1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumeBundleQueries.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/NoFolder.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 #include <cassert>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "attributor"
41 
42 static cl::opt<bool> ManifestInternal(
43     "attributor-manifest-internal", cl::Hidden,
44     cl::desc("Manifest Attributor internal string attributes."),
45     cl::init(false));
46 
47 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
48                                        cl::Hidden);
49 
50 template <>
51 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
52 
53 static cl::opt<unsigned, true> MaxPotentialValues(
54     "attributor-max-potential-values", cl::Hidden,
55     cl::desc("Maximum number of potential values to be "
56              "tracked for each position."),
57     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
58     cl::init(7));
59 
60 STATISTIC(NumAAs, "Number of abstract attributes created");
61 
62 // Some helper macros to deal with statistics tracking.
63 //
64 // Usage:
65 // For simple IR attribute tracking overload trackStatistics in the abstract
66 // attribute and choose the right STATS_DECLTRACK_********* macro,
67 // e.g.,:
68 //  void trackStatistics() const override {
69 //    STATS_DECLTRACK_ARG_ATTR(returned)
70 //  }
71 // If there is a single "increment" side one can use the macro
72 // STATS_DECLTRACK with a custom message. If there are multiple increment
73 // sides, STATS_DECL and STATS_TRACK can also be used separately.
74 //
75 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
76   ("Number of " #TYPE " marked '" #NAME "'")
77 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
78 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
79 #define STATS_DECL(NAME, TYPE, MSG)                                            \
80   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
81 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
82 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
83   {                                                                            \
84     STATS_DECL(NAME, TYPE, MSG)                                                \
85     STATS_TRACK(NAME, TYPE)                                                    \
86   }
87 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
88   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
89 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
90   STATS_DECLTRACK(NAME, CSArguments,                                           \
91                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
92 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
93   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
94 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
95   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
96 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
97   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
98                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
99 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
100   STATS_DECLTRACK(NAME, CSReturn,                                              \
101                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
102 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
103   STATS_DECLTRACK(NAME, Floating,                                              \
104                   ("Number of floating values known to be '" #NAME "'"))
105 
106 // Specialization of the operator<< for abstract attributes subclasses. This
107 // disambiguates situations where multiple operators are applicable.
108 namespace llvm {
109 #define PIPE_OPERATOR(CLASS)                                                   \
110   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
111     return OS << static_cast<const AbstractAttribute &>(AA);                   \
112   }
113 
114 PIPE_OPERATOR(AAIsDead)
115 PIPE_OPERATOR(AANoUnwind)
116 PIPE_OPERATOR(AANoSync)
117 PIPE_OPERATOR(AANoRecurse)
118 PIPE_OPERATOR(AAWillReturn)
119 PIPE_OPERATOR(AANoReturn)
120 PIPE_OPERATOR(AAReturnedValues)
121 PIPE_OPERATOR(AANonNull)
122 PIPE_OPERATOR(AANoAlias)
123 PIPE_OPERATOR(AADereferenceable)
124 PIPE_OPERATOR(AAAlign)
125 PIPE_OPERATOR(AANoCapture)
126 PIPE_OPERATOR(AAValueSimplify)
127 PIPE_OPERATOR(AANoFree)
128 PIPE_OPERATOR(AAHeapToStack)
129 PIPE_OPERATOR(AAReachability)
130 PIPE_OPERATOR(AAMemoryBehavior)
131 PIPE_OPERATOR(AAMemoryLocation)
132 PIPE_OPERATOR(AAValueConstantRange)
133 PIPE_OPERATOR(AAPrivatizablePtr)
134 PIPE_OPERATOR(AAUndefinedBehavior)
135 PIPE_OPERATOR(AAPotentialValues)
136 PIPE_OPERATOR(AANoUndef)
137 
138 #undef PIPE_OPERATOR
139 } // namespace llvm
140 
141 namespace {
142 
143 static Optional<ConstantInt *>
144 getAssumedConstantInt(Attributor &A, const Value &V,
145                       const AbstractAttribute &AA,
146                       bool &UsedAssumedInformation) {
147   Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
148   if (C.hasValue())
149     return dyn_cast_or_null<ConstantInt>(C.getValue());
150   return llvm::None;
151 }
152 
153 /// Get pointer operand of memory accessing instruction. If \p I is
154 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
155 /// is set to false and the instruction is volatile, return nullptr.
156 static const Value *getPointerOperand(const Instruction *I,
157                                       bool AllowVolatile) {
158   if (auto *LI = dyn_cast<LoadInst>(I)) {
159     if (!AllowVolatile && LI->isVolatile())
160       return nullptr;
161     return LI->getPointerOperand();
162   }
163 
164   if (auto *SI = dyn_cast<StoreInst>(I)) {
165     if (!AllowVolatile && SI->isVolatile())
166       return nullptr;
167     return SI->getPointerOperand();
168   }
169 
170   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
171     if (!AllowVolatile && CXI->isVolatile())
172       return nullptr;
173     return CXI->getPointerOperand();
174   }
175 
176   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
177     if (!AllowVolatile && RMWI->isVolatile())
178       return nullptr;
179     return RMWI->getPointerOperand();
180   }
181 
182   return nullptr;
183 }
184 
185 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
186 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
187 /// getelement pointer instructions that traverse the natural type of \p Ptr if
188 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
189 /// through a cast to i8*.
190 ///
191 /// TODO: This could probably live somewhere more prominantly if it doesn't
192 ///       already exist.
193 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
194                                int64_t Offset, IRBuilder<NoFolder> &IRB,
195                                const DataLayout &DL) {
196   assert(Offset >= 0 && "Negative offset not supported yet!");
197   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
198                     << "-bytes as " << *ResTy << "\n");
199 
200   if (Offset) {
201     SmallVector<Value *, 4> Indices;
202     std::string GEPName = Ptr->getName().str() + ".0";
203 
204     // Add 0 index to look through the pointer.
205     assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) &&
206            "Offset out of bounds");
207     Indices.push_back(Constant::getNullValue(IRB.getInt32Ty()));
208 
209     Type *Ty = PtrElemTy;
210     do {
211       auto *STy = dyn_cast<StructType>(Ty);
212       if (!STy)
213         // Non-aggregate type, we cast and make byte-wise progress now.
214         break;
215 
216       const StructLayout *SL = DL.getStructLayout(STy);
217       if (int64_t(SL->getSizeInBytes()) < Offset)
218         break;
219 
220       uint64_t Idx = SL->getElementContainingOffset(Offset);
221       assert(Idx < STy->getNumElements() && "Offset calculation error!");
222       uint64_t Rem = Offset - SL->getElementOffset(Idx);
223       Ty = STy->getElementType(Idx);
224 
225       LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
226                         << " Idx: " << Idx << " Rem: " << Rem << "\n");
227 
228       GEPName += "." + std::to_string(Idx);
229       Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
230       Offset = Rem;
231     } while (Offset);
232 
233     // Create a GEP for the indices collected above.
234     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName);
235 
236     // If an offset is left we use byte-wise adjustment.
237     if (Offset) {
238       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
239       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset),
240                           GEPName + ".b" + Twine(Offset));
241     }
242   }
243 
244   // Ensure the result has the requested type.
245   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
246 
247   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
248   return Ptr;
249 }
250 
251 /// Recursively visit all values that might become \p IRP at some point. This
252 /// will be done by looking through cast instructions, selects, phis, and calls
253 /// with the "returned" attribute. Once we cannot look through the value any
254 /// further, the callback \p VisitValueCB is invoked and passed the current
255 /// value, the \p State, and a flag to indicate if we stripped anything.
256 /// Stripped means that we unpacked the value associated with \p IRP at least
257 /// once. Note that the value used for the callback may still be the value
258 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
259 /// we will never visit more values than specified by \p MaxValues.
260 template <typename AAType, typename StateTy>
261 static bool genericValueTraversal(
262     Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
263     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
264         VisitValueCB,
265     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
266     function_ref<Value *(Value *)> StripCB = nullptr) {
267 
268   const AAIsDead *LivenessAA = nullptr;
269   if (IRP.getAnchorScope())
270     LivenessAA = &A.getAAFor<AAIsDead>(
271         QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
272         DepClassTy::NONE);
273   bool AnyDead = false;
274 
275   using Item = std::pair<Value *, const Instruction *>;
276   SmallSet<Item, 16> Visited;
277   SmallVector<Item, 16> Worklist;
278   Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
279 
280   int Iteration = 0;
281   do {
282     Item I = Worklist.pop_back_val();
283     Value *V = I.first;
284     CtxI = I.second;
285     if (StripCB)
286       V = StripCB(V);
287 
288     // Check if we should process the current value. To prevent endless
289     // recursion keep a record of the values we followed!
290     if (!Visited.insert(I).second)
291       continue;
292 
293     // Make sure we limit the compile time for complex expressions.
294     if (Iteration++ >= MaxValues)
295       return false;
296 
297     // Explicitly look through calls with a "returned" attribute if we do
298     // not have a pointer as stripPointerCasts only works on them.
299     Value *NewV = nullptr;
300     if (V->getType()->isPointerTy()) {
301       NewV = V->stripPointerCasts();
302     } else {
303       auto *CB = dyn_cast<CallBase>(V);
304       if (CB && CB->getCalledFunction()) {
305         for (Argument &Arg : CB->getCalledFunction()->args())
306           if (Arg.hasReturnedAttr()) {
307             NewV = CB->getArgOperand(Arg.getArgNo());
308             break;
309           }
310       }
311     }
312     if (NewV && NewV != V) {
313       Worklist.push_back({NewV, CtxI});
314       continue;
315     }
316 
317     // Look through select instructions, visit both potential values.
318     if (auto *SI = dyn_cast<SelectInst>(V)) {
319       Worklist.push_back({SI->getTrueValue(), CtxI});
320       Worklist.push_back({SI->getFalseValue(), CtxI});
321       continue;
322     }
323 
324     // Look through phi nodes, visit all live operands.
325     if (auto *PHI = dyn_cast<PHINode>(V)) {
326       assert(LivenessAA &&
327              "Expected liveness in the presence of instructions!");
328       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
329         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
330         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
331                             LivenessAA,
332                             /* CheckBBLivenessOnly */ true)) {
333           AnyDead = true;
334           continue;
335         }
336         Worklist.push_back(
337             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
338       }
339       continue;
340     }
341 
342     if (UseValueSimplify && !isa<Constant>(V)) {
343       bool UsedAssumedInformation = false;
344       Optional<Constant *> C =
345           A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation);
346       if (!C.hasValue())
347         continue;
348       if (Value *NewV = C.getValue()) {
349         Worklist.push_back({NewV, CtxI});
350         continue;
351       }
352     }
353 
354     // Once a leaf is reached we inform the user through the callback.
355     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
356       return false;
357   } while (!Worklist.empty());
358 
359   // If we actually used liveness information so we have to record a dependence.
360   if (AnyDead)
361     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
362 
363   // All values have been visited.
364   return true;
365 }
366 
367 const Value *stripAndAccumulateMinimalOffsets(
368     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
369     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
370     bool UseAssumed = false) {
371 
372   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
373     const IRPosition &Pos = IRPosition::value(V);
374     // Only track dependence if we are going to use the assumed info.
375     const AAValueConstantRange &ValueConstantRangeAA =
376         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
377                                          UseAssumed ? DepClassTy::OPTIONAL
378                                                     : DepClassTy::NONE);
379     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
380                                      : ValueConstantRangeAA.getKnown();
381     // We can only use the lower part of the range because the upper part can
382     // be higher than what the value can really be.
383     ROffset = Range.getSignedMin();
384     return true;
385   };
386 
387   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
388                                                 AttributorAnalysis);
389 }
390 
391 static const Value *getMinimalBaseOfAccsesPointerOperand(
392     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
393     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
394   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
395   if (!Ptr)
396     return nullptr;
397   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
398   const Value *Base = stripAndAccumulateMinimalOffsets(
399       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
400 
401   BytesOffset = OffsetAPInt.getSExtValue();
402   return Base;
403 }
404 
405 static const Value *
406 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
407                                      const DataLayout &DL,
408                                      bool AllowNonInbounds = false) {
409   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
410   if (!Ptr)
411     return nullptr;
412 
413   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
414                                           AllowNonInbounds);
415 }
416 
417 /// Helper function to clamp a state \p S of type \p StateType with the
418 /// information in \p R and indicate/return if \p S did change (as-in update is
419 /// required to be run again).
420 template <typename StateType>
421 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
422   auto Assumed = S.getAssumed();
423   S ^= R;
424   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
425                                    : ChangeStatus::CHANGED;
426 }
427 
428 /// Clamp the information known for all returned values of a function
429 /// (identified by \p QueryingAA) into \p S.
430 template <typename AAType, typename StateType = typename AAType::StateType>
431 static void clampReturnedValueStates(
432     Attributor &A, const AAType &QueryingAA, StateType &S,
433     const IRPosition::CallBaseContext *CBContext = nullptr) {
434   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
435                     << QueryingAA << " into " << S << "\n");
436 
437   assert((QueryingAA.getIRPosition().getPositionKind() ==
438               IRPosition::IRP_RETURNED ||
439           QueryingAA.getIRPosition().getPositionKind() ==
440               IRPosition::IRP_CALL_SITE_RETURNED) &&
441          "Can only clamp returned value states for a function returned or call "
442          "site returned position!");
443 
444   // Use an optional state as there might not be any return values and we want
445   // to join (IntegerState::operator&) the state of all there are.
446   Optional<StateType> T;
447 
448   // Callback for each possibly returned value.
449   auto CheckReturnValue = [&](Value &RV) -> bool {
450     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
451     const AAType &AA =
452         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
453     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
454                       << " @ " << RVPos << "\n");
455     const StateType &AAS = AA.getState();
456     if (T.hasValue())
457       *T &= AAS;
458     else
459       T = AAS;
460     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
461                       << "\n");
462     return T->isValidState();
463   };
464 
465   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
466     S.indicatePessimisticFixpoint();
467   else if (T.hasValue())
468     S ^= *T;
469 }
470 
471 /// Helper class for generic deduction: return value -> returned position.
472 template <typename AAType, typename BaseType,
473           typename StateType = typename BaseType::StateType,
474           bool PropagateCallBaseContext = false>
475 struct AAReturnedFromReturnedValues : public BaseType {
476   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
477       : BaseType(IRP, A) {}
478 
479   /// See AbstractAttribute::updateImpl(...).
480   ChangeStatus updateImpl(Attributor &A) override {
481     StateType S(StateType::getBestState(this->getState()));
482     clampReturnedValueStates<AAType, StateType>(
483         A, *this, S,
484         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
485     // TODO: If we know we visited all returned values, thus no are assumed
486     // dead, we can take the known information from the state T.
487     return clampStateAndIndicateChange<StateType>(this->getState(), S);
488   }
489 };
490 
491 /// Clamp the information known at all call sites for a given argument
492 /// (identified by \p QueryingAA) into \p S.
493 template <typename AAType, typename StateType = typename AAType::StateType>
494 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
495                                         StateType &S) {
496   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
497                     << QueryingAA << " into " << S << "\n");
498 
499   assert(QueryingAA.getIRPosition().getPositionKind() ==
500              IRPosition::IRP_ARGUMENT &&
501          "Can only clamp call site argument states for an argument position!");
502 
503   // Use an optional state as there might not be any return values and we want
504   // to join (IntegerState::operator&) the state of all there are.
505   Optional<StateType> T;
506 
507   // The argument number which is also the call site argument number.
508   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
509 
510   auto CallSiteCheck = [&](AbstractCallSite ACS) {
511     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
512     // Check if a coresponding argument was found or if it is on not associated
513     // (which can happen for callback calls).
514     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
515       return false;
516 
517     const AAType &AA =
518         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
519     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
520                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
521     const StateType &AAS = AA.getState();
522     if (T.hasValue())
523       *T &= AAS;
524     else
525       T = AAS;
526     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
527                       << "\n");
528     return T->isValidState();
529   };
530 
531   bool AllCallSitesKnown;
532   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
533                               AllCallSitesKnown))
534     S.indicatePessimisticFixpoint();
535   else if (T.hasValue())
536     S ^= *T;
537 }
538 
539 /// This function is the bridge between argument position and the call base
540 /// context.
541 template <typename AAType, typename BaseType,
542           typename StateType = typename AAType::StateType>
543 bool getArgumentStateFromCallBaseContext(Attributor &A,
544                                          BaseType &QueryingAttribute,
545                                          IRPosition &Pos, StateType &State) {
546   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
547          "Expected an 'argument' position !");
548   const CallBase *CBContext = Pos.getCallBaseContext();
549   if (!CBContext)
550     return false;
551 
552   int ArgNo = Pos.getCallSiteArgNo();
553   assert(ArgNo >= 0 && "Invalid Arg No!");
554 
555   const auto &AA = A.getAAFor<AAType>(
556       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
557       DepClassTy::REQUIRED);
558   const StateType &CBArgumentState =
559       static_cast<const StateType &>(AA.getState());
560 
561   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
562                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
563                     << "\n");
564 
565   // NOTE: If we want to do call site grouping it should happen here.
566   State ^= CBArgumentState;
567   return true;
568 }
569 
570 /// Helper class for generic deduction: call site argument -> argument position.
571 template <typename AAType, typename BaseType,
572           typename StateType = typename AAType::StateType,
573           bool BridgeCallBaseContext = false>
574 struct AAArgumentFromCallSiteArguments : public BaseType {
575   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
576       : BaseType(IRP, A) {}
577 
578   /// See AbstractAttribute::updateImpl(...).
579   ChangeStatus updateImpl(Attributor &A) override {
580     StateType S = StateType::getBestState(this->getState());
581 
582     if (BridgeCallBaseContext) {
583       bool Success =
584           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
585               A, *this, this->getIRPosition(), S);
586       if (Success)
587         return clampStateAndIndicateChange<StateType>(this->getState(), S);
588     }
589     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
590 
591     // TODO: If we know we visited all incoming values, thus no are assumed
592     // dead, we can take the known information from the state T.
593     return clampStateAndIndicateChange<StateType>(this->getState(), S);
594   }
595 };
596 
597 /// Helper class for generic replication: function returned -> cs returned.
598 template <typename AAType, typename BaseType,
599           typename StateType = typename BaseType::StateType,
600           bool IntroduceCallBaseContext = false>
601 struct AACallSiteReturnedFromReturned : public BaseType {
602   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
603       : BaseType(IRP, A) {}
604 
605   /// See AbstractAttribute::updateImpl(...).
606   ChangeStatus updateImpl(Attributor &A) override {
607     assert(this->getIRPosition().getPositionKind() ==
608                IRPosition::IRP_CALL_SITE_RETURNED &&
609            "Can only wrap function returned positions for call site returned "
610            "positions!");
611     auto &S = this->getState();
612 
613     const Function *AssociatedFunction =
614         this->getIRPosition().getAssociatedFunction();
615     if (!AssociatedFunction)
616       return S.indicatePessimisticFixpoint();
617 
618     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
619     if (IntroduceCallBaseContext)
620       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
621                         << CBContext << "\n");
622 
623     IRPosition FnPos = IRPosition::returned(
624         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
625     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
626     return clampStateAndIndicateChange(S, AA.getState());
627   }
628 };
629 
630 /// Helper function to accumulate uses.
631 template <class AAType, typename StateType = typename AAType::StateType>
632 static void followUsesInContext(AAType &AA, Attributor &A,
633                                 MustBeExecutedContextExplorer &Explorer,
634                                 const Instruction *CtxI,
635                                 SetVector<const Use *> &Uses,
636                                 StateType &State) {
637   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
638   for (unsigned u = 0; u < Uses.size(); ++u) {
639     const Use *U = Uses[u];
640     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
641       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
642       if (Found && AA.followUseInMBEC(A, U, UserI, State))
643         for (const Use &Us : UserI->uses())
644           Uses.insert(&Us);
645     }
646   }
647 }
648 
649 /// Use the must-be-executed-context around \p I to add information into \p S.
650 /// The AAType class is required to have `followUseInMBEC` method with the
651 /// following signature and behaviour:
652 ///
653 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
654 /// U - Underlying use.
655 /// I - The user of the \p U.
656 /// Returns true if the value should be tracked transitively.
657 ///
658 template <class AAType, typename StateType = typename AAType::StateType>
659 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
660                              Instruction &CtxI) {
661 
662   // Container for (transitive) uses of the associated value.
663   SetVector<const Use *> Uses;
664   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
665     Uses.insert(&U);
666 
667   MustBeExecutedContextExplorer &Explorer =
668       A.getInfoCache().getMustBeExecutedContextExplorer();
669 
670   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
671 
672   if (S.isAtFixpoint())
673     return;
674 
675   SmallVector<const BranchInst *, 4> BrInsts;
676   auto Pred = [&](const Instruction *I) {
677     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
678       if (Br->isConditional())
679         BrInsts.push_back(Br);
680     return true;
681   };
682 
683   // Here, accumulate conditional branch instructions in the context. We
684   // explore the child paths and collect the known states. The disjunction of
685   // those states can be merged to its own state. Let ParentState_i be a state
686   // to indicate the known information for an i-th branch instruction in the
687   // context. ChildStates are created for its successors respectively.
688   //
689   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
690   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
691   //      ...
692   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
693   //
694   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
695   //
696   // FIXME: Currently, recursive branches are not handled. For example, we
697   // can't deduce that ptr must be dereferenced in below function.
698   //
699   // void f(int a, int c, int *ptr) {
700   //    if(a)
701   //      if (b) {
702   //        *ptr = 0;
703   //      } else {
704   //        *ptr = 1;
705   //      }
706   //    else {
707   //      if (b) {
708   //        *ptr = 0;
709   //      } else {
710   //        *ptr = 1;
711   //      }
712   //    }
713   // }
714 
715   Explorer.checkForAllContext(&CtxI, Pred);
716   for (const BranchInst *Br : BrInsts) {
717     StateType ParentState;
718 
719     // The known state of the parent state is a conjunction of children's
720     // known states so it is initialized with a best state.
721     ParentState.indicateOptimisticFixpoint();
722 
723     for (const BasicBlock *BB : Br->successors()) {
724       StateType ChildState;
725 
726       size_t BeforeSize = Uses.size();
727       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
728 
729       // Erase uses which only appear in the child.
730       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
731         It = Uses.erase(It);
732 
733       ParentState &= ChildState;
734     }
735 
736     // Use only known state.
737     S += ParentState;
738   }
739 }
740 
741 /// -----------------------NoUnwind Function Attribute--------------------------
742 
743 struct AANoUnwindImpl : AANoUnwind {
744   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
745 
746   const std::string getAsStr() const override {
747     return getAssumed() ? "nounwind" : "may-unwind";
748   }
749 
750   /// See AbstractAttribute::updateImpl(...).
751   ChangeStatus updateImpl(Attributor &A) override {
752     auto Opcodes = {
753         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
754         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
755         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
756 
757     auto CheckForNoUnwind = [&](Instruction &I) {
758       if (!I.mayThrow())
759         return true;
760 
761       if (const auto *CB = dyn_cast<CallBase>(&I)) {
762         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
763             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
764         return NoUnwindAA.isAssumedNoUnwind();
765       }
766       return false;
767     };
768 
769     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
770       return indicatePessimisticFixpoint();
771 
772     return ChangeStatus::UNCHANGED;
773   }
774 };
775 
776 struct AANoUnwindFunction final : public AANoUnwindImpl {
777   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
778       : AANoUnwindImpl(IRP, A) {}
779 
780   /// See AbstractAttribute::trackStatistics()
781   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
782 };
783 
784 /// NoUnwind attribute deduction for a call sites.
785 struct AANoUnwindCallSite final : AANoUnwindImpl {
786   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
787       : AANoUnwindImpl(IRP, A) {}
788 
789   /// See AbstractAttribute::initialize(...).
790   void initialize(Attributor &A) override {
791     AANoUnwindImpl::initialize(A);
792     Function *F = getAssociatedFunction();
793     if (!F || F->isDeclaration())
794       indicatePessimisticFixpoint();
795   }
796 
797   /// See AbstractAttribute::updateImpl(...).
798   ChangeStatus updateImpl(Attributor &A) override {
799     // TODO: Once we have call site specific value information we can provide
800     //       call site specific liveness information and then it makes
801     //       sense to specialize attributes for call sites arguments instead of
802     //       redirecting requests to the callee argument.
803     Function *F = getAssociatedFunction();
804     const IRPosition &FnPos = IRPosition::function(*F);
805     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
806     return clampStateAndIndicateChange(getState(), FnAA.getState());
807   }
808 
809   /// See AbstractAttribute::trackStatistics()
810   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
811 };
812 
813 /// --------------------- Function Return Values -------------------------------
814 
815 /// "Attribute" that collects all potential returned values and the return
816 /// instructions that they arise from.
817 ///
818 /// If there is a unique returned value R, the manifest method will:
819 ///   - mark R with the "returned" attribute, if R is an argument.
820 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
821 
822   /// Mapping of values potentially returned by the associated function to the
823   /// return instructions that might return them.
824   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
825 
826   /// Mapping to remember the number of returned values for a call site such
827   /// that we can avoid updates if nothing changed.
828   DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
829 
830   /// Set of unresolved calls returned by the associated function.
831   SmallSetVector<CallBase *, 4> UnresolvedCalls;
832 
833   /// State flags
834   ///
835   ///{
836   bool IsFixed = false;
837   bool IsValidState = true;
838   ///}
839 
840 public:
841   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
842       : AAReturnedValues(IRP, A) {}
843 
844   /// See AbstractAttribute::initialize(...).
845   void initialize(Attributor &A) override {
846     // Reset the state.
847     IsFixed = false;
848     IsValidState = true;
849     ReturnedValues.clear();
850 
851     Function *F = getAssociatedFunction();
852     if (!F || F->isDeclaration()) {
853       indicatePessimisticFixpoint();
854       return;
855     }
856     assert(!F->getReturnType()->isVoidTy() &&
857            "Did not expect a void return type!");
858 
859     // The map from instruction opcodes to those instructions in the function.
860     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
861 
862     // Look through all arguments, if one is marked as returned we are done.
863     for (Argument &Arg : F->args()) {
864       if (Arg.hasReturnedAttr()) {
865         auto &ReturnInstSet = ReturnedValues[&Arg];
866         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
867           for (Instruction *RI : *Insts)
868             ReturnInstSet.insert(cast<ReturnInst>(RI));
869 
870         indicateOptimisticFixpoint();
871         return;
872       }
873     }
874 
875     if (!A.isFunctionIPOAmendable(*F))
876       indicatePessimisticFixpoint();
877   }
878 
879   /// See AbstractAttribute::manifest(...).
880   ChangeStatus manifest(Attributor &A) override;
881 
882   /// See AbstractAttribute::getState(...).
883   AbstractState &getState() override { return *this; }
884 
885   /// See AbstractAttribute::getState(...).
886   const AbstractState &getState() const override { return *this; }
887 
888   /// See AbstractAttribute::updateImpl(Attributor &A).
889   ChangeStatus updateImpl(Attributor &A) override;
890 
891   llvm::iterator_range<iterator> returned_values() override {
892     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
893   }
894 
895   llvm::iterator_range<const_iterator> returned_values() const override {
896     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
897   }
898 
899   const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
900     return UnresolvedCalls;
901   }
902 
903   /// Return the number of potential return values, -1 if unknown.
904   size_t getNumReturnValues() const override {
905     return isValidState() ? ReturnedValues.size() : -1;
906   }
907 
908   /// Return an assumed unique return value if a single candidate is found. If
909   /// there cannot be one, return a nullptr. If it is not clear yet, return the
910   /// Optional::NoneType.
911   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
912 
913   /// See AbstractState::checkForAllReturnedValues(...).
914   bool checkForAllReturnedValuesAndReturnInsts(
915       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
916       const override;
917 
918   /// Pretty print the attribute similar to the IR representation.
919   const std::string getAsStr() const override;
920 
921   /// See AbstractState::isAtFixpoint().
922   bool isAtFixpoint() const override { return IsFixed; }
923 
924   /// See AbstractState::isValidState().
925   bool isValidState() const override { return IsValidState; }
926 
927   /// See AbstractState::indicateOptimisticFixpoint(...).
928   ChangeStatus indicateOptimisticFixpoint() override {
929     IsFixed = true;
930     return ChangeStatus::UNCHANGED;
931   }
932 
933   ChangeStatus indicatePessimisticFixpoint() override {
934     IsFixed = true;
935     IsValidState = false;
936     return ChangeStatus::CHANGED;
937   }
938 };
939 
940 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
941   ChangeStatus Changed = ChangeStatus::UNCHANGED;
942 
943   // Bookkeeping.
944   assert(isValidState());
945   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
946                   "Number of function with known return values");
947 
948   // Check if we have an assumed unique return value that we could manifest.
949   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
950 
951   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
952     return Changed;
953 
954   // Bookkeeping.
955   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
956                   "Number of function with unique return");
957 
958   // Callback to replace the uses of CB with the constant C.
959   auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
960     if (CB.use_empty())
961       return ChangeStatus::UNCHANGED;
962     if (A.changeValueAfterManifest(CB, C))
963       return ChangeStatus::CHANGED;
964     return ChangeStatus::UNCHANGED;
965   };
966 
967   // If the assumed unique return value is an argument, annotate it.
968   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
969     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
970             getAssociatedFunction()->getReturnType())) {
971       getIRPosition() = IRPosition::argument(*UniqueRVArg);
972       Changed = IRAttribute::manifest(A);
973     }
974   } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
975     // We can replace the returned value with the unique returned constant.
976     Value &AnchorValue = getAnchorValue();
977     if (Function *F = dyn_cast<Function>(&AnchorValue)) {
978       for (const Use &U : F->uses())
979         if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
980           if (CB->isCallee(&U)) {
981             Constant *RVCCast =
982                 CB->getType() == RVC->getType()
983                     ? RVC
984                     : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
985             Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
986           }
987     } else {
988       assert(isa<CallBase>(AnchorValue) &&
989              "Expcected a function or call base anchor!");
990       Constant *RVCCast =
991           AnchorValue.getType() == RVC->getType()
992               ? RVC
993               : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
994       Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
995     }
996     if (Changed == ChangeStatus::CHANGED)
997       STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
998                       "Number of function returns replaced by constant return");
999   }
1000 
1001   return Changed;
1002 }
1003 
1004 const std::string AAReturnedValuesImpl::getAsStr() const {
1005   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1006          (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
1007          ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
1008 }
1009 
1010 Optional<Value *>
1011 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1012   // If checkForAllReturnedValues provides a unique value, ignoring potential
1013   // undef values that can also be present, it is assumed to be the actual
1014   // return value and forwarded to the caller of this method. If there are
1015   // multiple, a nullptr is returned indicating there cannot be a unique
1016   // returned value.
1017   Optional<Value *> UniqueRV;
1018 
1019   auto Pred = [&](Value &RV) -> bool {
1020     // If we found a second returned value and neither the current nor the saved
1021     // one is an undef, there is no unique returned value. Undefs are special
1022     // since we can pretend they have any value.
1023     if (UniqueRV.hasValue() && UniqueRV != &RV &&
1024         !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
1025       UniqueRV = nullptr;
1026       return false;
1027     }
1028 
1029     // Do not overwrite a value with an undef.
1030     if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
1031       UniqueRV = &RV;
1032 
1033     return true;
1034   };
1035 
1036   if (!A.checkForAllReturnedValues(Pred, *this))
1037     UniqueRV = nullptr;
1038 
1039   return UniqueRV;
1040 }
1041 
1042 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1043     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1044     const {
1045   if (!isValidState())
1046     return false;
1047 
1048   // Check all returned values but ignore call sites as long as we have not
1049   // encountered an overdefined one during an update.
1050   for (auto &It : ReturnedValues) {
1051     Value *RV = It.first;
1052 
1053     CallBase *CB = dyn_cast<CallBase>(RV);
1054     if (CB && !UnresolvedCalls.count(CB))
1055       continue;
1056 
1057     if (!Pred(*RV, It.second))
1058       return false;
1059   }
1060 
1061   return true;
1062 }
1063 
1064 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1065   size_t NumUnresolvedCalls = UnresolvedCalls.size();
1066   bool Changed = false;
1067 
1068   // State used in the value traversals starting in returned values.
1069   struct RVState {
1070     // The map in which we collect return values -> return instrs.
1071     decltype(ReturnedValues) &RetValsMap;
1072     // The flag to indicate a change.
1073     bool &Changed;
1074     // The return instrs we come from.
1075     SmallSetVector<ReturnInst *, 4> RetInsts;
1076   };
1077 
1078   // Callback for a leaf value returned by the associated function.
1079   auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
1080                          bool) -> bool {
1081     auto Size = RVS.RetValsMap[&Val].size();
1082     RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1083     bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1084     RVS.Changed |= Inserted;
1085     LLVM_DEBUG({
1086       if (Inserted)
1087         dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1088                << " => " << RVS.RetInsts.size() << "\n";
1089     });
1090     return true;
1091   };
1092 
1093   // Helper method to invoke the generic value traversal.
1094   auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
1095                                 const Instruction *CtxI) {
1096     IRPosition RetValPos = IRPosition::value(RV);
1097     return genericValueTraversal<AAReturnedValues, RVState>(
1098         A, RetValPos, *this, RVS, VisitValueCB, CtxI,
1099         /* UseValueSimplify */ false);
1100   };
1101 
1102   // Callback for all "return intructions" live in the associated function.
1103   auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1104     ReturnInst &Ret = cast<ReturnInst>(I);
1105     RVState RVS({ReturnedValues, Changed, {}});
1106     RVS.RetInsts.insert(&Ret);
1107     return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
1108   };
1109 
1110   // Start by discovering returned values from all live returned instructions in
1111   // the associated function.
