeallocationInfos) {
6328       DeallocationInfo &DI = *It.second;
6329       // For now we cannot use deallocations that have unknown inputs, skip
6330       // them.
6331       if (DI.MightFreeUnknownObjects)
6332         continue;
6333 
6334       // No need to analyze dead calls, ignore them instead.
6335       bool UsedAssumedInformation = false;
6336       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6337                           /* CheckBBLivenessOnly */ true))
6338         continue;
6339 
6340       // Use the optimistic version to get the freed objects, ignoring dead
6341       // branches etc.
6342       SmallVector<Value *, 8> Objects;
6343       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6344                                            *this, DI.CB,
6345                                            UsedAssumedInformation)) {
6346         LLVM_DEBUG(
6347             dbgs()
6348             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6349         DI.MightFreeUnknownObjects = true;
6350         continue;
6351       }
6352 
6353       // Check each object explicitly.
6354       for (auto *Obj : Objects) {
6355         // Free of null and undef can be ignored as no-ops (or UB in the latter
6356         // case).
6357         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6358           continue;
6359 
6360         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6361         if (!ObjCB) {
6362           LLVM_DEBUG(dbgs()
6363                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6364           DI.MightFreeUnknownObjects = true;
6365           continue;
6366         }
6367 
6368         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6369         if (!AI) {
6370           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6371                             << "\n");
6372           DI.MightFreeUnknownObjects = true;
6373           continue;
6374         }
6375 
6376         DI.PotentialAllocationCalls.insert(ObjCB);
6377       }
6378     }
6379   };
6380 
6381   auto FreeCheck = [&](AllocationInfo &AI) {
6382     // If the stack is not accessible by other threads, the "must-free" logic
6383     // doesn't apply as the pointer could be shared and needs to be places in
6384     // "shareable" memory.
6385     if (!StackIsAccessibleByOtherThreads) {
6386       auto &NoSyncAA =
6387           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6388       if (!NoSyncAA.isAssumedNoSync()) {
6389         LLVM_DEBUG(
6390             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6391                       "other threads and function is not nosync:\n");
6392         return false;
6393       }
6394     }
6395     if (!HasUpdatedFrees)
6396       UpdateFrees();
6397 
6398     // TODO: Allow multi exit functions that have different free calls.
6399     if (AI.PotentialFreeCalls.size() != 1) {
6400       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6401                         << AI.PotentialFreeCalls.size() << "\n");
6402       return false;
6403     }
6404     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6405     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6406     if (!DI) {
6407       LLVM_DEBUG(
6408           dbgs() << "[H2S] unique free call was not known as deallocation call "
6409                  << *UniqueFree << "\n");
6410       return false;
6411     }
6412     if (DI->MightFreeUnknownObjects) {
6413       LLVM_DEBUG(
6414           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6415       return false;
6416     }
6417     if (DI->PotentialAllocationCalls.size() > 1) {
6418       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6419                         << DI->PotentialAllocationCalls.size()
6420                         << " different allocations\n");
6421       return false;
6422     }
6423     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6424       LLVM_DEBUG(
6425           dbgs()
6426           << "[H2S] unique free call not known to free this allocation but "
6427           << **DI->PotentialAllocationCalls.begin() << "\n");
6428       return false;
6429     }
6430     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6431     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6432       LLVM_DEBUG(
6433           dbgs()
6434           << "[H2S] unique free call might not be executed with the allocation "
6435           << *UniqueFree << "\n");
6436       return false;
6437     }
6438     return true;
6439   };
6440 
6441   auto UsesCheck = [&](AllocationInfo &AI) {
6442     bool ValidUsesOnly = true;
6443 
6444     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6445       Instruction *UserI = cast<Instruction>(U.getUser());
6446       if (isa<LoadInst>(UserI))
6447         return true;
6448       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6449         if (SI->getValueOperand() == U.get()) {
6450           LLVM_DEBUG(dbgs()
6451                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6452           ValidUsesOnly = false;
6453         } else {
6454           // A store into the malloc'ed memory is fine.
6455         }
6456         return true;
6457       }
6458       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6459         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6460           return true;
6461         if (DeallocationInfos.count(CB)) {
6462           AI.PotentialFreeCalls.insert(CB);
6463           return true;
6464         }
6465 
6466         unsigned ArgNo = CB->getArgOperandNo(&U);
6467 
6468         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6469             *this, IRPosition::callsite_argument(*CB, ArgNo),
6470             DepClassTy::OPTIONAL);
6471 
6472         // If a call site argument use is nofree, we are fine.
6473         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6474             *this, IRPosition::callsite_argument(*CB, ArgNo),
6475             DepClassTy::OPTIONAL);
6476 
6477         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6478         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6479         if (MaybeCaptured ||
6480             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6481              MaybeFreed)) {
6482           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6483 
6484           // Emit a missed remark if this is missed OpenMP globalization.
6485           auto Remark = [&](OptimizationRemarkMissed ORM) {
6486             return ORM
6487                    << "Could not move globalized variable to the stack. "
6488                       "Variable is potentially captured in call. Mark "
6489                       "parameter as `__attribute__((noescape))` to override.";
6490           };
6491 
6492           if (ValidUsesOnly &&
6493               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6494             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6495 
6496           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6497           ValidUsesOnly = false;
6498         }
6499         return true;
6500       }
6501 
6502       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6503           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6504         Follow = true;
6505         return true;
6506       }
6507       // Unknown user for which we can not track uses further (in a way that
6508       // makes sense).
6509       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6510       ValidUsesOnly = false;
6511       return true;
6512     };
6513     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6514       return false;
6515     return ValidUsesOnly;
6516   };
6517 
6518   // The actual update starts here. We look at all allocations and depending on
6519   // their status perform the appropriate check(s).
6520   for (auto &It : AllocationInfos) {
6521     AllocationInfo &AI = *It.second;
6522     if (AI.Status == AllocationInfo::INVALID)
6523       continue;
6524 
6525     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6526       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6527       if (!APAlign) {
6528         // Can't generate an alloca which respects the required alignment
6529         // on the allocation.
6530         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6531                           << "\n");
6532         AI.Status = AllocationInfo::INVALID;
6533         Changed = ChangeStatus::CHANGED;
6534         continue;
6535       } else {
6536         if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
6537             !APAlign->isPowerOf2()) {
6538           LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
6539                             << "\n");
6540           AI.Status = AllocationInfo::INVALID;
6541           Changed = ChangeStatus::CHANGED;
6542           continue;
6543         }
6544       }
6545     }
6546 
6547     if (MaxHeapToStackSize != -1) {
6548       Optional<APInt> Size = getSize(A, *this, AI);
6549       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6550         LLVM_DEBUG({
6551           if (!Size.hasValue())
6552             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6553           else
6554             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6555                    << MaxHeapToStackSize << "\n";
6556         });
6557 
6558         AI.Status = AllocationInfo::INVALID;
6559         Changed = ChangeStatus::CHANGED;
6560         continue;
6561       }
6562     }
6563 
6564     switch (AI.Status) {
6565     case AllocationInfo::STACK_DUE_TO_USE:
6566       if (UsesCheck(AI))
6567         continue;
6568       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6569       LLVM_FALLTHROUGH;
6570     case AllocationInfo::STACK_DUE_TO_FREE:
6571       if (FreeCheck(AI))
6572         continue;
6573       AI.Status = AllocationInfo::INVALID;
6574       Changed = ChangeStatus::CHANGED;
6575       continue;
6576     case AllocationInfo::INVALID:
6577       llvm_unreachable("Invalid allocations should never reach this point!");
6578     };
6579   }
6580 
6581   return Changed;
6582 }
6583 } // namespace
6584 
6585 /// ----------------------- Privatizable Pointers ------------------------------
6586 namespace {
6587 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6588   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6589       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6590 
6591   ChangeStatus indicatePessimisticFixpoint() override {
6592     AAPrivatizablePtr::indicatePessimisticFixpoint();
6593     PrivatizableType = nullptr;
6594     return ChangeStatus::CHANGED;
6595   }
6596 
6597   /// Identify the type we can chose for a private copy of the underlying
6598   /// argument. None means it is not clear yet, nullptr means there is none.
6599   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6600 
6601   /// Return a privatizable type that encloses both T0 and T1.
6602   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6603   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6604     if (!T0.hasValue())
6605       return T1;
6606     if (!T1.hasValue())
6607       return T0;
6608     if (T0 == T1)
6609       return T0;
6610     return nullptr;
6611   }
6612 
6613   Optional<Type *> getPrivatizableType() const override {
6614     return PrivatizableType;
6615   }
6616 
6617   const std::string getAsStr() const override {
6618     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6619   }
6620 
6621 protected:
6622   Optional<Type *> PrivatizableType;
6623 };
6624 
6625 // TODO: Do this for call site arguments (probably also other values) as well.
6626 
6627 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6628   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6629       : AAPrivatizablePtrImpl(IRP, A) {}
6630 
6631   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6632   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6633     // If this is a byval argument and we know all the call sites (so we can
6634     // rewrite them), there is no need to check them explicitly.
6635     bool UsedAssumedInformation = false;
6636     SmallVector<Attribute, 1> Attrs;
6637     getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
6638     if (!Attrs.empty() &&
6639         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6640                                true, UsedAssumedInformation))
6641       return Attrs[0].getValueAsType();
6642 
6643     Optional<Type *> Ty;
6644     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6645 
6646     // Make sure the associated call site argument has the same type at all call
6647     // sites and it is an allocation we know is safe to privatize, for now that
6648     // means we only allow alloca instructions.
6649     // TODO: We can additionally analyze the accesses in the callee to  create
6650     //       the type from that information instead. That is a little more
6651     //       involved and will be done in a follow up patch.
6652     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6653       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6654       // Check if a coresponding argument was found or if it is one not
6655       // associated (which can happen for callback calls).
6656       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6657         return false;
6658 
6659       // Check that all call sites agree on a type.
6660       auto &PrivCSArgAA =
6661           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6662       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6663 
6664       LLVM_DEBUG({
6665         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6666         if (CSTy.hasValue() && CSTy.getValue())
6667           CSTy.getValue()->print(dbgs());
6668         else if (CSTy.hasValue())
6669           dbgs() << "<nullptr>";
6670         else
6671           dbgs() << "<none>";
6672       });
6673 
6674       Ty = combineTypes(Ty, CSTy);
6675 
6676       LLVM_DEBUG({
6677         dbgs() << " : New Type: ";
6678         if (Ty.hasValue() && Ty.getValue())
6679           Ty.getValue()->print(dbgs());
6680         else if (Ty.hasValue())
6681           dbgs() << "<nullptr>";
6682         else
6683           dbgs() << "<none>";
6684         dbgs() << "\n";
6685       });
6686 
6687       return !Ty.hasValue() || Ty.getValue();
6688     };
6689 
6690     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6691                                 UsedAssumedInformation))
6692       return nullptr;
6693     return Ty;
6694   }
6695 
6696   /// See AbstractAttribute::updateImpl(...).
6697   ChangeStatus updateImpl(Attributor &A) override {
6698     PrivatizableType = identifyPrivatizableType(A);
6699     if (!PrivatizableType.hasValue())
6700       return ChangeStatus::UNCHANGED;
6701     if (!PrivatizableType.getValue())
6702       return indicatePessimisticFixpoint();
6703 
6704     // The dependence is optional so we don't give up once we give up on the
6705     // alignment.
6706     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6707                         DepClassTy::OPTIONAL);
6708 
6709     // Avoid arguments with padding for now.
6710     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6711         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6712                                                 A.getInfoCache().getDL())) {
6713       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6714       return indicatePessimisticFixpoint();
6715     }
6716 
6717     // Collect the types that will replace the privatizable type in the function
6718     // signature.
6719     SmallVector<Type *, 16> ReplacementTypes;
6720     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6721 
6722     // Verify callee and caller agree on how the promoted argument would be
6723     // passed.
6724     Function &Fn = *getIRPosition().getAnchorScope();
6725     const auto *TTI =
6726         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6727     if (!TTI) {
6728       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6729                         << Fn.getName() << "\n");
6730       return indicatePessimisticFixpoint();
6731     }
6732 
6733     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6734       CallBase *CB = ACS.getInstruction();
6735       return TTI->areTypesABICompatible(
6736           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6737     };
6738     bool UsedAssumedInformation = false;
6739     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6740                                 UsedAssumedInformation)) {
6741       LLVM_DEBUG(
6742           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6743                  << Fn.getName() << "\n");
6744       return indicatePessimisticFixpoint();
6745     }
6746 
6747     // Register a rewrite of the argument.
6748     Argument *Arg = getAssociatedArgument();
6749     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6750       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6751       return indicatePessimisticFixpoint();
6752     }
6753 
6754     unsigned ArgNo = Arg->getArgNo();
6755 
6756     // Helper to check if for the given call site the associated argument is
6757     // passed to a callback where the privatization would be different.
6758     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6759       SmallVector<const Use *, 4> CallbackUses;
6760       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6761       for (const Use *U : CallbackUses) {
6762         AbstractCallSite CBACS(U);
6763         assert(CBACS && CBACS.isCallbackCall());
6764         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6765           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6766 
6767           LLVM_DEBUG({
6768             dbgs()
6769                 << "[AAPrivatizablePtr] Argument " << *Arg
6770                 << "check if can be privatized in the context of its parent ("
6771                 << Arg->getParent()->getName()
6772                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6773                    "callback ("
6774                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6775                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6776                 << CBACS.getCallArgOperand(CBArg) << " vs "
6777                 << CB.getArgOperand(ArgNo) << "\n"
6778                 << "[AAPrivatizablePtr] " << CBArg << " : "
6779                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6780           });
6781 
6782           if (CBArgNo != int(ArgNo))
6783             continue;
6784           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6785               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6786           if (CBArgPrivAA.isValidState()) {
6787             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6788             if (!CBArgPrivTy.hasValue())
6789               continue;
6790             if (CBArgPrivTy.getValue() == PrivatizableType)
6791               continue;
6792           }
6793 
6794           LLVM_DEBUG({
6795             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6796                    << " cannot be privatized in the context of its parent ("
6797                    << Arg->getParent()->getName()
6798                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6799                       "callback ("
6800                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6801                    << ").\n[AAPrivatizablePtr] for which the argument "
6802                       "privatization is not compatible.\n";
6803           });
6804           return false;
6805         }
6806       }
6807       return true;
6808     };
6809 
6810     // Helper to check if for the given call site the associated argument is
6811     // passed to a direct call where the privatization would be different.
6812     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6813       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6814       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6815       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6816              "Expected a direct call operand for callback call operand");
6817 
6818       LLVM_DEBUG({
6819         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6820                << " check if be privatized in the context of its parent ("
6821                << Arg->getParent()->getName()
6822                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6823                   "direct call of ("
6824                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6825                << ").\n";
6826       });
6827 
6828       Function *DCCallee = DC->getCalledFunction();
6829       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6830         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6831             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6832             DepClassTy::REQUIRED);
6833         if (DCArgPrivAA.isValidState()) {
6834           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6835           if (!DCArgPrivTy.hasValue())
6836             return true;
6837           if (DCArgPrivTy.getValue() == PrivatizableType)
6838             return true;
6839         }
6840       }
6841 
6842       LLVM_DEBUG({
6843         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6844                << " cannot be privatized in the context of its parent ("
6845                << Arg->getParent()->getName()
6846                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6847                   "direct call of ("
6848                << ACS.getInstruction()->getCalledFunction()->getName()
6849                << ").\n[AAPrivatizablePtr] for which the argument "
6850                   "privatization is not compatible.\n";
6851       });
6852       return false;
6853     };
6854 
6855     // Helper to check if the associated argument is used at the given abstract
6856     // call site in a way that is incompatible with the privatization assumed
6857     // here.
