1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumeBundleQueries.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/NoFolder.h"
43 #include "llvm/Support/Alignment.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include <cassert>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "attributor"
57 
58 static cl::opt<bool> ManifestInternal(
59     "attributor-manifest-internal", cl::Hidden,
60     cl::desc("Manifest Attributor internal string attributes."),
61     cl::init(false));
62 
63 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
64                                        cl::Hidden);
65 
66 template <>
67 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
68 
69 static cl::opt<unsigned, true> MaxPotentialValues(
70     "attributor-max-potential-values", cl::Hidden,
71     cl::desc("Maximum number of potential values to be "
72              "tracked for each position."),
73     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
74     cl::init(7));
75 
76 static cl::opt<unsigned> MaxInterferingAccesses(
77     "attributor-max-interfering-accesses", cl::Hidden,
78     cl::desc("Maximum number of interfering accesses to "
79              "check before assuming all might interfere."),
80     cl::init(6));
81 
82 STATISTIC(NumAAs, "Number of abstract attributes created");
83 
84 // Some helper macros to deal with statistics tracking.
85 //
86 // Usage:
87 // For simple IR attribute tracking overload trackStatistics in the abstract
88 // attribute and choose the right STATS_DECLTRACK_********* macro,
89 // e.g.,:
90 //  void trackStatistics() const override {
91 //    STATS_DECLTRACK_ARG_ATTR(returned)
92 //  }
93 // If there is a single "increment" side one can use the macro
94 // STATS_DECLTRACK with a custom message. If there are multiple increment
95 // sides, STATS_DECL and STATS_TRACK can also be used separately.
96 //
97 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
98   ("Number of " #TYPE " marked '" #NAME "'")
99 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
100 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
101 #define STATS_DECL(NAME, TYPE, MSG)                                            \
102   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
103 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
104 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
105   {                                                                            \
106     STATS_DECL(NAME, TYPE, MSG)                                                \
107     STATS_TRACK(NAME, TYPE)                                                    \
108   }
109 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
110   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
111 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
112   STATS_DECLTRACK(NAME, CSArguments,                                           \
113                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
114 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
115   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
116 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
117   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
118 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
119   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
120                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
121 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
122   STATS_DECLTRACK(NAME, CSReturn,                                              \
123                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
124 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
125   STATS_DECLTRACK(NAME, Floating,                                              \
126                   ("Number of floating values known to be '" #NAME "'"))
127 
128 // Specialization of the operator<< for abstract attributes subclasses. This
129 // disambiguates situations where multiple operators are applicable.
130 namespace llvm {
131 #define PIPE_OPERATOR(CLASS)                                                   \
132   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
133     return OS << static_cast<const AbstractAttribute &>(AA);                   \
134   }
135 
136 PIPE_OPERATOR(AAIsDead)
137 PIPE_OPERATOR(AANoUnwind)
138 PIPE_OPERATOR(AANoSync)
139 PIPE_OPERATOR(AANoRecurse)
140 PIPE_OPERATOR(AAWillReturn)
141 PIPE_OPERATOR(AANoReturn)
142 PIPE_OPERATOR(AAReturnedValues)
143 PIPE_OPERATOR(AANonNull)
144 PIPE_OPERATOR(AANoAlias)
145 PIPE_OPERATOR(AADereferenceable)
146 PIPE_OPERATOR(AAAlign)
147 PIPE_OPERATOR(AANoCapture)
148 PIPE_OPERATOR(AAValueSimplify)
149 PIPE_OPERATOR(AANoFree)
150 PIPE_OPERATOR(AAHeapToStack)
151 PIPE_OPERATOR(AAReachability)
152 PIPE_OPERATOR(AAMemoryBehavior)
153 PIPE_OPERATOR(AAMemoryLocation)
154 PIPE_OPERATOR(AAValueConstantRange)
155 PIPE_OPERATOR(AAPrivatizablePtr)
156 PIPE_OPERATOR(AAUndefinedBehavior)
157 PIPE_OPERATOR(AAPotentialValues)
158 PIPE_OPERATOR(AANoUndef)
159 PIPE_OPERATOR(AACallEdges)
160 PIPE_OPERATOR(AAFunctionReachability)
161 PIPE_OPERATOR(AAPointerInfo)
162 PIPE_OPERATOR(AAAssumptionInfo)
163 
164 #undef PIPE_OPERATOR
165 
166 template <>
167 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
168                                                      const DerefState &R) {
169   ChangeStatus CS0 =
170       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
171   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
172   return CS0 | CS1;
173 }
174 
175 } // namespace llvm
176 
177 /// Get pointer operand of memory accessing instruction. If \p I is
178 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
179 /// is set to false and the instruction is volatile, return nullptr.
180 static const Value *getPointerOperand(const Instruction *I,
181                                       bool AllowVolatile) {
182   if (!AllowVolatile && I->isVolatile())
183     return nullptr;
184 
185   if (auto *LI = dyn_cast<LoadInst>(I)) {
186     return LI->getPointerOperand();
187   }
188 
189   if (auto *SI = dyn_cast<StoreInst>(I)) {
190     return SI->getPointerOperand();
191   }
192 
193   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
194     return CXI->getPointerOperand();
195   }
196 
197   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
198     return RMWI->getPointerOperand();
199   }
200 
201   return nullptr;
202 }
203 
204 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
205 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
206 /// getelement pointer instructions that traverse the natural type of \p Ptr if
207 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
208 /// through a cast to i8*.
209 ///
210 /// TODO: This could probably live somewhere more prominantly if it doesn't
211 ///       already exist.
212 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
213                                int64_t Offset, IRBuilder<NoFolder> &IRB,
214                                const DataLayout &DL) {
215   assert(Offset >= 0 && "Negative offset not supported yet!");
216   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
217                     << "-bytes as " << *ResTy << "\n");
218 
219   if (Offset) {
220     Type *Ty = PtrElemTy;
221     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
222     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
223 
224     SmallVector<Value *, 4> ValIndices;
225     std::string GEPName = Ptr->getName().str();
226     for (const APInt &Index : IntIndices) {
227       ValIndices.push_back(IRB.getInt(Index));
228       GEPName += "." + std::to_string(Index.getZExtValue());
229     }
230 
231     // Create a GEP for the indices collected above.
232     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
233 
234     // If an offset is left we use byte-wise adjustment.
235     if (IntOffset != 0) {
236       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
237       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
238                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
239     }
240   }
241 
242   // Ensure the result has the requested type.
243   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
244                                                 Ptr->getName() + ".cast");
245 
246   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
247   return Ptr;
248 }
249 
250 /// Recursively visit all values that might become \p IRP at some point. This
251 /// will be done by looking through cast instructions, selects, phis, and calls
252 /// with the "returned" attribute. Once we cannot look through the value any
253 /// further, the callback \p VisitValueCB is invoked and passed the current
254 /// value, the \p State, and a flag to indicate if we stripped anything.
255 /// Stripped means that we unpacked the value associated with \p IRP at least
256 /// once. Note that the value used for the callback may still be the value
257 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
258 /// we will never visit more values than specified by \p MaxValues.
259 /// If \p Intraprocedural is set to true only values valid in the scope of
260 /// \p CtxI will be visited and simplification into other scopes is prevented.
261 template <typename StateTy>
262 static bool genericValueTraversal(
263     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
264     StateTy &State,
265     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
266         VisitValueCB,
267     const Instruction *CtxI, bool &UsedAssumedInformation,
268     bool UseValueSimplify = true, int MaxValues = 16,
269     function_ref<Value *(Value *)> StripCB = nullptr,
270     bool Intraprocedural = false) {
271 
272   struct LivenessInfo {
273     const AAIsDead *LivenessAA = nullptr;
274     bool AnyDead = false;
275   };
276   SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
277   auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
278     LivenessInfo &LI = LivenessAAs[&F];
279     if (!LI.LivenessAA)
280       LI.LivenessAA = &A.getAAFor<AAIsDead>(QueryingAA, IRPosition::function(F),
281                                             DepClassTy::NONE);
282     return LI;
283   };
284 
285   Value *InitialV = &IRP.getAssociatedValue();
286   using Item = std::pair<Value *, const Instruction *>;
287   SmallSet<Item, 16> Visited;
288   SmallVector<Item, 16> Worklist;
289   Worklist.push_back({InitialV, CtxI});
290 
291   int Iteration = 0;
292   do {
293     Item I = Worklist.pop_back_val();
294     Value *V = I.first;
295     CtxI = I.second;
296     if (StripCB)
297       V = StripCB(V);
298 
299     // Check if we should process the current value. To prevent endless
300     // recursion keep a record of the values we followed!
301     if (!Visited.insert(I).second)
302       continue;
303 
304     // Make sure we limit the compile time for complex expressions.
305     if (Iteration++ >= MaxValues) {
306       LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
307                         << Iteration << "!\n");
308       return false;
309     }
310 
311     // Explicitly look through calls with a "returned" attribute if we do
312     // not have a pointer as stripPointerCasts only works on them.
313     Value *NewV = nullptr;
314     if (V->getType()->isPointerTy()) {
315       NewV = V->stripPointerCasts();
316     } else {
317       auto *CB = dyn_cast<CallBase>(V);
318       if (CB && CB->getCalledFunction()) {
319         for (Argument &Arg : CB->getCalledFunction()->args())
320           if (Arg.hasReturnedAttr()) {
321             NewV = CB->getArgOperand(Arg.getArgNo());
322             break;
323           }
324       }
325     }
326     if (NewV && NewV != V) {
327       Worklist.push_back({NewV, CtxI});
328       continue;
329     }
330 
331     // Look through select instructions, visit assumed potential values.
332     if (auto *SI = dyn_cast<SelectInst>(V)) {
333       Optional<Constant *> C = A.getAssumedConstant(
334           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
335       bool NoValueYet = !C.hasValue();
336       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
337         continue;
338       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
339         if (CI->isZero())
340           Worklist.push_back({SI->getFalseValue(), CtxI});
341         else
342           Worklist.push_back({SI->getTrueValue(), CtxI});
343         continue;
344       }
345       // We could not simplify the condition, assume both values.(
346       Worklist.push_back({SI->getTrueValue(), CtxI});
347       Worklist.push_back({SI->getFalseValue(), CtxI});
348       continue;
349     }
350 
351     // Look through phi nodes, visit all live operands.
352     if (auto *PHI = dyn_cast<PHINode>(V)) {
353       LivenessInfo &LI = GetLivenessInfo(*PHI->getFunction());
354       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
355         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
356         if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI->getParent())) {
357           LI.AnyDead = true;
358           UsedAssumedInformation |= !LI.LivenessAA->isAtFixpoint();
359           continue;
360         }
361         Worklist.push_back(
362             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
363       }
364       continue;
365     }
366 
367     if (auto *Arg = dyn_cast<Argument>(V)) {
368       if (!Intraprocedural && !Arg->hasPassPointeeByValueCopyAttr()) {
369         SmallVector<Item> CallSiteValues;
370         bool UsedAssumedInformation = false;
371         if (A.checkForAllCallSites(
372                 [&](AbstractCallSite ACS) {
373                   // Callbacks might not have a corresponding call site operand,
374                   // stick with the argument in that case.
375                   Value *CSOp = ACS.getCallArgOperand(*Arg);
376                   if (!CSOp)
377                     return false;
378                   CallSiteValues.push_back({CSOp, ACS.getInstruction()});
379                   return true;
380                 },
381                 *Arg->getParent(), true, &QueryingAA, UsedAssumedInformation)) {
382           Worklist.append(CallSiteValues);
383           continue;
384         }
385       }
386     }
387 
388     if (UseValueSimplify && !isa<Constant>(V)) {
389       Optional<Value *> SimpleV =
390           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
391       if (!SimpleV.hasValue())
392         continue;
393       Value *NewV = SimpleV.getValue();
394       if (NewV && NewV != V) {
395         if (!Intraprocedural || !CtxI ||
396             AA::isValidInScope(*NewV, CtxI->getFunction())) {
397           Worklist.push_back({NewV, CtxI});
398           continue;
399         }
400       }
401     }
402 
403     if (auto *LI = dyn_cast<LoadInst>(V)) {
404       bool UsedAssumedInformation = false;
405       SmallSetVector<Value *, 4> PotentialCopies;
406       if (AA::getPotentiallyLoadedValues(A, *LI, PotentialCopies, QueryingAA,
407                                          UsedAssumedInformation,
408                                          /* OnlyExact */ true)) {
409         // Values have to be dynamically unique or we loose the fact that a
410         // single llvm::Value might represent two runtime values (e.g., stack
411         // locations in different recursive calls).
412         bool DynamicallyUnique =
413             llvm::all_of(PotentialCopies, [&A, &QueryingAA](Value *PC) {
414               return AA::isDynamicallyUnique(A, QueryingAA, *PC);
415             });
416         if (DynamicallyUnique &&
417             (!Intraprocedural || !CtxI ||
418              llvm::all_of(PotentialCopies, [CtxI](Value *PC) {
419                return AA::isValidInScope(*PC, CtxI->getFunction());
420              }))) {
421           for (auto *PotentialCopy : PotentialCopies)
422             Worklist.push_back({PotentialCopy, CtxI});
423           continue;
424         }
425       }
426     }
427 
428     // Once a leaf is reached we inform the user through the callback.
429     if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) {
430       LLVM_DEBUG(dbgs() << "Generic value traversal visit callback failed for: "
431                         << *V << "!\n");
432       return false;
433     }
434   } while (!Worklist.empty());
435 
436   // If we actually used liveness information so we have to record a dependence.
437   for (auto &It : LivenessAAs)
438     if (It.second.AnyDead)
439       A.recordDependence(*It.second.LivenessAA, QueryingAA,
440                          DepClassTy::OPTIONAL);
441 
442   // All values have been visited.
443   return true;
444 }
445 
446 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
447                                      SmallVectorImpl<Value *> &Objects,
448                                      const AbstractAttribute &QueryingAA,
449                                      const Instruction *CtxI,
450                                      bool &UsedAssumedInformation,
451                                      bool Intraprocedural) {
452   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
453   SmallPtrSet<Value *, 8> SeenObjects;
454   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
455                                      SmallVectorImpl<Value *> &Objects,
456                                      bool) -> bool {
457     if (SeenObjects.insert(&Val).second)
458       Objects.push_back(&Val);
459     return true;
460   };
461   if (!genericValueTraversal<decltype(Objects)>(
462           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
463           UsedAssumedInformation, true, 32, StripCB, Intraprocedural))
464     return false;
465   return true;
466 }
467 
468 static const Value *
469 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
470                           const Value *Val, const DataLayout &DL, APInt &Offset,
471                           bool GetMinOffset, bool AllowNonInbounds,
472                           bool UseAssumed = false) {
473 
474   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
475     const IRPosition &Pos = IRPosition::value(V);
476     // Only track dependence if we are going to use the assumed info.
477     const AAValueConstantRange &ValueConstantRangeAA =
478         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
479                                          UseAssumed ? DepClassTy::OPTIONAL
480                                                     : DepClassTy::NONE);
481     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
482                                      : ValueConstantRangeAA.getKnown();
483     if (Range.isFullSet())
484       return false;
485 
486     // We can only use the lower part of the range because the upper part can
487     // be higher than what the value can really be.
488     if (GetMinOffset)
489       ROffset = Range.getSignedMin();
490     else
491       ROffset = Range.getSignedMax();
492     return true;
493   };
494 
495   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
496                                                 /* AllowInvariant */ true,
497                                                 AttributorAnalysis);
498 }
499 
500 static const Value *
501 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
502                         const Value *Ptr, int64_t &BytesOffset,
503                         const DataLayout &DL, bool AllowNonInbounds = false) {
504   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
505   const Value *Base =
506       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
507                                 /* GetMinOffset */ true, AllowNonInbounds);
508 
509   BytesOffset = OffsetAPInt.getSExtValue();
510   return Base;
511 }
512 
513 /// Clamp the information known for all returned values of a function
514 /// (identified by \p QueryingAA) into \p S.
515 template <typename AAType, typename StateType = typename AAType::StateType>
516 static void clampReturnedValueStates(
517     Attributor &A, const AAType &QueryingAA, StateType &S,
518     const IRPosition::CallBaseContext *CBContext = nullptr) {
519   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
520                     << QueryingAA << " into " << S << "\n");
521 
522   assert((QueryingAA.getIRPosition().getPositionKind() ==
523               IRPosition::IRP_RETURNED ||
524           QueryingAA.getIRPosition().getPositionKind() ==
525               IRPosition::IRP_CALL_SITE_RETURNED) &&
526          "Can only clamp returned value states for a function returned or call "
527          "site returned position!");
528 
529   // Use an optional state as there might not be any return values and we want
530   // to join (IntegerState::operator&) the state of all there are.
531   Optional<StateType> T;
532 
533   // Callback for each possibly returned value.
534   auto CheckReturnValue = [&](Value &RV) -> bool {
535     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
536     const AAType &AA =
537         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
538     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
539                       << " @ " << RVPos << "\n");
540     const StateType &AAS = AA.getState();
541     if (T.hasValue())
542       *T &= AAS;
543     else
544       T = AAS;
545     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
546                       << "\n");
547     return T->isValidState();
548   };
549 
550   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
551     S.indicatePessimisticFixpoint();
552   else if (T.hasValue())
553     S ^= *T;
554 }
555 
556 namespace {
557 /// Helper class for generic deduction: return value -> returned position.
558 template <typename AAType, typename BaseType,
559           typename StateType = typename BaseType::StateType,
560           bool PropagateCallBaseContext = false>
561 struct AAReturnedFromReturnedValues : public BaseType {
562   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
563       : BaseType(IRP, A) {}
564 
565   /// See AbstractAttribute::updateImpl(...).
566   ChangeStatus updateImpl(Attributor &A) override {
567     StateType S(StateType::getBestState(this->getState()));
568     clampReturnedValueStates<AAType, StateType>(
569         A, *this, S,
570         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
571     // TODO: If we know we visited all returned values, thus no are assumed
572     // dead, we can take the known information from the state T.
573     return clampStateAndIndicateChange<StateType>(this->getState(), S);
574   }
575 };
576 
577 /// Clamp the information known at all call sites for a given argument
578 /// (identified by \p QueryingAA) into \p S.
579 template <typename AAType, typename StateType = typename AAType::StateType>
580 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
581                                         StateType &S) {
582   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
583                     << QueryingAA << " into " << S << "\n");
584 
585   assert(QueryingAA.getIRPosition().getPositionKind() ==
586              IRPosition::IRP_ARGUMENT &&
587          "Can only clamp call site argument states for an argument position!");
588 
589   // Use an optional state as there might not be any return values and we want
590   // to join (IntegerState::operator&) the state of all there are.
591   Optional<StateType> T;
592 
593   // The argument number which is also the call site argument number.
594   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
595 
596   auto CallSiteCheck = [&](AbstractCallSite ACS) {
597     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
598     // Check if a coresponding argument was found or if it is on not associated
599     // (which can happen for callback calls).
600     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
601       return false;
602 
603     const AAType &AA =
604         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
605     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
606                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
607     const StateType &AAS = AA.getState();
608     if (T.hasValue())
609       *T &= AAS;
610     else
611       T = AAS;
612     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
613                       << "\n");
614     return T->isValidState();
615   };
616 
617   bool UsedAssumedInformation = false;
618   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
619                               UsedAssumedInformation))
620     S.indicatePessimisticFixpoint();
621   else if (T.hasValue())
622     S ^= *T;
623 }
624 
625 /// This function is the bridge between argument position and the call base
626 /// context.
627 template <typename AAType, typename BaseType,
628           typename StateType = typename AAType::StateType>
629 bool getArgumentStateFromCallBaseContext(Attributor &A,
630                                          BaseType &QueryingAttribute,
631                                          IRPosition &Pos, StateType &State) {
632   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
633          "Expected an 'argument' position !");
634   const CallBase *CBContext = Pos.getCallBaseContext();
635   if (!CBContext)
636     return false;
637 
638   int ArgNo = Pos.getCallSiteArgNo();
639   assert(ArgNo >= 0 && "Invalid Arg No!");
640 
641   const auto &AA = A.getAAFor<AAType>(
642       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
643       DepClassTy::REQUIRED);
644   const StateType &CBArgumentState =
645       static_cast<const StateType &>(AA.getState());
646 
647   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
648                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
649                     << "\n");
650 
651   // NOTE: If we want to do call site grouping it should happen here.
652   State ^= CBArgumentState;
653   return true;
654 }
655 
656 /// Helper class for generic deduction: call site argument -> argument position.
657 template <typename AAType, typename BaseType,
658           typename StateType = typename AAType::StateType,
659           bool BridgeCallBaseContext = false>
660 struct AAArgumentFromCallSiteArguments : public BaseType {
661   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
662       : BaseType(IRP, A) {}
663 
664   /// See AbstractAttribute::updateImpl(...).
665   ChangeStatus updateImpl(Attributor &A) override {
666     StateType S = StateType::getBestState(this->getState());
667 
668     if (BridgeCallBaseContext) {
669       bool Success =
670           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
671               A, *this, this->getIRPosition(), S);
672       if (Success)
673         return clampStateAndIndicateChange<StateType>(this->getState(), S);
674     }
675     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
676 
677     // TODO: If we know we visited all incoming values, thus no are assumed
678     // dead, we can take the known information from the state T.
679     return clampStateAndIndicateChange<StateType>(this->getState(), S);
680   }
681 };
682 
683 /// Helper class for generic replication: function returned -> cs returned.
684 template <typename AAType, typename BaseType,
685           typename StateType = typename BaseType::StateType,
686           bool IntroduceCallBaseContext = false>
687 struct AACallSiteReturnedFromReturned : public BaseType {
688   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
689       : BaseType(IRP, A) {}
690 
691   /// See AbstractAttribute::updateImpl(...).
692   ChangeStatus updateImpl(Attributor &A) override {
693     assert(this->getIRPosition().getPositionKind() ==
694                IRPosition::IRP_CALL_SITE_RETURNED &&
695            "Can only wrap function returned positions for call site returned "
696            "positions!");
697     auto &S = this->getState();
698 
699     const Function *AssociatedFunction =
700         this->getIRPosition().getAssociatedFunction();
701     if (!AssociatedFunction)
702       return S.indicatePessimisticFixpoint();
703 
704     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
705     if (IntroduceCallBaseContext)
706       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
707                         << CBContext << "\n");
708 
709     IRPosition FnPos = IRPosition::returned(
710         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
711     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
712     return clampStateAndIndicateChange(S, AA.getState());
713   }
714 };
715 
716 /// Helper function to accumulate uses.
717 template <class AAType, typename StateType = typename AAType::StateType>
718 static void followUsesInContext(AAType &AA, Attributor &A,
719                                 MustBeExecutedContextExplorer &Explorer,
720                                 const Instruction *CtxI,
721                                 SetVector<const Use *> &Uses,
722                                 StateType &State) {
723   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
724   for (unsigned u = 0; u < Uses.size(); ++u) {
725     const Use *U = Uses[u];
726     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
727       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
728       if (Found && AA.followUseInMBEC(A, U, UserI, State))
729         for (const Use &Us : UserI->uses())
730           Uses.insert(&Us);
731     }
732   }
733 }
734 
735 /// Use the must-be-executed-context around \p I to add information into \p S.
736 /// The AAType class is required to have `followUseInMBEC` method with the
737 /// following signature and behaviour:
738 ///
739 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
740 /// U - Underlying use.
741 /// I - The user of the \p U.
742 /// Returns true if the value should be tracked transitively.
743 ///
744 template <class AAType, typename StateType = typename AAType::StateType>
745 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
746                              Instruction &CtxI) {
747 
748   // Container for (transitive) uses of the associated value.
749   SetVector<const Use *> Uses;
750   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
751     Uses.insert(&U);
752 
753   MustBeExecutedContextExplorer &Explorer =
754       A.getInfoCache().getMustBeExecutedContextExplorer();
755 
756   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
757 
758   if (S.isAtFixpoint())
759     return;
760 
761   SmallVector<const BranchInst *, 4> BrInsts;
762   auto Pred = [&](const Instruction *I) {
763     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
764       if (Br->isConditional())
765         BrInsts.push_back(Br);
766     return true;
767   };
768 
769   // Here, accumulate conditional branch instructions in the context. We
770   // explore the child paths and collect the known states. The disjunction of
771   // those states can be merged to its own state. Let ParentState_i be a state
772   // to indicate the known information for an i-th branch instruction in the
773   // context. ChildStates are created for its successors respectively.
774   //
775   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
776   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
777   //      ...
778   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
779   //
780   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
781   //
782   // FIXME: Currently, recursive branches are not handled. For example, we
783   // can't deduce that ptr must be dereferenced in below function.
784   //
785   // void f(int a, int c, int *ptr) {
786   //    if(a)
787   //      if (b) {
788   //        *ptr = 0;
789   //      } else {
790   //        *ptr = 1;
791   //      }
792   //    else {
793   //      if (b) {
794   //        *ptr = 0;
795   //      } else {
796   //        *ptr = 1;
797   //      }
798   //    }
799   // }
800 
801   Explorer.checkForAllContext(&CtxI, Pred);
802   for (const BranchInst *Br : BrInsts) {
803     StateType ParentState;
804 
805     // The known state of the parent state is a conjunction of children's
806     // known states so it is initialized with a best state.
807     ParentState.indicateOptimisticFixpoint();
808 
809     for (const BasicBlock *BB : Br->successors()) {
810       StateType ChildState;
811 
812       size_t BeforeSize = Uses.size();
813       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
814 
815       // Erase uses which only appear in the child.
816       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
817         It = Uses.erase(It);
818 
819       ParentState &= ChildState;
820     }
821 
822     // Use only known state.
823     S += ParentState;
824   }
825 }
826 } // namespace
827 
828 /// ------------------------ PointerInfo ---------------------------------------
829 
830 namespace llvm {
831 namespace AA {
832 namespace PointerInfo {
833 
834 struct State;
835 
836 } // namespace PointerInfo
837 } // namespace AA
838 
839 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
840 template <>
841 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
842   using Access = AAPointerInfo::Access;
843   static inline Access getEmptyKey();
844   static inline Access getTombstoneKey();
845   static unsigned getHashValue(const Access &A);
846   static bool isEqual(const Access &LHS, const Access &RHS);
847 };
848 
849 /// Helper that allows OffsetAndSize as a key in a DenseMap.
850 template <>
851 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
852     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
853 
854 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
855 /// but the instruction
856 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
857   using Base = DenseMapInfo<Instruction *>;
858   using Access = AAPointerInfo::Access;
859   static inline Access getEmptyKey();
860   static inline Access getTombstoneKey();
861   static unsigned getHashValue(const Access &A);
862   static bool isEqual(const Access &LHS, const Access &RHS);
863 };
864 
865 } // namespace llvm
866 
867 /// Implementation of the DenseMapInfo.
868 ///
869 ///{
870 inline llvm::AccessAsInstructionInfo::Access
871 llvm::AccessAsInstructionInfo::getEmptyKey() {
872   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
873 }
874 inline llvm::AccessAsInstructionInfo::Access
875 llvm::AccessAsInstructionInfo::getTombstoneKey() {
876   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
877                 nullptr);
878 }
879 unsigned llvm::AccessAsInstructionInfo::getHashValue(
880     const llvm::AccessAsInstructionInfo::Access &A) {
881   return Base::getHashValue(A.getRemoteInst());
882 }
883 bool llvm::AccessAsInstructionInfo::isEqual(
884     const llvm::AccessAsInstructionInfo::Access &LHS,
885     const llvm::AccessAsInstructionInfo::Access &RHS) {
886   return LHS.getRemoteInst() == RHS.getRemoteInst();
887 }
888 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
889 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
890   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
891                                nullptr);
892 }
893 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
894 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
895   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
896                                nullptr);
897 }
898 
899 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
900     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
901   return detail::combineHashValue(
902              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
903              (A.isWrittenValueYetUndetermined()
904                   ? ~0
905                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
906          A.getKind();
907 }
908 
909 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
910     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
911     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
912   return LHS == RHS;
913 }
914 ///}
915 
916 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
917 struct AA::PointerInfo::State : public AbstractState {
918 
919   /// Return the best possible representable state.
920   static State getBestState(const State &SIS) { return State(); }
921 
922   /// Return the worst possible representable state.
923   static State getWorstState(const State &SIS) {
924     State R;
925     R.indicatePessimisticFixpoint();
926     return R;
927   }
928 
929   State() = default;
930   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
931   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
932 
933   const State &getAssumed() const { return *this; }
934 
935   /// See AbstractState::isValidState().
936   bool isValidState() const override { return BS.isValidState(); }
937 
938   /// See AbstractState::isAtFixpoint().
939   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
940 
941   /// See AbstractState::indicateOptimisticFixpoint().
942   ChangeStatus indicateOptimisticFixpoint() override {
943     BS.indicateOptimisticFixpoint();
944     return ChangeStatus::UNCHANGED;
945   }
946 
947   /// See AbstractState::indicatePessimisticFixpoint().
948   ChangeStatus indicatePessimisticFixpoint() override {
949     BS.indicatePessimisticFixpoint();
950     return ChangeStatus::CHANGED;
951   }
952 
953   State &operator=(const State &R) {
954     if (this == &R)
955       return *this;
956     BS = R.BS;
957     AccessBins = R.AccessBins;
958     return *this;
959   }
960 
961   State &operator=(State &&R) {
962     if (this == &R)
963       return *this;
964     std::swap(BS, R.BS);
965     std::swap(AccessBins, R.AccessBins);
966     return *this;
967   }
968 
969   bool operator==(const State &R) const {
970     if (BS != R.BS)
971       return false;
972     if (AccessBins.size() != R.AccessBins.size())
973       return false;
974     auto It = begin(), RIt = R.begin(), E = end();
975     while (It != E) {
976       if (It->getFirst() != RIt->getFirst())
977         return false;
978       auto &Accs = It->getSecond();
979       auto &RAccs = RIt->getSecond();
980       if (Accs.size() != RAccs.size())
981         return false;
982       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
983       while (AccIt != AccE) {
984         if (*AccIt != *RAccIt)
985           return false;
986         ++AccIt;
987         ++RAccIt;
988       }
989       ++It;
990       ++RIt;
991     }
992     return true;
993   }
994   bool operator!=(const State &R) const { return !(*this == R); }
995 
996   /// We store accesses in a set with the instruction as key.
997   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
998 
999   /// We store all accesses in bins denoted by their offset and size.
1000   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses>;
1001 
1002   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
1003   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
1004 
1005 protected:
1006   /// The bins with all the accesses for the associated pointer.
1007   DenseMap<AAPointerInfo::OffsetAndSize, Accesses> AccessBins;
1008 
1009   /// Add a new access to the state at offset \p Offset and with size \p Size.
1010   /// The access is associated with \p I, writes \p Content (if anything), and
1011   /// is of kind \p Kind.
1012   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
1013   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
1014                          Optional<Value *> Content,
1015                          AAPointerInfo::AccessKind Kind, Type *Ty,
1016                          Instruction *RemoteI = nullptr,
1017                          Accesses *BinPtr = nullptr) {
1018     AAPointerInfo::OffsetAndSize Key{Offset, Size};
1019     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
1020     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1021     // Check if we have an access for this instruction in this bin, if not,
1022     // simply add it.
1023     auto It = Bin.find(Acc);
1024     if (It == Bin.end()) {
1025       Bin.insert(Acc);
1026       return ChangeStatus::CHANGED;
1027     }
1028     // If the existing access is the same as then new one, nothing changed.
1029     AAPointerInfo::Access Before = *It;
1030     // The new one will be combined with the existing one.
1031     *It &= Acc;
1032     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1033   }
1034 
1035   /// See AAPointerInfo::forallInterferingAccesses.
1036   bool forallInterferingAccesses(
1037       AAPointerInfo::OffsetAndSize OAS,
1038       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1039     if (!isValidState())
1040       return false;
1041 
1042     for (auto &It : AccessBins) {
1043       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
1044       if (!OAS.mayOverlap(ItOAS))
1045         continue;
1046       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1047       for (auto &Access : It.getSecond())
1048         if (!CB(Access, IsExact))
1049           return false;
1050     }
1051     return true;
1052   }
1053 
1054   /// See AAPointerInfo::forallInterferingAccesses.
1055   bool forallInterferingAccesses(
1056       Instruction &I,
1057       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1058     if (!isValidState())
1059       return false;
1060 
1061     // First find the offset and size of I.
1062     AAPointerInfo::OffsetAndSize OAS(-1, -1);
1063     for (auto &It : AccessBins) {
1064       for (auto &Access : It.getSecond()) {
1065         if (Access.getRemoteInst() == &I) {
1066           OAS = It.getFirst();
1067           break;
1068         }
1069       }
1070       if (OAS.getSize() != -1)
1071         break;
1072     }
1073     // No access for I was found, we are done.
1074     if (OAS.getSize() == -1)
1075       return true;
1076 
1077     // Now that we have an offset and size, find all overlapping ones and use
1078     // the callback on the accesses.
1079     return forallInterferingAccesses(OAS, CB);
1080   }
1081 
1082 private:
1083   /// State to track fixpoint and validity.
1084   BooleanState BS;
1085 };
1086 
1087 namespace {
1088 struct AAPointerInfoImpl
1089     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1090   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1091   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1092 
1093   /// See AbstractAttribute::initialize(...).
1094   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1095 
1096   /// See AbstractAttribute::getAsStr().
1097   const std::string getAsStr() const override {
1098     return std::string("PointerInfo ") +
1099            (isValidState() ? (std::string("#") +
1100                               std::to_string(AccessBins.size()) + " bins")
1101                            : "<invalid>");
1102   }
1103 
1104   /// See AbstractAttribute::manifest(...).
1105   ChangeStatus manifest(Attributor &A) override {
1106     return AAPointerInfo::manifest(A);
1107   }
1108 
1109   bool forallInterferingAccesses(
1110       OffsetAndSize OAS,
1111       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1112       const override {
1113     return State::forallInterferingAccesses(OAS, CB);
1114   }
1115   bool forallInterferingAccesses(
1116       Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
1117       function_ref<bool(const Access &, bool)> UserCB) const override {
1118     SmallPtrSet<const Access *, 8> DominatingWrites;
1119     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
1120 
1121     Function &Scope = *I.getFunction();
1122     const auto &NoSyncAA = A.getAAFor<AANoSync>(
1123         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1124     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1125         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
1126     const bool NoSync = NoSyncAA.isAssumedNoSync();
1127 
1128     // Helper to determine if we need to consider threading, which we cannot
1129     // right now. However, if the function is (assumed) nosync or the thread
1130     // executing all instructions is the main thread only we can ignore
1131     // threading.
1132     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
1133       if (NoSync)
1134         return true;
1135       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
1136         return true;
1137       return false;
1138     };
1139 
1140     // Helper to determine if the access is executed by the same thread as the
1141     // load, for now it is sufficient to avoid any potential threading effects
1142     // as we cannot deal with them anyway.
1143     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
1144       return CanIgnoreThreading(*Acc.getLocalInst());
1145     };
1146 
1147     // TODO: Use inter-procedural reachability and dominance.
1148     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1149         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1150 
1151     const bool FindInterferingWrites = I.mayReadFromMemory();
1152     const bool FindInterferingReads = I.mayWriteToMemory();
1153     const bool UseDominanceReasoning = FindInterferingWrites;
1154     const bool CanUseCFGResoning = CanIgnoreThreading(I);
1155     InformationCache &InfoCache = A.getInfoCache();
1156     const DominatorTree *DT =
1157         NoRecurseAA.isKnownNoRecurse() && UseDominanceReasoning
1158             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1159                   Scope)
1160             : nullptr;
1161 
1162     enum GPUAddressSpace : unsigned {
1163       Generic = 0,
1164       Global = 1,
1165       Shared = 3,
1166       Constant = 4,
1167       Local = 5,
1168     };
1169 
1170     // Helper to check if a value has "kernel lifetime", that is it will not
1171     // outlive a GPU kernel. This is true for shared, constant, and local
1172     // globals on AMD and NVIDIA GPUs.
1173     auto HasKernelLifetime = [&](Value *V, Module &M) {
1174       Triple T(M.getTargetTriple());
1175       if (!(T.isAMDGPU() || T.isNVPTX()))
1176         return false;
1177       switch (V->getType()->getPointerAddressSpace()) {
1178       case GPUAddressSpace::Shared:
1179       case GPUAddressSpace::Constant:
1180       case GPUAddressSpace::Local:
1181         return true;
1182       default:
1183         return false;
1184       };
1185     };
1186 
1187     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1188     // to determine if we should look at reachability from the callee. For
1189     // certain pointers we know the lifetime and we do not have to step into the
1190     // callee to determine reachability as the pointer would be dead in the
1191     // callee. See the conditional initialization below.
1192     std::function<bool(const Function &)> IsLiveInCalleeCB;
1193 
1194     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1195       // If the alloca containing function is not recursive the alloca
1196       // must be dead in the callee.
1197       const Function *AIFn = AI->getFunction();
1198       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1199           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1200       if (NoRecurseAA.isAssumedNoRecurse()) {
1201         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1202       }
1203     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1204       // If the global has kernel lifetime we can stop if we reach a kernel
1205       // as it is "dead" in the (unknown) callees.
1206       if (HasKernelLifetime(GV, *GV->getParent()))
1207         IsLiveInCalleeCB = [](const Function &Fn) {
1208           return !Fn.hasFnAttribute("kernel");
1209         };
1210     }
1211 
1212     auto AccessCB = [&](const Access &Acc, bool Exact) {
1213       if ((!FindInterferingWrites || !Acc.isWrite()) &&
1214           (!FindInterferingReads || !Acc.isRead()))
1215         return true;
1216 
1217       // For now we only filter accesses based on CFG reasoning which does not
1218       // work yet if we have threading effects, or the access is complicated.
1219       if (CanUseCFGResoning) {
1220         if ((!Acc.isWrite() ||
1221              !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1222                                          IsLiveInCalleeCB)) &&
1223             (!Acc.isRead() ||
1224              !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1225                                          IsLiveInCalleeCB)))
1226           return true;
1227         if (DT && Exact && (Acc.getLocalInst()->getFunction() == &Scope) &&
1228             IsSameThreadAsLoad(Acc)) {
1229           if (DT->dominates(Acc.getLocalInst(), &I))
1230             DominatingWrites.insert(&Acc);
1231         }
1232       }
1233 
1234       InterferingAccesses.push_back({&Acc, Exact});
1235       return true;
1236     };
1237     if (!State::forallInterferingAccesses(I, AccessCB))
1238       return false;
1239 
1240     // If we cannot use CFG reasoning we only filter the non-write accesses
1241     // and are done here.
1242     if (!CanUseCFGResoning) {
1243       for (auto &It : InterferingAccesses)
1244         if (!UserCB(*It.first, It.second))
1245           return false;
1246       return true;
1247     }
1248 
1249     // Helper to determine if we can skip a specific write access. This is in
1250     // the worst case quadratic as we are looking for another write that will
1251     // hide the effect of this one.
1252     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1253       if (!IsSameThreadAsLoad(Acc))
1254         return false;
1255       if (!DominatingWrites.count(&Acc))
1256         return false;
1257       for (const Access *DomAcc : DominatingWrites) {
1258         assert(Acc.getLocalInst()->getFunction() ==
1259                    DomAcc->getLocalInst()->getFunction() &&
1260                "Expected dominating writes to be in the same function!");
1261 
1262         if (DomAcc != &Acc &&
1263             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1264           return true;
1265         }
1266       }
1267       return false;
1268     };
1269 
1270     // Run the user callback on all accesses we cannot skip and return if that
1271     // succeeded for all or not.
1272     unsigned NumInterferingAccesses = InterferingAccesses.size();
1273     for (auto &It : InterferingAccesses) {
1274       if (!DT || NumInterferingAccesses > MaxInterferingAccesses ||
1275           !CanSkipAccess(*It.first, It.second)) {
1276         if (!UserCB(*It.first, It.second))
1277           return false;
1278       }
1279     }
1280     return true;
1281   }
1282 
1283   ChangeStatus translateAndAddCalleeState(Attributor &A,
1284                                           const AAPointerInfo &CalleeAA,
1285                                           int64_t CallArgOffset, CallBase &CB) {
1286     using namespace AA::PointerInfo;
1287     if (!CalleeAA.getState().isValidState() || !isValidState())
1288       return indicatePessimisticFixpoint();
1289 
1290     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1291     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1292 
1293     // Combine the accesses bin by bin.
