1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // See the Attributor.h file comment and the class descriptions in that file for 10 // more information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/Attributor.h" 15 16 #include "llvm/ADT/SCCIterator.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumeBundleQueries.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/LazyValueInfo.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/NoFolder.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 34 #include <cassert> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "attributor" 39 40 static cl::opt<bool> ManifestInternal( 41 "attributor-manifest-internal", cl::Hidden, 42 cl::desc("Manifest Attributor internal string attributes."), 43 cl::init(false)); 44 45 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128), 46 cl::Hidden); 47 48 template <> 49 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0; 50 51 static cl::opt<unsigned, true> MaxPotentialValues( 52 "attributor-max-potential-values", cl::Hidden, 53 cl::desc("Maximum number of potential values to be " 54 "tracked for each position."), 55 cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues), 56 cl::init(7)); 57 58 STATISTIC(NumAAs, "Number of abstract attributes created"); 59 60 // Some helper macros to deal with statistics tracking. 61 // 62 // Usage: 63 // For simple IR attribute tracking overload trackStatistics in the abstract 64 // attribute and choose the right STATS_DECLTRACK_********* macro, 65 // e.g.,: 66 // void trackStatistics() const override { 67 // STATS_DECLTRACK_ARG_ATTR(returned) 68 // } 69 // If there is a single "increment" side one can use the macro 70 // STATS_DECLTRACK with a custom message. If there are multiple increment 71 // sides, STATS_DECL and STATS_TRACK can also be used separately. 72 // 73 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \ 74 ("Number of " #TYPE " marked '" #NAME "'") 75 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME 76 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); 77 #define STATS_DECL(NAME, TYPE, MSG) \ 78 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); 79 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); 80 #define STATS_DECLTRACK(NAME, TYPE, MSG) \ 81 { \ 82 STATS_DECL(NAME, TYPE, MSG) \ 83 STATS_TRACK(NAME, TYPE) \ 84 } 85 #define STATS_DECLTRACK_ARG_ATTR(NAME) \ 86 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) 87 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \ 88 STATS_DECLTRACK(NAME, CSArguments, \ 89 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) 90 #define STATS_DECLTRACK_FN_ATTR(NAME) \ 91 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) 92 #define STATS_DECLTRACK_CS_ATTR(NAME) \ 93 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) 94 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \ 95 STATS_DECLTRACK(NAME, FunctionReturn, \ 96 BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) 97 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \ 98 STATS_DECLTRACK(NAME, CSReturn, \ 99 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) 100 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \ 101 STATS_DECLTRACK(NAME, Floating, \ 102 ("Number of floating values known to be '" #NAME "'")) 103 104 // Specialization of the operator<< for abstract attributes subclasses. This 105 // disambiguates situations where multiple operators are applicable. 