6858     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6859       if (ACS.isDirectCall())
6860         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6861       if (ACS.isCallbackCall())
6862         return IsCompatiblePrivArgOfDirectCS(ACS);
6863       return false;
6864     };
6865 
6866     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6867                                 UsedAssumedInformation))
6868       return indicatePessimisticFixpoint();
6869 
6870     return ChangeStatus::UNCHANGED;
6871   }
6872 
6873   /// Given a type to private \p PrivType, collect the constituates (which are
6874   /// used) in \p ReplacementTypes.
6875   static void
6876   identifyReplacementTypes(Type *PrivType,
6877                            SmallVectorImpl<Type *> &ReplacementTypes) {
6878     // TODO: For now we expand the privatization type to the fullest which can
6879     //       lead to dead arguments that need to be removed later.
6880     assert(PrivType && "Expected privatizable type!");
6881 
6882     // Traverse the type, extract constituate types on the outermost level.
6883     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6884       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6885         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6886     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6887       ReplacementTypes.append(PrivArrayType->getNumElements(),
6888                               PrivArrayType->getElementType());
6889     } else {
6890       ReplacementTypes.push_back(PrivType);
6891     }
6892   }
6893 
6894   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6895   /// The values needed are taken from the arguments of \p F starting at
6896   /// position \p ArgNo.
6897   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6898                                    unsigned ArgNo, Instruction &IP) {
6899     assert(PrivType && "Expected privatizable type!");
6900 
6901     IRBuilder<NoFolder> IRB(&IP);
6902     const DataLayout &DL = F.getParent()->getDataLayout();
6903 
6904     // Traverse the type, build GEPs and stores.
6905     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6906       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6907       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6908         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6909         Value *Ptr =
6910             constructPointer(PointeeTy, PrivType, &Base,
6911                              PrivStructLayout->getElementOffset(u), IRB, DL);
6912         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6913       }
6914     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6915       Type *PointeeTy = PrivArrayType->getElementType();
6916       Type *PointeePtrTy = PointeeTy->getPointerTo();
6917       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6918       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6919         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6920                                       u * PointeeTySize, IRB, DL);
6921         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6922       }
6923     } else {
6924       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6925     }
6926   }
6927 
6928   /// Extract values from \p Base according to the type \p PrivType at the
6929   /// call position \p ACS. The values are appended to \p ReplacementValues.
6930   void createReplacementValues(Align Alignment, Type *PrivType,
6931                                AbstractCallSite ACS, Value *Base,
6932                                SmallVectorImpl<Value *> &ReplacementValues) {
6933     assert(Base && "Expected base value!");
6934     assert(PrivType && "Expected privatizable type!");
6935     Instruction *IP = ACS.getInstruction();
6936 
6937     IRBuilder<NoFolder> IRB(IP);
6938     const DataLayout &DL = IP->getModule()->getDataLayout();
6939 
6940     Type *PrivPtrType = PrivType->getPointerTo();
6941     if (Base->getType() != PrivPtrType)
6942       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6943           Base, PrivPtrType, "", ACS.getInstruction());
6944 
6945     // Traverse the type, build GEPs and loads.
6946     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6947       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6948       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6949         Type *PointeeTy = PrivStructType->getElementType(u);
6950         Value *Ptr =
6951             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6952                              PrivStructLayout->getElementOffset(u), IRB, DL);
6953         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6954         L->setAlignment(Alignment);
6955         ReplacementValues.push_back(L);
6956       }
6957     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6958       Type *PointeeTy = PrivArrayType->getElementType();
6959       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6960       Type *PointeePtrTy = PointeeTy->getPointerTo();
6961       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6962         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6963                                       u * PointeeTySize, IRB, DL);
6964         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6965         L->setAlignment(Alignment);
6966         ReplacementValues.push_back(L);
6967       }
6968     } else {
6969       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6970       L->setAlignment(Alignment);
6971       ReplacementValues.push_back(L);
6972     }
6973   }
6974 
6975   /// See AbstractAttribute::manifest(...)
6976   ChangeStatus manifest(Attributor &A) override {
6977     if (!PrivatizableType.hasValue())
6978       return ChangeStatus::UNCHANGED;
6979     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6980 
6981     // Collect all tail calls in the function as we cannot allow new allocas to
6982     // escape into tail recursion.
6983     // TODO: Be smarter about new allocas escaping into tail calls.
6984     SmallVector<CallInst *, 16> TailCalls;
6985     bool UsedAssumedInformation = false;
6986     if (!A.checkForAllInstructions(
6987             [&](Instruction &I) {
6988               CallInst &CI = cast<CallInst>(I);
6989               if (CI.isTailCall())
6990                 TailCalls.push_back(&CI);
6991               return true;
6992             },
6993             *this, {Instruction::Call}, UsedAssumedInformation))
6994       return ChangeStatus::UNCHANGED;
6995 
6996     Argument *Arg = getAssociatedArgument();
6997     // Query AAAlign attribute for alignment of associated argument to
6998     // determine the best alignment of loads.
6999     const auto &AlignAA =
7000         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
7001 
7002     // Callback to repair the associated function. A new alloca is placed at the
7003     // beginning and initialized with the values passed through arguments. The
7004     // new alloca replaces the use of the old pointer argument.
7005     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
7006         [=](const Attributor::ArgumentReplacementInfo &ARI,
7007             Function &ReplacementFn, Function::arg_iterator ArgIt) {
7008           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
7009           Instruction *IP = &*EntryBB.getFirstInsertionPt();
7010           const DataLayout &DL = IP->getModule()->getDataLayout();
7011           unsigned AS = DL.getAllocaAddrSpace();
7012           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), AS,
7013                                            Arg->getName() + ".priv", IP);
7014           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
7015                                ArgIt->getArgNo(), *IP);
7016 
7017           if (AI->getType() != Arg->getType())
7018             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
7019                 AI, Arg->getType(), "", IP);
7020           Arg->replaceAllUsesWith(AI);
7021 
7022           for (CallInst *CI : TailCalls)
7023             CI->setTailCall(false);
7024         };
7025 
7026     // Callback to repair a call site of the associated function. The elements
7027     // of the privatizable type are loaded prior to the call and passed to the
7028     // new function version.
7029     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
7030         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
7031                       AbstractCallSite ACS,
7032                       SmallVectorImpl<Value *> &NewArgOperands) {
7033           // When no alignment is specified for the load instruction,
7034           // natural alignment is assumed.
7035           createReplacementValues(
7036               assumeAligned(AlignAA.getAssumedAlign()),
7037               PrivatizableType.getValue(), ACS,
7038               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
7039               NewArgOperands);
7040         };
7041 
7042     // Collect the types that will replace the privatizable type in the function
7043     // signature.
7044     SmallVector<Type *, 16> ReplacementTypes;
7045     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
7046 
7047     // Register a rewrite of the argument.
7048     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
7049                                            std::move(FnRepairCB),
7050                                            std::move(ACSRepairCB)))
7051       return ChangeStatus::CHANGED;
7052     return ChangeStatus::UNCHANGED;
7053   }
7054 
7055   /// See AbstractAttribute::trackStatistics()
7056   void trackStatistics() const override {
7057     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
7058   }
7059 };
7060 
7061 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
7062   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
7063       : AAPrivatizablePtrImpl(IRP, A) {}
7064 
7065   /// See AbstractAttribute::initialize(...).
7066   virtual void initialize(Attributor &A) override {
7067     // TODO: We can privatize more than arguments.
7068     indicatePessimisticFixpoint();
7069   }
7070 
7071   ChangeStatus updateImpl(Attributor &A) override {
7072     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
7073                      "updateImpl will not be called");
7074   }
7075 
7076   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
7077   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
7078     Value *Obj = getUnderlyingObject(&getAssociatedValue());
7079     if (!Obj) {
7080       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
7081       return nullptr;
7082     }
7083 
7084     if (auto *AI = dyn_cast<AllocaInst>(Obj))
7085       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
7086         if (CI->isOne())
7087           return AI->getAllocatedType();
7088     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7089       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
7090           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
7091       if (PrivArgAA.isAssumedPrivatizablePtr())
7092         return PrivArgAA.getPrivatizableType();
7093     }
7094 
7095     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
7096                          "alloca nor privatizable argument: "
7097                       << *Obj << "!\n");
7098     return nullptr;
7099   }
7100 
7101   /// See AbstractAttribute::trackStatistics()
7102   void trackStatistics() const override {
7103     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
7104   }
7105 };
7106 
7107 struct AAPrivatizablePtrCallSiteArgument final
7108     : public AAPrivatizablePtrFloating {
7109   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
7110       : AAPrivatizablePtrFloating(IRP, A) {}
7111 
7112   /// See AbstractAttribute::initialize(...).
7113   void initialize(Attributor &A) override {
7114     if (getIRPosition().hasAttr(Attribute::ByVal))
7115       indicateOptimisticFixpoint();
7116   }
7117 
7118   /// See AbstractAttribute::updateImpl(...).
7119   ChangeStatus updateImpl(Attributor &A) override {
7120     PrivatizableType = identifyPrivatizableType(A);
7121     if (!PrivatizableType.hasValue())
7122       return ChangeStatus::UNCHANGED;
7123     if (!PrivatizableType.getValue())
7124       return indicatePessimisticFixpoint();
7125 
7126     const IRPosition &IRP = getIRPosition();
7127     auto &NoCaptureAA =
7128         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
7129     if (!NoCaptureAA.isAssumedNoCapture()) {
7130       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
7131       return indicatePessimisticFixpoint();
7132     }
7133 
7134     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
7135     if (!NoAliasAA.isAssumedNoAlias()) {
7136       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
7137       return indicatePessimisticFixpoint();
7138     }
7139 
7140     bool IsKnown;
7141     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
7142       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
7143       return indicatePessimisticFixpoint();
7144     }
7145 
7146     return ChangeStatus::UNCHANGED;
7147   }
7148 
7149   /// See AbstractAttribute::trackStatistics()
7150   void trackStatistics() const override {
7151     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
7152   }
7153 };
7154 
7155 struct AAPrivatizablePtrCallSiteReturned final
7156     : public AAPrivatizablePtrFloating {
7157   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
7158       : AAPrivatizablePtrFloating(IRP, A) {}
7159 
7160   /// See AbstractAttribute::initialize(...).
7161   void initialize(Attributor &A) override {
7162     // TODO: We can privatize more than arguments.
7163     indicatePessimisticFixpoint();
7164   }
7165 
7166   /// See AbstractAttribute::trackStatistics()
7167   void trackStatistics() const override {
7168     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
7169   }
7170 };
7171 
7172 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
7173   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
7174       : AAPrivatizablePtrFloating(IRP, A) {}
7175 
7176   /// See AbstractAttribute::initialize(...).
7177   void initialize(Attributor &A) override {
7178     // TODO: We can privatize more than arguments.
7179     indicatePessimisticFixpoint();
7180   }
7181 
7182   /// See AbstractAttribute::trackStatistics()
7183   void trackStatistics() const override {
7184     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
7185   }
7186 };
7187 } // namespace
7188 
7189 /// -------------------- Memory Behavior Attributes ----------------------------
7190 /// Includes read-none, read-only, and write-only.
7191 /// ----------------------------------------------------------------------------
7192 namespace {
7193 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
7194   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
7195       : AAMemoryBehavior(IRP, A) {}
7196 
7197   /// See AbstractAttribute::initialize(...).
7198   void initialize(Attributor &A) override {
7199     intersectAssumedBits(BEST_STATE);
7200     getKnownStateFromValue(getIRPosition(), getState());
7201     AAMemoryBehavior::initialize(A);
7202   }
7203 
7204   /// Return the memory behavior information encoded in the IR for \p IRP.
7205   static void getKnownStateFromValue(const IRPosition &IRP,
7206                                      BitIntegerState &State,
7207                                      bool IgnoreSubsumingPositions = false) {
7208     SmallVector<Attribute, 2> Attrs;
7209     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7210     for (const Attribute &Attr : Attrs) {
7211       switch (Attr.getKindAsEnum()) {
7212       case Attribute::ReadNone:
7213         State.addKnownBits(NO_ACCESSES);
7214         break;
7215       case Attribute::ReadOnly:
7216         State.addKnownBits(NO_WRITES);
7217         break;
7218       case Attribute::WriteOnly:
7219         State.addKnownBits(NO_READS);
7220         break;
7221       default:
7222         llvm_unreachable("Unexpected attribute!");
7223       }
7224     }
7225 
7226     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7227       if (!I->mayReadFromMemory())
7228         State.addKnownBits(NO_READS);
7229       if (!I->mayWriteToMemory())
7230         State.addKnownBits(NO_WRITES);
7231     }
7232   }
7233 
7234   /// See AbstractAttribute::getDeducedAttributes(...).
7235   void getDeducedAttributes(LLVMContext &Ctx,
7236                             SmallVectorImpl<Attribute> &Attrs) const override {
7237     assert(Attrs.size() == 0);
7238     if (isAssumedReadNone())
7239       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7240     else if (isAssumedReadOnly())
7241       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7242     else if (isAssumedWriteOnly())
7243       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7244     assert(Attrs.size() <= 1);
7245   }
7246 
7247   /// See AbstractAttribute::manifest(...).
7248   ChangeStatus manifest(Attributor &A) override {
7249     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7250       return ChangeStatus::UNCHANGED;
7251 
7252     const IRPosition &IRP = getIRPosition();
7253 
7254     // Check if we would improve the existing attributes first.
7255     SmallVector<Attribute, 4> DeducedAttrs;
7256     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7257     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7258           return IRP.hasAttr(Attr.getKindAsEnum(),
7259                              /* IgnoreSubsumingPositions */ true);
7260         }))
7261       return ChangeStatus::UNCHANGED;
7262 
7263     // Clear existing attributes.
7264     IRP.removeAttrs(AttrKinds);
7265 
7266     // Use the generic manifest method.
7267     return IRAttribute::manifest(A);
7268   }
7269 
7270   /// See AbstractState::getAsStr().
7271   const std::string getAsStr() const override {
7272     if (isAssumedReadNone())
7273       return "readnone";
7274     if (isAssumedReadOnly())
7275       return "readonly";
7276     if (isAssumedWriteOnly())
7277       return "writeonly";
7278     return "may-read/write";
7279   }
7280 
7281   /// The set of IR attributes AAMemoryBehavior deals with.
7282   static const Attribute::AttrKind AttrKinds[3];
7283 };
7284 
7285 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7286     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7287 
7288 /// Memory behavior attribute for a floating value.
7289 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7290   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7291       : AAMemoryBehaviorImpl(IRP, A) {}
7292 
7293   /// See AbstractAttribute::updateImpl(...).
7294   ChangeStatus updateImpl(Attributor &A) override;
7295 
7296   /// See AbstractAttribute::trackStatistics()
7297   void trackStatistics() const override {
7298     if (isAssumedReadNone())
7299       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7300     else if (isAssumedReadOnly())
7301       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7302     else if (isAssumedWriteOnly())
7303       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7304   }
7305 
7306 private:
7307   /// Return true if users of \p UserI might access the underlying
7308   /// variable/location described by \p U and should therefore be analyzed.
7309   bool followUsersOfUseIn(Attributor &A, const Use &U,
7310                           const Instruction *UserI);
7311 
7312   /// Update the state according to the effect of use \p U in \p UserI.
7313   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7314 };
7315 
7316 /// Memory behavior attribute for function argument.
7317 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7318   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7319       : AAMemoryBehaviorFloating(IRP, A) {}
7320 
7321   /// See AbstractAttribute::initialize(...).
7322   void initialize(Attributor &A) override {
7323     intersectAssumedBits(BEST_STATE);
7324     const IRPosition &IRP = getIRPosition();
7325     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7326     // can query it when we use has/getAttr. That would allow us to reuse the
7327     // initialize of the base class here.
7328     bool HasByVal =
7329         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7330     getKnownStateFromValue(IRP, getState(),
7331                            /* IgnoreSubsumingPositions */ HasByVal);
7332 
7333     // Initialize the use vector with all direct uses of the associated value.