1294     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1295     for (auto &It : CalleeImplAA.getState()) {
1296       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1297       if (CallArgOffset != OffsetAndSize::Unknown)
1298         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1299                             It.first.getSize());
1300       Accesses &Bin = AccessBins[OAS];
1301       for (const AAPointerInfo::Access &RAcc : It.second) {
1302         if (IsByval && !RAcc.isRead())
1303           continue;
1304         bool UsedAssumedInformation = false;
1305         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1306             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1307         AccessKind AK =
1308             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1309                                                  : AccessKind::AK_READ_WRITE));
1310         Changed =
1311             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1312                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1313       }
1314     }
1315     return Changed;
1316   }
1317 
1318   /// Statistic tracking for all AAPointerInfo implementations.
1319   /// See AbstractAttribute::trackStatistics().
1320   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1321 };
1322 
1323 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1324   using AccessKind = AAPointerInfo::AccessKind;
1325   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1326       : AAPointerInfoImpl(IRP, A) {}
1327 
1328   /// See AbstractAttribute::initialize(...).
1329   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1330 
1331   /// Deal with an access and signal if it was handled successfully.
1332   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1333                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1334                     ChangeStatus &Changed, Type *Ty,
1335                     int64_t Size = OffsetAndSize::Unknown) {
1336     using namespace AA::PointerInfo;
1337     // No need to find a size if one is given or the offset is unknown.
1338     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1339         Ty) {
1340       const DataLayout &DL = A.getDataLayout();
1341       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1342       if (!AccessSize.isScalable())
1343         Size = AccessSize.getFixedSize();
1344     }
1345     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1346     return true;
1347   };
1348 
1349   /// Helper struct, will support ranges eventually.
1350   struct OffsetInfo {
1351     int64_t Offset = OffsetAndSize::Unknown;
1352 
1353     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1354   };
1355 
1356   /// See AbstractAttribute::updateImpl(...).
1357   ChangeStatus updateImpl(Attributor &A) override {
1358     using namespace AA::PointerInfo;
1359     State S = getState();
1360     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1361     Value &AssociatedValue = getAssociatedValue();
1362 
1363     const DataLayout &DL = A.getDataLayout();
1364     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1365     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1366 
1367     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1368                                      bool &Follow) {
1369       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1370       UsrOI = PtrOI;
1371       Follow = true;
1372       return true;
1373     };
1374 
1375     const auto *TLI = getAnchorScope()
1376                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1377                                 *getAnchorScope())
1378                           : nullptr;
1379     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1380       Value *CurPtr = U.get();
1381       User *Usr = U.getUser();
1382       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1383                         << *Usr << "\n");
1384       assert(OffsetInfoMap.count(CurPtr) &&
1385              "The current pointer offset should have been seeded!");
1386 
1387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1388         if (CE->isCast())
1389           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1390         if (CE->isCompare())
1391           return true;
1392         if (!isa<GEPOperator>(CE)) {
1393           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1394                             << "\n");
1395           return false;
1396         }
1397       }
1398       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1399         // Note the order here, the Usr access might change the map, CurPtr is
1400         // already in it though.
1401         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1402         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1403         UsrOI = PtrOI;
1404 
1405         // TODO: Use range information.
1406         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1407             !GEP->hasAllConstantIndices()) {
1408           UsrOI.Offset = OffsetAndSize::Unknown;
1409           Follow = true;
1410           return true;
1411         }
1412 
1413         SmallVector<Value *, 8> Indices;
1414         for (Use &Idx : GEP->indices()) {
1415           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1416             Indices.push_back(CIdx);
1417             continue;
1418           }
1419 
1420           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1421                             << " : " << *Idx << "\n");
1422           return false;
1423         }
1424         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1425                                           GEP->getSourceElementType(), Indices);
1426         Follow = true;
1427         return true;
1428       }
1429       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1430         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1431 
1432       // For PHIs we need to take care of the recurrence explicitly as the value
1433       // might change while we iterate through a loop. For now, we give up if
1434       // the PHI is not invariant.
1435       if (isa<PHINode>(Usr)) {
1436         // Note the order here, the Usr access might change the map, CurPtr is
1437         // already in it though.
1438         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1439         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1440         // Check if the PHI is invariant (so far).
1441         if (UsrOI == PtrOI)
1442           return true;
1443 
1444         // Check if the PHI operand has already an unknown offset as we can't
1445         // improve on that anymore.
1446         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1447           UsrOI = PtrOI;
1448           Follow = true;
1449           return true;
1450         }
1451 
1452         // Check if the PHI operand is not dependent on the PHI itself.
1453         // TODO: This is not great as we look at the pointer type. However, it
1454         // is unclear where the Offset size comes from with typeless pointers.
1455         APInt Offset(
1456             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1457             0);
1458         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1459                                     DL, Offset, /* AllowNonInbounds */ true)) {
1460           if (Offset != PtrOI.Offset) {
1461             LLVM_DEBUG(dbgs()
1462                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1463                        << *CurPtr << " in " << *Usr << "\n");
1464             return false;
1465           }
1466           return HandlePassthroughUser(Usr, PtrOI, Follow);
1467         }
1468 
1469         // TODO: Approximate in case we know the direction of the recurrence.
1470         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1471                           << *CurPtr << " in " << *Usr << "\n");
1472         UsrOI = PtrOI;
1473         UsrOI.Offset = OffsetAndSize::Unknown;
1474         Follow = true;
1475         return true;
1476       }
1477 
1478       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1479         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1480                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1481                             Changed, LoadI->getType());
1482       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1483         if (StoreI->getValueOperand() == CurPtr) {
1484           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1485                             << *StoreI << "\n");
1486           return false;
1487         }
1488         bool UsedAssumedInformation = false;
1489         Optional<Value *> Content = A.getAssumedSimplified(
1490             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1491         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1492                             OffsetInfoMap[CurPtr].Offset, Changed,
1493                             StoreI->getValueOperand()->getType());
1494       }
1495       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1496         if (CB->isLifetimeStartOrEnd())
1497           return true;
1498         if (TLI && isFreeCall(CB, TLI))
1499           return true;
1500         if (CB->isArgOperand(&U)) {
1501           unsigned ArgNo = CB->getArgOperandNo(&U);
1502           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1503               *this, IRPosition::callsite_argument(*CB, ArgNo),
1504               DepClassTy::REQUIRED);
1505           Changed = translateAndAddCalleeState(
1506                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1507                     Changed;
1508           return true;
1509         }
1510         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1511                           << "\n");
1512         // TODO: Allow some call uses
1513         return false;
1514       }
1515 
1516       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1517       return false;
1518     };
1519     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1520       if (OffsetInfoMap.count(NewU))
1521         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1522       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1523       return true;
1524     };
1525     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1526                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1527                            EquivalentUseCB))
1528       return indicatePessimisticFixpoint();
1529 
1530     LLVM_DEBUG({
1531       dbgs() << "Accesses by bin after update:\n";
1532       for (auto &It : AccessBins) {
1533         dbgs() << "[" << It.first.getOffset() << "-"
1534                << It.first.getOffset() + It.first.getSize()
1535                << "] : " << It.getSecond().size() << "\n";
1536         for (auto &Acc : It.getSecond()) {
1537           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1538                  << "\n";
1539           if (Acc.getLocalInst() != Acc.getRemoteInst())
1540             dbgs() << "     -->                         "
1541                    << *Acc.getRemoteInst() << "\n";
1542           if (!Acc.isWrittenValueYetUndetermined())
1543             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1544         }
1545       }
1546     });
1547 
1548     return Changed;
1549   }
1550 
1551   /// See AbstractAttribute::trackStatistics()
1552   void trackStatistics() const override {
1553     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1554   }
1555 };
1556 
1557 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1558   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1559       : AAPointerInfoImpl(IRP, A) {}
1560 
1561   /// See AbstractAttribute::updateImpl(...).
1562   ChangeStatus updateImpl(Attributor &A) override {
1563     return indicatePessimisticFixpoint();
1564   }
1565 
1566   /// See AbstractAttribute::trackStatistics()
1567   void trackStatistics() const override {
1568     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1569   }
1570 };
1571 
1572 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1573   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1574       : AAPointerInfoFloating(IRP, A) {}
1575 
1576   /// See AbstractAttribute::initialize(...).
1577   void initialize(Attributor &A) override {
1578     AAPointerInfoFloating::initialize(A);
1579     if (getAnchorScope()->isDeclaration())
1580       indicatePessimisticFixpoint();
1581   }
1582 
1583   /// See AbstractAttribute::trackStatistics()
1584   void trackStatistics() const override {
1585     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1586   }
1587 };
1588 
1589 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1590   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1591       : AAPointerInfoFloating(IRP, A) {}
1592 
1593   /// See AbstractAttribute::updateImpl(...).
1594   ChangeStatus updateImpl(Attributor &A) override {
1595     using namespace AA::PointerInfo;
1596     // We handle memory intrinsics explicitly, at least the first (=
1597     // destination) and second (=source) arguments as we know how they are
1598     // accessed.
1599     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1600       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1601       int64_t LengthVal = OffsetAndSize::Unknown;
1602       if (Length)
1603         LengthVal = Length->getSExtValue();
1604       Value &Ptr = getAssociatedValue();
1605       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1606       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1607       if (ArgNo == 0) {
1608         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1609                      nullptr, LengthVal);
1610       } else if (ArgNo == 1) {
1611         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1612                      nullptr, LengthVal);
1613       } else {
1614         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1615                           << *MI << "\n");
1616         return indicatePessimisticFixpoint();
1617       }
1618       return Changed;
1619     }
1620 
1621     // TODO: Once we have call site specific value information we can provide
1622     //       call site specific liveness information and then it makes
1623     //       sense to specialize attributes for call sites arguments instead of
1624     //       redirecting requests to the callee argument.
1625     Argument *Arg = getAssociatedArgument();
1626     if (!Arg)
1627       return indicatePessimisticFixpoint();
1628     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1629     auto &ArgAA =
1630         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1631     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1632   }
1633 
1634   /// See AbstractAttribute::trackStatistics()
1635   void trackStatistics() const override {
1636     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1637   }
1638 };
1639 
1640 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1641   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1642       : AAPointerInfoFloating(IRP, A) {}
1643 
1644   /// See AbstractAttribute::trackStatistics()
1645   void trackStatistics() const override {
1646     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1647   }
1648 };
1649 } // namespace
1650 
1651 /// -----------------------NoUnwind Function Attribute--------------------------
1652 
1653 namespace {
1654 struct AANoUnwindImpl : AANoUnwind {
1655   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1656 
1657   const std::string getAsStr() const override {
1658     return getAssumed() ? "nounwind" : "may-unwind";
1659   }
1660 
1661   /// See AbstractAttribute::updateImpl(...).
1662   ChangeStatus updateImpl(Attributor &A) override {
1663     auto Opcodes = {
1664         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1665         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1666         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1667 
1668     auto CheckForNoUnwind = [&](Instruction &I) {
1669       if (!I.mayThrow())
1670         return true;
1671 
1672       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1673         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1674             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1675         return NoUnwindAA.isAssumedNoUnwind();
1676       }
1677       return false;
1678     };
1679 
1680     bool UsedAssumedInformation = false;
1681     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1682                                    UsedAssumedInformation))
1683       return indicatePessimisticFixpoint();
1684 
1685     return ChangeStatus::UNCHANGED;
1686   }
1687 };
1688 
1689 struct AANoUnwindFunction final : public AANoUnwindImpl {
1690   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1691       : AANoUnwindImpl(IRP, A) {}
1692 
1693   /// See AbstractAttribute::trackStatistics()
1694   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1695 };
1696 
1697 /// NoUnwind attribute deduction for a call sites.
1698 struct AANoUnwindCallSite final : AANoUnwindImpl {
1699   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1700       : AANoUnwindImpl(IRP, A) {}
1701 
1702   /// See AbstractAttribute::initialize(...).
1703   void initialize(Attributor &A) override {
1704     AANoUnwindImpl::initialize(A);
1705     Function *F = getAssociatedFunction();
1706     if (!F || F->isDeclaration())
1707       indicatePessimisticFixpoint();
1708   }
1709 
1710   /// See AbstractAttribute::updateImpl(...).
1711   ChangeStatus updateImpl(Attributor &A) override {
1712     // TODO: Once we have call site specific value information we can provide
1713     //       call site specific liveness information and then it makes
1714     //       sense to specialize attributes for call sites arguments instead of
1715     //       redirecting requests to the callee argument.
1716     Function *F = getAssociatedFunction();
1717     const IRPosition &FnPos = IRPosition::function(*F);
1718     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1719     return clampStateAndIndicateChange(getState(), FnAA.getState());
1720   }
1721 
1722   /// See AbstractAttribute::trackStatistics()
1723   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1724 };
1725 } // namespace
1726 
1727 /// --------------------- Function Return Values -------------------------------
1728 
1729 namespace {
1730 /// "Attribute" that collects all potential returned values and the return
1731 /// instructions that they arise from.
1732 ///
1733 /// If there is a unique returned value R, the manifest method will:
1734 ///   - mark R with the "returned" attribute, if R is an argument.
1735 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1736 
1737   /// Mapping of values potentially returned by the associated function to the
1738   /// return instructions that might return them.
1739   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1740 
1741   /// State flags
1742   ///
1743   ///{
1744   bool IsFixed = false;
1745   bool IsValidState = true;
1746   ///}
1747 
1748 public:
1749   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1750       : AAReturnedValues(IRP, A) {}
1751 
1752   /// See AbstractAttribute::initialize(...).
1753   void initialize(Attributor &A) override {
1754     // Reset the state.
1755     IsFixed = false;
1756     IsValidState = true;
1757     ReturnedValues.clear();
1758 
1759     Function *F = getAssociatedFunction();
1760     if (!F || F->isDeclaration()) {
1761       indicatePessimisticFixpoint();
1762       return;
1763     }
1764     assert(!F->getReturnType()->isVoidTy() &&
1765            "Did not expect a void return type!");
1766 
1767     // The map from instruction opcodes to those instructions in the function.
1768     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1769 
1770     // Look through all arguments, if one is marked as returned we are done.
1771     for (Argument &Arg : F->args()) {
1772       if (Arg.hasReturnedAttr()) {
1773         auto &ReturnInstSet = ReturnedValues[&Arg];
1774         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1775           for (Instruction *RI : *Insts)
1776             ReturnInstSet.insert(cast<ReturnInst>(RI));
1777 
1778         indicateOptimisticFixpoint();
1779         return;
1780       }
1781     }
1782 
1783     if (!A.isFunctionIPOAmendable(*F))
1784       indicatePessimisticFixpoint();
1785   }
1786 
1787   /// See AbstractAttribute::manifest(...).
1788   ChangeStatus manifest(Attributor &A) override;
1789 
1790   /// See AbstractAttribute::getState(...).
1791   AbstractState &getState() override { return *this; }
1792 
1793   /// See AbstractAttribute::getState(...).
1794   const AbstractState &getState() const override { return *this; }
1795 
1796   /// See AbstractAttribute::updateImpl(Attributor &A).
1797   ChangeStatus updateImpl(Attributor &A) override;
1798 
1799   llvm::iterator_range<iterator> returned_values() override {
1800     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1801   }
1802 
1803   llvm::iterator_range<const_iterator> returned_values() const override {
1804     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1805   }
1806 
1807   /// Return the number of potential return values, -1 if unknown.
1808   size_t getNumReturnValues() const override {
1809     return isValidState() ? ReturnedValues.size() : -1;
1810   }
1811 
1812   /// Return an assumed unique return value if a single candidate is found. If
1813   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1814   /// Optional::NoneType.
1815   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1816 
1817   /// See AbstractState::checkForAllReturnedValues(...).
1818   bool checkForAllReturnedValuesAndReturnInsts(
1819       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1820       const override;
1821 
1822   /// Pretty print the attribute similar to the IR representation.
1823   const std::string getAsStr() const override;
1824 
1825   /// See AbstractState::isAtFixpoint().
1826   bool isAtFixpoint() const override { return IsFixed; }
1827 
1828   /// See AbstractState::isValidState().
1829   bool isValidState() const override { return IsValidState; }
1830 
1831   /// See AbstractState::indicateOptimisticFixpoint(...).
1832   ChangeStatus indicateOptimisticFixpoint() override {
1833     IsFixed = true;
1834     return ChangeStatus::UNCHANGED;
1835   }
1836 
1837   ChangeStatus indicatePessimisticFixpoint() override {
1838     IsFixed = true;
1839     IsValidState = false;
1840     return ChangeStatus::CHANGED;
1841   }
1842 };
1843 
1844 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1845   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1846 
1847   // Bookkeeping.
1848   assert(isValidState());
1849   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1850                   "Number of function with known return values");
1851 
1852   // Check if we have an assumed unique return value that we could manifest.
1853   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1854 
1855   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1856     return Changed;
1857 
1858   // Bookkeeping.
1859   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1860                   "Number of function with unique return");
1861   // If the assumed unique return value is an argument, annotate it.
1862   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1863     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1864             getAssociatedFunction()->getReturnType())) {
1865       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1866       Changed = IRAttribute::manifest(A);
1867     }
1868   }
1869   return Changed;
1870 }
1871 
1872 const std::string AAReturnedValuesImpl::getAsStr() const {
1873   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1874          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1875 }
1876 
1877 Optional<Value *>
1878 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1879   // If checkForAllReturnedValues provides a unique value, ignoring potential
1880   // undef values that can also be present, it is assumed to be the actual
1881   // return value and forwarded to the caller of this method. If there are
1882   // multiple, a nullptr is returned indicating there cannot be a unique
1883   // returned value.
1884   Optional<Value *> UniqueRV;
1885   Type *Ty = getAssociatedFunction()->getReturnType();
1886 
1887   auto Pred = [&](Value &RV) -> bool {
1888     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1889     return UniqueRV != Optional<Value *>(nullptr);
1890   };
1891 
1892   if (!A.checkForAllReturnedValues(Pred, *this))
1893     UniqueRV = nullptr;
1894 
1895   return UniqueRV;
1896 }
1897 
1898 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1899     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1900     const {
1901   if (!isValidState())
1902     return false;
1903 
1904   // Check all returned values but ignore call sites as long as we have not
1905   // encountered an overdefined one during an update.
1906   for (auto &It : ReturnedValues) {
1907     Value *RV = It.first;
1908     if (!Pred(*RV, It.second))
1909       return false;
1910   }
1911 
1912   return true;
1913 }
1914 
1915 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1916   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1917 
1918   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1919                            bool) -> bool {
1920     assert(AA::isValidInScope(V, Ret.getFunction()) &&
1921            "Assumed returned value should be valid in function scope!");
1922     if (ReturnedValues[&V].insert(&Ret))
1923       Changed = ChangeStatus::CHANGED;
1924     return true;
1925   };
1926 
1927   bool UsedAssumedInformation = false;
1928   auto ReturnInstCB = [&](Instruction &I) {
1929     ReturnInst &Ret = cast<ReturnInst>(I);
1930     return genericValueTraversal<ReturnInst>(
1931         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1932         &I, UsedAssumedInformation, /* UseValueSimplify */ true,
1933         /* MaxValues */ 16,
1934         /* StripCB */ nullptr, /* Intraprocedural */ true);
1935   };
1936 
1937   // Discover returned values from all live returned instructions in the
1938   // associated function.
1939   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1940                                  UsedAssumedInformation))
1941     return indicatePessimisticFixpoint();
1942   return Changed;
1943 }
1944 
1945 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1946   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1947       : AAReturnedValuesImpl(IRP, A) {}
1948 
1949   /// See AbstractAttribute::trackStatistics()
1950   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1951 };
1952 
1953 /// Returned values information for a call sites.
1954 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1955   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1956       : AAReturnedValuesImpl(IRP, A) {}
1957 
1958   /// See AbstractAttribute::initialize(...).
1959   void initialize(Attributor &A) override {
1960     // TODO: Once we have call site specific value information we can provide
1961     //       call site specific liveness information and then it makes
1962     //       sense to specialize attributes for call sites instead of
1963     //       redirecting requests to the callee.
1964     llvm_unreachable("Abstract attributes for returned values are not "
1965                      "supported for call sites yet!");
1966   }
1967 
1968   /// See AbstractAttribute::updateImpl(...).
1969   ChangeStatus updateImpl(Attributor &A) override {
1970     return indicatePessimisticFixpoint();
1971   }
1972 
1973   /// See AbstractAttribute::trackStatistics()
1974   void trackStatistics() const override {}
1975 };
1976 } // namespace
1977 
1978 /// ------------------------ NoSync Function Attribute -------------------------
1979 
1980 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1981   if (!I->isAtomic())
1982     return false;
1983 
1984   if (auto *FI = dyn_cast<FenceInst>(I))
1985     // All legal orderings for fence are stronger than monotonic.
1986     return FI->getSyncScopeID() != SyncScope::SingleThread;
1987   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1988     // Unordered is not a legal ordering for cmpxchg.
1989     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1990             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1991   }
1992 
1993   AtomicOrdering Ordering;
1994   switch (I->getOpcode()) {
1995   case Instruction::AtomicRMW:
1996     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1997     break;
1998   case Instruction::Store:
1999     Ordering = cast<StoreInst>(I)->getOrdering();
2000     break;
2001   case Instruction::Load:
2002     Ordering = cast<LoadInst>(I)->getOrdering();
2003     break;
2004   default:
2005     llvm_unreachable(
2006         "New atomic operations need to be known in the attributor.");
2007   }
2008 
2009   return (Ordering != AtomicOrdering::Unordered &&
2010           Ordering != AtomicOrdering::Monotonic);
2011 }
2012 
2013 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
2014 /// which would be nosync except that they have a volatile flag.  All other
2015 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
2016 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
2017   if (auto *MI = dyn_cast<MemIntrinsic>(I))
2018     return !MI->isVolatile();
2019   return false;
2020 }
2021 
2022 namespace {
2023 struct AANoSyncImpl : AANoSync {
2024   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
2025 
2026   const std::string getAsStr() const override {
2027     return getAssumed() ? "nosync" : "may-sync";
2028   }
2029 
2030   /// See AbstractAttribute::updateImpl(...).
2031   ChangeStatus updateImpl(Attributor &A) override;
2032 };
2033 
2034 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
2035 
2036   auto CheckRWInstForNoSync = [&](Instruction &I) {
2037     return AA::isNoSyncInst(A, I, *this);
2038   };
2039 
2040   auto CheckForNoSync = [&](Instruction &I) {
2041     // At this point we handled all read/write effects and they are all
2042     // nosync, so they can be skipped.
2043     if (I.mayReadOrWriteMemory())
2044       return true;
2045 
2046     // non-convergent and readnone imply nosync.
2047     return !cast<CallBase>(I).isConvergent();
2048   };
2049 
2050   bool UsedAssumedInformation = false;
2051   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2052                                           UsedAssumedInformation) ||
2053       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2054                                          UsedAssumedInformation))
2055     return indicatePessimisticFixpoint();
2056 
2057   return ChangeStatus::UNCHANGED;
2058 }
2059 
2060 struct AANoSyncFunction final : public AANoSyncImpl {
2061   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2062       : AANoSyncImpl(IRP, A) {}
2063 
2064   /// See AbstractAttribute::trackStatistics()
2065   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2066 };
2067 
2068 /// NoSync attribute deduction for a call sites.
2069 struct AANoSyncCallSite final : AANoSyncImpl {
2070   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2071       : AANoSyncImpl(IRP, A) {}
2072 
2073   /// See AbstractAttribute::initialize(...).
2074   void initialize(Attributor &A) override {
2075     AANoSyncImpl::initialize(A);
2076     Function *F = getAssociatedFunction();
2077     if (!F || F->isDeclaration())
2078       indicatePessimisticFixpoint();
2079   }
2080 
2081   /// See AbstractAttribute::updateImpl(...).
2082   ChangeStatus updateImpl(Attributor &A) override {
2083     // TODO: Once we have call site specific value information we can provide
2084     //       call site specific liveness information and then it makes
2085     //       sense to specialize attributes for call sites arguments instead of
2086     //       redirecting requests to the callee argument.
2087     Function *F = getAssociatedFunction();
2088     const IRPosition &FnPos = IRPosition::function(*F);
2089     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
2090     return clampStateAndIndicateChange(getState(), FnAA.getState());
2091   }
2092 
2093   /// See AbstractAttribute::trackStatistics()
2094   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2095 };
2096 } // namespace
2097 
2098 /// ------------------------ No-Free Attributes ----------------------------
2099 
2100 namespace {
2101 struct AANoFreeImpl : public AANoFree {
2102   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2103 
2104   /// See AbstractAttribute::updateImpl(...).
2105   ChangeStatus updateImpl(Attributor &A) override {
2106     auto CheckForNoFree = [&](Instruction &I) {
2107       const auto &CB = cast<CallBase>(I);
2108       if (CB.hasFnAttr(Attribute::NoFree))
2109         return true;
2110 
2111       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2112           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2113       return NoFreeAA.isAssumedNoFree();
2114     };
2115 
2116     bool UsedAssumedInformation = false;
2117     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2118                                            UsedAssumedInformation))
2119       return indicatePessimisticFixpoint();
2120     return ChangeStatus::UNCHANGED;
2121   }
2122 
2123   /// See AbstractAttribute::getAsStr().
2124   const std::string getAsStr() const override {
2125     return getAssumed() ? "nofree" : "may-free";
2126   }
2127 };
2128 
2129 struct AANoFreeFunction final : public AANoFreeImpl {
2130   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2131       : AANoFreeImpl(IRP, A) {}
2132 
2133   /// See AbstractAttribute::trackStatistics()
2134   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2135 };
2136 
2137 /// NoFree attribute deduction for a call sites.
2138 struct AANoFreeCallSite final : AANoFreeImpl {
2139   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2140       : AANoFreeImpl(IRP, A) {}
2141 
2142   /// See AbstractAttribute::initialize(...).
2143   void initialize(Attributor &A) override {
2144     AANoFreeImpl::initialize(A);
2145     Function *F = getAssociatedFunction();
2146     if (!F || F->isDeclaration())
2147       indicatePessimisticFixpoint();
2148   }
2149 
2150   /// See AbstractAttribute::updateImpl(...).
2151   ChangeStatus updateImpl(Attributor &A) override {
2152     // TODO: Once we have call site specific value information we can provide
2153     //       call site specific liveness information and then it makes
2154     //       sense to specialize attributes for call sites arguments instead of
2155     //       redirecting requests to the callee argument.
2156     Function *F = getAssociatedFunction();
2157     const IRPosition &FnPos = IRPosition::function(*F);
2158     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2159     return clampStateAndIndicateChange(getState(), FnAA.getState());
2160   }
2161 
2162   /// See AbstractAttribute::trackStatistics()
2163   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2164 };
2165 
2166 /// NoFree attribute for floating values.
2167 struct AANoFreeFloating : AANoFreeImpl {
2168   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2169       : AANoFreeImpl(IRP, A) {}
2170 
2171   /// See AbstractAttribute::trackStatistics()
2172   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2173 
2174   /// See Abstract Attribute::updateImpl(...).
2175   ChangeStatus updateImpl(Attributor &A) override {
2176     const IRPosition &IRP = getIRPosition();
2177 
2178     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2179         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2180     if (NoFreeAA.isAssumedNoFree())
2181       return ChangeStatus::UNCHANGED;
2182 
2183     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2184     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2185       Instruction *UserI = cast<Instruction>(U.getUser());
2186       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2187         if (CB->isBundleOperand(&U))
2188           return false;
2189         if (!CB->isArgOperand(&U))
2190           return true;
2191         unsigned ArgNo = CB->getArgOperandNo(&U);
2192 
2193         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2194             *this, IRPosition::callsite_argument(*CB, ArgNo),
2195             DepClassTy::REQUIRED);
2196         return NoFreeArg.isAssumedNoFree();
2197       }
2198 
2199       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2200           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2201         Follow = true;
2202         return true;
2203       }
2204       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2205           isa<ReturnInst>(UserI))
2206         return true;
2207 
2208       // Unknown user.
2209       return false;
2210     };
2211     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2212       return indicatePessimisticFixpoint();
2213 
2214     return ChangeStatus::UNCHANGED;
2215   }
2216 };
2217 
2218 /// NoFree attribute for a call site argument.
2219 struct AANoFreeArgument final : AANoFreeFloating {
2220   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2221       : AANoFreeFloating(IRP, A) {}
2222 
2223   /// See AbstractAttribute::trackStatistics()
2224   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2225 };
2226 
2227 /// NoFree attribute for call site arguments.
2228 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2229   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2230       : AANoFreeFloating(IRP, A) {}
2231 
2232   /// See AbstractAttribute::updateImpl(...).
2233   ChangeStatus updateImpl(Attributor &A) override {
2234     // TODO: Once we have call site specific value information we can provide
2235     //       call site specific liveness information and then it makes
2236     //       sense to specialize attributes for call sites arguments instead of
2237     //       redirecting requests to the callee argument.
2238     Argument *Arg = getAssociatedArgument();
2239     if (!Arg)
2240       return indicatePessimisticFixpoint();
2241     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2242     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2243     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2244   }
2245 
2246   /// See AbstractAttribute::trackStatistics()
2247   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2248 };
2249 
2250 /// NoFree attribute for function return value.
2251 struct AANoFreeReturned final : AANoFreeFloating {
2252   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2253       : AANoFreeFloating(IRP, A) {
2254     llvm_unreachable("NoFree is not applicable to function returns!");
2255   }
2256 
2257   /// See AbstractAttribute::initialize(...).
2258   void initialize(Attributor &A) override {
2259     llvm_unreachable("NoFree is not applicable to function returns!");
2260   }
2261 
2262   /// See AbstractAttribute::updateImpl(...).
2263   ChangeStatus updateImpl(Attributor &A) override {
2264     llvm_unreachable("NoFree is not applicable to function returns!");
2265   }
2266 
2267   /// See AbstractAttribute::trackStatistics()
2268   void trackStatistics() const override {}
2269 };
2270 
2271 /// NoFree attribute deduction for a call site return value.
2272 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2273   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2274       : AANoFreeFloating(IRP, A) {}
2275 
2276   ChangeStatus manifest(Attributor &A) override {
2277     return ChangeStatus::UNCHANGED;
2278   }
2279   /// See AbstractAttribute::trackStatistics()
2280   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2281 };
2282 } // namespace
2283 
2284 /// ------------------------ NonNull Argument Attribute ------------------------
2285 namespace {
2286 static int64_t getKnownNonNullAndDerefBytesForUse(
2287     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2288     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2289   TrackUse = false;
2290 
2291   const Value *UseV = U->get();
2292   if (!UseV->getType()->isPointerTy())
2293     return 0;
2294 
2295   // We need to follow common pointer manipulation uses to the accesses they
2296   // feed into. We can try to be smart to avoid looking through things we do not
2297   // like for now, e.g., non-inbounds GEPs.
2298   if (isa<CastInst>(I)) {
2299     TrackUse = true;
2300     return 0;
2301   }
2302 
2303   if (isa<GetElementPtrInst>(I)) {
2304     TrackUse = true;
2305     return 0;
2306   }
2307 
2308   Type *PtrTy = UseV->getType();
2309   const Function *F = I->getFunction();
2310   bool NullPointerIsDefined =
2311       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2312   const DataLayout &DL = A.getInfoCache().getDL();
2313   if (const auto *CB = dyn_cast<CallBase>(I)) {
2314     if (CB->isBundleOperand(U)) {
2315       if (RetainedKnowledge RK = getKnowledgeFromUse(
2316               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2317         IsNonNull |=
2318             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2319         return RK.ArgValue;
2320       }
2321       return 0;
2322     }
2323 
2324     if (CB->isCallee(U)) {
2325       IsNonNull |= !NullPointerIsDefined;
2326       return 0;
2327     }
2328 
2329     unsigned ArgNo = CB->getArgOperandNo(U);
2330     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2331     // As long as we only use known information there is no need to track
2332     // dependences here.
2333     auto &DerefAA =
2334         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2335     IsNonNull |= DerefAA.isKnownNonNull();
2336     return DerefAA.getKnownDereferenceableBytes();
2337   }
2338 
2339   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2340   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2341     return 0;
2342 
2343   int64_t Offset;
2344   const Value *Base =
2345       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2346   if (Base && Base == &AssociatedValue) {
2347     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2348     IsNonNull |= !NullPointerIsDefined;
2349     return std::max(int64_t(0), DerefBytes);
2350   }
2351 
2352   /// Corner case when an offset is 0.
2353   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2354                                           /*AllowNonInbounds*/ true);
2355   if (Base && Base == &AssociatedValue && Offset == 0) {
2356     int64_t DerefBytes = Loc->Size.getValue();
2357     IsNonNull |= !NullPointerIsDefined;
2358     return std::max(int64_t(0), DerefBytes);
2359   }
2360 
2361   return 0;
2362 }
2363 
2364 struct AANonNullImpl : AANonNull {
2365   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2366       : AANonNull(IRP, A),
2367         NullIsDefined(NullPointerIsDefined(
2368             getAnchorScope(),
2369             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2370 
2371   /// See AbstractAttribute::initialize(...).
2372   void initialize(Attributor &A) override {
2373     Value &V = getAssociatedValue();
2374     if (!NullIsDefined &&
2375         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2376                 /* IgnoreSubsumingPositions */ false, &A)) {
2377       indicateOptimisticFixpoint();
2378       return;
2379     }
2380 
2381     if (isa<ConstantPointerNull>(V)) {
2382       indicatePessimisticFixpoint();
2383       return;
2384     }
2385 
2386     AANonNull::initialize(A);
2387 
2388     bool CanBeNull, CanBeFreed;
2389     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2390                                          CanBeFreed)) {
2391       if (!CanBeNull) {
2392         indicateOptimisticFixpoint();
2393         return;
2394       }
2395     }
2396 
2397     if (isa<GlobalValue>(&getAssociatedValue())) {
2398       indicatePessimisticFixpoint();
2399       return;
2400     }
2401 
2402     if (Instruction *CtxI = getCtxI())
2403       followUsesInMBEC(*this, A, getState(), *CtxI);
2404   }
2405 
2406   /// See followUsesInMBEC
2407   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2408                        AANonNull::StateType &State) {
2409     bool IsNonNull = false;
2410     bool TrackUse = false;
2411     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2412                                        IsNonNull, TrackUse);
2413     State.setKnown(IsNonNull);
2414     return TrackUse;
2415   }
2416 
2417   /// See AbstractAttribute::getAsStr().
2418   const std::string getAsStr() const override {
2419     return getAssumed() ? "nonnull" : "may-null";
2420   }
2421 
2422   /// Flag to determine if the underlying value can be null and still allow
2423   /// valid accesses.
2424   const bool NullIsDefined;
2425 };
2426 
2427 /// NonNull attribute for a floating value.
2428 struct AANonNullFloating : public AANonNullImpl {
2429   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2430       : AANonNullImpl(IRP, A) {}
2431 
2432   /// See AbstractAttribute::updateImpl(...).
2433   ChangeStatus updateImpl(Attributor &A) override {
2434     const DataLayout &DL = A.getDataLayout();
2435 
2436     DominatorTree *DT = nullptr;
2437     AssumptionCache *AC = nullptr;
2438     InformationCache &InfoCache = A.getInfoCache();
2439     if (const Function *Fn = getAnchorScope()) {
2440       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2441       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2442     }
2443 
2444     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2445                             AANonNull::StateType &T, bool Stripped) -> bool {
2446       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2447                                              DepClassTy::REQUIRED);
2448       if (!Stripped && this == &AA) {
2449         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2450           T.indicatePessimisticFixpoint();
2451       } else {
2452         // Use abstract attribute information.
2453         const AANonNull::StateType &NS = AA.getState();
2454         T ^= NS;
2455       }
2456       return T.isValidState();
2457     };
2458 
2459     StateType T;
2460     bool UsedAssumedInformation = false;
2461     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2462                                           VisitValueCB, getCtxI(),
2463                                           UsedAssumedInformation))
2464       return indicatePessimisticFixpoint();
2465 
2466     return clampStateAndIndicateChange(getState(), T);
2467   }
2468 
2469   /// See AbstractAttribute::trackStatistics()
2470   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2471 };
2472 
2473 /// NonNull attribute for function return value.
2474 struct AANonNullReturned final
2475     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2476   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2477       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2478 
2479   /// See AbstractAttribute::getAsStr().
2480   const std::string getAsStr() const override {
2481     return getAssumed() ? "nonnull" : "may-null";
2482   }
2483 
2484   /// See AbstractAttribute::trackStatistics()
2485   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2486 };
2487 
2488 /// NonNull attribute for function argument.
2489 struct AANonNullArgument final
2490     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2491   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2492       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2493 
2494   /// See AbstractAttribute::trackStatistics()
2495   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2496 };
2497 
2498 struct AANonNullCallSiteArgument final : AANonNullFloating {
2499   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2500       : AANonNullFloating(IRP, A) {}
2501 
2502   /// See AbstractAttribute::trackStatistics()
2503   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2504 };
2505 
2506 /// NonNull attribute for a call site return position.
2507 struct AANonNullCallSiteReturned final
2508     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2509   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2510       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2511 
2512   /// See AbstractAttribute::trackStatistics()
2513   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2514 };
2515 } // namespace
2516 
2517 /// ------------------------ No-Recurse Attributes ----------------------------
2518 
2519 namespace {
2520 struct AANoRecurseImpl : public AANoRecurse {
2521   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2522 
2523   /// See AbstractAttribute::getAsStr()
2524   const std::string getAsStr() const override {
2525     return getAssumed() ? "norecurse" : "may-recurse";
2526   }
2527 };
2528 
2529 struct AANoRecurseFunction final : AANoRecurseImpl {
2530   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2531       : AANoRecurseImpl(IRP, A) {}
2532 
2533   /// See AbstractAttribute::updateImpl(...).
2534   ChangeStatus updateImpl(Attributor &A) override {
2535 
2536     // If all live call sites are known to be no-recurse, we are as well.
2537     auto CallSitePred = [&](AbstractCallSite ACS) {
2538       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2539           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2540           DepClassTy::NONE);
2541       return NoRecurseAA.isKnownNoRecurse();
2542     };
2543     bool UsedAssumedInformation = false;
2544     if (A.checkForAllCallSites(CallSitePred, *this, true,
2545                                UsedAssumedInformation)) {
2546       // If we know all call sites and all are known no-recurse, we are done.
2547       // If all known call sites, which might not be all that exist, are known
2548       // to be no-recurse, we are not done but we can continue to assume
2549       // no-recurse. If one of the call sites we have not visited will become
2550       // live, another update is triggered.
2551       if (!UsedAssumedInformation)
2552         indicateOptimisticFixpoint();
2553       return ChangeStatus::UNCHANGED;
2554     }
2555 
2556     const AAFunctionReachability &EdgeReachability =
2557         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2558                                            DepClassTy::REQUIRED);
2559     if (EdgeReachability.canReach(A, *getAnchorScope()))
2560       return indicatePessimisticFixpoint();
2561     return ChangeStatus::UNCHANGED;
2562   }
2563 
2564   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2565 };
2566 
2567 /// NoRecurse attribute deduction for a call sites.
2568 struct AANoRecurseCallSite final : AANoRecurseImpl {
2569   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2570       : AANoRecurseImpl(IRP, A) {}
2571 
2572   /// See AbstractAttribute::initialize(...).
2573   void initialize(Attributor &A) override {
2574     AANoRecurseImpl::initialize(A);
2575     Function *F = getAssociatedFunction();
2576     if (!F || F->isDeclaration())
2577       indicatePessimisticFixpoint();
2578   }
2579 
2580   /// See AbstractAttribute::updateImpl(...).
2581   ChangeStatus updateImpl(Attributor &A) override {
2582     // TODO: Once we have call site specific value information we can provide
2583     //       call site specific liveness information and then it makes
2584     //       sense to specialize attributes for call sites arguments instead of
2585     //       redirecting requests to the callee argument.
2586     Function *F = getAssociatedFunction();
2587     const IRPosition &FnPos = IRPosition::function(*F);
2588     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2589     return clampStateAndIndicateChange(getState(), FnAA.getState());
2590   }
2591 
2592   /// See AbstractAttribute::trackStatistics()
2593   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2594 };
2595 } // namespace
2596 
2597 /// -------------------- Undefined-Behavior Attributes ------------------------
2598 
2599 namespace {
2600 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2601   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2602       : AAUndefinedBehavior(IRP, A) {}
2603 
2604   /// See AbstractAttribute::updateImpl(...).