1112   if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1113     return indicatePessimisticFixpoint();
1114 
1115   // Once returned values "directly" present in the code are handled we try to
1116   // resolve returned calls. To avoid modifications to the ReturnedValues map
1117   // while we iterate over it we kept record of potential new entries in a copy
1118   // map, NewRVsMap.
1119   decltype(ReturnedValues) NewRVsMap;
1120 
1121   auto HandleReturnValue = [&](Value *RV,
1122                                SmallSetVector<ReturnInst *, 4> &RIs) {
1123     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #"
1124                       << RIs.size() << " RIs\n");
1125     CallBase *CB = dyn_cast<CallBase>(RV);
1126     if (!CB || UnresolvedCalls.count(CB))
1127       return;
1128 
1129     if (!CB->getCalledFunction()) {
1130       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1131                         << "\n");
1132       UnresolvedCalls.insert(CB);
1133       return;
1134     }
1135 
1136     // TODO: use the function scope once we have call site AAReturnedValues.
1137     const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1138         *this, IRPosition::function(*CB->getCalledFunction()),
1139         DepClassTy::REQUIRED);
1140     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1141                       << RetValAA << "\n");
1142 
1143     // Skip dead ends, thus if we do not know anything about the returned
1144     // call we mark it as unresolved and it will stay that way.
1145     if (!RetValAA.getState().isValidState()) {
1146       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1147                         << "\n");
1148       UnresolvedCalls.insert(CB);
1149       return;
1150     }
1151 
1152     // Do not try to learn partial information. If the callee has unresolved
1153     // return values we will treat the call as unresolved/opaque.
1154     auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1155     if (!RetValAAUnresolvedCalls.empty()) {
1156       UnresolvedCalls.insert(CB);
1157       return;
1158     }
1159 
1160     // Now check if we can track transitively returned values. If possible, thus
1161     // if all return value can be represented in the current scope, do so.
1162     bool Unresolved = false;
1163     for (auto &RetValAAIt : RetValAA.returned_values()) {
1164       Value *RetVal = RetValAAIt.first;
1165       if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1166           isa<Constant>(RetVal))
1167         continue;
1168       // Anything that did not fit in the above categories cannot be resolved,
1169       // mark the call as unresolved.
1170       LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1171                            "cannot be translated: "
1172                         << *RetVal << "\n");
1173       UnresolvedCalls.insert(CB);
1174       Unresolved = true;
1175       break;
1176     }
1177 
1178     if (Unresolved)
1179       return;
1180 
1181     // Now track transitively returned values.
1182     unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1183     if (NumRetAA == RetValAA.getNumReturnValues()) {
1184       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1185                            "changed since it was seen last\n");
1186       return;
1187     }
1188     NumRetAA = RetValAA.getNumReturnValues();
1189 
1190     for (auto &RetValAAIt : RetValAA.returned_values()) {
1191       Value *RetVal = RetValAAIt.first;
1192       if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1193         // Arguments are mapped to call site operands and we begin the traversal
1194         // again.
1195         bool Unused = false;
1196         RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1197         VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
1198         continue;
1199       }
1200       if (isa<CallBase>(RetVal)) {
1201         // Call sites are resolved by the callee attribute over time, no need to
1202         // do anything for us.
1203         continue;
1204       }
1205       if (isa<Constant>(RetVal)) {
1206         // Constants are valid everywhere, we can simply take them.
1207         NewRVsMap[RetVal].insert(RIs.begin(), RIs.end());
1208         continue;
1209       }
1210     }
1211   };
1212 
1213   for (auto &It : ReturnedValues)
1214     HandleReturnValue(It.first, It.second);
1215 
1216   // Because processing the new information can again lead to new return values
1217   // we have to be careful and iterate until this iteration is complete. The
1218   // idea is that we are in a stable state at the end of an update. All return
1219   // values have been handled and properly categorized. We might not update
1220   // again if we have not requested a non-fix attribute so we cannot "wait" for
1221   // the next update to analyze a new return value.
1222   while (!NewRVsMap.empty()) {
1223     auto It = std::move(NewRVsMap.back());
1224     NewRVsMap.pop_back();
1225 
1226     assert(!It.second.empty() && "Entry does not add anything.");
1227     auto &ReturnInsts = ReturnedValues[It.first];
1228     for (ReturnInst *RI : It.second)
1229       if (ReturnInsts.insert(RI)) {
1230         LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1231                           << *It.first << " => " << *RI << "\n");
1232         HandleReturnValue(It.first, ReturnInsts);
1233         Changed = true;
1234       }
1235   }
1236 
1237   Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1238   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1239 }
1240 
1241 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1242   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1243       : AAReturnedValuesImpl(IRP, A) {}
1244 
1245   /// See AbstractAttribute::trackStatistics()
1246   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1247 };
1248 
1249 /// Returned values information for a call sites.
1250 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1251   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1252       : AAReturnedValuesImpl(IRP, A) {}
1253 
1254   /// See AbstractAttribute::initialize(...).
1255   void initialize(Attributor &A) override {
1256     // TODO: Once we have call site specific value information we can provide
1257     //       call site specific liveness information and then it makes
1258     //       sense to specialize attributes for call sites instead of
1259     //       redirecting requests to the callee.
1260     llvm_unreachable("Abstract attributes for returned values are not "
1261                      "supported for call sites yet!");
1262   }
1263 
1264   /// See AbstractAttribute::updateImpl(...).
1265   ChangeStatus updateImpl(Attributor &A) override {
1266     return indicatePessimisticFixpoint();
1267   }
1268 
1269   /// See AbstractAttribute::trackStatistics()
1270   void trackStatistics() const override {}
1271 };
1272 
1273 /// ------------------------ NoSync Function Attribute -------------------------
1274 
1275 struct AANoSyncImpl : AANoSync {
1276   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1277 
1278   const std::string getAsStr() const override {
1279     return getAssumed() ? "nosync" : "may-sync";
1280   }
1281 
1282   /// See AbstractAttribute::updateImpl(...).
1283   ChangeStatus updateImpl(Attributor &A) override;
1284 
1285   /// Helper function used to determine whether an instruction is non-relaxed
1286   /// atomic. In other words, if an atomic instruction does not have unordered
1287   /// or monotonic ordering
1288   static bool isNonRelaxedAtomic(Instruction *I);
1289 
1290   /// Helper function used to determine whether an instruction is volatile.
1291   static bool isVolatile(Instruction *I);
1292 
1293   /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1294   /// memset).
1295   static bool isNoSyncIntrinsic(Instruction *I);
1296 };
1297 
1298 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1299   if (!I->isAtomic())
1300     return false;
1301 
1302   AtomicOrdering Ordering;
1303   switch (I->getOpcode()) {
1304   case Instruction::AtomicRMW:
1305     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1306     break;
1307   case Instruction::Store:
1308     Ordering = cast<StoreInst>(I)->getOrdering();
1309     break;
1310   case Instruction::Load:
1311     Ordering = cast<LoadInst>(I)->getOrdering();
1312     break;
1313   case Instruction::Fence: {
1314     auto *FI = cast<FenceInst>(I);
1315     if (FI->getSyncScopeID() == SyncScope::SingleThread)
1316       return false;
1317     Ordering = FI->getOrdering();
1318     break;
1319   }
1320   case Instruction::AtomicCmpXchg: {
1321     AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1322     AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1323     // Only if both are relaxed, than it can be treated as relaxed.
1324     // Otherwise it is non-relaxed.
1325     if (Success != AtomicOrdering::Unordered &&
1326         Success != AtomicOrdering::Monotonic)
1327       return true;
1328     if (Failure != AtomicOrdering::Unordered &&
1329         Failure != AtomicOrdering::Monotonic)
1330       return true;
1331     return false;
1332   }
1333   default:
1334     llvm_unreachable(
1335         "New atomic operations need to be known in the attributor.");
1336   }
1337 
1338   // Relaxed.
1339   if (Ordering == AtomicOrdering::Unordered ||
1340       Ordering == AtomicOrdering::Monotonic)
1341     return false;
1342   return true;
1343 }
1344 
1345 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1346 /// FIXME: We should ipmrove the handling of intrinsics.
1347 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1348   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1349     switch (II->getIntrinsicID()) {
1350     /// Element wise atomic memory intrinsics are can only be unordered,
1351     /// therefore nosync.
1352     case Intrinsic::memset_element_unordered_atomic:
1353     case Intrinsic::memmove_element_unordered_atomic:
1354     case Intrinsic::memcpy_element_unordered_atomic:
1355       return true;
1356     case Intrinsic::memset:
1357     case Intrinsic::memmove:
1358     case Intrinsic::memcpy:
1359       if (!cast<MemIntrinsic>(II)->isVolatile())
1360         return true;
1361       return false;
1362     default:
1363       return false;
1364     }
1365   }
1366   return false;
1367 }
1368 
1369 bool AANoSyncImpl::isVolatile(Instruction *I) {
1370   assert(!isa<CallBase>(I) && "Calls should not be checked here");
1371 
1372   switch (I->getOpcode()) {
1373   case Instruction::AtomicRMW:
1374     return cast<AtomicRMWInst>(I)->isVolatile();
1375   case Instruction::Store:
1376     return cast<StoreInst>(I)->isVolatile();
1377   case Instruction::Load:
1378     return cast<LoadInst>(I)->isVolatile();
1379   case Instruction::AtomicCmpXchg:
1380     return cast<AtomicCmpXchgInst>(I)->isVolatile();
1381   default:
1382     return false;
1383   }
1384 }
1385 
1386 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1387 
1388   auto CheckRWInstForNoSync = [&](Instruction &I) {
1389     /// We are looking for volatile instructions or Non-Relaxed atomics.
1390     /// FIXME: We should improve the handling of intrinsics.
1391 
1392     if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1393       return true;
1394 
1395     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1396       if (CB->hasFnAttr(Attribute::NoSync))
1397         return true;
1398 
1399       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1400           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1401       return NoSyncAA.isAssumedNoSync();
1402     }
1403 
1404     if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1405       return true;
1406 
1407     return false;
1408   };
1409 
1410   auto CheckForNoSync = [&](Instruction &I) {
1411     // At this point we handled all read/write effects and they are all
1412     // nosync, so they can be skipped.
1413     if (I.mayReadOrWriteMemory())
1414       return true;
1415 
1416     // non-convergent and readnone imply nosync.
1417     return !cast<CallBase>(I).isConvergent();
1418   };
1419 
1420   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1421       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1422     return indicatePessimisticFixpoint();
1423 
1424   return ChangeStatus::UNCHANGED;
1425 }
1426 
1427 struct AANoSyncFunction final : public AANoSyncImpl {
1428   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1429       : AANoSyncImpl(IRP, A) {}
1430 
1431   /// See AbstractAttribute::trackStatistics()
1432   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1433 };
1434 
1435 /// NoSync attribute deduction for a call sites.
1436 struct AANoSyncCallSite final : AANoSyncImpl {
1437   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1438       : AANoSyncImpl(IRP, A) {}
1439 
1440   /// See AbstractAttribute::initialize(...).
1441   void initialize(Attributor &A) override {
1442     AANoSyncImpl::initialize(A);
1443     Function *F = getAssociatedFunction();
1444     if (!F || F->isDeclaration())
1445       indicatePessimisticFixpoint();
1446   }
1447 
1448   /// See AbstractAttribute::updateImpl(...).
1449   ChangeStatus updateImpl(Attributor &A) override {
1450     // TODO: Once we have call site specific value information we can provide
1451     //       call site specific liveness information and then it makes
1452     //       sense to specialize attributes for call sites arguments instead of
1453     //       redirecting requests to the callee argument.
1454     Function *F = getAssociatedFunction();
1455     const IRPosition &FnPos = IRPosition::function(*F);
1456     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1457     return clampStateAndIndicateChange(getState(), FnAA.getState());
1458   }
1459 
1460   /// See AbstractAttribute::trackStatistics()
1461   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1462 };
1463 
1464 /// ------------------------ No-Free Attributes ----------------------------
1465 
1466 struct AANoFreeImpl : public AANoFree {
1467   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1468 
1469   /// See AbstractAttribute::updateImpl(...).
1470   ChangeStatus updateImpl(Attributor &A) override {
1471     auto CheckForNoFree = [&](Instruction &I) {
1472       const auto &CB = cast<CallBase>(I);
1473       if (CB.hasFnAttr(Attribute::NoFree))
1474         return true;
1475 
1476       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1477           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1478       return NoFreeAA.isAssumedNoFree();
1479     };
1480 
1481     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1482       return indicatePessimisticFixpoint();
1483     return ChangeStatus::UNCHANGED;
1484   }
1485 
1486   /// See AbstractAttribute::getAsStr().
1487   const std::string getAsStr() const override {
1488     return getAssumed() ? "nofree" : "may-free";
1489   }
1490 };
1491 
1492 struct AANoFreeFunction final : public AANoFreeImpl {
1493   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1494       : AANoFreeImpl(IRP, A) {}
1495 
1496   /// See AbstractAttribute::trackStatistics()
1497   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1498 };
1499 
1500 /// NoFree attribute deduction for a call sites.
1501 struct AANoFreeCallSite final : AANoFreeImpl {
1502   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1503       : AANoFreeImpl(IRP, A) {}
1504 
1505   /// See AbstractAttribute::initialize(...).
1506   void initialize(Attributor &A) override {
1507     AANoFreeImpl::initialize(A);
1508     Function *F = getAssociatedFunction();
1509     if (!F || F->isDeclaration())
1510       indicatePessimisticFixpoint();
1511   }
1512 
1513   /// See AbstractAttribute::updateImpl(...).
1514   ChangeStatus updateImpl(Attributor &A) override {
1515     // TODO: Once we have call site specific value information we can provide
1516     //       call site specific liveness information and then it makes
1517     //       sense to specialize attributes for call sites arguments instead of
1518     //       redirecting requests to the callee argument.
1519     Function *F = getAssociatedFunction();
1520     const IRPosition &FnPos = IRPosition::function(*F);
1521     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1522     return clampStateAndIndicateChange(getState(), FnAA.getState());
1523   }
1524 
1525   /// See AbstractAttribute::trackStatistics()
1526   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1527 };
1528 
1529 /// NoFree attribute for floating values.
1530 struct AANoFreeFloating : AANoFreeImpl {
1531   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1532       : AANoFreeImpl(IRP, A) {}
1533 
1534   /// See AbstractAttribute::trackStatistics()
1535   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1536 
1537   /// See Abstract Attribute::updateImpl(...).
1538   ChangeStatus updateImpl(Attributor &A) override {
1539     const IRPosition &IRP = getIRPosition();
1540 
1541     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1542         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1543     if (NoFreeAA.isAssumedNoFree())
1544       return ChangeStatus::UNCHANGED;
1545 
1546     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1547     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1548       Instruction *UserI = cast<Instruction>(U.getUser());
1549       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1550         if (CB->isBundleOperand(&U))
1551           return false;
1552         if (!CB->isArgOperand(&U))
1553           return true;
1554         unsigned ArgNo = CB->getArgOperandNo(&U);
1555 
1556         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1557             *this, IRPosition::callsite_argument(*CB, ArgNo),
1558             DepClassTy::REQUIRED);
1559         return NoFreeArg.isAssumedNoFree();
1560       }
1561 
1562       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1563           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1564         Follow = true;
1565         return true;
1566       }
1567       if (isa<ReturnInst>(UserI))
1568         return true;
1569 
1570       // Unknown user.
1571       return false;
1572     };
1573     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1574       return indicatePessimisticFixpoint();
1575 
1576     return ChangeStatus::UNCHANGED;
1577   }
1578 };
1579 
1580 /// NoFree attribute for a call site argument.
1581 struct AANoFreeArgument final : AANoFreeFloating {
1582   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1583       : AANoFreeFloating(IRP, A) {}
1584 
1585   /// See AbstractAttribute::trackStatistics()
1586   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1587 };
1588 
1589 /// NoFree attribute for call site arguments.
1590 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1591   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1592       : AANoFreeFloating(IRP, A) {}
1593 
1594   /// See AbstractAttribute::updateImpl(...).
1595   ChangeStatus updateImpl(Attributor &A) override {
1596     // TODO: Once we have call site specific value information we can provide
1597     //       call site specific liveness information and then it makes
1598     //       sense to specialize attributes for call sites arguments instead of
1599     //       redirecting requests to the callee argument.
1600     Argument *Arg = getAssociatedArgument();
1601     if (!Arg)
1602       return indicatePessimisticFixpoint();
1603     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1604     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
1605     return clampStateAndIndicateChange(getState(), ArgAA.getState());
1606   }
1607 
1608   /// See AbstractAttribute::trackStatistics()
1609   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1610 };
1611 
1612 /// NoFree attribute for function return value.
1613 struct AANoFreeReturned final : AANoFreeFloating {
1614   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
1615       : AANoFreeFloating(IRP, A) {
1616     llvm_unreachable("NoFree is not applicable to function returns!");
1617   }
1618 
1619   /// See AbstractAttribute::initialize(...).
1620   void initialize(Attributor &A) override {
1621     llvm_unreachable("NoFree is not applicable to function returns!");
1622   }
1623 
1624   /// See AbstractAttribute::updateImpl(...).
1625   ChangeStatus updateImpl(Attributor &A) override {
1626     llvm_unreachable("NoFree is not applicable to function returns!");
1627   }
1628 
1629   /// See AbstractAttribute::trackStatistics()
1630   void trackStatistics() const override {}
1631 };
1632 
1633 /// NoFree attribute deduction for a call site return value.
1634 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
1635   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
1636       : AANoFreeFloating(IRP, A) {}
1637 
1638   ChangeStatus manifest(Attributor &A) override {
1639     return ChangeStatus::UNCHANGED;
1640   }
1641   /// See AbstractAttribute::trackStatistics()
1642   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1643 };
1644 
1645 /// ------------------------ NonNull Argument Attribute ------------------------
1646 static int64_t getKnownNonNullAndDerefBytesForUse(
1647     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
1648     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1649   TrackUse = false;
1650 
1651   const Value *UseV = U->get();
1652   if (!UseV->getType()->isPointerTy())
1653     return 0;
1654 
1655   // We need to follow common pointer manipulation uses to the accesses they
1656   // feed into. We can try to be smart to avoid looking through things we do not
1657   // like for now, e.g., non-inbounds GEPs.
1658   if (isa<CastInst>(I)) {
1659     TrackUse = true;
1660     return 0;
1661   }
1662 
1663   if (isa<GetElementPtrInst>(I)) {
1664     TrackUse = true;
1665     return 0;
1666   }
1667 
1668   Type *PtrTy = UseV->getType();
1669   const Function *F = I->getFunction();
1670   bool NullPointerIsDefined =
1671       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1672   const DataLayout &DL = A.getInfoCache().getDL();
1673   if (const auto *CB = dyn_cast<CallBase>(I)) {
1674     if (CB->isBundleOperand(U)) {
1675       if (RetainedKnowledge RK = getKnowledgeFromUse(
1676               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
1677         IsNonNull |=
1678             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
1679         return RK.ArgValue;
1680       }
1681       return 0;
1682     }
1683 
1684     if (CB->isCallee(U)) {
1685       IsNonNull |= !NullPointerIsDefined;
1686       return 0;
1687     }
1688 
1689     unsigned ArgNo = CB->getArgOperandNo(U);
1690     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
1691     // As long as we only use known information there is no need to track
1692     // dependences here.
1693     auto &DerefAA =
1694         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
1695     IsNonNull |= DerefAA.isKnownNonNull();
1696     return DerefAA.getKnownDereferenceableBytes();
1697   }
1698 
1699   int64_t Offset;
1700   const Value *Base =
1701       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
1702   if (Base) {
1703     if (Base == &AssociatedValue &&
1704         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1705       int64_t DerefBytes =
1706           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1707 
1708       IsNonNull |= !NullPointerIsDefined;
1709       return std::max(int64_t(0), DerefBytes);
1710     }
1711   }
1712 
1713   /// Corner case when an offset is 0.
1714   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
1715                                               /*AllowNonInbounds*/ true);
1716   if (Base) {
1717     if (Offset == 0 && Base == &AssociatedValue &&
1718         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1719       int64_t DerefBytes =
1720           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1721       IsNonNull |= !NullPointerIsDefined;
1722       return std::max(int64_t(0), DerefBytes);
1723     }
1724   }
1725 
1726   return 0;
1727 }
1728 
1729 struct AANonNullImpl : AANonNull {
1730   AANonNullImpl(const IRPosition &IRP, Attributor &A)
1731       : AANonNull(IRP, A),
1732         NullIsDefined(NullPointerIsDefined(
1733             getAnchorScope(),
1734             getAssociatedValue().getType()->getPointerAddressSpace())) {}
1735 
1736   /// See AbstractAttribute::initialize(...).
1737   void initialize(Attributor &A) override {
1738     Value &V = getAssociatedValue();
1739     if (!NullIsDefined &&
1740         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
1741                 /* IgnoreSubsumingPositions */ false, &A)) {
1742       indicateOptimisticFixpoint();
1743       return;
1744     }
1745 
1746     if (isa<ConstantPointerNull>(V)) {
1747       indicatePessimisticFixpoint();
1748       return;
1749     }
1750 
1751     AANonNull::initialize(A);
1752 
1753     bool CanBeNull = true;
1754     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) {
1755       if (!CanBeNull) {
1756         indicateOptimisticFixpoint();
1757         return;
1758       }
1759     }
1760 
1761     if (isa<GlobalValue>(&getAssociatedValue())) {
1762       indicatePessimisticFixpoint();
1763       return;
1764     }
1765 
1766     if (Instruction *CtxI = getCtxI())
1767       followUsesInMBEC(*this, A, getState(), *CtxI);
1768   }
1769 
1770   /// See followUsesInMBEC
1771   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
1772                        AANonNull::StateType &State) {
1773     bool IsNonNull = false;
1774     bool TrackUse = false;
1775     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1776                                        IsNonNull, TrackUse);
1777     State.setKnown(IsNonNull);
1778     return TrackUse;
1779   }
1780 
1781   /// See AbstractAttribute::getAsStr().
1782   const std::string getAsStr() const override {
1783     return getAssumed() ? "nonnull" : "may-null";
1784   }
1785 
1786   /// Flag to determine if the underlying value can be null and still allow
1787   /// valid accesses.
1788   const bool NullIsDefined;
1789 };
1790 
1791 /// NonNull attribute for a floating value.
1792 struct AANonNullFloating : public AANonNullImpl {
1793   AANonNullFloating(const IRPosition &IRP, Attributor &A)
1794       : AANonNullImpl(IRP, A) {}
1795 
1796   /// See AbstractAttribute::updateImpl(...).
1797   ChangeStatus updateImpl(Attributor &A) override {
1798     const DataLayout &DL = A.getDataLayout();
1799 
1800     DominatorTree *DT = nullptr;
1801     AssumptionCache *AC = nullptr;
1802     InformationCache &InfoCache = A.getInfoCache();
1803     if (const Function *Fn = getAnchorScope()) {
1804       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
1805       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
1806     }
1807 
1808     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
1809                             AANonNull::StateType &T, bool Stripped) -> bool {
1810       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
1811                                              DepClassTy::REQUIRED);
1812       if (!Stripped && this == &AA) {
1813         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
1814           T.indicatePessimisticFixpoint();
1815       } else {
1816         // Use abstract attribute information.
1817         const AANonNull::StateType &NS = AA.getState();
1818         T ^= NS;
1819       }
1820       return T.isValidState();
1821     };
1822 
1823     StateType T;
1824     if (!genericValueTraversal<AANonNull, StateType>(
1825             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
1826       return indicatePessimisticFixpoint();
1827 
1828     return clampStateAndIndicateChange(getState(), T);
1829   }
1830 
1831   /// See AbstractAttribute::trackStatistics()
1832   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1833 };
1834 
1835 /// NonNull attribute for function return value.
1836 struct AANonNullReturned final
1837     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
1838   AANonNullReturned(const IRPosition &IRP, Attributor &A)
1839       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
1840 
1841   /// See AbstractAttribute::getAsStr().
1842   const std::string getAsStr() const override {
1843     return getAssumed() ? "nonnull" : "may-null";
1844   }
1845 
1846   /// See AbstractAttribute::trackStatistics()
1847   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1848 };
1849 
1850 /// NonNull attribute for function argument.
1851 struct AANonNullArgument final
1852     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
1853   AANonNullArgument(const IRPosition &IRP, Attributor &A)
1854       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
1855 
1856   /// See AbstractAttribute::trackStatistics()
1857   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1858 };
1859 
1860 struct AANonNullCallSiteArgument final : AANonNullFloating {
1861   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
1862       : AANonNullFloating(IRP, A) {}
1863 
1864   /// See AbstractAttribute::trackStatistics()
1865   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1866 };
1867 
1868 /// NonNull attribute for a call site return position.
1869 struct AANonNullCallSiteReturned final
1870     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
1871   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
1872       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
1873 
1874   /// See AbstractAttribute::trackStatistics()
1875   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1876 };
1877 
1878 /// ------------------------ No-Recurse Attributes ----------------------------
1879 
1880 struct AANoRecurseImpl : public AANoRecurse {
1881   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
1882 
1883   /// See AbstractAttribute::getAsStr()
1884   const std::string getAsStr() const override {
1885     return getAssumed() ? "norecurse" : "may-recurse";
1886   }
1887 };
1888 
1889 struct AANoRecurseFunction final : AANoRecurseImpl {
1890   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
1891       : AANoRecurseImpl(IRP, A) {}
1892 
1893   /// See AbstractAttribute::initialize(...).
1894   void initialize(Attributor &A) override {
1895     AANoRecurseImpl::initialize(A);
1896     if (const Function *F = getAnchorScope())
1897       if (A.getInfoCache().getSccSize(*F) != 1)
1898         indicatePessimisticFixpoint();
1899   }
1900 
1901   /// See AbstractAttribute::updateImpl(...).
1902   ChangeStatus updateImpl(Attributor &A) override {
1903 
1904     // If all live call sites are known to be no-recurse, we are as well.
1905     auto CallSitePred = [&](AbstractCallSite ACS) {
1906       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1907           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
1908           DepClassTy::NONE);
1909       return NoRecurseAA.isKnownNoRecurse();
1910     };
1911     bool AllCallSitesKnown;
1912     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
1913       // If we know all call sites and all are known no-recurse, we are done.
1914       // If all known call sites, which might not be all that exist, are known
1915       // to be no-recurse, we are not done but we can continue to assume
1916       // no-recurse. If one of the call sites we have not visited will become
1917       // live, another update is triggered.
1918       if (AllCallSitesKnown)
1919         indicateOptimisticFixpoint();
1920       return ChangeStatus::UNCHANGED;
1921     }
1922 
1923     // If the above check does not hold anymore we look at the calls.
1924     auto CheckForNoRecurse = [&](Instruction &I) {
1925       const auto &CB = cast<CallBase>(I);
1926       if (CB.hasFnAttr(Attribute::NoRecurse))
1927         return true;
1928 
1929       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1930           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1931       if (!NoRecurseAA.isAssumedNoRecurse())
1932         return false;
1933 
1934       // Recursion to the same function
1935       if (CB.getCalledFunction() == getAnchorScope())
1936         return false;
1937 
1938       return true;
1939     };
1940 
1941     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
1942       return indicatePessimisticFixpoint();
1943     return ChangeStatus::UNCHANGED;
1944   }
1945 
1946   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1947 };
1948 
1949 /// NoRecurse attribute deduction for a call sites.
1950 struct AANoRecurseCallSite final : AANoRecurseImpl {
1951   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
1952       : AANoRecurseImpl(IRP, A) {}
1953 
1954   /// See AbstractAttribute::initialize(...).
1955   void initialize(Attributor &A) override {
1956     AANoRecurseImpl::initialize(A);
1957     Function *F = getAssociatedFunction();
1958     if (!F || F->isDeclaration())
1959       indicatePessimisticFixpoint();
1960   }
1961 
1962   /// See AbstractAttribute::updateImpl(...).
1963   ChangeStatus updateImpl(Attributor &A) override {
1964     // TODO: Once we have call site specific value information we can provide
1965     //       call site specific liveness information and then it makes
1966     //       sense to specialize attributes for call sites arguments instead of
1967     //       redirecting requests to the callee argument.
1968     Function *F = getAssociatedFunction();
1969     const IRPosition &FnPos = IRPosition::function(*F);
1970     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
1971     return clampStateAndIndicateChange(getState(), FnAA.getState());
1972   }
1973 
1974   /// See AbstractAttribute::trackStatistics()
1975   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1976 };
1977 
1978 /// -------------------- Undefined-Behavior Attributes ------------------------
1979 
1980 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
1981   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
1982       : AAUndefinedBehavior(IRP, A) {}
1983 
1984   /// See AbstractAttribute::updateImpl(...).
1985   // through a pointer (i.e. also branches etc.)
1986   ChangeStatus updateImpl(Attributor &A) override {
1987     const size_t UBPrevSize = KnownUBInsts.size();
1988     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
1989 
1990     auto InspectMemAccessInstForUB = [&](Instruction &I) {
1991       // Skip instructions that are already saved.
1992       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1993         return true;
1994 
1995       // If we reach here, we know we have an instruction
1996       // that accesses memory through a pointer operand,
1997       // for which getPointerOperand() should give it to us.
1998       const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
1999       assert(PtrOp &&
2000              "Expected pointer operand of memory accessing instruction");
2001 
2002       // Either we stopped and the appropriate action was taken,
2003       // or we got back a simplified value to continue.
2004       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2005       if (!SimplifiedPtrOp.hasValue())
2006         return true;
2007       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2008 
2009       // A memory access through a pointer is considered UB
2010       // only if the pointer has constant null value.
2011       // TODO: Expand it to not only check constant values.
2012       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2013         AssumedNoUBInsts.insert(&I);
2014         return true;
2015       }
2016       const Type *PtrTy = PtrOpVal->getType();
2017 
2018       // Because we only consider instructions inside functions,
2019       // assume that a parent function exists.
2020       const Function *F = I.getFunction();
2021 
2022       // A memory access using constant null pointer is only considered UB
2023       // if null pointer is _not_ defined for the target platform.
2024       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2025         AssumedNoUBInsts.insert(&I);
2026       else
2027         KnownUBInsts.insert(&I);
2028       return true;
2029     };
2030 
2031     auto InspectBrInstForUB = [&](Instruction &I) {
2032       // A conditional branch instruction is considered UB if it has `undef`
2033       // condition.
2034 
2035       // Skip instructions that are already saved.
2036       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2037         return true;
2038 
2039       // We know we have a branch instruction.
2040       auto BrInst = cast<BranchInst>(&I);
2041 
2042       // Unconditional branches are never considered UB.
2043       if (BrInst->isUnconditional())
2044         return true;
2045 
2046       // Either we stopped and the appropriate action was taken,
2047       // or we got back a simplified value to continue.
2048       Optional<Value *> SimplifiedCond =
2049           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2050       if (!SimplifiedCond.hasValue())
2051         return true;
2052       AssumedNoUBInsts.insert(&I);
2053       return true;
2054     };
2055 
2056     auto InspectCallSiteForUB = [&](Instruction &I) {
2057       // Check whether a callsite always cause UB or not
2058 
2059       // Skip instructions that are already saved.
2060       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2061         return true;
2062 
2063       // Check nonnull and noundef argument attribute violation for each
2064       // callsite.
2065       CallBase &CB = cast<CallBase>(I);
2066       Function *Callee = CB.getCalledFunction();
2067       if (!Callee)
2068         return true;
2069       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2070         // If current argument is known to be simplified to null pointer and the
2071         // corresponding argument position is known to have nonnull attribute,
2072         // the argument is poison. Furthermore, if the argument is poison and
2073         // the position is known to have noundef attriubte, this callsite is
2074         // considered UB.
2075         if (idx >= Callee->arg_size())
2076           break;
2077         Value *ArgVal = CB.getArgOperand(idx);
2078         if (!ArgVal)
2079           continue;
2080         // Here, we handle three cases.
2081         //   (1) Not having a value means it is dead. (we can replace the value
2082         //       with undef)
2083         //   (2) Simplified to undef. The argument violate noundef attriubte.
2084         //   (3) Simplified to null pointer where known to be nonnull.
2085         //       The argument is a poison value and violate noundef attribute.
2086         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2087         auto &NoUndefAA =
2088             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2089         if (!NoUndefAA.isKnownNoUndef())
2090           continue;
2091         auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
2092             *this, IRPosition::value(*ArgVal), DepClassTy::NONE);
2093         if (!ValueSimplifyAA.isKnown())
2094           continue;
2095         Optional<Value *> SimplifiedVal =
2096             ValueSimplifyAA.getAssumedSimplifiedValue(A);
2097         if (!SimplifiedVal.hasValue() ||
2098             isa<UndefValue>(*SimplifiedVal.getValue())) {
2099           KnownUBInsts.insert(&I);
2100           continue;
2101         }
2102         if (!ArgVal->getType()->isPointerTy() ||
2103             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2104           continue;
2105         auto &NonNullAA =
2106             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2107         if (NonNullAA.isKnownNonNull())
2108           KnownUBInsts.insert(&I);
2109       }
2110       return true;
2111     };
2112 
2113     auto InspectReturnInstForUB =
2114         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2115           // Check if a return instruction always cause UB or not
2116           // Note: It is guaranteed that the returned position of the anchor
2117           //       scope has noundef attribute when this is called.
2118           //       We also ensure the return position is not "assumed dead"
2119           //       because the returned value was then potentially simplified to
2120           //       `undef` in AAReturnedValues without removing the `noundef`
2121           //       attribute yet.
2122 
2123           // When the returned position has noundef attriubte, UB occur in the
2124           // following cases.