7334     Argument *Arg = getAssociatedArgument();
7335     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7336       indicatePessimisticFixpoint();
7337   }
7338 
7339   ChangeStatus manifest(Attributor &A) override {
7340     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7341     if (!getAssociatedValue().getType()->isPointerTy())
7342       return ChangeStatus::UNCHANGED;
7343 
7344     // TODO: From readattrs.ll: "inalloca parameters are always
7345     //                           considered written"
7346     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7347       removeKnownBits(NO_WRITES);
7348       removeAssumedBits(NO_WRITES);
7349     }
7350     return AAMemoryBehaviorFloating::manifest(A);
7351   }
7352 
7353   /// See AbstractAttribute::trackStatistics()
7354   void trackStatistics() const override {
7355     if (isAssumedReadNone())
7356       STATS_DECLTRACK_ARG_ATTR(readnone)
7357     else if (isAssumedReadOnly())
7358       STATS_DECLTRACK_ARG_ATTR(readonly)
7359     else if (isAssumedWriteOnly())
7360       STATS_DECLTRACK_ARG_ATTR(writeonly)
7361   }
7362 };
7363 
7364 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7365   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7366       : AAMemoryBehaviorArgument(IRP, A) {}
7367 
7368   /// See AbstractAttribute::initialize(...).
7369   void initialize(Attributor &A) override {
7370     // If we don't have an associated attribute this is either a variadic call
7371     // or an indirect call, either way, nothing to do here.
7372     Argument *Arg = getAssociatedArgument();
7373     if (!Arg) {
7374       indicatePessimisticFixpoint();
7375       return;
7376     }
7377     if (Arg->hasByValAttr()) {
7378       addKnownBits(NO_WRITES);
7379       removeKnownBits(NO_READS);
7380       removeAssumedBits(NO_READS);
7381     }
7382     AAMemoryBehaviorArgument::initialize(A);
7383     if (getAssociatedFunction()->isDeclaration())
7384       indicatePessimisticFixpoint();
7385   }
7386 
7387   /// See AbstractAttribute::updateImpl(...).
7388   ChangeStatus updateImpl(Attributor &A) override {
7389     // TODO: Once we have call site specific value information we can provide
7390     //       call site specific liveness liveness information and then it makes
7391     //       sense to specialize attributes for call sites arguments instead of
7392     //       redirecting requests to the callee argument.
7393     Argument *Arg = getAssociatedArgument();
7394     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7395     auto &ArgAA =
7396         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7397     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7398   }
7399 
7400   /// See AbstractAttribute::trackStatistics()
7401   void trackStatistics() const override {
7402     if (isAssumedReadNone())
7403       STATS_DECLTRACK_CSARG_ATTR(readnone)
7404     else if (isAssumedReadOnly())
7405       STATS_DECLTRACK_CSARG_ATTR(readonly)
7406     else if (isAssumedWriteOnly())
7407       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7408   }
7409 };
7410 
7411 /// Memory behavior attribute for a call site return position.
7412 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7413   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7414       : AAMemoryBehaviorFloating(IRP, A) {}
7415 
7416   /// See AbstractAttribute::initialize(...).
7417   void initialize(Attributor &A) override {
7418     AAMemoryBehaviorImpl::initialize(A);
7419     Function *F = getAssociatedFunction();
7420     if (!F || F->isDeclaration())
7421       indicatePessimisticFixpoint();
7422   }
7423 
7424   /// See AbstractAttribute::manifest(...).
7425   ChangeStatus manifest(Attributor &A) override {
7426     // We do not annotate returned values.
7427     return ChangeStatus::UNCHANGED;
7428   }
7429 
7430   /// See AbstractAttribute::trackStatistics()
7431   void trackStatistics() const override {}
7432 };
7433 
7434 /// An AA to represent the memory behavior function attributes.
7435 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7436   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7437       : AAMemoryBehaviorImpl(IRP, A) {}
7438 
7439   /// See AbstractAttribute::updateImpl(Attributor &A).
7440   virtual ChangeStatus updateImpl(Attributor &A) override;
7441 
7442   /// See AbstractAttribute::manifest(...).
7443   ChangeStatus manifest(Attributor &A) override {
7444     Function &F = cast<Function>(getAnchorValue());
7445     if (isAssumedReadNone()) {
7446       F.removeFnAttr(Attribute::ArgMemOnly);
7447       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7448       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7449     }
7450     return AAMemoryBehaviorImpl::manifest(A);
7451   }
7452 
7453   /// See AbstractAttribute::trackStatistics()
7454   void trackStatistics() const override {
7455     if (isAssumedReadNone())
7456       STATS_DECLTRACK_FN_ATTR(readnone)
7457     else if (isAssumedReadOnly())
7458       STATS_DECLTRACK_FN_ATTR(readonly)
7459     else if (isAssumedWriteOnly())
7460       STATS_DECLTRACK_FN_ATTR(writeonly)
7461   }
7462 };
7463 
7464 /// AAMemoryBehavior attribute for call sites.
7465 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7466   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7467       : AAMemoryBehaviorImpl(IRP, A) {}
7468 
7469   /// See AbstractAttribute::initialize(...).
7470   void initialize(Attributor &A) override {
7471     AAMemoryBehaviorImpl::initialize(A);
7472     Function *F = getAssociatedFunction();
7473     if (!F || F->isDeclaration())
7474       indicatePessimisticFixpoint();
7475   }
7476 
7477   /// See AbstractAttribute::updateImpl(...).
7478   ChangeStatus updateImpl(Attributor &A) override {
7479     // TODO: Once we have call site specific value information we can provide
7480     //       call site specific liveness liveness information and then it makes
7481     //       sense to specialize attributes for call sites arguments instead of
7482     //       redirecting requests to the callee argument.
7483     Function *F = getAssociatedFunction();
7484     const IRPosition &FnPos = IRPosition::function(*F);
7485     auto &FnAA =
7486         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7487     return clampStateAndIndicateChange(getState(), FnAA.getState());
7488   }
7489 
7490   /// See AbstractAttribute::trackStatistics()
7491   void trackStatistics() const override {
7492     if (isAssumedReadNone())
7493       STATS_DECLTRACK_CS_ATTR(readnone)
7494     else if (isAssumedReadOnly())
7495       STATS_DECLTRACK_CS_ATTR(readonly)
7496     else if (isAssumedWriteOnly())
7497       STATS_DECLTRACK_CS_ATTR(writeonly)
7498   }
7499 };
7500 
7501 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7502 
7503   // The current assumed state used to determine a change.
7504   auto AssumedState = getAssumed();
7505 
7506   auto CheckRWInst = [&](Instruction &I) {
7507     // If the instruction has an own memory behavior state, use it to restrict
7508     // the local state. No further analysis is required as the other memory
7509     // state is as optimistic as it gets.
7510     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7511       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7512           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7513       intersectAssumedBits(MemBehaviorAA.getAssumed());
7514       return !isAtFixpoint();
7515     }
7516 
7517     // Remove access kind modifiers if necessary.
7518     if (I.mayReadFromMemory())
7519       removeAssumedBits(NO_READS);
7520     if (I.mayWriteToMemory())
7521       removeAssumedBits(NO_WRITES);
7522     return !isAtFixpoint();
7523   };
7524 
7525   bool UsedAssumedInformation = false;
7526   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7527                                           UsedAssumedInformation))
7528     return indicatePessimisticFixpoint();
7529 
7530   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7531                                         : ChangeStatus::UNCHANGED;
7532 }
7533 
7534 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7535 
7536   const IRPosition &IRP = getIRPosition();
7537   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7538   AAMemoryBehavior::StateType &S = getState();
7539 
7540   // First, check the function scope. We take the known information and we avoid
7541   // work if the assumed information implies the current assumed information for
7542   // this attribute. This is a valid for all but byval arguments.
7543   Argument *Arg = IRP.getAssociatedArgument();
7544   AAMemoryBehavior::base_t FnMemAssumedState =
7545       AAMemoryBehavior::StateType::getWorstState();
7546   if (!Arg || !Arg->hasByValAttr()) {
7547     const auto &FnMemAA =
7548         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7549     FnMemAssumedState = FnMemAA.getAssumed();
7550     S.addKnownBits(FnMemAA.getKnown());
7551     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7552       return ChangeStatus::UNCHANGED;
7553   }
7554 
7555   // The current assumed state used to determine a change.
7556   auto AssumedState = S.getAssumed();
7557 
7558   // Make sure the value is not captured (except through "return"), if
7559   // it is, any information derived would be irrelevant anyway as we cannot
7560   // check the potential aliases introduced by the capture. However, no need
7561   // to fall back to anythign less optimistic than the function state.
7562   const auto &ArgNoCaptureAA =
7563       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7564   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7565     S.intersectAssumedBits(FnMemAssumedState);
7566     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7567                                           : ChangeStatus::UNCHANGED;
7568   }
7569 
7570   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7571   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7572     Instruction *UserI = cast<Instruction>(U.getUser());
7573     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7574                       << " \n");
7575 
7576     // Droppable users, e.g., llvm::assume does not actually perform any action.
7577     if (UserI->isDroppable())
7578       return true;
7579 
7580     // Check if the users of UserI should also be visited.
7581     Follow = followUsersOfUseIn(A, U, UserI);
7582 
7583     // If UserI might touch memory we analyze the use in detail.
7584     if (UserI->mayReadOrWriteMemory())
7585       analyzeUseIn(A, U, UserI);
7586 
7587     return !isAtFixpoint();
7588   };
7589 
7590   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7591     return indicatePessimisticFixpoint();
7592 
7593   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7594                                         : ChangeStatus::UNCHANGED;
7595 }
7596 
7597 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7598                                                   const Instruction *UserI) {
7599   // The loaded value is unrelated to the pointer argument, no need to
7600   // follow the users of the load.
7601   if (isa<LoadInst>(UserI))
7602     return false;
7603 
7604   // By default we follow all uses assuming UserI might leak information on U,
7605   // we have special handling for call sites operands though.
7606   const auto *CB = dyn_cast<CallBase>(UserI);
7607   if (!CB || !CB->isArgOperand(&U))
7608     return true;
7609 
7610   // If the use is a call argument known not to be captured, the users of
7611   // the call do not need to be visited because they have to be unrelated to
7612   // the input. Note that this check is not trivial even though we disallow
7613   // general capturing of the underlying argument. The reason is that the
7614   // call might the argument "through return", which we allow and for which we
7615   // need to check call users.
7616   if (U.get()->getType()->isPointerTy()) {
7617     unsigned ArgNo = CB->getArgOperandNo(&U);
7618     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7619         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7620     return !ArgNoCaptureAA.isAssumedNoCapture();
7621   }
7622 
7623   return true;
7624 }
7625 
7626 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7627                                             const Instruction *UserI) {
7628   assert(UserI->mayReadOrWriteMemory());
7629 
7630   switch (UserI->getOpcode()) {
7631   default:
7632     // TODO: Handle all atomics and other side-effect operations we know of.
7633     break;
7634   case Instruction::Load:
7635     // Loads cause the NO_READS property to disappear.
7636     removeAssumedBits(NO_READS);
7637     return;
7638 
7639   case Instruction::Store:
7640     // Stores cause the NO_WRITES property to disappear if the use is the
7641     // pointer operand. Note that while capturing was taken care of somewhere
7642     // else we need to deal with stores of the value that is not looked through.
7643     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7644       removeAssumedBits(NO_WRITES);
7645     else
7646       indicatePessimisticFixpoint();
7647     return;
7648 
7649   case Instruction::Call:
7650   case Instruction::CallBr:
7651   case Instruction::Invoke: {
7652     // For call sites we look at the argument memory behavior attribute (this
7653     // could be recursive!) in order to restrict our own state.
7654     const auto *CB = cast<CallBase>(UserI);
7655 
7656     // Give up on operand bundles.
7657     if (CB->isBundleOperand(&U)) {
7658       indicatePessimisticFixpoint();
7659       return;
7660     }
7661 
7662     // Calling a function does read the function pointer, maybe write it if the
7663     // function is self-modifying.
7664     if (CB->isCallee(&U)) {
7665       removeAssumedBits(NO_READS);
7666       break;
7667     }
7668 
7669     // Adjust the possible access behavior based on the information on the
7670     // argument.
7671     IRPosition Pos;
7672     if (U.get()->getType()->isPointerTy())
7673       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7674     else
7675       Pos = IRPosition::callsite_function(*CB);
7676     const auto &MemBehaviorAA =
7677         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7678     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7679     // and at least "known".
7680     intersectAssumedBits(MemBehaviorAA.getAssumed());
7681     return;
7682   }
7683   };
7684 
7685   // Generally, look at the "may-properties" and adjust the assumed state if we
7686   // did not trigger special handling before.
7687   if (UserI->mayReadFromMemory())
7688     removeAssumedBits(NO_READS);
7689   if (UserI->mayWriteToMemory())
7690     removeAssumedBits(NO_WRITES);
7691 }
7692 } // namespace
7693 
7694 /// -------------------- Memory Locations Attributes ---------------------------
7695 /// Includes read-none, argmemonly, inaccessiblememonly,
7696 /// inaccessiblememorargmemonly
7697 /// ----------------------------------------------------------------------------
7698 
7699 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7700     AAMemoryLocation::MemoryLocationsKind MLK) {
7701   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7702     return "all memory";
7703   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7704     return "no memory";
7705   std::string S = "memory:";
7706   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7707     S += "stack,";
7708   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7709     S += "constant,";
7710   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7711     S += "internal global,";
7712   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7713     S += "external global,";
7714   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7715     S += "argument,";
7716   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7717     S += "inaccessible,";
7718   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7719     S += "malloced,";
7720   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7721     S += "unknown,";
7722   S.pop_back();
7723   return S;
7724 }
7725 
7726 namespace {
7727 struct AAMemoryLocationImpl : public AAMemoryLocation {
7728 
7729   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7730       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7731     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7732       AccessKind2Accesses[u] = nullptr;
7733   }
7734 
7735   ~AAMemoryLocationImpl() {
7736     // The AccessSets are allocated via a BumpPtrAllocator, we call
7737     // the destructor manually.
7738     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7739       if (AccessKind2Accesses[u])
7740         AccessKind2Accesses[u]->~AccessSet();
7741   }
7742 
7743   /// See AbstractAttribute::initialize(...).
7744   void initialize(Attributor &A) override {
7745     intersectAssumedBits(BEST_STATE);
7746     getKnownStateFromValue(A, getIRPosition(), getState());
7747     AAMemoryLocation::initialize(A);
7748   }
7749 
7750   /// Return the memory behavior information encoded in the IR for \p IRP.
7751   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7752                                      BitIntegerState &State,
7753                                      bool IgnoreSubsumingPositions = false) {
7754     // For internal functions we ignore `argmemonly` and
7755     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7756     // constant propagation. It is unclear if this is the best way but it is
7757     // unlikely this will cause real performance problems. If we are deriving
7758     // attributes for the anchor function we even remove the attribute in
7759     // addition to ignoring it.
7760     bool UseArgMemOnly = true;
7761     Function *AnchorFn = IRP.getAnchorScope();
7762     if (AnchorFn && A.isRunOn(*AnchorFn))
7763       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7764 
7765     SmallVector<Attribute, 2> Attrs;
7766     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7767     for (const Attribute &Attr : Attrs) {
7768       switch (Attr.getKindAsEnum()) {
7769       case Attribute::ReadNone:
7770         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7771         break;
7772       case Attribute::InaccessibleMemOnly:
7773         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7774         break;
7775       case Attribute::ArgMemOnly:
7776         if (UseArgMemOnly)
7777           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7778         else
7779           IRP.removeAttrs({Attribute::ArgMemOnly});
7780         break;
7781       case Attribute::InaccessibleMemOrArgMemOnly:
7782         if (UseArgMemOnly)
7783           State.addKnownBits(inverseLocation(
7784               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7785         else
7786           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7787         break;
7788       default:
7789         llvm_unreachable("Unexpected attribute!");
7790       }
7791     }
7792   }
7793 
7794   /// See AbstractAttribute::getDeducedAttributes(...).