2605   // through a pointer (i.e. also branches etc.)
2606   ChangeStatus updateImpl(Attributor &A) override {
2607     const size_t UBPrevSize = KnownUBInsts.size();
2608     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2609 
2610     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2611       // Lang ref now states volatile store is not UB, let's skip them.
2612       if (I.isVolatile() && I.mayWriteToMemory())
2613         return true;
2614 
2615       // Skip instructions that are already saved.
2616       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2617         return true;
2618 
2619       // If we reach here, we know we have an instruction
2620       // that accesses memory through a pointer operand,
2621       // for which getPointerOperand() should give it to us.
2622       Value *PtrOp =
2623           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2624       assert(PtrOp &&
2625              "Expected pointer operand of memory accessing instruction");
2626 
2627       // Either we stopped and the appropriate action was taken,
2628       // or we got back a simplified value to continue.
2629       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2630       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2631         return true;
2632       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2633 
2634       // A memory access through a pointer is considered UB
2635       // only if the pointer has constant null value.
2636       // TODO: Expand it to not only check constant values.
2637       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2638         AssumedNoUBInsts.insert(&I);
2639         return true;
2640       }
2641       const Type *PtrTy = PtrOpVal->getType();
2642 
2643       // Because we only consider instructions inside functions,
2644       // assume that a parent function exists.
2645       const Function *F = I.getFunction();
2646 
2647       // A memory access using constant null pointer is only considered UB
2648       // if null pointer is _not_ defined for the target platform.
2649       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2650         AssumedNoUBInsts.insert(&I);
2651       else
2652         KnownUBInsts.insert(&I);
2653       return true;
2654     };
2655 
2656     auto InspectBrInstForUB = [&](Instruction &I) {
2657       // A conditional branch instruction is considered UB if it has `undef`
2658       // condition.
2659 
2660       // Skip instructions that are already saved.
2661       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2662         return true;
2663 
2664       // We know we have a branch instruction.
2665       auto *BrInst = cast<BranchInst>(&I);
2666 
2667       // Unconditional branches are never considered UB.
2668       if (BrInst->isUnconditional())
2669         return true;
2670 
2671       // Either we stopped and the appropriate action was taken,
2672       // or we got back a simplified value to continue.
2673       Optional<Value *> SimplifiedCond =
2674           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2675       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2676         return true;
2677       AssumedNoUBInsts.insert(&I);
2678       return true;
2679     };
2680 
2681     auto InspectCallSiteForUB = [&](Instruction &I) {
2682       // Check whether a callsite always cause UB or not
2683 
2684       // Skip instructions that are already saved.
2685       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2686         return true;
2687 
2688       // Check nonnull and noundef argument attribute violation for each
2689       // callsite.
2690       CallBase &CB = cast<CallBase>(I);
2691       Function *Callee = CB.getCalledFunction();
2692       if (!Callee)
2693         return true;
2694       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2695         // If current argument is known to be simplified to null pointer and the
2696         // corresponding argument position is known to have nonnull attribute,
2697         // the argument is poison. Furthermore, if the argument is poison and
2698         // the position is known to have noundef attriubte, this callsite is
2699         // considered UB.
2700         if (idx >= Callee->arg_size())
2701           break;
2702         Value *ArgVal = CB.getArgOperand(idx);
2703         if (!ArgVal)
2704           continue;
2705         // Here, we handle three cases.
2706         //   (1) Not having a value means it is dead. (we can replace the value
2707         //       with undef)
2708         //   (2) Simplified to undef. The argument violate noundef attriubte.
2709         //   (3) Simplified to null pointer where known to be nonnull.
2710         //       The argument is a poison value and violate noundef attribute.
2711         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2712         auto &NoUndefAA =
2713             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2714         if (!NoUndefAA.isKnownNoUndef())
2715           continue;
2716         bool UsedAssumedInformation = false;
2717         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2718             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2719         if (UsedAssumedInformation)
2720           continue;
2721         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2722           return true;
2723         if (!SimplifiedVal.hasValue() ||
2724             isa<UndefValue>(*SimplifiedVal.getValue())) {
2725           KnownUBInsts.insert(&I);
2726           continue;
2727         }
2728         if (!ArgVal->getType()->isPointerTy() ||
2729             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2730           continue;
2731         auto &NonNullAA =
2732             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2733         if (NonNullAA.isKnownNonNull())
2734           KnownUBInsts.insert(&I);
2735       }
2736       return true;
2737     };
2738 
2739     auto InspectReturnInstForUB = [&](Instruction &I) {
2740       auto &RI = cast<ReturnInst>(I);
2741       // Either we stopped and the appropriate action was taken,
2742       // or we got back a simplified return value to continue.
2743       Optional<Value *> SimplifiedRetValue =
2744           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2745       if (!SimplifiedRetValue.hasValue() || !SimplifiedRetValue.getValue())
2746         return true;
2747 
2748       // Check if a return instruction always cause UB or not
2749       // Note: It is guaranteed that the returned position of the anchor
2750       //       scope has noundef attribute when this is called.
2751       //       We also ensure the return position is not "assumed dead"
2752       //       because the returned value was then potentially simplified to
2753       //       `undef` in AAReturnedValues without removing the `noundef`
2754       //       attribute yet.
2755 
2756       // When the returned position has noundef attriubte, UB occurs in the
2757       // following cases.
2758       //   (1) Returned value is known to be undef.
2759       //   (2) The value is known to be a null pointer and the returned
2760       //       position has nonnull attribute (because the returned value is
2761       //       poison).
2762       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2763         auto &NonNullAA = A.getAAFor<AANonNull>(
2764             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2765         if (NonNullAA.isKnownNonNull())
2766           KnownUBInsts.insert(&I);
2767       }
2768 
2769       return true;
2770     };
2771 
2772     bool UsedAssumedInformation = false;
2773     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2774                               {Instruction::Load, Instruction::Store,
2775                                Instruction::AtomicCmpXchg,
2776                                Instruction::AtomicRMW},
2777                               UsedAssumedInformation,
2778                               /* CheckBBLivenessOnly */ true);
2779     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2780                               UsedAssumedInformation,
2781                               /* CheckBBLivenessOnly */ true);
2782     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2783                                       UsedAssumedInformation);
2784 
2785     // If the returned position of the anchor scope has noundef attriubte, check
2786     // all returned instructions.
2787     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2788       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2789       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2790         auto &RetPosNoUndefAA =
2791             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2792         if (RetPosNoUndefAA.isKnownNoUndef())
2793           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2794                                     {Instruction::Ret}, UsedAssumedInformation,
2795                                     /* CheckBBLivenessOnly */ true);
2796       }
2797     }
2798 
2799     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2800         UBPrevSize != KnownUBInsts.size())
2801       return ChangeStatus::CHANGED;
2802     return ChangeStatus::UNCHANGED;
2803   }
2804 
2805   bool isKnownToCauseUB(Instruction *I) const override {
2806     return KnownUBInsts.count(I);
2807   }
2808 
2809   bool isAssumedToCauseUB(Instruction *I) const override {
2810     // In simple words, if an instruction is not in the assumed to _not_
2811     // cause UB, then it is assumed UB (that includes those
2812     // in the KnownUBInsts set). The rest is boilerplate
2813     // is to ensure that it is one of the instructions we test
2814     // for UB.
2815 
2816     switch (I->getOpcode()) {
2817     case Instruction::Load:
2818     case Instruction::Store:
2819     case Instruction::AtomicCmpXchg:
2820     case Instruction::AtomicRMW:
2821       return !AssumedNoUBInsts.count(I);
2822     case Instruction::Br: {
2823       auto *BrInst = cast<BranchInst>(I);
2824       if (BrInst->isUnconditional())
2825         return false;
2826       return !AssumedNoUBInsts.count(I);
2827     } break;
2828     default:
2829       return false;
2830     }
2831     return false;
2832   }
2833 
2834   ChangeStatus manifest(Attributor &A) override {
2835     if (KnownUBInsts.empty())
2836       return ChangeStatus::UNCHANGED;
2837     for (Instruction *I : KnownUBInsts)
2838       A.changeToUnreachableAfterManifest(I);
2839     return ChangeStatus::CHANGED;
2840   }
2841 
2842   /// See AbstractAttribute::getAsStr()
2843   const std::string getAsStr() const override {
2844     return getAssumed() ? "undefined-behavior" : "no-ub";
2845   }
2846 
2847   /// Note: The correctness of this analysis depends on the fact that the
2848   /// following 2 sets will stop changing after some point.
2849   /// "Change" here means that their size changes.
2850   /// The size of each set is monotonically increasing
2851   /// (we only add items to them) and it is upper bounded by the number of
2852   /// instructions in the processed function (we can never save more
2853   /// elements in either set than this number). Hence, at some point,
2854   /// they will stop increasing.
2855   /// Consequently, at some point, both sets will have stopped
2856   /// changing, effectively making the analysis reach a fixpoint.
2857 
2858   /// Note: These 2 sets are disjoint and an instruction can be considered
2859   /// one of 3 things:
2860   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2861   ///    the KnownUBInsts set.
2862   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2863   ///    has a reason to assume it).
2864   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2865   ///    could not find a reason to assume or prove that it can cause UB,
2866   ///    hence it assumes it doesn't. We have a set for these instructions
2867   ///    so that we don't reprocess them in every update.
2868   ///    Note however that instructions in this set may cause UB.
2869 
2870 protected:
2871   /// A set of all live instructions _known_ to cause UB.
2872   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2873 
2874 private:
2875   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2876   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2877 
2878   // Should be called on updates in which if we're processing an instruction
2879   // \p I that depends on a value \p V, one of the following has to happen:
2880   // - If the value is assumed, then stop.
2881   // - If the value is known but undef, then consider it UB.
2882   // - Otherwise, do specific processing with the simplified value.
2883   // We return None in the first 2 cases to signify that an appropriate
2884   // action was taken and the caller should stop.
2885   // Otherwise, we return the simplified value that the caller should
2886   // use for specific processing.
2887   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2888                                          Instruction *I) {
2889     bool UsedAssumedInformation = false;
2890     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2891         IRPosition::value(*V), *this, UsedAssumedInformation);
2892     if (!UsedAssumedInformation) {
2893       // Don't depend on assumed values.
2894       if (!SimplifiedV.hasValue()) {
2895         // If it is known (which we tested above) but it doesn't have a value,
2896         // then we can assume `undef` and hence the instruction is UB.
2897         KnownUBInsts.insert(I);
2898         return llvm::None;
2899       }
2900       if (!SimplifiedV.getValue())
2901         return nullptr;
2902       V = *SimplifiedV;
2903     }
2904     if (isa<UndefValue>(V)) {
2905       KnownUBInsts.insert(I);
2906       return llvm::None;
2907     }
2908     return V;
2909   }
2910 };
2911 
2912 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2913   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2914       : AAUndefinedBehaviorImpl(IRP, A) {}
2915 
2916   /// See AbstractAttribute::trackStatistics()
2917   void trackStatistics() const override {
2918     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2919                "Number of instructions known to have UB");
2920     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2921         KnownUBInsts.size();
2922   }
2923 };
2924 } // namespace
2925 
2926 /// ------------------------ Will-Return Attributes ----------------------------
2927 
2928 namespace {
2929 // Helper function that checks whether a function has any cycle which we don't
2930 // know if it is bounded or not.
2931 // Loops with maximum trip count are considered bounded, any other cycle not.
2932 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2933   ScalarEvolution *SE =
2934       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2935   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2936   // If either SCEV or LoopInfo is not available for the function then we assume
2937   // any cycle to be unbounded cycle.
2938   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2939   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2940   if (!SE || !LI) {
2941     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2942       if (SCCI.hasCycle())
2943         return true;
2944     return false;
2945   }
2946 
2947   // If there's irreducible control, the function may contain non-loop cycles.
2948   if (mayContainIrreducibleControl(F, LI))
2949     return true;
2950 
2951   // Any loop that does not have a max trip count is considered unbounded cycle.
2952   for (auto *L : LI->getLoopsInPreorder()) {
2953     if (!SE->getSmallConstantMaxTripCount(L))
2954       return true;
2955   }
2956   return false;
2957 }
2958 
2959 struct AAWillReturnImpl : public AAWillReturn {
2960   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2961       : AAWillReturn(IRP, A) {}
2962 
2963   /// See AbstractAttribute::initialize(...).
2964   void initialize(Attributor &A) override {
2965     AAWillReturn::initialize(A);
2966 
2967     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2968       indicateOptimisticFixpoint();
2969       return;
2970     }
2971   }
2972 
2973   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2974   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2975     // Check for `mustprogress` in the scope and the associated function which
2976     // might be different if this is a call site.
2977     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2978         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2979       return false;
2980 
2981     bool IsKnown;
2982     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2983       return IsKnown || !KnownOnly;
2984     return false;
2985   }
2986 
2987   /// See AbstractAttribute::updateImpl(...).
2988   ChangeStatus updateImpl(Attributor &A) override {
2989     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2990       return ChangeStatus::UNCHANGED;
2991 
2992     auto CheckForWillReturn = [&](Instruction &I) {
2993       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2994       const auto &WillReturnAA =
2995           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2996       if (WillReturnAA.isKnownWillReturn())
2997         return true;
2998       if (!WillReturnAA.isAssumedWillReturn())
2999         return false;
3000       const auto &NoRecurseAA =
3001           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
3002       return NoRecurseAA.isAssumedNoRecurse();
3003     };
3004 
3005     bool UsedAssumedInformation = false;
3006     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
3007                                            UsedAssumedInformation))
3008       return indicatePessimisticFixpoint();
3009 
3010     return ChangeStatus::UNCHANGED;
3011   }
3012 
3013   /// See AbstractAttribute::getAsStr()
3014   const std::string getAsStr() const override {
3015     return getAssumed() ? "willreturn" : "may-noreturn";
3016   }
3017 };
3018 
3019 struct AAWillReturnFunction final : AAWillReturnImpl {
3020   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
3021       : AAWillReturnImpl(IRP, A) {}
3022 
3023   /// See AbstractAttribute::initialize(...).
3024   void initialize(Attributor &A) override {
3025     AAWillReturnImpl::initialize(A);
3026 
3027     Function *F = getAnchorScope();
3028     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
3029       indicatePessimisticFixpoint();
3030   }
3031 
3032   /// See AbstractAttribute::trackStatistics()
3033   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
3034 };
3035 
3036 /// WillReturn attribute deduction for a call sites.
3037 struct AAWillReturnCallSite final : AAWillReturnImpl {
3038   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
3039       : AAWillReturnImpl(IRP, A) {}
3040 
3041   /// See AbstractAttribute::initialize(...).
3042   void initialize(Attributor &A) override {
3043     AAWillReturnImpl::initialize(A);
3044     Function *F = getAssociatedFunction();
3045     if (!F || !A.isFunctionIPOAmendable(*F))
3046       indicatePessimisticFixpoint();
3047   }
3048 
3049   /// See AbstractAttribute::updateImpl(...).
3050   ChangeStatus updateImpl(Attributor &A) override {
3051     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3052       return ChangeStatus::UNCHANGED;
3053 
3054     // TODO: Once we have call site specific value information we can provide
3055     //       call site specific liveness information and then it makes
3056     //       sense to specialize attributes for call sites arguments instead of
3057     //       redirecting requests to the callee argument.
3058     Function *F = getAssociatedFunction();
3059     const IRPosition &FnPos = IRPosition::function(*F);
3060     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
3061     return clampStateAndIndicateChange(getState(), FnAA.getState());
3062   }
3063 
3064   /// See AbstractAttribute::trackStatistics()
3065   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3066 };
3067 } // namespace
3068 
3069 /// -------------------AAReachability Attribute--------------------------
3070 
3071 namespace {
3072 struct AAReachabilityImpl : AAReachability {
3073   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
3074       : AAReachability(IRP, A) {}
3075 
3076   const std::string getAsStr() const override {
3077     // TODO: Return the number of reachable queries.
3078     return "reachable";
3079   }
3080 
3081   /// See AbstractAttribute::updateImpl(...).
3082   ChangeStatus updateImpl(Attributor &A) override {
3083     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
3084         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
3085     if (!NoRecurseAA.isAssumedNoRecurse())
3086       return indicatePessimisticFixpoint();
3087     return ChangeStatus::UNCHANGED;
3088   }
3089 };
3090 
3091 struct AAReachabilityFunction final : public AAReachabilityImpl {
3092   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
3093       : AAReachabilityImpl(IRP, A) {}
3094 
3095   /// See AbstractAttribute::trackStatistics()
3096   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3097 };
3098 } // namespace
3099 
3100 /// ------------------------ NoAlias Argument Attribute ------------------------
3101 
3102 namespace {
3103 struct AANoAliasImpl : AANoAlias {
3104   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3105     assert(getAssociatedType()->isPointerTy() &&
3106            "Noalias is a pointer attribute");
3107   }
3108 
3109   const std::string getAsStr() const override {
3110     return getAssumed() ? "noalias" : "may-alias";
3111   }
3112 };
3113 
3114 /// NoAlias attribute for a floating value.
3115 struct AANoAliasFloating final : AANoAliasImpl {
3116   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3117       : AANoAliasImpl(IRP, A) {}
3118 
3119   /// See AbstractAttribute::initialize(...).
3120   void initialize(Attributor &A) override {
3121     AANoAliasImpl::initialize(A);
3122     Value *Val = &getAssociatedValue();
3123     do {
3124       CastInst *CI = dyn_cast<CastInst>(Val);
3125       if (!CI)
3126         break;
3127       Value *Base = CI->getOperand(0);
3128       if (!Base->hasOneUse())
3129         break;
3130       Val = Base;
3131     } while (true);
3132 
3133     if (!Val->getType()->isPointerTy()) {
3134       indicatePessimisticFixpoint();
3135       return;
3136     }
3137 
3138     if (isa<AllocaInst>(Val))
3139       indicateOptimisticFixpoint();
3140     else if (isa<ConstantPointerNull>(Val) &&
3141              !NullPointerIsDefined(getAnchorScope(),
3142                                    Val->getType()->getPointerAddressSpace()))
3143       indicateOptimisticFixpoint();
3144     else if (Val != &getAssociatedValue()) {
3145       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3146           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3147       if (ValNoAliasAA.isKnownNoAlias())
3148         indicateOptimisticFixpoint();
3149     }
3150   }
3151 
3152   /// See AbstractAttribute::updateImpl(...).
3153   ChangeStatus updateImpl(Attributor &A) override {
3154     // TODO: Implement this.
3155     return indicatePessimisticFixpoint();
3156   }
3157 
3158   /// See AbstractAttribute::trackStatistics()
3159   void trackStatistics() const override {
3160     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3161   }
3162 };
3163 
3164 /// NoAlias attribute for an argument.
3165 struct AANoAliasArgument final
3166     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3167   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3168   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3169 
3170   /// See AbstractAttribute::initialize(...).
3171   void initialize(Attributor &A) override {
3172     Base::initialize(A);
3173     // See callsite argument attribute and callee argument attribute.
3174     if (hasAttr({Attribute::ByVal}))
3175       indicateOptimisticFixpoint();
3176   }
3177 
3178   /// See AbstractAttribute::update(...).
3179   ChangeStatus updateImpl(Attributor &A) override {
3180     // We have to make sure no-alias on the argument does not break
3181     // synchronization when this is a callback argument, see also [1] below.
3182     // If synchronization cannot be affected, we delegate to the base updateImpl
3183     // function, otherwise we give up for now.
3184 
3185     // If the function is no-sync, no-alias cannot break synchronization.
3186     const auto &NoSyncAA =
3187         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3188                              DepClassTy::OPTIONAL);
3189     if (NoSyncAA.isAssumedNoSync())
3190       return Base::updateImpl(A);
3191 
3192     // If the argument is read-only, no-alias cannot break synchronization.
3193     bool IsKnown;
3194     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3195       return Base::updateImpl(A);
3196 
3197     // If the argument is never passed through callbacks, no-alias cannot break
3198     // synchronization.
3199     bool UsedAssumedInformation = false;
3200     if (A.checkForAllCallSites(
3201             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3202             true, UsedAssumedInformation))
3203       return Base::updateImpl(A);
3204 
3205     // TODO: add no-alias but make sure it doesn't break synchronization by
3206     // introducing fake uses. See:
3207     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3208     //     International Workshop on OpenMP 2018,
3209     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3210 
3211     return indicatePessimisticFixpoint();
3212   }
3213 
3214   /// See AbstractAttribute::trackStatistics()
3215   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3216 };
3217 
3218 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3219   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3220       : AANoAliasImpl(IRP, A) {}
3221 
3222   /// See AbstractAttribute::initialize(...).
3223   void initialize(Attributor &A) override {
3224     // See callsite argument attribute and callee argument attribute.
3225     const auto &CB = cast<CallBase>(getAnchorValue());
3226     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3227       indicateOptimisticFixpoint();
3228     Value &Val = getAssociatedValue();
3229     if (isa<ConstantPointerNull>(Val) &&
3230         !NullPointerIsDefined(getAnchorScope(),
3231                               Val.getType()->getPointerAddressSpace()))
3232       indicateOptimisticFixpoint();
3233   }
3234 
3235   /// Determine if the underlying value may alias with the call site argument
3236   /// \p OtherArgNo of \p ICS (= the underlying call site).
3237   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3238                             const AAMemoryBehavior &MemBehaviorAA,
3239                             const CallBase &CB, unsigned OtherArgNo) {
3240     // We do not need to worry about aliasing with the underlying IRP.
3241     if (this->getCalleeArgNo() == (int)OtherArgNo)
3242       return false;
3243 
3244     // If it is not a pointer or pointer vector we do not alias.
3245     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3246     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3247       return false;
3248 
3249     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3250         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3251 
3252     // If the argument is readnone, there is no read-write aliasing.
3253     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3254       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3255       return false;
3256     }
3257 
3258     // If the argument is readonly and the underlying value is readonly, there
3259     // is no read-write aliasing.
3260     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3261     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3262       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3263       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3264       return false;
3265     }
3266 
3267     // We have to utilize actual alias analysis queries so we need the object.
3268     if (!AAR)
3269       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3270 
3271     // Try to rule it out at the call site.
3272     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3273     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3274                          "callsite arguments: "
3275                       << getAssociatedValue() << " " << *ArgOp << " => "
3276                       << (IsAliasing ? "" : "no-") << "alias \n");
3277 
3278     return IsAliasing;
3279   }
3280 
3281   bool
3282   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3283                                          const AAMemoryBehavior &MemBehaviorAA,
3284                                          const AANoAlias &NoAliasAA) {
3285     // We can deduce "noalias" if the following conditions hold.
3286     // (i)   Associated value is assumed to be noalias in the definition.
3287     // (ii)  Associated value is assumed to be no-capture in all the uses
3288     //       possibly executed before this callsite.
3289     // (iii) There is no other pointer argument which could alias with the
3290     //       value.
3291 
3292     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3293     if (!AssociatedValueIsNoAliasAtDef) {
3294       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3295                         << " is not no-alias at the definition\n");
3296       return false;
3297     }
3298 
3299     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3300 
3301     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3302     const Function *ScopeFn = VIRP.getAnchorScope();
3303     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3304     // Check whether the value is captured in the scope using AANoCapture.
3305     //      Look at CFG and check only uses possibly executed before this
3306     //      callsite.
3307     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3308       Instruction *UserI = cast<Instruction>(U.getUser());
3309 
3310       // If UserI is the curr instruction and there is a single potential use of
3311       // the value in UserI we allow the use.
3312       // TODO: We should inspect the operands and allow those that cannot alias
3313       //       with the value.
3314       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3315         return true;
3316 
3317       if (ScopeFn) {
3318         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3319             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3320 
3321         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3322           return true;
3323 
3324         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3325           if (CB->isArgOperand(&U)) {
3326 
3327             unsigned ArgNo = CB->getArgOperandNo(&U);
3328 
3329             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3330                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3331                 DepClassTy::OPTIONAL);
3332 
3333             if (NoCaptureAA.isAssumedNoCapture())
3334               return true;
3335           }
3336         }
3337       }
3338 
3339       // For cases which can potentially have more users
3340       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3341           isa<SelectInst>(U)) {
3342         Follow = true;
3343         return true;
3344       }
3345 
3346       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3347       return false;
3348     };
3349 
3350     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3351       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3352         LLVM_DEBUG(
3353             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3354                    << " cannot be noalias as it is potentially captured\n");
3355         return false;
3356       }
3357     }
3358     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3359 
3360     // Check there is no other pointer argument which could alias with the
3361     // value passed at this call site.
3362     // TODO: AbstractCallSite
3363     const auto &CB = cast<CallBase>(getAnchorValue());
3364     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3365       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3366         return false;
3367 
3368     return true;
3369   }
3370 
3371   /// See AbstractAttribute::updateImpl(...).
3372   ChangeStatus updateImpl(Attributor &A) override {
3373     // If the argument is readnone we are done as there are no accesses via the
3374     // argument.
3375     auto &MemBehaviorAA =
3376         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3377     if (MemBehaviorAA.isAssumedReadNone()) {
3378       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3379       return ChangeStatus::UNCHANGED;
3380     }
3381 
3382     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3383     const auto &NoAliasAA =
3384         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3385 
3386     AAResults *AAR = nullptr;
3387     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3388                                                NoAliasAA)) {
3389       LLVM_DEBUG(
3390           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3391       return ChangeStatus::UNCHANGED;
3392     }
3393 
3394     return indicatePessimisticFixpoint();
3395   }
3396 
3397   /// See AbstractAttribute::trackStatistics()
3398   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3399 };
3400 
3401 /// NoAlias attribute for function return value.
3402 struct AANoAliasReturned final : AANoAliasImpl {
3403   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3404       : AANoAliasImpl(IRP, A) {}
3405 
3406   /// See AbstractAttribute::initialize(...).
3407   void initialize(Attributor &A) override {
3408     AANoAliasImpl::initialize(A);
3409     Function *F = getAssociatedFunction();
3410     if (!F || F->isDeclaration())
3411       indicatePessimisticFixpoint();
3412   }
3413 
3414   /// See AbstractAttribute::updateImpl(...).
3415   virtual ChangeStatus updateImpl(Attributor &A) override {
3416 
3417     auto CheckReturnValue = [&](Value &RV) -> bool {
3418       if (Constant *C = dyn_cast<Constant>(&RV))
3419         if (C->isNullValue() || isa<UndefValue>(C))
3420           return true;
3421 
3422       /// For now, we can only deduce noalias if we have call sites.
3423       /// FIXME: add more support.
3424       if (!isa<CallBase>(&RV))
3425         return false;
3426 
3427       const IRPosition &RVPos = IRPosition::value(RV);
3428       const auto &NoAliasAA =
3429           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3430       if (!NoAliasAA.isAssumedNoAlias())
3431         return false;
3432 
3433       const auto &NoCaptureAA =
3434           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3435       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3436     };
3437 
3438     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3439       return indicatePessimisticFixpoint();
3440 
3441     return ChangeStatus::UNCHANGED;
3442   }
3443 
3444   /// See AbstractAttribute::trackStatistics()
3445   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3446 };
3447 
3448 /// NoAlias attribute deduction for a call site return value.
3449 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3450   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3451       : AANoAliasImpl(IRP, A) {}
3452 
3453   /// See AbstractAttribute::initialize(...).
3454   void initialize(Attributor &A) override {
3455     AANoAliasImpl::initialize(A);
3456     Function *F = getAssociatedFunction();
3457     if (!F || F->isDeclaration())
3458       indicatePessimisticFixpoint();
3459   }
3460 
3461   /// See AbstractAttribute::updateImpl(...).
3462   ChangeStatus updateImpl(Attributor &A) override {
3463     // TODO: Once we have call site specific value information we can provide
3464     //       call site specific liveness information and then it makes
3465     //       sense to specialize attributes for call sites arguments instead of
3466     //       redirecting requests to the callee argument.
3467     Function *F = getAssociatedFunction();
3468     const IRPosition &FnPos = IRPosition::returned(*F);
3469     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3470     return clampStateAndIndicateChange(getState(), FnAA.getState());
3471   }
3472 
3473   /// See AbstractAttribute::trackStatistics()
3474   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3475 };
3476 } // namespace
3477 
3478 /// -------------------AAIsDead Function Attribute-----------------------
3479 
3480 namespace {
3481 struct AAIsDeadValueImpl : public AAIsDead {
3482   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3483 
3484   /// See AAIsDead::isAssumedDead().
3485   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3486 
3487   /// See AAIsDead::isKnownDead().
3488   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3489 
3490   /// See AAIsDead::isAssumedDead(BasicBlock *).
3491   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3492 
3493   /// See AAIsDead::isKnownDead(BasicBlock *).
3494   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3495 
3496   /// See AAIsDead::isAssumedDead(Instruction *I).
3497   bool isAssumedDead(const Instruction *I) const override {
3498     return I == getCtxI() && isAssumedDead();
3499   }
3500 
3501   /// See AAIsDead::isKnownDead(Instruction *I).
3502   bool isKnownDead(const Instruction *I) const override {
3503     return isAssumedDead(I) && isKnownDead();
3504   }
3505 
3506   /// See AbstractAttribute::getAsStr().
3507   virtual const std::string getAsStr() const override {
3508     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3509   }
3510 
3511   /// Check if all uses are assumed dead.
3512   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3513     // Callers might not check the type, void has no uses.
3514     if (V.getType()->isVoidTy())
3515       return true;
3516 
3517     // If we replace a value with a constant there are no uses left afterwards.
3518     if (!isa<Constant>(V)) {
3519       bool UsedAssumedInformation = false;
3520       Optional<Constant *> C =
3521           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3522       if (!C.hasValue() || *C)
3523         return true;
3524     }
3525 
3526     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3527     // Explicitly set the dependence class to required because we want a long
3528     // chain of N dependent instructions to be considered live as soon as one is
3529     // without going through N update cycles. This is not required for
3530     // correctness.
3531     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3532                              DepClassTy::REQUIRED);
3533   }
3534 
3535   /// Determine if \p I is assumed to be side-effect free.
3536   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3537     if (!I || wouldInstructionBeTriviallyDead(I))
3538       return true;
3539 
3540     auto *CB = dyn_cast<CallBase>(I);
3541     if (!CB || isa<IntrinsicInst>(CB))
3542       return false;
3543 
3544     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3545     const auto &NoUnwindAA =
3546         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3547     if (!NoUnwindAA.isAssumedNoUnwind())
3548       return false;
3549     if (!NoUnwindAA.isKnownNoUnwind())
3550       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3551 
3552     bool IsKnown;
3553     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3554   }
3555 };
3556 
3557 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3558   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3559       : AAIsDeadValueImpl(IRP, A) {}
3560 
3561   /// See AbstractAttribute::initialize(...).
3562   void initialize(Attributor &A) override {
3563     if (isa<UndefValue>(getAssociatedValue())) {
3564       indicatePessimisticFixpoint();
3565       return;
3566     }
3567 
3568     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3569     if (!isAssumedSideEffectFree(A, I)) {
3570       if (!isa_and_nonnull<StoreInst>(I))
3571         indicatePessimisticFixpoint();
3572       else
3573         removeAssumedBits(HAS_NO_EFFECT);
3574     }
3575   }
3576 
3577   bool isDeadStore(Attributor &A, StoreInst &SI) {
3578     // Lang ref now states volatile store is not UB/dead, let's skip them.
3579     if (SI.isVolatile())
3580       return false;
3581 
3582     bool UsedAssumedInformation = false;
3583     SmallSetVector<Value *, 4> PotentialCopies;
3584     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3585                                              UsedAssumedInformation))
3586       return false;
3587     return llvm::all_of(PotentialCopies, [&](Value *V) {
3588       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3589                              UsedAssumedInformation);
3590     });
3591   }
3592 
3593   /// See AbstractAttribute::getAsStr().
3594   const std::string getAsStr() const override {
3595     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3596     if (isa_and_nonnull<StoreInst>(I))
3597       if (isValidState())
3598         return "assumed-dead-store";
3599     return AAIsDeadValueImpl::getAsStr();
3600   }
3601 
3602   /// See AbstractAttribute::updateImpl(...).
3603   ChangeStatus updateImpl(Attributor &A) override {
3604     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3605     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3606       if (!isDeadStore(A, *SI))
3607         return indicatePessimisticFixpoint();
3608     } else {
3609       if (!isAssumedSideEffectFree(A, I))
3610         return indicatePessimisticFixpoint();
3611       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3612         return indicatePessimisticFixpoint();
3613     }
3614     return ChangeStatus::UNCHANGED;
3615   }
3616 
3617   /// See AbstractAttribute::manifest(...).
3618   ChangeStatus manifest(Attributor &A) override {
3619     Value &V = getAssociatedValue();
3620     if (auto *I = dyn_cast<Instruction>(&V)) {
3621       // If we get here we basically know the users are all dead. We check if
3622       // isAssumedSideEffectFree returns true here again because it might not be
3623       // the case and only the users are dead but the instruction (=call) is
3624       // still needed.
3625       if (isa<StoreInst>(I) ||
3626           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3627         A.deleteAfterManifest(*I);
3628         return ChangeStatus::CHANGED;
3629       }
3630     }
3631     if (V.use_empty())
3632       return ChangeStatus::UNCHANGED;
3633 
3634     bool UsedAssumedInformation = false;
3635     Optional<Constant *> C =
3636         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3637     if (C.hasValue() && C.getValue())
3638       return ChangeStatus::UNCHANGED;
3639 
3640     // Replace the value with undef as it is dead but keep droppable uses around
3641     // as they provide information we don't want to give up on just yet.
3642     UndefValue &UV = *UndefValue::get(V.getType());
3643     bool AnyChange =
3644         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3645     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3646   }
3647 
3648   /// See AbstractAttribute::trackStatistics()
3649   void trackStatistics() const override {
3650     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3651   }
3652 };
3653 
3654 struct AAIsDeadArgument : public AAIsDeadFloating {
3655   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3656       : AAIsDeadFloating(IRP, A) {}
3657 
3658   /// See AbstractAttribute::initialize(...).
3659   void initialize(Attributor &A) override {
3660     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3661       indicatePessimisticFixpoint();
3662   }
3663 
3664   /// See AbstractAttribute::manifest(...).
3665   ChangeStatus manifest(Attributor &A) override {
3666     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3667     Argument &Arg = *getAssociatedArgument();
3668     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3669       if (A.registerFunctionSignatureRewrite(
3670               Arg, /* ReplacementTypes */ {},
3671               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3672               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3673         Arg.dropDroppableUses();
3674         return ChangeStatus::CHANGED;
3675       }
3676     return Changed;
3677   }
3678 
3679   /// See AbstractAttribute::trackStatistics()
3680   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3681 };
3682 
3683 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3684   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3685       : AAIsDeadValueImpl(IRP, A) {}
3686 
3687   /// See AbstractAttribute::initialize(...).
3688   void initialize(Attributor &A) override {
3689     if (isa<UndefValue>(getAssociatedValue()))
3690       indicatePessimisticFixpoint();
3691   }
3692 
3693   /// See AbstractAttribute::updateImpl(...).
3694   ChangeStatus updateImpl(Attributor &A) override {
3695     // TODO: Once we have call site specific value information we can provide
3696     //       call site specific liveness information and then it makes
3697     //       sense to specialize attributes for call sites arguments instead of
3698     //       redirecting requests to the callee argument.
3699     Argument *Arg = getAssociatedArgument();
3700     if (!Arg)
3701       return indicatePessimisticFixpoint();
3702     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3703     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3704     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3705   }
3706 
3707   /// See AbstractAttribute::manifest(...).
3708   ChangeStatus manifest(Attributor &A) override {
3709     CallBase &CB = cast<CallBase>(getAnchorValue());
3710     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3711     assert(!isa<UndefValue>(U.get()) &&
3712            "Expected undef values to be filtered out!");
3713     UndefValue &UV = *UndefValue::get(U->getType());
3714     if (A.changeUseAfterManifest(U, UV))
3715       return ChangeStatus::CHANGED;
3716     return ChangeStatus::UNCHANGED;
3717   }
3718 
3719   /// See AbstractAttribute::trackStatistics()
3720   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3721 };
3722 
3723 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3724   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3725       : AAIsDeadFloating(IRP, A) {}
3726 
3727   /// See AAIsDead::isAssumedDead().
3728   bool isAssumedDead() const override {
3729     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3730   }
3731 
3732   /// See AbstractAttribute::initialize(...).
3733   void initialize(Attributor &A) override {
3734     if (isa<UndefValue>(getAssociatedValue())) {
3735       indicatePessimisticFixpoint();
3736       return;
3737     }
3738 
3739     // We track this separately as a secondary state.
3740     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3741   }
3742 
3743   /// See AbstractAttribute::updateImpl(...).
3744   ChangeStatus updateImpl(Attributor &A) override {
3745     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3746     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3747       IsAssumedSideEffectFree = false;
3748       Changed = ChangeStatus::CHANGED;
3749     }
3750     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3751       return indicatePessimisticFixpoint();
3752     return Changed;
3753   }
3754 
3755   /// See AbstractAttribute::trackStatistics()
3756   void trackStatistics() const override {
3757     if (IsAssumedSideEffectFree)
3758       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3759     else
3760       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3761   }
3762 
3763   /// See AbstractAttribute::getAsStr().
3764   const std::string getAsStr() const override {
3765     return isAssumedDead()
3766                ? "assumed-dead"
3767                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3768   }
3769 
3770 private:
3771   bool IsAssumedSideEffectFree = true;
3772 };
3773 
3774 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3775   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3776       : AAIsDeadValueImpl(IRP, A) {}
3777 
3778   /// See AbstractAttribute::updateImpl(...).
3779   ChangeStatus updateImpl(Attributor &A) override {
3780 
3781     bool UsedAssumedInformation = false;
3782     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3783                               {Instruction::Ret}, UsedAssumedInformation);
3784 
3785     auto PredForCallSite = [&](AbstractCallSite ACS) {
3786       if (ACS.isCallbackCall() || !ACS.getInstruction())
3787         return false;
3788       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3789     };
3790 
3791     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3792                                 UsedAssumedInformation))
3793       return indicatePessimisticFixpoint();
3794 
3795     return ChangeStatus::UNCHANGED;
3796   }
3797 
3798   /// See AbstractAttribute::manifest(...).
3799   ChangeStatus manifest(Attributor &A) override {
3800     // TODO: Rewrite the signature to return void?
3801     bool AnyChange = false;
3802     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3803     auto RetInstPred = [&](Instruction &I) {
3804       ReturnInst &RI = cast<ReturnInst>(I);
3805       if (!isa<UndefValue>(RI.getReturnValue()))
3806         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3807       return true;
3808     };
3809     bool UsedAssumedInformation = false;
3810     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3811                               UsedAssumedInformation);
3812     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3813   }
3814 
3815   /// See AbstractAttribute::trackStatistics()
3816   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3817 };
3818 
3819 struct AAIsDeadFunction : public AAIsDead {
3820   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3821 
3822   /// See AbstractAttribute::initialize(...).
3823   void initialize(Attributor &A) override {
3824     const Function *F = getAnchorScope();
3825     if (F && !F->isDeclaration()) {
3826       // We only want to compute liveness once. If the function is not part of
3827       // the SCC, skip it.
3828       if (A.isRunOn(*const_cast<Function *>(F))) {
3829         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3830         assumeLive(A, F->getEntryBlock());
3831       } else {
3832         indicatePessimisticFixpoint();
3833       }
3834     }
3835   }
3836 
3837   /// See AbstractAttribute::getAsStr().
3838   const std::string getAsStr() const override {
3839     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3840            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3841            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3842            std::to_string(KnownDeadEnds.size()) + "]";
3843   }
3844 
3845   /// See AbstractAttribute::manifest(...).
3846   ChangeStatus manifest(Attributor &A) override {
3847     assert(getState().isValidState() &&
3848            "Attempted to manifest an invalid state!");
3849 
3850     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3851     Function &F = *getAnchorScope();
3852 
3853     if (AssumedLiveBlocks.empty()) {
3854       A.deleteAfterManifest(F);
3855       return ChangeStatus::CHANGED;
3856     }
3857 
3858     // Flag to determine if we can change an invoke to a call assuming the
3859     // callee is nounwind. This is not possible if the personality of the
3860     // function allows to catch asynchronous exceptions.