2125           //   (1) Returned value is known to be undef.
2126           //   (2) The value is known to be a null pointer and the returned
2127           //       position has nonnull attribute (because the returned value is
2128           //       poison).
2129           bool FoundUB = false;
2130           if (isa<UndefValue>(V)) {
2131             FoundUB = true;
2132           } else {
2133             if (isa<ConstantPointerNull>(V)) {
2134               auto &NonNullAA = A.getAAFor<AANonNull>(
2135                   *this, IRPosition::returned(*getAnchorScope()),
2136                   DepClassTy::NONE);
2137               if (NonNullAA.isKnownNonNull())
2138                 FoundUB = true;
2139             }
2140           }
2141 
2142           if (FoundUB)
2143             for (ReturnInst *RI : RetInsts)
2144               KnownUBInsts.insert(RI);
2145           return true;
2146         };
2147 
2148     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2149                               {Instruction::Load, Instruction::Store,
2150                                Instruction::AtomicCmpXchg,
2151                                Instruction::AtomicRMW},
2152                               /* CheckBBLivenessOnly */ true);
2153     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2154                               /* CheckBBLivenessOnly */ true);
2155     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this);
2156 
2157     // If the returned position of the anchor scope has noundef attriubte, check
2158     // all returned instructions.
2159     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2160       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2161       if (!A.isAssumedDead(ReturnIRP, this, nullptr)) {
2162         auto &RetPosNoUndefAA =
2163             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2164         if (RetPosNoUndefAA.isKnownNoUndef())
2165           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2166                                                     *this);
2167       }
2168     }
2169 
2170     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2171         UBPrevSize != KnownUBInsts.size())
2172       return ChangeStatus::CHANGED;
2173     return ChangeStatus::UNCHANGED;
2174   }
2175 
2176   bool isKnownToCauseUB(Instruction *I) const override {
2177     return KnownUBInsts.count(I);
2178   }
2179 
2180   bool isAssumedToCauseUB(Instruction *I) const override {
2181     // In simple words, if an instruction is not in the assumed to _not_
2182     // cause UB, then it is assumed UB (that includes those
2183     // in the KnownUBInsts set). The rest is boilerplate
2184     // is to ensure that it is one of the instructions we test
2185     // for UB.
2186 
2187     switch (I->getOpcode()) {
2188     case Instruction::Load:
2189     case Instruction::Store:
2190     case Instruction::AtomicCmpXchg:
2191     case Instruction::AtomicRMW:
2192       return !AssumedNoUBInsts.count(I);
2193     case Instruction::Br: {
2194       auto BrInst = cast<BranchInst>(I);
2195       if (BrInst->isUnconditional())
2196         return false;
2197       return !AssumedNoUBInsts.count(I);
2198     } break;
2199     default:
2200       return false;
2201     }
2202     return false;
2203   }
2204 
2205   ChangeStatus manifest(Attributor &A) override {
2206     if (KnownUBInsts.empty())
2207       return ChangeStatus::UNCHANGED;
2208     for (Instruction *I : KnownUBInsts)
2209       A.changeToUnreachableAfterManifest(I);
2210     return ChangeStatus::CHANGED;
2211   }
2212 
2213   /// See AbstractAttribute::getAsStr()
2214   const std::string getAsStr() const override {
2215     return getAssumed() ? "undefined-behavior" : "no-ub";
2216   }
2217 
2218   /// Note: The correctness of this analysis depends on the fact that the
2219   /// following 2 sets will stop changing after some point.
2220   /// "Change" here means that their size changes.
2221   /// The size of each set is monotonically increasing
2222   /// (we only add items to them) and it is upper bounded by the number of
2223   /// instructions in the processed function (we can never save more
2224   /// elements in either set than this number). Hence, at some point,
2225   /// they will stop increasing.
2226   /// Consequently, at some point, both sets will have stopped
2227   /// changing, effectively making the analysis reach a fixpoint.
2228 
2229   /// Note: These 2 sets are disjoint and an instruction can be considered
2230   /// one of 3 things:
2231   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2232   ///    the KnownUBInsts set.
2233   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2234   ///    has a reason to assume it).
2235   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2236   ///    could not find a reason to assume or prove that it can cause UB,
2237   ///    hence it assumes it doesn't. We have a set for these instructions
2238   ///    so that we don't reprocess them in every update.
2239   ///    Note however that instructions in this set may cause UB.
2240 
2241 protected:
2242   /// A set of all live instructions _known_ to cause UB.
2243   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2244 
2245 private:
2246   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2247   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2248 
2249   // Should be called on updates in which if we're processing an instruction
2250   // \p I that depends on a value \p V, one of the following has to happen:
2251   // - If the value is assumed, then stop.
2252   // - If the value is known but undef, then consider it UB.
2253   // - Otherwise, do specific processing with the simplified value.
2254   // We return None in the first 2 cases to signify that an appropriate
2255   // action was taken and the caller should stop.
2256   // Otherwise, we return the simplified value that the caller should
2257   // use for specific processing.
2258   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2259                                          Instruction *I) {
2260     const auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
2261         *this, IRPosition::value(*V), DepClassTy::REQUIRED);
2262     Optional<Value *> SimplifiedV =
2263         ValueSimplifyAA.getAssumedSimplifiedValue(A);
2264     if (!ValueSimplifyAA.isKnown()) {
2265       // Don't depend on assumed values.
2266       return llvm::None;
2267     }
2268     if (!SimplifiedV.hasValue()) {
2269       // If it is known (which we tested above) but it doesn't have a value,
2270       // then we can assume `undef` and hence the instruction is UB.
2271       KnownUBInsts.insert(I);
2272       return llvm::None;
2273     }
2274     Value *Val = SimplifiedV.getValue();
2275     if (isa<UndefValue>(Val)) {
2276       KnownUBInsts.insert(I);
2277       return llvm::None;
2278     }
2279     return Val;
2280   }
2281 };
2282 
2283 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2284   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2285       : AAUndefinedBehaviorImpl(IRP, A) {}
2286 
2287   /// See AbstractAttribute::trackStatistics()
2288   void trackStatistics() const override {
2289     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2290                "Number of instructions known to have UB");
2291     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2292         KnownUBInsts.size();
2293   }
2294 };
2295 
2296 /// ------------------------ Will-Return Attributes ----------------------------
2297 
2298 // Helper function that checks whether a function has any cycle which we don't
2299 // know if it is bounded or not.
2300 // Loops with maximum trip count are considered bounded, any other cycle not.
2301 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2302   ScalarEvolution *SE =
2303       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2304   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2305   // If either SCEV or LoopInfo is not available for the function then we assume
2306   // any cycle to be unbounded cycle.
2307   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2308   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2309   if (!SE || !LI) {
2310     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2311       if (SCCI.hasCycle())
2312         return true;
2313     return false;
2314   }
2315 
2316   // If there's irreducible control, the function may contain non-loop cycles.
2317   if (mayContainIrreducibleControl(F, LI))
2318     return true;
2319 
2320   // Any loop that does not have a max trip count is considered unbounded cycle.
2321   for (auto *L : LI->getLoopsInPreorder()) {
2322     if (!SE->getSmallConstantMaxTripCount(L))
2323       return true;
2324   }
2325   return false;
2326 }
2327 
2328 struct AAWillReturnImpl : public AAWillReturn {
2329   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2330       : AAWillReturn(IRP, A) {}
2331 
2332   /// See AbstractAttribute::initialize(...).
2333   void initialize(Attributor &A) override {
2334     AAWillReturn::initialize(A);
2335 
2336     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2337       indicateOptimisticFixpoint();
2338       return;
2339     }
2340   }
2341 
2342   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2343   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2344     // Check for `mustprogress` in the scope and the associated function which
2345     // might be different if this is a call site.
2346     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2347         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2348       return false;
2349 
2350     const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2351                                                       DepClassTy::NONE);
2352     if (!MemAA.isAssumedReadOnly())
2353       return false;
2354     if (KnownOnly && !MemAA.isKnownReadOnly())
2355       return false;
2356     if (!MemAA.isKnownReadOnly())
2357       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2358 
2359     return true;
2360   }
2361 
2362   /// See AbstractAttribute::updateImpl(...).
2363   ChangeStatus updateImpl(Attributor &A) override {
2364     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2365       return ChangeStatus::UNCHANGED;
2366 
2367     auto CheckForWillReturn = [&](Instruction &I) {
2368       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2369       const auto &WillReturnAA =
2370           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2371       if (WillReturnAA.isKnownWillReturn())
2372         return true;
2373       if (!WillReturnAA.isAssumedWillReturn())
2374         return false;
2375       const auto &NoRecurseAA =
2376           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2377       return NoRecurseAA.isAssumedNoRecurse();
2378     };
2379 
2380     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2381       return indicatePessimisticFixpoint();
2382 
2383     return ChangeStatus::UNCHANGED;
2384   }
2385 
2386   /// See AbstractAttribute::getAsStr()
2387   const std::string getAsStr() const override {
2388     return getAssumed() ? "willreturn" : "may-noreturn";
2389   }
2390 };
2391 
2392 struct AAWillReturnFunction final : AAWillReturnImpl {
2393   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2394       : AAWillReturnImpl(IRP, A) {}
2395 
2396   /// See AbstractAttribute::initialize(...).
2397   void initialize(Attributor &A) override {
2398     AAWillReturnImpl::initialize(A);
2399 
2400     Function *F = getAnchorScope();
2401     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2402       indicatePessimisticFixpoint();
2403   }
2404 
2405   /// See AbstractAttribute::trackStatistics()
2406   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2407 };
2408 
2409 /// WillReturn attribute deduction for a call sites.
2410 struct AAWillReturnCallSite final : AAWillReturnImpl {
2411   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2412       : AAWillReturnImpl(IRP, A) {}
2413 
2414   /// See AbstractAttribute::initialize(...).
2415   void initialize(Attributor &A) override {
2416     AAWillReturnImpl::initialize(A);
2417     Function *F = getAssociatedFunction();
2418     if (!F || !A.isFunctionIPOAmendable(*F))
2419       indicatePessimisticFixpoint();
2420   }
2421 
2422   /// See AbstractAttribute::updateImpl(...).
2423   ChangeStatus updateImpl(Attributor &A) override {
2424     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2425       return ChangeStatus::UNCHANGED;
2426 
2427     // TODO: Once we have call site specific value information we can provide
2428     //       call site specific liveness information and then it makes
2429     //       sense to specialize attributes for call sites arguments instead of
2430     //       redirecting requests to the callee argument.
2431     Function *F = getAssociatedFunction();
2432     const IRPosition &FnPos = IRPosition::function(*F);
2433     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2434     return clampStateAndIndicateChange(getState(), FnAA.getState());
2435   }
2436 
2437   /// See AbstractAttribute::trackStatistics()
2438   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2439 };
2440 
2441 /// -------------------AAReachability Attribute--------------------------
2442 
2443 struct AAReachabilityImpl : AAReachability {
2444   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2445       : AAReachability(IRP, A) {}
2446 
2447   const std::string getAsStr() const override {
2448     // TODO: Return the number of reachable queries.
2449     return "reachable";
2450   }
2451 
2452   /// See AbstractAttribute::initialize(...).
2453   void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2454 
2455   /// See AbstractAttribute::updateImpl(...).
2456   ChangeStatus updateImpl(Attributor &A) override {
2457     return indicatePessimisticFixpoint();
2458   }
2459 };
2460 
2461 struct AAReachabilityFunction final : public AAReachabilityImpl {
2462   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2463       : AAReachabilityImpl(IRP, A) {}
2464 
2465   /// See AbstractAttribute::trackStatistics()
2466   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2467 };
2468 
2469 /// ------------------------ NoAlias Argument Attribute ------------------------
2470 
2471 struct AANoAliasImpl : AANoAlias {
2472   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2473     assert(getAssociatedType()->isPointerTy() &&
2474            "Noalias is a pointer attribute");
2475   }
2476 
2477   const std::string getAsStr() const override {
2478     return getAssumed() ? "noalias" : "may-alias";
2479   }
2480 };
2481 
2482 /// NoAlias attribute for a floating value.
2483 struct AANoAliasFloating final : AANoAliasImpl {
2484   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2485       : AANoAliasImpl(IRP, A) {}
2486 
2487   /// See AbstractAttribute::initialize(...).
2488   void initialize(Attributor &A) override {
2489     AANoAliasImpl::initialize(A);
2490     Value *Val = &getAssociatedValue();
2491     do {
2492       CastInst *CI = dyn_cast<CastInst>(Val);
2493       if (!CI)
2494         break;
2495       Value *Base = CI->getOperand(0);
2496       if (!Base->hasOneUse())
2497         break;
2498       Val = Base;
2499     } while (true);
2500 
2501     if (!Val->getType()->isPointerTy()) {
2502       indicatePessimisticFixpoint();
2503       return;
2504     }
2505 
2506     if (isa<AllocaInst>(Val))
2507       indicateOptimisticFixpoint();
2508     else if (isa<ConstantPointerNull>(Val) &&
2509              !NullPointerIsDefined(getAnchorScope(),
2510                                    Val->getType()->getPointerAddressSpace()))
2511       indicateOptimisticFixpoint();
2512     else if (Val != &getAssociatedValue()) {
2513       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2514           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2515       if (ValNoAliasAA.isKnownNoAlias())
2516         indicateOptimisticFixpoint();
2517     }
2518   }
2519 
2520   /// See AbstractAttribute::updateImpl(...).
2521   ChangeStatus updateImpl(Attributor &A) override {
2522     // TODO: Implement this.
2523     return indicatePessimisticFixpoint();
2524   }
2525 
2526   /// See AbstractAttribute::trackStatistics()
2527   void trackStatistics() const override {
2528     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2529   }
2530 };
2531 
2532 /// NoAlias attribute for an argument.
2533 struct AANoAliasArgument final
2534     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2535   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2536   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2537 
2538   /// See AbstractAttribute::initialize(...).
2539   void initialize(Attributor &A) override {
2540     Base::initialize(A);
2541     // See callsite argument attribute and callee argument attribute.
2542     if (hasAttr({Attribute::ByVal}))
2543       indicateOptimisticFixpoint();
2544   }
2545 
2546   /// See AbstractAttribute::update(...).
2547   ChangeStatus updateImpl(Attributor &A) override {
2548     // We have to make sure no-alias on the argument does not break
2549     // synchronization when this is a callback argument, see also [1] below.
2550     // If synchronization cannot be affected, we delegate to the base updateImpl
2551     // function, otherwise we give up for now.
2552 
2553     // If the function is no-sync, no-alias cannot break synchronization.
2554     const auto &NoSyncAA =
2555         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2556                              DepClassTy::OPTIONAL);
2557     if (NoSyncAA.isAssumedNoSync())
2558       return Base::updateImpl(A);
2559 
2560     // If the argument is read-only, no-alias cannot break synchronization.
2561     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2562         *this, getIRPosition(), DepClassTy::OPTIONAL);
2563     if (MemBehaviorAA.isAssumedReadOnly())
2564       return Base::updateImpl(A);
2565 
2566     // If the argument is never passed through callbacks, no-alias cannot break
2567     // synchronization.
2568     bool AllCallSitesKnown;
2569     if (A.checkForAllCallSites(
2570             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2571             true, AllCallSitesKnown))
2572       return Base::updateImpl(A);
2573 
2574     // TODO: add no-alias but make sure it doesn't break synchronization by
2575     // introducing fake uses. See:
2576     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2577     //     International Workshop on OpenMP 2018,
2578     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2579 
2580     return indicatePessimisticFixpoint();
2581   }
2582 
2583   /// See AbstractAttribute::trackStatistics()
2584   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2585 };
2586 
2587 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2588   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2589       : AANoAliasImpl(IRP, A) {}
2590 
2591   /// See AbstractAttribute::initialize(...).
2592   void initialize(Attributor &A) override {
2593     // See callsite argument attribute and callee argument attribute.
2594     const auto &CB = cast<CallBase>(getAnchorValue());
2595     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
2596       indicateOptimisticFixpoint();
2597     Value &Val = getAssociatedValue();
2598     if (isa<ConstantPointerNull>(Val) &&
2599         !NullPointerIsDefined(getAnchorScope(),
2600                               Val.getType()->getPointerAddressSpace()))
2601       indicateOptimisticFixpoint();
2602   }
2603 
2604   /// Determine if the underlying value may alias with the call site argument
2605   /// \p OtherArgNo of \p ICS (= the underlying call site).
2606   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2607                             const AAMemoryBehavior &MemBehaviorAA,
2608                             const CallBase &CB, unsigned OtherArgNo) {
2609     // We do not need to worry about aliasing with the underlying IRP.
2610     if (this->getCalleeArgNo() == (int)OtherArgNo)
2611       return false;
2612 
2613     // If it is not a pointer or pointer vector we do not alias.
2614     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
2615     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2616       return false;
2617 
2618     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2619         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
2620 
2621     // If the argument is readnone, there is no read-write aliasing.
2622     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
2623       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2624       return false;
2625     }
2626 
2627     // If the argument is readonly and the underlying value is readonly, there
2628     // is no read-write aliasing.
2629     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2630     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2631       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2632       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2633       return false;
2634     }
2635 
2636     // We have to utilize actual alias analysis queries so we need the object.
2637     if (!AAR)
2638       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2639 
2640     // Try to rule it out at the call site.
2641     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2642     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2643                          "callsite arguments: "
2644                       << getAssociatedValue() << " " << *ArgOp << " => "
2645                       << (IsAliasing ? "" : "no-") << "alias \n");
2646 
2647     return IsAliasing;
2648   }
2649 
2650   bool
2651   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2652                                          const AAMemoryBehavior &MemBehaviorAA,
2653                                          const AANoAlias &NoAliasAA) {
2654     // We can deduce "noalias" if the following conditions hold.
2655     // (i)   Associated value is assumed to be noalias in the definition.
2656     // (ii)  Associated value is assumed to be no-capture in all the uses
2657     //       possibly executed before this callsite.
2658     // (iii) There is no other pointer argument which could alias with the
2659     //       value.
2660 
2661     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2662     if (!AssociatedValueIsNoAliasAtDef) {
2663       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2664                         << " is not no-alias at the definition\n");
2665       return false;
2666     }
2667 
2668     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
2669 
2670     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2671     const Function *ScopeFn = VIRP.getAnchorScope();
2672     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
2673     // Check whether the value is captured in the scope using AANoCapture.
2674     //      Look at CFG and check only uses possibly executed before this
2675     //      callsite.
2676     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
2677       Instruction *UserI = cast<Instruction>(U.getUser());
2678 
2679       // If UserI is the curr instruction and there is a single potential use of
2680       // the value in UserI we allow the use.
2681       // TODO: We should inspect the operands and allow those that cannot alias
2682       //       with the value.
2683       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
2684         return true;
2685 
2686       if (ScopeFn) {
2687         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
2688             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
2689 
2690         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
2691           return true;
2692 
2693         if (auto *CB = dyn_cast<CallBase>(UserI)) {
2694           if (CB->isArgOperand(&U)) {
2695 
2696             unsigned ArgNo = CB->getArgOperandNo(&U);
2697 
2698             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
2699                 *this, IRPosition::callsite_argument(*CB, ArgNo),
2700                 DepClassTy::OPTIONAL);
2701 
2702             if (NoCaptureAA.isAssumedNoCapture())
2703               return true;
2704           }
2705         }
2706       }
2707 
2708       // For cases which can potentially have more users
2709       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
2710           isa<SelectInst>(U)) {
2711         Follow = true;
2712         return true;
2713       }
2714 
2715       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
2716       return false;
2717     };
2718 
2719     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2720       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
2721         LLVM_DEBUG(
2722             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2723                    << " cannot be noalias as it is potentially captured\n");
2724         return false;
2725       }
2726     }
2727     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2728 
2729     // Check there is no other pointer argument which could alias with the
2730     // value passed at this call site.
2731     // TODO: AbstractCallSite
2732     const auto &CB = cast<CallBase>(getAnchorValue());
2733     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
2734          OtherArgNo++)
2735       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
2736         return false;
2737 
2738     return true;
2739   }
2740 
2741   /// See AbstractAttribute::updateImpl(...).
2742   ChangeStatus updateImpl(Attributor &A) override {
2743     // If the argument is readnone we are done as there are no accesses via the
2744     // argument.
2745     auto &MemBehaviorAA =
2746         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2747     if (MemBehaviorAA.isAssumedReadNone()) {
2748       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2749       return ChangeStatus::UNCHANGED;
2750     }
2751 
2752     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2753     const auto &NoAliasAA =
2754         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
2755 
2756     AAResults *AAR = nullptr;
2757     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2758                                                NoAliasAA)) {
2759       LLVM_DEBUG(
2760           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2761       return ChangeStatus::UNCHANGED;
2762     }
2763 
2764     return indicatePessimisticFixpoint();
2765   }
2766 
2767   /// See AbstractAttribute::trackStatistics()
2768   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2769 };
2770 
2771 /// NoAlias attribute for function return value.
2772 struct AANoAliasReturned final : AANoAliasImpl {
2773   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
2774       : AANoAliasImpl(IRP, A) {}
2775 
2776   /// See AbstractAttribute::initialize(...).
2777   void initialize(Attributor &A) override {
2778     AANoAliasImpl::initialize(A);
2779     Function *F = getAssociatedFunction();
2780     if (!F || F->isDeclaration())
2781       indicatePessimisticFixpoint();
2782   }
2783 
2784   /// See AbstractAttribute::updateImpl(...).
2785   virtual ChangeStatus updateImpl(Attributor &A) override {
2786 
2787     auto CheckReturnValue = [&](Value &RV) -> bool {
2788       if (Constant *C = dyn_cast<Constant>(&RV))
2789         if (C->isNullValue() || isa<UndefValue>(C))
2790           return true;
2791 
2792       /// For now, we can only deduce noalias if we have call sites.
2793       /// FIXME: add more support.
2794       if (!isa<CallBase>(&RV))
2795         return false;
2796 
2797       const IRPosition &RVPos = IRPosition::value(RV);
2798       const auto &NoAliasAA =
2799           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
2800       if (!NoAliasAA.isAssumedNoAlias())
2801         return false;
2802 
2803       const auto &NoCaptureAA =
2804           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
2805       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2806     };
2807 
2808     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2809       return indicatePessimisticFixpoint();
2810 
2811     return ChangeStatus::UNCHANGED;
2812   }
2813 
2814   /// See AbstractAttribute::trackStatistics()
2815   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2816 };
2817 
2818 /// NoAlias attribute deduction for a call site return value.
2819 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
2820   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
2821       : AANoAliasImpl(IRP, A) {}
2822 
2823   /// See AbstractAttribute::initialize(...).
2824   void initialize(Attributor &A) override {
2825     AANoAliasImpl::initialize(A);
2826     Function *F = getAssociatedFunction();
2827     if (!F || F->isDeclaration())
2828       indicatePessimisticFixpoint();
2829   }
2830 
2831   /// See AbstractAttribute::updateImpl(...).
2832   ChangeStatus updateImpl(Attributor &A) override {
2833     // TODO: Once we have call site specific value information we can provide
2834     //       call site specific liveness information and then it makes
2835     //       sense to specialize attributes for call sites arguments instead of
2836     //       redirecting requests to the callee argument.
2837     Function *F = getAssociatedFunction();
2838     const IRPosition &FnPos = IRPosition::returned(*F);
2839     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
2840     return clampStateAndIndicateChange(getState(), FnAA.getState());
2841   }
2842 
2843   /// See AbstractAttribute::trackStatistics()
2844   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2845 };
2846 
2847 /// -------------------AAIsDead Function Attribute-----------------------
2848 
2849 struct AAIsDeadValueImpl : public AAIsDead {
2850   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2851 
2852   /// See AAIsDead::isAssumedDead().
2853   bool isAssumedDead() const override { return getAssumed(); }
2854 
2855   /// See AAIsDead::isKnownDead().
2856   bool isKnownDead() const override { return getKnown(); }
2857 
2858   /// See AAIsDead::isAssumedDead(BasicBlock *).
2859   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2860 
2861   /// See AAIsDead::isKnownDead(BasicBlock *).
2862   bool isKnownDead(const BasicBlock *BB) const override { return false; }
2863 
2864   /// See AAIsDead::isAssumedDead(Instruction *I).
2865   bool isAssumedDead(const Instruction *I) const override {
2866     return I == getCtxI() && isAssumedDead();
2867   }
2868 
2869   /// See AAIsDead::isKnownDead(Instruction *I).
2870   bool isKnownDead(const Instruction *I) const override {
2871     return isAssumedDead(I) && getKnown();
2872   }
2873 
2874   /// See AbstractAttribute::getAsStr().
2875   const std::string getAsStr() const override {
2876     return isAssumedDead() ? "assumed-dead" : "assumed-live";
2877   }
2878 
2879   /// Check if all uses are assumed dead.
2880   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2881     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2882     // Explicitly set the dependence class to required because we want a long
2883     // chain of N dependent instructions to be considered live as soon as one is
2884     // without going through N update cycles. This is not required for
2885     // correctness.
2886     return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2887   }
2888 
2889   /// Determine if \p I is assumed to be side-effect free.
2890   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2891     if (!I || wouldInstructionBeTriviallyDead(I))
2892       return true;
2893 
2894     auto *CB = dyn_cast<CallBase>(I);
2895     if (!CB || isa<IntrinsicInst>(CB))
2896       return false;
2897 
2898     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2899     const auto &NoUnwindAA =
2900         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
2901     if (!NoUnwindAA.isAssumedNoUnwind())
2902       return false;
2903     if (!NoUnwindAA.isKnownNoUnwind())
2904       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
2905 
2906     const auto &MemBehaviorAA =
2907         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
2908     if (MemBehaviorAA.isAssumedReadOnly()) {
2909       if (!MemBehaviorAA.isKnownReadOnly())
2910         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2911       return true;
2912     }
2913     return false;
2914   }
2915 };
2916 
2917 struct AAIsDeadFloating : public AAIsDeadValueImpl {
2918   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
2919       : AAIsDeadValueImpl(IRP, A) {}
2920 
2921   /// See AbstractAttribute::initialize(...).
2922   void initialize(Attributor &A) override {
2923     if (isa<UndefValue>(getAssociatedValue())) {
2924       indicatePessimisticFixpoint();
2925       return;
2926     }
2927 
2928     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2929     if (!isAssumedSideEffectFree(A, I))
2930       indicatePessimisticFixpoint();
2931   }
2932 
2933   /// See AbstractAttribute::updateImpl(...).
2934   ChangeStatus updateImpl(Attributor &A) override {
2935     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2936     if (!isAssumedSideEffectFree(A, I))
2937       return indicatePessimisticFixpoint();
2938 
2939     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2940       return indicatePessimisticFixpoint();
2941     return ChangeStatus::UNCHANGED;
2942   }
2943 
2944   /// See AbstractAttribute::manifest(...).
2945   ChangeStatus manifest(Attributor &A) override {
2946     Value &V = getAssociatedValue();
2947     if (auto *I = dyn_cast<Instruction>(&V)) {
2948       // If we get here we basically know the users are all dead. We check if
2949       // isAssumedSideEffectFree returns true here again because it might not be
2950       // the case and only the users are dead but the instruction (=call) is
2951       // still needed.
2952       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2953         A.deleteAfterManifest(*I);
2954         return ChangeStatus::CHANGED;
2955       }
2956     }
2957     if (V.use_empty())
2958       return ChangeStatus::UNCHANGED;
2959 
2960     bool UsedAssumedInformation = false;
2961     Optional<Constant *> C =
2962         A.getAssumedConstant(V, *this, UsedAssumedInformation);
2963     if (C.hasValue() && C.getValue())
2964       return ChangeStatus::UNCHANGED;
2965 
2966     // Replace the value with undef as it is dead but keep droppable uses around
2967     // as they provide information we don't want to give up on just yet.
2968     UndefValue &UV = *UndefValue::get(V.getType());
2969     bool AnyChange =
2970         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
2971     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2972   }
2973 
2974   /// See AbstractAttribute::trackStatistics()
2975   void trackStatistics() const override {
2976     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2977   }
2978 };
2979 
2980 struct AAIsDeadArgument : public AAIsDeadFloating {
2981   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
2982       : AAIsDeadFloating(IRP, A) {}
2983 
2984   /// See AbstractAttribute::initialize(...).
2985   void initialize(Attributor &A) override {
2986     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
2987       indicatePessimisticFixpoint();
2988   }
2989 
2990   /// See AbstractAttribute::manifest(...).
2991   ChangeStatus manifest(Attributor &A) override {
2992     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2993     Argument &Arg = *getAssociatedArgument();
2994     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2995       if (A.registerFunctionSignatureRewrite(
2996               Arg, /* ReplacementTypes */ {},
2997               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2998               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
2999         Arg.dropDroppableUses();
3000         return ChangeStatus::CHANGED;
3001       }
3002     return Changed;
3003   }
3004 
3005   /// See AbstractAttribute::trackStatistics()
3006   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3007 };
3008 
3009 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3010   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3011       : AAIsDeadValueImpl(IRP, A) {}
3012 
3013   /// See AbstractAttribute::initialize(...).
3014   void initialize(Attributor &A) override {
3015     if (isa<UndefValue>(getAssociatedValue()))
3016       indicatePessimisticFixpoint();
3017   }
3018 
3019   /// See AbstractAttribute::updateImpl(...).
3020   ChangeStatus updateImpl(Attributor &A) override {
3021     // TODO: Once we have call site specific value information we can provide
3022     //       call site specific liveness information and then it makes
3023     //       sense to specialize attributes for call sites arguments instead of
3024     //       redirecting requests to the callee argument.
3025     Argument *Arg = getAssociatedArgument();
3026     if (!Arg)
3027       return indicatePessimisticFixpoint();
3028     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3029     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3030     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3031   }
3032 
3033   /// See AbstractAttribute::manifest(...).
3034   ChangeStatus manifest(Attributor &A) override {
3035     CallBase &CB = cast<CallBase>(getAnchorValue());
3036     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3037     assert(!isa<UndefValue>(U.get()) &&
3038            "Expected undef values to be filtered out!");
3039     UndefValue &UV = *UndefValue::get(U->getType());
3040     if (A.changeUseAfterManifest(U, UV))
3041       return ChangeStatus::CHANGED;
3042     return ChangeStatus::UNCHANGED;
3043   }
3044 
3045   /// See AbstractAttribute::trackStatistics()
3046   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3047 };
3048 
3049 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3050   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3051       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3052 
3053   /// See AAIsDead::isAssumedDead().
3054   bool isAssumedDead() const override {
3055     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3056   }
3057 
3058   /// See AbstractAttribute::initialize(...).
3059   void initialize(Attributor &A) override {
3060     if (isa<UndefValue>(getAssociatedValue())) {
3061       indicatePessimisticFixpoint();
3062       return;
3063     }
3064 
3065     // We track this separately as a secondary state.
3066     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3067   }
3068 
3069   /// See AbstractAttribute::updateImpl(...).
3070   ChangeStatus updateImpl(Attributor &A) override {
3071     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3072     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3073       IsAssumedSideEffectFree = false;
3074       Changed = ChangeStatus::CHANGED;
3075     }
3076 
3077     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3078       return indicatePessimisticFixpoint();
3079     return Changed;
3080   }
3081 
3082   /// See AbstractAttribute::trackStatistics()
3083   void trackStatistics() const override {
3084     if (IsAssumedSideEffectFree)
3085       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3086     else
3087       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3088   }
3089 
3090   /// See AbstractAttribute::getAsStr().
3091   const std::string getAsStr() const override {
3092     return isAssumedDead()
3093                ? "assumed-dead"
3094                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3095   }
3096 
3097 private:
3098   bool IsAssumedSideEffectFree;
3099 };
3100 
3101 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3102   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3103       : AAIsDeadValueImpl(IRP, A) {}
3104 
3105   /// See AbstractAttribute::updateImpl(...).
3106   ChangeStatus updateImpl(Attributor &A) override {
3107 
3108     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3109                               {Instruction::Ret});
3110 
3111     auto PredForCallSite = [&](AbstractCallSite ACS) {
3112       if (ACS.isCallbackCall() || !ACS.getInstruction())
3113         return false;
3114       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3115     };
3116 
3117     bool AllCallSitesKnown;
3118     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3119                                 AllCallSitesKnown))
3120       return indicatePessimisticFixpoint();
3121 
3122     return ChangeStatus::UNCHANGED;
3123   }
3124 
3125   /// See AbstractAttribute::manifest(...).
3126   ChangeStatus manifest(Attributor &A) override {
3127     // TODO: Rewrite the signature to return void?
3128     bool AnyChange = false;
3129     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3130     auto RetInstPred = [&](Instruction &I) {
3131       ReturnInst &RI = cast<ReturnInst>(I);
3132       if (!isa<UndefValue>(RI.getReturnValue()))
3133         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3134       return true;
3135     };
3136     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
3137     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3138   }
3139 
3140   /// See AbstractAttribute::trackStatistics()
3141   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3142 };
3143 
3144 struct AAIsDeadFunction : public AAIsDead {
3145   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3146 
3147   /// See AbstractAttribute::initialize(...).
3148   void initialize(Attributor &A) override {
3149     const Function *F = getAnchorScope();
3150     if (F && !F->isDeclaration()) {
3151       // We only want to compute liveness once. If the function is not part of
3152       // the SCC, skip it.
3153       if (A.isRunOn(*const_cast<Function *>(F))) {
3154         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3155         assumeLive(A, F->getEntryBlock());
3156       } else {
3157         indicatePessimisticFixpoint();
3158       }
3159     }
3160   }
3161 
3162   /// See AbstractAttribute::getAsStr().