7795   void getDeducedAttributes(LLVMContext &Ctx,
7796                             SmallVectorImpl<Attribute> &Attrs) const override {
7797     assert(Attrs.size() == 0);
7798     if (isAssumedReadNone()) {
7799       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7800     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7801       if (isAssumedInaccessibleMemOnly())
7802         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7803       else if (isAssumedArgMemOnly())
7804         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7805       else if (isAssumedInaccessibleOrArgMemOnly())
7806         Attrs.push_back(
7807             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7808     }
7809     assert(Attrs.size() <= 1);
7810   }
7811 
7812   /// See AbstractAttribute::manifest(...).
7813   ChangeStatus manifest(Attributor &A) override {
7814     const IRPosition &IRP = getIRPosition();
7815 
7816     // Check if we would improve the existing attributes first.
7817     SmallVector<Attribute, 4> DeducedAttrs;
7818     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7819     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7820           return IRP.hasAttr(Attr.getKindAsEnum(),
7821                              /* IgnoreSubsumingPositions */ true);
7822         }))
7823       return ChangeStatus::UNCHANGED;
7824 
7825     // Clear existing attributes.
7826     IRP.removeAttrs(AttrKinds);
7827     if (isAssumedReadNone())
7828       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7829 
7830     // Use the generic manifest method.
7831     return IRAttribute::manifest(A);
7832   }
7833 
7834   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7835   bool checkForAllAccessesToMemoryKind(
7836       function_ref<bool(const Instruction *, const Value *, AccessKind,
7837                         MemoryLocationsKind)>
7838           Pred,
7839       MemoryLocationsKind RequestedMLK) const override {
7840     if (!isValidState())
7841       return false;
7842 
7843     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7844     if (AssumedMLK == NO_LOCATIONS)
7845       return true;
7846 
7847     unsigned Idx = 0;
7848     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7849          CurMLK *= 2, ++Idx) {
7850       if (CurMLK & RequestedMLK)
7851         continue;
7852 
7853       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7854         for (const AccessInfo &AI : *Accesses)
7855           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7856             return false;
7857     }
7858 
7859     return true;
7860   }
7861 
7862   ChangeStatus indicatePessimisticFixpoint() override {
7863     // If we give up and indicate a pessimistic fixpoint this instruction will
7864     // become an access for all potential access kinds:
7865     // TODO: Add pointers for argmemonly and globals to improve the results of
7866     //       checkForAllAccessesToMemoryKind.
7867     bool Changed = false;
7868     MemoryLocationsKind KnownMLK = getKnown();
7869     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7870     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7871       if (!(CurMLK & KnownMLK))
7872         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7873                                   getAccessKindFromInst(I));
7874     return AAMemoryLocation::indicatePessimisticFixpoint();
7875   }
7876 
7877 protected:
7878   /// Helper struct to tie together an instruction that has a read or write
7879   /// effect with the pointer it accesses (if any).
7880   struct AccessInfo {
7881 
7882     /// The instruction that caused the access.
7883     const Instruction *I;
7884 
7885     /// The base pointer that is accessed, or null if unknown.
7886     const Value *Ptr;
7887 
7888     /// The kind of access (read/write/read+write).
7889     AccessKind Kind;
7890 
7891     bool operator==(const AccessInfo &RHS) const {
7892       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7893     }
7894     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7895       if (LHS.I != RHS.I)
7896         return LHS.I < RHS.I;
7897       if (LHS.Ptr != RHS.Ptr)
7898         return LHS.Ptr < RHS.Ptr;
7899       if (LHS.Kind != RHS.Kind)
7900         return LHS.Kind < RHS.Kind;
7901       return false;
7902     }
7903   };
7904 
7905   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7906   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7907   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7908   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7909 
7910   /// Categorize the pointer arguments of CB that might access memory in
7911   /// AccessedLoc and update the state and access map accordingly.
7912   void
7913   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7914                                      AAMemoryLocation::StateType &AccessedLocs,
7915                                      bool &Changed);
7916 
7917   /// Return the kind(s) of location that may be accessed by \p V.
7918   AAMemoryLocation::MemoryLocationsKind
7919   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7920 
7921   /// Return the access kind as determined by \p I.
7922   AccessKind getAccessKindFromInst(const Instruction *I) {
7923     AccessKind AK = READ_WRITE;
7924     if (I) {
7925       AK = I->mayReadFromMemory() ? READ : NONE;
7926       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7927     }
7928     return AK;
7929   }
7930 
7931   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7932   /// an access of kind \p AK to a \p MLK memory location with the access
7933   /// pointer \p Ptr.
7934   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7935                                  MemoryLocationsKind MLK, const Instruction *I,
7936                                  const Value *Ptr, bool &Changed,
7937                                  AccessKind AK = READ_WRITE) {
7938 
7939     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7940     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7941     if (!Accesses)
7942       Accesses = new (Allocator) AccessSet();
7943     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7944     State.removeAssumedBits(MLK);
7945   }
7946 
7947   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7948   /// arguments, and update the state and access map accordingly.
7949   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7950                           AAMemoryLocation::StateType &State, bool &Changed);
7951 
7952   /// Used to allocate access sets.
7953   BumpPtrAllocator &Allocator;
7954 
7955   /// The set of IR attributes AAMemoryLocation deals with.
7956   static const Attribute::AttrKind AttrKinds[4];
7957 };
7958 
7959 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7960     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7961     Attribute::InaccessibleMemOrArgMemOnly};
7962 
7963 void AAMemoryLocationImpl::categorizePtrValue(
7964     Attributor &A, const Instruction &I, const Value &Ptr,
7965     AAMemoryLocation::StateType &State, bool &Changed) {
7966   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7967                     << Ptr << " ["
7968                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7969 
7970   SmallVector<Value *, 8> Objects;
7971   bool UsedAssumedInformation = false;
7972   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7973                                        UsedAssumedInformation,
7974                                        /* Intraprocedural */ true)) {
7975     LLVM_DEBUG(
7976         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7977     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7978                               getAccessKindFromInst(&I));
7979     return;
7980   }
7981 
7982   for (Value *Obj : Objects) {
7983     // TODO: recognize the TBAA used for constant accesses.
7984     MemoryLocationsKind MLK = NO_LOCATIONS;
7985     if (isa<UndefValue>(Obj))
7986       continue;
7987     if (isa<Argument>(Obj)) {
7988       // TODO: For now we do not treat byval arguments as local copies performed
7989       // on the call edge, though, we should. To make that happen we need to
7990       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7991       // would also allow us to mark functions only accessing byval arguments as
7992       // readnone again, atguably their acceses have no effect outside of the
7993       // function, like accesses to allocas.
7994       MLK = NO_ARGUMENT_MEM;
7995     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7996       // Reading constant memory is not treated as a read "effect" by the
7997       // function attr pass so we won't neither. Constants defined by TBAA are
7998       // similar. (We know we do not write it because it is constant.)
7999       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
8000         if (GVar->isConstant())
8001           continue;
8002 
8003       if (GV->hasLocalLinkage())
8004         MLK = NO_GLOBAL_INTERNAL_MEM;
8005       else
8006         MLK = NO_GLOBAL_EXTERNAL_MEM;
8007     } else if (isa<ConstantPointerNull>(Obj) &&
8008                !NullPointerIsDefined(getAssociatedFunction(),
8009                                      Ptr.getType()->getPointerAddressSpace())) {
8010       continue;
8011     } else if (isa<AllocaInst>(Obj)) {
8012       MLK = NO_LOCAL_MEM;
8013     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
8014       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
8015           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
8016       if (NoAliasAA.isAssumedNoAlias())
8017         MLK = NO_MALLOCED_MEM;
8018       else
8019         MLK = NO_UNKOWN_MEM;
8020     } else {
8021       MLK = NO_UNKOWN_MEM;
8022     }
8023 
8024     assert(MLK != NO_LOCATIONS && "No location specified!");
8025     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
8026                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
8027                       << "\n");
8028     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
8029                               getAccessKindFromInst(&I));
8030   }
8031 
8032   LLVM_DEBUG(
8033       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
8034              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
8035 }
8036 
8037 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
8038     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
8039     bool &Changed) {
8040   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
8041 
8042     // Skip non-pointer arguments.
8043     const Value *ArgOp = CB.getArgOperand(ArgNo);
8044     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
8045       continue;
8046 
8047     // Skip readnone arguments.
8048     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
8049     const auto &ArgOpMemLocationAA =
8050         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
8051 
8052     if (ArgOpMemLocationAA.isAssumedReadNone())
8053       continue;
8054 
8055     // Categorize potentially accessed pointer arguments as if there was an
8056     // access instruction with them as pointer.
8057     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
8058   }
8059 }
8060 
8061 AAMemoryLocation::MemoryLocationsKind
8062 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
8063                                                   bool &Changed) {
8064   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
8065                     << I << "\n");
8066 
8067   AAMemoryLocation::StateType AccessedLocs;
8068   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
8069 
8070   if (auto *CB = dyn_cast<CallBase>(&I)) {
8071 
8072     // First check if we assume any memory is access is visible.
8073     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
8074         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
8075     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
8076                       << " [" << CBMemLocationAA << "]\n");
8077 
8078     if (CBMemLocationAA.isAssumedReadNone())
8079       return NO_LOCATIONS;
8080 
8081     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
8082       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
8083                                 Changed, getAccessKindFromInst(&I));
8084       return AccessedLocs.getAssumed();
8085     }
8086 
8087     uint32_t CBAssumedNotAccessedLocs =
8088         CBMemLocationAA.getAssumedNotAccessedLocation();
8089 
8090     // Set the argmemonly and global bit as we handle them separately below.
8091     uint32_t CBAssumedNotAccessedLocsNoArgMem =
8092         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
8093 
8094     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
8095       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
8096         continue;
8097       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
8098                                 getAccessKindFromInst(&I));
8099     }
8100 
8101     // Now handle global memory if it might be accessed. This is slightly tricky
8102     // as NO_GLOBAL_MEM has multiple bits set.
8103     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
8104     if (HasGlobalAccesses) {
8105       auto AccessPred = [&](const Instruction *, const Value *Ptr,
8106                             AccessKind Kind, MemoryLocationsKind MLK) {
8107         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
8108                                   getAccessKindFromInst(&I));
8109         return true;
8110       };
8111       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
8112               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
8113         return AccessedLocs.getWorstState();
8114     }
8115 
8116     LLVM_DEBUG(
8117         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
8118                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8119 
8120     // Now handle argument memory if it might be accessed.
8121     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
8122     if (HasArgAccesses)
8123       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
8124 
8125     LLVM_DEBUG(
8126         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
8127                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8128 
8129     return AccessedLocs.getAssumed();
8130   }
8131 
8132   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
8133     LLVM_DEBUG(
8134         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
8135                << I << " [" << *Ptr << "]\n");
8136     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
8137     return AccessedLocs.getAssumed();
8138   }
8139 
8140   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
8141                     << I << "\n");
8142   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
8143                             getAccessKindFromInst(&I));
8144   return AccessedLocs.getAssumed();
8145 }
8146 
8147 /// An AA to represent the memory behavior function attributes.
8148 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
8149   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
8150       : AAMemoryLocationImpl(IRP, A) {}
8151 
8152   /// See AbstractAttribute::updateImpl(Attributor &A).
8153   virtual ChangeStatus updateImpl(Attributor &A) override {
8154 
8155     const auto &MemBehaviorAA =
8156         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
8157     if (MemBehaviorAA.isAssumedReadNone()) {
8158       if (MemBehaviorAA.isKnownReadNone())
8159         return indicateOptimisticFixpoint();
8160       assert(isAssumedReadNone() &&
8161              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
8162       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
8163       return ChangeStatus::UNCHANGED;
8164     }
8165 
8166     // The current assumed state used to determine a change.
8167     auto AssumedState = getAssumed();
8168     bool Changed = false;
8169 
8170     auto CheckRWInst = [&](Instruction &I) {
8171       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
8172       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
8173                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
8174       removeAssumedBits(inverseLocation(MLK, false, false));
8175       // Stop once only the valid bit set in the *not assumed location*, thus
8176       // once we don't actually exclude any memory locations in the state.
8177       return getAssumedNotAccessedLocation() != VALID_STATE;
8178     };
8179 
8180     bool UsedAssumedInformation = false;
8181     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8182                                             UsedAssumedInformation))
8183       return indicatePessimisticFixpoint();
8184 
8185     Changed |= AssumedState != getAssumed();
8186     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8187   }
8188 
8189   /// See AbstractAttribute::trackStatistics()
8190   void trackStatistics() const override {
8191     if (isAssumedReadNone())
8192       STATS_DECLTRACK_FN_ATTR(readnone)
8193     else if (isAssumedArgMemOnly())
8194       STATS_DECLTRACK_FN_ATTR(argmemonly)
8195     else if (isAssumedInaccessibleMemOnly())
8196       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
8197     else if (isAssumedInaccessibleOrArgMemOnly())
8198       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
8199   }
8200 };
8201 
8202 /// AAMemoryLocation attribute for call sites.
8203 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
8204   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
8205       : AAMemoryLocationImpl(IRP, A) {}
8206 
8207   /// See AbstractAttribute::initialize(...).
8208   void initialize(Attributor &A) override {
8209     AAMemoryLocationImpl::initialize(A);
8210     Function *F = getAssociatedFunction();
8211     if (!F || F->isDeclaration())
8212       indicatePessimisticFixpoint();
8213   }
8214 
8215   /// See AbstractAttribute::updateImpl(...).
8216   ChangeStatus updateImpl(Attributor &A) override {
8217     // TODO: Once we have call site specific value information we can provide
8218     //       call site specific liveness liveness information and then it makes
8219     //       sense to specialize attributes for call sites arguments instead of
8220     //       redirecting requests to the callee argument.
8221     Function *F = getAssociatedFunction();
8222     const IRPosition &FnPos = IRPosition::function(*F);
8223     auto &FnAA =
8224         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8225     bool Changed = false;
8226     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8227                           AccessKind Kind, MemoryLocationsKind MLK) {
8228       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8229                                 getAccessKindFromInst(I));
8230       return true;
8231     };
8232     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8233       return indicatePessimisticFixpoint();
8234     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8235   }
8236 
8237   /// See AbstractAttribute::trackStatistics()
8238   void trackStatistics() const override {
8239     if (isAssumedReadNone())
8240       STATS_DECLTRACK_CS_ATTR(readnone)
8241   }
8242 };
8243 } // namespace
8244 
8245 /// ------------------ Value Constant Range Attribute -------------------------
8246 
8247 namespace {
8248 struct AAValueConstantRangeImpl : AAValueConstantRange {
8249   using StateType = IntegerRangeState;
8250   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8251       : AAValueConstantRange(IRP, A) {}
8252 
8253   /// See AbstractAttribute::initialize(..).
8254   void initialize(Attributor &A) override {
8255     if (A.hasSimplificationCallback(getIRPosition())) {
8256       indicatePessimisticFixpoint();
8257       return;
8258     }
8259 
8260     // Intersect a range given by SCEV.
8261     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8262 
8263     // Intersect a range given by LVI.
8264     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8265   }
8266 
8267   /// See AbstractAttribute::getAsStr().
8268   const std::string getAsStr() const override {
8269     std::string Str;
8270     llvm::raw_string_ostream OS(Str);
8271     OS << "range(" << getBitWidth() << ")<";
8272     getKnown().print(OS);
8273     OS << " / ";
8274     getAssumed().print(OS);
8275     OS << ">";
8276     return OS.str();
8277   }
8278 
8279   /// Helper function to get a SCEV expr for the associated value at program
8280   /// point \p I.