3861     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3862 
3863     KnownDeadEnds.set_union(ToBeExploredFrom);
3864     for (const Instruction *DeadEndI : KnownDeadEnds) {
3865       auto *CB = dyn_cast<CallBase>(DeadEndI);
3866       if (!CB)
3867         continue;
3868       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3869           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3870       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3871       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3872         continue;
3873 
3874       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3875         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3876       else
3877         A.changeToUnreachableAfterManifest(
3878             const_cast<Instruction *>(DeadEndI->getNextNode()));
3879       HasChanged = ChangeStatus::CHANGED;
3880     }
3881 
3882     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3883     for (BasicBlock &BB : F)
3884       if (!AssumedLiveBlocks.count(&BB)) {
3885         A.deleteAfterManifest(BB);
3886         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3887         HasChanged = ChangeStatus::CHANGED;
3888       }
3889 
3890     return HasChanged;
3891   }
3892 
3893   /// See AbstractAttribute::updateImpl(...).
3894   ChangeStatus updateImpl(Attributor &A) override;
3895 
3896   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3897     assert(From->getParent() == getAnchorScope() &&
3898            To->getParent() == getAnchorScope() &&
3899            "Used AAIsDead of the wrong function");
3900     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3901   }
3902 
3903   /// See AbstractAttribute::trackStatistics()
3904   void trackStatistics() const override {}
3905 
3906   /// Returns true if the function is assumed dead.
3907   bool isAssumedDead() const override { return false; }
3908 
3909   /// See AAIsDead::isKnownDead().
3910   bool isKnownDead() const override { return false; }
3911 
3912   /// See AAIsDead::isAssumedDead(BasicBlock *).
3913   bool isAssumedDead(const BasicBlock *BB) const override {
3914     assert(BB->getParent() == getAnchorScope() &&
3915            "BB must be in the same anchor scope function.");
3916 
3917     if (!getAssumed())
3918       return false;
3919     return !AssumedLiveBlocks.count(BB);
3920   }
3921 
3922   /// See AAIsDead::isKnownDead(BasicBlock *).
3923   bool isKnownDead(const BasicBlock *BB) const override {
3924     return getKnown() && isAssumedDead(BB);
3925   }
3926 
3927   /// See AAIsDead::isAssumed(Instruction *I).
3928   bool isAssumedDead(const Instruction *I) const override {
3929     assert(I->getParent()->getParent() == getAnchorScope() &&
3930            "Instruction must be in the same anchor scope function.");
3931 
3932     if (!getAssumed())
3933       return false;
3934 
3935     // If it is not in AssumedLiveBlocks then it for sure dead.
3936     // Otherwise, it can still be after noreturn call in a live block.
3937     if (!AssumedLiveBlocks.count(I->getParent()))
3938       return true;
3939 
3940     // If it is not after a liveness barrier it is live.
3941     const Instruction *PrevI = I->getPrevNode();
3942     while (PrevI) {
3943       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3944         return true;
3945       PrevI = PrevI->getPrevNode();
3946     }
3947     return false;
3948   }
3949 
3950   /// See AAIsDead::isKnownDead(Instruction *I).
3951   bool isKnownDead(const Instruction *I) const override {
3952     return getKnown() && isAssumedDead(I);
3953   }
3954 
3955   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3956   /// that internal function called from \p BB should now be looked at.
3957   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3958     if (!AssumedLiveBlocks.insert(&BB).second)
3959       return false;
3960 
3961     // We assume that all of BB is (probably) live now and if there are calls to
3962     // internal functions we will assume that those are now live as well. This
3963     // is a performance optimization for blocks with calls to a lot of internal
3964     // functions. It can however cause dead functions to be treated as live.
3965     for (const Instruction &I : BB)
3966       if (const auto *CB = dyn_cast<CallBase>(&I))
3967         if (const Function *F = CB->getCalledFunction())
3968           if (F->hasLocalLinkage())
3969             A.markLiveInternalFunction(*F);
3970     return true;
3971   }
3972 
3973   /// Collection of instructions that need to be explored again, e.g., we
3974   /// did assume they do not transfer control to (one of their) successors.
3975   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3976 
3977   /// Collection of instructions that are known to not transfer control.
3978   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3979 
3980   /// Collection of all assumed live edges
3981   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3982 
3983   /// Collection of all assumed live BasicBlocks.
3984   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3985 };
3986 
3987 static bool
3988 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3989                         AbstractAttribute &AA,
3990                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3991   const IRPosition &IPos = IRPosition::callsite_function(CB);
3992 
3993   const auto &NoReturnAA =
3994       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3995   if (NoReturnAA.isAssumedNoReturn())
3996     return !NoReturnAA.isKnownNoReturn();
3997   if (CB.isTerminator())
3998     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3999   else
4000     AliveSuccessors.push_back(CB.getNextNode());
4001   return false;
4002 }
4003 
4004 static bool
4005 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
4006                         AbstractAttribute &AA,
4007                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4008   bool UsedAssumedInformation =
4009       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
4010 
4011   // First, determine if we can change an invoke to a call assuming the
4012   // callee is nounwind. This is not possible if the personality of the
4013   // function allows to catch asynchronous exceptions.
4014   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
4015     AliveSuccessors.push_back(&II.getUnwindDest()->front());
4016   } else {
4017     const IRPosition &IPos = IRPosition::callsite_function(II);
4018     const auto &AANoUnw =
4019         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
4020     if (AANoUnw.isAssumedNoUnwind()) {
4021       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
4022     } else {
4023       AliveSuccessors.push_back(&II.getUnwindDest()->front());
4024     }
4025   }
4026   return UsedAssumedInformation;
4027 }
4028 
4029 static bool
4030 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
4031                         AbstractAttribute &AA,
4032                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4033   bool UsedAssumedInformation = false;
4034   if (BI.getNumSuccessors() == 1) {
4035     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4036   } else {
4037     Optional<Constant *> C =
4038         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
4039     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4040       // No value yet, assume both edges are dead.
4041     } else if (isa_and_nonnull<ConstantInt>(*C)) {
4042       const BasicBlock *SuccBB =
4043           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
4044       AliveSuccessors.push_back(&SuccBB->front());
4045     } else {
4046       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4047       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
4048       UsedAssumedInformation = false;
4049     }
4050   }
4051   return UsedAssumedInformation;
4052 }
4053 
4054 static bool
4055 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
4056                         AbstractAttribute &AA,
4057                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4058   bool UsedAssumedInformation = false;
4059   Optional<Constant *> C =
4060       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
4061   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4062     // No value yet, assume all edges are dead.
4063   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
4064     for (auto &CaseIt : SI.cases()) {
4065       if (CaseIt.getCaseValue() == C.getValue()) {
4066         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
4067         return UsedAssumedInformation;
4068       }
4069     }
4070     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
4071     return UsedAssumedInformation;
4072   } else {
4073     for (const BasicBlock *SuccBB : successors(SI.getParent()))
4074       AliveSuccessors.push_back(&SuccBB->front());
4075   }
4076   return UsedAssumedInformation;
4077 }
4078 
4079 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4080   ChangeStatus Change = ChangeStatus::UNCHANGED;
4081 
4082   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4083                     << getAnchorScope()->size() << "] BBs and "
4084                     << ToBeExploredFrom.size() << " exploration points and "
4085                     << KnownDeadEnds.size() << " known dead ends\n");
4086 
4087   // Copy and clear the list of instructions we need to explore from. It is
4088   // refilled with instructions the next update has to look at.
4089   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4090                                                ToBeExploredFrom.end());
4091   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4092 
4093   SmallVector<const Instruction *, 8> AliveSuccessors;
4094   while (!Worklist.empty()) {
4095     const Instruction *I = Worklist.pop_back_val();
4096     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4097 
4098     // Fast forward for uninteresting instructions. We could look for UB here
4099     // though.
4100     while (!I->isTerminator() && !isa<CallBase>(I))
4101       I = I->getNextNode();
4102 
4103     AliveSuccessors.clear();
4104 
4105     bool UsedAssumedInformation = false;
4106     switch (I->getOpcode()) {
4107     // TODO: look for (assumed) UB to backwards propagate "deadness".
4108     default:
4109       assert(I->isTerminator() &&
4110              "Expected non-terminators to be handled already!");
4111       for (const BasicBlock *SuccBB : successors(I->getParent()))
4112         AliveSuccessors.push_back(&SuccBB->front());
4113       break;
4114     case Instruction::Call:
4115       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4116                                                        *this, AliveSuccessors);
4117       break;
4118     case Instruction::Invoke:
4119       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4120                                                        *this, AliveSuccessors);
4121       break;
4122     case Instruction::Br:
4123       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4124                                                        *this, AliveSuccessors);
4125       break;
4126     case Instruction::Switch:
4127       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4128                                                        *this, AliveSuccessors);
4129       break;
4130     }
4131 
4132     if (UsedAssumedInformation) {
4133       NewToBeExploredFrom.insert(I);
4134     } else if (AliveSuccessors.empty() ||
4135                (I->isTerminator() &&
4136                 AliveSuccessors.size() < I->getNumSuccessors())) {
4137       if (KnownDeadEnds.insert(I))
4138         Change = ChangeStatus::CHANGED;
4139     }
4140 
4141     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4142                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4143                       << UsedAssumedInformation << "\n");
4144 
4145     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4146       if (!I->isTerminator()) {
4147         assert(AliveSuccessors.size() == 1 &&
4148                "Non-terminator expected to have a single successor!");
4149         Worklist.push_back(AliveSuccessor);
4150       } else {
4151         // record the assumed live edge
4152         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4153         if (AssumedLiveEdges.insert(Edge).second)
4154           Change = ChangeStatus::CHANGED;
4155         if (assumeLive(A, *AliveSuccessor->getParent()))
4156           Worklist.push_back(AliveSuccessor);
4157       }
4158     }
4159   }
4160 
4161   // Check if the content of ToBeExploredFrom changed, ignore the order.
4162   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4163       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4164         return !ToBeExploredFrom.count(I);
4165       })) {
4166     Change = ChangeStatus::CHANGED;
4167     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4168   }
4169 
4170   // If we know everything is live there is no need to query for liveness.
4171   // Instead, indicating a pessimistic fixpoint will cause the state to be
4172   // "invalid" and all queries to be answered conservatively without lookups.
4173   // To be in this state we have to (1) finished the exploration and (3) not
4174   // discovered any non-trivial dead end and (2) not ruled unreachable code
4175   // dead.
4176   if (ToBeExploredFrom.empty() &&
4177       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4178       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4179         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4180       }))
4181     return indicatePessimisticFixpoint();
4182   return Change;
4183 }
4184 
4185 /// Liveness information for a call sites.
4186 struct AAIsDeadCallSite final : AAIsDeadFunction {
4187   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4188       : AAIsDeadFunction(IRP, A) {}
4189 
4190   /// See AbstractAttribute::initialize(...).
4191   void initialize(Attributor &A) override {
4192     // TODO: Once we have call site specific value information we can provide
4193     //       call site specific liveness information and then it makes
4194     //       sense to specialize attributes for call sites instead of
4195     //       redirecting requests to the callee.
4196     llvm_unreachable("Abstract attributes for liveness are not "
4197                      "supported for call sites yet!");
4198   }
4199 
4200   /// See AbstractAttribute::updateImpl(...).
4201   ChangeStatus updateImpl(Attributor &A) override {
4202     return indicatePessimisticFixpoint();
4203   }
4204 
4205   /// See AbstractAttribute::trackStatistics()
4206   void trackStatistics() const override {}
4207 };
4208 } // namespace
4209 
4210 /// -------------------- Dereferenceable Argument Attribute --------------------
4211 
4212 namespace {
4213 struct AADereferenceableImpl : AADereferenceable {
4214   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4215       : AADereferenceable(IRP, A) {}
4216   using StateType = DerefState;
4217 
4218   /// See AbstractAttribute::initialize(...).
4219   void initialize(Attributor &A) override {
4220     SmallVector<Attribute, 4> Attrs;
4221     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4222              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4223     for (const Attribute &Attr : Attrs)
4224       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4225 
4226     const IRPosition &IRP = this->getIRPosition();
4227     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4228 
4229     bool CanBeNull, CanBeFreed;
4230     takeKnownDerefBytesMaximum(
4231         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4232             A.getDataLayout(), CanBeNull, CanBeFreed));
4233 
4234     bool IsFnInterface = IRP.isFnInterfaceKind();
4235     Function *FnScope = IRP.getAnchorScope();
4236     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4237       indicatePessimisticFixpoint();
4238       return;
4239     }
4240 
4241     if (Instruction *CtxI = getCtxI())
4242       followUsesInMBEC(*this, A, getState(), *CtxI);
4243   }
4244 
4245   /// See AbstractAttribute::getState()
4246   /// {
4247   StateType &getState() override { return *this; }
4248   const StateType &getState() const override { return *this; }
4249   /// }
4250 
4251   /// Helper function for collecting accessed bytes in must-be-executed-context
4252   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4253                               DerefState &State) {
4254     const Value *UseV = U->get();
4255     if (!UseV->getType()->isPointerTy())
4256       return;
4257 
4258     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4259     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4260       return;
4261 
4262     int64_t Offset;
4263     const Value *Base = GetPointerBaseWithConstantOffset(
4264         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4265     if (Base && Base == &getAssociatedValue())
4266       State.addAccessedBytes(Offset, Loc->Size.getValue());
4267   }
4268 
4269   /// See followUsesInMBEC
4270   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4271                        AADereferenceable::StateType &State) {
4272     bool IsNonNull = false;
4273     bool TrackUse = false;
4274     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4275         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4276     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4277                       << " for instruction " << *I << "\n");
4278 
4279     addAccessedBytesForUse(A, U, I, State);
4280     State.takeKnownDerefBytesMaximum(DerefBytes);
4281     return TrackUse;
4282   }
4283 
4284   /// See AbstractAttribute::manifest(...).
4285   ChangeStatus manifest(Attributor &A) override {
4286     ChangeStatus Change = AADereferenceable::manifest(A);
4287     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4288       removeAttrs({Attribute::DereferenceableOrNull});
4289       return ChangeStatus::CHANGED;
4290     }
4291     return Change;
4292   }
4293 
4294   void getDeducedAttributes(LLVMContext &Ctx,
4295                             SmallVectorImpl<Attribute> &Attrs) const override {
4296     // TODO: Add *_globally support
4297     if (isAssumedNonNull())
4298       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4299           Ctx, getAssumedDereferenceableBytes()));
4300     else
4301       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4302           Ctx, getAssumedDereferenceableBytes()));
4303   }
4304 
4305   /// See AbstractAttribute::getAsStr().
4306   const std::string getAsStr() const override {
4307     if (!getAssumedDereferenceableBytes())
4308       return "unknown-dereferenceable";
4309     return std::string("dereferenceable") +
4310            (isAssumedNonNull() ? "" : "_or_null") +
4311            (isAssumedGlobal() ? "_globally" : "") + "<" +
4312            std::to_string(getKnownDereferenceableBytes()) + "-" +
4313            std::to_string(getAssumedDereferenceableBytes()) + ">";
4314   }
4315 };
4316 
4317 /// Dereferenceable attribute for a floating value.
4318 struct AADereferenceableFloating : AADereferenceableImpl {
4319   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4320       : AADereferenceableImpl(IRP, A) {}
4321 
4322   /// See AbstractAttribute::updateImpl(...).
4323   ChangeStatus updateImpl(Attributor &A) override {
4324     const DataLayout &DL = A.getDataLayout();
4325 
4326     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4327                             bool Stripped) -> bool {
4328       unsigned IdxWidth =
4329           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4330       APInt Offset(IdxWidth, 0);
4331       const Value *Base = stripAndAccumulateOffsets(
4332           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4333           /* AllowNonInbounds */ true);
4334 
4335       const auto &AA = A.getAAFor<AADereferenceable>(
4336           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4337       int64_t DerefBytes = 0;
4338       if (!Stripped && this == &AA) {
4339         // Use IR information if we did not strip anything.
4340         // TODO: track globally.
4341         bool CanBeNull, CanBeFreed;
4342         DerefBytes =
4343             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4344         T.GlobalState.indicatePessimisticFixpoint();
4345       } else {
4346         const DerefState &DS = AA.getState();
4347         DerefBytes = DS.DerefBytesState.getAssumed();
4348         T.GlobalState &= DS.GlobalState;
4349       }
4350 
4351       // For now we do not try to "increase" dereferenceability due to negative
4352       // indices as we first have to come up with code to deal with loops and
4353       // for overflows of the dereferenceable bytes.
4354       int64_t OffsetSExt = Offset.getSExtValue();
4355       if (OffsetSExt < 0)
4356         OffsetSExt = 0;
4357 
4358       T.takeAssumedDerefBytesMinimum(
4359           std::max(int64_t(0), DerefBytes - OffsetSExt));
4360 
4361       if (this == &AA) {
4362         if (!Stripped) {
4363           // If nothing was stripped IR information is all we got.
4364           T.takeKnownDerefBytesMaximum(
4365               std::max(int64_t(0), DerefBytes - OffsetSExt));
4366           T.indicatePessimisticFixpoint();
4367         } else if (OffsetSExt > 0) {
4368           // If something was stripped but there is circular reasoning we look
4369           // for the offset. If it is positive we basically decrease the
4370           // dereferenceable bytes in a circluar loop now, which will simply
4371           // drive them down to the known value in a very slow way which we
4372           // can accelerate.
4373           T.indicatePessimisticFixpoint();
4374         }
4375       }
4376 
4377       return T.isValidState();
4378     };
4379 
4380     DerefState T;
4381     bool UsedAssumedInformation = false;
4382     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4383                                            VisitValueCB, getCtxI(),
4384                                            UsedAssumedInformation))
4385       return indicatePessimisticFixpoint();
4386 
4387     return clampStateAndIndicateChange(getState(), T);
4388   }
4389 
4390   /// See AbstractAttribute::trackStatistics()
4391   void trackStatistics() const override {
4392     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4393   }
4394 };
4395 
4396 /// Dereferenceable attribute for a return value.
4397 struct AADereferenceableReturned final
4398     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4399   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4400       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4401             IRP, A) {}
4402 
4403   /// See AbstractAttribute::trackStatistics()
4404   void trackStatistics() const override {
4405     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4406   }
4407 };
4408 
4409 /// Dereferenceable attribute for an argument
4410 struct AADereferenceableArgument final
4411     : AAArgumentFromCallSiteArguments<AADereferenceable,
4412                                       AADereferenceableImpl> {
4413   using Base =
4414       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4415   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4416       : Base(IRP, A) {}
4417 
4418   /// See AbstractAttribute::trackStatistics()
4419   void trackStatistics() const override {
4420     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4421   }
4422 };
4423 
4424 /// Dereferenceable attribute for a call site argument.
4425 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4426   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4427       : AADereferenceableFloating(IRP, A) {}
4428 
4429   /// See AbstractAttribute::trackStatistics()
4430   void trackStatistics() const override {
4431     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4432   }
4433 };
4434 
4435 /// Dereferenceable attribute deduction for a call site return value.
4436 struct AADereferenceableCallSiteReturned final
4437     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4438   using Base =
4439       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4440   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4441       : Base(IRP, A) {}
4442 
4443   /// See AbstractAttribute::trackStatistics()
4444   void trackStatistics() const override {
4445     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4446   }
4447 };
4448 } // namespace
4449 
4450 // ------------------------ Align Argument Attribute ------------------------
4451 
4452 namespace {
4453 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4454                                     Value &AssociatedValue, const Use *U,
4455                                     const Instruction *I, bool &TrackUse) {
4456   // We need to follow common pointer manipulation uses to the accesses they
4457   // feed into.
4458   if (isa<CastInst>(I)) {
4459     // Follow all but ptr2int casts.
4460     TrackUse = !isa<PtrToIntInst>(I);
4461     return 0;
4462   }
4463   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4464     if (GEP->hasAllConstantIndices())
4465       TrackUse = true;
4466     return 0;
4467   }
4468 
4469   MaybeAlign MA;
4470   if (const auto *CB = dyn_cast<CallBase>(I)) {
4471     if (CB->isBundleOperand(U) || CB->isCallee(U))
4472       return 0;
4473 
4474     unsigned ArgNo = CB->getArgOperandNo(U);
4475     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4476     // As long as we only use known information there is no need to track
4477     // dependences here.
4478     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4479     MA = MaybeAlign(AlignAA.getKnownAlign());
4480   }
4481 
4482   const DataLayout &DL = A.getDataLayout();
4483   const Value *UseV = U->get();
4484   if (auto *SI = dyn_cast<StoreInst>(I)) {
4485     if (SI->getPointerOperand() == UseV)
4486       MA = SI->getAlign();
4487   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4488     if (LI->getPointerOperand() == UseV)
4489       MA = LI->getAlign();
4490   }
4491 
4492   if (!MA || *MA <= QueryingAA.getKnownAlign())
4493     return 0;
4494 
4495   unsigned Alignment = MA->value();
4496   int64_t Offset;
4497 
4498   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4499     if (Base == &AssociatedValue) {
4500       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4501       // So we can say that the maximum power of two which is a divisor of
4502       // gcd(Offset, Alignment) is an alignment.
4503 
4504       uint32_t gcd =
4505           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4506       Alignment = llvm::PowerOf2Floor(gcd);
4507     }
4508   }
4509 
4510   return Alignment;
4511 }
4512 
4513 struct AAAlignImpl : AAAlign {
4514   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4515 
4516   /// See AbstractAttribute::initialize(...).
4517   void initialize(Attributor &A) override {
4518     SmallVector<Attribute, 4> Attrs;
4519     getAttrs({Attribute::Alignment}, Attrs);
4520     for (const Attribute &Attr : Attrs)
4521       takeKnownMaximum(Attr.getValueAsInt());
4522 
4523     Value &V = getAssociatedValue();
4524     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4525 
4526     if (getIRPosition().isFnInterfaceKind() &&
4527         (!getAnchorScope() ||
4528          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4529       indicatePessimisticFixpoint();
4530       return;
4531     }
4532 
4533     if (Instruction *CtxI = getCtxI())
4534       followUsesInMBEC(*this, A, getState(), *CtxI);
4535   }
4536 
4537   /// See AbstractAttribute::manifest(...).
4538   ChangeStatus manifest(Attributor &A) override {
4539     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4540 
4541     // Check for users that allow alignment annotations.
4542     Value &AssociatedValue = getAssociatedValue();
4543     for (const Use &U : AssociatedValue.uses()) {
4544       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4545         if (SI->getPointerOperand() == &AssociatedValue)
4546           if (SI->getAlignment() < getAssumedAlign()) {
4547             STATS_DECLTRACK(AAAlign, Store,
4548                             "Number of times alignment added to a store");
4549             SI->setAlignment(Align(getAssumedAlign()));
4550             LoadStoreChanged = ChangeStatus::CHANGED;
4551           }
4552       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4553         if (LI->getPointerOperand() == &AssociatedValue)
4554           if (LI->getAlignment() < getAssumedAlign()) {
4555             LI->setAlignment(Align(getAssumedAlign()));
4556             STATS_DECLTRACK(AAAlign, Load,
4557                             "Number of times alignment added to a load");
4558             LoadStoreChanged = ChangeStatus::CHANGED;
4559           }
4560       }
4561     }
4562 
4563     ChangeStatus Changed = AAAlign::manifest(A);
4564 
4565     Align InheritAlign =
4566         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4567     if (InheritAlign >= getAssumedAlign())
4568       return LoadStoreChanged;
4569     return Changed | LoadStoreChanged;
4570   }
4571 
4572   // TODO: Provide a helper to determine the implied ABI alignment and check in
4573   //       the existing manifest method and a new one for AAAlignImpl that value
4574   //       to avoid making the alignment explicit if it did not improve.
4575 
4576   /// See AbstractAttribute::getDeducedAttributes
4577   virtual void
4578   getDeducedAttributes(LLVMContext &Ctx,
4579                        SmallVectorImpl<Attribute> &Attrs) const override {
4580     if (getAssumedAlign() > 1)
4581       Attrs.emplace_back(
4582           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4583   }
4584 
4585   /// See followUsesInMBEC
4586   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4587                        AAAlign::StateType &State) {
4588     bool TrackUse = false;
4589 
4590     unsigned int KnownAlign =
4591         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4592     State.takeKnownMaximum(KnownAlign);
4593 
4594     return TrackUse;
4595   }
4596 
4597   /// See AbstractAttribute::getAsStr().
4598   const std::string getAsStr() const override {
4599     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4600                                 "-" + std::to_string(getAssumedAlign()) + ">")
4601                              : "unknown-align";
4602   }
4603 };
4604 
4605 /// Align attribute for a floating value.
4606 struct AAAlignFloating : AAAlignImpl {
4607   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4608 
4609   /// See AbstractAttribute::updateImpl(...).
4610   ChangeStatus updateImpl(Attributor &A) override {
4611     const DataLayout &DL = A.getDataLayout();
4612 
4613     auto VisitValueCB = [&](Value &V, const Instruction *,
4614                             AAAlign::StateType &T, bool Stripped) -> bool {
4615       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4616         return true;
4617       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4618                                            DepClassTy::REQUIRED);
4619       if (!Stripped && this == &AA) {
4620         int64_t Offset;
4621         unsigned Alignment = 1;
4622         if (const Value *Base =
4623                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4624           // TODO: Use AAAlign for the base too.
4625           Align PA = Base->getPointerAlignment(DL);
4626           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4627           // So we can say that the maximum power of two which is a divisor of
4628           // gcd(Offset, Alignment) is an alignment.
4629 
4630           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4631                                                uint32_t(PA.value()));
4632           Alignment = llvm::PowerOf2Floor(gcd);
4633         } else {
4634           Alignment = V.getPointerAlignment(DL).value();
4635         }
4636         // Use only IR information if we did not strip anything.
4637         T.takeKnownMaximum(Alignment);
4638         T.indicatePessimisticFixpoint();
4639       } else {
4640         // Use abstract attribute information.
4641         const AAAlign::StateType &DS = AA.getState();
4642         T ^= DS;
4643       }
4644       return T.isValidState();
4645     };
4646 
4647     StateType T;
4648     bool UsedAssumedInformation = false;
4649     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4650                                           VisitValueCB, getCtxI(),
4651                                           UsedAssumedInformation))
4652       return indicatePessimisticFixpoint();
4653 
4654     // TODO: If we know we visited all incoming values, thus no are assumed
4655     // dead, we can take the known information from the state T.
4656     return clampStateAndIndicateChange(getState(), T);
4657   }
4658 
4659   /// See AbstractAttribute::trackStatistics()
4660   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4661 };
4662 
4663 /// Align attribute for function return value.
4664 struct AAAlignReturned final
4665     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4666   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4667   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4668 
4669   /// See AbstractAttribute::initialize(...).
4670   void initialize(Attributor &A) override {
4671     Base::initialize(A);
4672     Function *F = getAssociatedFunction();
4673     if (!F || F->isDeclaration())
4674       indicatePessimisticFixpoint();
4675   }
4676 
4677   /// See AbstractAttribute::trackStatistics()
4678   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4679 };
4680 
4681 /// Align attribute for function argument.
4682 struct AAAlignArgument final
4683     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4684   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4685   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4686 
4687   /// See AbstractAttribute::manifest(...).
4688   ChangeStatus manifest(Attributor &A) override {
4689     // If the associated argument is involved in a must-tail call we give up
4690     // because we would need to keep the argument alignments of caller and
4691     // callee in-sync. Just does not seem worth the trouble right now.
4692     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4693       return ChangeStatus::UNCHANGED;
4694     return Base::manifest(A);
4695   }
4696 
4697   /// See AbstractAttribute::trackStatistics()
4698   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4699 };
4700 
4701 struct AAAlignCallSiteArgument final : AAAlignFloating {
4702   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4703       : AAAlignFloating(IRP, A) {}
4704 
4705   /// See AbstractAttribute::manifest(...).
4706   ChangeStatus manifest(Attributor &A) override {
4707     // If the associated argument is involved in a must-tail call we give up
4708     // because we would need to keep the argument alignments of caller and
4709     // callee in-sync. Just does not seem worth the trouble right now.
4710     if (Argument *Arg = getAssociatedArgument())
4711       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4712         return ChangeStatus::UNCHANGED;
4713     ChangeStatus Changed = AAAlignImpl::manifest(A);
4714     Align InheritAlign =
4715         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4716     if (InheritAlign >= getAssumedAlign())
4717       Changed = ChangeStatus::UNCHANGED;
4718     return Changed;
4719   }
4720 
4721   /// See AbstractAttribute::updateImpl(Attributor &A).
4722   ChangeStatus updateImpl(Attributor &A) override {
4723     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4724     if (Argument *Arg = getAssociatedArgument()) {
4725       // We only take known information from the argument
4726       // so we do not need to track a dependence.
4727       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4728           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4729       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4730     }
4731     return Changed;
4732   }
4733 
4734   /// See AbstractAttribute::trackStatistics()
4735   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4736 };
4737 
4738 /// Align attribute deduction for a call site return value.
4739 struct AAAlignCallSiteReturned final
4740     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4741   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4742   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4743       : Base(IRP, A) {}
4744 
4745   /// See AbstractAttribute::initialize(...).
4746   void initialize(Attributor &A) override {
4747     Base::initialize(A);
4748     Function *F = getAssociatedFunction();
4749     if (!F || F->isDeclaration())
4750       indicatePessimisticFixpoint();
4751   }
4752 
4753   /// See AbstractAttribute::trackStatistics()
4754   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4755 };
4756 } // namespace
4757 
4758 /// ------------------ Function No-Return Attribute ----------------------------
4759 namespace {
4760 struct AANoReturnImpl : public AANoReturn {
4761   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4762 
4763   /// See AbstractAttribute::initialize(...).
4764   void initialize(Attributor &A) override {
4765     AANoReturn::initialize(A);
4766     Function *F = getAssociatedFunction();
4767     if (!F || F->isDeclaration())
4768       indicatePessimisticFixpoint();
4769   }
4770 
4771   /// See AbstractAttribute::getAsStr().
4772   const std::string getAsStr() const override {
4773     return getAssumed() ? "noreturn" : "may-return";
4774   }
4775 
4776   /// See AbstractAttribute::updateImpl(Attributor &A).
4777   virtual ChangeStatus updateImpl(Attributor &A) override {
4778     auto CheckForNoReturn = [](Instruction &) { return false; };
4779     bool UsedAssumedInformation = false;
4780     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4781                                    {(unsigned)Instruction::Ret},
4782                                    UsedAssumedInformation))
4783       return indicatePessimisticFixpoint();
4784     return ChangeStatus::UNCHANGED;
4785   }
4786 };
4787 
4788 struct AANoReturnFunction final : AANoReturnImpl {
4789   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4790       : AANoReturnImpl(IRP, A) {}
4791 
4792   /// See AbstractAttribute::trackStatistics()
4793   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4794 };
4795 
4796 /// NoReturn attribute deduction for a call sites.
4797 struct AANoReturnCallSite final : AANoReturnImpl {
4798   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4799       : AANoReturnImpl(IRP, A) {}
4800 
4801   /// See AbstractAttribute::initialize(...).
4802   void initialize(Attributor &A) override {
4803     AANoReturnImpl::initialize(A);
4804     if (Function *F = getAssociatedFunction()) {
4805       const IRPosition &FnPos = IRPosition::function(*F);
4806       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4807       if (!FnAA.isAssumedNoReturn())
4808         indicatePessimisticFixpoint();
4809     }
4810   }
4811 
4812   /// See AbstractAttribute::updateImpl(...).
4813   ChangeStatus updateImpl(Attributor &A) override {
4814     // TODO: Once we have call site specific value information we can provide
4815     //       call site specific liveness information and then it makes
4816     //       sense to specialize attributes for call sites arguments instead of
4817     //       redirecting requests to the callee argument.
4818     Function *F = getAssociatedFunction();
4819     const IRPosition &FnPos = IRPosition::function(*F);
4820     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4821     return clampStateAndIndicateChange(getState(), FnAA.getState());
4822   }
4823 
4824   /// See AbstractAttribute::trackStatistics()
4825   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4826 };
4827 } // namespace
4828 
4829 /// ----------------------- Variable Capturing ---------------------------------
4830 
4831 namespace {
4832 /// A class to hold the state of for no-capture attributes.
4833 struct AANoCaptureImpl : public AANoCapture {
4834   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4835 
4836   /// See AbstractAttribute::initialize(...).
4837   void initialize(Attributor &A) override {
4838     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4839       indicateOptimisticFixpoint();
4840       return;
4841     }
4842     Function *AnchorScope = getAnchorScope();
4843     if (isFnInterfaceKind() &&
4844         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4845       indicatePessimisticFixpoint();
4846       return;
4847     }
4848 
4849     // You cannot "capture" null in the default address space.
4850     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4851         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4852       indicateOptimisticFixpoint();
4853       return;
4854     }
4855 
4856     const Function *F =
4857         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4858 
4859     // Check what state the associated function can actually capture.
4860     if (F)
4861       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4862     else
4863       indicatePessimisticFixpoint();
4864   }
4865 
4866   /// See AbstractAttribute::updateImpl(...).
4867   ChangeStatus updateImpl(Attributor &A) override;
4868 
4869   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4870   virtual void
4871   getDeducedAttributes(LLVMContext &Ctx,
4872                        SmallVectorImpl<Attribute> &Attrs) const override {
4873     if (!isAssumedNoCaptureMaybeReturned())
4874       return;
4875 
4876     if (isArgumentPosition()) {
4877       if (isAssumedNoCapture())
4878         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4879       else if (ManifestInternal)
4880         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4881     }
4882   }
4883 
4884   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4885   /// depending on the ability of the function associated with \p IRP to capture
4886   /// state in memory and through "returning/throwing", respectively.
4887   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4888                                                    const Function &F,
4889                                                    BitIntegerState &State) {
4890     // TODO: Once we have memory behavior attributes we should use them here.
4891 
4892     // If we know we cannot communicate or write to memory, we do not care about
4893     // ptr2int anymore.
4894     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4895         F.getReturnType()->isVoidTy()) {
4896       State.addKnownBits(NO_CAPTURE);
4897       return;
4898     }
4899 
4900     // A function cannot capture state in memory if it only reads memory, it can
4901     // however return/throw state and the state might be influenced by the
4902     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4903     if (F.onlyReadsMemory())
4904       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4905 
4906     // A function cannot communicate state back if it does not through
4907     // exceptions and doesn not return values.
4908     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4909       State.addKnownBits(NOT_CAPTURED_IN_RET);
4910 
4911     // Check existing "returned" attributes.
4912     int ArgNo = IRP.getCalleeArgNo();
4913     if (F.doesNotThrow() && ArgNo >= 0) {
4914       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4915         if (F.hasParamAttribute(u, Attribute::Returned)) {
4916           if (u == unsigned(ArgNo))
4917             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4918           else if (F.onlyReadsMemory())
4919             State.addKnownBits(NO_CAPTURE);
4920           else
4921             State.addKnownBits(NOT_CAPTURED_IN_RET);
4922           break;
4923         }
4924     }
4925   }
4926 
4927   /// See AbstractState::getAsStr().
4928   const std::string getAsStr() const override {
4929     if (isKnownNoCapture())
4930       return "known not-captured";
4931     if (isAssumedNoCapture())
4932       return "assumed not-captured";
4933     if (isKnownNoCaptureMaybeReturned())
4934       return "known not-captured-maybe-returned";
4935     if (isAssumedNoCaptureMaybeReturned())
4936       return "assumed not-captured-maybe-returned";
4937     return "assumed-captured";
4938   }
4939 };
4940 
4941 /// Attributor-aware capture tracker.
4942 struct AACaptureUseTracker final : public CaptureTracker {
4943 
4944   /// Create a capture tracker that can lookup in-flight abstract attributes
4945   /// through the Attributor \p A.
4946   ///
4947   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4948   /// search is stopped. If a use leads to a return instruction,
4949   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4950   /// If a use leads to a ptr2int which may capture the value,
4951   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4952   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4953   /// set. All values in \p PotentialCopies are later tracked as well. For every
4954   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4955   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4956   /// conservatively set to true.
4957   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4958                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4959                       SmallSetVector<Value *, 4> &PotentialCopies,
4960                       unsigned &RemainingUsesToExplore)
4961       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4962         PotentialCopies(PotentialCopies),
4963         RemainingUsesToExplore(RemainingUsesToExplore) {}
4964 
4965   /// Determine if \p V maybe captured. *Also updates the state!*
4966   bool valueMayBeCaptured(const Value *V) {
4967     if (V->getType()->isPointerTy()) {
4968       PointerMayBeCaptured(V, this);
4969     } else {
4970       State.indicatePessimisticFixpoint();
4971     }
4972     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4973   }
4974 
4975   /// See CaptureTracker::tooManyUses().
4976   void tooManyUses() override {
4977     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4978   }
4979 
4980   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4981     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4982       return true;
4983     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4984         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4985     return DerefAA.getAssumedDereferenceableBytes();
4986   }
4987 
4988   /// See CaptureTracker::captured(...).
4989   bool captured(const Use *U) override {
4990     Instruction *UInst = cast<Instruction>(U->getUser());
4991     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4992                       << "\n");
4993 
4994     // Because we may reuse the tracker multiple times we keep track of the
4995     // number of explored uses ourselves as well.
4996     if (RemainingUsesToExplore-- == 0) {
4997       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4998       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4999                           /* Return */ true);
5000     }
5001 
5002     // Deal with ptr2int by following uses.
5003     if (isa<PtrToIntInst>(UInst)) {
5004       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5005       return valueMayBeCaptured(UInst);
5006     }
5007 
5008     // For stores we check if we can follow the value through memory or not.
5009     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
5010       if (SI->isVolatile())
5011         return isCapturedIn(/* Memory */ true, /* Integer */ false,
5012                             /* Return */ false);
5013       bool UsedAssumedInformation = false;
5014       if (!AA::getPotentialCopiesOfStoredValue(
5015               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
5016         return isCapturedIn(/* Memory */ true, /* Integer */ false,
5017                             /* Return */ false);
5018       // Not captured directly, potential copies will be checked.
5019       return isCapturedIn(/* Memory */ false, /* Integer */ false,
5020                           /* Return */ false);
5021     }
5022 
5023     // Explicitly catch return instructions.
5024     if (isa<ReturnInst>(UInst)) {
5025       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
5026         return isCapturedIn(/* Memory */ false, /* Integer */ false,
5027                             /* Return */ true);
5028       return isCapturedIn(/* Memory */ true, /* Integer */ true,
5029                           /* Return */ true);
5030     }
5031 
5032     // For now we only use special logic for call sites. However, the tracker
5033     // itself knows about a lot of other non-capturing cases already.
5034     auto *CB = dyn_cast<CallBase>(UInst);
5035     if (!CB || !CB->isArgOperand(U))
5036       return isCapturedIn(/* Memory */ true, /* Integer */ true,
5037                           /* Return */ true);
5038 
5039     unsigned ArgNo = CB->getArgOperandNo(U);
5040     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5041     // If we have a abstract no-capture attribute for the argument we can use
5042     // it to justify a non-capture attribute here. This allows recursion!
5043     auto &ArgNoCaptureAA =
5044         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
5045     if (ArgNoCaptureAA.isAssumedNoCapture())
5046       return isCapturedIn(/* Memory */ false, /* Integer */ false,
5047                           /* Return */ false);
5048     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5049       addPotentialCopy(*CB);
5050       return isCapturedIn(/* Memory */ false, /* Integer */ false,
5051                           /* Return */ false);
5052     }
5053 
5054     // Lastly, we could not find a reason no-capture can be assumed so we don't.
5055     return isCapturedIn(/* Memory */ true, /* Integer */ true,
5056                         /* Return */ true);
5057   }
5058 
5059   /// Register \p CS as potential copy of the value we are checking.
5060   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
5061 
5062   /// See CaptureTracker::shouldExplore(...).
5063   bool shouldExplore(const Use *U) override {
5064     // Check liveness and ignore droppable users.
5065     bool UsedAssumedInformation = false;
5066     return !U->getUser()->isDroppable() &&
5067            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
5068                             UsedAssumedInformation);
5069   }
5070 
5071   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
5072   /// \p CapturedInRet, then return the appropriate value for use in the
5073   /// CaptureTracker::captured() interface.
5074   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
5075                     bool CapturedInRet) {
5076     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5077                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5078     if (CapturedInMem)
5079       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5080     if (CapturedInInt)
5081       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5082     if (CapturedInRet)
5083       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5084     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5085   }
5086 
5087 private:
5088   /// The attributor providing in-flight abstract attributes.