3163   const std::string getAsStr() const override {
3164     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3165            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3166            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3167            std::to_string(KnownDeadEnds.size()) + "]";
3168   }
3169 
3170   /// See AbstractAttribute::manifest(...).
3171   ChangeStatus manifest(Attributor &A) override {
3172     assert(getState().isValidState() &&
3173            "Attempted to manifest an invalid state!");
3174 
3175     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3176     Function &F = *getAnchorScope();
3177 
3178     if (AssumedLiveBlocks.empty()) {
3179       A.deleteAfterManifest(F);
3180       return ChangeStatus::CHANGED;
3181     }
3182 
3183     // Flag to determine if we can change an invoke to a call assuming the
3184     // callee is nounwind. This is not possible if the personality of the
3185     // function allows to catch asynchronous exceptions.
3186     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3187 
3188     KnownDeadEnds.set_union(ToBeExploredFrom);
3189     for (const Instruction *DeadEndI : KnownDeadEnds) {
3190       auto *CB = dyn_cast<CallBase>(DeadEndI);
3191       if (!CB)
3192         continue;
3193       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3194           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3195       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3196       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3197         continue;
3198 
3199       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3200         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3201       else
3202         A.changeToUnreachableAfterManifest(
3203             const_cast<Instruction *>(DeadEndI->getNextNode()));
3204       HasChanged = ChangeStatus::CHANGED;
3205     }
3206 
3207     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3208     for (BasicBlock &BB : F)
3209       if (!AssumedLiveBlocks.count(&BB)) {
3210         A.deleteAfterManifest(BB);
3211         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3212       }
3213 
3214     return HasChanged;
3215   }
3216 
3217   /// See AbstractAttribute::updateImpl(...).
3218   ChangeStatus updateImpl(Attributor &A) override;
3219 
3220   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3221     return !AssumedLiveEdges.count(std::make_pair(From, To));
3222   }
3223 
3224   /// See AbstractAttribute::trackStatistics()
3225   void trackStatistics() const override {}
3226 
3227   /// Returns true if the function is assumed dead.
3228   bool isAssumedDead() const override { return false; }
3229 
3230   /// See AAIsDead::isKnownDead().
3231   bool isKnownDead() const override { return false; }
3232 
3233   /// See AAIsDead::isAssumedDead(BasicBlock *).
3234   bool isAssumedDead(const BasicBlock *BB) const override {
3235     assert(BB->getParent() == getAnchorScope() &&
3236            "BB must be in the same anchor scope function.");
3237 
3238     if (!getAssumed())
3239       return false;
3240     return !AssumedLiveBlocks.count(BB);
3241   }
3242 
3243   /// See AAIsDead::isKnownDead(BasicBlock *).
3244   bool isKnownDead(const BasicBlock *BB) const override {
3245     return getKnown() && isAssumedDead(BB);
3246   }
3247 
3248   /// See AAIsDead::isAssumed(Instruction *I).
3249   bool isAssumedDead(const Instruction *I) const override {
3250     assert(I->getParent()->getParent() == getAnchorScope() &&
3251            "Instruction must be in the same anchor scope function.");
3252 
3253     if (!getAssumed())
3254       return false;
3255 
3256     // If it is not in AssumedLiveBlocks then it for sure dead.
3257     // Otherwise, it can still be after noreturn call in a live block.
3258     if (!AssumedLiveBlocks.count(I->getParent()))
3259       return true;
3260 
3261     // If it is not after a liveness barrier it is live.
3262     const Instruction *PrevI = I->getPrevNode();
3263     while (PrevI) {
3264       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3265         return true;
3266       PrevI = PrevI->getPrevNode();
3267     }
3268     return false;
3269   }
3270 
3271   /// See AAIsDead::isKnownDead(Instruction *I).
3272   bool isKnownDead(const Instruction *I) const override {
3273     return getKnown() && isAssumedDead(I);
3274   }
3275 
3276   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3277   /// that internal function called from \p BB should now be looked at.
3278   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3279     if (!AssumedLiveBlocks.insert(&BB).second)
3280       return false;
3281 
3282     // We assume that all of BB is (probably) live now and if there are calls to
3283     // internal functions we will assume that those are now live as well. This
3284     // is a performance optimization for blocks with calls to a lot of internal
3285     // functions. It can however cause dead functions to be treated as live.
3286     for (const Instruction &I : BB)
3287       if (const auto *CB = dyn_cast<CallBase>(&I))
3288         if (const Function *F = CB->getCalledFunction())
3289           if (F->hasLocalLinkage())
3290             A.markLiveInternalFunction(*F);
3291     return true;
3292   }
3293 
3294   /// Collection of instructions that need to be explored again, e.g., we
3295   /// did assume they do not transfer control to (one of their) successors.
3296   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3297 
3298   /// Collection of instructions that are known to not transfer control.
3299   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3300 
3301   /// Collection of all assumed live edges
3302   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3303 
3304   /// Collection of all assumed live BasicBlocks.
3305   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3306 };
3307 
3308 static bool
3309 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3310                         AbstractAttribute &AA,
3311                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3312   const IRPosition &IPos = IRPosition::callsite_function(CB);
3313 
3314   const auto &NoReturnAA =
3315       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3316   if (NoReturnAA.isAssumedNoReturn())
3317     return !NoReturnAA.isKnownNoReturn();
3318   if (CB.isTerminator())
3319     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3320   else
3321     AliveSuccessors.push_back(CB.getNextNode());
3322   return false;
3323 }
3324 
3325 static bool
3326 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3327                         AbstractAttribute &AA,
3328                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3329   bool UsedAssumedInformation =
3330       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3331 
3332   // First, determine if we can change an invoke to a call assuming the
3333   // callee is nounwind. This is not possible if the personality of the
3334   // function allows to catch asynchronous exceptions.
3335   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3336     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3337   } else {
3338     const IRPosition &IPos = IRPosition::callsite_function(II);
3339     const auto &AANoUnw =
3340         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3341     if (AANoUnw.isAssumedNoUnwind()) {
3342       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3343     } else {
3344       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3345     }
3346   }
3347   return UsedAssumedInformation;
3348 }
3349 
3350 static bool
3351 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3352                         AbstractAttribute &AA,
3353                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3354   bool UsedAssumedInformation = false;
3355   if (BI.getNumSuccessors() == 1) {
3356     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3357   } else {
3358     Optional<ConstantInt *> CI = getAssumedConstantInt(
3359         A, *BI.getCondition(), AA, UsedAssumedInformation);
3360     if (!CI.hasValue()) {
3361       // No value yet, assume both edges are dead.
3362     } else if (CI.getValue()) {
3363       const BasicBlock *SuccBB =
3364           BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3365       AliveSuccessors.push_back(&SuccBB->front());
3366     } else {
3367       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3368       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3369       UsedAssumedInformation = false;
3370     }
3371   }
3372   return UsedAssumedInformation;
3373 }
3374 
3375 static bool
3376 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3377                         AbstractAttribute &AA,
3378                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3379   bool UsedAssumedInformation = false;
3380   Optional<ConstantInt *> CI =
3381       getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3382   if (!CI.hasValue()) {
3383     // No value yet, assume all edges are dead.
3384   } else if (CI.getValue()) {
3385     for (auto &CaseIt : SI.cases()) {
3386       if (CaseIt.getCaseValue() == CI.getValue()) {
3387         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3388         return UsedAssumedInformation;
3389       }
3390     }
3391     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3392     return UsedAssumedInformation;
3393   } else {
3394     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3395       AliveSuccessors.push_back(&SuccBB->front());
3396   }
3397   return UsedAssumedInformation;
3398 }
3399 
3400 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3401   ChangeStatus Change = ChangeStatus::UNCHANGED;
3402 
3403   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3404                     << getAnchorScope()->size() << "] BBs and "
3405                     << ToBeExploredFrom.size() << " exploration points and "
3406                     << KnownDeadEnds.size() << " known dead ends\n");
3407 
3408   // Copy and clear the list of instructions we need to explore from. It is
3409   // refilled with instructions the next update has to look at.
3410   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3411                                                ToBeExploredFrom.end());
3412   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3413 
3414   SmallVector<const Instruction *, 8> AliveSuccessors;
3415   while (!Worklist.empty()) {
3416     const Instruction *I = Worklist.pop_back_val();
3417     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3418 
3419     // Fast forward for uninteresting instructions. We could look for UB here
3420     // though.
3421     while (!I->isTerminator() && !isa<CallBase>(I)) {
3422       Change = ChangeStatus::CHANGED;
3423       I = I->getNextNode();
3424     }
3425 
3426     AliveSuccessors.clear();
3427 
3428     bool UsedAssumedInformation = false;
3429     switch (I->getOpcode()) {
3430     // TODO: look for (assumed) UB to backwards propagate "deadness".
3431     default:
3432       assert(I->isTerminator() &&
3433              "Expected non-terminators to be handled already!");
3434       for (const BasicBlock *SuccBB : successors(I->getParent()))
3435         AliveSuccessors.push_back(&SuccBB->front());
3436       break;
3437     case Instruction::Call:
3438       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3439                                                        *this, AliveSuccessors);
3440       break;
3441     case Instruction::Invoke:
3442       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3443                                                        *this, AliveSuccessors);
3444       break;
3445     case Instruction::Br:
3446       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3447                                                        *this, AliveSuccessors);
3448       break;
3449     case Instruction::Switch:
3450       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3451                                                        *this, AliveSuccessors);
3452       break;
3453     }
3454 
3455     if (UsedAssumedInformation) {
3456       NewToBeExploredFrom.insert(I);
3457     } else {
3458       Change = ChangeStatus::CHANGED;
3459       if (AliveSuccessors.empty() ||
3460           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3461         KnownDeadEnds.insert(I);
3462     }
3463 
3464     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3465                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3466                       << UsedAssumedInformation << "\n");
3467 
3468     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3469       if (!I->isTerminator()) {
3470         assert(AliveSuccessors.size() == 1 &&
3471                "Non-terminator expected to have a single successor!");
3472         Worklist.push_back(AliveSuccessor);
3473       } else {
3474         // record the assumed live edge
3475         AssumedLiveEdges.insert(
3476             std::make_pair(I->getParent(), AliveSuccessor->getParent()));
3477         if (assumeLive(A, *AliveSuccessor->getParent()))
3478           Worklist.push_back(AliveSuccessor);
3479       }
3480     }
3481   }
3482 
3483   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3484 
3485   // If we know everything is live there is no need to query for liveness.
3486   // Instead, indicating a pessimistic fixpoint will cause the state to be
3487   // "invalid" and all queries to be answered conservatively without lookups.
3488   // To be in this state we have to (1) finished the exploration and (3) not
3489   // discovered any non-trivial dead end and (2) not ruled unreachable code
3490   // dead.
3491   if (ToBeExploredFrom.empty() &&
3492       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3493       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3494         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3495       }))
3496     return indicatePessimisticFixpoint();
3497   return Change;
3498 }
3499 
3500 /// Liveness information for a call sites.
3501 struct AAIsDeadCallSite final : AAIsDeadFunction {
3502   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3503       : AAIsDeadFunction(IRP, A) {}
3504 
3505   /// See AbstractAttribute::initialize(...).
3506   void initialize(Attributor &A) override {
3507     // TODO: Once we have call site specific value information we can provide
3508     //       call site specific liveness information and then it makes
3509     //       sense to specialize attributes for call sites instead of
3510     //       redirecting requests to the callee.
3511     llvm_unreachable("Abstract attributes for liveness are not "
3512                      "supported for call sites yet!");
3513   }
3514 
3515   /// See AbstractAttribute::updateImpl(...).
3516   ChangeStatus updateImpl(Attributor &A) override {
3517     return indicatePessimisticFixpoint();
3518   }
3519 
3520   /// See AbstractAttribute::trackStatistics()
3521   void trackStatistics() const override {}
3522 };
3523 
3524 /// -------------------- Dereferenceable Argument Attribute --------------------
3525 
3526 template <>
3527 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3528                                                      const DerefState &R) {
3529   ChangeStatus CS0 =
3530       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3531   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3532   return CS0 | CS1;
3533 }
3534 
3535 struct AADereferenceableImpl : AADereferenceable {
3536   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3537       : AADereferenceable(IRP, A) {}
3538   using StateType = DerefState;
3539 
3540   /// See AbstractAttribute::initialize(...).
3541   void initialize(Attributor &A) override {
3542     SmallVector<Attribute, 4> Attrs;
3543     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3544              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3545     for (const Attribute &Attr : Attrs)
3546       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3547 
3548     const IRPosition &IRP = this->getIRPosition();
3549     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
3550 
3551     bool CanBeNull;
3552     takeKnownDerefBytesMaximum(
3553         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3554             A.getDataLayout(), CanBeNull));
3555 
3556     bool IsFnInterface = IRP.isFnInterfaceKind();
3557     Function *FnScope = IRP.getAnchorScope();
3558     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3559       indicatePessimisticFixpoint();
3560       return;
3561     }
3562 
3563     if (Instruction *CtxI = getCtxI())
3564       followUsesInMBEC(*this, A, getState(), *CtxI);
3565   }
3566 
3567   /// See AbstractAttribute::getState()
3568   /// {
3569   StateType &getState() override { return *this; }
3570   const StateType &getState() const override { return *this; }
3571   /// }
3572 
3573   /// Helper function for collecting accessed bytes in must-be-executed-context
3574   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3575                               DerefState &State) {
3576     const Value *UseV = U->get();
3577     if (!UseV->getType()->isPointerTy())
3578       return;
3579 
3580     Type *PtrTy = UseV->getType();
3581     const DataLayout &DL = A.getDataLayout();
3582     int64_t Offset;
3583     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3584             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3585       if (Base == &getAssociatedValue() &&
3586           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3587         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3588         State.addAccessedBytes(Offset, Size);
3589       }
3590     }
3591   }
3592 
3593   /// See followUsesInMBEC
3594   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3595                        AADereferenceable::StateType &State) {
3596     bool IsNonNull = false;
3597     bool TrackUse = false;
3598     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3599         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3600     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
3601                       << " for instruction " << *I << "\n");
3602 
3603     addAccessedBytesForUse(A, U, I, State);
3604     State.takeKnownDerefBytesMaximum(DerefBytes);
3605     return TrackUse;
3606   }
3607 
3608   /// See AbstractAttribute::manifest(...).
3609   ChangeStatus manifest(Attributor &A) override {
3610     ChangeStatus Change = AADereferenceable::manifest(A);
3611     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3612       removeAttrs({Attribute::DereferenceableOrNull});
3613       return ChangeStatus::CHANGED;
3614     }
3615     return Change;
3616   }
3617 
3618   void getDeducedAttributes(LLVMContext &Ctx,
3619                             SmallVectorImpl<Attribute> &Attrs) const override {
3620     // TODO: Add *_globally support
3621     if (isAssumedNonNull())
3622       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3623           Ctx, getAssumedDereferenceableBytes()));
3624     else
3625       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3626           Ctx, getAssumedDereferenceableBytes()));
3627   }
3628 
3629   /// See AbstractAttribute::getAsStr().
3630   const std::string getAsStr() const override {
3631     if (!getAssumedDereferenceableBytes())
3632       return "unknown-dereferenceable";
3633     return std::string("dereferenceable") +
3634            (isAssumedNonNull() ? "" : "_or_null") +
3635            (isAssumedGlobal() ? "_globally" : "") + "<" +
3636            std::to_string(getKnownDereferenceableBytes()) + "-" +
3637            std::to_string(getAssumedDereferenceableBytes()) + ">";
3638   }
3639 };
3640 
3641 /// Dereferenceable attribute for a floating value.
3642 struct AADereferenceableFloating : AADereferenceableImpl {
3643   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
3644       : AADereferenceableImpl(IRP, A) {}
3645 
3646   /// See AbstractAttribute::updateImpl(...).
3647   ChangeStatus updateImpl(Attributor &A) override {
3648     const DataLayout &DL = A.getDataLayout();
3649 
3650     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
3651                             bool Stripped) -> bool {
3652       unsigned IdxWidth =
3653           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3654       APInt Offset(IdxWidth, 0);
3655       const Value *Base =
3656           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
3657 
3658       const auto &AA = A.getAAFor<AADereferenceable>(
3659           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
3660       int64_t DerefBytes = 0;
3661       if (!Stripped && this == &AA) {
3662         // Use IR information if we did not strip anything.
3663         // TODO: track globally.
3664         bool CanBeNull;
3665         DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3666         T.GlobalState.indicatePessimisticFixpoint();
3667       } else {
3668         const DerefState &DS = AA.getState();
3669         DerefBytes = DS.DerefBytesState.getAssumed();
3670         T.GlobalState &= DS.GlobalState;
3671       }
3672 
3673       // For now we do not try to "increase" dereferenceability due to negative
3674       // indices as we first have to come up with code to deal with loops and
3675       // for overflows of the dereferenceable bytes.
3676       int64_t OffsetSExt = Offset.getSExtValue();
3677       if (OffsetSExt < 0)
3678         OffsetSExt = 0;
3679 
3680       T.takeAssumedDerefBytesMinimum(
3681           std::max(int64_t(0), DerefBytes - OffsetSExt));
3682 
3683       if (this == &AA) {
3684         if (!Stripped) {
3685           // If nothing was stripped IR information is all we got.
3686           T.takeKnownDerefBytesMaximum(
3687               std::max(int64_t(0), DerefBytes - OffsetSExt));
3688           T.indicatePessimisticFixpoint();
3689         } else if (OffsetSExt > 0) {
3690           // If something was stripped but there is circular reasoning we look
3691           // for the offset. If it is positive we basically decrease the
3692           // dereferenceable bytes in a circluar loop now, which will simply
3693           // drive them down to the known value in a very slow way which we
3694           // can accelerate.
3695           T.indicatePessimisticFixpoint();
3696         }
3697       }
3698 
3699       return T.isValidState();
3700     };
3701 
3702     DerefState T;
3703     if (!genericValueTraversal<AADereferenceable, DerefState>(
3704             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
3705       return indicatePessimisticFixpoint();
3706 
3707     return clampStateAndIndicateChange(getState(), T);
3708   }
3709 
3710   /// See AbstractAttribute::trackStatistics()
3711   void trackStatistics() const override {
3712     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3713   }
3714 };
3715 
3716 /// Dereferenceable attribute for a return value.
3717 struct AADereferenceableReturned final
3718     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
3719   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
3720       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3721             IRP, A) {}
3722 
3723   /// See AbstractAttribute::trackStatistics()
3724   void trackStatistics() const override {
3725     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3726   }
3727 };
3728 
3729 /// Dereferenceable attribute for an argument
3730 struct AADereferenceableArgument final
3731     : AAArgumentFromCallSiteArguments<AADereferenceable,
3732                                       AADereferenceableImpl> {
3733   using Base =
3734       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
3735   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
3736       : Base(IRP, A) {}
3737 
3738   /// See AbstractAttribute::trackStatistics()
3739   void trackStatistics() const override {
3740     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3741   }
3742 };
3743 
3744 /// Dereferenceable attribute for a call site argument.
3745 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
3746   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
3747       : AADereferenceableFloating(IRP, A) {}
3748 
3749   /// See AbstractAttribute::trackStatistics()
3750   void trackStatistics() const override {
3751     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3752   }
3753 };
3754 
3755 /// Dereferenceable attribute deduction for a call site return value.
3756 struct AADereferenceableCallSiteReturned final
3757     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
3758   using Base =
3759       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
3760   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
3761       : Base(IRP, A) {}
3762 
3763   /// See AbstractAttribute::trackStatistics()
3764   void trackStatistics() const override {
3765     STATS_DECLTRACK_CS_ATTR(dereferenceable);
3766   }
3767 };
3768 
3769 // ------------------------ Align Argument Attribute ------------------------
3770 
3771 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
3772                                     Value &AssociatedValue, const Use *U,
3773                                     const Instruction *I, bool &TrackUse) {
3774   // We need to follow common pointer manipulation uses to the accesses they
3775   // feed into.
3776   if (isa<CastInst>(I)) {
3777     // Follow all but ptr2int casts.
3778     TrackUse = !isa<PtrToIntInst>(I);
3779     return 0;
3780   }
3781   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3782     if (GEP->hasAllConstantIndices())
3783       TrackUse = true;
3784     return 0;
3785   }
3786 
3787   MaybeAlign MA;
3788   if (const auto *CB = dyn_cast<CallBase>(I)) {
3789     if (CB->isBundleOperand(U) || CB->isCallee(U))
3790       return 0;
3791 
3792     unsigned ArgNo = CB->getArgOperandNo(U);
3793     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
3794     // As long as we only use known information there is no need to track
3795     // dependences here.
3796     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
3797     MA = MaybeAlign(AlignAA.getKnownAlign());
3798   }
3799 
3800   const DataLayout &DL = A.getDataLayout();
3801   const Value *UseV = U->get();
3802   if (auto *SI = dyn_cast<StoreInst>(I)) {
3803     if (SI->getPointerOperand() == UseV)
3804       MA = SI->getAlign();
3805   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
3806     if (LI->getPointerOperand() == UseV)
3807       MA = LI->getAlign();
3808   }
3809 
3810   if (!MA || *MA <= QueryingAA.getKnownAlign())
3811     return 0;
3812 
3813   unsigned Alignment = MA->value();
3814   int64_t Offset;
3815 
3816   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3817     if (Base == &AssociatedValue) {
3818       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3819       // So we can say that the maximum power of two which is a divisor of
3820       // gcd(Offset, Alignment) is an alignment.
3821 
3822       uint32_t gcd =
3823           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3824       Alignment = llvm::PowerOf2Floor(gcd);
3825     }
3826   }
3827 
3828   return Alignment;
3829 }
3830 
3831 struct AAAlignImpl : AAAlign {
3832   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
3833 
3834   /// See AbstractAttribute::initialize(...).
3835   void initialize(Attributor &A) override {
3836     SmallVector<Attribute, 4> Attrs;
3837     getAttrs({Attribute::Alignment}, Attrs);
3838     for (const Attribute &Attr : Attrs)
3839       takeKnownMaximum(Attr.getValueAsInt());
3840 
3841     Value &V = getAssociatedValue();
3842     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
3843     //       use of the function pointer. This was caused by D73131. We want to
3844     //       avoid this for function pointers especially because we iterate
3845     //       their uses and int2ptr is not handled. It is not a correctness
3846     //       problem though!
3847     if (!V.getType()->getPointerElementType()->isFunctionTy())
3848       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
3849 
3850     if (getIRPosition().isFnInterfaceKind() &&
3851         (!getAnchorScope() ||
3852          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
3853       indicatePessimisticFixpoint();
3854       return;
3855     }
3856 
3857     if (Instruction *CtxI = getCtxI())
3858       followUsesInMBEC(*this, A, getState(), *CtxI);
3859   }
3860 
3861   /// See AbstractAttribute::manifest(...).
3862   ChangeStatus manifest(Attributor &A) override {
3863     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3864 
3865     // Check for users that allow alignment annotations.
3866     Value &AssociatedValue = getAssociatedValue();
3867     for (const Use &U : AssociatedValue.uses()) {
3868       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3869         if (SI->getPointerOperand() == &AssociatedValue)
3870           if (SI->getAlignment() < getAssumedAlign()) {
3871             STATS_DECLTRACK(AAAlign, Store,
3872                             "Number of times alignment added to a store");
3873             SI->setAlignment(Align(getAssumedAlign()));
3874             LoadStoreChanged = ChangeStatus::CHANGED;
3875           }
3876       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3877         if (LI->getPointerOperand() == &AssociatedValue)
3878           if (LI->getAlignment() < getAssumedAlign()) {
3879             LI->setAlignment(Align(getAssumedAlign()));
3880             STATS_DECLTRACK(AAAlign, Load,
3881                             "Number of times alignment added to a load");
3882             LoadStoreChanged = ChangeStatus::CHANGED;
3883           }
3884       }
3885     }
3886 
3887     ChangeStatus Changed = AAAlign::manifest(A);
3888 
3889     Align InheritAlign =
3890         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3891     if (InheritAlign >= getAssumedAlign())
3892       return LoadStoreChanged;
3893     return Changed | LoadStoreChanged;
3894   }
3895 
3896   // TODO: Provide a helper to determine the implied ABI alignment and check in
3897   //       the existing manifest method and a new one for AAAlignImpl that value
3898   //       to avoid making the alignment explicit if it did not improve.
3899 
3900   /// See AbstractAttribute::getDeducedAttributes
3901   virtual void
3902   getDeducedAttributes(LLVMContext &Ctx,
3903                        SmallVectorImpl<Attribute> &Attrs) const override {
3904     if (getAssumedAlign() > 1)
3905       Attrs.emplace_back(
3906           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3907   }
3908 
3909   /// See followUsesInMBEC
3910   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3911                        AAAlign::StateType &State) {
3912     bool TrackUse = false;
3913 
3914     unsigned int KnownAlign =
3915         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3916     State.takeKnownMaximum(KnownAlign);
3917 
3918     return TrackUse;
3919   }
3920 
3921   /// See AbstractAttribute::getAsStr().
3922   const std::string getAsStr() const override {
3923     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3924                                 "-" + std::to_string(getAssumedAlign()) + ">")
3925                              : "unknown-align";
3926   }
3927 };
3928 
3929 /// Align attribute for a floating value.
3930 struct AAAlignFloating : AAAlignImpl {
3931   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
3932 
3933   /// See AbstractAttribute::updateImpl(...).
3934   ChangeStatus updateImpl(Attributor &A) override {
3935     const DataLayout &DL = A.getDataLayout();
3936 
3937     auto VisitValueCB = [&](Value &V, const Instruction *,
3938                             AAAlign::StateType &T, bool Stripped) -> bool {
3939       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
3940                                            DepClassTy::REQUIRED);
3941       if (!Stripped && this == &AA) {
3942         int64_t Offset;
3943         unsigned Alignment = 1;
3944         if (const Value *Base =
3945                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
3946           Align PA = Base->getPointerAlignment(DL);
3947           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3948           // So we can say that the maximum power of two which is a divisor of
3949           // gcd(Offset, Alignment) is an alignment.
3950 
3951           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
3952                                                uint32_t(PA.value()));
3953           Alignment = llvm::PowerOf2Floor(gcd);
3954         } else {
3955           Alignment = V.getPointerAlignment(DL).value();
3956         }
3957         // Use only IR information if we did not strip anything.
3958         T.takeKnownMaximum(Alignment);
3959         T.indicatePessimisticFixpoint();
3960       } else {
3961         // Use abstract attribute information.
3962         const AAAlign::StateType &DS = AA.getState();
3963         T ^= DS;
3964       }
3965       return T.isValidState();
3966     };
3967 
3968     StateType T;
3969     if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3970                                                    VisitValueCB, getCtxI()))
3971       return indicatePessimisticFixpoint();
3972 
3973     // TODO: If we know we visited all incoming values, thus no are assumed
3974     // dead, we can take the known information from the state T.
3975     return clampStateAndIndicateChange(getState(), T);
3976   }
3977 
3978   /// See AbstractAttribute::trackStatistics()
3979   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3980 };
3981 
3982 /// Align attribute for function return value.
3983 struct AAAlignReturned final
3984     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3985   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
3986   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3987 
3988   /// See AbstractAttribute::initialize(...).
3989   void initialize(Attributor &A) override {
3990     Base::initialize(A);
3991     Function *F = getAssociatedFunction();
3992     if (!F || F->isDeclaration())
3993       indicatePessimisticFixpoint();
3994   }
3995 
3996   /// See AbstractAttribute::trackStatistics()
3997   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3998 };
3999 
4000 /// Align attribute for function argument.
4001 struct AAAlignArgument final
4002     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4003   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4004   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4005 
4006   /// See AbstractAttribute::manifest(...).
4007   ChangeStatus manifest(Attributor &A) override {
4008     // If the associated argument is involved in a must-tail call we give up
4009     // because we would need to keep the argument alignments of caller and
4010     // callee in-sync. Just does not seem worth the trouble right now.
4011     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4012       return ChangeStatus::UNCHANGED;
4013     return Base::manifest(A);
4014   }
4015 
4016   /// See AbstractAttribute::trackStatistics()
4017   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4018 };
4019 
4020 struct AAAlignCallSiteArgument final : AAAlignFloating {
4021   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4022       : AAAlignFloating(IRP, A) {}
4023 
4024   /// See AbstractAttribute::manifest(...).
4025   ChangeStatus manifest(Attributor &A) override {
4026     // If the associated argument is involved in a must-tail call we give up
4027     // because we would need to keep the argument alignments of caller and
4028     // callee in-sync. Just does not seem worth the trouble right now.
4029     if (Argument *Arg = getAssociatedArgument())
4030       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4031         return ChangeStatus::UNCHANGED;
4032     ChangeStatus Changed = AAAlignImpl::manifest(A);
4033     Align InheritAlign =
4034         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4035     if (InheritAlign >= getAssumedAlign())
4036       Changed = ChangeStatus::UNCHANGED;
4037     return Changed;
4038   }
4039 
4040   /// See AbstractAttribute::updateImpl(Attributor &A).
4041   ChangeStatus updateImpl(Attributor &A) override {
4042     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4043     if (Argument *Arg = getAssociatedArgument()) {
4044       // We only take known information from the argument
4045       // so we do not need to track a dependence.
4046       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4047           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4048       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4049     }
4050     return Changed;
4051   }
4052 
4053   /// See AbstractAttribute::trackStatistics()
4054   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4055 };
4056 
4057 /// Align attribute deduction for a call site return value.
4058 struct AAAlignCallSiteReturned final
4059     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4060   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4061   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4062       : Base(IRP, A) {}
4063 
4064   /// See AbstractAttribute::initialize(...).
4065   void initialize(Attributor &A) override {
4066     Base::initialize(A);
4067     Function *F = getAssociatedFunction();
4068     if (!F || F->isDeclaration())
4069       indicatePessimisticFixpoint();
4070   }
4071 
4072   /// See AbstractAttribute::trackStatistics()
4073   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4074 };
4075 
4076 /// ------------------ Function No-Return Attribute ----------------------------
4077 struct AANoReturnImpl : public AANoReturn {
4078   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4079 
4080   /// See AbstractAttribute::initialize(...).
4081   void initialize(Attributor &A) override {
4082     AANoReturn::initialize(A);
4083     Function *F = getAssociatedFunction();
4084     if (!F || F->isDeclaration())
4085       indicatePessimisticFixpoint();
4086   }
4087 
4088   /// See AbstractAttribute::getAsStr().
4089   const std::string getAsStr() const override {
4090     return getAssumed() ? "noreturn" : "may-return";
4091   }
4092 
4093   /// See AbstractAttribute::updateImpl(Attributor &A).
4094   virtual ChangeStatus updateImpl(Attributor &A) override {
4095     auto CheckForNoReturn = [](Instruction &) { return false; };
4096     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4097                                    {(unsigned)Instruction::Ret}))
4098       return indicatePessimisticFixpoint();
4099     return ChangeStatus::UNCHANGED;
4100   }
4101 };
4102 
4103 struct AANoReturnFunction final : AANoReturnImpl {
4104   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4105       : AANoReturnImpl(IRP, A) {}
4106 
4107   /// See AbstractAttribute::trackStatistics()
4108   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4109 };
4110 
4111 /// NoReturn attribute deduction for a call sites.
4112 struct AANoReturnCallSite final : AANoReturnImpl {
4113   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4114       : AANoReturnImpl(IRP, A) {}
4115 
4116   /// See AbstractAttribute::initialize(...).
4117   void initialize(Attributor &A) override {
4118     AANoReturnImpl::initialize(A);
4119     if (Function *F = getAssociatedFunction()) {
4120       const IRPosition &FnPos = IRPosition::function(*F);
4121       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4122       if (!FnAA.isAssumedNoReturn())
4123         indicatePessimisticFixpoint();
4124     }
4125   }
4126 
4127   /// See AbstractAttribute::updateImpl(...).
4128   ChangeStatus updateImpl(Attributor &A) override {
4129     // TODO: Once we have call site specific value information we can provide
4130     //       call site specific liveness information and then it makes
4131     //       sense to specialize attributes for call sites arguments instead of
4132     //       redirecting requests to the callee argument.
4133     Function *F = getAssociatedFunction();
4134     const IRPosition &FnPos = IRPosition::function(*F);
4135     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4136     return clampStateAndIndicateChange(getState(), FnAA.getState());
4137   }
4138 
4139   /// See AbstractAttribute::trackStatistics()
4140   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4141 };
4142 
4143 /// ----------------------- Variable Capturing ---------------------------------
4144 
4145 /// A class to hold the state of for no-capture attributes.
4146 struct AANoCaptureImpl : public AANoCapture {
4147   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4148 
4149   /// See AbstractAttribute::initialize(...).
4150   void initialize(Attributor &A) override {
4151     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4152       indicateOptimisticFixpoint();
4153       return;
4154     }
4155     Function *AnchorScope = getAnchorScope();
4156     if (isFnInterfaceKind() &&
4157         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4158       indicatePessimisticFixpoint();
4159       return;
4160     }
4161 
4162     // You cannot "capture" null in the default address space.
4163     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4164         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4165       indicateOptimisticFixpoint();
4166       return;
4167     }
4168 
4169     const Function *F =
4170         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4171 
4172     // Check what state the associated function can actually capture.
4173     if (F)
4174       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4175     else
4176       indicatePessimisticFixpoint();
4177   }
4178 
4179   /// See AbstractAttribute::updateImpl(...).
4180   ChangeStatus updateImpl(Attributor &A) override;
4181 
4182   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4183   virtual void
4184   getDeducedAttributes(LLVMContext &Ctx,
4185                        SmallVectorImpl<Attribute> &Attrs) const override {
4186     if (!isAssumedNoCaptureMaybeReturned())
4187       return;
4188 
4189     if (isArgumentPosition()) {
4190       if (isAssumedNoCapture())
4191         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4192       else if (ManifestInternal)
4193         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4194     }
4195   }
4196 
4197   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4198   /// depending on the ability of the function associated with \p IRP to capture
4199   /// state in memory and through "returning/throwing", respectively.