8281   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8282     if (!getAnchorScope())
8283       return nullptr;
8284 
8285     ScalarEvolution *SE =
8286         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8287             *getAnchorScope());
8288 
8289     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8290         *getAnchorScope());
8291 
8292     if (!SE || !LI)
8293       return nullptr;
8294 
8295     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8296     if (!I)
8297       return S;
8298 
8299     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8300   }
8301 
8302   /// Helper function to get a range from SCEV for the associated value at
8303   /// program point \p I.
8304   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8305                                          const Instruction *I = nullptr) const {
8306     if (!getAnchorScope())
8307       return getWorstState(getBitWidth());
8308 
8309     ScalarEvolution *SE =
8310         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8311             *getAnchorScope());
8312 
8313     const SCEV *S = getSCEV(A, I);
8314     if (!SE || !S)
8315       return getWorstState(getBitWidth());
8316 
8317     return SE->getUnsignedRange(S);
8318   }
8319 
8320   /// Helper function to get a range from LVI for the associated value at
8321   /// program point \p I.
8322   ConstantRange
8323   getConstantRangeFromLVI(Attributor &A,
8324                           const Instruction *CtxI = nullptr) const {
8325     if (!getAnchorScope())
8326       return getWorstState(getBitWidth());
8327 
8328     LazyValueInfo *LVI =
8329         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8330             *getAnchorScope());
8331 
8332     if (!LVI || !CtxI)
8333       return getWorstState(getBitWidth());
8334     return LVI->getConstantRange(&getAssociatedValue(),
8335                                  const_cast<Instruction *>(CtxI));
8336   }
8337 
8338   /// Return true if \p CtxI is valid for querying outside analyses.
8339   /// This basically makes sure we do not ask intra-procedural analysis
8340   /// about a context in the wrong function or a context that violates
8341   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8342   /// if the original context of this AA is OK or should be considered invalid.
8343   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8344                                                const Instruction *CtxI,
8345                                                bool AllowAACtxI) const {
8346     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8347       return false;
8348 
8349     // Our context might be in a different function, neither intra-procedural
8350     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8351     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8352       return false;
8353 
8354     // If the context is not dominated by the value there are paths to the
8355     // context that do not define the value. This cannot be handled by
8356     // LazyValueInfo so we need to bail.
8357     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8358       InformationCache &InfoCache = A.getInfoCache();
8359       const DominatorTree *DT =
8360           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8361               *I->getFunction());
8362       return DT && DT->dominates(I, CtxI);
8363     }
8364 
8365     return true;
8366   }
8367 
8368   /// See AAValueConstantRange::getKnownConstantRange(..).
8369   ConstantRange
8370   getKnownConstantRange(Attributor &A,
8371                         const Instruction *CtxI = nullptr) const override {
8372     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8373                                                  /* AllowAACtxI */ false))
8374       return getKnown();
8375 
8376     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8377     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8378     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8379   }
8380 
8381   /// See AAValueConstantRange::getAssumedConstantRange(..).
8382   ConstantRange
8383   getAssumedConstantRange(Attributor &A,
8384                           const Instruction *CtxI = nullptr) const override {
8385     // TODO: Make SCEV use Attributor assumption.
8386     //       We may be able to bound a variable range via assumptions in
8387     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8388     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8389     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8390                                                  /* AllowAACtxI */ false))
8391       return getAssumed();
8392 
8393     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8394     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8395     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8396   }
8397 
8398   /// Helper function to create MDNode for range metadata.
8399   static MDNode *
8400   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8401                             const ConstantRange &AssumedConstantRange) {
8402     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8403                                   Ty, AssumedConstantRange.getLower())),
8404                               ConstantAsMetadata::get(ConstantInt::get(
8405                                   Ty, AssumedConstantRange.getUpper()))};
8406     return MDNode::get(Ctx, LowAndHigh);
8407   }
8408 
8409   /// Return true if \p Assumed is included in \p KnownRanges.
8410   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8411 
8412     if (Assumed.isFullSet())
8413       return false;
8414 
8415     if (!KnownRanges)
8416       return true;
8417 
8418     // If multiple ranges are annotated in IR, we give up to annotate assumed
8419     // range for now.
8420 
8421     // TODO:  If there exists a known range which containts assumed range, we
8422     // can say assumed range is better.
8423     if (KnownRanges->getNumOperands() > 2)
8424       return false;
8425 
8426     ConstantInt *Lower =
8427         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8428     ConstantInt *Upper =
8429         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8430 
8431     ConstantRange Known(Lower->getValue(), Upper->getValue());
8432     return Known.contains(Assumed) && Known != Assumed;
8433   }
8434 
8435   /// Helper function to set range metadata.
8436   static bool
8437   setRangeMetadataIfisBetterRange(Instruction *I,
8438                                   const ConstantRange &AssumedConstantRange) {
8439     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8440     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8441       if (!AssumedConstantRange.isEmptySet()) {
8442         I->setMetadata(LLVMContext::MD_range,
8443                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8444                                                  AssumedConstantRange));
8445         return true;
8446       }
8447     }
8448     return false;
8449   }
8450 
8451   /// See AbstractAttribute::manifest()
8452   ChangeStatus manifest(Attributor &A) override {
8453     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8454     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8455     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8456 
8457     auto &V = getAssociatedValue();
8458     if (!AssumedConstantRange.isEmptySet() &&
8459         !AssumedConstantRange.isSingleElement()) {
8460       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8461         assert(I == getCtxI() && "Should not annotate an instruction which is "
8462                                  "not the context instruction");
8463         if (isa<CallInst>(I) || isa<LoadInst>(I))
8464           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8465             Changed = ChangeStatus::CHANGED;
8466       }
8467     }
8468 
8469     return Changed;
8470   }
8471 };
8472 
8473 struct AAValueConstantRangeArgument final
8474     : AAArgumentFromCallSiteArguments<
8475           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8476           true /* BridgeCallBaseContext */> {
8477   using Base = AAArgumentFromCallSiteArguments<
8478       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8479       true /* BridgeCallBaseContext */>;
8480   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8481       : Base(IRP, A) {}
8482 
8483   /// See AbstractAttribute::initialize(..).
8484   void initialize(Attributor &A) override {
8485     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8486       indicatePessimisticFixpoint();
8487     } else {
8488       Base::initialize(A);
8489     }
8490   }
8491 
8492   /// See AbstractAttribute::trackStatistics()
8493   void trackStatistics() const override {
8494     STATS_DECLTRACK_ARG_ATTR(value_range)
8495   }
8496 };
8497 
8498 struct AAValueConstantRangeReturned
8499     : AAReturnedFromReturnedValues<AAValueConstantRange,
8500                                    AAValueConstantRangeImpl,
8501                                    AAValueConstantRangeImpl::StateType,
8502                                    /* PropogateCallBaseContext */ true> {
8503   using Base =
8504       AAReturnedFromReturnedValues<AAValueConstantRange,
8505                                    AAValueConstantRangeImpl,
8506                                    AAValueConstantRangeImpl::StateType,
8507                                    /* PropogateCallBaseContext */ true>;
8508   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8509       : Base(IRP, A) {}
8510 
8511   /// See AbstractAttribute::initialize(...).
8512   void initialize(Attributor &A) override {}
8513 
8514   /// See AbstractAttribute::trackStatistics()
8515   void trackStatistics() const override {
8516     STATS_DECLTRACK_FNRET_ATTR(value_range)
8517   }
8518 };
8519 
8520 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8521   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8522       : AAValueConstantRangeImpl(IRP, A) {}
8523 
8524   /// See AbstractAttribute::initialize(...).
8525   void initialize(Attributor &A) override {
8526     AAValueConstantRangeImpl::initialize(A);
8527     if (isAtFixpoint())
8528       return;
8529 
8530     Value &V = getAssociatedValue();
8531 
8532     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8533       unionAssumed(ConstantRange(C->getValue()));
8534       indicateOptimisticFixpoint();
8535       return;
8536     }
8537 
8538     if (isa<UndefValue>(&V)) {
8539       // Collapse the undef state to 0.
8540       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8541       indicateOptimisticFixpoint();
8542       return;
8543     }
8544 
8545     if (isa<CallBase>(&V))
8546       return;
8547 
8548     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8549       return;
8550 
8551     // If it is a load instruction with range metadata, use it.
8552     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8553       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8554         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8555         return;
8556       }
8557 
8558     // We can work with PHI and select instruction as we traverse their operands
8559     // during update.
8560     if (isa<SelectInst>(V) || isa<PHINode>(V))
8561       return;
8562 
8563     // Otherwise we give up.
8564     indicatePessimisticFixpoint();
8565 
8566     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8567                       << getAssociatedValue() << "\n");
8568   }
8569 
8570   bool calculateBinaryOperator(
8571       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8572       const Instruction *CtxI,
8573       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8574     Value *LHS = BinOp->getOperand(0);
8575     Value *RHS = BinOp->getOperand(1);
8576 
8577     // Simplify the operands first.
8578     bool UsedAssumedInformation = false;
8579     const auto &SimplifiedLHS =
8580         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8581                                *this, UsedAssumedInformation);
8582     if (!SimplifiedLHS.hasValue())
8583       return true;
8584     if (!SimplifiedLHS.getValue())
8585       return false;
8586     LHS = *SimplifiedLHS;
8587 
8588     const auto &SimplifiedRHS =
8589         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8590                                *this, UsedAssumedInformation);
8591     if (!SimplifiedRHS.hasValue())
8592       return true;
8593     if (!SimplifiedRHS.getValue())
8594       return false;
8595     RHS = *SimplifiedRHS;
8596 
8597     // TODO: Allow non integers as well.
8598     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8599       return false;
8600 
8601     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8602         *this, IRPosition::value(*LHS, getCallBaseContext()),
8603         DepClassTy::REQUIRED);
8604     QuerriedAAs.push_back(&LHSAA);
8605     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8606 
8607     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8608         *this, IRPosition::value(*RHS, getCallBaseContext()),
8609         DepClassTy::REQUIRED);
8610     QuerriedAAs.push_back(&RHSAA);
8611     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8612 
8613     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8614 
8615     T.unionAssumed(AssumedRange);
8616 
8617     // TODO: Track a known state too.
8618 
8619     return T.isValidState();
8620   }
8621 
8622   bool calculateCastInst(
8623       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8624       const Instruction *CtxI,
8625       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8626     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8627     // TODO: Allow non integers as well.
8628     Value *OpV = CastI->getOperand(0);
8629 
8630     // Simplify the operand first.
8631     bool UsedAssumedInformation = false;
8632     const auto &SimplifiedOpV =
8633         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8634                                *this, UsedAssumedInformation);
8635     if (!SimplifiedOpV.hasValue())
8636       return true;
8637     if (!SimplifiedOpV.getValue())
8638       return false;
8639     OpV = *SimplifiedOpV;
8640 
8641     if (!OpV->getType()->isIntegerTy())
8642       return false;
8643 
8644     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8645         *this, IRPosition::value(*OpV, getCallBaseContext()),
8646         DepClassTy::REQUIRED);
8647     QuerriedAAs.push_back(&OpAA);
8648     T.unionAssumed(
8649         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8650     return T.isValidState();
8651   }
8652 
8653   bool
8654   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8655                    const Instruction *CtxI,
8656                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8657     Value *LHS = CmpI->getOperand(0);
8658     Value *RHS = CmpI->getOperand(1);
8659 
8660     // Simplify the operands first.
8661     bool UsedAssumedInformation = false;
8662     const auto &SimplifiedLHS =
8663         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8664                                *this, UsedAssumedInformation);
8665     if (!SimplifiedLHS.hasValue())
8666       return true;
8667     if (!SimplifiedLHS.getValue())
8668       return false;
8669     LHS = *SimplifiedLHS;
8670 
8671     const auto &SimplifiedRHS =
8672         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8673                                *this, UsedAssumedInformation);
8674     if (!SimplifiedRHS.hasValue())
8675       return true;
8676     if (!SimplifiedRHS.getValue())
8677       return false;
8678     RHS = *SimplifiedRHS;
8679 
8680     // TODO: Allow non integers as well.
8681     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8682       return false;
8683 
8684     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8685         *this, IRPosition::value(*LHS, getCallBaseContext()),
8686         DepClassTy::REQUIRED);
8687     QuerriedAAs.push_back(&LHSAA);
8688     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8689         *this, IRPosition::value(*RHS, getCallBaseContext()),
8690         DepClassTy::REQUIRED);
8691     QuerriedAAs.push_back(&RHSAA);
8692     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8693     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8694 
8695     // If one of them is empty set, we can't decide.
8696     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8697       return true;
8698 
8699     bool MustTrue = false, MustFalse = false;
8700 
8701     auto AllowedRegion =
8702         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8703 
8704     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8705       MustFalse = true;
8706 
8707     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8708       MustTrue = true;
8709 
8710     assert((!MustTrue || !MustFalse) &&
8711            "Either MustTrue or MustFalse should be false!");
8712 
8713     if (MustTrue)
8714       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8715     else if (MustFalse)
8716       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8717     else
8718       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8719 
8720     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8721                       << " " << RHSAA << "\n");
8722 
8723     // TODO: Track a known state too.
8724     return T.isValidState();
8725   }
8726 
8727   /// See AbstractAttribute::updateImpl(...).
8728   ChangeStatus updateImpl(Attributor &A) override {
8729     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8730                             IntegerRangeState &T, bool Stripped) -> bool {
8731       Instruction *I = dyn_cast<Instruction>(&V);
8732       if (!I || isa<CallBase>(I)) {
8733 
8734         // Simplify the operand first.
8735         bool UsedAssumedInformation = false;
8736         const auto &SimplifiedOpV =
8737             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8738                                    *this, UsedAssumedInformation);
8739         if (!SimplifiedOpV.hasValue())
8740           return true;
8741         if (!SimplifiedOpV.getValue())
8742           return false;
8743         Value *VPtr = *SimplifiedOpV;
8744 
8745         // If the value is not instruction, we query AA to Attributor.
8746         const auto &AA = A.getAAFor<AAValueConstantRange>(
8747             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8748             DepClassTy::REQUIRED);
8749 
8750         // Clamp operator is not used to utilize a program point CtxI.
8751         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8752 
8753         return T.isValidState();
8754       }
8755 
8756       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8757       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8758         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8759           return false;
8760       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8761         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8762           return false;
8763       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8764         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8765           return false;
8766       } else {
8767         // Give up with other instructions.
8768         // TODO: Add other instructions
8769 
8770         T.indicatePessimisticFixpoint();
8771         return false;
8772       }
8773 
8774       // Catch circular reasoning in a pessimistic way for now.
8775       // TODO: Check how the range evolves and if we stripped anything, see also
8776       //       AADereferenceable or AAAlign for similar situations.
8777       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8778         if (QueriedAA != this)
8779           continue;
8780         // If we are in a stady state we do not need to worry.
8781         if (T.getAssumed() == getState().getAssumed())
8782           continue;
8783         T.indicatePessimisticFixpoint();
8784       }
8785 
8786       return T.isValidState();
8787     };
8788 
8789     IntegerRangeState T(getBitWidth());
8790 
8791     bool UsedAssumedInformation = false;
8792     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8793                                                   VisitValueCB, getCtxI(),
8794                                                   UsedAssumedInformation,
8795                                                   /* UseValueSimplify */ false))
8796       return indicatePessimisticFixpoint();
8797 
8798     // Ensure that long def-use chains can't cause circular reasoning either by
8799     // introducing a cutoff below.
8800     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8801       return ChangeStatus::UNCHANGED;
8802     if (++NumChanges > MaxNumChanges) {
8803       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8804                         << " but only " << MaxNumChanges
8805                         << " are allowed to avoid cyclic reasoning.");
8806       return indicatePessimisticFixpoint();
8807     }
8808     return ChangeStatus::CHANGED;
8809   }
8810 
8811   /// See AbstractAttribute::trackStatistics()
8812   void trackStatistics() const override {
8813     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8814   }
8815 
8816   /// Tracker to bail after too many widening steps of the constant range.