106 namespace llvm { 107 #define PIPE_OPERATOR(CLASS) \ 108 raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \ 109 return OS << static_cast<const AbstractAttribute &>(AA); \ 110 } 111 112 PIPE_OPERATOR(AAIsDead) 113 PIPE_OPERATOR(AANoUnwind) 114 PIPE_OPERATOR(AANoSync) 115 PIPE_OPERATOR(AANoRecurse) 116 PIPE_OPERATOR(AAWillReturn) 117 PIPE_OPERATOR(AANoReturn) 118 PIPE_OPERATOR(AAReturnedValues) 119 PIPE_OPERATOR(AANonNull) 120 PIPE_OPERATOR(AANoAlias) 121 PIPE_OPERATOR(AADereferenceable) 122 PIPE_OPERATOR(AAAlign) 123 PIPE_OPERATOR(AANoCapture) 124 PIPE_OPERATOR(AAValueSimplify) 125 PIPE_OPERATOR(AANoFree) 126 PIPE_OPERATOR(AAHeapToStack) 127 PIPE_OPERATOR(AAReachability) 128 PIPE_OPERATOR(AAMemoryBehavior) 129 PIPE_OPERATOR(AAMemoryLocation) 130 PIPE_OPERATOR(AAValueConstantRange) 131 PIPE_OPERATOR(AAPrivatizablePtr) 132 PIPE_OPERATOR(AAUndefinedBehavior) 133 PIPE_OPERATOR(AAPotentialValues) 134 PIPE_OPERATOR(AANoUndef) 135 136 #undef PIPE_OPERATOR 137 } // namespace llvm 138 139 namespace { 140 141 static Optional<ConstantInt *> 142 getAssumedConstantInt(Attributor &A, const Value &V, 143 const AbstractAttribute &AA, 144 bool &UsedAssumedInformation) { 145 Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation); 146 if (C.hasValue()) 147 return dyn_cast_or_null<ConstantInt>(C.getValue()); 148 return llvm::None; 149 } 150 151 /// Get pointer operand of memory accessing instruction. If \p I is 152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, 153 /// is set to false and the instruction is volatile, return nullptr. 154 static const Value *getPointerOperand(const Instruction *I, 155 bool AllowVolatile) { 156 if (auto *LI = dyn_cast<LoadInst>(I)) { 157 if (!AllowVolatile && LI->isVolatile()) 158 return nullptr; 159 return LI->getPointerOperand(); 160 } 161 162 if (auto *SI = dyn_cast<StoreInst>(I)) { 163 if (!AllowVolatile && SI->isVolatile()) 164 return nullptr; 165 return SI->getPointerOperand(); 166 } 167 168 if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) { 169 if (!AllowVolatile && CXI->isVolatile()) 170 return nullptr; 171 return CXI->getPointerOperand(); 172 } 173 174 if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) { 175 if (!AllowVolatile && RMWI->isVolatile()) 176 return nullptr; 177 return RMWI->getPointerOperand(); 178 } 179 180 return nullptr; 181 } 182 183 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and 184 /// advanced by \p Offset bytes. To aid later analysis the method tries to build 185 /// getelement pointer instructions that traverse the natural type of \p Ptr if 186 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence 187 /// through a cast to i8*. 188 /// 189 /// TODO: This could probably live somewhere more prominantly if it doesn't 190 /// already exist. 191 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset, 192 IRBuilder<NoFolder> &IRB, const DataLayout &DL) { 193 assert(Offset >= 0 && "Negative offset not supported yet!"); 194 LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset 195 << "-bytes as " << *ResTy << "\n"); 196 197 // The initial type we are trying to traverse to get nice GEPs. 198 Type *Ty = Ptr->getType(); 199 200 SmallVector<Value *, 4> Indices; 201 std::string GEPName = Ptr->getName().str(); 202 while (Offset) { 203 uint64_t Idx, Rem; 204 205 if (auto *STy = dyn_cast<StructType>(Ty)) { 206 const StructLayout *SL = DL.getStructLayout(STy); 207 if (int64_t(SL->getSizeInBytes()) < Offset) 208 break; 209 Idx = SL->getElementContainingOffset(Offset); 210 assert(Idx < STy->getNumElements() && "Offset calculation error!"); 211 Rem = Offset - SL->getElementOffset(Idx); 212 Ty = STy->getElementType(Idx); 213 } else if (auto *PTy = dyn_cast<PointerType>(Ty)) { 214 Ty = PTy->getElementType(); 215 if (!Ty->isSized()) 216 break; 217 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 218 assert(ElementSize && "Expected type with size!"); 219 Idx = Offset / ElementSize; 220 Rem = Offset % ElementSize; 221 } else { 222 // Non-aggregate type, we cast and make byte-wise progress now. 223 break; 224 } 225 226 LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset 227 << " Idx: " << Idx << " Rem: " << Rem << "\n"); 228 229 GEPName += "." + std::to_string(Idx); 230 Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx)); 231 Offset = Rem; 232 } 233 234 // Create a GEP if we collected indices above. 