4200   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4201                                                    const Function &F,
4202                                                    BitIntegerState &State) {
4203     // TODO: Once we have memory behavior attributes we should use them here.
4204 
4205     // If we know we cannot communicate or write to memory, we do not care about
4206     // ptr2int anymore.
4207     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4208         F.getReturnType()->isVoidTy()) {
4209       State.addKnownBits(NO_CAPTURE);
4210       return;
4211     }
4212 
4213     // A function cannot capture state in memory if it only reads memory, it can
4214     // however return/throw state and the state might be influenced by the
4215     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4216     if (F.onlyReadsMemory())
4217       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4218 
4219     // A function cannot communicate state back if it does not through
4220     // exceptions and doesn not return values.
4221     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4222       State.addKnownBits(NOT_CAPTURED_IN_RET);
4223 
4224     // Check existing "returned" attributes.
4225     int ArgNo = IRP.getCalleeArgNo();
4226     if (F.doesNotThrow() && ArgNo >= 0) {
4227       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4228         if (F.hasParamAttribute(u, Attribute::Returned)) {
4229           if (u == unsigned(ArgNo))
4230             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4231           else if (F.onlyReadsMemory())
4232             State.addKnownBits(NO_CAPTURE);
4233           else
4234             State.addKnownBits(NOT_CAPTURED_IN_RET);
4235           break;
4236         }
4237     }
4238   }
4239 
4240   /// See AbstractState::getAsStr().
4241   const std::string getAsStr() const override {
4242     if (isKnownNoCapture())
4243       return "known not-captured";
4244     if (isAssumedNoCapture())
4245       return "assumed not-captured";
4246     if (isKnownNoCaptureMaybeReturned())
4247       return "known not-captured-maybe-returned";
4248     if (isAssumedNoCaptureMaybeReturned())
4249       return "assumed not-captured-maybe-returned";
4250     return "assumed-captured";
4251   }
4252 };
4253 
4254 /// Attributor-aware capture tracker.
4255 struct AACaptureUseTracker final : public CaptureTracker {
4256 
4257   /// Create a capture tracker that can lookup in-flight abstract attributes
4258   /// through the Attributor \p A.
4259   ///
4260   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4261   /// search is stopped. If a use leads to a return instruction,
4262   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4263   /// If a use leads to a ptr2int which may capture the value,
4264   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4265   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4266   /// set. All values in \p PotentialCopies are later tracked as well. For every
4267   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4268   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4269   /// conservatively set to true.
4270   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4271                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4272                       SmallVectorImpl<const Value *> &PotentialCopies,
4273                       unsigned &RemainingUsesToExplore)
4274       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4275         PotentialCopies(PotentialCopies),
4276         RemainingUsesToExplore(RemainingUsesToExplore) {}
4277 
4278   /// Determine if \p V maybe captured. *Also updates the state!*
4279   bool valueMayBeCaptured(const Value *V) {
4280     if (V->getType()->isPointerTy()) {
4281       PointerMayBeCaptured(V, this);
4282     } else {
4283       State.indicatePessimisticFixpoint();
4284     }
4285     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4286   }
4287 
4288   /// See CaptureTracker::tooManyUses().
4289   void tooManyUses() override {
4290     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4291   }
4292 
4293   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4294     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4295       return true;
4296     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4297         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4298     return DerefAA.getAssumedDereferenceableBytes();
4299   }
4300 
4301   /// See CaptureTracker::captured(...).
4302   bool captured(const Use *U) override {
4303     Instruction *UInst = cast<Instruction>(U->getUser());
4304     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4305                       << "\n");
4306 
4307     // Because we may reuse the tracker multiple times we keep track of the
4308     // number of explored uses ourselves as well.
4309     if (RemainingUsesToExplore-- == 0) {
4310       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4311       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4312                           /* Return */ true);
4313     }
4314 
4315     // Deal with ptr2int by following uses.
4316     if (isa<PtrToIntInst>(UInst)) {
4317       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4318       return valueMayBeCaptured(UInst);
4319     }
4320 
4321     // Explicitly catch return instructions.
4322     if (isa<ReturnInst>(UInst))
4323       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4324                           /* Return */ true);
4325 
4326     // For now we only use special logic for call sites. However, the tracker
4327     // itself knows about a lot of other non-capturing cases already.
4328     auto *CB = dyn_cast<CallBase>(UInst);
4329     if (!CB || !CB->isArgOperand(U))
4330       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4331                           /* Return */ true);
4332 
4333     unsigned ArgNo = CB->getArgOperandNo(U);
4334     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4335     // If we have a abstract no-capture attribute for the argument we can use
4336     // it to justify a non-capture attribute here. This allows recursion!
4337     auto &ArgNoCaptureAA =
4338         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4339     if (ArgNoCaptureAA.isAssumedNoCapture())
4340       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4341                           /* Return */ false);
4342     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4343       addPotentialCopy(*CB);
4344       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4345                           /* Return */ false);
4346     }
4347 
4348     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4349     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4350                         /* Return */ true);
4351   }
4352 
4353   /// Register \p CS as potential copy of the value we are checking.
4354   void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); }
4355 
4356   /// See CaptureTracker::shouldExplore(...).
4357   bool shouldExplore(const Use *U) override {
4358     // Check liveness and ignore droppable users.
4359     return !U->getUser()->isDroppable() &&
4360            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4361   }
4362 
4363   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4364   /// \p CapturedInRet, then return the appropriate value for use in the
4365   /// CaptureTracker::captured() interface.
4366   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4367                     bool CapturedInRet) {
4368     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4369                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4370     if (CapturedInMem)
4371       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4372     if (CapturedInInt)
4373       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4374     if (CapturedInRet)
4375       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4376     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4377   }
4378 
4379 private:
4380   /// The attributor providing in-flight abstract attributes.
4381   Attributor &A;
4382 
4383   /// The abstract attribute currently updated.
4384   AANoCapture &NoCaptureAA;
4385 
4386   /// The abstract liveness state.
4387   const AAIsDead &IsDeadAA;
4388 
4389   /// The state currently updated.
4390   AANoCapture::StateType &State;
4391 
4392   /// Set of potential copies of the tracked value.
4393   SmallVectorImpl<const Value *> &PotentialCopies;
4394 
4395   /// Global counter to limit the number of explored uses.
4396   unsigned &RemainingUsesToExplore;
4397 };
4398 
4399 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4400   const IRPosition &IRP = getIRPosition();
4401   const Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4402                                         : &IRP.getAssociatedValue();
4403   if (!V)
4404     return indicatePessimisticFixpoint();
4405 
4406   const Function *F =
4407       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4408   assert(F && "Expected a function!");
4409   const IRPosition &FnPos = IRPosition::function(*F);
4410   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4411 
4412   AANoCapture::StateType T;
4413 
4414   // Readonly means we cannot capture through memory.
4415   const auto &FnMemAA =
4416       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4417   if (FnMemAA.isAssumedReadOnly()) {
4418     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4419     if (FnMemAA.isKnownReadOnly())
4420       addKnownBits(NOT_CAPTURED_IN_MEM);
4421     else
4422       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4423   }
4424 
4425   // Make sure all returned values are different than the underlying value.
4426   // TODO: we could do this in a more sophisticated way inside
4427   //       AAReturnedValues, e.g., track all values that escape through returns
4428   //       directly somehow.
4429   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4430     bool SeenConstant = false;
4431     for (auto &It : RVAA.returned_values()) {
4432       if (isa<Constant>(It.first)) {
4433         if (SeenConstant)
4434           return false;
4435         SeenConstant = true;
4436       } else if (!isa<Argument>(It.first) ||
4437                  It.first == getAssociatedArgument())
4438         return false;
4439     }
4440     return true;
4441   };
4442 
4443   const auto &NoUnwindAA =
4444       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4445   if (NoUnwindAA.isAssumedNoUnwind()) {
4446     bool IsVoidTy = F->getReturnType()->isVoidTy();
4447     const AAReturnedValues *RVAA =
4448         IsVoidTy ? nullptr
4449                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4450 
4451                                                  DepClassTy::OPTIONAL);
4452     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4453       T.addKnownBits(NOT_CAPTURED_IN_RET);
4454       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4455         return ChangeStatus::UNCHANGED;
4456       if (NoUnwindAA.isKnownNoUnwind() &&
4457           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4458         addKnownBits(NOT_CAPTURED_IN_RET);
4459         if (isKnown(NOT_CAPTURED_IN_MEM))
4460           return indicateOptimisticFixpoint();
4461       }
4462     }
4463   }
4464 
4465   // Use the CaptureTracker interface and logic with the specialized tracker,
4466   // defined in AACaptureUseTracker, that can look at in-flight abstract
4467   // attributes and directly updates the assumed state.
4468   SmallVector<const Value *, 4> PotentialCopies;
4469   unsigned RemainingUsesToExplore =
4470       getDefaultMaxUsesToExploreForCaptureTracking();
4471   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4472                               RemainingUsesToExplore);
4473 
4474   // Check all potential copies of the associated value until we can assume
4475   // none will be captured or we have to assume at least one might be.
4476   unsigned Idx = 0;
4477   PotentialCopies.push_back(V);
4478   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4479     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4480 
4481   AANoCapture::StateType &S = getState();
4482   auto Assumed = S.getAssumed();
4483   S.intersectAssumedBits(T.getAssumed());
4484   if (!isAssumedNoCaptureMaybeReturned())
4485     return indicatePessimisticFixpoint();
4486   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4487                                    : ChangeStatus::CHANGED;
4488 }
4489 
4490 /// NoCapture attribute for function arguments.
4491 struct AANoCaptureArgument final : AANoCaptureImpl {
4492   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4493       : AANoCaptureImpl(IRP, A) {}
4494 
4495   /// See AbstractAttribute::trackStatistics()
4496   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4497 };
4498 
4499 /// NoCapture attribute for call site arguments.
4500 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4501   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4502       : AANoCaptureImpl(IRP, A) {}
4503 
4504   /// See AbstractAttribute::initialize(...).
4505   void initialize(Attributor &A) override {
4506     if (Argument *Arg = getAssociatedArgument())
4507       if (Arg->hasByValAttr())
4508         indicateOptimisticFixpoint();
4509     AANoCaptureImpl::initialize(A);
4510   }
4511 
4512   /// See AbstractAttribute::updateImpl(...).
4513   ChangeStatus updateImpl(Attributor &A) override {
4514     // TODO: Once we have call site specific value information we can provide
4515     //       call site specific liveness information and then it makes
4516     //       sense to specialize attributes for call sites arguments instead of
4517     //       redirecting requests to the callee argument.
4518     Argument *Arg = getAssociatedArgument();
4519     if (!Arg)
4520       return indicatePessimisticFixpoint();
4521     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4522     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
4523     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4524   }
4525 
4526   /// See AbstractAttribute::trackStatistics()
4527   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4528 };
4529 
4530 /// NoCapture attribute for floating values.
4531 struct AANoCaptureFloating final : AANoCaptureImpl {
4532   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4533       : AANoCaptureImpl(IRP, A) {}
4534 
4535   /// See AbstractAttribute::trackStatistics()
4536   void trackStatistics() const override {
4537     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4538   }
4539 };
4540 
4541 /// NoCapture attribute for function return value.
4542 struct AANoCaptureReturned final : AANoCaptureImpl {
4543   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4544       : AANoCaptureImpl(IRP, A) {
4545     llvm_unreachable("NoCapture is not applicable to function returns!");
4546   }
4547 
4548   /// See AbstractAttribute::initialize(...).
4549   void initialize(Attributor &A) override {
4550     llvm_unreachable("NoCapture is not applicable to function returns!");
4551   }
4552 
4553   /// See AbstractAttribute::updateImpl(...).
4554   ChangeStatus updateImpl(Attributor &A) override {
4555     llvm_unreachable("NoCapture is not applicable to function returns!");
4556   }
4557 
4558   /// See AbstractAttribute::trackStatistics()
4559   void trackStatistics() const override {}
4560 };
4561 
4562 /// NoCapture attribute deduction for a call site return value.
4563 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4564   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4565       : AANoCaptureImpl(IRP, A) {}
4566 
4567   /// See AbstractAttribute::initialize(...).
4568   void initialize(Attributor &A) override {
4569     const Function *F = getAnchorScope();
4570     // Check what state the associated function can actually capture.
4571     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4572   }
4573 
4574   /// See AbstractAttribute::trackStatistics()
4575   void trackStatistics() const override {
4576     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4577   }
4578 };
4579 
4580 /// ------------------ Value Simplify Attribute ----------------------------
4581 struct AAValueSimplifyImpl : AAValueSimplify {
4582   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
4583       : AAValueSimplify(IRP, A) {}
4584 
4585   /// See AbstractAttribute::initialize(...).
4586   void initialize(Attributor &A) override {
4587     if (getAssociatedValue().getType()->isVoidTy())
4588       indicatePessimisticFixpoint();
4589   }
4590 
4591   /// See AbstractAttribute::getAsStr().
4592   const std::string getAsStr() const override {
4593     return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4594                         : "not-simple";
4595   }
4596 
4597   /// See AbstractAttribute::trackStatistics()
4598   void trackStatistics() const override {}
4599 
4600   /// See AAValueSimplify::getAssumedSimplifiedValue()
4601   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4602     if (!getAssumed())
4603       return const_cast<Value *>(&getAssociatedValue());
4604     return SimplifiedAssociatedValue;
4605   }
4606 
4607   /// Helper function for querying AAValueSimplify and updating candicate.
4608   /// \param QueryingValue Value trying to unify with SimplifiedValue
4609   /// \param AccumulatedSimplifiedValue Current simplification result.
4610   static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4611                              Value &QueryingValue,
4612                              Optional<Value *> &AccumulatedSimplifiedValue) {
4613     // FIXME: Add a typecast support.
4614 
4615     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4616         QueryingAA, IRPosition::value(QueryingValue), DepClassTy::REQUIRED);
4617 
4618     Optional<Value *> QueryingValueSimplified =
4619         ValueSimplifyAA.getAssumedSimplifiedValue(A);
4620 
4621     if (!QueryingValueSimplified.hasValue())
4622       return true;
4623 
4624     if (!QueryingValueSimplified.getValue())
4625       return false;
4626 
4627     Value &QueryingValueSimplifiedUnwrapped =
4628         *QueryingValueSimplified.getValue();
4629 
4630     if (AccumulatedSimplifiedValue.hasValue() &&
4631         !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4632         !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4633       return AccumulatedSimplifiedValue == QueryingValueSimplified;
4634     if (AccumulatedSimplifiedValue.hasValue() &&
4635         isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4636       return true;
4637 
4638     LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4639                       << " is assumed to be "
4640                       << QueryingValueSimplifiedUnwrapped << "\n");
4641 
4642     AccumulatedSimplifiedValue = QueryingValueSimplified;
4643     return true;
4644   }
4645 
4646   /// Returns a candidate is found or not
4647   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
4648     if (!getAssociatedValue().getType()->isIntegerTy())
4649       return false;
4650 
4651     const auto &AA =
4652         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
4653 
4654     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
4655 
4656     if (!COpt.hasValue()) {
4657       SimplifiedAssociatedValue = llvm::None;
4658       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4659       return true;
4660     }
4661     if (auto *C = COpt.getValue()) {
4662       SimplifiedAssociatedValue = C;
4663       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4664       return true;
4665     }
4666     return false;
4667   }
4668 
4669   bool askSimplifiedValueForOtherAAs(Attributor &A) {
4670     if (askSimplifiedValueFor<AAValueConstantRange>(A))
4671       return true;
4672     if (askSimplifiedValueFor<AAPotentialValues>(A))
4673       return true;
4674     return false;
4675   }
4676 
4677   /// See AbstractAttribute::manifest(...).
4678   ChangeStatus manifest(Attributor &A) override {
4679     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4680 
4681     if (SimplifiedAssociatedValue.hasValue() &&
4682         !SimplifiedAssociatedValue.getValue())
4683       return Changed;
4684 
4685     Value &V = getAssociatedValue();
4686     auto *C = SimplifiedAssociatedValue.hasValue()
4687                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4688                   : UndefValue::get(V.getType());
4689     if (C) {
4690       // We can replace the AssociatedValue with the constant.
4691       if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4692         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4693                           << " :: " << *this << "\n");
4694         if (A.changeValueAfterManifest(V, *C))
4695           Changed = ChangeStatus::CHANGED;
4696       }
4697     }
4698 
4699     return Changed | AAValueSimplify::manifest(A);
4700   }
4701 
4702   /// See AbstractState::indicatePessimisticFixpoint(...).
4703   ChangeStatus indicatePessimisticFixpoint() override {
4704     // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4705     // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4706     SimplifiedAssociatedValue = &getAssociatedValue();
4707     indicateOptimisticFixpoint();
4708     return ChangeStatus::CHANGED;
4709   }
4710 
4711 protected:
4712   // An assumed simplified value. Initially, it is set to Optional::None, which
4713   // means that the value is not clear under current assumption. If in the
4714   // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4715   // returns orignal associated value.
4716   Optional<Value *> SimplifiedAssociatedValue;
4717 };
4718 
4719 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
4720   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
4721       : AAValueSimplifyImpl(IRP, A) {}
4722 
4723   void initialize(Attributor &A) override {
4724     AAValueSimplifyImpl::initialize(A);
4725     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
4726       indicatePessimisticFixpoint();
4727     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
4728                  Attribute::StructRet, Attribute::Nest},
4729                 /* IgnoreSubsumingPositions */ true))
4730       indicatePessimisticFixpoint();
4731 
4732     // FIXME: This is a hack to prevent us from propagating function poiner in
4733     // the new pass manager CGSCC pass as it creates call edges the
4734     // CallGraphUpdater cannot handle yet.
4735     Value &V = getAssociatedValue();
4736     if (V.getType()->isPointerTy() &&
4737         V.getType()->getPointerElementType()->isFunctionTy() &&
4738         !A.isModulePass())
4739       indicatePessimisticFixpoint();
4740   }
4741 
4742   /// See AbstractAttribute::updateImpl(...).
4743   ChangeStatus updateImpl(Attributor &A) override {
4744     // Byval is only replacable if it is readonly otherwise we would write into
4745     // the replaced value and not the copy that byval creates implicitly.
4746     Argument *Arg = getAssociatedArgument();
4747     if (Arg->hasByValAttr()) {
4748       // TODO: We probably need to verify synchronization is not an issue, e.g.,
4749       //       there is no race by not copying a constant byval.
4750       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
4751                                                        DepClassTy::REQUIRED);
4752       if (!MemAA.isAssumedReadOnly())
4753         return indicatePessimisticFixpoint();
4754     }
4755 
4756     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4757 
4758     auto PredForCallSite = [&](AbstractCallSite ACS) {
4759       const IRPosition &ACSArgPos =
4760           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
4761       // Check if a coresponding argument was found or if it is on not
4762       // associated (which can happen for callback calls).
4763       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4764         return false;
4765 
4766       // We can only propagate thread independent values through callbacks.
4767       // This is different to direct/indirect call sites because for them we
4768       // know the thread executing the caller and callee is the same. For
4769       // callbacks this is not guaranteed, thus a thread dependent value could
4770       // be different for the caller and callee, making it invalid to propagate.
4771       Value &ArgOp = ACSArgPos.getAssociatedValue();
4772       if (ACS.isCallbackCall())
4773         if (auto *C = dyn_cast<Constant>(&ArgOp))
4774           if (C->isThreadDependent())
4775             return false;
4776       return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4777     };
4778 
4779     bool AllCallSitesKnown;
4780     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4781                                 AllCallSitesKnown))
4782       if (!askSimplifiedValueForOtherAAs(A))
4783         return indicatePessimisticFixpoint();
4784 
4785     // If a candicate was found in this update, return CHANGED.
4786     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4787                ? ChangeStatus::UNCHANGED
4788                : ChangeStatus ::CHANGED;
4789   }
4790 
4791   /// See AbstractAttribute::trackStatistics()
4792   void trackStatistics() const override {
4793     STATS_DECLTRACK_ARG_ATTR(value_simplify)
4794   }
4795 };
4796 
4797 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
4798   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
4799       : AAValueSimplifyImpl(IRP, A) {}
4800 
4801   /// See AbstractAttribute::updateImpl(...).
4802   ChangeStatus updateImpl(Attributor &A) override {
4803     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4804 
4805     auto PredForReturned = [&](Value &V) {
4806       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4807     };
4808 
4809     if (!A.checkForAllReturnedValues(PredForReturned, *this))
4810       if (!askSimplifiedValueForOtherAAs(A))
4811         return indicatePessimisticFixpoint();
4812 
4813     // If a candicate was found in this update, return CHANGED.
4814     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4815                ? ChangeStatus::UNCHANGED
4816                : ChangeStatus ::CHANGED;
4817   }
4818 
4819   ChangeStatus manifest(Attributor &A) override {
4820     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4821 
4822     if (SimplifiedAssociatedValue.hasValue() &&
4823         !SimplifiedAssociatedValue.getValue())
4824       return Changed;
4825 
4826     Value &V = getAssociatedValue();
4827     auto *C = SimplifiedAssociatedValue.hasValue()
4828                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4829                   : UndefValue::get(V.getType());
4830     if (C) {
4831       auto PredForReturned =
4832           [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4833             // We can replace the AssociatedValue with the constant.
4834             if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4835               return true;
4836 
4837             for (ReturnInst *RI : RetInsts) {
4838               if (RI->getFunction() != getAnchorScope())
4839                 continue;
4840               auto *RC = C;
4841               if (RC->getType() != RI->getReturnValue()->getType())
4842                 RC = ConstantExpr::getBitCast(RC,
4843                                               RI->getReturnValue()->getType());
4844               LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC
4845                                 << " in " << *RI << " :: " << *this << "\n");
4846               if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC))
4847                 Changed = ChangeStatus::CHANGED;
4848             }
4849             return true;
4850           };
4851       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4852     }
4853 
4854     return Changed | AAValueSimplify::manifest(A);
4855   }
4856 
4857   /// See AbstractAttribute::trackStatistics()
4858   void trackStatistics() const override {
4859     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4860   }
4861 };
4862 
4863 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
4864   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
4865       : AAValueSimplifyImpl(IRP, A) {}
4866 
4867   /// See AbstractAttribute::initialize(...).
4868   void initialize(Attributor &A) override {
4869     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
4870     //        Needs investigation.
4871     // AAValueSimplifyImpl::initialize(A);
4872     Value &V = getAnchorValue();
4873 
4874     // TODO: add other stuffs
4875     if (isa<Constant>(V))
4876       indicatePessimisticFixpoint();
4877   }
4878 
4879   /// Check if \p ICmp is an equality comparison (==/!=) with at least one
4880   /// nullptr. If so, try to simplify it using AANonNull on the other operand.
4881   /// Return true if successful, in that case SimplifiedAssociatedValue will be
4882   /// updated and \p Changed is set appropriately.
4883   bool checkForNullPtrCompare(Attributor &A, ICmpInst *ICmp,
4884                               ChangeStatus &Changed) {
4885     if (!ICmp)
4886       return false;
4887     if (!ICmp->isEquality())
4888       return false;
4889 
4890     // This is a comparison with == or !-. We check for nullptr now.
4891     bool Op0IsNull = isa<ConstantPointerNull>(ICmp->getOperand(0));
4892     bool Op1IsNull = isa<ConstantPointerNull>(ICmp->getOperand(1));
4893     if (!Op0IsNull && !Op1IsNull)
4894       return false;
4895 
4896     LLVMContext &Ctx = ICmp->getContext();
4897     // Check for `nullptr ==/!= nullptr` first:
4898     if (Op0IsNull && Op1IsNull) {
4899       Value *NewVal = ConstantInt::get(
4900           Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_EQ);
4901       assert(!SimplifiedAssociatedValue.hasValue() &&
4902              "Did not expect non-fixed value for constant comparison");
4903       SimplifiedAssociatedValue = NewVal;
4904       indicateOptimisticFixpoint();
4905       Changed = ChangeStatus::CHANGED;
4906       return true;
4907     }
4908 
4909     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
4910     // non-nullptr operand and if we assume it's non-null we can conclude the
4911     // result of the comparison.
4912     assert((Op0IsNull || Op1IsNull) &&
4913            "Expected nullptr versus non-nullptr comparison at this point");
4914 
4915     // The index is the operand that we assume is not null.
4916     unsigned PtrIdx = Op0IsNull;
4917     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
4918         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
4919         DepClassTy::REQUIRED);
4920     if (!PtrNonNullAA.isAssumedNonNull())
4921       return false;
4922 
4923     // The new value depends on the predicate, true for != and false for ==.
4924     Value *NewVal = ConstantInt::get(Type::getInt1Ty(Ctx),
4925                                      ICmp->getPredicate() == CmpInst::ICMP_NE);
4926 
4927     assert((!SimplifiedAssociatedValue.hasValue() ||
4928             SimplifiedAssociatedValue == NewVal) &&
4929            "Did not expect to change value for zero-comparison");
4930 
4931     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4932     SimplifiedAssociatedValue = NewVal;
4933 
4934     if (PtrNonNullAA.isKnownNonNull())
4935       indicateOptimisticFixpoint();
4936 
4937     Changed = HasValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus ::CHANGED;
4938     return true;
4939   }
4940 
4941   /// See AbstractAttribute::updateImpl(...).
4942   ChangeStatus updateImpl(Attributor &A) override {
4943     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4944 
4945     ChangeStatus Changed;
4946     if (checkForNullPtrCompare(A, dyn_cast<ICmpInst>(&getAnchorValue()),
4947                                Changed))
4948       return Changed;
4949 
4950     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
4951                             bool Stripped) -> bool {
4952       auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V),
4953                                              DepClassTy::REQUIRED);
4954       if (!Stripped && this == &AA) {
4955         // TODO: Look the instruction and check recursively.
4956 
4957         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4958                           << "\n");
4959         return false;
4960       }
4961       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4962     };
4963 
4964     bool Dummy = false;
4965     if (!genericValueTraversal<AAValueSimplify, bool>(
4966             A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(),
4967             /* UseValueSimplify */ false))
4968       if (!askSimplifiedValueForOtherAAs(A))
4969         return indicatePessimisticFixpoint();
4970 
4971     // If a candicate was found in this update, return CHANGED.
4972 
4973     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4974                ? ChangeStatus::UNCHANGED
4975                : ChangeStatus ::CHANGED;
4976   }
4977 
4978   /// See AbstractAttribute::trackStatistics()
4979   void trackStatistics() const override {
4980     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4981   }
4982 };
4983 
4984 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
4985   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
4986       : AAValueSimplifyImpl(IRP, A) {}
4987 
4988   /// See AbstractAttribute::initialize(...).
4989   void initialize(Attributor &A) override {
4990     SimplifiedAssociatedValue = &getAnchorValue();
4991     indicateOptimisticFixpoint();
4992   }
4993   /// See AbstractAttribute::initialize(...).
4994   ChangeStatus updateImpl(Attributor &A) override {
4995     llvm_unreachable(
4996         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4997   }
4998   /// See AbstractAttribute::trackStatistics()
4999   void trackStatistics() const override {
5000     STATS_DECLTRACK_FN_ATTR(value_simplify)
5001   }
5002 };
5003 
5004 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5005   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5006       : AAValueSimplifyFunction(IRP, A) {}
5007   /// See AbstractAttribute::trackStatistics()
5008   void trackStatistics() const override {
5009     STATS_DECLTRACK_CS_ATTR(value_simplify)
5010   }
5011 };
5012 
5013 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
5014   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5015       : AAValueSimplifyReturned(IRP, A) {}
5016 
5017   /// See AbstractAttribute::manifest(...).
5018   ChangeStatus manifest(Attributor &A) override {
5019     return AAValueSimplifyImpl::manifest(A);
5020   }
5021 
5022   void trackStatistics() const override {
5023     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5024   }
5025 };
5026 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5027   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5028       : AAValueSimplifyFloating(IRP, A) {}
5029 
5030   /// See AbstractAttribute::manifest(...).
5031   ChangeStatus manifest(Attributor &A) override {
5032     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5033 
5034     if (SimplifiedAssociatedValue.hasValue() &&
5035         !SimplifiedAssociatedValue.getValue())
5036       return Changed;
5037 
5038     Value &V = getAssociatedValue();
5039     auto *C = SimplifiedAssociatedValue.hasValue()
5040                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
5041                   : UndefValue::get(V.getType());
5042     if (C) {
5043       Use &U = cast<CallBase>(&getAnchorValue())
5044                    ->getArgOperandUse(getCallSiteArgNo());
5045       // We can replace the AssociatedValue with the constant.
5046       if (&V != C && V.getType() == C->getType()) {
5047         if (A.changeUseAfterManifest(U, *C))
5048           Changed = ChangeStatus::CHANGED;
5049       }
5050     }
5051 
5052     return Changed | AAValueSimplify::manifest(A);
5053   }
5054 
5055   void trackStatistics() const override {
5056     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5057   }
5058 };
5059 
5060 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5061 struct AAHeapToStackImpl : public AAHeapToStack {
5062   AAHeapToStackImpl(const IRPosition &IRP, Attributor &A)
5063       : AAHeapToStack(IRP, A) {}
5064 
5065   const std::string getAsStr() const override {
5066     return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
5067   }
5068 
5069   ChangeStatus manifest(Attributor &A) override {
5070     assert(getState().isValidState() &&
5071            "Attempted to manifest an invalid state!");
5072 
5073     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5074     Function *F = getAnchorScope();
5075     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5076 
5077     for (Instruction *MallocCall : MallocCalls) {
5078       // This malloc cannot be replaced.
5079       if (BadMallocCalls.count(MallocCall))
5080         continue;
5081 
5082       for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
5083         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5084         A.deleteAfterManifest(*FreeCall);
5085         HasChanged = ChangeStatus::CHANGED;
5086       }
5087 
5088       LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
5089                         << "\n");
5090 
5091       Align Alignment;
5092       Value *Size;
5093       if (isCallocLikeFn(MallocCall, TLI)) {
5094         auto *Num = MallocCall->getOperand(0);
5095         auto *SizeT = MallocCall->getOperand(1);
5096         IRBuilder<> B(MallocCall);
5097         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5098       } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
5099         Size = MallocCall->getOperand(1);
5100         Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
5101                                    ->getValue()
5102                                    .getZExtValue())
5103                         .valueOrOne();
5104       } else {
5105         Size = MallocCall->getOperand(0);
5106       }
5107 
5108       unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
5109       Instruction *AI =
5110           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5111                          "", MallocCall->getNextNode());
5112 
5113       if (AI->getType() != MallocCall->getType())
5114         AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
5115                              AI->getNextNode());
5116 
5117       A.changeValueAfterManifest(*MallocCall, *AI);
5118 
5119       if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
5120         auto *NBB = II->getNormalDest();
5121         BranchInst::Create(NBB, MallocCall->getParent());
5122         A.deleteAfterManifest(*MallocCall);
5123       } else {
5124         A.deleteAfterManifest(*MallocCall);
5125       }
5126 
5127       // Zero out the allocated memory if it was a calloc.
5128       if (isCallocLikeFn(MallocCall, TLI)) {
5129         auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
5130                                    AI->getNextNode());
5131         Value *Ops[] = {
5132             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5133             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5134 
5135         Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
5136         Module *M = F->getParent();
5137         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5138         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5139       }
5140       HasChanged = ChangeStatus::CHANGED;
5141     }
5142 
5143     return HasChanged;
5144   }
5145 
5146   /// Collection of all malloc calls in a function.
5147   SmallSetVector<Instruction *, 4> MallocCalls;
5148 
5149   /// Collection of malloc calls that cannot be converted.
5150   DenseSet<const Instruction *> BadMallocCalls;
5151 
5152   /// A map for each malloc call to the set of associated free calls.
5153   DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
5154 
5155   ChangeStatus updateImpl(Attributor &A) override;
5156 };
5157 
5158 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
5159   const Function *F = getAnchorScope();
5160   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5161 
5162   MustBeExecutedContextExplorer &Explorer =
5163       A.getInfoCache().getMustBeExecutedContextExplorer();
5164 
5165   auto FreeCheck = [&](Instruction &I) {
5166     const auto &Frees = FreesForMalloc.lookup(&I);
5167     if (Frees.size() != 1)
5168       return false;
5169     Instruction *UniqueFree = *Frees.begin();
5170     return Explorer.findInContextOf(UniqueFree, I.getNextNode());
5171   };
5172 
5173   auto UsesCheck = [&](Instruction &I) {
5174     bool ValidUsesOnly = true;
5175     bool MustUse = true;
5176     auto Pred = [&](const Use &U, bool &Follow) -> bool {
5177       Instruction *UserI = cast<Instruction>(U.getUser());
5178       if (isa<LoadInst>(UserI))
5179         return true;
5180       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
5181         if (SI->getValueOperand() == U.get()) {
5182           LLVM_DEBUG(dbgs()
5183                      << "[H2S] escaping store to memory: " << *UserI << "\n");
5184           ValidUsesOnly = false;
5185         } else {
5186           // A store into the malloc'ed memory is fine.
5187         }
5188         return true;
5189       }
5190       if (auto *CB = dyn_cast<CallBase>(UserI)) {
5191         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
5192           return true;
5193         // Record malloc.
5194         if (isFreeCall(UserI, TLI)) {
5195           if (MustUse) {
5196             FreesForMalloc[&I].insert(UserI);
5197           } else {
5198             LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
5199                               << *UserI << "\n");
5200             ValidUsesOnly = false;
5201           }
5202           return true;
5203         }
5204 
5205         unsigned ArgNo = CB->getArgOperandNo(&U);
5206 
5207         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
5208             *this, IRPosition::callsite_argument(*CB, ArgNo),
5209             DepClassTy::REQUIRED);
5210 
5211         // If a callsite argument use is nofree, we are fine.