8817   int NumChanges = 0;
8818 
8819   /// Upper bound for the number of allowed changes (=widening steps) for the
8820   /// constant range before we give up.
8821   static constexpr int MaxNumChanges = 5;
8822 };
8823 
8824 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8825   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8826       : AAValueConstantRangeImpl(IRP, A) {}
8827 
8828   /// See AbstractAttribute::initialize(...).
8829   ChangeStatus updateImpl(Attributor &A) override {
8830     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8831                      "not be called");
8832   }
8833 
8834   /// See AbstractAttribute::trackStatistics()
8835   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8836 };
8837 
8838 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8839   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8840       : AAValueConstantRangeFunction(IRP, A) {}
8841 
8842   /// See AbstractAttribute::trackStatistics()
8843   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8844 };
8845 
8846 struct AAValueConstantRangeCallSiteReturned
8847     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8848                                      AAValueConstantRangeImpl,
8849                                      AAValueConstantRangeImpl::StateType,
8850                                      /* IntroduceCallBaseContext */ true> {
8851   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8852       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8853                                        AAValueConstantRangeImpl,
8854                                        AAValueConstantRangeImpl::StateType,
8855                                        /* IntroduceCallBaseContext */ true>(IRP,
8856                                                                             A) {
8857   }
8858 
8859   /// See AbstractAttribute::initialize(...).
8860   void initialize(Attributor &A) override {
8861     // If it is a load instruction with range metadata, use the metadata.
8862     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8863       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8864         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8865 
8866     AAValueConstantRangeImpl::initialize(A);
8867   }
8868 
8869   /// See AbstractAttribute::trackStatistics()
8870   void trackStatistics() const override {
8871     STATS_DECLTRACK_CSRET_ATTR(value_range)
8872   }
8873 };
8874 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8875   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8876       : AAValueConstantRangeFloating(IRP, A) {}
8877 
8878   /// See AbstractAttribute::manifest()
8879   ChangeStatus manifest(Attributor &A) override {
8880     return ChangeStatus::UNCHANGED;
8881   }
8882 
8883   /// See AbstractAttribute::trackStatistics()
8884   void trackStatistics() const override {
8885     STATS_DECLTRACK_CSARG_ATTR(value_range)
8886   }
8887 };
8888 } // namespace
8889 
8890 /// ------------------ Potential Values Attribute -------------------------
8891 
8892 namespace {
8893 struct AAPotentialValuesImpl : AAPotentialValues {
8894   using StateType = PotentialConstantIntValuesState;
8895 
8896   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8897       : AAPotentialValues(IRP, A) {}
8898 
8899   /// See AbstractAttribute::initialize(..).
8900   void initialize(Attributor &A) override {
8901     if (A.hasSimplificationCallback(getIRPosition()))
8902       indicatePessimisticFixpoint();
8903     else
8904       AAPotentialValues::initialize(A);
8905   }
8906 
8907   /// See AbstractAttribute::getAsStr().
8908   const std::string getAsStr() const override {
8909     std::string Str;
8910     llvm::raw_string_ostream OS(Str);
8911     OS << getState();
8912     return OS.str();
8913   }
8914 
8915   /// See AbstractAttribute::updateImpl(...).
8916   ChangeStatus updateImpl(Attributor &A) override {
8917     return indicatePessimisticFixpoint();
8918   }
8919 };
8920 
8921 struct AAPotentialValuesArgument final
8922     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8923                                       PotentialConstantIntValuesState> {
8924   using Base =
8925       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8926                                       PotentialConstantIntValuesState>;
8927   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8928       : Base(IRP, A) {}
8929 
8930   /// See AbstractAttribute::initialize(..).
8931   void initialize(Attributor &A) override {
8932     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8933       indicatePessimisticFixpoint();
8934     } else {
8935       Base::initialize(A);
8936     }
8937   }
8938 
8939   /// See AbstractAttribute::trackStatistics()
8940   void trackStatistics() const override {
8941     STATS_DECLTRACK_ARG_ATTR(potential_values)
8942   }
8943 };
8944 
8945 struct AAPotentialValuesReturned
8946     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8947   using Base =
8948       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8949   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8950       : Base(IRP, A) {}
8951 
8952   /// See AbstractAttribute::trackStatistics()
8953   void trackStatistics() const override {
8954     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8955   }
8956 };
8957 
8958 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8959   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8960       : AAPotentialValuesImpl(IRP, A) {}
8961 
8962   /// See AbstractAttribute::initialize(..).
8963   void initialize(Attributor &A) override {
8964     AAPotentialValuesImpl::initialize(A);
8965     if (isAtFixpoint())
8966       return;
8967 
8968     Value &V = getAssociatedValue();
8969 
8970     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8971       unionAssumed(C->getValue());
8972       indicateOptimisticFixpoint();
8973       return;
8974     }
8975 
8976     if (isa<UndefValue>(&V)) {
8977       unionAssumedWithUndef();
8978       indicateOptimisticFixpoint();
8979       return;
8980     }
8981 
8982     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8983       return;
8984 
8985     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8986       return;
8987 
8988     indicatePessimisticFixpoint();
8989 
8990     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8991                       << getAssociatedValue() << "\n");
8992   }
8993 
8994   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8995                                 const APInt &RHS) {
8996     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8997   }
8998 
8999   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
9000                                  uint32_t ResultBitWidth) {
9001     Instruction::CastOps CastOp = CI->getOpcode();
9002     switch (CastOp) {
9003     default:
9004       llvm_unreachable("unsupported or not integer cast");
9005     case Instruction::Trunc:
9006       return Src.trunc(ResultBitWidth);
9007     case Instruction::SExt:
9008       return Src.sext(ResultBitWidth);
9009     case Instruction::ZExt:
9010       return Src.zext(ResultBitWidth);
9011     case Instruction::BitCast:
9012       return Src;
9013     }
9014   }
9015 
9016   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
9017                                        const APInt &LHS, const APInt &RHS,
9018                                        bool &SkipOperation, bool &Unsupported) {
9019     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
9020     // Unsupported is set to true when the binary operator is not supported.
9021     // SkipOperation is set to true when UB occur with the given operand pair
9022     // (LHS, RHS).
9023     // TODO: we should look at nsw and nuw keywords to handle operations
9024     //       that create poison or undef value.
9025     switch (BinOpcode) {
9026     default:
9027       Unsupported = true;
9028       return LHS;
9029     case Instruction::Add:
9030       return LHS + RHS;
9031     case Instruction::Sub:
9032       return LHS - RHS;
9033     case Instruction::Mul:
9034       return LHS * RHS;
9035     case Instruction::UDiv:
9036       if (RHS.isZero()) {
9037         SkipOperation = true;
9038         return LHS;
9039       }
9040       return LHS.udiv(RHS);
9041     case Instruction::SDiv:
9042       if (RHS.isZero()) {
9043         SkipOperation = true;
9044         return LHS;
9045       }
9046       return LHS.sdiv(RHS);
9047     case Instruction::URem:
9048       if (RHS.isZero()) {
9049         SkipOperation = true;
9050         return LHS;
9051       }
9052       return LHS.urem(RHS);
9053     case Instruction::SRem:
9054       if (RHS.isZero()) {
9055         SkipOperation = true;
9056         return LHS;
9057       }
9058       return LHS.srem(RHS);
9059     case Instruction::Shl:
9060       return LHS.shl(RHS);
9061     case Instruction::LShr:
9062       return LHS.lshr(RHS);
9063     case Instruction::AShr:
9064       return LHS.ashr(RHS);
9065     case Instruction::And:
9066       return LHS & RHS;
9067     case Instruction::Or:
9068       return LHS | RHS;
9069     case Instruction::Xor:
9070       return LHS ^ RHS;
9071     }
9072   }
9073 
9074   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
9075                                            const APInt &LHS, const APInt &RHS) {
9076     bool SkipOperation = false;
9077     bool Unsupported = false;
9078     APInt Result =
9079         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
9080     if (Unsupported)
9081       return false;
9082     // If SkipOperation is true, we can ignore this operand pair (L, R).
9083     if (!SkipOperation)
9084       unionAssumed(Result);
9085     return isValidState();
9086   }
9087 
9088   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
9089     auto AssumedBefore = getAssumed();
9090     Value *LHS = ICI->getOperand(0);
9091     Value *RHS = ICI->getOperand(1);
9092 
9093     // Simplify the operands first.
9094     bool UsedAssumedInformation = false;
9095     const auto &SimplifiedLHS =
9096         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9097                                *this, UsedAssumedInformation);
9098     if (!SimplifiedLHS.hasValue())
9099       return ChangeStatus::UNCHANGED;
9100     if (!SimplifiedLHS.getValue())
9101       return indicatePessimisticFixpoint();
9102     LHS = *SimplifiedLHS;
9103 
9104     const auto &SimplifiedRHS =
9105         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9106                                *this, UsedAssumedInformation);
9107     if (!SimplifiedRHS.hasValue())
9108       return ChangeStatus::UNCHANGED;
9109     if (!SimplifiedRHS.getValue())
9110       return indicatePessimisticFixpoint();
9111     RHS = *SimplifiedRHS;
9112 
9113     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9114       return indicatePessimisticFixpoint();
9115 
9116     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9117                                                 DepClassTy::REQUIRED);
9118     if (!LHSAA.isValidState())
9119       return indicatePessimisticFixpoint();
9120 
9121     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9122                                                 DepClassTy::REQUIRED);
9123     if (!RHSAA.isValidState())
9124       return indicatePessimisticFixpoint();
9125 
9126     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9127     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9128 
9129     // TODO: make use of undef flag to limit potential values aggressively.
9130     bool MaybeTrue = false, MaybeFalse = false;
9131     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
9132     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9133       // The result of any comparison between undefs can be soundly replaced
9134       // with undef.
9135       unionAssumedWithUndef();
9136     } else if (LHSAA.undefIsContained()) {
9137       for (const APInt &R : RHSAAPVS) {
9138         bool CmpResult = calculateICmpInst(ICI, Zero, R);
9139         MaybeTrue |= CmpResult;
9140         MaybeFalse |= !CmpResult;
9141         if (MaybeTrue & MaybeFalse)
9142           return indicatePessimisticFixpoint();
9143       }
9144     } else if (RHSAA.undefIsContained()) {
9145       for (const APInt &L : LHSAAPVS) {
9146         bool CmpResult = calculateICmpInst(ICI, L, Zero);
9147         MaybeTrue |= CmpResult;
9148         MaybeFalse |= !CmpResult;
9149         if (MaybeTrue & MaybeFalse)
9150           return indicatePessimisticFixpoint();
9151       }
9152     } else {
9153       for (const APInt &L : LHSAAPVS) {
9154         for (const APInt &R : RHSAAPVS) {
9155           bool CmpResult = calculateICmpInst(ICI, L, R);
9156           MaybeTrue |= CmpResult;
9157           MaybeFalse |= !CmpResult;
9158           if (MaybeTrue & MaybeFalse)
9159             return indicatePessimisticFixpoint();
9160         }
9161       }
9162     }
9163     if (MaybeTrue)
9164       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
9165     if (MaybeFalse)
9166       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
9167     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9168                                          : ChangeStatus::CHANGED;
9169   }
9170 
9171   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
9172     auto AssumedBefore = getAssumed();
9173     Value *LHS = SI->getTrueValue();
9174     Value *RHS = SI->getFalseValue();
9175 
9176     // Simplify the operands first.
9177     bool UsedAssumedInformation = false;
9178     const auto &SimplifiedLHS =
9179         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9180                                *this, UsedAssumedInformation);
9181     if (!SimplifiedLHS.hasValue())
9182       return ChangeStatus::UNCHANGED;
9183     if (!SimplifiedLHS.getValue())
9184       return indicatePessimisticFixpoint();
9185     LHS = *SimplifiedLHS;
9186 
9187     const auto &SimplifiedRHS =
9188         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9189                                *this, UsedAssumedInformation);
9190     if (!SimplifiedRHS.hasValue())
9191       return ChangeStatus::UNCHANGED;
9192     if (!SimplifiedRHS.getValue())
9193       return indicatePessimisticFixpoint();
9194     RHS = *SimplifiedRHS;
9195 
9196     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9197       return indicatePessimisticFixpoint();
9198 
9199     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
9200                                                   UsedAssumedInformation);
9201 
9202     // Check if we only need one operand.
9203     bool OnlyLeft = false, OnlyRight = false;
9204     if (C.hasValue() && *C && (*C)->isOneValue())
9205       OnlyLeft = true;
9206     else if (C.hasValue() && *C && (*C)->isZeroValue())
9207       OnlyRight = true;
9208 
9209     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
9210     if (!OnlyRight) {
9211       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9212                                              DepClassTy::REQUIRED);
9213       if (!LHSAA->isValidState())
9214         return indicatePessimisticFixpoint();
9215     }
9216     if (!OnlyLeft) {
9217       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9218                                              DepClassTy::REQUIRED);
9219       if (!RHSAA->isValidState())
9220         return indicatePessimisticFixpoint();
9221     }
9222 
9223     if (!LHSAA || !RHSAA) {
9224       // select (true/false), lhs, rhs
9225       auto *OpAA = LHSAA ? LHSAA : RHSAA;
9226 
9227       if (OpAA->undefIsContained())
9228         unionAssumedWithUndef();
9229       else
9230         unionAssumed(*OpAA);
9231 
9232     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
9233       // select i1 *, undef , undef => undef
9234       unionAssumedWithUndef();
9235     } else {
9236       unionAssumed(*LHSAA);
9237       unionAssumed(*RHSAA);
9238     }
9239     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9240                                          : ChangeStatus::CHANGED;
9241   }
9242 
9243   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9244     auto AssumedBefore = getAssumed();
9245     if (!CI->isIntegerCast())
9246       return indicatePessimisticFixpoint();
9247     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9248     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9249     Value *Src = CI->getOperand(0);
9250 
9251     // Simplify the operand first.
9252     bool UsedAssumedInformation = false;
9253     const auto &SimplifiedSrc =
9254         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
9255                                *this, UsedAssumedInformation);
9256     if (!SimplifiedSrc.hasValue())
9257       return ChangeStatus::UNCHANGED;
9258     if (!SimplifiedSrc.getValue())
9259       return indicatePessimisticFixpoint();
9260     Src = *SimplifiedSrc;
9261 
9262     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
9263                                                 DepClassTy::REQUIRED);
9264     if (!SrcAA.isValidState())
9265       return indicatePessimisticFixpoint();
9266     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
9267     if (SrcAA.undefIsContained())
9268       unionAssumedWithUndef();
9269     else {
9270       for (const APInt &S : SrcAAPVS) {
9271         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9272         unionAssumed(T);
9273       }
9274     }
9275     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9276                                          : ChangeStatus::CHANGED;
9277   }
9278 
9279   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9280     auto AssumedBefore = getAssumed();
9281     Value *LHS = BinOp->getOperand(0);
9282     Value *RHS = BinOp->getOperand(1);
9283 
9284     // Simplify the operands first.