5089   Attributor &A;
5090 
5091   /// The abstract attribute currently updated.
5092   AANoCapture &NoCaptureAA;
5093 
5094   /// The abstract liveness state.
5095   const AAIsDead &IsDeadAA;
5096 
5097   /// The state currently updated.
5098   AANoCapture::StateType &State;
5099 
5100   /// Set of potential copies of the tracked value.
5101   SmallSetVector<Value *, 4> &PotentialCopies;
5102 
5103   /// Global counter to limit the number of explored uses.
5104   unsigned &RemainingUsesToExplore;
5105 };
5106 
5107 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5108   const IRPosition &IRP = getIRPosition();
5109   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5110                                   : &IRP.getAssociatedValue();
5111   if (!V)
5112     return indicatePessimisticFixpoint();
5113 
5114   const Function *F =
5115       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5116   assert(F && "Expected a function!");
5117   const IRPosition &FnPos = IRPosition::function(*F);
5118   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
5119 
5120   AANoCapture::StateType T;
5121 
5122   // Readonly means we cannot capture through memory.
5123   bool IsKnown;
5124   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5125     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5126     if (IsKnown)
5127       addKnownBits(NOT_CAPTURED_IN_MEM);
5128   }
5129 
5130   // Make sure all returned values are different than the underlying value.
5131   // TODO: we could do this in a more sophisticated way inside
5132   //       AAReturnedValues, e.g., track all values that escape through returns
5133   //       directly somehow.
5134   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5135     bool SeenConstant = false;
5136     for (auto &It : RVAA.returned_values()) {
5137       if (isa<Constant>(It.first)) {
5138         if (SeenConstant)
5139           return false;
5140         SeenConstant = true;
5141       } else if (!isa<Argument>(It.first) ||
5142                  It.first == getAssociatedArgument())
5143         return false;
5144     }
5145     return true;
5146   };
5147 
5148   const auto &NoUnwindAA =
5149       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5150   if (NoUnwindAA.isAssumedNoUnwind()) {
5151     bool IsVoidTy = F->getReturnType()->isVoidTy();
5152     const AAReturnedValues *RVAA =
5153         IsVoidTy ? nullptr
5154                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5155 
5156                                                  DepClassTy::OPTIONAL);
5157     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5158       T.addKnownBits(NOT_CAPTURED_IN_RET);
5159       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5160         return ChangeStatus::UNCHANGED;
5161       if (NoUnwindAA.isKnownNoUnwind() &&
5162           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5163         addKnownBits(NOT_CAPTURED_IN_RET);
5164         if (isKnown(NOT_CAPTURED_IN_MEM))
5165           return indicateOptimisticFixpoint();
5166       }
5167     }
5168   }
5169 
5170   // Use the CaptureTracker interface and logic with the specialized tracker,
5171   // defined in AACaptureUseTracker, that can look at in-flight abstract
5172   // attributes and directly updates the assumed state.
5173   SmallSetVector<Value *, 4> PotentialCopies;
5174   unsigned RemainingUsesToExplore =
5175       getDefaultMaxUsesToExploreForCaptureTracking();
5176   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
5177                               RemainingUsesToExplore);
5178 
5179   // Check all potential copies of the associated value until we can assume
5180   // none will be captured or we have to assume at least one might be.
5181   unsigned Idx = 0;
5182   PotentialCopies.insert(V);
5183   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
5184     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
5185 
5186   AANoCapture::StateType &S = getState();
5187   auto Assumed = S.getAssumed();
5188   S.intersectAssumedBits(T.getAssumed());
5189   if (!isAssumedNoCaptureMaybeReturned())
5190     return indicatePessimisticFixpoint();
5191   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5192                                    : ChangeStatus::CHANGED;
5193 }
5194 
5195 /// NoCapture attribute for function arguments.
5196 struct AANoCaptureArgument final : AANoCaptureImpl {
5197   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5198       : AANoCaptureImpl(IRP, A) {}
5199 
5200   /// See AbstractAttribute::trackStatistics()
5201   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5202 };
5203 
5204 /// NoCapture attribute for call site arguments.
5205 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5206   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5207       : AANoCaptureImpl(IRP, A) {}
5208 
5209   /// See AbstractAttribute::initialize(...).
5210   void initialize(Attributor &A) override {
5211     if (Argument *Arg = getAssociatedArgument())
5212       if (Arg->hasByValAttr())
5213         indicateOptimisticFixpoint();
5214     AANoCaptureImpl::initialize(A);
5215   }
5216 
5217   /// See AbstractAttribute::updateImpl(...).
5218   ChangeStatus updateImpl(Attributor &A) override {
5219     // TODO: Once we have call site specific value information we can provide
5220     //       call site specific liveness information and then it makes
5221     //       sense to specialize attributes for call sites arguments instead of
5222     //       redirecting requests to the callee argument.
5223     Argument *Arg = getAssociatedArgument();
5224     if (!Arg)
5225       return indicatePessimisticFixpoint();
5226     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5227     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5228     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5229   }
5230 
5231   /// See AbstractAttribute::trackStatistics()
5232   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5233 };
5234 
5235 /// NoCapture attribute for floating values.
5236 struct AANoCaptureFloating final : AANoCaptureImpl {
5237   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5238       : AANoCaptureImpl(IRP, A) {}
5239 
5240   /// See AbstractAttribute::trackStatistics()
5241   void trackStatistics() const override {
5242     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5243   }
5244 };
5245 
5246 /// NoCapture attribute for function return value.
5247 struct AANoCaptureReturned final : AANoCaptureImpl {
5248   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5249       : AANoCaptureImpl(IRP, A) {
5250     llvm_unreachable("NoCapture is not applicable to function returns!");
5251   }
5252 
5253   /// See AbstractAttribute::initialize(...).
5254   void initialize(Attributor &A) override {
5255     llvm_unreachable("NoCapture is not applicable to function returns!");
5256   }
5257 
5258   /// See AbstractAttribute::updateImpl(...).
5259   ChangeStatus updateImpl(Attributor &A) override {
5260     llvm_unreachable("NoCapture is not applicable to function returns!");
5261   }
5262 
5263   /// See AbstractAttribute::trackStatistics()
5264   void trackStatistics() const override {}
5265 };
5266 
5267 /// NoCapture attribute deduction for a call site return value.
5268 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5269   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5270       : AANoCaptureImpl(IRP, A) {}
5271 
5272   /// See AbstractAttribute::initialize(...).
5273   void initialize(Attributor &A) override {
5274     const Function *F = getAnchorScope();
5275     // Check what state the associated function can actually capture.
5276     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5277   }
5278 
5279   /// See AbstractAttribute::trackStatistics()
5280   void trackStatistics() const override {
5281     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5282   }
5283 };
5284 } // namespace
5285 
5286 /// ------------------ Value Simplify Attribute ----------------------------
5287 
5288 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5289   // FIXME: Add a typecast support.
5290   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5291       SimplifiedAssociatedValue, Other, Ty);
5292   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5293     return false;
5294 
5295   LLVM_DEBUG({
5296     if (SimplifiedAssociatedValue.hasValue())
5297       dbgs() << "[ValueSimplify] is assumed to be "
5298              << **SimplifiedAssociatedValue << "\n";
5299     else
5300       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5301   });
5302   return true;
5303 }
5304 
5305 namespace {
5306 struct AAValueSimplifyImpl : AAValueSimplify {
5307   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5308       : AAValueSimplify(IRP, A) {}
5309 
5310   /// See AbstractAttribute::initialize(...).
5311   void initialize(Attributor &A) override {
5312     if (getAssociatedValue().getType()->isVoidTy())
5313       indicatePessimisticFixpoint();
5314     if (A.hasSimplificationCallback(getIRPosition()))
5315       indicatePessimisticFixpoint();
5316   }
5317 
5318   /// See AbstractAttribute::getAsStr().
5319   const std::string getAsStr() const override {
5320     LLVM_DEBUG({
5321       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5322       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5323         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5324     });
5325     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5326                           : "not-simple";
5327   }
5328 
5329   /// See AbstractAttribute::trackStatistics()
5330   void trackStatistics() const override {}
5331 
5332   /// See AAValueSimplify::getAssumedSimplifiedValue()
5333   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5334     return SimplifiedAssociatedValue;
5335   }
5336 
5337   /// Return a value we can use as replacement for the associated one, or
5338   /// nullptr if we don't have one that makes sense.
5339   Value *getReplacementValue(Attributor &A) const {
5340     Value *NewV;
5341     NewV = SimplifiedAssociatedValue.hasValue()
5342                ? SimplifiedAssociatedValue.getValue()
5343                : UndefValue::get(getAssociatedType());
5344     if (!NewV)
5345       return nullptr;
5346     NewV = AA::getWithType(*NewV, *getAssociatedType());
5347     if (!NewV || NewV == &getAssociatedValue())
5348       return nullptr;
5349     const Instruction *CtxI = getCtxI();
5350     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5351       return nullptr;
5352     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5353       return nullptr;
5354     return NewV;
5355   }
5356 
5357   /// Helper function for querying AAValueSimplify and updating candicate.
5358   /// \param IRP The value position we are trying to unify with SimplifiedValue
5359   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5360                       const IRPosition &IRP, bool Simplify = true) {
5361     bool UsedAssumedInformation = false;
5362     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5363     if (Simplify)
5364       QueryingValueSimplified =
5365           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5366     return unionAssumed(QueryingValueSimplified);
5367   }
5368 
5369   /// Returns a candidate is found or not
5370   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5371     if (!getAssociatedValue().getType()->isIntegerTy())
5372       return false;
5373 
5374     // This will also pass the call base context.
5375     const auto &AA =
5376         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5377 
5378     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5379 
5380     if (!COpt.hasValue()) {
5381       SimplifiedAssociatedValue = llvm::None;
5382       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5383       return true;
5384     }
5385     if (auto *C = COpt.getValue()) {
5386       SimplifiedAssociatedValue = C;
5387       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5388       return true;
5389     }
5390     return false;
5391   }
5392 
5393   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5394     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5395       return true;
5396     if (askSimplifiedValueFor<AAPotentialValues>(A))
5397       return true;
5398     return false;
5399   }
5400 
5401   /// See AbstractAttribute::manifest(...).
5402   ChangeStatus manifest(Attributor &A) override {
5403     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5404     if (getAssociatedValue().user_empty())
5405       return Changed;
5406 
5407     if (auto *NewV = getReplacementValue(A)) {
5408       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5409                         << *NewV << " :: " << *this << "\n");
5410       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5411         Changed = ChangeStatus::CHANGED;
5412     }
5413 
5414     return Changed | AAValueSimplify::manifest(A);
5415   }
5416 
5417   /// See AbstractState::indicatePessimisticFixpoint(...).
5418   ChangeStatus indicatePessimisticFixpoint() override {
5419     SimplifiedAssociatedValue = &getAssociatedValue();
5420     return AAValueSimplify::indicatePessimisticFixpoint();
5421   }
5422 
5423   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5424                          LoadInst &L, function_ref<bool(Value &)> Union) {
5425     auto UnionWrapper = [&](Value &V, Value &Obj) {
5426       if (isa<AllocaInst>(Obj))
5427         return Union(V);
5428       if (!AA::isDynamicallyUnique(A, AA, V))
5429         return false;
5430       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5431         return false;
5432       return Union(V);
5433     };
5434 
5435     Value &Ptr = *L.getPointerOperand();
5436     SmallVector<Value *, 8> Objects;
5437     bool UsedAssumedInformation = false;
5438     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L,
5439                                          UsedAssumedInformation))
5440       return false;
5441 
5442     const auto *TLI =
5443         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5444     for (Value *Obj : Objects) {
5445       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5446       if (isa<UndefValue>(Obj))
5447         continue;
5448       if (isa<ConstantPointerNull>(Obj)) {
5449         // A null pointer access can be undefined but any offset from null may
5450         // be OK. We do not try to optimize the latter.
5451         if (!NullPointerIsDefined(L.getFunction(),
5452                                   Ptr.getType()->getPointerAddressSpace()) &&
5453             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5454           continue;
5455         return false;
5456       }
5457       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5458       if (!InitialVal || !Union(*InitialVal))
5459         return false;
5460 
5461       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5462                            "propagation, checking accesses next.\n");
5463 
5464       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5465         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5466         if (Acc.isWrittenValueYetUndetermined())
5467           return true;
5468         Value *Content = Acc.getWrittenValue();
5469         if (!Content)
5470           return false;
5471         Value *CastedContent =
5472             AA::getWithType(*Content, *AA.getAssociatedType());
5473         if (!CastedContent)
5474           return false;
5475         if (IsExact)
5476           return UnionWrapper(*CastedContent, *Obj);
5477         if (auto *C = dyn_cast<Constant>(CastedContent))
5478           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5479             return UnionWrapper(*CastedContent, *Obj);
5480         return false;
5481       };
5482 
5483       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5484                                            DepClassTy::REQUIRED);
5485       if (!PI.forallInterferingAccesses(A, AA, L, CheckAccess))
5486         return false;
5487     }
5488     return true;
5489   }
5490 };
5491 
5492 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5493   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5494       : AAValueSimplifyImpl(IRP, A) {}
5495 
5496   void initialize(Attributor &A) override {
5497     AAValueSimplifyImpl::initialize(A);
5498     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5499       indicatePessimisticFixpoint();
5500     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5501                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5502                 /* IgnoreSubsumingPositions */ true))
5503       indicatePessimisticFixpoint();
5504   }
5505 
5506   /// See AbstractAttribute::updateImpl(...).
5507   ChangeStatus updateImpl(Attributor &A) override {
5508     // Byval is only replacable if it is readonly otherwise we would write into
5509     // the replaced value and not the copy that byval creates implicitly.
5510     Argument *Arg = getAssociatedArgument();
5511     if (Arg->hasByValAttr()) {
5512       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5513       //       there is no race by not copying a constant byval.
5514       bool IsKnown;
5515       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5516         return indicatePessimisticFixpoint();
5517     }
5518 
5519     auto Before = SimplifiedAssociatedValue;
5520 
5521     auto PredForCallSite = [&](AbstractCallSite ACS) {
5522       const IRPosition &ACSArgPos =
5523           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5524       // Check if a coresponding argument was found or if it is on not
5525       // associated (which can happen for callback calls).
5526       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5527         return false;
5528 
5529       // Simplify the argument operand explicitly and check if the result is
5530       // valid in the current scope. This avoids refering to simplified values
5531       // in other functions, e.g., we don't want to say a an argument in a
5532       // static function is actually an argument in a different function.
5533       bool UsedAssumedInformation = false;
5534       Optional<Constant *> SimpleArgOp =
5535           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5536       if (!SimpleArgOp.hasValue())
5537         return true;
5538       if (!SimpleArgOp.getValue())
5539         return false;
5540       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5541         return false;
5542       return unionAssumed(*SimpleArgOp);
5543     };
5544 
5545     // Generate a answer specific to a call site context.
5546     bool Success;
5547     bool UsedAssumedInformation = false;
5548     if (hasCallBaseContext() &&
5549         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5550       Success = PredForCallSite(
5551           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5552     else
5553       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5554                                        UsedAssumedInformation);
5555 
5556     if (!Success)
5557       if (!askSimplifiedValueForOtherAAs(A))
5558         return indicatePessimisticFixpoint();
5559 
5560     // If a candicate was found in this update, return CHANGED.
5561     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5562                                                : ChangeStatus ::CHANGED;
5563   }
5564 
5565   /// See AbstractAttribute::trackStatistics()
5566   void trackStatistics() const override {
5567     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5568   }
5569 };
5570 
5571 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5572   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5573       : AAValueSimplifyImpl(IRP, A) {}
5574 
5575   /// See AAValueSimplify::getAssumedSimplifiedValue()
5576   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5577     if (!isValidState())
5578       return nullptr;
5579     return SimplifiedAssociatedValue;
5580   }
5581 
5582   /// See AbstractAttribute::updateImpl(...).
5583   ChangeStatus updateImpl(Attributor &A) override {
5584     auto Before = SimplifiedAssociatedValue;
5585 
5586     auto PredForReturned = [&](Value &V) {
5587       return checkAndUpdate(A, *this,
5588                             IRPosition::value(V, getCallBaseContext()));
5589     };
5590 
5591     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5592       if (!askSimplifiedValueForOtherAAs(A))
5593         return indicatePessimisticFixpoint();
5594 
5595     // If a candicate was found in this update, return CHANGED.
5596     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5597                                                : ChangeStatus ::CHANGED;
5598   }
5599 
5600   ChangeStatus manifest(Attributor &A) override {
5601     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5602     if (!A.isRunOn(*getAnchorScope()))
5603       return Changed;
5604 
5605     assert(!hasCallBaseContext() && "Should never manifest a simplified "
5606                                     "function return with call base context!");
5607 
5608     if (auto *NewV = getReplacementValue(A)) {
5609       auto PredForReturned =
5610           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5611             for (ReturnInst *RI : RetInsts) {
5612               Value *ReturnedVal = RI->getReturnValue();
5613               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5614                 return true;
5615               assert(RI->getFunction() == getAnchorScope() &&
5616                      "ReturnInst in wrong function!");
5617               LLVM_DEBUG(dbgs()
5618                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5619                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5620               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5621                 Changed = ChangeStatus::CHANGED;
5622             }
5623             return true;
5624           };
5625       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5626     }
5627 
5628     return Changed | AAValueSimplify::manifest(A);
5629   }
5630 
5631   /// See AbstractAttribute::trackStatistics()
5632   void trackStatistics() const override {
5633     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5634   }
5635 };
5636 
5637 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5638   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5639       : AAValueSimplifyImpl(IRP, A) {}
5640 
5641   /// See AbstractAttribute::initialize(...).
5642   void initialize(Attributor &A) override {
5643     AAValueSimplifyImpl::initialize(A);
5644     Value &V = getAnchorValue();
5645 
5646     // TODO: add other stuffs
5647     if (isa<Constant>(V))
5648       indicatePessimisticFixpoint();
5649   }
5650 
5651   /// Check if \p Cmp is a comparison we can simplify.
5652   ///
5653   /// We handle multiple cases, one in which at least one operand is an
5654   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5655   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5656   /// will be updated.
5657   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5658     auto Union = [&](Value &V) {
5659       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5660           SimplifiedAssociatedValue, &V, V.getType());
5661       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5662     };
5663 
5664     Value *LHS = Cmp.getOperand(0);
5665     Value *RHS = Cmp.getOperand(1);
5666 
5667     // Simplify the operands first.
5668     bool UsedAssumedInformation = false;
5669     const auto &SimplifiedLHS =
5670         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5671                                *this, UsedAssumedInformation);
5672     if (!SimplifiedLHS.hasValue())
5673       return true;
5674     if (!SimplifiedLHS.getValue())
5675       return false;
5676     LHS = *SimplifiedLHS;
5677 
5678     const auto &SimplifiedRHS =
5679         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5680                                *this, UsedAssumedInformation);
5681     if (!SimplifiedRHS.hasValue())
5682       return true;
5683     if (!SimplifiedRHS.getValue())
5684       return false;
5685     RHS = *SimplifiedRHS;
5686 
5687     LLVMContext &Ctx = Cmp.getContext();
5688     // Handle the trivial case first in which we don't even need to think about
5689     // null or non-null.
5690     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5691       Constant *NewVal =
5692           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5693       if (!Union(*NewVal))
5694         return false;
5695       if (!UsedAssumedInformation)
5696         indicateOptimisticFixpoint();
5697       return true;
5698     }
5699 
5700     // From now on we only handle equalities (==, !=).
5701     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5702     if (!ICmp || !ICmp->isEquality())
5703       return false;
5704 
5705     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5706     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5707     if (!LHSIsNull && !RHSIsNull)
5708       return false;
5709 
5710     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5711     // non-nullptr operand and if we assume it's non-null we can conclude the
5712     // result of the comparison.
5713     assert((LHSIsNull || RHSIsNull) &&
5714            "Expected nullptr versus non-nullptr comparison at this point");
5715 
5716     // The index is the operand that we assume is not null.
5717     unsigned PtrIdx = LHSIsNull;
5718     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5719         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5720         DepClassTy::REQUIRED);
5721     if (!PtrNonNullAA.isAssumedNonNull())
5722       return false;
5723     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5724 
5725     // The new value depends on the predicate, true for != and false for ==.
5726     Constant *NewVal = ConstantInt::get(
5727         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5728     if (!Union(*NewVal))
5729       return false;
5730 
5731     if (!UsedAssumedInformation)
5732       indicateOptimisticFixpoint();
5733 
5734     return true;
5735   }
5736 
5737   bool updateWithLoad(Attributor &A, LoadInst &L) {
5738     auto Union = [&](Value &V) {
5739       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5740           SimplifiedAssociatedValue, &V, L.getType());
5741       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5742     };
5743     return handleLoad(A, *this, L, Union);
5744   }
5745 
5746   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5747   /// simplify any operand of the instruction \p I. Return true if successful,
5748   /// in that case SimplifiedAssociatedValue will be updated.
5749   bool handleGenericInst(Attributor &A, Instruction &I) {
5750     bool SomeSimplified = false;
5751     bool UsedAssumedInformation = false;
5752 
5753     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5754     int Idx = 0;
5755     for (Value *Op : I.operands()) {
5756       const auto &SimplifiedOp =
5757           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5758                                  *this, UsedAssumedInformation);
5759       // If we are not sure about any operand we are not sure about the entire
5760       // instruction, we'll wait.
5761       if (!SimplifiedOp.hasValue())
5762         return true;
5763 
5764       if (SimplifiedOp.getValue())
5765         NewOps[Idx] = SimplifiedOp.getValue();
5766       else
5767         NewOps[Idx] = Op;
5768 
5769       SomeSimplified |= (NewOps[Idx] != Op);
5770       ++Idx;
5771     }
5772 
5773     // We won't bother with the InstSimplify interface if we didn't simplify any
5774     // operand ourselves.
5775     if (!SomeSimplified)
5776       return false;
5777 
5778     InformationCache &InfoCache = A.getInfoCache();
5779     Function *F = I.getFunction();
5780     const auto *DT =
5781         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5782     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5783     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5784     OptimizationRemarkEmitter *ORE = nullptr;
5785 
5786     const DataLayout &DL = I.getModule()->getDataLayout();
5787     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5788     if (Value *SimplifiedI =
5789             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5790       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5791           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5792       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5793     }
5794     return false;
5795   }
5796 
5797   /// See AbstractAttribute::updateImpl(...).
5798   ChangeStatus updateImpl(Attributor &A) override {
5799     auto Before = SimplifiedAssociatedValue;
5800 
5801     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5802                             bool Stripped) -> bool {
5803       auto &AA = A.getAAFor<AAValueSimplify>(
5804           *this, IRPosition::value(V, getCallBaseContext()),
5805           DepClassTy::REQUIRED);
5806       if (!Stripped && this == &AA) {
5807 
5808         if (auto *I = dyn_cast<Instruction>(&V)) {
5809           if (auto *LI = dyn_cast<LoadInst>(&V))
5810             if (updateWithLoad(A, *LI))
5811               return true;
5812           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5813             if (handleCmp(A, *Cmp))
5814               return true;
5815           if (handleGenericInst(A, *I))
5816             return true;
5817         }
5818         // TODO: Look the instruction and check recursively.
5819 
5820         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5821                           << "\n");
5822         return false;
5823       }
5824       return checkAndUpdate(A, *this,
5825                             IRPosition::value(V, getCallBaseContext()));
5826     };
5827 
5828     bool Dummy = false;
5829     bool UsedAssumedInformation = false;
5830     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5831                                      VisitValueCB, getCtxI(),
5832                                      UsedAssumedInformation,
5833                                      /* UseValueSimplify */ false))
5834       if (!askSimplifiedValueForOtherAAs(A))
5835         return indicatePessimisticFixpoint();
5836 
5837     // If a candicate was found in this update, return CHANGED.
5838     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5839                                                : ChangeStatus ::CHANGED;
5840   }
5841 
5842   /// See AbstractAttribute::trackStatistics()
5843   void trackStatistics() const override {
5844     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5845   }
5846 };
5847 
5848 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5849   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5850       : AAValueSimplifyImpl(IRP, A) {}
5851 
5852   /// See AbstractAttribute::initialize(...).
5853   void initialize(Attributor &A) override {
5854     SimplifiedAssociatedValue = nullptr;
5855     indicateOptimisticFixpoint();
5856   }
5857   /// See AbstractAttribute::initialize(...).
5858   ChangeStatus updateImpl(Attributor &A) override {
5859     llvm_unreachable(
5860         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5861   }
5862   /// See AbstractAttribute::trackStatistics()
5863   void trackStatistics() const override {
5864     STATS_DECLTRACK_FN_ATTR(value_simplify)
5865   }
5866 };
5867 
5868 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5869   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5870       : AAValueSimplifyFunction(IRP, A) {}
5871   /// See AbstractAttribute::trackStatistics()
5872   void trackStatistics() const override {
5873     STATS_DECLTRACK_CS_ATTR(value_simplify)
5874   }
5875 };
5876 
5877 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5878   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5879       : AAValueSimplifyImpl(IRP, A) {}
5880 
5881   void initialize(Attributor &A) override {
5882     AAValueSimplifyImpl::initialize(A);
5883     if (!getAssociatedFunction())
5884       indicatePessimisticFixpoint();
5885   }
5886 
5887   /// See AbstractAttribute::updateImpl(...).
5888   ChangeStatus updateImpl(Attributor &A) override {
5889     auto Before = SimplifiedAssociatedValue;
5890     auto &RetAA = A.getAAFor<AAReturnedValues>(
5891         *this, IRPosition::function(*getAssociatedFunction()),
5892         DepClassTy::REQUIRED);
5893     auto PredForReturned =
5894         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5895           bool UsedAssumedInformation = false;
5896           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5897               &RetVal, *cast<CallBase>(getCtxI()), *this,
5898               UsedAssumedInformation);
5899           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5900               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5901           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5902         };
5903     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5904       if (!askSimplifiedValueForOtherAAs(A))
5905         return indicatePessimisticFixpoint();
5906     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5907                                                : ChangeStatus ::CHANGED;
5908   }
5909 
5910   void trackStatistics() const override {
5911     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5912   }
5913 };
5914 
5915 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5916   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5917       : AAValueSimplifyFloating(IRP, A) {}
5918 
5919   /// See AbstractAttribute::manifest(...).
5920   ChangeStatus manifest(Attributor &A) override {
5921     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5922 
5923     if (auto *NewV = getReplacementValue(A)) {
5924       Use &U = cast<CallBase>(&getAnchorValue())
5925                    ->getArgOperandUse(getCallSiteArgNo());
5926       if (A.changeUseAfterManifest(U, *NewV))
5927         Changed = ChangeStatus::CHANGED;
5928     }
5929 
5930     return Changed | AAValueSimplify::manifest(A);
5931   }
5932 
5933   void trackStatistics() const override {
5934     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5935   }
5936 };
5937 } // namespace
5938 
5939 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5940 namespace {
5941 struct AAHeapToStackFunction final : public AAHeapToStack {
5942 
5943   struct AllocationInfo {
5944     /// The call that allocates the memory.
5945     CallBase *const CB;
5946 
5947     /// The library function id for the allocation.
5948     LibFunc LibraryFunctionId = NotLibFunc;
5949 
5950     /// The status wrt. a rewrite.
5951     enum {
5952       STACK_DUE_TO_USE,
5953       STACK_DUE_TO_FREE,
5954       INVALID,
5955     } Status = STACK_DUE_TO_USE;
5956 
5957     /// Flag to indicate if we encountered a use that might free this allocation
5958     /// but which is not in the deallocation infos.
5959     bool HasPotentiallyFreeingUnknownUses = false;
5960 
5961     /// The set of free calls that use this allocation.
5962     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5963   };
5964 
5965   struct DeallocationInfo {
5966     /// The call that deallocates the memory.
5967     CallBase *const CB;
5968 
5969     /// Flag to indicate if we don't know all objects this deallocation might
5970     /// free.
5971     bool MightFreeUnknownObjects = false;
5972 
5973     /// The set of allocation calls that are potentially freed.
5974     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5975   };
5976 
5977   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5978       : AAHeapToStack(IRP, A) {}
5979 
5980   ~AAHeapToStackFunction() {
5981     // Ensure we call the destructor so we release any memory allocated in the
5982     // sets.
5983     for (auto &It : AllocationInfos)
5984       It.getSecond()->~AllocationInfo();
5985     for (auto &It : DeallocationInfos)
5986       It.getSecond()->~DeallocationInfo();
5987   }
5988 
5989   void initialize(Attributor &A) override {
5990     AAHeapToStack::initialize(A);
5991 
5992     const Function *F = getAnchorScope();
5993     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5994 
5995     auto AllocationIdentifierCB = [&](Instruction &I) {
5996       CallBase *CB = dyn_cast<CallBase>(&I);
5997       if (!CB)
5998         return true;
5999       if (isFreeCall(CB, TLI)) {
6000         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
6001         return true;
6002       }
6003       // To do heap to stack, we need to know that the allocation itself is
6004       // removable once uses are rewritten, and that we can initialize the
6005       // alloca to the same pattern as the original allocation result.
6006       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
6007         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
6008         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
6009           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
6010           AllocationInfos[CB] = AI;
6011           TLI->getLibFunc(*CB, AI->LibraryFunctionId);
6012         }
6013       }
6014       return true;
6015     };
6016 
6017     bool UsedAssumedInformation = false;
6018     bool Success = A.checkForAllCallLikeInstructions(
6019         AllocationIdentifierCB, *this, UsedAssumedInformation,
6020         /* CheckBBLivenessOnly */ false,
6021         /* CheckPotentiallyDead */ true);
6022     (void)Success;
6023     assert(Success && "Did not expect the call base visit callback to fail!");
6024 
6025     Attributor::SimplifictionCallbackTy SCB =
6026         [](const IRPosition &, const AbstractAttribute *,
6027            bool &) -> Optional<Value *> { return nullptr; };
6028     for (const auto &It : AllocationInfos)
6029       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6030                                        SCB);
6031     for (const auto &It : DeallocationInfos)
6032       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6033                                        SCB);
6034   }
6035 
6036   const std::string getAsStr() const override {
6037     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
6038     for (const auto &It : AllocationInfos) {
6039       if (It.second->Status == AllocationInfo::INVALID)
6040         ++NumInvalidMallocs;
6041       else
6042         ++NumH2SMallocs;
6043     }
6044     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
6045            std::to_string(NumInvalidMallocs);
6046   }
6047 
6048   /// See AbstractAttribute::trackStatistics().
6049   void trackStatistics() const override {
6050     STATS_DECL(
6051         MallocCalls, Function,
6052         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
6053     for (auto &It : AllocationInfos)
6054       if (It.second->Status != AllocationInfo::INVALID)
6055         ++BUILD_STAT_NAME(MallocCalls, Function);
6056   }
6057 
6058   bool isAssumedHeapToStack(const CallBase &CB) const override {
6059     if (isValidState())
6060       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
6061         return AI->Status != AllocationInfo::INVALID;
6062     return false;
6063   }
6064 
6065   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
6066     if (!isValidState())
6067       return false;
6068 
6069     for (auto &It : AllocationInfos) {
6070       AllocationInfo &AI = *It.second;
6071       if (AI.Status == AllocationInfo::INVALID)
6072         continue;
6073 
6074       if (AI.PotentialFreeCalls.count(&CB))
6075         return true;
6076     }
6077 
6078     return false;
6079   }
6080 
6081   ChangeStatus manifest(Attributor &A) override {
6082     assert(getState().isValidState() &&
6083            "Attempted to manifest an invalid state!");
6084 
6085     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
6086     Function *F = getAnchorScope();
6087     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6088 
6089     for (auto &It : AllocationInfos) {
6090       AllocationInfo &AI = *It.second;
6091       if (AI.Status == AllocationInfo::INVALID)
6092         continue;
6093 
6094       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
6095         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
6096         A.deleteAfterManifest(*FreeCall);
6097         HasChanged = ChangeStatus::CHANGED;
6098       }
6099 
6100       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
6101                         << "\n");
6102 
6103       auto Remark = [&](OptimizationRemark OR) {
6104         LibFunc IsAllocShared;
6105         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6106           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6107             return OR << "Moving globalized variable to the stack.";
6108         return OR << "Moving memory allocation from the heap to the stack.";
6109       };
6110       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6111         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6112       else
6113         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6114 
6115       const DataLayout &DL = A.getInfoCache().getDL();
6116       Value *Size;
6117       Optional<APInt> SizeAPI = getSize(A, *this, AI);
6118       if (SizeAPI.hasValue()) {
6119         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6120       } else {
6121         LLVMContext &Ctx = AI.CB->getContext();
6122         ObjectSizeOpts Opts;
6123         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6124         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6125         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6126                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6127         Size = SizeOffsetPair.first;
6128       }
6129 
6130       Align Alignment(1);
6131       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6132         Alignment = max(Alignment, RetAlign);
6133       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6134         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6135         assert(AlignmentAPI.hasValue() &&
6136                "Expected an alignment during manifest!");
6137         Alignment =
6138             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
6139       }
6140 
6141       // TODO: Hoist the alloca towards the function entry.
6142       unsigned AS = DL.getAllocaAddrSpace();
6143       Instruction *Alloca = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
6144                                            Size, Alignment, "", AI.CB);
6145 
6146       if (Alloca->getType() != AI.CB->getType())
6147         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6148             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6149 
6150       auto *I8Ty = Type::getInt8Ty(F->getContext());
6151       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6152       assert(InitVal &&
6153              "Must be able to materialize initial memory state of allocation");
6154 
6155       A.changeValueAfterManifest(*AI.CB, *Alloca);
6156 
6157       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6158         auto *NBB = II->getNormalDest();
6159         BranchInst::Create(NBB, AI.CB->getParent());
6160         A.deleteAfterManifest(*AI.CB);
6161       } else {
6162         A.deleteAfterManifest(*AI.CB);
6163       }
6164 
6165       // Initialize the alloca with the same value as used by the allocation
6166       // function.  We can skip undef as the initial value of an alloc is
6167       // undef, and the memset would simply end up being DSEd.
6168       if (!isa<UndefValue>(InitVal)) {
6169         IRBuilder<> Builder(Alloca->getNextNode());
6170         // TODO: Use alignment above if align!=1
6171         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6172       }
6173       HasChanged = ChangeStatus::CHANGED;
6174     }
6175 
6176     return HasChanged;
6177   }
6178 
6179   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6180                            Value &V) {
6181     bool UsedAssumedInformation = false;
6182     Optional<Constant *> SimpleV =
6183         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6184     if (!SimpleV.hasValue())
6185       return APInt(64, 0);
6186     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6187       return CI->getValue();
6188     return llvm::None;
6189   }
6190 
6191   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6192                           AllocationInfo &AI) {
6193     auto Mapper = [&](const Value *V) -> const Value * {
6194       bool UsedAssumedInformation = false;
6195       if (Optional<Constant *> SimpleV =
6196               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6197         if (*SimpleV)
6198           return *SimpleV;
6199       return V;
6200     };
6201 
6202     const Function *F = getAnchorScope();
6203     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6204     return getAllocSize(AI.CB, TLI, Mapper);
6205   }
6206 
6207   /// Collection of all malloc-like calls in a function with associated
6208   /// information.
6209   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6210 
6211   /// Collection of all free-like calls in a function with associated
6212   /// information.
6213   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6214 
6215   ChangeStatus updateImpl(Attributor &A) override;
6216 };
6217 
6218 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6219   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6220   const Function *F = getAnchorScope();
6221   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6222 
6223   const auto &LivenessAA =
6224       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6225 
6226   MustBeExecutedContextExplorer &Explorer =
6227       A.getInfoCache().getMustBeExecutedContextExplorer();
6228 
6229   bool StackIsAccessibleByOtherThreads =
6230       A.getInfoCache().stackIsAccessibleByOtherThreads();
6231 
6232   // Flag to ensure we update our deallocation information at most once per
6233   // updateImpl call and only if we use the free check reasoning.
6234   bool HasUpdatedFrees = false;
6235 
6236   auto UpdateFrees = [&]() {
6237     HasUpdatedFrees = true;
6238 
6239     for (auto &It : DeallocationInfos) {
6240       DeallocationInfo &DI = *It.second;
6241       // For now we cannot use deallocations that have unknown inputs, skip
6242       // them.
6243       if (DI.MightFreeUnknownObjects)
6244         continue;
6245 
6246       // No need to analyze dead calls, ignore them instead.
6247       bool UsedAssumedInformation = false;
6248       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6249                           /* CheckBBLivenessOnly */ true))
6250         continue;
6251 
6252       // Use the optimistic version to get the freed objects, ignoring dead
6253       // branches etc.
6254       SmallVector<Value *, 8> Objects;
6255       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6256                                            *this, DI.CB,
6257                                            UsedAssumedInformation)) {
6258         LLVM_DEBUG(
6259             dbgs()
6260             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6261         DI.MightFreeUnknownObjects = true;
6262         continue;
6263       }
6264 
6265       // Check each object explicitly.
6266       for (auto *Obj : Objects) {
6267         // Free of null and undef can be ignored as no-ops (or UB in the latter
6268         // case).
6269         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6270           continue;
6271 
6272         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6273         if (!ObjCB) {
6274           LLVM_DEBUG(dbgs()
6275                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6276           DI.MightFreeUnknownObjects = true;
6277           continue;
6278         }
6279 
6280         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6281         if (!AI) {
6282           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6283                             << "\n");
6284           DI.MightFreeUnknownObjects = true;
6285           continue;
6286         }
6287 
6288         DI.PotentialAllocationCalls.insert(ObjCB);
6289       }
6290     }
6291   };
6292 
6293   auto FreeCheck = [&](AllocationInfo &AI) {
6294     // If the stack is not accessible by other threads, the "must-free" logic
6295     // doesn't apply as the pointer could be shared and needs to be places in
6296     // "shareable" memory.
6297     if (!StackIsAccessibleByOtherThreads) {
6298       auto &NoSyncAA =
6299           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6300       if (!NoSyncAA.isAssumedNoSync()) {
6301         LLVM_DEBUG(
6302             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6303                       "other threads and function is not nosync:\n");
6304         return false;
6305       }
6306     }
6307     if (!HasUpdatedFrees)
6308       UpdateFrees();
6309 
6310     // TODO: Allow multi exit functions that have different free calls.
6311     if (AI.PotentialFreeCalls.size() != 1) {
6312       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6313                         << AI.PotentialFreeCalls.size() << "\n");
6314       return false;
6315     }
6316     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6317     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6318     if (!DI) {
6319       LLVM_DEBUG(
6320           dbgs() << "[H2S] unique free call was not known as deallocation call "
6321                  << *UniqueFree << "\n");
6322       return false;
6323     }
6324     if (DI->MightFreeUnknownObjects) {
6325       LLVM_DEBUG(
6326           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6327       return false;
6328     }
6329     if (DI->PotentialAllocationCalls.size() > 1) {
6330       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6331                         << DI->PotentialAllocationCalls.size()
6332                         << " different allocations\n");
6333       return false;
6334     }
6335     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6336       LLVM_DEBUG(
6337           dbgs()
6338           << "[H2S] unique free call not known to free this allocation but "
6339           << **DI->PotentialAllocationCalls.begin() << "\n");
6340       return false;
6341     }
6342     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6343     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6344       LLVM_DEBUG(
6345           dbgs()
6346           << "[H2S] unique free call might not be executed with the allocation "
6347           << *UniqueFree << "\n");
6348       return false;
6349     }
6350     return true;
6351   };
6352 
6353   auto UsesCheck = [&](AllocationInfo &AI) {
6354     bool ValidUsesOnly = true;
6355 
6356     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6357       Instruction *UserI = cast<Instruction>(U.getUser());
6358       if (isa<LoadInst>(UserI))
6359         return true;
6360       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6361         if (SI->getValueOperand() == U.get()) {
6362           LLVM_DEBUG(dbgs()
6363                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6364           ValidUsesOnly = false;
6365         } else {
6366           // A store into the malloc'ed memory is fine.
6367         }
6368         return true;
6369       }
6370       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6371         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6372           return true;
6373         if (DeallocationInfos.count(CB)) {
6374           AI.PotentialFreeCalls.insert(CB);
6375           return true;
6376         }
6377 
6378         unsigned ArgNo = CB->getArgOperandNo(&U);
6379 
6380         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6381             *this, IRPosition::callsite_argument(*CB, ArgNo),
6382             DepClassTy::OPTIONAL);
6383 
6384         // If a call site argument use is nofree, we are fine.