5212         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
5213             *this, IRPosition::callsite_argument(*CB, ArgNo),
5214             DepClassTy::REQUIRED);
5215 
5216         if (!NoCaptureAA.isAssumedNoCapture() ||
5217             !ArgNoFreeAA.isAssumedNoFree()) {
5218           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
5219           ValidUsesOnly = false;
5220         }
5221         return true;
5222       }
5223 
5224       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
5225           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
5226         MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
5227         Follow = true;
5228         return true;
5229       }
5230       // Unknown user for which we can not track uses further (in a way that
5231       // makes sense).
5232       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
5233       ValidUsesOnly = false;
5234       return true;
5235     };
5236     A.checkForAllUses(Pred, *this, I);
5237     return ValidUsesOnly;
5238   };
5239 
5240   auto MallocCallocCheck = [&](Instruction &I) {
5241     if (BadMallocCalls.count(&I))
5242       return true;
5243 
5244     bool IsMalloc = isMallocLikeFn(&I, TLI);
5245     bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
5246     bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
5247     if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
5248       BadMallocCalls.insert(&I);
5249       return true;
5250     }
5251 
5252     if (IsMalloc) {
5253       if (MaxHeapToStackSize == -1) {
5254         if (UsesCheck(I) || FreeCheck(I)) {
5255           MallocCalls.insert(&I);
5256           return true;
5257         }
5258       }
5259       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
5260         if (Size->getValue().ule(MaxHeapToStackSize))
5261           if (UsesCheck(I) || FreeCheck(I)) {
5262             MallocCalls.insert(&I);
5263             return true;
5264           }
5265     } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
5266       if (MaxHeapToStackSize == -1) {
5267         if (UsesCheck(I) || FreeCheck(I)) {
5268           MallocCalls.insert(&I);
5269           return true;
5270         }
5271       }
5272       // Only if the alignment and sizes are constant.
5273       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5274         if (Size->getValue().ule(MaxHeapToStackSize))
5275           if (UsesCheck(I) || FreeCheck(I)) {
5276             MallocCalls.insert(&I);
5277             return true;
5278           }
5279     } else if (IsCalloc) {
5280       if (MaxHeapToStackSize == -1) {
5281         if (UsesCheck(I) || FreeCheck(I)) {
5282           MallocCalls.insert(&I);
5283           return true;
5284         }
5285       }
5286       bool Overflow = false;
5287       if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
5288         if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5289           if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
5290                   .ule(MaxHeapToStackSize))
5291             if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
5292               MallocCalls.insert(&I);
5293               return true;
5294             }
5295     }
5296 
5297     BadMallocCalls.insert(&I);
5298     return true;
5299   };
5300 
5301   size_t NumBadMallocs = BadMallocCalls.size();
5302 
5303   A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
5304 
5305   if (NumBadMallocs != BadMallocCalls.size())
5306     return ChangeStatus::CHANGED;
5307 
5308   return ChangeStatus::UNCHANGED;
5309 }
5310 
5311 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
5312   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5313       : AAHeapToStackImpl(IRP, A) {}
5314 
5315   /// See AbstractAttribute::trackStatistics().
5316   void trackStatistics() const override {
5317     STATS_DECL(
5318         MallocCalls, Function,
5319         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5320     for (auto *C : MallocCalls)
5321       if (!BadMallocCalls.count(C))
5322         ++BUILD_STAT_NAME(MallocCalls, Function);
5323   }
5324 };
5325 
5326 /// ----------------------- Privatizable Pointers ------------------------------
5327 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
5328   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
5329       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
5330 
5331   ChangeStatus indicatePessimisticFixpoint() override {
5332     AAPrivatizablePtr::indicatePessimisticFixpoint();
5333     PrivatizableType = nullptr;
5334     return ChangeStatus::CHANGED;
5335   }
5336 
5337   /// Identify the type we can chose for a private copy of the underlying
5338   /// argument. None means it is not clear yet, nullptr means there is none.
5339   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
5340 
5341   /// Return a privatizable type that encloses both T0 and T1.
5342   /// TODO: This is merely a stub for now as we should manage a mapping as well.
5343   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
5344     if (!T0.hasValue())
5345       return T1;
5346     if (!T1.hasValue())
5347       return T0;
5348     if (T0 == T1)
5349       return T0;
5350     return nullptr;
5351   }
5352 
5353   Optional<Type *> getPrivatizableType() const override {
5354     return PrivatizableType;
5355   }
5356 
5357   const std::string getAsStr() const override {
5358     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
5359   }
5360 
5361 protected:
5362   Optional<Type *> PrivatizableType;
5363 };
5364 
5365 // TODO: Do this for call site arguments (probably also other values) as well.
5366 
5367 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
5368   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
5369       : AAPrivatizablePtrImpl(IRP, A) {}
5370 
5371   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5372   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5373     // If this is a byval argument and we know all the call sites (so we can
5374     // rewrite them), there is no need to check them explicitly.
5375     bool AllCallSitesKnown;
5376     if (getIRPosition().hasAttr(Attribute::ByVal) &&
5377         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5378                                true, AllCallSitesKnown))
5379       return getAssociatedValue().getType()->getPointerElementType();
5380 
5381     Optional<Type *> Ty;
5382     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
5383 
5384     // Make sure the associated call site argument has the same type at all call
5385     // sites and it is an allocation we know is safe to privatize, for now that
5386     // means we only allow alloca instructions.
5387     // TODO: We can additionally analyze the accesses in the callee to  create
5388     //       the type from that information instead. That is a little more
5389     //       involved and will be done in a follow up patch.
5390     auto CallSiteCheck = [&](AbstractCallSite ACS) {
5391       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5392       // Check if a coresponding argument was found or if it is one not
5393       // associated (which can happen for callback calls).
5394       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5395         return false;
5396 
5397       // Check that all call sites agree on a type.
5398       auto &PrivCSArgAA =
5399           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
5400       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5401 
5402       LLVM_DEBUG({
5403         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5404         if (CSTy.hasValue() && CSTy.getValue())
5405           CSTy.getValue()->print(dbgs());
5406         else if (CSTy.hasValue())
5407           dbgs() << "<nullptr>";
5408         else
5409           dbgs() << "<none>";
5410       });
5411 
5412       Ty = combineTypes(Ty, CSTy);
5413 
5414       LLVM_DEBUG({
5415         dbgs() << " : New Type: ";
5416         if (Ty.hasValue() && Ty.getValue())
5417           Ty.getValue()->print(dbgs());
5418         else if (Ty.hasValue())
5419           dbgs() << "<nullptr>";
5420         else
5421           dbgs() << "<none>";
5422         dbgs() << "\n";
5423       });
5424 
5425       return !Ty.hasValue() || Ty.getValue();
5426     };
5427 
5428     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5429       return nullptr;
5430     return Ty;
5431   }
5432 
5433   /// See AbstractAttribute::updateImpl(...).
5434   ChangeStatus updateImpl(Attributor &A) override {
5435     PrivatizableType = identifyPrivatizableType(A);
5436     if (!PrivatizableType.hasValue())
5437       return ChangeStatus::UNCHANGED;
5438     if (!PrivatizableType.getValue())
5439       return indicatePessimisticFixpoint();
5440 
5441     // The dependence is optional so we don't give up once we give up on the
5442     // alignment.
5443     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
5444                         DepClassTy::OPTIONAL);
5445 
5446     // Avoid arguments with padding for now.
5447     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5448         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5449                                                 A.getInfoCache().getDL())) {
5450       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5451       return indicatePessimisticFixpoint();
5452     }
5453 
5454     // Verify callee and caller agree on how the promoted argument would be
5455     // passed.
5456     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5457     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5458     // which doesn't require the arguments ArgumentPromotion wanted to pass.
5459     Function &Fn = *getIRPosition().getAnchorScope();
5460     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5461     ArgsToPromote.insert(getAssociatedArgument());
5462     const auto *TTI =
5463         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5464     if (!TTI ||
5465         !ArgumentPromotionPass::areFunctionArgsABICompatible(
5466             Fn, *TTI, ArgsToPromote, Dummy) ||
5467         ArgsToPromote.empty()) {
5468       LLVM_DEBUG(
5469           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5470                  << Fn.getName() << "\n");
5471       return indicatePessimisticFixpoint();
5472     }
5473 
5474     // Collect the types that will replace the privatizable type in the function
5475     // signature.
5476     SmallVector<Type *, 16> ReplacementTypes;
5477     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5478 
5479     // Register a rewrite of the argument.
5480     Argument *Arg = getAssociatedArgument();
5481     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5482       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5483       return indicatePessimisticFixpoint();
5484     }
5485 
5486     unsigned ArgNo = Arg->getArgNo();
5487 
5488     // Helper to check if for the given call site the associated argument is
5489     // passed to a callback where the privatization would be different.
5490     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
5491       SmallVector<const Use *, 4> CallbackUses;
5492       AbstractCallSite::getCallbackUses(CB, CallbackUses);
5493       for (const Use *U : CallbackUses) {
5494         AbstractCallSite CBACS(U);
5495         assert(CBACS && CBACS.isCallbackCall());
5496         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5497           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5498 
5499           LLVM_DEBUG({
5500             dbgs()
5501                 << "[AAPrivatizablePtr] Argument " << *Arg
5502                 << "check if can be privatized in the context of its parent ("
5503                 << Arg->getParent()->getName()
5504                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5505                    "callback ("
5506                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5507                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5508                 << CBACS.getCallArgOperand(CBArg) << " vs "
5509                 << CB.getArgOperand(ArgNo) << "\n"
5510                 << "[AAPrivatizablePtr] " << CBArg << " : "
5511                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5512           });
5513 
5514           if (CBArgNo != int(ArgNo))
5515             continue;
5516           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5517               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
5518           if (CBArgPrivAA.isValidState()) {
5519             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5520             if (!CBArgPrivTy.hasValue())
5521               continue;
5522             if (CBArgPrivTy.getValue() == PrivatizableType)
5523               continue;
5524           }
5525 
5526           LLVM_DEBUG({
5527             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5528                    << " cannot be privatized in the context of its parent ("
5529                    << Arg->getParent()->getName()
5530                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
5531                       "callback ("
5532                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5533                    << ").\n[AAPrivatizablePtr] for which the argument "
5534                       "privatization is not compatible.\n";
5535           });
5536           return false;
5537         }
5538       }
5539       return true;
5540     };
5541 
5542     // Helper to check if for the given call site the associated argument is
5543     // passed to a direct call where the privatization would be different.
5544     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5545       CallBase *DC = cast<CallBase>(ACS.getInstruction());
5546       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5547       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5548              "Expected a direct call operand for callback call operand");
5549 
5550       LLVM_DEBUG({
5551         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5552                << " check if be privatized in the context of its parent ("
5553                << Arg->getParent()->getName()
5554                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5555                   "direct call of ("
5556                << DCArgNo << "@" << DC->getCalledFunction()->getName()
5557                << ").\n";
5558       });
5559 
5560       Function *DCCallee = DC->getCalledFunction();
5561       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5562         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5563             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
5564             DepClassTy::REQUIRED);
5565         if (DCArgPrivAA.isValidState()) {
5566           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5567           if (!DCArgPrivTy.hasValue())
5568             return true;
5569           if (DCArgPrivTy.getValue() == PrivatizableType)
5570             return true;
5571         }
5572       }
5573 
5574       LLVM_DEBUG({
5575         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5576                << " cannot be privatized in the context of its parent ("
5577                << Arg->getParent()->getName()
5578                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5579                   "direct call of ("
5580                << ACS.getInstruction()->getCalledFunction()->getName()
5581                << ").\n[AAPrivatizablePtr] for which the argument "
5582                   "privatization is not compatible.\n";
5583       });
5584       return false;
5585     };
5586 
5587     // Helper to check if the associated argument is used at the given abstract
5588     // call site in a way that is incompatible with the privatization assumed
5589     // here.
5590     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5591       if (ACS.isDirectCall())
5592         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
5593       if (ACS.isCallbackCall())
5594         return IsCompatiblePrivArgOfDirectCS(ACS);
5595       return false;
5596     };
5597 
5598     bool AllCallSitesKnown;
5599     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5600                                 AllCallSitesKnown))
5601       return indicatePessimisticFixpoint();
5602 
5603     return ChangeStatus::UNCHANGED;
5604   }
5605 
5606   /// Given a type to private \p PrivType, collect the constituates (which are
5607   /// used) in \p ReplacementTypes.
5608   static void
5609   identifyReplacementTypes(Type *PrivType,
5610                            SmallVectorImpl<Type *> &ReplacementTypes) {
5611     // TODO: For now we expand the privatization type to the fullest which can
5612     //       lead to dead arguments that need to be removed later.
5613     assert(PrivType && "Expected privatizable type!");
5614 
5615     // Traverse the type, extract constituate types on the outermost level.
5616     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5617       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5618         ReplacementTypes.push_back(PrivStructType->getElementType(u));
5619     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5620       ReplacementTypes.append(PrivArrayType->getNumElements(),
5621                               PrivArrayType->getElementType());
5622     } else {
5623       ReplacementTypes.push_back(PrivType);
5624     }
5625   }
5626 
5627   /// Initialize \p Base according to the type \p PrivType at position \p IP.
5628   /// The values needed are taken from the arguments of \p F starting at
5629   /// position \p ArgNo.
5630   static void createInitialization(Type *PrivType, Value &Base, Function &F,
5631                                    unsigned ArgNo, Instruction &IP) {
5632     assert(PrivType && "Expected privatizable type!");
5633 
5634     IRBuilder<NoFolder> IRB(&IP);
5635     const DataLayout &DL = F.getParent()->getDataLayout();
5636 
5637     // Traverse the type, build GEPs and stores.
5638     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5639       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5640       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5641         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5642         Value *Ptr =
5643             constructPointer(PointeeTy, PrivType, &Base,
5644                              PrivStructLayout->getElementOffset(u), IRB, DL);
5645         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5646       }
5647     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5648       Type *PointeeTy = PrivArrayType->getElementType();
5649       Type *PointeePtrTy = PointeeTy->getPointerTo();
5650       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5651       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5652         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
5653                                       u * PointeeTySize, IRB, DL);
5654         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5655       }
5656     } else {
5657       new StoreInst(F.getArg(ArgNo), &Base, &IP);
5658     }
5659   }
5660 
5661   /// Extract values from \p Base according to the type \p PrivType at the
5662   /// call position \p ACS. The values are appended to \p ReplacementValues.
5663   void createReplacementValues(Align Alignment, Type *PrivType,
5664                                AbstractCallSite ACS, Value *Base,
5665                                SmallVectorImpl<Value *> &ReplacementValues) {
5666     assert(Base && "Expected base value!");
5667     assert(PrivType && "Expected privatizable type!");
5668     Instruction *IP = ACS.getInstruction();
5669 
5670     IRBuilder<NoFolder> IRB(IP);
5671     const DataLayout &DL = IP->getModule()->getDataLayout();
5672 
5673     if (Base->getType()->getPointerElementType() != PrivType)
5674       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5675                                                  "", ACS.getInstruction());
5676 
5677     // Traverse the type, build GEPs and loads.
5678     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5679       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5680       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5681         Type *PointeeTy = PrivStructType->getElementType(u);
5682         Value *Ptr =
5683             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
5684                              PrivStructLayout->getElementOffset(u), IRB, DL);
5685         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5686         L->setAlignment(Alignment);
5687         ReplacementValues.push_back(L);
5688       }
5689     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5690       Type *PointeeTy = PrivArrayType->getElementType();
5691       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5692       Type *PointeePtrTy = PointeeTy->getPointerTo();
5693       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5694         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
5695                                       u * PointeeTySize, IRB, DL);
5696         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5697         L->setAlignment(Alignment);
5698         ReplacementValues.push_back(L);
5699       }
5700     } else {
5701       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5702       L->setAlignment(Alignment);
5703       ReplacementValues.push_back(L);
5704     }
5705   }
5706 
5707   /// See AbstractAttribute::manifest(...)
5708   ChangeStatus manifest(Attributor &A) override {
5709     if (!PrivatizableType.hasValue())
5710       return ChangeStatus::UNCHANGED;
5711     assert(PrivatizableType.getValue() && "Expected privatizable type!");
5712 
5713     // Collect all tail calls in the function as we cannot allow new allocas to
5714     // escape into tail recursion.
5715     // TODO: Be smarter about new allocas escaping into tail calls.
5716     SmallVector<CallInst *, 16> TailCalls;
5717     if (!A.checkForAllInstructions(
5718             [&](Instruction &I) {
5719               CallInst &CI = cast<CallInst>(I);
5720               if (CI.isTailCall())
5721                 TailCalls.push_back(&CI);
5722               return true;
5723             },
5724             *this, {Instruction::Call}))
5725       return ChangeStatus::UNCHANGED;
5726 
5727     Argument *Arg = getAssociatedArgument();
5728     // Query AAAlign attribute for alignment of associated argument to
5729     // determine the best alignment of loads.
5730     const auto &AlignAA =
5731         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
5732 
5733     // Callback to repair the associated function. A new alloca is placed at the
5734     // beginning and initialized with the values passed through arguments. The
5735     // new alloca replaces the use of the old pointer argument.
5736     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5737         [=](const Attributor::ArgumentReplacementInfo &ARI,
5738             Function &ReplacementFn, Function::arg_iterator ArgIt) {
5739           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5740           Instruction *IP = &*EntryBB.getFirstInsertionPt();
5741           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5742                                            Arg->getName() + ".priv", IP);
5743           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5744                                ArgIt->getArgNo(), *IP);
5745 
5746           if (AI->getType() != Arg->getType())
5747             AI =
5748                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
5749           Arg->replaceAllUsesWith(AI);
5750 
5751           for (CallInst *CI : TailCalls)
5752             CI->setTailCall(false);
5753         };
5754 
5755     // Callback to repair a call site of the associated function. The elements
5756     // of the privatizable type are loaded prior to the call and passed to the
5757     // new function version.
5758     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5759         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
5760                       AbstractCallSite ACS,
5761                       SmallVectorImpl<Value *> &NewArgOperands) {
5762           // When no alignment is specified for the load instruction,
5763           // natural alignment is assumed.
5764           createReplacementValues(
5765               assumeAligned(AlignAA.getAssumedAlign()),
5766               PrivatizableType.getValue(), ACS,
5767               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5768               NewArgOperands);
5769         };
5770 
5771     // Collect the types that will replace the privatizable type in the function
5772     // signature.
5773     SmallVector<Type *, 16> ReplacementTypes;
5774     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5775 
5776     // Register a rewrite of the argument.
5777     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5778                                            std::move(FnRepairCB),
5779                                            std::move(ACSRepairCB)))
5780       return ChangeStatus::CHANGED;
5781     return ChangeStatus::UNCHANGED;
5782   }
5783 
5784   /// See AbstractAttribute::trackStatistics()
5785   void trackStatistics() const override {
5786     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5787   }
5788 };
5789 
5790 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
5791   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
5792       : AAPrivatizablePtrImpl(IRP, A) {}
5793 
5794   /// See AbstractAttribute::initialize(...).
5795   virtual void initialize(Attributor &A) override {
5796     // TODO: We can privatize more than arguments.
5797     indicatePessimisticFixpoint();
5798   }
5799 
5800   ChangeStatus updateImpl(Attributor &A) override {
5801     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5802                      "updateImpl will not be called");
5803   }
5804 
5805   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5806   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5807     Value *Obj = getUnderlyingObject(&getAssociatedValue());
5808     if (!Obj) {
5809       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5810       return nullptr;
5811     }
5812 
5813     if (auto *AI = dyn_cast<AllocaInst>(Obj))
5814       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5815         if (CI->isOne())
5816           return Obj->getType()->getPointerElementType();
5817     if (auto *Arg = dyn_cast<Argument>(Obj)) {
5818       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
5819           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
5820       if (PrivArgAA.isAssumedPrivatizablePtr())
5821         return Obj->getType()->getPointerElementType();
5822     }
5823 
5824     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5825                          "alloca nor privatizable argument: "
5826                       << *Obj << "!\n");
5827     return nullptr;
5828   }
5829 
5830   /// See AbstractAttribute::trackStatistics()
5831   void trackStatistics() const override {
5832     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5833   }
5834 };
5835 
5836 struct AAPrivatizablePtrCallSiteArgument final
5837     : public AAPrivatizablePtrFloating {
5838   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
5839       : AAPrivatizablePtrFloating(IRP, A) {}
5840 
5841   /// See AbstractAttribute::initialize(...).
5842   void initialize(Attributor &A) override {
5843     if (getIRPosition().hasAttr(Attribute::ByVal))
5844       indicateOptimisticFixpoint();
5845   }
5846 
5847   /// See AbstractAttribute::updateImpl(...).
5848   ChangeStatus updateImpl(Attributor &A) override {
5849     PrivatizableType = identifyPrivatizableType(A);
5850     if (!PrivatizableType.hasValue())
5851       return ChangeStatus::UNCHANGED;
5852     if (!PrivatizableType.getValue())
5853       return indicatePessimisticFixpoint();
5854 
5855     const IRPosition &IRP = getIRPosition();
5856     auto &NoCaptureAA =
5857         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
5858     if (!NoCaptureAA.isAssumedNoCapture()) {
5859       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5860       return indicatePessimisticFixpoint();
5861     }
5862 
5863     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
5864     if (!NoAliasAA.isAssumedNoAlias()) {
5865       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5866       return indicatePessimisticFixpoint();
5867     }
5868 
5869     const auto &MemBehaviorAA =
5870         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
5871     if (!MemBehaviorAA.isAssumedReadOnly()) {
5872       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5873       return indicatePessimisticFixpoint();
5874     }
5875 
5876     return ChangeStatus::UNCHANGED;
5877   }
5878 
5879   /// See AbstractAttribute::trackStatistics()
5880   void trackStatistics() const override {
5881     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5882   }
5883 };
5884 
5885 struct AAPrivatizablePtrCallSiteReturned final
5886     : public AAPrivatizablePtrFloating {
5887   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
5888       : AAPrivatizablePtrFloating(IRP, A) {}
5889 
5890   /// See AbstractAttribute::initialize(...).
5891   void initialize(Attributor &A) override {
5892     // TODO: We can privatize more than arguments.
5893     indicatePessimisticFixpoint();
5894   }
5895 
5896   /// See AbstractAttribute::trackStatistics()
5897   void trackStatistics() const override {
5898     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5899   }
5900 };
5901 
5902 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
5903   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
5904       : AAPrivatizablePtrFloating(IRP, A) {}
5905 
5906   /// See AbstractAttribute::initialize(...).
5907   void initialize(Attributor &A) override {
5908     // TODO: We can privatize more than arguments.
5909     indicatePessimisticFixpoint();
5910   }
5911 
5912   /// See AbstractAttribute::trackStatistics()
5913   void trackStatistics() const override {
5914     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5915   }
5916 };
5917 
5918 /// -------------------- Memory Behavior Attributes ----------------------------
5919 /// Includes read-none, read-only, and write-only.
5920 /// ----------------------------------------------------------------------------
5921 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
5922   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
5923       : AAMemoryBehavior(IRP, A) {}
5924 
5925   /// See AbstractAttribute::initialize(...).
5926   void initialize(Attributor &A) override {
5927     intersectAssumedBits(BEST_STATE);
5928     getKnownStateFromValue(getIRPosition(), getState());
5929     AAMemoryBehavior::initialize(A);
5930   }
5931 
5932   /// Return the memory behavior information encoded in the IR for \p IRP.
5933   static void getKnownStateFromValue(const IRPosition &IRP,
5934                                      BitIntegerState &State,
5935                                      bool IgnoreSubsumingPositions = false) {
5936     SmallVector<Attribute, 2> Attrs;
5937     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5938     for (const Attribute &Attr : Attrs) {
5939       switch (Attr.getKindAsEnum()) {
5940       case Attribute::ReadNone:
5941         State.addKnownBits(NO_ACCESSES);
5942         break;
5943       case Attribute::ReadOnly:
5944         State.addKnownBits(NO_WRITES);
5945         break;
5946       case Attribute::WriteOnly:
5947         State.addKnownBits(NO_READS);
5948         break;
5949       default:
5950         llvm_unreachable("Unexpected attribute!");
5951       }
5952     }
5953 
5954     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5955       if (!I->mayReadFromMemory())
5956         State.addKnownBits(NO_READS);
5957       if (!I->mayWriteToMemory())
5958         State.addKnownBits(NO_WRITES);
5959     }
5960   }
5961 
5962   /// See AbstractAttribute::getDeducedAttributes(...).
5963   void getDeducedAttributes(LLVMContext &Ctx,
5964                             SmallVectorImpl<Attribute> &Attrs) const override {
5965     assert(Attrs.size() == 0);
5966     if (isAssumedReadNone())
5967       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5968     else if (isAssumedReadOnly())
5969       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5970     else if (isAssumedWriteOnly())
5971       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5972     assert(Attrs.size() <= 1);
5973   }
5974 
5975   /// See AbstractAttribute::manifest(...).
5976   ChangeStatus manifest(Attributor &A) override {
5977     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5978       return ChangeStatus::UNCHANGED;
5979 
5980     const IRPosition &IRP = getIRPosition();
5981 
5982     // Check if we would improve the existing attributes first.
5983     SmallVector<Attribute, 4> DeducedAttrs;
5984     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5985     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5986           return IRP.hasAttr(Attr.getKindAsEnum(),
5987                              /* IgnoreSubsumingPositions */ true);
5988         }))
5989       return ChangeStatus::UNCHANGED;
5990 
5991     // Clear existing attributes.
5992     IRP.removeAttrs(AttrKinds);
5993 
5994     // Use the generic manifest method.
5995     return IRAttribute::manifest(A);
5996   }
5997 
5998   /// See AbstractState::getAsStr().
5999   const std::string getAsStr() const override {
6000     if (isAssumedReadNone())
6001       return "readnone";
6002     if (isAssumedReadOnly())
6003       return "readonly";
6004     if (isAssumedWriteOnly())
6005       return "writeonly";
6006     return "may-read/write";
6007   }
6008 
6009   /// The set of IR attributes AAMemoryBehavior deals with.
6010   static const Attribute::AttrKind AttrKinds[3];
6011 };
6012 
6013 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6014     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6015 
6016 /// Memory behavior attribute for a floating value.
6017 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6018   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6019       : AAMemoryBehaviorImpl(IRP, A) {}
6020 
6021   /// See AbstractAttribute::initialize(...).
6022   void initialize(Attributor &A) override {
6023     AAMemoryBehaviorImpl::initialize(A);
6024     addUsesOf(A, getAssociatedValue());
6025   }
6026 
6027   /// See AbstractAttribute::updateImpl(...).
6028   ChangeStatus updateImpl(Attributor &A) override;
6029 
6030   /// See AbstractAttribute::trackStatistics()
6031   void trackStatistics() const override {
6032     if (isAssumedReadNone())
6033       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6034     else if (isAssumedReadOnly())
6035       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6036     else if (isAssumedWriteOnly())
6037       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6038   }
6039 
6040 private:
6041   /// Return true if users of \p UserI might access the underlying
6042   /// variable/location described by \p U and should therefore be analyzed.
6043   bool followUsersOfUseIn(Attributor &A, const Use *U,
6044                           const Instruction *UserI);
6045 
6046   /// Update the state according to the effect of use \p U in \p UserI.
6047   void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
6048 
6049 protected:
6050   /// Add the uses of \p V to the `Uses` set we look at during the update step.
6051   void addUsesOf(Attributor &A, const Value &V);
6052 
6053   /// Container for (transitive) uses of the associated argument.
6054   SmallVector<const Use *, 8> Uses;
6055 
6056   /// Set to remember the uses we already traversed.
6057   SmallPtrSet<const Use *, 8> Visited;
6058 };
6059 
6060 /// Memory behavior attribute for function argument.
6061 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6062   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6063       : AAMemoryBehaviorFloating(IRP, A) {}
6064 
6065   /// See AbstractAttribute::initialize(...).
6066   void initialize(Attributor &A) override {
6067     intersectAssumedBits(BEST_STATE);
6068     const IRPosition &IRP = getIRPosition();
6069     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
6070     // can query it when we use has/getAttr. That would allow us to reuse the
6071     // initialize of the base class here.
6072     bool HasByVal =
6073         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
6074     getKnownStateFromValue(IRP, getState(),
6075                            /* IgnoreSubsumingPositions */ HasByVal);
6076 
6077     // Initialize the use vector with all direct uses of the associated value.
6078     Argument *Arg = getAssociatedArgument();
6079     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
6080       indicatePessimisticFixpoint();
6081     } else {
6082       addUsesOf(A, *Arg);
6083     }
6084   }
6085 
6086   ChangeStatus manifest(Attributor &A) override {
6087     // TODO: Pointer arguments are not supported on vectors of pointers yet.
6088     if (!getAssociatedValue().getType()->isPointerTy())
6089       return ChangeStatus::UNCHANGED;
6090 
6091     // TODO: From readattrs.ll: "inalloca parameters are always
6092     //                           considered written"
6093     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
6094       removeKnownBits(NO_WRITES);
6095       removeAssumedBits(NO_WRITES);
6096     }
6097     return AAMemoryBehaviorFloating::manifest(A);
6098   }
6099 
6100   /// See AbstractAttribute::trackStatistics()
6101   void trackStatistics() const override {
6102     if (isAssumedReadNone())
6103       STATS_DECLTRACK_ARG_ATTR(readnone)
6104     else if (isAssumedReadOnly())
6105       STATS_DECLTRACK_ARG_ATTR(readonly)
6106     else if (isAssumedWriteOnly())
6107       STATS_DECLTRACK_ARG_ATTR(writeonly)
6108   }
6109 };
6110 
6111 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
6112   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
6113       : AAMemoryBehaviorArgument(IRP, A) {}
6114 
6115   /// See AbstractAttribute::initialize(...).
6116   void initialize(Attributor &A) override {
6117     // If we don't have an associated attribute this is either a variadic call
6118     // or an indirect call, either way, nothing to do here.
6119     Argument *Arg = getAssociatedArgument();
6120     if (!Arg) {
6121       indicatePessimisticFixpoint();
6122       return;
6123     }
6124     if (Arg->hasByValAttr()) {
6125       addKnownBits(NO_WRITES);
6126       removeKnownBits(NO_READS);
6127       removeAssumedBits(NO_READS);
6128     }
6129     AAMemoryBehaviorArgument::initialize(A);
6130     if (getAssociatedFunction()->isDeclaration())
6131       indicatePessimisticFixpoint();
6132   }
6133 
6134   /// See AbstractAttribute::updateImpl(...).
6135   ChangeStatus updateImpl(Attributor &A) override {
6136     // TODO: Once we have call site specific value information we can provide
6137     //       call site specific liveness liveness information and then it makes
6138     //       sense to specialize attributes for call sites arguments instead of
6139     //       redirecting requests to the callee argument.
6140     Argument *Arg = getAssociatedArgument();
6141     const IRPosition &ArgPos = IRPosition::argument(*Arg);
6142     auto &ArgAA =
6143         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
6144     return clampStateAndIndicateChange(getState(), ArgAA.getState());
6145   }
6146 
6147   /// See AbstractAttribute::trackStatistics()
6148   void trackStatistics() const override {
6149     if (isAssumedReadNone())
6150       STATS_DECLTRACK_CSARG_ATTR(readnone)
6151     else if (isAssumedReadOnly())
6152       STATS_DECLTRACK_CSARG_ATTR(readonly)
6153     else if (isAssumedWriteOnly())
6154       STATS_DECLTRACK_CSARG_ATTR(writeonly)
6155   }
6156 };
6157 
6158 /// Memory behavior attribute for a call site return position.
6159 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
6160   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
6161       : AAMemoryBehaviorFloating(IRP, A) {}
6162 
6163   /// See AbstractAttribute::initialize(...).
6164   void initialize(Attributor &A) override {
6165     AAMemoryBehaviorImpl::initialize(A);
6166     Function *F = getAssociatedFunction();
6167     if (!F || F->isDeclaration())
6168       indicatePessimisticFixpoint();
6169   }
6170 
6171   /// See AbstractAttribute::manifest(...).
6172   ChangeStatus manifest(Attributor &A) override {
6173     // We do not annotate returned values.
6174     return ChangeStatus::UNCHANGED;
6175   }
6176 
6177   /// See AbstractAttribute::trackStatistics()
6178   void trackStatistics() const override {}
6179 };
6180 
6181 /// An AA to represent the memory behavior function attributes.
6182 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
6183   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
6184       : AAMemoryBehaviorImpl(IRP, A) {}
6185 
6186   /// See AbstractAttribute::updateImpl(Attributor &A).
6187   virtual ChangeStatus updateImpl(Attributor &A) override;
6188 
6189   /// See AbstractAttribute::manifest(...).
6190   ChangeStatus manifest(Attributor &A) override {
6191     Function &F = cast<Function>(getAnchorValue());
6192     if (isAssumedReadNone()) {
6193       F.removeFnAttr(Attribute::ArgMemOnly);
6194       F.removeFnAttr(Attribute::InaccessibleMemOnly);
6195       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
6196     }
6197     return AAMemoryBehaviorImpl::manifest(A);
6198   }
6199 
6200   /// See AbstractAttribute::trackStatistics()
6201   void trackStatistics() const override {
6202     if (isAssumedReadNone())
6203       STATS_DECLTRACK_FN_ATTR(readnone)
6204     else if (isAssumedReadOnly())
6205       STATS_DECLTRACK_FN_ATTR(readonly)
6206     else if (isAssumedWriteOnly())
6207       STATS_DECLTRACK_FN_ATTR(writeonly)
6208   }
6209 };
6210 
6211 /// AAMemoryBehavior attribute for call sites.