9285     bool UsedAssumedInformation = false;
9286     const auto &SimplifiedLHS =
9287         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9288                                *this, UsedAssumedInformation);
9289     if (!SimplifiedLHS.hasValue())
9290       return ChangeStatus::UNCHANGED;
9291     if (!SimplifiedLHS.getValue())
9292       return indicatePessimisticFixpoint();
9293     LHS = *SimplifiedLHS;
9294 
9295     const auto &SimplifiedRHS =
9296         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9297                                *this, UsedAssumedInformation);
9298     if (!SimplifiedRHS.hasValue())
9299       return ChangeStatus::UNCHANGED;
9300     if (!SimplifiedRHS.getValue())
9301       return indicatePessimisticFixpoint();
9302     RHS = *SimplifiedRHS;
9303 
9304     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9305       return indicatePessimisticFixpoint();
9306 
9307     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9308                                                 DepClassTy::REQUIRED);
9309     if (!LHSAA.isValidState())
9310       return indicatePessimisticFixpoint();
9311 
9312     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9313                                                 DepClassTy::REQUIRED);
9314     if (!RHSAA.isValidState())
9315       return indicatePessimisticFixpoint();
9316 
9317     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9318     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9319     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9320 
9321     // TODO: make use of undef flag to limit potential values aggressively.
9322     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9323       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9324         return indicatePessimisticFixpoint();
9325     } else if (LHSAA.undefIsContained()) {
9326       for (const APInt &R : RHSAAPVS) {
9327         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9328           return indicatePessimisticFixpoint();
9329       }
9330     } else if (RHSAA.undefIsContained()) {
9331       for (const APInt &L : LHSAAPVS) {
9332         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9333           return indicatePessimisticFixpoint();
9334       }
9335     } else {
9336       for (const APInt &L : LHSAAPVS) {
9337         for (const APInt &R : RHSAAPVS) {
9338           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9339             return indicatePessimisticFixpoint();
9340         }
9341       }
9342     }
9343     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9344                                          : ChangeStatus::CHANGED;
9345   }
9346 
9347   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9348     auto AssumedBefore = getAssumed();
9349     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9350       Value *IncomingValue = PHI->getIncomingValue(u);
9351 
9352       // Simplify the operand first.
9353       bool UsedAssumedInformation = false;
9354       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9355           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9356           UsedAssumedInformation);
9357       if (!SimplifiedIncomingValue.hasValue())
9358         continue;
9359       if (!SimplifiedIncomingValue.getValue())
9360         return indicatePessimisticFixpoint();
9361       IncomingValue = *SimplifiedIncomingValue;
9362 
9363       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9364           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9365       if (!PotentialValuesAA.isValidState())
9366         return indicatePessimisticFixpoint();
9367       if (PotentialValuesAA.undefIsContained())
9368         unionAssumedWithUndef();
9369       else
9370         unionAssumed(PotentialValuesAA.getAssumed());
9371     }
9372     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9373                                          : ChangeStatus::CHANGED;
9374   }
9375 
9376   /// See AbstractAttribute::updateImpl(...).
9377   ChangeStatus updateImpl(Attributor &A) override {
9378     Value &V = getAssociatedValue();
9379     Instruction *I = dyn_cast<Instruction>(&V);
9380 
9381     if (auto *ICI = dyn_cast<ICmpInst>(I))
9382       return updateWithICmpInst(A, ICI);
9383 
9384     if (auto *SI = dyn_cast<SelectInst>(I))
9385       return updateWithSelectInst(A, SI);
9386 
9387     if (auto *CI = dyn_cast<CastInst>(I))
9388       return updateWithCastInst(A, CI);
9389 
9390     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9391       return updateWithBinaryOperator(A, BinOp);
9392 
9393     if (auto *PHI = dyn_cast<PHINode>(I))
9394       return updateWithPHINode(A, PHI);
9395 
9396     return indicatePessimisticFixpoint();
9397   }
9398 
9399   /// See AbstractAttribute::trackStatistics()
9400   void trackStatistics() const override {
9401     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9402   }
9403 };
9404 
9405 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9406   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9407       : AAPotentialValuesImpl(IRP, A) {}
9408 
9409   /// See AbstractAttribute::initialize(...).
9410   ChangeStatus updateImpl(Attributor &A) override {
9411     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9412                      "not be called");
9413   }
9414 
9415   /// See AbstractAttribute::trackStatistics()
9416   void trackStatistics() const override {
9417     STATS_DECLTRACK_FN_ATTR(potential_values)
9418   }
9419 };
9420 
9421 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9422   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9423       : AAPotentialValuesFunction(IRP, A) {}
9424 
9425   /// See AbstractAttribute::trackStatistics()
9426   void trackStatistics() const override {
9427     STATS_DECLTRACK_CS_ATTR(potential_values)
9428   }
9429 };
9430 
9431 struct AAPotentialValuesCallSiteReturned
9432     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9433   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9434       : AACallSiteReturnedFromReturned<AAPotentialValues,
9435                                        AAPotentialValuesImpl>(IRP, A) {}
9436 
9437   /// See AbstractAttribute::trackStatistics()
9438   void trackStatistics() const override {
9439     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9440   }
9441 };
9442 
9443 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9444   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9445       : AAPotentialValuesFloating(IRP, A) {}
9446 
9447   /// See AbstractAttribute::initialize(..).
9448   void initialize(Attributor &A) override {
9449     AAPotentialValuesImpl::initialize(A);
9450     if (isAtFixpoint())
9451       return;
9452 
9453     Value &V = getAssociatedValue();
9454 
9455     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9456       unionAssumed(C->getValue());
9457       indicateOptimisticFixpoint();
9458       return;
9459     }
9460 
9461     if (isa<UndefValue>(&V)) {
9462       unionAssumedWithUndef();
9463       indicateOptimisticFixpoint();
9464       return;
9465     }
9466   }
9467 
9468   /// See AbstractAttribute::updateImpl(...).
9469   ChangeStatus updateImpl(Attributor &A) override {
9470     Value &V = getAssociatedValue();
9471     auto AssumedBefore = getAssumed();
9472     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9473                                              DepClassTy::REQUIRED);
9474     const auto &S = AA.getAssumed();
9475     unionAssumed(S);
9476     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9477                                          : ChangeStatus::CHANGED;
9478   }
9479 
9480   /// See AbstractAttribute::trackStatistics()
9481   void trackStatistics() const override {
9482     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9483   }
9484 };
9485 
9486 /// ------------------------ NoUndef Attribute ---------------------------------
9487 struct AANoUndefImpl : AANoUndef {
9488   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9489 
9490   /// See AbstractAttribute::initialize(...).
9491   void initialize(Attributor &A) override {
9492     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9493       indicateOptimisticFixpoint();
9494       return;
9495     }
9496     Value &V = getAssociatedValue();
9497     if (isa<UndefValue>(V))
9498       indicatePessimisticFixpoint();
9499     else if (isa<FreezeInst>(V))
9500       indicateOptimisticFixpoint();
9501     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9502              isGuaranteedNotToBeUndefOrPoison(&V))
9503       indicateOptimisticFixpoint();
9504     else
9505       AANoUndef::initialize(A);
9506   }
9507 
9508   /// See followUsesInMBEC
9509   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9510                        AANoUndef::StateType &State) {
9511     const Value *UseV = U->get();
9512     const DominatorTree *DT = nullptr;
9513     AssumptionCache *AC = nullptr;
9514     InformationCache &InfoCache = A.getInfoCache();
9515     if (Function *F = getAnchorScope()) {
9516       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9517       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9518     }
9519     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9520     bool TrackUse = false;
9521     // Track use for instructions which must produce undef or poison bits when
9522     // at least one operand contains such bits.
9523     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9524       TrackUse = true;
9525     return TrackUse;
9526   }
9527 
9528   /// See AbstractAttribute::getAsStr().
9529   const std::string getAsStr() const override {
9530     return getAssumed() ? "noundef" : "may-undef-or-poison";
9531   }
9532 
9533   ChangeStatus manifest(Attributor &A) override {
9534     // We don't manifest noundef attribute for dead positions because the
9535     // associated values with dead positions would be replaced with undef
9536     // values.
9537     bool UsedAssumedInformation = false;
9538     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9539                         UsedAssumedInformation))
9540       return ChangeStatus::UNCHANGED;
9541     // A position whose simplified value does not have any value is
9542     // considered to be dead. We don't manifest noundef in such positions for
9543     // the same reason above.
9544     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9545              .hasValue())
9546       return ChangeStatus::UNCHANGED;
9547     return AANoUndef::manifest(A);
9548   }
9549 };
9550 
9551 struct AANoUndefFloating : public AANoUndefImpl {
9552   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9553       : AANoUndefImpl(IRP, A) {}
9554 
9555   /// See AbstractAttribute::initialize(...).
9556   void initialize(Attributor &A) override {
9557     AANoUndefImpl::initialize(A);
9558     if (!getState().isAtFixpoint())
9559       if (Instruction *CtxI = getCtxI())
9560         followUsesInMBEC(*this, A, getState(), *CtxI);
9561   }
9562 
9563   /// See AbstractAttribute::updateImpl(...).
9564   ChangeStatus updateImpl(Attributor &A) override {
9565     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9566                             AANoUndef::StateType &T, bool Stripped) -> bool {
9567       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9568                                              DepClassTy::REQUIRED);
9569       if (!Stripped && this == &AA) {
9570         T.indicatePessimisticFixpoint();
9571       } else {
9572         const AANoUndef::StateType &S =
9573             static_cast<const AANoUndef::StateType &>(AA.getState());
9574         T ^= S;
9575       }
9576       return T.isValidState();
9577     };
9578 
9579     StateType T;
9580     bool UsedAssumedInformation = false;
9581     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9582                                           VisitValueCB, getCtxI(),
9583                                           UsedAssumedInformation))
9584       return indicatePessimisticFixpoint();
9585 
9586     return clampStateAndIndicateChange(getState(), T);
9587   }
9588 
9589   /// See AbstractAttribute::trackStatistics()
9590   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9591 };
9592 
9593 struct AANoUndefReturned final
9594     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9595   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9596       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9597 
9598   /// See AbstractAttribute::trackStatistics()
9599   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9600 };
9601 
9602 struct AANoUndefArgument final
9603     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9604   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9605       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9606 
9607   /// See AbstractAttribute::trackStatistics()
9608   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9609 };
9610 
9611 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9612   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9613       : AANoUndefFloating(IRP, A) {}
9614 
9615   /// See AbstractAttribute::trackStatistics()
9616   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9617 };
9618 
9619 struct AANoUndefCallSiteReturned final
9620     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9621   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9622       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9623 
9624   /// See AbstractAttribute::trackStatistics()
9625   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9626 };
9627 
9628 struct AACallEdgesImpl : public AACallEdges {
9629   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9630 
9631   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9632     return CalledFunctions;
9633   }
9634 
9635   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9636 
9637   virtual bool hasNonAsmUnknownCallee() const override {
9638     return HasUnknownCalleeNonAsm;
9639   }
9640 
9641   const std::string getAsStr() const override {
9642     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9643            std::to_string(CalledFunctions.size()) + "]";
9644   }
9645 
9646   void trackStatistics() const override {}
9647 
9648 protected:
9649   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9650     if (CalledFunctions.insert(Fn)) {
9651       Change = ChangeStatus::CHANGED;
9652       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9653                         << "\n");
9654     }
9655   }
9656 
9657   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9658     if (!HasUnknownCallee)
9659       Change = ChangeStatus::CHANGED;
9660     if (NonAsm && !HasUnknownCalleeNonAsm)
9661       Change = ChangeStatus::CHANGED;
9662     HasUnknownCalleeNonAsm |= NonAsm;
9663     HasUnknownCallee = true;
9664   }
9665 
9666 private:
9667   /// Optimistic set of functions that might be called by this position.
9668   SetVector<Function *> CalledFunctions;
9669 
9670   /// Is there any call with a unknown callee.
9671   bool HasUnknownCallee = false;
9672 
9673   /// Is there any call with a unknown callee, excluding any inline asm.
9674   bool HasUnknownCalleeNonAsm = false;
9675 };
9676 
9677 struct AACallEdgesCallSite : public AACallEdgesImpl {
9678   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9679       : AACallEdgesImpl(IRP, A) {}
9680   /// See AbstractAttribute::updateImpl(...).
9681   ChangeStatus updateImpl(Attributor &A) override {
9682     ChangeStatus Change = ChangeStatus::UNCHANGED;
9683 
9684     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9685                           bool Stripped) -> bool {
9686       if (Function *Fn = dyn_cast<Function>(&V)) {
9687         addCalledFunction(Fn, Change);
9688       } else {
9689         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9690         setHasUnknownCallee(true, Change);
9691       }
9692 
9693       // Explore all values.
9694       return true;
9695     };
9696 
9697     // Process any value that we might call.
9698     auto ProcessCalledOperand = [&](Value *V) {
9699       bool DummyValue = false;
9700       bool UsedAssumedInformation = false;
9701       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9702                                        DummyValue, VisitValue, nullptr,
9703                                        UsedAssumedInformation, false)) {
9704         // If we haven't gone through all values, assume that there are unknown
9705         // callees.
9706         setHasUnknownCallee(true, Change);
9707       }
9708     };
9709 
9710     CallBase *CB = cast<CallBase>(getCtxI());
9711 
9712     if (CB->isInlineAsm()) {
9713       if (!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
9714           !hasAssumption(*CB, "ompx_no_call_asm"))
9715         setHasUnknownCallee(false, Change);
9716       return Change;
9717     }
9718 
9719     // Process callee metadata if available.
9720     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9721       for (auto &Op : MD->operands()) {
9722         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9723         if (Callee)
9724           addCalledFunction(Callee, Change);
9725       }
9726       return Change;
9727     }
9728 
9729     // The most simple case.
9730     ProcessCalledOperand(CB->getCalledOperand());
9731 
9732     // Process callback functions.
9733     SmallVector<const Use *, 4u> CallbackUses;
9734     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9735     for (const Use *U : CallbackUses)
9736       ProcessCalledOperand(U->get());
9737 
9738     return Change;
9739   }
9740 };
9741 
9742 struct AACallEdgesFunction : public AACallEdgesImpl {
9743   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9744       : AACallEdgesImpl(IRP, A) {}
9745 
9746   /// See AbstractAttribute::updateImpl(...).
9747   ChangeStatus updateImpl(Attributor &A) override {
9748     ChangeStatus Change = ChangeStatus::UNCHANGED;
9749 
9750     auto ProcessCallInst = [&](Instruction &Inst) {
9751       CallBase &CB = cast<CallBase>(Inst);
9752 
9753       auto &CBEdges = A.getAAFor<AACallEdges>(
9754           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9755       if (CBEdges.hasNonAsmUnknownCallee())
9756         setHasUnknownCallee(true, Change);
9757       if (CBEdges.hasUnknownCallee())
9758         setHasUnknownCallee(false, Change);
9759 
9760       for (Function *F : CBEdges.getOptimisticEdges())
9761         addCalledFunction(F, Change);
9762 
9763       return true;
9764     };
9765 
9766     // Visit all callable instructions.
9767     bool UsedAssumedInformation = false;
9768     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9769                                            UsedAssumedInformation,
9770                                            /* CheckBBLivenessOnly */ true)) {
9771       // If we haven't looked at all call like instructions, assume that there
9772       // are unknown callees.
9773       setHasUnknownCallee(true, Change);
9774     }
9775 
9776     return Change;
9777   }
9778 };
9779 
9780 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9781 private:
9782   struct QuerySet {
9783     void markReachable(const Function &Fn) {
9784       Reachable.insert(&Fn);
9785       Unreachable.erase(&Fn);
9786     }
9787 
9788     /// If there is no information about the function None is returned.
9789     Optional<bool> isCachedReachable(const Function &Fn) {
9790       // Assume that we can reach the function.
9791       // TODO: Be more specific with the unknown callee.
9792       if (CanReachUnknownCallee)
9793         return true;
9794 
9795       if (Reachable.count(&Fn))
9796         return true;
9797 
9798       if (Unreachable.count(&Fn))
9799         return false;
9800 
9801       return llvm::None;
9802     }
9803 
9804     /// Set of functions that we know for sure is reachable.
9805     DenseSet<const Function *> Reachable;
9806 
9807     /// Set of functions that are unreachable, but might become reachable.
9808     DenseSet<const Function *> Unreachable;
9809 
9810     /// If we can reach a function with a call to a unknown function we assume
9811     /// that we can reach any function.