6385         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6386             *this, IRPosition::callsite_argument(*CB, ArgNo),
6387             DepClassTy::OPTIONAL);
6388 
6389         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6390         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6391         if (MaybeCaptured ||
6392             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6393              MaybeFreed)) {
6394           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6395 
6396           // Emit a missed remark if this is missed OpenMP globalization.
6397           auto Remark = [&](OptimizationRemarkMissed ORM) {
6398             return ORM
6399                    << "Could not move globalized variable to the stack. "
6400                       "Variable is potentially captured in call. Mark "
6401                       "parameter as `__attribute__((noescape))` to override.";
6402           };
6403 
6404           if (ValidUsesOnly &&
6405               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6406             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6407 
6408           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6409           ValidUsesOnly = false;
6410         }
6411         return true;
6412       }
6413 
6414       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6415           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6416         Follow = true;
6417         return true;
6418       }
6419       // Unknown user for which we can not track uses further (in a way that
6420       // makes sense).
6421       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6422       ValidUsesOnly = false;
6423       return true;
6424     };
6425     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6426       return false;
6427     return ValidUsesOnly;
6428   };
6429 
6430   // The actual update starts here. We look at all allocations and depending on
6431   // their status perform the appropriate check(s).
6432   for (auto &It : AllocationInfos) {
6433     AllocationInfo &AI = *It.second;
6434     if (AI.Status == AllocationInfo::INVALID)
6435       continue;
6436 
6437     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6438       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6439       if (!APAlign) {
6440         // Can't generate an alloca which respects the required alignment
6441         // on the allocation.
6442         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6443                           << "\n");
6444         AI.Status = AllocationInfo::INVALID;
6445         Changed = ChangeStatus::CHANGED;
6446         continue;
6447       } else {
6448         if (APAlign->ugt(llvm::Value::MaximumAlignment) || !APAlign->isPowerOf2()) {
6449           LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign << "\n");
6450           AI.Status = AllocationInfo::INVALID;
6451           Changed = ChangeStatus::CHANGED;
6452           continue;
6453         }
6454       }
6455     }
6456 
6457     if (MaxHeapToStackSize != -1) {
6458       Optional<APInt> Size = getSize(A, *this, AI);
6459       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6460         LLVM_DEBUG({
6461           if (!Size.hasValue())
6462             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6463           else
6464             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6465                    << MaxHeapToStackSize << "\n";
6466         });
6467 
6468         AI.Status = AllocationInfo::INVALID;
6469         Changed = ChangeStatus::CHANGED;
6470         continue;
6471       }
6472     }
6473 
6474     switch (AI.Status) {
6475     case AllocationInfo::STACK_DUE_TO_USE:
6476       if (UsesCheck(AI))
6477         continue;
6478       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6479       LLVM_FALLTHROUGH;
6480     case AllocationInfo::STACK_DUE_TO_FREE:
6481       if (FreeCheck(AI))
6482         continue;
6483       AI.Status = AllocationInfo::INVALID;
6484       Changed = ChangeStatus::CHANGED;
6485       continue;
6486     case AllocationInfo::INVALID:
6487       llvm_unreachable("Invalid allocations should never reach this point!");
6488     };
6489   }
6490 
6491   return Changed;
6492 }
6493 } // namespace
6494 
6495 /// ----------------------- Privatizable Pointers ------------------------------
6496 namespace {
6497 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6498   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6499       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6500 
6501   ChangeStatus indicatePessimisticFixpoint() override {
6502     AAPrivatizablePtr::indicatePessimisticFixpoint();
6503     PrivatizableType = nullptr;
6504     return ChangeStatus::CHANGED;
6505   }
6506 
6507   /// Identify the type we can chose for a private copy of the underlying
6508   /// argument. None means it is not clear yet, nullptr means there is none.
6509   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6510 
6511   /// Return a privatizable type that encloses both T0 and T1.
6512   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6513   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6514     if (!T0.hasValue())
6515       return T1;
6516     if (!T1.hasValue())
6517       return T0;
6518     if (T0 == T1)
6519       return T0;
6520     return nullptr;
6521   }
6522 
6523   Optional<Type *> getPrivatizableType() const override {
6524     return PrivatizableType;
6525   }
6526 
6527   const std::string getAsStr() const override {
6528     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6529   }
6530 
6531 protected:
6532   Optional<Type *> PrivatizableType;
6533 };
6534 
6535 // TODO: Do this for call site arguments (probably also other values) as well.
6536 
6537 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6538   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6539       : AAPrivatizablePtrImpl(IRP, A) {}
6540 
6541   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6542   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6543     // If this is a byval argument and we know all the call sites (so we can
6544     // rewrite them), there is no need to check them explicitly.
6545     bool UsedAssumedInformation = false;
6546     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6547         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6548                                true, UsedAssumedInformation))
6549       return getAssociatedValue().getType()->getPointerElementType();
6550 
6551     Optional<Type *> Ty;
6552     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6553 
6554     // Make sure the associated call site argument has the same type at all call
6555     // sites and it is an allocation we know is safe to privatize, for now that
6556     // means we only allow alloca instructions.
6557     // TODO: We can additionally analyze the accesses in the callee to  create
6558     //       the type from that information instead. That is a little more
6559     //       involved and will be done in a follow up patch.
6560     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6561       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6562       // Check if a coresponding argument was found or if it is one not
6563       // associated (which can happen for callback calls).
6564       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6565         return false;
6566 
6567       // Check that all call sites agree on a type.
6568       auto &PrivCSArgAA =
6569           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6570       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6571 
6572       LLVM_DEBUG({
6573         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6574         if (CSTy.hasValue() && CSTy.getValue())
6575           CSTy.getValue()->print(dbgs());
6576         else if (CSTy.hasValue())
6577           dbgs() << "<nullptr>";
6578         else
6579           dbgs() << "<none>";
6580       });
6581 
6582       Ty = combineTypes(Ty, CSTy);
6583 
6584       LLVM_DEBUG({
6585         dbgs() << " : New Type: ";
6586         if (Ty.hasValue() && Ty.getValue())
6587           Ty.getValue()->print(dbgs());
6588         else if (Ty.hasValue())
6589           dbgs() << "<nullptr>";
6590         else
6591           dbgs() << "<none>";
6592         dbgs() << "\n";
6593       });
6594 
6595       return !Ty.hasValue() || Ty.getValue();
6596     };
6597 
6598     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6599                                 UsedAssumedInformation))
6600       return nullptr;
6601     return Ty;
6602   }
6603 
6604   /// See AbstractAttribute::updateImpl(...).
6605   ChangeStatus updateImpl(Attributor &A) override {
6606     PrivatizableType = identifyPrivatizableType(A);
6607     if (!PrivatizableType.hasValue())
6608       return ChangeStatus::UNCHANGED;
6609     if (!PrivatizableType.getValue())
6610       return indicatePessimisticFixpoint();
6611 
6612     // The dependence is optional so we don't give up once we give up on the
6613     // alignment.
6614     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6615                         DepClassTy::OPTIONAL);
6616 
6617     // Avoid arguments with padding for now.
6618     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6619         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6620                                                 A.getInfoCache().getDL())) {
6621       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6622       return indicatePessimisticFixpoint();
6623     }
6624 
6625     // Collect the types that will replace the privatizable type in the function
6626     // signature.
6627     SmallVector<Type *, 16> ReplacementTypes;
6628     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6629 
6630     // Verify callee and caller agree on how the promoted argument would be
6631     // passed.
6632     Function &Fn = *getIRPosition().getAnchorScope();
6633     const auto *TTI =
6634         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6635     if (!TTI) {
6636       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6637                         << Fn.getName() << "\n");
6638       return indicatePessimisticFixpoint();
6639     }
6640 
6641     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6642       CallBase *CB = ACS.getInstruction();
6643       return TTI->areTypesABICompatible(
6644           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6645     };
6646     bool UsedAssumedInformation = false;
6647     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6648                                 UsedAssumedInformation)) {
6649       LLVM_DEBUG(
6650           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6651                  << Fn.getName() << "\n");
6652       return indicatePessimisticFixpoint();
6653     }
6654 
6655     // Register a rewrite of the argument.
6656     Argument *Arg = getAssociatedArgument();
6657     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6658       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6659       return indicatePessimisticFixpoint();
6660     }
6661 
6662     unsigned ArgNo = Arg->getArgNo();
6663 
6664     // Helper to check if for the given call site the associated argument is
6665     // passed to a callback where the privatization would be different.
6666     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6667       SmallVector<const Use *, 4> CallbackUses;
6668       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6669       for (const Use *U : CallbackUses) {
6670         AbstractCallSite CBACS(U);
6671         assert(CBACS && CBACS.isCallbackCall());
6672         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6673           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6674 
6675           LLVM_DEBUG({
6676             dbgs()
6677                 << "[AAPrivatizablePtr] Argument " << *Arg
6678                 << "check if can be privatized in the context of its parent ("
6679                 << Arg->getParent()->getName()
6680                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6681                    "callback ("
6682                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6683                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6684                 << CBACS.getCallArgOperand(CBArg) << " vs "
6685                 << CB.getArgOperand(ArgNo) << "\n"
6686                 << "[AAPrivatizablePtr] " << CBArg << " : "
6687                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6688           });
6689 
6690           if (CBArgNo != int(ArgNo))
6691             continue;
6692           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6693               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6694           if (CBArgPrivAA.isValidState()) {
6695             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6696             if (!CBArgPrivTy.hasValue())
6697               continue;
6698             if (CBArgPrivTy.getValue() == PrivatizableType)
6699               continue;
6700           }
6701 
6702           LLVM_DEBUG({
6703             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6704                    << " cannot be privatized in the context of its parent ("
6705                    << Arg->getParent()->getName()
6706                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6707                       "callback ("
6708                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6709                    << ").\n[AAPrivatizablePtr] for which the argument "
6710                       "privatization is not compatible.\n";
6711           });
6712           return false;
6713         }
6714       }
6715       return true;
6716     };
6717 
6718     // Helper to check if for the given call site the associated argument is
6719     // passed to a direct call where the privatization would be different.
6720     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6721       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6722       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6723       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6724              "Expected a direct call operand for callback call operand");
6725 
6726       LLVM_DEBUG({
6727         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6728                << " check if be privatized in the context of its parent ("
6729                << Arg->getParent()->getName()
6730                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6731                   "direct call of ("
6732                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6733                << ").\n";
6734       });
6735 
6736       Function *DCCallee = DC->getCalledFunction();
6737       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6738         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6739             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6740             DepClassTy::REQUIRED);
6741         if (DCArgPrivAA.isValidState()) {
6742           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6743           if (!DCArgPrivTy.hasValue())
6744             return true;
6745           if (DCArgPrivTy.getValue() == PrivatizableType)
6746             return true;
6747         }
6748       }
6749 
6750       LLVM_DEBUG({
6751         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6752                << " cannot be privatized in the context of its parent ("
6753                << Arg->getParent()->getName()
6754                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6755                   "direct call of ("
6756                << ACS.getInstruction()->getCalledFunction()->getName()
6757                << ").\n[AAPrivatizablePtr] for which the argument "
6758                   "privatization is not compatible.\n";
6759       });
6760       return false;
6761     };
6762 
6763     // Helper to check if the associated argument is used at the given abstract
6764     // call site in a way that is incompatible with the privatization assumed
6765     // here.
6766     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6767       if (ACS.isDirectCall())
6768         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6769       if (ACS.isCallbackCall())
6770         return IsCompatiblePrivArgOfDirectCS(ACS);
6771       return false;
6772     };
6773 
6774     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6775                                 UsedAssumedInformation))
6776       return indicatePessimisticFixpoint();
6777 
6778     return ChangeStatus::UNCHANGED;
6779   }
6780 
6781   /// Given a type to private \p PrivType, collect the constituates (which are
6782   /// used) in \p ReplacementTypes.
6783   static void
6784   identifyReplacementTypes(Type *PrivType,
6785                            SmallVectorImpl<Type *> &ReplacementTypes) {
6786     // TODO: For now we expand the privatization type to the fullest which can
6787     //       lead to dead arguments that need to be removed later.
6788     assert(PrivType && "Expected privatizable type!");
6789 
6790     // Traverse the type, extract constituate types on the outermost level.
6791     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6792       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6793         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6794     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6795       ReplacementTypes.append(PrivArrayType->getNumElements(),
6796                               PrivArrayType->getElementType());
6797     } else {
6798       ReplacementTypes.push_back(PrivType);
6799     }
6800   }
6801 
6802   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6803   /// The values needed are taken from the arguments of \p F starting at
6804   /// position \p ArgNo.
6805   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6806                                    unsigned ArgNo, Instruction &IP) {
6807     assert(PrivType && "Expected privatizable type!");
6808 
6809     IRBuilder<NoFolder> IRB(&IP);
6810     const DataLayout &DL = F.getParent()->getDataLayout();
6811 
6812     // Traverse the type, build GEPs and stores.
6813     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6814       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6815       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6816         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6817         Value *Ptr =
6818             constructPointer(PointeeTy, PrivType, &Base,
6819                              PrivStructLayout->getElementOffset(u), IRB, DL);
6820         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6821       }
6822     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6823       Type *PointeeTy = PrivArrayType->getElementType();
6824       Type *PointeePtrTy = PointeeTy->getPointerTo();
6825       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6826       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6827         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6828                                       u * PointeeTySize, IRB, DL);
6829         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6830       }
6831     } else {
6832       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6833     }
6834   }
6835 
6836   /// Extract values from \p Base according to the type \p PrivType at the
6837   /// call position \p ACS. The values are appended to \p ReplacementValues.
6838   void createReplacementValues(Align Alignment, Type *PrivType,
6839                                AbstractCallSite ACS, Value *Base,
6840                                SmallVectorImpl<Value *> &ReplacementValues) {
6841     assert(Base && "Expected base value!");
6842     assert(PrivType && "Expected privatizable type!");
6843     Instruction *IP = ACS.getInstruction();
6844 
6845     IRBuilder<NoFolder> IRB(IP);
6846     const DataLayout &DL = IP->getModule()->getDataLayout();
6847 
6848     Type *PrivPtrType = PrivType->getPointerTo();
6849     if (Base->getType() != PrivPtrType)
6850       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6851           Base, PrivPtrType, "", ACS.getInstruction());
6852 
6853     // Traverse the type, build GEPs and loads.
6854     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6855       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6856       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6857         Type *PointeeTy = PrivStructType->getElementType(u);
6858         Value *Ptr =
6859             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6860                              PrivStructLayout->getElementOffset(u), IRB, DL);
6861         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6862         L->setAlignment(Alignment);
6863         ReplacementValues.push_back(L);
6864       }
6865     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6866       Type *PointeeTy = PrivArrayType->getElementType();
6867       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6868       Type *PointeePtrTy = PointeeTy->getPointerTo();
6869       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6870         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6871                                       u * PointeeTySize, IRB, DL);
6872         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6873         L->setAlignment(Alignment);
6874         ReplacementValues.push_back(L);
6875       }
6876     } else {
6877       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6878       L->setAlignment(Alignment);
6879       ReplacementValues.push_back(L);
6880     }
6881   }
6882 
6883   /// See AbstractAttribute::manifest(...)
6884   ChangeStatus manifest(Attributor &A) override {
6885     if (!PrivatizableType.hasValue())
6886       return ChangeStatus::UNCHANGED;
6887     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6888 
6889     // Collect all tail calls in the function as we cannot allow new allocas to
6890     // escape into tail recursion.
6891     // TODO: Be smarter about new allocas escaping into tail calls.
6892     SmallVector<CallInst *, 16> TailCalls;
6893     bool UsedAssumedInformation = false;
6894     if (!A.checkForAllInstructions(
6895             [&](Instruction &I) {
6896               CallInst &CI = cast<CallInst>(I);
6897               if (CI.isTailCall())
6898                 TailCalls.push_back(&CI);
6899               return true;
6900             },
6901             *this, {Instruction::Call}, UsedAssumedInformation))
6902       return ChangeStatus::UNCHANGED;
6903 
6904     Argument *Arg = getAssociatedArgument();
6905     // Query AAAlign attribute for alignment of associated argument to
6906     // determine the best alignment of loads.
6907     const auto &AlignAA =
6908         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6909 
6910     // Callback to repair the associated function. A new alloca is placed at the
6911     // beginning and initialized with the values passed through arguments. The
6912     // new alloca replaces the use of the old pointer argument.
6913     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6914         [=](const Attributor::ArgumentReplacementInfo &ARI,
6915             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6916           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6917           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6918           const DataLayout &DL = IP->getModule()->getDataLayout();
6919           unsigned AS = DL.getAllocaAddrSpace();
6920           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), AS,
6921                                            Arg->getName() + ".priv", IP);
6922           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6923                                ArgIt->getArgNo(), *IP);
6924 
6925           if (AI->getType() != Arg->getType())
6926             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6927                 AI, Arg->getType(), "", IP);
6928           Arg->replaceAllUsesWith(AI);
6929 
6930           for (CallInst *CI : TailCalls)
6931             CI->setTailCall(false);
6932         };
6933 
6934     // Callback to repair a call site of the associated function. The elements
6935     // of the privatizable type are loaded prior to the call and passed to the
6936     // new function version.
6937     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6938         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6939                       AbstractCallSite ACS,
6940                       SmallVectorImpl<Value *> &NewArgOperands) {
6941           // When no alignment is specified for the load instruction,
6942           // natural alignment is assumed.
6943           createReplacementValues(
6944               assumeAligned(AlignAA.getAssumedAlign()),
6945               PrivatizableType.getValue(), ACS,
6946               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6947               NewArgOperands);
6948         };
6949 
6950     // Collect the types that will replace the privatizable type in the function
6951     // signature.
6952     SmallVector<Type *, 16> ReplacementTypes;
6953     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6954 
6955     // Register a rewrite of the argument.
6956     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6957                                            std::move(FnRepairCB),
6958                                            std::move(ACSRepairCB)))
6959       return ChangeStatus::CHANGED;
6960     return ChangeStatus::UNCHANGED;
6961   }
6962 
6963   /// See AbstractAttribute::trackStatistics()
6964   void trackStatistics() const override {
6965     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6966   }
6967 };
6968 
6969 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6970   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6971       : AAPrivatizablePtrImpl(IRP, A) {}
6972 
6973   /// See AbstractAttribute::initialize(...).
6974   virtual void initialize(Attributor &A) override {
6975     // TODO: We can privatize more than arguments.
6976     indicatePessimisticFixpoint();
6977   }
6978 
6979   ChangeStatus updateImpl(Attributor &A) override {
6980     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6981                      "updateImpl will not be called");
6982   }
6983 
6984   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6985   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6986     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6987     if (!Obj) {
6988       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6989       return nullptr;
6990     }
6991 
6992     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6993       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6994         if (CI->isOne())
6995           return AI->getAllocatedType();
6996     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6997       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6998           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6999       if (PrivArgAA.isAssumedPrivatizablePtr())
7000         return Obj->getType()->getPointerElementType();
7001     }
7002 
7003     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
7004                          "alloca nor privatizable argument: "
7005                       << *Obj << "!\n");
7006     return nullptr;
7007   }
7008 
7009   /// See AbstractAttribute::trackStatistics()
7010   void trackStatistics() const override {
7011     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
7012   }
7013 };
7014 
7015 struct AAPrivatizablePtrCallSiteArgument final
7016     : public AAPrivatizablePtrFloating {
7017   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
7018       : AAPrivatizablePtrFloating(IRP, A) {}
7019 
7020   /// See AbstractAttribute::initialize(...).
7021   void initialize(Attributor &A) override {
7022     if (getIRPosition().hasAttr(Attribute::ByVal))
7023       indicateOptimisticFixpoint();
7024   }
7025 
7026   /// See AbstractAttribute::updateImpl(...).
7027   ChangeStatus updateImpl(Attributor &A) override {
7028     PrivatizableType = identifyPrivatizableType(A);
7029     if (!PrivatizableType.hasValue())
7030       return ChangeStatus::UNCHANGED;
7031     if (!PrivatizableType.getValue())
7032       return indicatePessimisticFixpoint();
7033 
7034     const IRPosition &IRP = getIRPosition();
7035     auto &NoCaptureAA =
7036         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
7037     if (!NoCaptureAA.isAssumedNoCapture()) {
7038       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
7039       return indicatePessimisticFixpoint();
7040     }
7041 
7042     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
7043     if (!NoAliasAA.isAssumedNoAlias()) {
7044       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
7045       return indicatePessimisticFixpoint();
7046     }
7047 
7048     bool IsKnown;
7049     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
7050       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
7051       return indicatePessimisticFixpoint();
7052     }
7053 
7054     return ChangeStatus::UNCHANGED;
7055   }
7056 
7057   /// See AbstractAttribute::trackStatistics()
7058   void trackStatistics() const override {
7059     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
7060   }
7061 };
7062 
7063 struct AAPrivatizablePtrCallSiteReturned final
7064     : public AAPrivatizablePtrFloating {
7065   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
7066       : AAPrivatizablePtrFloating(IRP, A) {}
7067 
7068   /// See AbstractAttribute::initialize(...).
7069   void initialize(Attributor &A) override {
7070     // TODO: We can privatize more than arguments.
7071     indicatePessimisticFixpoint();
7072   }
7073 
7074   /// See AbstractAttribute::trackStatistics()
7075   void trackStatistics() const override {
7076     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
7077   }
7078 };
7079 
7080 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
7081   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
7082       : AAPrivatizablePtrFloating(IRP, A) {}
7083 
7084   /// See AbstractAttribute::initialize(...).
7085   void initialize(Attributor &A) override {
7086     // TODO: We can privatize more than arguments.
7087     indicatePessimisticFixpoint();
7088   }
7089 
7090   /// See AbstractAttribute::trackStatistics()
7091   void trackStatistics() const override {
7092     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
7093   }
7094 };
7095 } // namespace
7096 
7097 /// -------------------- Memory Behavior Attributes ----------------------------
7098 /// Includes read-none, read-only, and write-only.
7099 /// ----------------------------------------------------------------------------
7100 namespace {
7101 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
7102   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
7103       : AAMemoryBehavior(IRP, A) {}
7104 
7105   /// See AbstractAttribute::initialize(...).
7106   void initialize(Attributor &A) override {
7107     intersectAssumedBits(BEST_STATE);
7108     getKnownStateFromValue(getIRPosition(), getState());
7109     AAMemoryBehavior::initialize(A);
7110   }
7111 
7112   /// Return the memory behavior information encoded in the IR for \p IRP.
7113   static void getKnownStateFromValue(const IRPosition &IRP,
7114                                      BitIntegerState &State,
7115                                      bool IgnoreSubsumingPositions = false) {
7116     SmallVector<Attribute, 2> Attrs;
7117     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7118     for (const Attribute &Attr : Attrs) {
7119       switch (Attr.getKindAsEnum()) {
7120       case Attribute::ReadNone:
7121         State.addKnownBits(NO_ACCESSES);
7122         break;
7123       case Attribute::ReadOnly:
7124         State.addKnownBits(NO_WRITES);
7125         break;
7126       case Attribute::WriteOnly:
7127         State.addKnownBits(NO_READS);
7128         break;
7129       default:
7130         llvm_unreachable("Unexpected attribute!");
7131       }
7132     }
7133 
7134     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7135       if (!I->mayReadFromMemory())
7136         State.addKnownBits(NO_READS);
7137       if (!I->mayWriteToMemory())
7138         State.addKnownBits(NO_WRITES);
7139     }
7140   }
7141 
7142   /// See AbstractAttribute::getDeducedAttributes(...).
7143   void getDeducedAttributes(LLVMContext &Ctx,
7144                             SmallVectorImpl<Attribute> &Attrs) const override {
7145     assert(Attrs.size() == 0);
7146     if (isAssumedReadNone())
7147       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7148     else if (isAssumedReadOnly())
7149       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7150     else if (isAssumedWriteOnly())
7151       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7152     assert(Attrs.size() <= 1);
7153   }
7154 
7155   /// See AbstractAttribute::manifest(...).
7156   ChangeStatus manifest(Attributor &A) override {
7157     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7158       return ChangeStatus::UNCHANGED;
7159 
7160     const IRPosition &IRP = getIRPosition();
7161 
7162     // Check if we would improve the existing attributes first.
7163     SmallVector<Attribute, 4> DeducedAttrs;
7164     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7165     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7166           return IRP.hasAttr(Attr.getKindAsEnum(),
7167                              /* IgnoreSubsumingPositions */ true);
7168         }))
7169       return ChangeStatus::UNCHANGED;
7170 
7171     // Clear existing attributes.
7172     IRP.removeAttrs(AttrKinds);
7173 
7174     // Use the generic manifest method.
7175     return IRAttribute::manifest(A);
7176   }
7177 
7178   /// See AbstractState::getAsStr().
7179   const std::string getAsStr() const override {
7180     if (isAssumedReadNone())
7181       return "readnone";
7182     if (isAssumedReadOnly())
7183       return "readonly";
7184     if (isAssumedWriteOnly())
7185       return "writeonly";
7186     return "may-read/write";
7187   }
7188 
7189   /// The set of IR attributes AAMemoryBehavior deals with.
7190   static const Attribute::AttrKind AttrKinds[3];
7191 };
7192 
7193 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7194     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7195 
7196 /// Memory behavior attribute for a floating value.
7197 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7198   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7199       : AAMemoryBehaviorImpl(IRP, A) {}
7200 
7201   /// See AbstractAttribute::updateImpl(...).
7202   ChangeStatus updateImpl(Attributor &A) override;
7203 
7204   /// See AbstractAttribute::trackStatistics()
7205   void trackStatistics() const override {
7206     if (isAssumedReadNone())
7207       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7208     else if (isAssumedReadOnly())
7209       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7210     else if (isAssumedWriteOnly())
7211       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7212   }
7213 
7214 private:
7215   /// Return true if users of \p UserI might access the underlying
7216   /// variable/location described by \p U and should therefore be analyzed.
7217   bool followUsersOfUseIn(Attributor &A, const Use &U,
7218                           const Instruction *UserI);
7219 
7220   /// Update the state according to the effect of use \p U in \p UserI.
7221   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7222 };
7223 
7224 /// Memory behavior attribute for function argument.
7225 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7226   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7227       : AAMemoryBehaviorFloating(IRP, A) {}
7228 
7229   /// See AbstractAttribute::initialize(...).
7230   void initialize(Attributor &A) override {
7231     intersectAssumedBits(BEST_STATE);
7232     const IRPosition &IRP = getIRPosition();
7233     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7234     // can query it when we use has/getAttr. That would allow us to reuse the
7235     // initialize of the base class here.
7236     bool HasByVal =
7237         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7238     getKnownStateFromValue(IRP, getState(),
7239                            /* IgnoreSubsumingPositions */ HasByVal);
7240 
7241     // Initialize the use vector with all direct uses of the associated value.
7242     Argument *Arg = getAssociatedArgument();
7243     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7244       indicatePessimisticFixpoint();
7245   }
7246 
7247   ChangeStatus manifest(Attributor &A) override {
7248     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7249     if (!getAssociatedValue().getType()->isPointerTy())
7250       return ChangeStatus::UNCHANGED;
7251 
7252     // TODO: From readattrs.ll: "inalloca parameters are always
7253     //                           considered written"
7254     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7255       removeKnownBits(NO_WRITES);
7256       removeAssumedBits(NO_WRITES);
7257     }
7258     return AAMemoryBehaviorFloating::manifest(A);
7259   }
7260 
7261   /// See AbstractAttribute::trackStatistics()
7262   void trackStatistics() const override {
7263     if (isAssumedReadNone())
7264       STATS_DECLTRACK_ARG_ATTR(readnone)
7265     else if (isAssumedReadOnly())
7266       STATS_DECLTRACK_ARG_ATTR(readonly)
7267     else if (isAssumedWriteOnly())
7268       STATS_DECLTRACK_ARG_ATTR(writeonly)
7269   }
7270 };
7271 
7272 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7273   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7274       : AAMemoryBehaviorArgument(IRP, A) {}
7275 
7276   /// See AbstractAttribute::initialize(...).
7277   void initialize(Attributor &A) override {
7278     // If we don't have an associated attribute this is either a variadic call
7279     // or an indirect call, either way, nothing to do here.
7280     Argument *Arg = getAssociatedArgument();
7281     if (!Arg) {
7282       indicatePessimisticFixpoint();
7283       return;
7284     }
7285     if (Arg->hasByValAttr()) {
7286       addKnownBits(NO_WRITES);
7287       removeKnownBits(NO_READS);
7288       removeAssumedBits(NO_READS);
7289     }
7290     AAMemoryBehaviorArgument::initialize(A);
7291     if (getAssociatedFunction()->isDeclaration())
7292       indicatePessimisticFixpoint();
7293   }
7294 
7295   /// See AbstractAttribute::updateImpl(...).
7296   ChangeStatus updateImpl(Attributor &A) override {
7297     // TODO: Once we have call site specific value information we can provide
7298     //       call site specific liveness liveness information and then it makes
7299     //       sense to specialize attributes for call sites arguments instead of
7300     //       redirecting requests to the callee argument.
7301     Argument *Arg = getAssociatedArgument();
7302     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7303     auto &ArgAA =
7304         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7305     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7306   }
7307 
7308   /// See AbstractAttribute::trackStatistics()
7309   void trackStatistics() const override {
7310     if (isAssumedReadNone())
7311       STATS_DECLTRACK_CSARG_ATTR(readnone)
7312     else if (isAssumedReadOnly())
7313       STATS_DECLTRACK_CSARG_ATTR(readonly)
7314     else if (isAssumedWriteOnly())
7315       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7316   }
7317 };
7318 
7319 /// Memory behavior attribute for a call site return position.
7320 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7321   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7322       : AAMemoryBehaviorFloating(IRP, A) {}
7323 
7324   /// See AbstractAttribute::initialize(...).
7325   void initialize(Attributor &A) override {
7326     AAMemoryBehaviorImpl::initialize(A);
7327     Function *F = getAssociatedFunction();
7328     if (!F || F->isDeclaration())
7329       indicatePessimisticFixpoint();
7330   }
7331 
7332   /// See AbstractAttribute::manifest(...).
7333   ChangeStatus manifest(Attributor &A) override {
7334     // We do not annotate returned values.
7335     return ChangeStatus::UNCHANGED;
7336   }
7337 
7338   /// See AbstractAttribute::trackStatistics()
7339   void trackStatistics() const override {}
7340 };
7341 
7342 /// An AA to represent the memory behavior function attributes.
7343 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7344   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7345       : AAMemoryBehaviorImpl(IRP, A) {}
7346 
7347   /// See AbstractAttribute::updateImpl(Attributor &A).
7348   virtual ChangeStatus updateImpl(Attributor &A) override;
7349 
7350   /// See AbstractAttribute::manifest(...).
7351   ChangeStatus manifest(Attributor &A) override {
7352     Function &F = cast<Function>(getAnchorValue());
7353     if (isAssumedReadNone()) {
7354       F.removeFnAttr(Attribute::ArgMemOnly);
7355       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7356       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7357     }
7358     return AAMemoryBehaviorImpl::manifest(A);
7359   }
7360 
7361   /// See AbstractAttribute::trackStatistics()
7362   void trackStatistics() const override {
7363     if (isAssumedReadNone())
7364       STATS_DECLTRACK_FN_ATTR(readnone)
7365     else if (isAssumedReadOnly())
7366       STATS_DECLTRACK_FN_ATTR(readonly)
7367     else if (isAssumedWriteOnly())
7368       STATS_DECLTRACK_FN_ATTR(writeonly)
7369   }
7370 };
7371 
7372 /// AAMemoryBehavior attribute for call sites.
7373 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7374   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7375       : AAMemoryBehaviorImpl(IRP, A) {}
7376 
7377   /// See AbstractAttribute::initialize(...).
7378   void initialize(Attributor &A) override {
7379     AAMemoryBehaviorImpl::initialize(A);
7380     Function *F = getAssociatedFunction();
7381     if (!F || F->isDeclaration())
7382       indicatePessimisticFixpoint();
7383   }
7384 
7385   /// See AbstractAttribute::updateImpl(...).
7386   ChangeStatus updateImpl(Attributor &A) override {
7387     // TODO: Once we have call site specific value information we can provide
7388     //       call site specific liveness liveness information and then it makes
7389     //       sense to specialize attributes for call sites arguments instead of
7390     //       redirecting requests to the callee argument.
7391     Function *F = getAssociatedFunction();
7392     const IRPosition &FnPos = IRPosition::function(*F);
7393     auto &FnAA =
7394         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7395     return clampStateAndIndicateChange(getState(), FnAA.getState());
7396   }
7397 
7398   /// See AbstractAttribute::trackStatistics()
7399   void trackStatistics() const override {
7400     if (isAssumedReadNone())
7401       STATS_DECLTRACK_CS_ATTR(readnone)
7402     else if (isAssumedReadOnly())
7403       STATS_DECLTRACK_CS_ATTR(readonly)
7404     else if (isAssumedWriteOnly())
7405       STATS_DECLTRACK_CS_ATTR(writeonly)
7406   }
7407 };
7408 
7409 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7410 
7411   // The current assumed state used to determine a change.
7412   auto AssumedState = getAssumed();
7413 
7414   auto CheckRWInst = [&](Instruction &I) {
7415     // If the instruction has an own memory behavior state, use it to restrict
7416     // the local state. No further analysis is required as the other memory
7417     // state is as optimistic as it gets.
7418     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7419       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7420           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7421       intersectAssumedBits(MemBehaviorAA.getAssumed());
7422       return !isAtFixpoint();
7423     }
7424 
7425     // Remove access kind modifiers if necessary.
7426     if (I.mayReadFromMemory())
7427       removeAssumedBits(NO_READS);
7428     if (I.mayWriteToMemory())
7429       removeAssumedBits(NO_WRITES);
7430     return !isAtFixpoint();
7431   };
7432 
7433   bool UsedAssumedInformation = false;
7434   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7435                                           UsedAssumedInformation))
7436     return indicatePessimisticFixpoint();
7437 
7438   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7439                                         : ChangeStatus::UNCHANGED;
7440 }
7441 
7442 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7443 
7444   const IRPosition &IRP = getIRPosition();
7445   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7446   AAMemoryBehavior::StateType &S = getState();
7447 
7448   // First, check the function scope. We take the known information and we avoid
7449   // work if the assumed information implies the current assumed information for
7450   // this attribute. This is a valid for all but byval arguments.
7451   Argument *Arg = IRP.getAssociatedArgument();
7452   AAMemoryBehavior::base_t FnMemAssumedState =
7453       AAMemoryBehavior::StateType::getWorstState();
7454   if (!Arg || !Arg->hasByValAttr()) {
7455     const auto &FnMemAA =
7456         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7457     FnMemAssumedState = FnMemAA.getAssumed();
7458     S.addKnownBits(FnMemAA.getKnown());
7459     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7460       return ChangeStatus::UNCHANGED;
7461   }
7462 
7463   // The current assumed state used to determine a change.
7464   auto AssumedState = S.getAssumed();
7465 
7466   // Make sure the value is not captured (except through "return"), if
7467   // it is, any information derived would be irrelevant anyway as we cannot
7468   // check the potential aliases introduced by the capture. However, no need
7469   // to fall back to anythign less optimistic than the function state.
7470   const auto &ArgNoCaptureAA =
7471       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7472   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7473     S.intersectAssumedBits(FnMemAssumedState);
7474     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7475                                           : ChangeStatus::UNCHANGED;
7476   }
7477 
7478   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7479   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7480     Instruction *UserI = cast<Instruction>(U.getUser());
7481     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7482                       << " \n");
7483 
7484     // Droppable users, e.g., llvm::assume does not actually perform any action.
7485     if (UserI->isDroppable())
7486       return true;
7487 
7488     // Check if the users of UserI should also be visited.
7489     Follow = followUsersOfUseIn(A, U, UserI);
7490 
7491     // If UserI might touch memory we analyze the use in detail.
7492     if (UserI->mayReadOrWriteMemory())
7493       analyzeUseIn(A, U, UserI);
7494 
7495     return !isAtFixpoint();
7496   };
7497 
7498   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7499     return indicatePessimisticFixpoint();
7500 
7501   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7502                                         : ChangeStatus::UNCHANGED;
7503 }
7504 
7505 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7506                                                   const Instruction *UserI) {
7507   // The loaded value is unrelated to the pointer argument, no need to
7508   // follow the users of the load.
7509   if (isa<LoadInst>(UserI))
7510     return false;
7511 
7512   // By default we follow all uses assuming UserI might leak information on U,
7513   // we have special handling for call sites operands though.
7514   const auto *CB = dyn_cast<CallBase>(UserI);
7515   if (!CB || !CB->isArgOperand(&U))
7516     return true;
7517 
7518   // If the use is a call argument known not to be captured, the users of
7519   // the call do not need to be visited because they have to be unrelated to
7520   // the input. Note that this check is not trivial even though we disallow
7521   // general capturing of the underlying argument. The reason is that the
7522   // call might the argument "through return", which we allow and for which we
7523   // need to check call users.
7524   if (U.get()->getType()->isPointerTy()) {
7525     unsigned ArgNo = CB->getArgOperandNo(&U);
7526     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7527         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7528     return !ArgNoCaptureAA.isAssumedNoCapture();
7529   }
7530 
7531   return true;
7532 }
7533 
7534 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7535                                             const Instruction *UserI) {
7536   assert(UserI->mayReadOrWriteMemory());
7537 
7538   switch (UserI->getOpcode()) {
7539   default:
7540     // TODO: Handle all atomics and other side-effect operations we know of.
7541     break;
7542   case Instruction::Load:
7543     // Loads cause the NO_READS property to disappear.
7544     removeAssumedBits(NO_READS);
7545     return;
7546 
7547   case Instruction::Store:
7548     // Stores cause the NO_WRITES property to disappear if the use is the
7549     // pointer operand. Note that while capturing was taken care of somewhere
7550     // else we need to deal with stores of the value that is not looked through.
7551     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7552       removeAssumedBits(NO_WRITES);
7553     else
7554       indicatePessimisticFixpoint();
7555     return;
7556 
7557   case Instruction::Call:
7558   case Instruction::CallBr:
7559   case Instruction::Invoke: {
7560     // For call sites we look at the argument memory behavior attribute (this
7561     // could be recursive!) in order to restrict our own state.
7562     const auto *CB = cast<CallBase>(UserI);
7563 
7564     // Give up on operand bundles.
7565     if (CB->isBundleOperand(&U)) {
7566       indicatePessimisticFixpoint();
7567       return;
7568     }
7569 
7570     // Calling a function does read the function pointer, maybe write it if the
7571     // function is self-modifying.
7572     if (CB->isCallee(&U)) {
7573       removeAssumedBits(NO_READS);
7574       break;
7575     }
7576 
7577     // Adjust the possible access behavior based on the information on the
7578     // argument.
7579     IRPosition Pos;
7580     if (U.get()->getType()->isPointerTy())
7581       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7582     else
7583       Pos = IRPosition::callsite_function(*CB);
7584     const auto &MemBehaviorAA =
7585         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7586     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7587     // and at least "known".
7588     intersectAssumedBits(MemBehaviorAA.getAssumed());
7589     return;
7590   }
7591   };
7592 
7593   // Generally, look at the "may-properties" and adjust the assumed state if we
7594   // did not trigger special handling before.
7595   if (UserI->mayReadFromMemory())
7596     removeAssumedBits(NO_READS);
7597   if (UserI->mayWriteToMemory())
7598     removeAssumedBits(NO_WRITES);
7599 }
7600 } // namespace
7601 
7602 /// -------------------- Memory Locations Attributes ---------------------------
7603 /// Includes read-none, argmemonly, inaccessiblememonly,
7604 /// inaccessiblememorargmemonly
7605 /// ----------------------------------------------------------------------------
7606 
7607 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7608     AAMemoryLocation::MemoryLocationsKind MLK) {
7609   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7610     return "all memory";
7611   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7612     return "no memory";
7613   std::string S = "memory:";
7614   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7615     S += "stack,";
7616   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7617     S += "constant,";
7618   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7619     S += "internal global,";
7620   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7621     S += "external global,";
7622   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7623     S += "argument,";
7624   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7625     S += "inaccessible,";
7626   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7627     S += "malloced,";
7628   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7629     S += "unknown,";
7630   S.pop_back();
7631   return S;
7632 }
7633 
7634 namespace {
7635 struct AAMemoryLocationImpl : public AAMemoryLocation {
7636 
7637   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7638       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7639     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7640       AccessKind2Accesses[u] = nullptr;
7641   }
7642 
7643   ~AAMemoryLocationImpl() {
7644     // The AccessSets are allocated via a BumpPtrAllocator, we call
7645     // the destructor manually.