6212 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
6213   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
6214       : AAMemoryBehaviorImpl(IRP, A) {}
6215 
6216   /// See AbstractAttribute::initialize(...).
6217   void initialize(Attributor &A) override {
6218     AAMemoryBehaviorImpl::initialize(A);
6219     Function *F = getAssociatedFunction();
6220     if (!F || F->isDeclaration())
6221       indicatePessimisticFixpoint();
6222   }
6223 
6224   /// See AbstractAttribute::updateImpl(...).
6225   ChangeStatus updateImpl(Attributor &A) override {
6226     // TODO: Once we have call site specific value information we can provide
6227     //       call site specific liveness liveness information and then it makes
6228     //       sense to specialize attributes for call sites arguments instead of
6229     //       redirecting requests to the callee argument.
6230     Function *F = getAssociatedFunction();
6231     const IRPosition &FnPos = IRPosition::function(*F);
6232     auto &FnAA =
6233         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
6234     return clampStateAndIndicateChange(getState(), FnAA.getState());
6235   }
6236 
6237   /// See AbstractAttribute::trackStatistics()
6238   void trackStatistics() const override {
6239     if (isAssumedReadNone())
6240       STATS_DECLTRACK_CS_ATTR(readnone)
6241     else if (isAssumedReadOnly())
6242       STATS_DECLTRACK_CS_ATTR(readonly)
6243     else if (isAssumedWriteOnly())
6244       STATS_DECLTRACK_CS_ATTR(writeonly)
6245   }
6246 };
6247 
6248 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
6249 
6250   // The current assumed state used to determine a change.
6251   auto AssumedState = getAssumed();
6252 
6253   auto CheckRWInst = [&](Instruction &I) {
6254     // If the instruction has an own memory behavior state, use it to restrict
6255     // the local state. No further analysis is required as the other memory
6256     // state is as optimistic as it gets.
6257     if (const auto *CB = dyn_cast<CallBase>(&I)) {
6258       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6259           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
6260       intersectAssumedBits(MemBehaviorAA.getAssumed());
6261       return !isAtFixpoint();
6262     }
6263 
6264     // Remove access kind modifiers if necessary.
6265     if (I.mayReadFromMemory())
6266       removeAssumedBits(NO_READS);
6267     if (I.mayWriteToMemory())
6268       removeAssumedBits(NO_WRITES);
6269     return !isAtFixpoint();
6270   };
6271 
6272   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6273     return indicatePessimisticFixpoint();
6274 
6275   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6276                                         : ChangeStatus::UNCHANGED;
6277 }
6278 
6279 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
6280 
6281   const IRPosition &IRP = getIRPosition();
6282   const IRPosition &FnPos = IRPosition::function_scope(IRP);
6283   AAMemoryBehavior::StateType &S = getState();
6284 
6285   // First, check the function scope. We take the known information and we avoid
6286   // work if the assumed information implies the current assumed information for
6287   // this attribute. This is a valid for all but byval arguments.
6288   Argument *Arg = IRP.getAssociatedArgument();
6289   AAMemoryBehavior::base_t FnMemAssumedState =
6290       AAMemoryBehavior::StateType::getWorstState();
6291   if (!Arg || !Arg->hasByValAttr()) {
6292     const auto &FnMemAA =
6293         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
6294     FnMemAssumedState = FnMemAA.getAssumed();
6295     S.addKnownBits(FnMemAA.getKnown());
6296     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
6297       return ChangeStatus::UNCHANGED;
6298   }
6299 
6300   // Make sure the value is not captured (except through "return"), if
6301   // it is, any information derived would be irrelevant anyway as we cannot
6302   // check the potential aliases introduced by the capture. However, no need
6303   // to fall back to anythign less optimistic than the function state.
6304   const auto &ArgNoCaptureAA =
6305       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
6306   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
6307     S.intersectAssumedBits(FnMemAssumedState);
6308     return ChangeStatus::CHANGED;
6309   }
6310 
6311   // The current assumed state used to determine a change.
6312   auto AssumedState = S.getAssumed();
6313 
6314   // Liveness information to exclude dead users.
6315   // TODO: Take the FnPos once we have call site specific liveness information.
6316   const auto &LivenessAA = A.getAAFor<AAIsDead>(
6317       *this, IRPosition::function(*IRP.getAssociatedFunction()),
6318       DepClassTy::NONE);
6319 
6320   // Visit and expand uses until all are analyzed or a fixpoint is reached.
6321   for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
6322     const Use *U = Uses[i];
6323     Instruction *UserI = cast<Instruction>(U->getUser());
6324     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
6325                       << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
6326                       << "]\n");
6327     if (A.isAssumedDead(*U, this, &LivenessAA))
6328       continue;
6329 
6330     // Droppable users, e.g., llvm::assume does not actually perform any action.
6331     if (UserI->isDroppable())
6332       continue;
6333 
6334     // Check if the users of UserI should also be visited.
6335     if (followUsersOfUseIn(A, U, UserI))
6336       addUsesOf(A, *UserI);
6337 
6338     // If UserI might touch memory we analyze the use in detail.
6339     if (UserI->mayReadOrWriteMemory())
6340       analyzeUseIn(A, U, UserI);
6341   }
6342 
6343   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6344                                         : ChangeStatus::UNCHANGED;
6345 }
6346 
6347 void AAMemoryBehaviorFloating::addUsesOf(Attributor &A, const Value &V) {
6348   SmallVector<const Use *, 8> WL;
6349   for (const Use &U : V.uses())
6350     WL.push_back(&U);
6351 
6352   while (!WL.empty()) {
6353     const Use *U = WL.pop_back_val();
6354     if (!Visited.insert(U).second)
6355       continue;
6356 
6357     const Instruction *UserI = cast<Instruction>(U->getUser());
6358     if (UserI->mayReadOrWriteMemory()) {
6359       Uses.push_back(U);
6360       continue;
6361     }
6362     if (!followUsersOfUseIn(A, U, UserI))
6363       continue;
6364     for (const Use &UU : UserI->uses())
6365       WL.push_back(&UU);
6366   }
6367 }
6368 
6369 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
6370                                                   const Instruction *UserI) {
6371   // The loaded value is unrelated to the pointer argument, no need to
6372   // follow the users of the load.
6373   if (isa<LoadInst>(UserI))
6374     return false;
6375 
6376   // By default we follow all uses assuming UserI might leak information on U,
6377   // we have special handling for call sites operands though.
6378   const auto *CB = dyn_cast<CallBase>(UserI);
6379   if (!CB || !CB->isArgOperand(U))
6380     return true;
6381 
6382   // If the use is a call argument known not to be captured, the users of
6383   // the call do not need to be visited because they have to be unrelated to
6384   // the input. Note that this check is not trivial even though we disallow
6385   // general capturing of the underlying argument. The reason is that the
6386   // call might the argument "through return", which we allow and for which we
6387   // need to check call users.
6388   if (U->get()->getType()->isPointerTy()) {
6389     unsigned ArgNo = CB->getArgOperandNo(U);
6390     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6391         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
6392     return !ArgNoCaptureAA.isAssumedNoCapture();
6393   }
6394 
6395   return true;
6396 }
6397 
6398 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
6399                                             const Instruction *UserI) {
6400   assert(UserI->mayReadOrWriteMemory());
6401 
6402   switch (UserI->getOpcode()) {
6403   default:
6404     // TODO: Handle all atomics and other side-effect operations we know of.
6405     break;
6406   case Instruction::Load:
6407     // Loads cause the NO_READS property to disappear.
6408     removeAssumedBits(NO_READS);
6409     return;
6410 
6411   case Instruction::Store:
6412     // Stores cause the NO_WRITES property to disappear if the use is the
6413     // pointer operand. Note that we do assume that capturing was taken care of
6414     // somewhere else.
6415     if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
6416       removeAssumedBits(NO_WRITES);
6417     return;
6418 
6419   case Instruction::Call:
6420   case Instruction::CallBr:
6421   case Instruction::Invoke: {
6422     // For call sites we look at the argument memory behavior attribute (this
6423     // could be recursive!) in order to restrict our own state.
6424     const auto *CB = cast<CallBase>(UserI);
6425 
6426     // Give up on operand bundles.
6427     if (CB->isBundleOperand(U)) {
6428       indicatePessimisticFixpoint();
6429       return;
6430     }
6431 
6432     // Calling a function does read the function pointer, maybe write it if the
6433     // function is self-modifying.
6434     if (CB->isCallee(U)) {
6435       removeAssumedBits(NO_READS);
6436       break;
6437     }
6438 
6439     // Adjust the possible access behavior based on the information on the
6440     // argument.
6441     IRPosition Pos;
6442     if (U->get()->getType()->isPointerTy())
6443       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U));
6444     else
6445       Pos = IRPosition::callsite_function(*CB);
6446     const auto &MemBehaviorAA =
6447         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
6448     // "assumed" has at most the same bits as the MemBehaviorAA assumed
6449     // and at least "known".
6450     intersectAssumedBits(MemBehaviorAA.getAssumed());
6451     return;
6452   }
6453   };
6454 
6455   // Generally, look at the "may-properties" and adjust the assumed state if we
6456   // did not trigger special handling before.
6457   if (UserI->mayReadFromMemory())
6458     removeAssumedBits(NO_READS);
6459   if (UserI->mayWriteToMemory())
6460     removeAssumedBits(NO_WRITES);
6461 }
6462 
6463 } // namespace
6464 
6465 /// -------------------- Memory Locations Attributes ---------------------------
6466 /// Includes read-none, argmemonly, inaccessiblememonly,
6467 /// inaccessiblememorargmemonly
6468 /// ----------------------------------------------------------------------------
6469 
6470 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6471     AAMemoryLocation::MemoryLocationsKind MLK) {
6472   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6473     return "all memory";
6474   if (MLK == AAMemoryLocation::NO_LOCATIONS)
6475     return "no memory";
6476   std::string S = "memory:";
6477   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6478     S += "stack,";
6479   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6480     S += "constant,";
6481   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6482     S += "internal global,";
6483   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6484     S += "external global,";
6485   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6486     S += "argument,";
6487   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6488     S += "inaccessible,";
6489   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6490     S += "malloced,";
6491   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6492     S += "unknown,";
6493   S.pop_back();
6494   return S;
6495 }
6496 
6497 namespace {
6498 struct AAMemoryLocationImpl : public AAMemoryLocation {
6499 
6500   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
6501       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
6502     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6503       AccessKind2Accesses[u] = nullptr;
6504   }
6505 
6506   ~AAMemoryLocationImpl() {
6507     // The AccessSets are allocated via a BumpPtrAllocator, we call
6508     // the destructor manually.
6509     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6510       if (AccessKind2Accesses[u])
6511         AccessKind2Accesses[u]->~AccessSet();
6512   }
6513 
6514   /// See AbstractAttribute::initialize(...).
6515   void initialize(Attributor &A) override {
6516     intersectAssumedBits(BEST_STATE);
6517     getKnownStateFromValue(A, getIRPosition(), getState());
6518     AAMemoryLocation::initialize(A);
6519   }
6520 
6521   /// Return the memory behavior information encoded in the IR for \p IRP.
6522   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
6523                                      BitIntegerState &State,
6524                                      bool IgnoreSubsumingPositions = false) {
6525     // For internal functions we ignore `argmemonly` and
6526     // `inaccessiblememorargmemonly` as we might break it via interprocedural
6527     // constant propagation. It is unclear if this is the best way but it is
6528     // unlikely this will cause real performance problems. If we are deriving
6529     // attributes for the anchor function we even remove the attribute in
6530     // addition to ignoring it.
6531     bool UseArgMemOnly = true;
6532     Function *AnchorFn = IRP.getAnchorScope();
6533     if (AnchorFn && A.isRunOn(*AnchorFn))
6534       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
6535 
6536     SmallVector<Attribute, 2> Attrs;
6537     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6538     for (const Attribute &Attr : Attrs) {
6539       switch (Attr.getKindAsEnum()) {
6540       case Attribute::ReadNone:
6541         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6542         break;
6543       case Attribute::InaccessibleMemOnly:
6544         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6545         break;
6546       case Attribute::ArgMemOnly:
6547         if (UseArgMemOnly)
6548           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6549         else
6550           IRP.removeAttrs({Attribute::ArgMemOnly});
6551         break;
6552       case Attribute::InaccessibleMemOrArgMemOnly:
6553         if (UseArgMemOnly)
6554           State.addKnownBits(inverseLocation(
6555               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6556         else
6557           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
6558         break;
6559       default:
6560         llvm_unreachable("Unexpected attribute!");
6561       }
6562     }
6563   }
6564 
6565   /// See AbstractAttribute::getDeducedAttributes(...).
6566   void getDeducedAttributes(LLVMContext &Ctx,
6567                             SmallVectorImpl<Attribute> &Attrs) const override {
6568     assert(Attrs.size() == 0);
6569     if (isAssumedReadNone()) {
6570       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6571     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6572       if (isAssumedInaccessibleMemOnly())
6573         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6574       else if (isAssumedArgMemOnly())
6575         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6576       else if (isAssumedInaccessibleOrArgMemOnly())
6577         Attrs.push_back(
6578             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6579     }
6580     assert(Attrs.size() <= 1);
6581   }
6582 
6583   /// See AbstractAttribute::manifest(...).
6584   ChangeStatus manifest(Attributor &A) override {
6585     const IRPosition &IRP = getIRPosition();
6586 
6587     // Check if we would improve the existing attributes first.
6588     SmallVector<Attribute, 4> DeducedAttrs;
6589     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6590     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6591           return IRP.hasAttr(Attr.getKindAsEnum(),
6592                              /* IgnoreSubsumingPositions */ true);
6593         }))
6594       return ChangeStatus::UNCHANGED;
6595 
6596     // Clear existing attributes.
6597     IRP.removeAttrs(AttrKinds);
6598     if (isAssumedReadNone())
6599       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6600 
6601     // Use the generic manifest method.
6602     return IRAttribute::manifest(A);
6603   }
6604 
6605   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
6606   bool checkForAllAccessesToMemoryKind(
6607       function_ref<bool(const Instruction *, const Value *, AccessKind,
6608                         MemoryLocationsKind)>
6609           Pred,
6610       MemoryLocationsKind RequestedMLK) const override {
6611     if (!isValidState())
6612       return false;
6613 
6614     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6615     if (AssumedMLK == NO_LOCATIONS)
6616       return true;
6617 
6618     unsigned Idx = 0;
6619     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
6620          CurMLK *= 2, ++Idx) {
6621       if (CurMLK & RequestedMLK)
6622         continue;
6623 
6624       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
6625         for (const AccessInfo &AI : *Accesses)
6626           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6627             return false;
6628     }
6629 
6630     return true;
6631   }
6632 
6633   ChangeStatus indicatePessimisticFixpoint() override {
6634     // If we give up and indicate a pessimistic fixpoint this instruction will
6635     // become an access for all potential access kinds:
6636     // TODO: Add pointers for argmemonly and globals to improve the results of
6637     //       checkForAllAccessesToMemoryKind.
6638     bool Changed = false;
6639     MemoryLocationsKind KnownMLK = getKnown();
6640     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6641     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6642       if (!(CurMLK & KnownMLK))
6643         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
6644                                   getAccessKindFromInst(I));
6645     return AAMemoryLocation::indicatePessimisticFixpoint();
6646   }
6647 
6648 protected:
6649   /// Helper struct to tie together an instruction that has a read or write
6650   /// effect with the pointer it accesses (if any).
6651   struct AccessInfo {
6652 
6653     /// The instruction that caused the access.
6654     const Instruction *I;
6655 
6656     /// The base pointer that is accessed, or null if unknown.
6657     const Value *Ptr;
6658 
6659     /// The kind of access (read/write/read+write).
6660     AccessKind Kind;
6661 
6662     bool operator==(const AccessInfo &RHS) const {
6663       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6664     }
6665     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6666       if (LHS.I != RHS.I)
6667         return LHS.I < RHS.I;
6668       if (LHS.Ptr != RHS.Ptr)
6669         return LHS.Ptr < RHS.Ptr;
6670       if (LHS.Kind != RHS.Kind)
6671         return LHS.Kind < RHS.Kind;
6672       return false;
6673     }
6674   };
6675 
6676   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6677   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6678   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
6679   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
6680 
6681   /// Categorize the pointer arguments of CB that might access memory in
6682   /// AccessedLoc and update the state and access map accordingly.
6683   void
6684   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
6685                                      AAMemoryLocation::StateType &AccessedLocs,
6686                                      bool &Changed);
6687 
6688   /// Return the kind(s) of location that may be accessed by \p V.
6689   AAMemoryLocation::MemoryLocationsKind
6690   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6691 
6692   /// Return the access kind as determined by \p I.
6693   AccessKind getAccessKindFromInst(const Instruction *I) {
6694     AccessKind AK = READ_WRITE;
6695     if (I) {
6696       AK = I->mayReadFromMemory() ? READ : NONE;
6697       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
6698     }
6699     return AK;
6700   }
6701 
6702   /// Update the state \p State and the AccessKind2Accesses given that \p I is
6703   /// an access of kind \p AK to a \p MLK memory location with the access
6704   /// pointer \p Ptr.
6705   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6706                                  MemoryLocationsKind MLK, const Instruction *I,
6707                                  const Value *Ptr, bool &Changed,
6708                                  AccessKind AK = READ_WRITE) {
6709 
6710     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6711     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
6712     if (!Accesses)
6713       Accesses = new (Allocator) AccessSet();
6714     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
6715     State.removeAssumedBits(MLK);
6716   }
6717 
6718   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6719   /// arguments, and update the state and access map accordingly.
6720   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6721                           AAMemoryLocation::StateType &State, bool &Changed);
6722 
6723   /// Used to allocate access sets.
6724   BumpPtrAllocator &Allocator;
6725 
6726   /// The set of IR attributes AAMemoryLocation deals with.
6727   static const Attribute::AttrKind AttrKinds[4];
6728 };
6729 
6730 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6731     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6732     Attribute::InaccessibleMemOrArgMemOnly};
6733 
6734 void AAMemoryLocationImpl::categorizePtrValue(
6735     Attributor &A, const Instruction &I, const Value &Ptr,
6736     AAMemoryLocation::StateType &State, bool &Changed) {
6737   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6738                     << Ptr << " ["
6739                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6740 
6741   auto StripGEPCB = [](Value *V) -> Value * {
6742     auto *GEP = dyn_cast<GEPOperator>(V);
6743     while (GEP) {
6744       V = GEP->getPointerOperand();
6745       GEP = dyn_cast<GEPOperator>(V);
6746     }
6747     return V;
6748   };
6749 
6750   auto VisitValueCB = [&](Value &V, const Instruction *,
6751                           AAMemoryLocation::StateType &T,
6752                           bool Stripped) -> bool {
6753     // TODO: recognize the TBAA used for constant accesses.
6754     MemoryLocationsKind MLK = NO_LOCATIONS;
6755     assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6756     if (isa<UndefValue>(V))
6757       return true;
6758     if (auto *Arg = dyn_cast<Argument>(&V)) {
6759       if (Arg->hasByValAttr())
6760         MLK = NO_LOCAL_MEM;
6761       else
6762         MLK = NO_ARGUMENT_MEM;
6763     } else if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6764       // Reading constant memory is not treated as a read "effect" by the
6765       // function attr pass so we won't neither. Constants defined by TBAA are
6766       // similar. (We know we do not write it because it is constant.)
6767       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
6768         if (GVar->isConstant())
6769           return true;
6770 
6771       if (GV->hasLocalLinkage())
6772         MLK = NO_GLOBAL_INTERNAL_MEM;
6773       else
6774         MLK = NO_GLOBAL_EXTERNAL_MEM;
6775     } else if (isa<ConstantPointerNull>(V) &&
6776                !NullPointerIsDefined(getAssociatedFunction(),
6777                                      V.getType()->getPointerAddressSpace())) {
6778       return true;
6779     } else if (isa<AllocaInst>(V)) {
6780       MLK = NO_LOCAL_MEM;
6781     } else if (const auto *CB = dyn_cast<CallBase>(&V)) {
6782       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
6783           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
6784       if (NoAliasAA.isAssumedNoAlias())
6785         MLK = NO_MALLOCED_MEM;
6786       else
6787         MLK = NO_UNKOWN_MEM;
6788     } else {
6789       MLK = NO_UNKOWN_MEM;
6790     }
6791 
6792     assert(MLK != NO_LOCATIONS && "No location specified!");
6793     updateStateAndAccessesMap(T, MLK, &I, &V, Changed,
6794                               getAccessKindFromInst(&I));
6795     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6796                       << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6797                       << "\n");
6798     return true;
6799   };
6800 
6801   if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6802           A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
6803           /* UseValueSimplify */ true,
6804           /* MaxValues */ 32, StripGEPCB)) {
6805     LLVM_DEBUG(
6806         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6807     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
6808                               getAccessKindFromInst(&I));
6809   } else {
6810     LLVM_DEBUG(
6811         dbgs()
6812         << "[AAMemoryLocation] Accessed locations with pointer locations: "
6813         << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6814   }
6815 }
6816 
6817 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
6818     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
6819     bool &Changed) {
6820   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
6821 
6822     // Skip non-pointer arguments.
6823     const Value *ArgOp = CB.getArgOperand(ArgNo);
6824     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6825       continue;
6826 
6827     // Skip readnone arguments.
6828     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
6829     const auto &ArgOpMemLocationAA =
6830         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
6831 
6832     if (ArgOpMemLocationAA.isAssumedReadNone())
6833       continue;
6834 
6835     // Categorize potentially accessed pointer arguments as if there was an
6836     // access instruction with them as pointer.
6837     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
6838   }
6839 }
6840 
6841 AAMemoryLocation::MemoryLocationsKind
6842 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6843                                                   bool &Changed) {
6844   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6845                     << I << "\n");
6846 
6847   AAMemoryLocation::StateType AccessedLocs;
6848   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6849 
6850   if (auto *CB = dyn_cast<CallBase>(&I)) {
6851 
6852     // First check if we assume any memory is access is visible.
6853     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
6854         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
6855     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6856                       << " [" << CBMemLocationAA << "]\n");
6857 
6858     if (CBMemLocationAA.isAssumedReadNone())
6859       return NO_LOCATIONS;
6860 
6861     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
6862       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
6863                                 Changed, getAccessKindFromInst(&I));
6864       return AccessedLocs.getAssumed();
6865     }
6866 
6867     uint32_t CBAssumedNotAccessedLocs =
6868         CBMemLocationAA.getAssumedNotAccessedLocation();
6869 
6870     // Set the argmemonly and global bit as we handle them separately below.
6871     uint32_t CBAssumedNotAccessedLocsNoArgMem =
6872         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6873 
6874     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6875       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
6876         continue;
6877       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
6878                                 getAccessKindFromInst(&I));
6879     }
6880 
6881     // Now handle global memory if it might be accessed. This is slightly tricky
6882     // as NO_GLOBAL_MEM has multiple bits set.
6883     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
6884     if (HasGlobalAccesses) {
6885       auto AccessPred = [&](const Instruction *, const Value *Ptr,
6886                             AccessKind Kind, MemoryLocationsKind MLK) {
6887         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
6888                                   getAccessKindFromInst(&I));
6889         return true;
6890       };
6891       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
6892               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6893         return AccessedLocs.getWorstState();
6894     }
6895 
6896     LLVM_DEBUG(
6897         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6898                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6899 
6900     // Now handle argument memory if it might be accessed.
6901     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
6902     if (HasArgAccesses)
6903       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
6904 
6905     LLVM_DEBUG(
6906         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6907                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6908 
6909     return AccessedLocs.getAssumed();
6910   }
6911 
6912   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6913     LLVM_DEBUG(
6914         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6915                << I << " [" << *Ptr << "]\n");
6916     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6917     return AccessedLocs.getAssumed();
6918   }
6919 
6920   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6921                     << I << "\n");
6922   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
6923                             getAccessKindFromInst(&I));
6924   return AccessedLocs.getAssumed();
6925 }
6926 
6927 /// An AA to represent the memory behavior function attributes.
6928 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
6929   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
6930       : AAMemoryLocationImpl(IRP, A) {}
6931 
6932   /// See AbstractAttribute::updateImpl(Attributor &A).
6933   virtual ChangeStatus updateImpl(Attributor &A) override {
6934 
6935     const auto &MemBehaviorAA =
6936         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
6937     if (MemBehaviorAA.isAssumedReadNone()) {
6938       if (MemBehaviorAA.isKnownReadNone())
6939         return indicateOptimisticFixpoint();
6940       assert(isAssumedReadNone() &&
6941              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6942       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6943       return ChangeStatus::UNCHANGED;
6944     }
6945 
6946     // The current assumed state used to determine a change.
6947     auto AssumedState = getAssumed();
6948     bool Changed = false;
6949 
6950     auto CheckRWInst = [&](Instruction &I) {
6951       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6952       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6953                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6954       removeAssumedBits(inverseLocation(MLK, false, false));
6955       // Stop once only the valid bit set in the *not assumed location*, thus
6956       // once we don't actually exclude any memory locations in the state.
6957       return getAssumedNotAccessedLocation() != VALID_STATE;
6958     };
6959 
6960     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6961       return indicatePessimisticFixpoint();
6962 
6963     Changed |= AssumedState != getAssumed();
6964     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6965   }
6966 
6967   /// See AbstractAttribute::trackStatistics()
6968   void trackStatistics() const override {
6969     if (isAssumedReadNone())
6970       STATS_DECLTRACK_FN_ATTR(readnone)
6971     else if (isAssumedArgMemOnly())
6972       STATS_DECLTRACK_FN_ATTR(argmemonly)
6973     else if (isAssumedInaccessibleMemOnly())
6974       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6975     else if (isAssumedInaccessibleOrArgMemOnly())
6976       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6977   }
6978 };
6979 
6980 /// AAMemoryLocation attribute for call sites.
6981 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
6982   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
6983       : AAMemoryLocationImpl(IRP, A) {}
6984 
6985   /// See AbstractAttribute::initialize(...).
6986   void initialize(Attributor &A) override {
6987     AAMemoryLocationImpl::initialize(A);
6988     Function *F = getAssociatedFunction();
6989     if (!F || F->isDeclaration())
6990       indicatePessimisticFixpoint();
6991   }
6992 
6993   /// See AbstractAttribute::updateImpl(...).
6994   ChangeStatus updateImpl(Attributor &A) override {
6995     // TODO: Once we have call site specific value information we can provide
6996     //       call site specific liveness liveness information and then it makes
6997     //       sense to specialize attributes for call sites arguments instead of
6998     //       redirecting requests to the callee argument.
6999     Function *F = getAssociatedFunction();
7000     const IRPosition &FnPos = IRPosition::function(*F);
7001     auto &FnAA =
7002         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7003     bool Changed = false;
7004     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7005                           AccessKind Kind, MemoryLocationsKind MLK) {
7006       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7007                                 getAccessKindFromInst(I));
7008       return true;
7009     };
7010     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7011       return indicatePessimisticFixpoint();
7012     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7013   }
7014 
7015   /// See AbstractAttribute::trackStatistics()
7016   void trackStatistics() const override {
7017     if (isAssumedReadNone())
7018       STATS_DECLTRACK_CS_ATTR(readnone)
7019   }
7020 };
7021 
7022 /// ------------------ Value Constant Range Attribute -------------------------
7023 
7024 struct AAValueConstantRangeImpl : AAValueConstantRange {
7025   using StateType = IntegerRangeState;
7026   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7027       : AAValueConstantRange(IRP, A) {}
7028 
7029   /// See AbstractAttribute::getAsStr().
7030   const std::string getAsStr() const override {
7031     std::string Str;
7032     llvm::raw_string_ostream OS(Str);
7033     OS << "range(" << getBitWidth() << ")<";
7034     getKnown().print(OS);
7035     OS << " / ";
7036     getAssumed().print(OS);
7037     OS << ">";
7038     return OS.str();
7039   }
7040 
7041   /// Helper function to get a SCEV expr for the associated value at program
7042   /// point \p I.
7043   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7044     if (!getAnchorScope())
7045       return nullptr;
7046 
7047     ScalarEvolution *SE =
7048         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7049             *getAnchorScope());
7050 
7051     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7052         *getAnchorScope());
7053 
7054     if (!SE || !LI)
7055       return nullptr;
7056 
7057     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7058     if (!I)
7059       return S;
7060 
7061     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7062   }
7063 
7064   /// Helper function to get a range from SCEV for the associated value at
7065   /// program point \p I.
7066   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7067                                          const Instruction *I = nullptr) const {
7068     if (!getAnchorScope())
7069       return getWorstState(getBitWidth());
7070 
7071     ScalarEvolution *SE =
7072         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7073             *getAnchorScope());
7074 
7075     const SCEV *S = getSCEV(A, I);
7076     if (!SE || !S)
7077       return getWorstState(getBitWidth());
7078 
7079     return SE->getUnsignedRange(S);
7080   }
7081 
7082   /// Helper function to get a range from LVI for the associated value at
7083   /// program point \p I.
7084   ConstantRange
7085   getConstantRangeFromLVI(Attributor &A,
7086                           const Instruction *CtxI = nullptr) const {
7087     if (!getAnchorScope())
7088       return getWorstState(getBitWidth());
7089 
7090     LazyValueInfo *LVI =
7091         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
7092             *getAnchorScope());
7093 
7094     if (!LVI || !CtxI)
7095       return getWorstState(getBitWidth());
7096     return LVI->getConstantRange(&getAssociatedValue(),
7097                                  const_cast<Instruction *>(CtxI));
7098   }
7099 
7100   /// See AAValueConstantRange::getKnownConstantRange(..).
7101   ConstantRange
7102   getKnownConstantRange(Attributor &A,
7103                         const Instruction *CtxI = nullptr) const override {
7104     if (!CtxI || CtxI == getCtxI())
7105       return getKnown();
7106 
7107     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7108     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7109     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
7110   }
7111 
7112   /// See AAValueConstantRange::getAssumedConstantRange(..).
7113   ConstantRange
7114   getAssumedConstantRange(Attributor &A,
7115                           const Instruction *CtxI = nullptr) const override {
7116     // TODO: Make SCEV use Attributor assumption.
7117     //       We may be able to bound a variable range via assumptions in
7118     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
7119     //       evolve to x^2 + x, then we can say that y is in [2, 12].
7120 
7121     if (!CtxI || CtxI == getCtxI())
7122       return getAssumed();
7123 
7124     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7125     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7126     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
7127   }
7128 
7129   /// See AbstractAttribute::initialize(..).
7130   void initialize(Attributor &A) override {
7131     // Intersect a range given by SCEV.
7132     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7133 
7134     // Intersect a range given by LVI.
7135     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7136   }
7137 
7138   /// Helper function to create MDNode for range metadata.
7139   static MDNode *
7140   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
7141                             const ConstantRange &AssumedConstantRange) {
7142     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
7143                                   Ty, AssumedConstantRange.getLower())),
7144                               ConstantAsMetadata::get(ConstantInt::get(
7145                                   Ty, AssumedConstantRange.getUpper()))};
7146     return MDNode::get(Ctx, LowAndHigh);
7147   }
7148 
7149   /// Return true if \p Assumed is included in \p KnownRanges.
7150   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
7151 
7152     if (Assumed.isFullSet())
7153       return false;
7154 
7155     if (!KnownRanges)
7156       return true;
7157 
7158     // If multiple ranges are annotated in IR, we give up to annotate assumed
7159     // range for now.
7160 
7161     // TODO:  If there exists a known range which containts assumed range, we
7162     // can say assumed range is better.
7163     if (KnownRanges->getNumOperands() > 2)
7164       return false;
7165 
7166     ConstantInt *Lower =
7167         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
7168     ConstantInt *Upper =
7169         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
7170 
7171     ConstantRange Known(Lower->getValue(), Upper->getValue());
7172     return Known.contains(Assumed) && Known != Assumed;
7173   }
7174 
7175   /// Helper function to set range metadata.
7176   static bool
7177   setRangeMetadataIfisBetterRange(Instruction *I,
7178                                   const ConstantRange &AssumedConstantRange) {
7179     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
7180     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
7181       if (!AssumedConstantRange.isEmptySet()) {
7182         I->setMetadata(LLVMContext::MD_range,
7183                        getMDNodeForConstantRange(I->getType(), I->getContext(),
7184                                                  AssumedConstantRange));
7185         return true;
7186       }
7187     }
7188     return false;
7189   }
7190 
7191   /// See AbstractAttribute::manifest()
7192   ChangeStatus manifest(Attributor &A) override {
7193     ChangeStatus Changed = ChangeStatus::UNCHANGED;
7194     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
7195     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
7196 
7197     auto &V = getAssociatedValue();
7198     if (!AssumedConstantRange.isEmptySet() &&
7199         !AssumedConstantRange.isSingleElement()) {
7200       if (Instruction *I = dyn_cast<Instruction>(&V)) {
7201         assert(I == getCtxI() && "Should not annotate an instruction which is "
7202                                  "not the context instruction");
7203         if (isa<CallInst>(I) || isa<LoadInst>(I))
7204           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
7205             Changed = ChangeStatus::CHANGED;
7206       }
7207     }
7208 
7209     return Changed;
7210   }
7211 };
7212 
7213 struct AAValueConstantRangeArgument final
7214     : AAArgumentFromCallSiteArguments<
7215           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
7216           true /* BridgeCallBaseContext */> {
7217   using Base = AAArgumentFromCallSiteArguments<
7218       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
7219       true /* BridgeCallBaseContext */>;
7220   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
7221       : Base(IRP, A) {}
7222 
7223   /// See AbstractAttribute::initialize(..).