9812     bool CanReachUnknownCallee = false;
9813   };
9814 
9815   struct QueryResolver : public QuerySet {
9816     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9817                         ArrayRef<const AACallEdges *> AAEdgesList) {
9818       ChangeStatus Change = ChangeStatus::UNCHANGED;
9819 
9820       for (auto *AAEdges : AAEdgesList) {
9821         if (AAEdges->hasUnknownCallee()) {
9822           if (!CanReachUnknownCallee)
9823             Change = ChangeStatus::CHANGED;
9824           CanReachUnknownCallee = true;
9825           return Change;
9826         }
9827       }
9828 
9829       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9830         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9831           Change = ChangeStatus::CHANGED;
9832           markReachable(*Fn);
9833         }
9834       }
9835       return Change;
9836     }
9837 
9838     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9839                      ArrayRef<const AACallEdges *> AAEdgesList,
9840                      const Function &Fn) {
9841       Optional<bool> Cached = isCachedReachable(Fn);
9842       if (Cached.hasValue())
9843         return Cached.getValue();
9844 
9845       // The query was not cached, thus it is new. We need to request an update
9846       // explicitly to make sure this the information is properly run to a
9847       // fixpoint.
9848       A.registerForUpdate(AA);
9849 
9850       // We need to assume that this function can't reach Fn to prevent
9851       // an infinite loop if this function is recursive.
9852       Unreachable.insert(&Fn);
9853 
9854       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9855       if (Result)
9856         markReachable(Fn);
9857       return Result;
9858     }
9859 
9860     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9861                           ArrayRef<const AACallEdges *> AAEdgesList,
9862                           const Function &Fn) const {
9863 
9864       // Handle the most trivial case first.
9865       for (auto *AAEdges : AAEdgesList) {
9866         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9867 
9868         if (Edges.count(const_cast<Function *>(&Fn)))
9869           return true;
9870       }
9871 
9872       SmallVector<const AAFunctionReachability *, 8> Deps;
9873       for (auto &AAEdges : AAEdgesList) {
9874         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9875 
9876         for (Function *Edge : Edges) {
9877           // Functions that do not call back into the module can be ignored.
9878           if (Edge->hasFnAttribute(Attribute::NoCallback))
9879             continue;
9880 
9881           // We don't need a dependency if the result is reachable.
9882           const AAFunctionReachability &EdgeReachability =
9883               A.getAAFor<AAFunctionReachability>(
9884                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9885           Deps.push_back(&EdgeReachability);
9886 
9887           if (EdgeReachability.canReach(A, Fn))
9888             return true;
9889         }
9890       }
9891 
9892       // The result is false for now, set dependencies and leave.
9893       for (auto *Dep : Deps)
9894         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9895 
9896       return false;
9897     }
9898   };
9899 
9900   /// Get call edges that can be reached by this instruction.
9901   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9902                              const Instruction &Inst,
9903                              SmallVector<const AACallEdges *> &Result) const {
9904     // Determine call like instructions that we can reach from the inst.
9905     auto CheckCallBase = [&](Instruction &CBInst) {
9906       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9907         return true;
9908 
9909       auto &CB = cast<CallBase>(CBInst);
9910       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9911           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9912 
9913       Result.push_back(&AAEdges);
9914       return true;
9915     };
9916 
9917     bool UsedAssumedInformation = false;
9918     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9919                                              UsedAssumedInformation,
9920                                              /* CheckBBLivenessOnly */ true);
9921   }
9922 
9923 public:
9924   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9925       : AAFunctionReachability(IRP, A) {}
9926 
9927   bool canReach(Attributor &A, const Function &Fn) const override {
9928     if (!isValidState())
9929       return true;
9930 
9931     const AACallEdges &AAEdges =
9932         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9933 
9934     // Attributor returns attributes as const, so this function has to be
9935     // const for users of this attribute to use it without having to do
9936     // a const_cast.
9937     // This is a hack for us to be able to cache queries.
9938     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9939     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9940                                                           {&AAEdges}, Fn);
9941 
9942     return Result;
9943   }
9944 
9945   /// Can \p CB reach \p Fn
9946   bool canReach(Attributor &A, CallBase &CB,
9947                 const Function &Fn) const override {
9948     if (!isValidState())
9949       return true;
9950 
9951     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9952         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9953 
9954     // Attributor returns attributes as const, so this function has to be
9955     // const for users of this attribute to use it without having to do
9956     // a const_cast.
9957     // This is a hack for us to be able to cache queries.
9958     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9959     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9960 
9961     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9962 
9963     return Result;
9964   }
9965 
9966   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9967                            const Function &Fn,
9968                            bool UseBackwards) const override {
9969     if (!isValidState())
9970       return true;
9971 
9972     if (UseBackwards)
9973       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9974 
9975     const auto &Reachability = A.getAAFor<AAReachability>(
9976         *this, IRPosition::function(*getAssociatedFunction()),
9977         DepClassTy::REQUIRED);
9978 
9979     SmallVector<const AACallEdges *> CallEdges;
9980     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9981     // Attributor returns attributes as const, so this function has to be
9982     // const for users of this attribute to use it without having to do
9983     // a const_cast.
9984     // This is a hack for us to be able to cache queries.
9985     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9986     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9987     if (!AllKnown)
9988       InstQSet.CanReachUnknownCallee = true;
9989 
9990     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9991   }
9992 
9993   /// See AbstractAttribute::updateImpl(...).
9994   ChangeStatus updateImpl(Attributor &A) override {
9995     const AACallEdges &AAEdges =
9996         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9997     ChangeStatus Change = ChangeStatus::UNCHANGED;
9998 
9999     Change |= WholeFunction.update(A, *this, {&AAEdges});
10000 
10001     for (auto &CBPair : CBQueries) {
10002       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
10003           *this, IRPosition::callsite_function(*CBPair.first),
10004           DepClassTy::REQUIRED);
10005 
10006       Change |= CBPair.second.update(A, *this, {&AAEdges});
10007     }
10008 
10009     // Update the Instruction queries.
10010     if (!InstQueries.empty()) {
10011       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
10012           *this, IRPosition::function(*getAssociatedFunction()),
10013           DepClassTy::REQUIRED);
10014 
10015       // Check for local callbases first.
10016       for (auto &InstPair : InstQueries) {
10017         SmallVector<const AACallEdges *> CallEdges;
10018         bool AllKnown =
10019             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
10020         // Update will return change if we this effects any queries.
10021         if (!AllKnown)
10022           InstPair.second.CanReachUnknownCallee = true;
10023         Change |= InstPair.second.update(A, *this, CallEdges);
10024       }
10025     }
10026 
10027     return Change;
10028   }
10029 
10030   const std::string getAsStr() const override {
10031     size_t QueryCount =
10032         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
10033 
10034     return "FunctionReachability [" +
10035            std::to_string(WholeFunction.Reachable.size()) + "," +
10036            std::to_string(QueryCount) + "]";
10037   }
10038 
10039   void trackStatistics() const override {}
10040 
10041 private:
10042   bool canReachUnknownCallee() const override {
10043     return WholeFunction.CanReachUnknownCallee;
10044   }
10045 
10046   /// Used to answer if a the whole function can reacha a specific function.
10047   QueryResolver WholeFunction;
10048 
10049   /// Used to answer if a call base inside this function can reach a specific
10050   /// function.
10051   MapVector<const CallBase *, QueryResolver> CBQueries;
10052 
10053   /// This is for instruction queries than scan "forward".
10054   MapVector<const Instruction *, QueryResolver> InstQueries;
10055 };
10056 } // namespace
10057 
10058 /// ---------------------- Assumption Propagation ------------------------------
10059 namespace {
10060 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
10061   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
10062                        const DenseSet<StringRef> &Known)
10063       : AAAssumptionInfo(IRP, A, Known) {}
10064 
10065   bool hasAssumption(const StringRef Assumption) const override {
10066     return isValidState() && setContains(Assumption);
10067   }
10068 
10069   /// See AbstractAttribute::getAsStr()
10070   const std::string getAsStr() const override {
10071     const SetContents &Known = getKnown();
10072     const SetContents &Assumed = getAssumed();
10073 
10074     const std::string KnownStr =
10075         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
10076     const std::string AssumedStr =
10077         (Assumed.isUniversal())
10078             ? "Universal"
10079             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
10080 
10081     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
10082   }
10083 };
10084 
10085 /// Propagates assumption information from parent functions to all of their
10086 /// successors. An assumption can be propagated if the containing function
10087 /// dominates the called function.
10088 ///
10089 /// We start with a "known" set of assumptions already valid for the associated
10090 /// function and an "assumed" set that initially contains all possible
10091 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10092 /// contents as concrete values are known. The concrete values are seeded by the
10093 /// first nodes that are either entries into the call graph, or contains no
10094 /// assumptions. Each node is updated as the intersection of the assumed state
10095 /// with all of its predecessors.
10096 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
10097   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10098       : AAAssumptionInfoImpl(IRP, A,
10099                              getAssumptions(*IRP.getAssociatedFunction())) {}
10100 
10101   /// See AbstractAttribute::manifest(...).
10102   ChangeStatus manifest(Attributor &A) override {
10103     const auto &Assumptions = getKnown();
10104 
10105     // Don't manifest a universal set if it somehow made it here.
10106     if (Assumptions.isUniversal())
10107       return ChangeStatus::UNCHANGED;
10108 
10109     Function *AssociatedFunction = getAssociatedFunction();
10110 
10111     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10112 
10113     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10114   }
10115 
10116   /// See AbstractAttribute::updateImpl(...).
10117   ChangeStatus updateImpl(Attributor &A) override {
10118     bool Changed = false;
10119 
10120     auto CallSitePred = [&](AbstractCallSite ACS) {
10121       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10122           *this, IRPosition::callsite_function(*ACS.getInstruction()),
10123           DepClassTy::REQUIRED);
10124       // Get the set of assumptions shared by all of this function's callers.
10125       Changed |= getIntersection(AssumptionAA.getAssumed());
10126       return !getAssumed().empty() || !getKnown().empty();
10127     };
10128 
10129     bool UsedAssumedInformation = false;
10130     // Get the intersection of all assumptions held by this node's predecessors.
10131     // If we don't know all the call sites then this is either an entry into the
10132     // call graph or an empty node. This node is known to only contain its own
10133     // assumptions and can be propagated to its successors.
10134     if (!A.checkForAllCallSites(CallSitePred, *this, true,
10135                                 UsedAssumedInformation))
10136       return indicatePessimisticFixpoint();
10137 
10138     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10139   }
10140 
10141   void trackStatistics() const override {}
10142 };
10143 
10144 /// Assumption Info defined for call sites.
10145 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10146 
10147   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10148       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10149 
10150   /// See AbstractAttribute::initialize(...).
10151   void initialize(Attributor &A) override {
10152     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10153     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10154   }
10155 
10156   /// See AbstractAttribute::manifest(...).
10157   ChangeStatus manifest(Attributor &A) override {
10158     // Don't manifest a universal set if it somehow made it here.
10159     if (getKnown().isUniversal())
10160       return ChangeStatus::UNCHANGED;
10161 
10162     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10163     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10164 
10165     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10166   }
10167 
10168   /// See AbstractAttribute::updateImpl(...).
10169   ChangeStatus updateImpl(Attributor &A) override {
10170     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10171     auto &AssumptionAA =
10172         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10173     bool Changed = getIntersection(AssumptionAA.getAssumed());
10174     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10175   }
10176 
10177   /// See AbstractAttribute::trackStatistics()
10178   void trackStatistics() const override {}
10179 
10180 private:
10181   /// Helper to initialized the known set as all the assumptions this call and
10182   /// the callee contain.
10183   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10184     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10185     auto Assumptions = getAssumptions(CB);
10186     if (Function *F = IRP.getAssociatedFunction())
10187       set_union(Assumptions, getAssumptions(*F));
10188     if (Function *F = IRP.getAssociatedFunction())
10189       set_union(Assumptions, getAssumptions(*F));
10190     return Assumptions;
10191   }
10192 };
10193 } // namespace
10194 
10195 AACallGraphNode *AACallEdgeIterator::operator*() const {
10196   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10197       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10198 }
10199 
10200 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10201 
10202 const char AAReturnedValues::ID = 0;
10203 const char AANoUnwind::ID = 0;
10204 const char AANoSync::ID = 0;
10205 const char AANoFree::ID = 0;
10206 const char AANonNull::ID = 0;
10207 const char AANoRecurse::ID = 0;
10208 const char AAWillReturn::ID = 0;
10209 const char AAUndefinedBehavior::ID = 0;
10210 const char AANoAlias::ID = 0;
10211 const char AAReachability::ID = 0;
10212 const char AANoReturn::ID = 0;
10213 const char AAIsDead::ID = 0;
10214 const char AADereferenceable::ID = 0;
10215 const char AAAlign::ID = 0;
10216 const char AAInstanceInfo::ID = 0;
10217 const char AANoCapture::ID = 0;
10218 const char AAValueSimplify::ID = 0;
10219 const char AAHeapToStack::ID = 0;
10220 const char AAPrivatizablePtr::ID = 0;
10221 const char AAMemoryBehavior::ID = 0;
10222 const char AAMemoryLocation::ID = 0;
10223 const char AAValueConstantRange::ID = 0;
10224 const char AAPotentialValues::ID = 0;
10225 const char AANoUndef::ID = 0;
10226 const char AACallEdges::ID = 0;
10227 const char AAFunctionReachability::ID = 0;
10228 const char AAPointerInfo::ID = 0;
10229 const char AAAssumptionInfo::ID = 0;
10230 
10231 // Macro magic to create the static generator function for attributes that
10232 // follow the naming scheme.
10233 
10234 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10235   case IRPosition::PK:                                                         \
10236     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10237 
10238 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10239   case IRPosition::PK:                                                         \
10240     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10241     ++NumAAs;                                                                  \
10242     break;
10243 
10244 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10245   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10246     CLASS *AA = nullptr;                                                       \
10247     switch (IRP.getPositionKind()) {                                           \
10248       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10249       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10250       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10251       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10252       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10253       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10254       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10255       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10256     }                                                                          \
10257     return *AA;                                                                \
10258   }
10259 
10260 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10261   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10262     CLASS *AA = nullptr;                                                       \
10263     switch (IRP.getPositionKind()) {                                           \
10264       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10265       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10266       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10267       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10268       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10269       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10270       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10271       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10272     }                                                                          \
10273     return *AA;                                                                \
10274   }
10275 
10276 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10277   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10278     CLASS *AA = nullptr;                                                       \
10279     switch (IRP.getPositionKind()) {                                           \
10280       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10281       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10282       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10283       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10284       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10285       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10286       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10287       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10288     }                                                                          \
10289     return *AA;                                                                \
10290   }
10291 
10292 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10293   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10294     CLASS *AA = nullptr;                                                       \
10295     switch (IRP.getPositionKind()) {                                           \
10296       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10297       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10298       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10299       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10300       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10301       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10302       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10303       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10304     }                                                                          \
10305     return *AA;                                                                \
10306   }
10307 
10308 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10309   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10310     CLASS *AA = nullptr;                                                       \
10311     switch (IRP.getPositionKind()) {                                           \
10312       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10313       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10314       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10315       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10316       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10317       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10318       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10319       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10320     }                                                                          \
10321     return *AA;                                                                \
10322   }
10323 
10324 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10325 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10326 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10327 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10328 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10329 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10330 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10331 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10332 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10333 
10334 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10335 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10336 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10337 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10338 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10339 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
10340 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10341 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10342 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10343 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10344 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10345 
10346 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10347 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10348 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10349 
10350 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10351 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10352 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10353 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10354 
10355 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10356 
10357 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10358 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10359 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10360 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10361 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10362 #undef SWITCH_PK_CREATE
10363 #undef SWITCH_PK_INV
10364