7646     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7647       if (AccessKind2Accesses[u])
7648         AccessKind2Accesses[u]->~AccessSet();
7649   }
7650 
7651   /// See AbstractAttribute::initialize(...).
7652   void initialize(Attributor &A) override {
7653     intersectAssumedBits(BEST_STATE);
7654     getKnownStateFromValue(A, getIRPosition(), getState());
7655     AAMemoryLocation::initialize(A);
7656   }
7657 
7658   /// Return the memory behavior information encoded in the IR for \p IRP.
7659   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7660                                      BitIntegerState &State,
7661                                      bool IgnoreSubsumingPositions = false) {
7662     // For internal functions we ignore `argmemonly` and
7663     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7664     // constant propagation. It is unclear if this is the best way but it is
7665     // unlikely this will cause real performance problems. If we are deriving
7666     // attributes for the anchor function we even remove the attribute in
7667     // addition to ignoring it.
7668     bool UseArgMemOnly = true;
7669     Function *AnchorFn = IRP.getAnchorScope();
7670     if (AnchorFn && A.isRunOn(*AnchorFn))
7671       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7672 
7673     SmallVector<Attribute, 2> Attrs;
7674     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7675     for (const Attribute &Attr : Attrs) {
7676       switch (Attr.getKindAsEnum()) {
7677       case Attribute::ReadNone:
7678         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7679         break;
7680       case Attribute::InaccessibleMemOnly:
7681         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7682         break;
7683       case Attribute::ArgMemOnly:
7684         if (UseArgMemOnly)
7685           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7686         else
7687           IRP.removeAttrs({Attribute::ArgMemOnly});
7688         break;
7689       case Attribute::InaccessibleMemOrArgMemOnly:
7690         if (UseArgMemOnly)
7691           State.addKnownBits(inverseLocation(
7692               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7693         else
7694           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7695         break;
7696       default:
7697         llvm_unreachable("Unexpected attribute!");
7698       }
7699     }
7700   }
7701 
7702   /// See AbstractAttribute::getDeducedAttributes(...).
7703   void getDeducedAttributes(LLVMContext &Ctx,
7704                             SmallVectorImpl<Attribute> &Attrs) const override {
7705     assert(Attrs.size() == 0);
7706     if (isAssumedReadNone()) {
7707       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7708     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7709       if (isAssumedInaccessibleMemOnly())
7710         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7711       else if (isAssumedArgMemOnly())
7712         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7713       else if (isAssumedInaccessibleOrArgMemOnly())
7714         Attrs.push_back(
7715             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7716     }
7717     assert(Attrs.size() <= 1);
7718   }
7719 
7720   /// See AbstractAttribute::manifest(...).
7721   ChangeStatus manifest(Attributor &A) override {
7722     const IRPosition &IRP = getIRPosition();
7723 
7724     // Check if we would improve the existing attributes first.
7725     SmallVector<Attribute, 4> DeducedAttrs;
7726     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7727     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7728           return IRP.hasAttr(Attr.getKindAsEnum(),
7729                              /* IgnoreSubsumingPositions */ true);
7730         }))
7731       return ChangeStatus::UNCHANGED;
7732 
7733     // Clear existing attributes.
7734     IRP.removeAttrs(AttrKinds);
7735     if (isAssumedReadNone())
7736       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7737 
7738     // Use the generic manifest method.
7739     return IRAttribute::manifest(A);
7740   }
7741 
7742   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7743   bool checkForAllAccessesToMemoryKind(
7744       function_ref<bool(const Instruction *, const Value *, AccessKind,
7745                         MemoryLocationsKind)>
7746           Pred,
7747       MemoryLocationsKind RequestedMLK) const override {
7748     if (!isValidState())
7749       return false;
7750 
7751     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7752     if (AssumedMLK == NO_LOCATIONS)
7753       return true;
7754 
7755     unsigned Idx = 0;
7756     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7757          CurMLK *= 2, ++Idx) {
7758       if (CurMLK & RequestedMLK)
7759         continue;
7760 
7761       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7762         for (const AccessInfo &AI : *Accesses)
7763           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7764             return false;
7765     }
7766 
7767     return true;
7768   }
7769 
7770   ChangeStatus indicatePessimisticFixpoint() override {
7771     // If we give up and indicate a pessimistic fixpoint this instruction will
7772     // become an access for all potential access kinds:
7773     // TODO: Add pointers for argmemonly and globals to improve the results of
7774     //       checkForAllAccessesToMemoryKind.
7775     bool Changed = false;
7776     MemoryLocationsKind KnownMLK = getKnown();
7777     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7778     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7779       if (!(CurMLK & KnownMLK))
7780         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7781                                   getAccessKindFromInst(I));
7782     return AAMemoryLocation::indicatePessimisticFixpoint();
7783   }
7784 
7785 protected:
7786   /// Helper struct to tie together an instruction that has a read or write
7787   /// effect with the pointer it accesses (if any).
7788   struct AccessInfo {
7789 
7790     /// The instruction that caused the access.
7791     const Instruction *I;
7792 
7793     /// The base pointer that is accessed, or null if unknown.
7794     const Value *Ptr;
7795 
7796     /// The kind of access (read/write/read+write).
7797     AccessKind Kind;
7798 
7799     bool operator==(const AccessInfo &RHS) const {
7800       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7801     }
7802     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7803       if (LHS.I != RHS.I)
7804         return LHS.I < RHS.I;
7805       if (LHS.Ptr != RHS.Ptr)
7806         return LHS.Ptr < RHS.Ptr;
7807       if (LHS.Kind != RHS.Kind)
7808         return LHS.Kind < RHS.Kind;
7809       return false;
7810     }
7811   };
7812 
7813   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7814   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7815   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7816   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7817 
7818   /// Categorize the pointer arguments of CB that might access memory in
7819   /// AccessedLoc and update the state and access map accordingly.
7820   void
7821   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7822                                      AAMemoryLocation::StateType &AccessedLocs,
7823                                      bool &Changed);
7824 
7825   /// Return the kind(s) of location that may be accessed by \p V.
7826   AAMemoryLocation::MemoryLocationsKind
7827   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7828 
7829   /// Return the access kind as determined by \p I.
7830   AccessKind getAccessKindFromInst(const Instruction *I) {
7831     AccessKind AK = READ_WRITE;
7832     if (I) {
7833       AK = I->mayReadFromMemory() ? READ : NONE;
7834       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7835     }
7836     return AK;
7837   }
7838 
7839   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7840   /// an access of kind \p AK to a \p MLK memory location with the access
7841   /// pointer \p Ptr.
7842   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7843                                  MemoryLocationsKind MLK, const Instruction *I,
7844                                  const Value *Ptr, bool &Changed,
7845                                  AccessKind AK = READ_WRITE) {
7846 
7847     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7848     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7849     if (!Accesses)
7850       Accesses = new (Allocator) AccessSet();
7851     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7852     State.removeAssumedBits(MLK);
7853   }
7854 
7855   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7856   /// arguments, and update the state and access map accordingly.
7857   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7858                           AAMemoryLocation::StateType &State, bool &Changed);
7859 
7860   /// Used to allocate access sets.
7861   BumpPtrAllocator &Allocator;
7862 
7863   /// The set of IR attributes AAMemoryLocation deals with.
7864   static const Attribute::AttrKind AttrKinds[4];
7865 };
7866 
7867 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7868     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7869     Attribute::InaccessibleMemOrArgMemOnly};
7870 
7871 void AAMemoryLocationImpl::categorizePtrValue(
7872     Attributor &A, const Instruction &I, const Value &Ptr,
7873     AAMemoryLocation::StateType &State, bool &Changed) {
7874   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7875                     << Ptr << " ["
7876                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7877 
7878   SmallVector<Value *, 8> Objects;
7879   bool UsedAssumedInformation = false;
7880   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7881                                        UsedAssumedInformation,
7882                                        /* Intraprocedural */ true)) {
7883     LLVM_DEBUG(
7884         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7885     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7886                               getAccessKindFromInst(&I));
7887     return;
7888   }
7889 
7890   for (Value *Obj : Objects) {
7891     // TODO: recognize the TBAA used for constant accesses.
7892     MemoryLocationsKind MLK = NO_LOCATIONS;
7893     if (isa<UndefValue>(Obj))
7894       continue;
7895     if (isa<Argument>(Obj)) {
7896       // TODO: For now we do not treat byval arguments as local copies performed
7897       // on the call edge, though, we should. To make that happen we need to
7898       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7899       // would also allow us to mark functions only accessing byval arguments as
7900       // readnone again, atguably their acceses have no effect outside of the
7901       // function, like accesses to allocas.
7902       MLK = NO_ARGUMENT_MEM;
7903     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7904       // Reading constant memory is not treated as a read "effect" by the
7905       // function attr pass so we won't neither. Constants defined by TBAA are
7906       // similar. (We know we do not write it because it is constant.)
7907       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7908         if (GVar->isConstant())
7909           continue;
7910 
7911       if (GV->hasLocalLinkage())
7912         MLK = NO_GLOBAL_INTERNAL_MEM;
7913       else
7914         MLK = NO_GLOBAL_EXTERNAL_MEM;
7915     } else if (isa<ConstantPointerNull>(Obj) &&
7916                !NullPointerIsDefined(getAssociatedFunction(),
7917                                      Ptr.getType()->getPointerAddressSpace())) {
7918       continue;
7919     } else if (isa<AllocaInst>(Obj)) {
7920       MLK = NO_LOCAL_MEM;
7921     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7922       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7923           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7924       if (NoAliasAA.isAssumedNoAlias())
7925         MLK = NO_MALLOCED_MEM;
7926       else
7927         MLK = NO_UNKOWN_MEM;
7928     } else {
7929       MLK = NO_UNKOWN_MEM;
7930     }
7931 
7932     assert(MLK != NO_LOCATIONS && "No location specified!");
7933     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7934                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7935                       << "\n");
7936     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7937                               getAccessKindFromInst(&I));
7938   }
7939 
7940   LLVM_DEBUG(
7941       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7942              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7943 }
7944 
7945 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7946     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7947     bool &Changed) {
7948   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7949 
7950     // Skip non-pointer arguments.
7951     const Value *ArgOp = CB.getArgOperand(ArgNo);
7952     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7953       continue;
7954 
7955     // Skip readnone arguments.
7956     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7957     const auto &ArgOpMemLocationAA =
7958         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7959 
7960     if (ArgOpMemLocationAA.isAssumedReadNone())
7961       continue;
7962 
7963     // Categorize potentially accessed pointer arguments as if there was an
7964     // access instruction with them as pointer.
7965     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7966   }
7967 }
7968 
7969 AAMemoryLocation::MemoryLocationsKind
7970 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7971                                                   bool &Changed) {
7972   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7973                     << I << "\n");
7974 
7975   AAMemoryLocation::StateType AccessedLocs;
7976   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7977 
7978   if (auto *CB = dyn_cast<CallBase>(&I)) {
7979 
7980     // First check if we assume any memory is access is visible.
7981     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7982         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7983     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7984                       << " [" << CBMemLocationAA << "]\n");
7985 
7986     if (CBMemLocationAA.isAssumedReadNone())
7987       return NO_LOCATIONS;
7988 
7989     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7990       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7991                                 Changed, getAccessKindFromInst(&I));
7992       return AccessedLocs.getAssumed();
7993     }
7994 
7995     uint32_t CBAssumedNotAccessedLocs =
7996         CBMemLocationAA.getAssumedNotAccessedLocation();
7997 
7998     // Set the argmemonly and global bit as we handle them separately below.
7999     uint32_t CBAssumedNotAccessedLocsNoArgMem =
8000         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
8001 
8002     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
8003       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
8004         continue;
8005       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
8006                                 getAccessKindFromInst(&I));
8007     }
8008 
8009     // Now handle global memory if it might be accessed. This is slightly tricky
8010     // as NO_GLOBAL_MEM has multiple bits set.
8011     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
8012     if (HasGlobalAccesses) {
8013       auto AccessPred = [&](const Instruction *, const Value *Ptr,
8014                             AccessKind Kind, MemoryLocationsKind MLK) {
8015         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
8016                                   getAccessKindFromInst(&I));
8017         return true;
8018       };
8019       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
8020               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
8021         return AccessedLocs.getWorstState();
8022     }
8023 
8024     LLVM_DEBUG(
8025         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
8026                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8027 
8028     // Now handle argument memory if it might be accessed.
8029     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
8030     if (HasArgAccesses)
8031       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
8032 
8033     LLVM_DEBUG(
8034         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
8035                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8036 
8037     return AccessedLocs.getAssumed();
8038   }
8039 
8040   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
8041     LLVM_DEBUG(
8042         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
8043                << I << " [" << *Ptr << "]\n");
8044     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
8045     return AccessedLocs.getAssumed();
8046   }
8047 
8048   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
8049                     << I << "\n");
8050   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
8051                             getAccessKindFromInst(&I));
8052   return AccessedLocs.getAssumed();
8053 }
8054 
8055 /// An AA to represent the memory behavior function attributes.
8056 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
8057   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
8058       : AAMemoryLocationImpl(IRP, A) {}
8059 
8060   /// See AbstractAttribute::updateImpl(Attributor &A).
8061   virtual ChangeStatus updateImpl(Attributor &A) override {
8062 
8063     const auto &MemBehaviorAA =
8064         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
8065     if (MemBehaviorAA.isAssumedReadNone()) {
8066       if (MemBehaviorAA.isKnownReadNone())
8067         return indicateOptimisticFixpoint();
8068       assert(isAssumedReadNone() &&
8069              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
8070       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
8071       return ChangeStatus::UNCHANGED;
8072     }
8073 
8074     // The current assumed state used to determine a change.
8075     auto AssumedState = getAssumed();
8076     bool Changed = false;
8077 
8078     auto CheckRWInst = [&](Instruction &I) {
8079       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
8080       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
8081                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
8082       removeAssumedBits(inverseLocation(MLK, false, false));
8083       // Stop once only the valid bit set in the *not assumed location*, thus
8084       // once we don't actually exclude any memory locations in the state.
8085       return getAssumedNotAccessedLocation() != VALID_STATE;
8086     };
8087 
8088     bool UsedAssumedInformation = false;
8089     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8090                                             UsedAssumedInformation))
8091       return indicatePessimisticFixpoint();
8092 
8093     Changed |= AssumedState != getAssumed();
8094     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8095   }
8096 
8097   /// See AbstractAttribute::trackStatistics()
8098   void trackStatistics() const override {
8099     if (isAssumedReadNone())
8100       STATS_DECLTRACK_FN_ATTR(readnone)
8101     else if (isAssumedArgMemOnly())
8102       STATS_DECLTRACK_FN_ATTR(argmemonly)
8103     else if (isAssumedInaccessibleMemOnly())
8104       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
8105     else if (isAssumedInaccessibleOrArgMemOnly())
8106       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
8107   }
8108 };
8109 
8110 /// AAMemoryLocation attribute for call sites.
8111 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
8112   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
8113       : AAMemoryLocationImpl(IRP, A) {}
8114 
8115   /// See AbstractAttribute::initialize(...).
8116   void initialize(Attributor &A) override {
8117     AAMemoryLocationImpl::initialize(A);
8118     Function *F = getAssociatedFunction();
8119     if (!F || F->isDeclaration())
8120       indicatePessimisticFixpoint();
8121   }
8122 
8123   /// See AbstractAttribute::updateImpl(...).
8124   ChangeStatus updateImpl(Attributor &A) override {
8125     // TODO: Once we have call site specific value information we can provide
8126     //       call site specific liveness liveness information and then it makes
8127     //       sense to specialize attributes for call sites arguments instead of
8128     //       redirecting requests to the callee argument.
8129     Function *F = getAssociatedFunction();
8130     const IRPosition &FnPos = IRPosition::function(*F);
8131     auto &FnAA =
8132         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8133     bool Changed = false;
8134     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8135                           AccessKind Kind, MemoryLocationsKind MLK) {
8136       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8137                                 getAccessKindFromInst(I));
8138       return true;
8139     };
8140     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8141       return indicatePessimisticFixpoint();
8142     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8143   }
8144 
8145   /// See AbstractAttribute::trackStatistics()
8146   void trackStatistics() const override {
8147     if (isAssumedReadNone())
8148       STATS_DECLTRACK_CS_ATTR(readnone)
8149   }
8150 };
8151 } // namespace
8152 
8153 /// ------------------ Value Constant Range Attribute -------------------------
8154 
8155 namespace {
8156 struct AAValueConstantRangeImpl : AAValueConstantRange {
8157   using StateType = IntegerRangeState;
8158   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8159       : AAValueConstantRange(IRP, A) {}
8160 
8161   /// See AbstractAttribute::initialize(..).
8162   void initialize(Attributor &A) override {
8163     if (A.hasSimplificationCallback(getIRPosition())) {
8164       indicatePessimisticFixpoint();
8165       return;
8166     }
8167 
8168     // Intersect a range given by SCEV.
8169     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8170 
8171     // Intersect a range given by LVI.
8172     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8173   }
8174 
8175   /// See AbstractAttribute::getAsStr().
8176   const std::string getAsStr() const override {
8177     std::string Str;
8178     llvm::raw_string_ostream OS(Str);
8179     OS << "range(" << getBitWidth() << ")<";
8180     getKnown().print(OS);
8181     OS << " / ";
8182     getAssumed().print(OS);
8183     OS << ">";
8184     return OS.str();
8185   }
8186 
8187   /// Helper function to get a SCEV expr for the associated value at program
8188   /// point \p I.
8189   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8190     if (!getAnchorScope())
8191       return nullptr;
8192 
8193     ScalarEvolution *SE =
8194         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8195             *getAnchorScope());
8196 
8197     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8198         *getAnchorScope());
8199 
8200     if (!SE || !LI)
8201       return nullptr;
8202 
8203     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8204     if (!I)
8205       return S;
8206 
8207     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8208   }
8209 
8210   /// Helper function to get a range from SCEV for the associated value at
8211   /// program point \p I.
8212   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8213                                          const Instruction *I = nullptr) const {
8214     if (!getAnchorScope())
8215       return getWorstState(getBitWidth());
8216 
8217     ScalarEvolution *SE =
8218         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8219             *getAnchorScope());
8220 
8221     const SCEV *S = getSCEV(A, I);
8222     if (!SE || !S)
8223       return getWorstState(getBitWidth());
8224 
8225     return SE->getUnsignedRange(S);
8226   }
8227 
8228   /// Helper function to get a range from LVI for the associated value at
8229   /// program point \p I.
8230   ConstantRange
8231   getConstantRangeFromLVI(Attributor &A,
8232                           const Instruction *CtxI = nullptr) const {
8233     if (!getAnchorScope())
8234       return getWorstState(getBitWidth());
8235 
8236     LazyValueInfo *LVI =
8237         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8238             *getAnchorScope());
8239 
8240     if (!LVI || !CtxI)
8241       return getWorstState(getBitWidth());
8242     return LVI->getConstantRange(&getAssociatedValue(),
8243                                  const_cast<Instruction *>(CtxI));
8244   }
8245 
8246   /// Return true if \p CtxI is valid for querying outside analyses.
8247   /// This basically makes sure we do not ask intra-procedural analysis
8248   /// about a context in the wrong function or a context that violates
8249   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8250   /// if the original context of this AA is OK or should be considered invalid.
8251   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8252                                                const Instruction *CtxI,
8253                                                bool AllowAACtxI) const {
8254     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8255       return false;
8256 
8257     // Our context might be in a different function, neither intra-procedural
8258     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8259     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8260       return false;
8261 
8262     // If the context is not dominated by the value there are paths to the
8263     // context that do not define the value. This cannot be handled by
8264     // LazyValueInfo so we need to bail.
8265     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8266       InformationCache &InfoCache = A.getInfoCache();
8267       const DominatorTree *DT =
8268           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8269               *I->getFunction());
8270       return DT && DT->dominates(I, CtxI);
8271     }
8272 
8273     return true;
8274   }
8275 
8276   /// See AAValueConstantRange::getKnownConstantRange(..).
8277   ConstantRange
8278   getKnownConstantRange(Attributor &A,
8279                         const Instruction *CtxI = nullptr) const override {
8280     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8281                                                  /* AllowAACtxI */ false))
8282       return getKnown();
8283 
8284     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8285     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8286     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8287   }
8288 
8289   /// See AAValueConstantRange::getAssumedConstantRange(..).
8290   ConstantRange
8291   getAssumedConstantRange(Attributor &A,
8292                           const Instruction *CtxI = nullptr) const override {
8293     // TODO: Make SCEV use Attributor assumption.
8294     //       We may be able to bound a variable range via assumptions in
8295     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8296     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8297     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8298                                                  /* AllowAACtxI */ false))
8299       return getAssumed();
8300 
8301     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8302     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8303     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8304   }
8305 
8306   /// Helper function to create MDNode for range metadata.
8307   static MDNode *
8308   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8309                             const ConstantRange &AssumedConstantRange) {
8310     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8311                                   Ty, AssumedConstantRange.getLower())),
8312                               ConstantAsMetadata::get(ConstantInt::get(
8313                                   Ty, AssumedConstantRange.getUpper()))};
8314     return MDNode::get(Ctx, LowAndHigh);
8315   }
8316 
8317   /// Return true if \p Assumed is included in \p KnownRanges.
8318   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8319 
8320     if (Assumed.isFullSet())
8321       return false;
8322 
8323     if (!KnownRanges)
8324       return true;
8325 
8326     // If multiple ranges are annotated in IR, we give up to annotate assumed
8327     // range for now.
8328 
8329     // TODO:  If there exists a known range which containts assumed range, we
8330     // can say assumed range is better.
8331     if (KnownRanges->getNumOperands() > 2)
8332       return false;
8333 
8334     ConstantInt *Lower =
8335         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8336     ConstantInt *Upper =
8337         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8338 
8339     ConstantRange Known(Lower->getValue(), Upper->getValue());
8340     return Known.contains(Assumed) && Known != Assumed;
8341   }
8342 
8343   /// Helper function to set range metadata.
8344   static bool
8345   setRangeMetadataIfisBetterRange(Instruction *I,
8346                                   const ConstantRange &AssumedConstantRange) {
8347     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8348     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8349       if (!AssumedConstantRange.isEmptySet()) {
8350         I->setMetadata(LLVMContext::MD_range,
8351                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8352                                                  AssumedConstantRange));
8353         return true;
8354       }
8355     }
8356     return false;
8357   }
8358 
8359   /// See AbstractAttribute::manifest()
8360   ChangeStatus manifest(Attributor &A) override {
8361     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8362     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8363     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8364 
8365     auto &V = getAssociatedValue();
8366     if (!AssumedConstantRange.isEmptySet() &&
8367         !AssumedConstantRange.isSingleElement()) {
8368       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8369         assert(I == getCtxI() && "Should not annotate an instruction which is "
8370                                  "not the context instruction");
8371         if (isa<CallInst>(I) || isa<LoadInst>(I))
8372           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8373             Changed = ChangeStatus::CHANGED;
8374       }
8375     }
8376 
8377     return Changed;
8378   }
8379 };
8380 
8381 struct AAValueConstantRangeArgument final
8382     : AAArgumentFromCallSiteArguments<
8383           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8384           true /* BridgeCallBaseContext */> {
8385   using Base = AAArgumentFromCallSiteArguments<
8386       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8387       true /* BridgeCallBaseContext */>;
8388   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8389       : Base(IRP, A) {}
8390 
8391   /// See AbstractAttribute::initialize(..).
8392   void initialize(Attributor &A) override {
8393     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8394       indicatePessimisticFixpoint();
8395     } else {
8396       Base::initialize(A);
8397     }
8398   }
8399 
8400   /// See AbstractAttribute::trackStatistics()
8401   void trackStatistics() const override {
8402     STATS_DECLTRACK_ARG_ATTR(value_range)
8403   }
8404 };
8405 
8406 struct AAValueConstantRangeReturned
8407     : AAReturnedFromReturnedValues<AAValueConstantRange,
8408                                    AAValueConstantRangeImpl,
8409                                    AAValueConstantRangeImpl::StateType,
8410                                    /* PropogateCallBaseContext */ true> {
8411   using Base =
8412       AAReturnedFromReturnedValues<AAValueConstantRange,
8413                                    AAValueConstantRangeImpl,
8414                                    AAValueConstantRangeImpl::StateType,
8415                                    /* PropogateCallBaseContext */ true>;
8416   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8417       : Base(IRP, A) {}
8418 
8419   /// See AbstractAttribute::initialize(...).
8420   void initialize(Attributor &A) override {}
8421 
8422   /// See AbstractAttribute::trackStatistics()
8423   void trackStatistics() const override {
8424     STATS_DECLTRACK_FNRET_ATTR(value_range)
8425   }
8426 };
8427 
8428 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8429   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8430       : AAValueConstantRangeImpl(IRP, A) {}
8431 
8432   /// See AbstractAttribute::initialize(...).
8433   void initialize(Attributor &A) override {
8434     AAValueConstantRangeImpl::initialize(A);
8435     if (isAtFixpoint())
8436       return;
8437 
8438     Value &V = getAssociatedValue();
8439 
8440     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8441       unionAssumed(ConstantRange(C->getValue()));
8442       indicateOptimisticFixpoint();
8443       return;
8444     }
8445 
8446     if (isa<UndefValue>(&V)) {
8447       // Collapse the undef state to 0.
8448       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8449       indicateOptimisticFixpoint();
8450       return;
8451     }
8452 
8453     if (isa<CallBase>(&V))
8454       return;
8455 
8456     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8457       return;
8458 
8459     // If it is a load instruction with range metadata, use it.
8460     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8461       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8462         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8463         return;
8464       }
8465 
8466     // We can work with PHI and select instruction as we traverse their operands
8467     // during update.
8468     if (isa<SelectInst>(V) || isa<PHINode>(V))
8469       return;
8470 
8471     // Otherwise we give up.
8472     indicatePessimisticFixpoint();
8473 
8474     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8475                       << getAssociatedValue() << "\n");
8476   }
8477 
8478   bool calculateBinaryOperator(
8479       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8480       const Instruction *CtxI,
8481       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8482     Value *LHS = BinOp->getOperand(0);
8483     Value *RHS = BinOp->getOperand(1);
8484 
8485     // Simplify the operands first.
8486     bool UsedAssumedInformation = false;
8487     const auto &SimplifiedLHS =
8488         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8489                                *this, UsedAssumedInformation);
8490     if (!SimplifiedLHS.hasValue())
8491       return true;
8492     if (!SimplifiedLHS.getValue())
8493       return false;
8494     LHS = *SimplifiedLHS;
8495 
8496     const auto &SimplifiedRHS =
8497         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8498                                *this, UsedAssumedInformation);
8499     if (!SimplifiedRHS.hasValue())
8500       return true;
8501     if (!SimplifiedRHS.getValue())
8502       return false;
8503     RHS = *SimplifiedRHS;
8504 
8505     // TODO: Allow non integers as well.
8506     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8507       return false;
8508 
8509     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8510         *this, IRPosition::value(*LHS, getCallBaseContext()),
8511         DepClassTy::REQUIRED);
8512     QuerriedAAs.push_back(&LHSAA);
8513     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8514 
8515     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8516         *this, IRPosition::value(*RHS, getCallBaseContext()),
8517         DepClassTy::REQUIRED);
8518     QuerriedAAs.push_back(&RHSAA);
8519     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8520 
8521     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8522 
8523     T.unionAssumed(AssumedRange);
8524 
8525     // TODO: Track a known state too.
8526 
8527     return T.isValidState();
8528   }
8529 
8530   bool calculateCastInst(
8531       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8532       const Instruction *CtxI,
8533       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8534     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8535     // TODO: Allow non integers as well.
8536     Value *OpV = CastI->getOperand(0);
8537 
8538     // Simplify the operand first.
8539     bool UsedAssumedInformation = false;
8540     const auto &SimplifiedOpV =
8541         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8542                                *this, UsedAssumedInformation);
8543     if (!SimplifiedOpV.hasValue())
8544       return true;
8545     if (!SimplifiedOpV.getValue())
8546       return false;
8547     OpV = *SimplifiedOpV;
8548 
8549     if (!OpV->getType()->isIntegerTy())
8550       return false;
8551 
8552     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8553         *this, IRPosition::value(*OpV, getCallBaseContext()),
8554         DepClassTy::REQUIRED);
8555     QuerriedAAs.push_back(&OpAA);
8556     T.unionAssumed(
8557         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8558     return T.isValidState();
8559   }
8560 
8561   bool
8562   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8563                    const Instruction *CtxI,
8564                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8565     Value *LHS = CmpI->getOperand(0);
8566     Value *RHS = CmpI->getOperand(1);
8567 
8568     // Simplify the operands first.
8569     bool UsedAssumedInformation = false;
8570     const auto &SimplifiedLHS =
8571         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8572                                *this, UsedAssumedInformation);
8573     if (!SimplifiedLHS.hasValue())
8574       return true;
8575     if (!SimplifiedLHS.getValue())
8576       return false;
8577     LHS = *SimplifiedLHS;
8578 
8579     const auto &SimplifiedRHS =
8580         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8581                                *this, UsedAssumedInformation);
8582     if (!SimplifiedRHS.hasValue())
8583       return true;
8584     if (!SimplifiedRHS.getValue())
8585       return false;
8586     RHS = *SimplifiedRHS;
8587 
8588     // TODO: Allow non integers as well.
8589     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8590       return false;
8591 
8592     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8593         *this, IRPosition::value(*LHS, getCallBaseContext()),
8594         DepClassTy::REQUIRED);
8595     QuerriedAAs.push_back(&LHSAA);
8596     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8597         *this, IRPosition::value(*RHS, getCallBaseContext()),
8598         DepClassTy::REQUIRED);
8599     QuerriedAAs.push_back(&RHSAA);
8600     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8601     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8602 
8603     // If one of them is empty set, we can't decide.
8604     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8605       return true;
8606 
8607     bool MustTrue = false, MustFalse = false;
8608 
8609     auto AllowedRegion =
8610         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8611 
8612     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8613       MustFalse = true;
8614 
8615     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8616       MustTrue = true;
8617 
8618     assert((!MustTrue || !MustFalse) &&
8619            "Either MustTrue or MustFalse should be false!");
8620 
8621     if (MustTrue)
8622       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8623     else if (MustFalse)
8624       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8625     else
8626       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8627 
8628     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8629                       << " " << RHSAA << "\n");
8630 
8631     // TODO: Track a known state too.
8632     return T.isValidState();
8633   }
8634 
8635   /// See AbstractAttribute::updateImpl(...).
8636   ChangeStatus updateImpl(Attributor &A) override {
8637     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8638                             IntegerRangeState &T, bool Stripped) -> bool {
8639       Instruction *I = dyn_cast<Instruction>(&V);
8640       if (!I || isa<CallBase>(I)) {
8641 
8642         // Simplify the operand first.
8643         bool UsedAssumedInformation = false;
8644         const auto &SimplifiedOpV =
8645             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8646                                    *this, UsedAssumedInformation);
8647         if (!SimplifiedOpV.hasValue())
8648           return true;
8649         if (!SimplifiedOpV.getValue())
8650           return false;
8651         Value *VPtr = *SimplifiedOpV;
8652 
8653         // If the value is not instruction, we query AA to Attributor.
8654         const auto &AA = A.getAAFor<AAValueConstantRange>(
8655             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8656             DepClassTy::REQUIRED);
8657 
8658         // Clamp operator is not used to utilize a program point CtxI.
8659         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8660 
8661         return T.isValidState();
8662       }
8663 
8664       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8665       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8666         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8667           return false;
8668       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8669         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8670           return false;
8671       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8672         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8673           return false;
8674       } else {
8675         // Give up with other instructions.
8676         // TODO: Add other instructions
8677 
8678         T.indicatePessimisticFixpoint();
8679         return false;
8680       }
8681 
8682       // Catch circular reasoning in a pessimistic way for now.
8683       // TODO: Check how the range evolves and if we stripped anything, see also
8684       //       AADereferenceable or AAAlign for similar situations.
8685       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8686         if (QueriedAA != this)
8687           continue;
8688         // If we are in a stady state we do not need to worry.
8689         if (T.getAssumed() == getState().getAssumed())
8690           continue;
8691         T.indicatePessimisticFixpoint();
8692       }
8693 
8694       return T.isValidState();
8695     };
8696 
8697     IntegerRangeState T(getBitWidth());
8698 
8699     bool UsedAssumedInformation = false;
8700     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8701                                                   VisitValueCB, getCtxI(),
8702                                                   UsedAssumedInformation,
8703                                                   /* UseValueSimplify */ false))
8704       return indicatePessimisticFixpoint();
8705 
8706     // Ensure that long def-use chains can't cause circular reasoning either by
8707     // introducing a cutoff below.
8708     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8709       return ChangeStatus::UNCHANGED;
8710     if (++NumChanges > MaxNumChanges) {
8711       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8712                         << " but only " << MaxNumChanges
8713                         << " are allowed to avoid cyclic reasoning.");
8714       return indicatePessimisticFixpoint();
8715     }
8716     return ChangeStatus::CHANGED;
8717   }
8718 
8719   /// See AbstractAttribute::trackStatistics()
8720   void trackStatistics() const override {
8721     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8722   }
8723 
8724   /// Tracker to bail after too many widening steps of the constant range.
8725   int NumChanges = 0;
8726 
8727   /// Upper bound for the number of allowed changes (=widening steps) for the
8728   /// constant range before we give up.
8729   static constexpr int MaxNumChanges = 5;
8730 };
8731 
8732 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8733   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8734       : AAValueConstantRangeImpl(IRP, A) {}
8735 
8736   /// See AbstractAttribute::initialize(...).
8737   ChangeStatus updateImpl(Attributor &A) override {
8738     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8739                      "not be called");
8740   }
8741 
8742   /// See AbstractAttribute::trackStatistics()
8743   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8744 };
8745 
8746 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8747   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8748       : AAValueConstantRangeFunction(IRP, A) {}
8749 
8750   /// See AbstractAttribute::trackStatistics()
8751   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8752 };
8753 
8754 struct AAValueConstantRangeCallSiteReturned
8755     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8756                                      AAValueConstantRangeImpl,
8757                                      AAValueConstantRangeImpl::StateType,
8758                                      /* IntroduceCallBaseContext */ true> {
8759   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8760       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8761                                        AAValueConstantRangeImpl,
8762                                        AAValueConstantRangeImpl::StateType,
8763                                        /* IntroduceCallBaseContext */ true>(IRP,
8764                                                                             A) {
8765   }
8766 
8767   /// See AbstractAttribute::initialize(...).
8768   void initialize(Attributor &A) override {
8769     // If it is a load instruction with range metadata, use the metadata.
8770     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8771       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8772         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8773 
8774     AAValueConstantRangeImpl::initialize(A);
8775   }
8776 
8777   /// See AbstractAttribute::trackStatistics()
8778   void trackStatistics() const override {
8779     STATS_DECLTRACK_CSRET_ATTR(value_range)
8780   }
8781 };
8782 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8783   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8784       : AAValueConstantRangeFloating(IRP, A) {}
8785 
8786   /// See AbstractAttribute::manifest()
8787   ChangeStatus manifest(Attributor &A) override {
8788     return ChangeStatus::UNCHANGED;
8789   }
8790 
8791   /// See AbstractAttribute::trackStatistics()
8792   void trackStatistics() const override {
8793     STATS_DECLTRACK_CSARG_ATTR(value_range)
8794   }
8795 };
8796 } // namespace
8797 
8798 /// ------------------ Potential Values Attribute -------------------------
8799 
8800 namespace {
8801 struct AAPotentialValuesImpl : AAPotentialValues {
8802   using StateType = PotentialConstantIntValuesState;
8803 
8804   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8805       : AAPotentialValues(IRP, A) {}
8806 
8807   /// See AbstractAttribute::initialize(..).
8808   void initialize(Attributor &A) override {
8809     if (A.hasSimplificationCallback(getIRPosition()))
8810       indicatePessimisticFixpoint();
8811     else
8812       AAPotentialValues::initialize(A);
8813   }
8814 
8815   /// See AbstractAttribute::getAsStr().
8816   const std::string getAsStr() const override {
8817     std::string Str;
8818     llvm::raw_string_ostream OS(Str);
8819     OS << getState();
8820     return OS.str();
8821   }
8822 
8823   /// See AbstractAttribute::updateImpl(...).
8824   ChangeStatus updateImpl(Attributor &A) override {
8825     return indicatePessimisticFixpoint();
8826   }
8827 };
8828 
8829 struct AAPotentialValuesArgument final
8830     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8831                                       PotentialConstantIntValuesState> {
8832   using Base =
8833       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8834                                       PotentialConstantIntValuesState>;
8835   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8836       : Base(IRP, A) {}
8837 
8838   /// See AbstractAttribute::initialize(..).
8839   void initialize(Attributor &A) override {
8840     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8841       indicatePessimisticFixpoint();
8842     } else {
8843       Base::initialize(A);
8844     }
8845   }
8846 
8847   /// See AbstractAttribute::trackStatistics()
8848   void trackStatistics() const override {
8849     STATS_DECLTRACK_ARG_ATTR(potential_values)
8850   }
8851 };
8852 
8853 struct AAPotentialValuesReturned
8854     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8855   using Base =
8856       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8857   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8858       : Base(IRP, A) {}
8859 
8860   /// See AbstractAttribute::trackStatistics()
8861   void trackStatistics() const override {
8862     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8863   }
8864 };
8865 
8866 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8867   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8868       : AAPotentialValuesImpl(IRP, A) {}
8869 
8870   /// See AbstractAttribute::initialize(..).
8871   void initialize(Attributor &A) override {
8872     AAPotentialValuesImpl::initialize(A);
8873     if (isAtFixpoint())
8874       return;
8875 
8876     Value &V = getAssociatedValue();
8877 
8878     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8879       unionAssumed(C->getValue());
8880       indicateOptimisticFixpoint();
8881       return;
8882     }
8883 
8884     if (isa<UndefValue>(&V)) {
8885       unionAssumedWithUndef();
8886       indicateOptimisticFixpoint();
8887       return;
8888     }
8889 
8890     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8891       return;
8892 
8893     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8894       return;
8895 
8896     indicatePessimisticFixpoint();
8897 
8898     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8899                       << getAssociatedValue() << "\n");
8900   }
8901 
8902   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8903                                 const APInt &RHS) {
8904     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8905   }
8906 
8907   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8908                                  uint32_t ResultBitWidth) {
8909     Instruction::CastOps CastOp = CI->getOpcode();
8910     switch (CastOp) {
8911     default:
8912       llvm_unreachable("unsupported or not integer cast");
8913     case Instruction::Trunc:
8914       return Src.trunc(ResultBitWidth);
8915     case Instruction::SExt:
8916       return Src.sext(ResultBitWidth);
8917     case Instruction::ZExt:
8918       return Src.zext(ResultBitWidth);
8919     case Instruction::BitCast:
8920       return Src;
8921     }
8922   }
8923 
8924   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8925                                        const APInt &LHS, const APInt &RHS,
8926                                        bool &SkipOperation, bool &Unsupported) {
8927     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8928     // Unsupported is set to true when the binary operator is not supported.
8929     // SkipOperation is set to true when UB occur with the given operand pair
8930     // (LHS, RHS).
8931     // TODO: we should look at nsw and nuw keywords to handle operations
8932     //       that create poison or undef value.