7224   void initialize(Attributor &A) override {
7225     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7226       indicatePessimisticFixpoint();
7227     } else {
7228       Base::initialize(A);
7229     }
7230   }
7231 
7232   /// See AbstractAttribute::trackStatistics()
7233   void trackStatistics() const override {
7234     STATS_DECLTRACK_ARG_ATTR(value_range)
7235   }
7236 };
7237 
7238 struct AAValueConstantRangeReturned
7239     : AAReturnedFromReturnedValues<AAValueConstantRange,
7240                                    AAValueConstantRangeImpl,
7241                                    AAValueConstantRangeImpl::StateType,
7242                                    /* PropogateCallBaseContext */ true> {
7243   using Base =
7244       AAReturnedFromReturnedValues<AAValueConstantRange,
7245                                    AAValueConstantRangeImpl,
7246                                    AAValueConstantRangeImpl::StateType,
7247                                    /* PropogateCallBaseContext */ true>;
7248   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
7249       : Base(IRP, A) {}
7250 
7251   /// See AbstractAttribute::initialize(...).
7252   void initialize(Attributor &A) override {}
7253 
7254   /// See AbstractAttribute::trackStatistics()
7255   void trackStatistics() const override {
7256     STATS_DECLTRACK_FNRET_ATTR(value_range)
7257   }
7258 };
7259 
7260 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
7261   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
7262       : AAValueConstantRangeImpl(IRP, A) {}
7263 
7264   /// See AbstractAttribute::initialize(...).
7265   void initialize(Attributor &A) override {
7266     AAValueConstantRangeImpl::initialize(A);
7267     Value &V = getAssociatedValue();
7268 
7269     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7270       unionAssumed(ConstantRange(C->getValue()));
7271       indicateOptimisticFixpoint();
7272       return;
7273     }
7274 
7275     if (isa<UndefValue>(&V)) {
7276       // Collapse the undef state to 0.
7277       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
7278       indicateOptimisticFixpoint();
7279       return;
7280     }
7281 
7282     if (isa<CallBase>(&V))
7283       return;
7284 
7285     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
7286       return;
7287     // If it is a load instruction with range metadata, use it.
7288     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
7289       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
7290         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7291         return;
7292       }
7293 
7294     // We can work with PHI and select instruction as we traverse their operands
7295     // during update.
7296     if (isa<SelectInst>(V) || isa<PHINode>(V))
7297       return;
7298 
7299     // Otherwise we give up.
7300     indicatePessimisticFixpoint();
7301 
7302     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
7303                       << getAssociatedValue() << "\n");
7304   }
7305 
7306   bool calculateBinaryOperator(
7307       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
7308       const Instruction *CtxI,
7309       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7310     Value *LHS = BinOp->getOperand(0);
7311     Value *RHS = BinOp->getOperand(1);
7312     // TODO: Allow non integers as well.
7313     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7314       return false;
7315 
7316     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
7317         *this, IRPosition::value(*LHS, getCallBaseContext()),
7318         DepClassTy::REQUIRED);
7319     QuerriedAAs.push_back(&LHSAA);
7320     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7321 
7322     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
7323         *this, IRPosition::value(*RHS, getCallBaseContext()),
7324         DepClassTy::REQUIRED);
7325     QuerriedAAs.push_back(&RHSAA);
7326     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7327 
7328     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
7329 
7330     T.unionAssumed(AssumedRange);
7331 
7332     // TODO: Track a known state too.
7333 
7334     return T.isValidState();
7335   }
7336 
7337   bool calculateCastInst(
7338       Attributor &A, CastInst *CastI, IntegerRangeState &T,
7339       const Instruction *CtxI,
7340       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7341     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
7342     // TODO: Allow non integers as well.
7343     Value &OpV = *CastI->getOperand(0);
7344     if (!OpV.getType()->isIntegerTy())
7345       return false;
7346 
7347     auto &OpAA = A.getAAFor<AAValueConstantRange>(
7348         *this, IRPosition::value(OpV, getCallBaseContext()),
7349         DepClassTy::REQUIRED);
7350     QuerriedAAs.push_back(&OpAA);
7351     T.unionAssumed(
7352         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
7353     return T.isValidState();
7354   }
7355 
7356   bool
7357   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
7358                    const Instruction *CtxI,
7359                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7360     Value *LHS = CmpI->getOperand(0);
7361     Value *RHS = CmpI->getOperand(1);
7362     // TODO: Allow non integers as well.
7363     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7364       return false;
7365 
7366     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
7367         *this, IRPosition::value(*LHS, getCallBaseContext()),
7368         DepClassTy::REQUIRED);
7369     QuerriedAAs.push_back(&LHSAA);
7370     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
7371         *this, IRPosition::value(*RHS, getCallBaseContext()),
7372         DepClassTy::REQUIRED);
7373     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7374     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7375 
7376     // If one of them is empty set, we can't decide.
7377     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
7378       return true;
7379 
7380     bool MustTrue = false, MustFalse = false;
7381 
7382     auto AllowedRegion =
7383         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
7384 
7385     auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
7386         CmpI->getPredicate(), RHSAARange);
7387 
7388     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
7389       MustFalse = true;
7390 
7391     if (SatisfyingRegion.contains(LHSAARange))
7392       MustTrue = true;
7393 
7394     assert((!MustTrue || !MustFalse) &&
7395            "Either MustTrue or MustFalse should be false!");
7396 
7397     if (MustTrue)
7398       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
7399     else if (MustFalse)
7400       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
7401     else
7402       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
7403 
7404     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
7405                       << " " << RHSAA << "\n");
7406 
7407     // TODO: Track a known state too.
7408     return T.isValidState();
7409   }
7410 
7411   /// See AbstractAttribute::updateImpl(...).
7412   ChangeStatus updateImpl(Attributor &A) override {
7413     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7414                             IntegerRangeState &T, bool Stripped) -> bool {
7415       Instruction *I = dyn_cast<Instruction>(&V);
7416       if (!I || isa<CallBase>(I)) {
7417 
7418         // If the value is not instruction, we query AA to Attributor.
7419         const auto &AA = A.getAAFor<AAValueConstantRange>(
7420             *this, IRPosition::value(V), DepClassTy::REQUIRED);
7421 
7422         // Clamp operator is not used to utilize a program point CtxI.
7423         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
7424 
7425         return T.isValidState();
7426       }
7427 
7428       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
7429       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
7430         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
7431           return false;
7432       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
7433         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
7434           return false;
7435       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
7436         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
7437           return false;
7438       } else {
7439         // Give up with other instructions.
7440         // TODO: Add other instructions
7441 
7442         T.indicatePessimisticFixpoint();
7443         return false;
7444       }
7445 
7446       // Catch circular reasoning in a pessimistic way for now.
7447       // TODO: Check how the range evolves and if we stripped anything, see also
7448       //       AADereferenceable or AAAlign for similar situations.
7449       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
7450         if (QueriedAA != this)
7451           continue;
7452         // If we are in a stady state we do not need to worry.
7453         if (T.getAssumed() == getState().getAssumed())
7454           continue;
7455         T.indicatePessimisticFixpoint();
7456       }
7457 
7458       return T.isValidState();
7459     };
7460 
7461     IntegerRangeState T(getBitWidth());
7462 
7463     if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7464             A, getIRPosition(), *this, T, VisitValueCB, getCtxI(),
7465             /* UseValueSimplify */ false))
7466       return indicatePessimisticFixpoint();
7467 
7468     return clampStateAndIndicateChange(getState(), T);
7469   }
7470 
7471   /// See AbstractAttribute::trackStatistics()
7472   void trackStatistics() const override {
7473     STATS_DECLTRACK_FLOATING_ATTR(value_range)
7474   }
7475 };
7476 
7477 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
7478   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
7479       : AAValueConstantRangeImpl(IRP, A) {}
7480 
7481   /// See AbstractAttribute::initialize(...).
7482   ChangeStatus updateImpl(Attributor &A) override {
7483     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7484                      "not be called");
7485   }
7486 
7487   /// See AbstractAttribute::trackStatistics()
7488   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7489 };
7490 
7491 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
7492   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
7493       : AAValueConstantRangeFunction(IRP, A) {}
7494 
7495   /// See AbstractAttribute::trackStatistics()
7496   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7497 };
7498 
7499 struct AAValueConstantRangeCallSiteReturned
7500     : AACallSiteReturnedFromReturned<AAValueConstantRange,
7501                                      AAValueConstantRangeImpl,
7502                                      AAValueConstantRangeImpl::StateType,
7503                                      /* IntroduceCallBaseContext */ true> {
7504   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
7505       : AACallSiteReturnedFromReturned<AAValueConstantRange,
7506                                        AAValueConstantRangeImpl,
7507                                        AAValueConstantRangeImpl::StateType,
7508                                        /* IntroduceCallBaseContext */ true>(IRP,
7509                                                                             A) {
7510   }
7511 
7512   /// See AbstractAttribute::initialize(...).
7513   void initialize(Attributor &A) override {
7514     // If it is a load instruction with range metadata, use the metadata.
7515     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7516       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7517         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7518 
7519     AAValueConstantRangeImpl::initialize(A);
7520   }
7521 
7522   /// See AbstractAttribute::trackStatistics()
7523   void trackStatistics() const override {
7524     STATS_DECLTRACK_CSRET_ATTR(value_range)
7525   }
7526 };
7527 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
7528   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
7529       : AAValueConstantRangeFloating(IRP, A) {}
7530 
7531   /// See AbstractAttribute::manifest()
7532   ChangeStatus manifest(Attributor &A) override {
7533     return ChangeStatus::UNCHANGED;
7534   }
7535 
7536   /// See AbstractAttribute::trackStatistics()
7537   void trackStatistics() const override {
7538     STATS_DECLTRACK_CSARG_ATTR(value_range)
7539   }
7540 };
7541 
7542 /// ------------------ Potential Values Attribute -------------------------
7543 
7544 struct AAPotentialValuesImpl : AAPotentialValues {
7545   using StateType = PotentialConstantIntValuesState;
7546 
7547   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
7548       : AAPotentialValues(IRP, A) {}
7549 
7550   /// See AbstractAttribute::getAsStr().
7551   const std::string getAsStr() const override {
7552     std::string Str;
7553     llvm::raw_string_ostream OS(Str);
7554     OS << getState();
7555     return OS.str();
7556   }
7557 
7558   /// See AbstractAttribute::updateImpl(...).
7559   ChangeStatus updateImpl(Attributor &A) override {
7560     return indicatePessimisticFixpoint();
7561   }
7562 };
7563 
7564 struct AAPotentialValuesArgument final
7565     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7566                                       PotentialConstantIntValuesState> {
7567   using Base =
7568       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7569                                       PotentialConstantIntValuesState>;
7570   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
7571       : Base(IRP, A) {}
7572 
7573   /// See AbstractAttribute::initialize(..).
7574   void initialize(Attributor &A) override {
7575     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7576       indicatePessimisticFixpoint();
7577     } else {
7578       Base::initialize(A);
7579     }
7580   }
7581 
7582   /// See AbstractAttribute::trackStatistics()
7583   void trackStatistics() const override {
7584     STATS_DECLTRACK_ARG_ATTR(potential_values)
7585   }
7586 };
7587 
7588 struct AAPotentialValuesReturned
7589     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
7590   using Base =
7591       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
7592   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
7593       : Base(IRP, A) {}
7594 
7595   /// See AbstractAttribute::trackStatistics()
7596   void trackStatistics() const override {
7597     STATS_DECLTRACK_FNRET_ATTR(potential_values)
7598   }
7599 };
7600 
7601 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
7602   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
7603       : AAPotentialValuesImpl(IRP, A) {}
7604 
7605   /// See AbstractAttribute::initialize(..).
7606   void initialize(Attributor &A) override {
7607     Value &V = getAssociatedValue();
7608 
7609     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7610       unionAssumed(C->getValue());
7611       indicateOptimisticFixpoint();
7612       return;
7613     }
7614 
7615     if (isa<UndefValue>(&V)) {
7616       unionAssumedWithUndef();
7617       indicateOptimisticFixpoint();
7618       return;
7619     }
7620 
7621     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
7622       return;
7623 
7624     if (isa<SelectInst>(V) || isa<PHINode>(V))
7625       return;
7626 
7627     indicatePessimisticFixpoint();
7628 
7629     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
7630                       << getAssociatedValue() << "\n");
7631   }
7632 
7633   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
7634                                 const APInt &RHS) {
7635     ICmpInst::Predicate Pred = ICI->getPredicate();
7636     switch (Pred) {
7637     case ICmpInst::ICMP_UGT:
7638       return LHS.ugt(RHS);
7639     case ICmpInst::ICMP_SGT:
7640       return LHS.sgt(RHS);
7641     case ICmpInst::ICMP_EQ:
7642       return LHS.eq(RHS);
7643     case ICmpInst::ICMP_UGE:
7644       return LHS.uge(RHS);
7645     case ICmpInst::ICMP_SGE:
7646       return LHS.sge(RHS);
7647     case ICmpInst::ICMP_ULT:
7648       return LHS.ult(RHS);
7649     case ICmpInst::ICMP_SLT:
7650       return LHS.slt(RHS);
7651     case ICmpInst::ICMP_NE:
7652       return LHS.ne(RHS);
7653     case ICmpInst::ICMP_ULE:
7654       return LHS.ule(RHS);
7655     case ICmpInst::ICMP_SLE:
7656       return LHS.sle(RHS);
7657     default:
7658       llvm_unreachable("Invalid ICmp predicate!");
7659     }
7660   }
7661 
7662   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
7663                                  uint32_t ResultBitWidth) {
7664     Instruction::CastOps CastOp = CI->getOpcode();
7665     switch (CastOp) {
7666     default:
7667       llvm_unreachable("unsupported or not integer cast");
7668     case Instruction::Trunc:
7669       return Src.trunc(ResultBitWidth);
7670     case Instruction::SExt:
7671       return Src.sext(ResultBitWidth);
7672     case Instruction::ZExt:
7673       return Src.zext(ResultBitWidth);
7674     case Instruction::BitCast:
7675       return Src;
7676     }
7677   }
7678 
7679   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
7680                                        const APInt &LHS, const APInt &RHS,
7681                                        bool &SkipOperation, bool &Unsupported) {
7682     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
7683     // Unsupported is set to true when the binary operator is not supported.
7684     // SkipOperation is set to true when UB occur with the given operand pair
7685     // (LHS, RHS).
7686     // TODO: we should look at nsw and nuw keywords to handle operations
7687     //       that create poison or undef value.
7688     switch (BinOpcode) {
7689     default:
7690       Unsupported = true;
7691       return LHS;
7692     case Instruction::Add:
7693       return LHS + RHS;
7694     case Instruction::Sub:
7695       return LHS - RHS;
7696     case Instruction::Mul:
7697       return LHS * RHS;
7698     case Instruction::UDiv:
7699       if (RHS.isNullValue()) {
7700         SkipOperation = true;
7701         return LHS;
7702       }
7703       return LHS.udiv(RHS);
7704     case Instruction::SDiv:
7705       if (RHS.isNullValue()) {
7706         SkipOperation = true;
7707         return LHS;
7708       }
7709       return LHS.sdiv(RHS);
7710     case Instruction::URem:
7711       if (RHS.isNullValue()) {
7712         SkipOperation = true;
7713         return LHS;
7714       }
7715       return LHS.urem(RHS);
7716     case Instruction::SRem:
7717       if (RHS.isNullValue()) {
7718         SkipOperation = true;
7719         return LHS;
7720       }
7721       return LHS.srem(RHS);
7722     case Instruction::Shl:
7723       return LHS.shl(RHS);
7724     case Instruction::LShr:
7725       return LHS.lshr(RHS);
7726     case Instruction::AShr:
7727       return LHS.ashr(RHS);
7728     case Instruction::And:
7729       return LHS & RHS;
7730     case Instruction::Or:
7731       return LHS | RHS;
7732     case Instruction::Xor:
7733       return LHS ^ RHS;
7734     }
7735   }
7736 
7737   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
7738                                            const APInt &LHS, const APInt &RHS) {
7739     bool SkipOperation = false;
7740     bool Unsupported = false;
7741     APInt Result =
7742         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
7743     if (Unsupported)
7744       return false;
7745     // If SkipOperation is true, we can ignore this operand pair (L, R).
7746     if (!SkipOperation)
7747       unionAssumed(Result);
7748     return isValidState();
7749   }
7750 
7751   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
7752     auto AssumedBefore = getAssumed();
7753     Value *LHS = ICI->getOperand(0);
7754     Value *RHS = ICI->getOperand(1);
7755     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7756       return indicatePessimisticFixpoint();
7757 
7758     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
7759                                                 DepClassTy::REQUIRED);
7760     if (!LHSAA.isValidState())
7761       return indicatePessimisticFixpoint();
7762 
7763     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
7764                                                 DepClassTy::REQUIRED);
7765     if (!RHSAA.isValidState())
7766       return indicatePessimisticFixpoint();
7767 
7768     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7769     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7770 
7771     // TODO: make use of undef flag to limit potential values aggressively.
7772     bool MaybeTrue = false, MaybeFalse = false;
7773     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
7774     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7775       // The result of any comparison between undefs can be soundly replaced
7776       // with undef.
7777       unionAssumedWithUndef();
7778     } else if (LHSAA.undefIsContained()) {
7779       bool MaybeTrue = false, MaybeFalse = false;
7780       for (const APInt &R : RHSAAPVS) {
7781         bool CmpResult = calculateICmpInst(ICI, Zero, R);
7782         MaybeTrue |= CmpResult;
7783         MaybeFalse |= !CmpResult;
7784         if (MaybeTrue & MaybeFalse)
7785           return indicatePessimisticFixpoint();
7786       }
7787     } else if (RHSAA.undefIsContained()) {
7788       for (const APInt &L : LHSAAPVS) {
7789         bool CmpResult = calculateICmpInst(ICI, L, Zero);
7790         MaybeTrue |= CmpResult;
7791         MaybeFalse |= !CmpResult;
7792         if (MaybeTrue & MaybeFalse)
7793           return indicatePessimisticFixpoint();
7794       }
7795     } else {
7796       for (const APInt &L : LHSAAPVS) {
7797         for (const APInt &R : RHSAAPVS) {
7798           bool CmpResult = calculateICmpInst(ICI, L, R);
7799           MaybeTrue |= CmpResult;
7800           MaybeFalse |= !CmpResult;
7801           if (MaybeTrue & MaybeFalse)
7802             return indicatePessimisticFixpoint();
7803         }
7804       }
7805     }
7806     if (MaybeTrue)
7807       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
7808     if (MaybeFalse)
7809       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
7810     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7811                                          : ChangeStatus::CHANGED;
7812   }
7813 
7814   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
7815     auto AssumedBefore = getAssumed();
7816     Value *LHS = SI->getTrueValue();
7817     Value *RHS = SI->getFalseValue();
7818     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7819       return indicatePessimisticFixpoint();
7820 
7821     // TODO: Use assumed simplified condition value
7822     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
7823                                                 DepClassTy::REQUIRED);
7824     if (!LHSAA.isValidState())
7825       return indicatePessimisticFixpoint();
7826 
7827     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
7828                                                 DepClassTy::REQUIRED);
7829     if (!RHSAA.isValidState())
7830       return indicatePessimisticFixpoint();
7831 
7832     if (LHSAA.undefIsContained() && RHSAA.undefIsContained())
7833       // select i1 *, undef , undef => undef
7834       unionAssumedWithUndef();
7835     else {
7836       unionAssumed(LHSAA);
7837       unionAssumed(RHSAA);
7838     }
7839     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7840                                          : ChangeStatus::CHANGED;
7841   }
7842 
7843   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
7844     auto AssumedBefore = getAssumed();
7845     if (!CI->isIntegerCast())
7846       return indicatePessimisticFixpoint();
7847     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
7848     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
7849     Value *Src = CI->getOperand(0);
7850     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
7851                                                 DepClassTy::REQUIRED);
7852     if (!SrcAA.isValidState())
7853       return indicatePessimisticFixpoint();
7854     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
7855     if (SrcAA.undefIsContained())
7856       unionAssumedWithUndef();
7857     else {
7858       for (const APInt &S : SrcAAPVS) {
7859         APInt T = calculateCastInst(CI, S, ResultBitWidth);
7860         unionAssumed(T);
7861       }
7862     }
7863     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7864                                          : ChangeStatus::CHANGED;
7865   }
7866 
7867   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
7868     auto AssumedBefore = getAssumed();
7869     Value *LHS = BinOp->getOperand(0);
7870     Value *RHS = BinOp->getOperand(1);
7871     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7872       return indicatePessimisticFixpoint();
7873 
7874     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
7875                                                 DepClassTy::REQUIRED);
7876     if (!LHSAA.isValidState())
7877       return indicatePessimisticFixpoint();
7878 
7879     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
7880                                                 DepClassTy::REQUIRED);
7881     if (!RHSAA.isValidState())
7882       return indicatePessimisticFixpoint();
7883 
7884     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7885     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7886     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
7887 
7888     // TODO: make use of undef flag to limit potential values aggressively.
7889     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7890       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
7891         return indicatePessimisticFixpoint();
7892     } else if (LHSAA.undefIsContained()) {
7893       for (const APInt &R : RHSAAPVS) {
7894         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
7895           return indicatePessimisticFixpoint();
7896       }
7897     } else if (RHSAA.undefIsContained()) {
7898       for (const APInt &L : LHSAAPVS) {
7899         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
7900           return indicatePessimisticFixpoint();
7901       }
7902     } else {
7903       for (const APInt &L : LHSAAPVS) {
7904         for (const APInt &R : RHSAAPVS) {
7905           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
7906             return indicatePessimisticFixpoint();
7907         }
7908       }
7909     }
7910     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7911                                          : ChangeStatus::CHANGED;
7912   }
7913 
7914   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
7915     auto AssumedBefore = getAssumed();
7916     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
7917       Value *IncomingValue = PHI->getIncomingValue(u);
7918       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
7919           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
7920       if (!PotentialValuesAA.isValidState())
7921         return indicatePessimisticFixpoint();
7922       if (PotentialValuesAA.undefIsContained())
7923         unionAssumedWithUndef();
7924       else
7925         unionAssumed(PotentialValuesAA.getAssumed());
7926     }
7927     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7928                                          : ChangeStatus::CHANGED;
7929   }
7930 
7931   /// See AbstractAttribute::updateImpl(...).
7932   ChangeStatus updateImpl(Attributor &A) override {
7933     Value &V = getAssociatedValue();
7934     Instruction *I = dyn_cast<Instruction>(&V);
7935 
7936     if (auto *ICI = dyn_cast<ICmpInst>(I))
7937       return updateWithICmpInst(A, ICI);
7938 
7939     if (auto *SI = dyn_cast<SelectInst>(I))
7940       return updateWithSelectInst(A, SI);
7941 
7942     if (auto *CI = dyn_cast<CastInst>(I))
7943       return updateWithCastInst(A, CI);
7944 
7945     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
7946       return updateWithBinaryOperator(A, BinOp);
7947 
7948     if (auto *PHI = dyn_cast<PHINode>(I))
7949       return updateWithPHINode(A, PHI);
7950 
7951     return indicatePessimisticFixpoint();
7952   }
7953 
7954   /// See AbstractAttribute::trackStatistics()
7955   void trackStatistics() const override {
7956     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
7957   }
7958 };
7959 
7960 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
7961   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
7962       : AAPotentialValuesImpl(IRP, A) {}
7963 
7964   /// See AbstractAttribute::initialize(...).
7965   ChangeStatus updateImpl(Attributor &A) override {
7966     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
7967                      "not be called");
7968   }
7969 
7970   /// See AbstractAttribute::trackStatistics()
7971   void trackStatistics() const override {
7972     STATS_DECLTRACK_FN_ATTR(potential_values)
7973   }
7974 };
7975 
7976 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
7977   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
7978       : AAPotentialValuesFunction(IRP, A) {}
7979 
7980   /// See AbstractAttribute::trackStatistics()
7981   void trackStatistics() const override {
7982     STATS_DECLTRACK_CS_ATTR(potential_values)
7983   }
7984 };
7985 
7986 struct AAPotentialValuesCallSiteReturned
7987     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
7988   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
7989       : AACallSiteReturnedFromReturned<AAPotentialValues,
7990                                        AAPotentialValuesImpl>(IRP, A) {}
7991 
7992   /// See AbstractAttribute::trackStatistics()
7993   void trackStatistics() const override {
7994     STATS_DECLTRACK_CSRET_ATTR(potential_values)
7995   }
7996 };
7997 
7998 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
7999   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
8000       : AAPotentialValuesFloating(IRP, A) {}
8001 
8002   /// See AbstractAttribute::initialize(..).
8003   void initialize(Attributor &A) override {
8004     Value &V = getAssociatedValue();
8005 
8006     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8007       unionAssumed(C->getValue());
8008       indicateOptimisticFixpoint();
8009       return;
8010     }
8011 
8012     if (isa<UndefValue>(&V)) {
8013       unionAssumedWithUndef();
8014       indicateOptimisticFixpoint();
8015       return;
8016     }
8017   }
8018 
8019   /// See AbstractAttribute::updateImpl(...).
8020   ChangeStatus updateImpl(Attributor &A) override {
8021     Value &V = getAssociatedValue();
8022     auto AssumedBefore = getAssumed();
8023     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
8024                                              DepClassTy::REQUIRED);
8025     const auto &S = AA.getAssumed();
8026     unionAssumed(S);
8027     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8028                                          : ChangeStatus::CHANGED;
8029   }
8030 
8031   /// See AbstractAttribute::trackStatistics()
8032   void trackStatistics() const override {
8033     STATS_DECLTRACK_CSARG_ATTR(potential_values)
8034   }
8035 };
8036 
8037 /// ------------------------ NoUndef Attribute ---------------------------------
8038 struct AANoUndefImpl : AANoUndef {
8039   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
8040 
8041   /// See AbstractAttribute::initialize(...).
8042   void initialize(Attributor &A) override {
8043     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
8044       indicateOptimisticFixpoint();
8045       return;
8046     }
8047     Value &V = getAssociatedValue();
8048     if (isa<UndefValue>(V))
8049       indicatePessimisticFixpoint();
8050     else if (isa<FreezeInst>(V))
8051       indicateOptimisticFixpoint();
8052     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
8053              isGuaranteedNotToBeUndefOrPoison(&V))
8054       indicateOptimisticFixpoint();
8055     else
8056       AANoUndef::initialize(A);
8057   }
8058 
8059   /// See followUsesInMBEC
8060   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
8061                        AANoUndef::StateType &State) {
8062     const Value *UseV = U->get();
8063     const DominatorTree *DT = nullptr;
8064     AssumptionCache *AC = nullptr;
8065     InformationCache &InfoCache = A.getInfoCache();
8066     if (Function *F = getAnchorScope()) {
8067       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
8068       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
8069     }
8070     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
8071     bool TrackUse = false;
8072     // Track use for instructions which must produce undef or poison bits when
8073     // at least one operand contains such bits.
8074     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
8075       TrackUse = true;
8076     return TrackUse;
8077   }
8078 
8079   /// See AbstractAttribute::getAsStr().
8080   const std::string getAsStr() const override {
8081     return getAssumed() ? "noundef" : "may-undef-or-poison";
8082   }
8083 
8084   ChangeStatus manifest(Attributor &A) override {
8085     // We don't manifest noundef attribute for dead positions because the
8086     // associated values with dead positions would be replaced with undef
8087     // values.
8088     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr))
8089       return ChangeStatus::UNCHANGED;
8090     // A position whose simplified value does not have any value is
8091     // considered to be dead. We don't manifest noundef in such positions for
8092     // the same reason above.
8093     auto &ValueSimplifyAA =
8094         A.getAAFor<AAValueSimplify>(*this, getIRPosition(), DepClassTy::NONE);
8095     if (!ValueSimplifyAA.getAssumedSimplifiedValue(A).hasValue())
8096       return ChangeStatus::UNCHANGED;
8097     return AANoUndef::manifest(A);
8098   }
8099 };
8100 
8101 struct AANoUndefFloating : public AANoUndefImpl {
8102   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
8103       : AANoUndefImpl(IRP, A) {}
8104 
8105   /// See AbstractAttribute::initialize(...).
8106   void initialize(Attributor &A) override {
8107     AANoUndefImpl::initialize(A);
8108     if (!getState().isAtFixpoint())
8109       if (Instruction *CtxI = getCtxI())
8110         followUsesInMBEC(*this, A, getState(), *CtxI);
8111   }
8112 
8113   /// See AbstractAttribute::updateImpl(...).
8114   ChangeStatus updateImpl(Attributor &A) override {
8115     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8116                             AANoUndef::StateType &T, bool Stripped) -> bool {
8117       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
8118                                              DepClassTy::REQUIRED);
8119       if (!Stripped && this == &AA) {
8120         T.indicatePessimisticFixpoint();
8121       } else {
8122         const AANoUndef::StateType &S =
8123             static_cast<const AANoUndef::StateType &>(AA.getState());
8124         T ^= S;
8125       }
8126       return T.isValidState();
8127     };
8128 
8129     StateType T;
8130     if (!genericValueTraversal<AANoUndef, StateType>(
8131             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
8132       return indicatePessimisticFixpoint();
8133 
8134     return clampStateAndIndicateChange(getState(), T);
8135   }
8136 
8137   /// See AbstractAttribute::trackStatistics()
8138   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
8139 };
8140 
8141 struct AANoUndefReturned final
8142     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
8143   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
8144       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
8145 
8146   /// See AbstractAttribute::trackStatistics()
8147   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
8148 };
8149 
8150 struct AANoUndefArgument final
8151     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
8152   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
8153       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
8154 
8155   /// See AbstractAttribute::trackStatistics()
8156   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
8157 };
8158 
8159 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
8160   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
8161       : AANoUndefFloating(IRP, A) {}
8162 
8163   /// See AbstractAttribute::trackStatistics()
8164   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
8165 };
8166 
8167 struct AANoUndefCallSiteReturned final
8168     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
8169   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
8170       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
8171 
8172   /// See AbstractAttribute::trackStatistics()
8173   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
8174 };
8175 } // namespace
8176 
8177 const char AAReturnedValues::ID = 0;
8178 const char AANoUnwind::ID = 0;
8179 const char AANoSync::ID = 0;
8180 const char AANoFree::ID = 0;
8181 const char AANonNull::ID = 0;
8182 const char AANoRecurse::ID = 0;
8183 const char AAWillReturn::ID = 0;
8184 const char AAUndefinedBehavior::ID = 0;
8185 const char AANoAlias::ID = 0;
8186 const char AAReachability::ID = 0;
8187 const char AANoReturn::ID = 0;
8188 const char AAIsDead::ID = 0;
8189 const char AADereferenceable::ID = 0;
8190 const char AAAlign::ID = 0;
8191 const char AANoCapture::ID = 0;
8192 const char AAValueSimplify::ID = 0;
8193 const char AAHeapToStack::ID = 0;
8194 const char AAPrivatizablePtr::ID = 0;
8195 const char AAMemoryBehavior::ID = 0;
8196 const char AAMemoryLocation::ID = 0;
8197 const char AAValueConstantRange::ID = 0;
8198 const char AAPotentialValues::ID = 0;
8199 const char AANoUndef::ID = 0;
8200 
8201 // Macro magic to create the static generator function for attributes that
8202 // follow the naming scheme.
8203 
8204 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
8205   case IRPosition::PK:                                                         \
8206     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
8207 
8208 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
8209   case IRPosition::PK:                                                         \
8210     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
8211     ++NumAAs;                                                                  \
8212     break;
8213 
8214 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
8215   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8216     CLASS *AA = nullptr;                                                       \
8217     switch (IRP.getPositionKind()) {                                           \
8218       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8219       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8220       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8221       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8222       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8223       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8224       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8225       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8226     }                                                                          \
8227     return *AA;                                                                \
8228   }
8229 
8230 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
8231   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8232     CLASS *AA = nullptr;                                                       \
8233     switch (IRP.getPositionKind()) {                                           \
8234       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8235       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
8236       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8237       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8238       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8239       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8240       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8241       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8242     }                                                                          \
8243     return *AA;                                                                \
8244   }
8245 
8246 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
8247   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8248     CLASS *AA = nullptr;                                                       \
8249     switch (IRP.getPositionKind()) {                                           \
8250       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8251       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8252       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8253       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8254       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8255       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8256       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8257       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8258     }                                                                          \
8259     return *AA;                                                                \
8260   }
8261 
8262 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
8263   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8264     CLASS *AA = nullptr;                                                       \
8265     switch (IRP.getPositionKind()) {                                           \
8266       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8267       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8268       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8269       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8270       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8271       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8272       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8273       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8274     }                                                                          \
8275     return *AA;                                                                \
8276   }
8277 
8278 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
8279   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8280     CLASS *AA = nullptr;                                                       \
8281     switch (IRP.getPositionKind()) {                                           \
8282       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8283       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8284       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8285       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8286       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8287       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8288       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8289       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8290     }                                                                          \
8291     return *AA;                                                                \
8292   }
8293 
8294 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
8295 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
8296 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
8297 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
8298 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
8299 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
8300 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
8301 
8302 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
8303 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
8304 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
8305 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
8306 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
8307 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
8308 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
8309 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
8310 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
8311 
8312 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
8313 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
8314 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
8315 
8316 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
8317 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
8318 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
8319 
8320 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
8321 
8322 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
8323 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
8324 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
8325 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
8326 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
8327 #undef SWITCH_PK_CREATE
8328 #undef SWITCH_PK_INV
8329