8933     switch (BinOpcode) {
8934     default:
8935       Unsupported = true;
8936       return LHS;
8937     case Instruction::Add:
8938       return LHS + RHS;
8939     case Instruction::Sub:
8940       return LHS - RHS;
8941     case Instruction::Mul:
8942       return LHS * RHS;
8943     case Instruction::UDiv:
8944       if (RHS.isZero()) {
8945         SkipOperation = true;
8946         return LHS;
8947       }
8948       return LHS.udiv(RHS);
8949     case Instruction::SDiv:
8950       if (RHS.isZero()) {
8951         SkipOperation = true;
8952         return LHS;
8953       }
8954       return LHS.sdiv(RHS);
8955     case Instruction::URem:
8956       if (RHS.isZero()) {
8957         SkipOperation = true;
8958         return LHS;
8959       }
8960       return LHS.urem(RHS);
8961     case Instruction::SRem:
8962       if (RHS.isZero()) {
8963         SkipOperation = true;
8964         return LHS;
8965       }
8966       return LHS.srem(RHS);
8967     case Instruction::Shl:
8968       return LHS.shl(RHS);
8969     case Instruction::LShr:
8970       return LHS.lshr(RHS);
8971     case Instruction::AShr:
8972       return LHS.ashr(RHS);
8973     case Instruction::And:
8974       return LHS & RHS;
8975     case Instruction::Or:
8976       return LHS | RHS;
8977     case Instruction::Xor:
8978       return LHS ^ RHS;
8979     }
8980   }
8981 
8982   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8983                                            const APInt &LHS, const APInt &RHS) {
8984     bool SkipOperation = false;
8985     bool Unsupported = false;
8986     APInt Result =
8987         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8988     if (Unsupported)
8989       return false;
8990     // If SkipOperation is true, we can ignore this operand pair (L, R).
8991     if (!SkipOperation)
8992       unionAssumed(Result);
8993     return isValidState();
8994   }
8995 
8996   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8997     auto AssumedBefore = getAssumed();
8998     Value *LHS = ICI->getOperand(0);
8999     Value *RHS = ICI->getOperand(1);
9000 
9001     // Simplify the operands first.
9002     bool UsedAssumedInformation = false;
9003     const auto &SimplifiedLHS =
9004         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9005                                *this, UsedAssumedInformation);
9006     if (!SimplifiedLHS.hasValue())
9007       return ChangeStatus::UNCHANGED;
9008     if (!SimplifiedLHS.getValue())
9009       return indicatePessimisticFixpoint();
9010     LHS = *SimplifiedLHS;
9011 
9012     const auto &SimplifiedRHS =
9013         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9014                                *this, UsedAssumedInformation);
9015     if (!SimplifiedRHS.hasValue())
9016       return ChangeStatus::UNCHANGED;
9017     if (!SimplifiedRHS.getValue())
9018       return indicatePessimisticFixpoint();
9019     RHS = *SimplifiedRHS;
9020 
9021     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9022       return indicatePessimisticFixpoint();
9023 
9024     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9025                                                 DepClassTy::REQUIRED);
9026     if (!LHSAA.isValidState())
9027       return indicatePessimisticFixpoint();
9028 
9029     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9030                                                 DepClassTy::REQUIRED);
9031     if (!RHSAA.isValidState())
9032       return indicatePessimisticFixpoint();
9033 
9034     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9035     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9036 
9037     // TODO: make use of undef flag to limit potential values aggressively.
9038     bool MaybeTrue = false, MaybeFalse = false;
9039     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
9040     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9041       // The result of any comparison between undefs can be soundly replaced
9042       // with undef.
9043       unionAssumedWithUndef();
9044     } else if (LHSAA.undefIsContained()) {
9045       for (const APInt &R : RHSAAPVS) {
9046         bool CmpResult = calculateICmpInst(ICI, Zero, R);
9047         MaybeTrue |= CmpResult;
9048         MaybeFalse |= !CmpResult;
9049         if (MaybeTrue & MaybeFalse)
9050           return indicatePessimisticFixpoint();
9051       }
9052     } else if (RHSAA.undefIsContained()) {
9053       for (const APInt &L : LHSAAPVS) {
9054         bool CmpResult = calculateICmpInst(ICI, L, Zero);
9055         MaybeTrue |= CmpResult;
9056         MaybeFalse |= !CmpResult;
9057         if (MaybeTrue & MaybeFalse)
9058           return indicatePessimisticFixpoint();
9059       }
9060     } else {
9061       for (const APInt &L : LHSAAPVS) {
9062         for (const APInt &R : RHSAAPVS) {
9063           bool CmpResult = calculateICmpInst(ICI, L, R);
9064           MaybeTrue |= CmpResult;
9065           MaybeFalse |= !CmpResult;
9066           if (MaybeTrue & MaybeFalse)
9067             return indicatePessimisticFixpoint();
9068         }
9069       }
9070     }
9071     if (MaybeTrue)
9072       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
9073     if (MaybeFalse)
9074       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
9075     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9076                                          : ChangeStatus::CHANGED;
9077   }
9078 
9079   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
9080     auto AssumedBefore = getAssumed();
9081     Value *LHS = SI->getTrueValue();
9082     Value *RHS = SI->getFalseValue();
9083 
9084     // Simplify the operands first.
9085     bool UsedAssumedInformation = false;
9086     const auto &SimplifiedLHS =
9087         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9088                                *this, UsedAssumedInformation);
9089     if (!SimplifiedLHS.hasValue())
9090       return ChangeStatus::UNCHANGED;
9091     if (!SimplifiedLHS.getValue())
9092       return indicatePessimisticFixpoint();
9093     LHS = *SimplifiedLHS;
9094 
9095     const auto &SimplifiedRHS =
9096         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9097                                *this, UsedAssumedInformation);
9098     if (!SimplifiedRHS.hasValue())
9099       return ChangeStatus::UNCHANGED;
9100     if (!SimplifiedRHS.getValue())
9101       return indicatePessimisticFixpoint();
9102     RHS = *SimplifiedRHS;
9103 
9104     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9105       return indicatePessimisticFixpoint();
9106 
9107     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
9108                                                   UsedAssumedInformation);
9109 
9110     // Check if we only need one operand.
9111     bool OnlyLeft = false, OnlyRight = false;
9112     if (C.hasValue() && *C && (*C)->isOneValue())
9113       OnlyLeft = true;
9114     else if (C.hasValue() && *C && (*C)->isZeroValue())
9115       OnlyRight = true;
9116 
9117     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
9118     if (!OnlyRight) {
9119       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9120                                              DepClassTy::REQUIRED);
9121       if (!LHSAA->isValidState())
9122         return indicatePessimisticFixpoint();
9123     }
9124     if (!OnlyLeft) {
9125       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9126                                              DepClassTy::REQUIRED);
9127       if (!RHSAA->isValidState())
9128         return indicatePessimisticFixpoint();
9129     }
9130 
9131     if (!LHSAA || !RHSAA) {
9132       // select (true/false), lhs, rhs
9133       auto *OpAA = LHSAA ? LHSAA : RHSAA;
9134 
9135       if (OpAA->undefIsContained())
9136         unionAssumedWithUndef();
9137       else
9138         unionAssumed(*OpAA);
9139 
9140     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
9141       // select i1 *, undef , undef => undef
9142       unionAssumedWithUndef();
9143     } else {
9144       unionAssumed(*LHSAA);
9145       unionAssumed(*RHSAA);
9146     }
9147     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9148                                          : ChangeStatus::CHANGED;
9149   }
9150 
9151   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9152     auto AssumedBefore = getAssumed();
9153     if (!CI->isIntegerCast())
9154       return indicatePessimisticFixpoint();
9155     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9156     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9157     Value *Src = CI->getOperand(0);
9158 
9159     // Simplify the operand first.
9160     bool UsedAssumedInformation = false;
9161     const auto &SimplifiedSrc =
9162         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
9163                                *this, UsedAssumedInformation);
9164     if (!SimplifiedSrc.hasValue())
9165       return ChangeStatus::UNCHANGED;
9166     if (!SimplifiedSrc.getValue())
9167       return indicatePessimisticFixpoint();
9168     Src = *SimplifiedSrc;
9169 
9170     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
9171                                                 DepClassTy::REQUIRED);
9172     if (!SrcAA.isValidState())
9173       return indicatePessimisticFixpoint();
9174     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
9175     if (SrcAA.undefIsContained())
9176       unionAssumedWithUndef();
9177     else {
9178       for (const APInt &S : SrcAAPVS) {
9179         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9180         unionAssumed(T);
9181       }
9182     }
9183     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9184                                          : ChangeStatus::CHANGED;
9185   }
9186 
9187   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9188     auto AssumedBefore = getAssumed();
9189     Value *LHS = BinOp->getOperand(0);
9190     Value *RHS = BinOp->getOperand(1);
9191 
9192     // Simplify the operands first.
9193     bool UsedAssumedInformation = false;
9194     const auto &SimplifiedLHS =
9195         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9196                                *this, UsedAssumedInformation);
9197     if (!SimplifiedLHS.hasValue())
9198       return ChangeStatus::UNCHANGED;
9199     if (!SimplifiedLHS.getValue())
9200       return indicatePessimisticFixpoint();
9201     LHS = *SimplifiedLHS;
9202 
9203     const auto &SimplifiedRHS =
9204         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9205                                *this, UsedAssumedInformation);
9206     if (!SimplifiedRHS.hasValue())
9207       return ChangeStatus::UNCHANGED;
9208     if (!SimplifiedRHS.getValue())
9209       return indicatePessimisticFixpoint();
9210     RHS = *SimplifiedRHS;
9211 
9212     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9213       return indicatePessimisticFixpoint();
9214 
9215     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9216                                                 DepClassTy::REQUIRED);
9217     if (!LHSAA.isValidState())
9218       return indicatePessimisticFixpoint();
9219 
9220     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9221                                                 DepClassTy::REQUIRED);
9222     if (!RHSAA.isValidState())
9223       return indicatePessimisticFixpoint();
9224 
9225     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9226     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9227     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9228 
9229     // TODO: make use of undef flag to limit potential values aggressively.
9230     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9231       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9232         return indicatePessimisticFixpoint();
9233     } else if (LHSAA.undefIsContained()) {
9234       for (const APInt &R : RHSAAPVS) {
9235         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9236           return indicatePessimisticFixpoint();
9237       }
9238     } else if (RHSAA.undefIsContained()) {
9239       for (const APInt &L : LHSAAPVS) {
9240         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9241           return indicatePessimisticFixpoint();
9242       }
9243     } else {
9244       for (const APInt &L : LHSAAPVS) {
9245         for (const APInt &R : RHSAAPVS) {
9246           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9247             return indicatePessimisticFixpoint();
9248         }
9249       }
9250     }
9251     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9252                                          : ChangeStatus::CHANGED;
9253   }
9254 
9255   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9256     auto AssumedBefore = getAssumed();
9257     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9258       Value *IncomingValue = PHI->getIncomingValue(u);
9259 
9260       // Simplify the operand first.
9261       bool UsedAssumedInformation = false;
9262       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9263           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9264           UsedAssumedInformation);
9265       if (!SimplifiedIncomingValue.hasValue())
9266         continue;
9267       if (!SimplifiedIncomingValue.getValue())
9268         return indicatePessimisticFixpoint();
9269       IncomingValue = *SimplifiedIncomingValue;
9270 
9271       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9272           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9273       if (!PotentialValuesAA.isValidState())
9274         return indicatePessimisticFixpoint();
9275       if (PotentialValuesAA.undefIsContained())
9276         unionAssumedWithUndef();
9277       else
9278         unionAssumed(PotentialValuesAA.getAssumed());
9279     }
9280     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9281                                          : ChangeStatus::CHANGED;
9282   }
9283 
9284   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9285     if (!L.getType()->isIntegerTy())
9286       return indicatePessimisticFixpoint();
9287 
9288     auto Union = [&](Value &V) {
9289       if (isa<UndefValue>(V)) {
9290         unionAssumedWithUndef();
9291         return true;
9292       }
9293       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9294         unionAssumed(CI->getValue());
9295         return true;
9296       }
9297       return false;
9298     };
9299     auto AssumedBefore = getAssumed();
9300 
9301     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9302       return indicatePessimisticFixpoint();
9303 
9304     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9305                                          : ChangeStatus::CHANGED;
9306   }
9307 
9308   /// See AbstractAttribute::updateImpl(...).
9309   ChangeStatus updateImpl(Attributor &A) override {
9310     Value &V = getAssociatedValue();
9311     Instruction *I = dyn_cast<Instruction>(&V);
9312 
9313     if (auto *ICI = dyn_cast<ICmpInst>(I))
9314       return updateWithICmpInst(A, ICI);
9315 
9316     if (auto *SI = dyn_cast<SelectInst>(I))
9317       return updateWithSelectInst(A, SI);
9318 
9319     if (auto *CI = dyn_cast<CastInst>(I))
9320       return updateWithCastInst(A, CI);
9321 
9322     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9323       return updateWithBinaryOperator(A, BinOp);
9324 
9325     if (auto *PHI = dyn_cast<PHINode>(I))
9326       return updateWithPHINode(A, PHI);
9327 
9328     if (auto *L = dyn_cast<LoadInst>(I))
9329       return updateWithLoad(A, *L);
9330 
9331     return indicatePessimisticFixpoint();
9332   }
9333 
9334   /// See AbstractAttribute::trackStatistics()
9335   void trackStatistics() const override {
9336     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9337   }
9338 };
9339 
9340 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9341   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9342       : AAPotentialValuesImpl(IRP, A) {}
9343 
9344   /// See AbstractAttribute::initialize(...).
9345   ChangeStatus updateImpl(Attributor &A) override {
9346     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9347                      "not be called");
9348   }
9349 
9350   /// See AbstractAttribute::trackStatistics()
9351   void trackStatistics() const override {
9352     STATS_DECLTRACK_FN_ATTR(potential_values)
9353   }
9354 };
9355 
9356 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9357   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9358       : AAPotentialValuesFunction(IRP, A) {}
9359 
9360   /// See AbstractAttribute::trackStatistics()
9361   void trackStatistics() const override {
9362     STATS_DECLTRACK_CS_ATTR(potential_values)
9363   }
9364 };
9365 
9366 struct AAPotentialValuesCallSiteReturned
9367     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9368   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9369       : AACallSiteReturnedFromReturned<AAPotentialValues,
9370                                        AAPotentialValuesImpl>(IRP, A) {}
9371 
9372   /// See AbstractAttribute::trackStatistics()
9373   void trackStatistics() const override {
9374     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9375   }
9376 };
9377 
9378 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9379   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9380       : AAPotentialValuesFloating(IRP, A) {}
9381 
9382   /// See AbstractAttribute::initialize(..).
9383   void initialize(Attributor &A) override {
9384     AAPotentialValuesImpl::initialize(A);
9385     if (isAtFixpoint())
9386       return;
9387 
9388     Value &V = getAssociatedValue();
9389 
9390     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9391       unionAssumed(C->getValue());
9392       indicateOptimisticFixpoint();
9393       return;
9394     }
9395 
9396     if (isa<UndefValue>(&V)) {
9397       unionAssumedWithUndef();
9398       indicateOptimisticFixpoint();
9399       return;
9400     }
9401   }
9402 
9403   /// See AbstractAttribute::updateImpl(...).
9404   ChangeStatus updateImpl(Attributor &A) override {
9405     Value &V = getAssociatedValue();
9406     auto AssumedBefore = getAssumed();
9407     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9408                                              DepClassTy::REQUIRED);
9409     const auto &S = AA.getAssumed();
9410     unionAssumed(S);
9411     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9412                                          : ChangeStatus::CHANGED;
9413   }
9414 
9415   /// See AbstractAttribute::trackStatistics()
9416   void trackStatistics() const override {
9417     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9418   }
9419 };
9420 
9421 /// ------------------------ NoUndef Attribute ---------------------------------
9422 struct AANoUndefImpl : AANoUndef {
9423   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9424 
9425   /// See AbstractAttribute::initialize(...).
9426   void initialize(Attributor &A) override {
9427     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9428       indicateOptimisticFixpoint();
9429       return;
9430     }
9431     Value &V = getAssociatedValue();
9432     if (isa<UndefValue>(V))
9433       indicatePessimisticFixpoint();
9434     else if (isa<FreezeInst>(V))
9435       indicateOptimisticFixpoint();
9436     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9437              isGuaranteedNotToBeUndefOrPoison(&V))
9438       indicateOptimisticFixpoint();
9439     else
9440       AANoUndef::initialize(A);
9441   }
9442 
9443   /// See followUsesInMBEC
9444   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9445                        AANoUndef::StateType &State) {
9446     const Value *UseV = U->get();
9447     const DominatorTree *DT = nullptr;
9448     AssumptionCache *AC = nullptr;
9449     InformationCache &InfoCache = A.getInfoCache();
9450     if (Function *F = getAnchorScope()) {
9451       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9452       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9453     }
9454     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9455     bool TrackUse = false;
9456     // Track use for instructions which must produce undef or poison bits when
9457     // at least one operand contains such bits.
9458     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9459       TrackUse = true;
9460     return TrackUse;
9461   }
9462 
9463   /// See AbstractAttribute::getAsStr().
9464   const std::string getAsStr() const override {
9465     return getAssumed() ? "noundef" : "may-undef-or-poison";
9466   }
9467 
9468   ChangeStatus manifest(Attributor &A) override {
9469     // We don't manifest noundef attribute for dead positions because the
9470     // associated values with dead positions would be replaced with undef
9471     // values.
9472     bool UsedAssumedInformation = false;
9473     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9474                         UsedAssumedInformation))
9475       return ChangeStatus::UNCHANGED;
9476     // A position whose simplified value does not have any value is
9477     // considered to be dead. We don't manifest noundef in such positions for
9478     // the same reason above.
9479     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9480              .hasValue())
9481       return ChangeStatus::UNCHANGED;
9482     return AANoUndef::manifest(A);
9483   }
9484 };
9485 
9486 struct AANoUndefFloating : public AANoUndefImpl {
9487   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9488       : AANoUndefImpl(IRP, A) {}
9489 
9490   /// See AbstractAttribute::initialize(...).
9491   void initialize(Attributor &A) override {
9492     AANoUndefImpl::initialize(A);
9493     if (!getState().isAtFixpoint())
9494       if (Instruction *CtxI = getCtxI())
9495         followUsesInMBEC(*this, A, getState(), *CtxI);
9496   }
9497 
9498   /// See AbstractAttribute::updateImpl(...).
9499   ChangeStatus updateImpl(Attributor &A) override {
9500     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9501                             AANoUndef::StateType &T, bool Stripped) -> bool {
9502       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9503                                              DepClassTy::REQUIRED);
9504       if (!Stripped && this == &AA) {
9505         T.indicatePessimisticFixpoint();
9506       } else {
9507         const AANoUndef::StateType &S =
9508             static_cast<const AANoUndef::StateType &>(AA.getState());
9509         T ^= S;
9510       }
9511       return T.isValidState();
9512     };
9513 
9514     StateType T;
9515     bool UsedAssumedInformation = false;
9516     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9517                                           VisitValueCB, getCtxI(),
9518                                           UsedAssumedInformation))
9519       return indicatePessimisticFixpoint();
9520 
9521     return clampStateAndIndicateChange(getState(), T);
9522   }
9523 
9524   /// See AbstractAttribute::trackStatistics()
9525   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9526 };
9527 
9528 struct AANoUndefReturned final
9529     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9530   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9531       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9532 
9533   /// See AbstractAttribute::trackStatistics()
9534   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9535 };
9536 
9537 struct AANoUndefArgument final
9538     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9539   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9540       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9541 
9542   /// See AbstractAttribute::trackStatistics()
9543   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9544 };
9545 
9546 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9547   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9548       : AANoUndefFloating(IRP, A) {}
9549 
9550   /// See AbstractAttribute::trackStatistics()
9551   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9552 };
9553 
9554 struct AANoUndefCallSiteReturned final
9555     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9556   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9557       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9558 
9559   /// See AbstractAttribute::trackStatistics()
9560   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9561 };
9562 
9563 struct AACallEdgesImpl : public AACallEdges {
9564   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9565 
9566   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9567     return CalledFunctions;
9568   }
9569 
9570   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9571 
9572   virtual bool hasNonAsmUnknownCallee() const override {
9573     return HasUnknownCalleeNonAsm;
9574   }
9575 
9576   const std::string getAsStr() const override {
9577     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9578            std::to_string(CalledFunctions.size()) + "]";
9579   }
9580 
9581   void trackStatistics() const override {}
9582 
9583 protected:
9584   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9585     if (CalledFunctions.insert(Fn)) {
9586       Change = ChangeStatus::CHANGED;
9587       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9588                         << "\n");
9589     }
9590   }
9591 
9592   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9593     if (!HasUnknownCallee)
9594       Change = ChangeStatus::CHANGED;
9595     if (NonAsm && !HasUnknownCalleeNonAsm)
9596       Change = ChangeStatus::CHANGED;
9597     HasUnknownCalleeNonAsm |= NonAsm;
9598     HasUnknownCallee = true;
9599   }
9600 
9601 private:
9602   /// Optimistic set of functions that might be called by this position.
9603   SetVector<Function *> CalledFunctions;
9604 
9605   /// Is there any call with a unknown callee.
9606   bool HasUnknownCallee = false;
9607 
9608   /// Is there any call with a unknown callee, excluding any inline asm.
9609   bool HasUnknownCalleeNonAsm = false;
9610 };
9611 
9612 struct AACallEdgesCallSite : public AACallEdgesImpl {
9613   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9614       : AACallEdgesImpl(IRP, A) {}
9615   /// See AbstractAttribute::updateImpl(...).
9616   ChangeStatus updateImpl(Attributor &A) override {
9617     ChangeStatus Change = ChangeStatus::UNCHANGED;
9618 
9619     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9620                           bool Stripped) -> bool {
9621       if (Function *Fn = dyn_cast<Function>(&V)) {
9622         addCalledFunction(Fn, Change);
9623       } else {
9624         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9625         setHasUnknownCallee(true, Change);
9626       }
9627 
9628       // Explore all values.
9629       return true;
9630     };
9631 
9632     // Process any value that we might call.
9633     auto ProcessCalledOperand = [&](Value *V) {
9634       bool DummyValue = false;
9635       bool UsedAssumedInformation = false;
9636       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9637                                        DummyValue, VisitValue, nullptr,
9638                                        UsedAssumedInformation, false)) {
9639         // If we haven't gone through all values, assume that there are unknown
9640         // callees.
9641         setHasUnknownCallee(true, Change);
9642       }
9643     };
9644 
9645     CallBase *CB = cast<CallBase>(getCtxI());
9646 
9647     if (CB->isInlineAsm()) {
9648       setHasUnknownCallee(false, Change);
9649       return Change;
9650     }
9651 
9652     // Process callee metadata if available.
9653     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9654       for (auto &Op : MD->operands()) {
9655         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9656         if (Callee)
9657           addCalledFunction(Callee, Change);
9658       }
9659       return Change;
9660     }
9661 
9662     // The most simple case.
9663     ProcessCalledOperand(CB->getCalledOperand());
9664 
9665     // Process callback functions.
9666     SmallVector<const Use *, 4u> CallbackUses;
9667     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9668     for (const Use *U : CallbackUses)
9669       ProcessCalledOperand(U->get());
9670 
9671     return Change;
9672   }
9673 };
9674 
9675 struct AACallEdgesFunction : public AACallEdgesImpl {
9676   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9677       : AACallEdgesImpl(IRP, A) {}
9678 
9679   /// See AbstractAttribute::updateImpl(...).
9680   ChangeStatus updateImpl(Attributor &A) override {
9681     ChangeStatus Change = ChangeStatus::UNCHANGED;
9682 
9683     auto ProcessCallInst = [&](Instruction &Inst) {
9684       CallBase &CB = cast<CallBase>(Inst);
9685 
9686       auto &CBEdges = A.getAAFor<AACallEdges>(
9687           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9688       if (CBEdges.hasNonAsmUnknownCallee())
9689         setHasUnknownCallee(true, Change);
9690       if (CBEdges.hasUnknownCallee())
9691         setHasUnknownCallee(false, Change);
9692 
9693       for (Function *F : CBEdges.getOptimisticEdges())
9694         addCalledFunction(F, Change);
9695 
9696       return true;
9697     };
9698 
9699     // Visit all callable instructions.
9700     bool UsedAssumedInformation = false;
9701     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9702                                            UsedAssumedInformation,
9703                                            /* CheckBBLivenessOnly */ true)) {
9704       // If we haven't looked at all call like instructions, assume that there
9705       // are unknown callees.
9706       setHasUnknownCallee(true, Change);
9707     }
9708 
9709     return Change;
9710   }
9711 };
9712 
9713 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9714 private:
9715   struct QuerySet {
9716     void markReachable(const Function &Fn) {
9717       Reachable.insert(&Fn);
9718       Unreachable.erase(&Fn);
9719     }
9720 
9721     /// If there is no information about the function None is returned.
9722     Optional<bool> isCachedReachable(const Function &Fn) {
9723       // Assume that we can reach the function.
9724       // TODO: Be more specific with the unknown callee.
9725       if (CanReachUnknownCallee)
9726         return true;
9727 
9728       if (Reachable.count(&Fn))
9729         return true;
9730 
9731       if (Unreachable.count(&Fn))
9732         return false;
9733 
9734       return llvm::None;
9735     }
9736 
9737     /// Set of functions that we know for sure is reachable.
9738     DenseSet<const Function *> Reachable;
9739 
9740     /// Set of functions that are unreachable, but might become reachable.
9741     DenseSet<const Function *> Unreachable;
9742 
9743     /// If we can reach a function with a call to a unknown function we assume
9744     /// that we can reach any function.
9745     bool CanReachUnknownCallee = false;
9746   };
9747 
9748   struct QueryResolver : public QuerySet {
9749     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9750                         ArrayRef<const AACallEdges *> AAEdgesList) {
9751       ChangeStatus Change = ChangeStatus::UNCHANGED;
9752 
9753       for (auto *AAEdges : AAEdgesList) {
9754         if (AAEdges->hasUnknownCallee()) {
9755           if (!CanReachUnknownCallee)
9756             Change = ChangeStatus::CHANGED;
9757           CanReachUnknownCallee = true;
9758           return Change;
9759         }
9760       }
9761 
9762       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9763         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9764           Change = ChangeStatus::CHANGED;
9765           markReachable(*Fn);
9766         }
9767       }
9768       return Change;
9769     }
9770 
9771     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9772                      ArrayRef<const AACallEdges *> AAEdgesList,
9773                      const Function &Fn) {
9774       Optional<bool> Cached = isCachedReachable(Fn);
9775       if (Cached.hasValue())
9776         return Cached.getValue();
9777 
9778       // The query was not cached, thus it is new. We need to request an update
9779       // explicitly to make sure this the information is properly run to a
9780       // fixpoint.
9781       A.registerForUpdate(AA);
9782 
9783       // We need to assume that this function can't reach Fn to prevent
9784       // an infinite loop if this function is recursive.
9785       Unreachable.insert(&Fn);
9786 
9787       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9788       if (Result)
9789         markReachable(Fn);
9790       return Result;
9791     }
9792 
9793     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9794                           ArrayRef<const AACallEdges *> AAEdgesList,
9795                           const Function &Fn) const {
9796 
9797       // Handle the most trivial case first.
9798       for (auto *AAEdges : AAEdgesList) {
9799         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9800 
9801         if (Edges.count(const_cast<Function *>(&Fn)))
9802           return true;
9803       }
9804 
9805       SmallVector<const AAFunctionReachability *, 8> Deps;
9806       for (auto &AAEdges : AAEdgesList) {
9807         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9808 
9809         for (Function *Edge : Edges) {
9810           // We don't need a dependency if the result is reachable.
9811           const AAFunctionReachability &EdgeReachability =
9812               A.getAAFor<AAFunctionReachability>(
9813                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9814           Deps.push_back(&EdgeReachability);
9815 
9816           if (EdgeReachability.canReach(A, Fn))
9817             return true;
9818         }
9819       }
9820 
9821       // The result is false for now, set dependencies and leave.
9822       for (auto *Dep : Deps)
9823         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9824 
9825       return false;
9826     }
9827   };
9828 
9829   /// Get call edges that can be reached by this instruction.
9830   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9831                              const Instruction &Inst,
9832                              SmallVector<const AACallEdges *> &Result) const {
9833     // Determine call like instructions that we can reach from the inst.
9834     auto CheckCallBase = [&](Instruction &CBInst) {
9835       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9836         return true;
9837 
9838       auto &CB = cast<CallBase>(CBInst);
9839       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9840           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9841 
9842       Result.push_back(&AAEdges);
9843       return true;
9844     };
9845 
9846     bool UsedAssumedInformation = false;
9847     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9848                                              UsedAssumedInformation,
9849                                              /* CheckBBLivenessOnly */ true);
9850   }
9851 
9852 public:
9853   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9854       : AAFunctionReachability(IRP, A) {}
9855 
9856   bool canReach(Attributor &A, const Function &Fn) const override {
9857     if (!isValidState())
9858       return true;
9859 
9860     const AACallEdges &AAEdges =
9861         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9862 
9863     // Attributor returns attributes as const, so this function has to be
9864     // const for users of this attribute to use it without having to do
9865     // a const_cast.
9866     // This is a hack for us to be able to cache queries.
9867     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9868     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9869                                                           {&AAEdges}, Fn);
9870 
9871     return Result;
9872   }
9873 
9874   /// Can \p CB reach \p Fn
9875   bool canReach(Attributor &A, CallBase &CB,
9876                 const Function &Fn) const override {
9877     if (!isValidState())
9878       return true;
9879 
9880     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9881         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9882 
9883     // Attributor returns attributes as const, so this function has to be
9884     // const for users of this attribute to use it without having to do
9885     // a const_cast.
9886     // This is a hack for us to be able to cache queries.
9887     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9888     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9889 
9890     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9891 
9892     return Result;
9893   }
9894 
9895   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9896                            const Function &Fn,
9897                            bool UseBackwards) const override {
9898     if (!isValidState())
9899       return true;
9900 
9901     if (UseBackwards)
9902       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9903 
9904     const auto &Reachability = A.getAAFor<AAReachability>(
9905         *this, IRPosition::function(*getAssociatedFunction()),
9906         DepClassTy::REQUIRED);
9907 
9908     SmallVector<const AACallEdges *> CallEdges;
9909     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9910     // Attributor returns attributes as const, so this function has to be
9911     // const for users of this attribute to use it without having to do
9912     // a const_cast.
9913     // This is a hack for us to be able to cache queries.
9914     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9915     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9916     if (!AllKnown)
9917       InstQSet.CanReachUnknownCallee = true;
9918 
9919     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9920   }
9921 
9922   /// See AbstractAttribute::updateImpl(...).
9923   ChangeStatus updateImpl(Attributor &A) override {
9924     const AACallEdges &AAEdges =
9925         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9926     ChangeStatus Change = ChangeStatus::UNCHANGED;
9927 
9928     Change |= WholeFunction.update(A, *this, {&AAEdges});
9929 
9930     for (auto &CBPair : CBQueries) {
9931       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9932           *this, IRPosition::callsite_function(*CBPair.first),
9933           DepClassTy::REQUIRED);
9934 
9935       Change |= CBPair.second.update(A, *this, {&AAEdges});
9936     }
9937 
9938     // Update the Instruction queries.
9939     if (!InstQueries.empty()) {
9940       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9941           *this, IRPosition::function(*getAssociatedFunction()),
9942           DepClassTy::REQUIRED);
9943 
9944       // Check for local callbases first.
9945       for (auto &InstPair : InstQueries) {
9946         SmallVector<const AACallEdges *> CallEdges;
9947         bool AllKnown =
9948             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9949         // Update will return change if we this effects any queries.
9950         if (!AllKnown)
9951           InstPair.second.CanReachUnknownCallee = true;
9952         Change |= InstPair.second.update(A, *this, CallEdges);
9953       }
9954     }
9955 
9956     return Change;
9957   }
9958 
9959   const std::string getAsStr() const override {
9960     size_t QueryCount =
9961         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9962 
9963     return "FunctionReachability [" +
9964            std::to_string(WholeFunction.Reachable.size()) + "," +
9965            std::to_string(QueryCount) + "]";
9966   }
9967 
9968   void trackStatistics() const override {}
9969 
9970 private:
9971   bool canReachUnknownCallee() const override {
9972     return WholeFunction.CanReachUnknownCallee;
9973   }
9974 
9975   /// Used to answer if a the whole function can reacha a specific function.
9976   QueryResolver WholeFunction;
9977 
9978   /// Used to answer if a call base inside this function can reach a specific
9979   /// function.
9980   DenseMap<const CallBase *, QueryResolver> CBQueries;
9981 
9982   /// This is for instruction queries than scan "forward".
9983   DenseMap<const Instruction *, QueryResolver> InstQueries;
9984 };
9985 } // namespace
9986 
9987 /// ---------------------- Assumption Propagation ------------------------------
9988 namespace {
9989 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9990   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9991                        const DenseSet<StringRef> &Known)
9992       : AAAssumptionInfo(IRP, A, Known) {}
9993 
9994   bool hasAssumption(const StringRef Assumption) const override {
9995     return isValidState() && setContains(Assumption);
9996   }
9997 
9998   /// See AbstractAttribute::getAsStr()
9999   const std::string getAsStr() const override {
10000     const SetContents &Known = getKnown();
10001     const SetContents &Assumed = getAssumed();
10002 
10003     const std::string KnownStr =
10004         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
10005     const std::string AssumedStr =
10006         (Assumed.isUniversal())
10007             ? "Universal"
10008             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
10009 
10010     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
10011   }
10012 };
10013 
10014 /// Propagates assumption information from parent functions to all of their
10015 /// successors. An assumption can be propagated if the containing function
10016 /// dominates the called function.
10017 ///
10018 /// We start with a "known" set of assumptions already valid for the associated
10019 /// function and an "assumed" set that initially contains all possible
10020 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10021 /// contents as concrete values are known. The concrete values are seeded by the
10022 /// first nodes that are either entries into the call graph, or contains no
10023 /// assumptions. Each node is updated as the intersection of the assumed state
10024 /// with all of its predecessors.
10025 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
10026   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10027       : AAAssumptionInfoImpl(IRP, A,
10028                              getAssumptions(*IRP.getAssociatedFunction())) {}
10029 
10030   /// See AbstractAttribute::manifest(...).
10031   ChangeStatus manifest(Attributor &A) override {
10032     const auto &Assumptions = getKnown();
10033 
10034     // Don't manifest a universal set if it somehow made it here.
10035     if (Assumptions.isUniversal())
10036       return ChangeStatus::UNCHANGED;
10037 
10038     Function *AssociatedFunction = getAssociatedFunction();
10039 
10040     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10041 
10042     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10043   }
10044 
10045   /// See AbstractAttribute::updateImpl(...).
10046   ChangeStatus updateImpl(Attributor &A) override {
10047     bool Changed = false;
10048 
10049     auto CallSitePred = [&](AbstractCallSite ACS) {
10050       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10051           *this, IRPosition::callsite_function(*ACS.getInstruction()),
10052           DepClassTy::REQUIRED);
10053       // Get the set of assumptions shared by all of this function's callers.
10054       Changed |= getIntersection(AssumptionAA.getAssumed());
10055       return !getAssumed().empty() || !getKnown().empty();
10056     };
10057 
10058     bool UsedAssumedInformation = false;
10059     // Get the intersection of all assumptions held by this node's predecessors.
10060     // If we don't know all the call sites then this is either an entry into the
10061     // call graph or an empty node. This node is known to only contain its own
10062     // assumptions and can be propagated to its successors.
10063     if (!A.checkForAllCallSites(CallSitePred, *this, true,
10064                                 UsedAssumedInformation))
10065       return indicatePessimisticFixpoint();
10066 
10067     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10068   }
10069 
10070   void trackStatistics() const override {}
10071 };
10072 
10073 /// Assumption Info defined for call sites.
10074 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10075 
10076   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10077       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10078 
10079   /// See AbstractAttribute::initialize(...).
10080   void initialize(Attributor &A) override {
10081     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10082     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10083   }
10084 
10085   /// See AbstractAttribute::manifest(...).
10086   ChangeStatus manifest(Attributor &A) override {
10087     // Don't manifest a universal set if it somehow made it here.
10088     if (getKnown().isUniversal())
10089       return ChangeStatus::UNCHANGED;
10090 
10091     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10092     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10093 
10094     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10095   }
10096 
10097   /// See AbstractAttribute::updateImpl(...).
10098   ChangeStatus updateImpl(Attributor &A) override {
10099     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10100     auto &AssumptionAA =
10101         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10102     bool Changed = getIntersection(AssumptionAA.getAssumed());
10103     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10104   }
10105 
10106   /// See AbstractAttribute::trackStatistics()
10107   void trackStatistics() const override {}
10108 
10109 private:
10110   /// Helper to initialized the known set as all the assumptions this call and
10111   /// the callee contain.
10112   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10113     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10114     auto Assumptions = getAssumptions(CB);
10115     if (Function *F = IRP.getAssociatedFunction())
10116       set_union(Assumptions, getAssumptions(*F));
10117     if (Function *F = IRP.getAssociatedFunction())
10118       set_union(Assumptions, getAssumptions(*F));
10119     return Assumptions;
10120   }
10121 };
10122 } // namespace
10123 
10124 AACallGraphNode *AACallEdgeIterator::operator*() const {
10125   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10126       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10127 }
10128 
10129 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10130 
10131 const char AAReturnedValues::ID = 0;
10132 const char AANoUnwind::ID = 0;
10133 const char AANoSync::ID = 0;
10134 const char AANoFree::ID = 0;
10135 const char AANonNull::ID = 0;
10136 const char AANoRecurse::ID = 0;
10137 const char AAWillReturn::ID = 0;
10138 const char AAUndefinedBehavior::ID = 0;
10139 const char AANoAlias::ID = 0;
10140 const char AAReachability::ID = 0;
10141 const char AANoReturn::ID = 0;
10142 const char AAIsDead::ID = 0;
10143 const char AADereferenceable::ID = 0;
10144 const char AAAlign::ID = 0;
10145 const char AANoCapture::ID = 0;
10146 const char AAValueSimplify::ID = 0;
10147 const char AAHeapToStack::ID = 0;
10148 const char AAPrivatizablePtr::ID = 0;
10149 const char AAMemoryBehavior::ID = 0;
10150 const char AAMemoryLocation::ID = 0;
10151 const char AAValueConstantRange::ID = 0;
10152 const char AAPotentialValues::ID = 0;
10153 const char AANoUndef::ID = 0;
10154 const char AACallEdges::ID = 0;
10155 const char AAFunctionReachability::ID = 0;
10156 const char AAPointerInfo::ID = 0;
10157 const char AAAssumptionInfo::ID = 0;
10158 
10159 // Macro magic to create the static generator function for attributes that
10160 // follow the naming scheme.
10161 
10162 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10163   case IRPosition::PK:                                                         \
10164     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10165 
10166 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10167   case IRPosition::PK:                                                         \
10168     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10169     ++NumAAs;                                                                  \
10170     break;
10171 
10172 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10173   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10174     CLASS *AA = nullptr;                                                       \
10175     switch (IRP.getPositionKind()) {                                           \
10176       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10177       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10178       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10179       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10180       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10181       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10182       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10183       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10184     }                                                                          \
10185     return *AA;                                                                \
10186   }
10187 
10188 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10189   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10190     CLASS *AA = nullptr;                                                       \
10191     switch (IRP.getPositionKind()) {                                           \
10192       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10193       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10194       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10195       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10196       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10197       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10198       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10199       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10200     }                                                                          \
10201     return *AA;                                                                \
10202   }
10203 
10204 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10205   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10206     CLASS *AA = nullptr;                                                       \
10207     switch (IRP.getPositionKind()) {                                           \
10208       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10209       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10210       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10211       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10212       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10213       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10214       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10215       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10216     }                                                                          \
10217     return *AA;                                                                \
10218   }
10219 
10220 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10221   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10222     CLASS *AA = nullptr;                                                       \
10223     switch (IRP.getPositionKind()) {                                           \
10224       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10225       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10226       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10227       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10228       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10229       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10230       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10231       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10232     }                                                                          \
10233     return *AA;                                                                \
10234   }
10235 
10236 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10237   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10238     CLASS *AA = nullptr;                                                       \
10239     switch (IRP.getPositionKind()) {                                           \
10240       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10241       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10242       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10243       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10244       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10245       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10246       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10247       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10248     }                                                                          \
10249     return *AA;                                                                \
10250   }
10251 
10252 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10253 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10254 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10255 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10256 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10257 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10258 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10259 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10260 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10261 
10262 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10263 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10264 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10265 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10266 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10267 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10268 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10269 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10270 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10271 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10272 
10273 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10274 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10275 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10276 
10277 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10278 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10279 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10280 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10281 
10282 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10283 
10284 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10285 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10286 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10287 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10288 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10289 #undef SWITCH_PK_CREATE
10290 #undef SWITCH_PK_INV
10291