235 if (Indices.size()) 236 Ptr = IRB.CreateGEP(Ptr, Indices, GEPName); 237 238 // If an offset is left we use byte-wise adjustment. 239 if (Offset) { 240 Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy()); 241 Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset), 242 GEPName + ".b" + Twine(Offset)); 243 } 244 245 // Ensure the result has the requested type. 246 Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast"); 247 248 LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n"); 249 return Ptr; 250 } 251 252 /// Recursively visit all values that might become \p IRP at some point. This 253 /// will be done by looking through cast instructions, selects, phis, and calls 254 /// with the "returned" attribute. Once we cannot look through the value any 255 /// further, the callback \p VisitValueCB is invoked and passed the current 256 /// value, the \p State, and a flag to indicate if we stripped anything. 257 /// Stripped means that we unpacked the value associated with \p IRP at least 258 /// once. Note that the value used for the callback may still be the value 259 /// associated with \p IRP (due to PHIs). To limit how much effort is invested, 260 /// we will never visit more values than specified by \p MaxValues. 261 template <typename AAType, typename StateTy> 262 static bool genericValueTraversal( 263 Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State, 264 function_ref<bool(Value &, const Instruction *, StateTy &, bool)> 265 VisitValueCB, 266 const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16, 267 function_ref<Value *(Value *)> StripCB = nullptr) { 268 269 const AAIsDead *LivenessAA = nullptr; 270 if (IRP.getAnchorScope()) 271 LivenessAA = &A.getAAFor<AAIsDead>( 272 QueryingAA, IRPosition::function(*IRP.getAnchorScope()), 273 /* TrackDependence */ false); 274 bool AnyDead = false; 275 276 using Item = std::pair<Value *, const Instruction *>; 277 SmallSet<Item, 16> Visited; 278 SmallVector<Item, 16> Worklist; 279 Worklist.push_back({&IRP.getAssociatedValue(), CtxI}); 280 281 int Iteration = 0; 282 do { 283 Item I = Worklist.pop_back_val(); 284 Value *V = I.first; 285 CtxI = I.second; 286 if (StripCB) 287 V = StripCB(V); 288 289 // Check if we should process the current value. To prevent endless 290 // recursion keep a record of the values we followed! 291 if (!Visited.insert(I).second) 292 continue; 293 294 // Make sure we limit the compile time for complex expressions. 295 if (Iteration++ >= MaxValues) 296 return false; 297 298 // Explicitly look through calls with a "returned" attribute if we do 299 // not have a pointer as stripPointerCasts only works on them. 300 Value *NewV = nullptr; 301 if (V->getType()->isPointerTy()) { 302 NewV = V->stripPointerCasts(); 303 } else { 304 auto *CB = dyn_cast<CallBase>(V); 305 if (CB && CB->getCalledFunction()) { 306 for (Argument &Arg : CB->getCalledFunction()->args()) 307 if (Arg.hasReturnedAttr()) { 308 NewV = CB->getArgOperand(Arg.getArgNo()); 309 break; 310 } 311 } 312 } 313 if (NewV && NewV != V) { 314 Worklist.push_back({NewV, CtxI}); 315 continue; 316 } 317 318 // Look through select instructions, visit both potential values. 319 if (auto *SI = dyn_cast<SelectInst>(V)) { 320 Worklist.push_back({SI->getTrueValue(), CtxI}); 321 Worklist.push_back({SI->getFalseValue(), CtxI}); 322 continue; 323 } 324 325 // Look through phi nodes, visit all live operands. 326 if (auto *PHI = dyn_cast<PHINode>(V)) { 327 assert(LivenessAA && 328 "Expected liveness in the presence of instructions!"); 329 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { 330 BasicBlock *IncomingBB = PHI->getIncomingBlock(u); 331 if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA, 332 LivenessAA, 333 /* CheckBBLivenessOnly */ true)) { 334 AnyDead = true; 335 continue; 336 } 337 Worklist.push_back( 338 {PHI->getIncomingValue(u), IncomingBB->getTerminator()}); 339 } 340 continue; 341 } 342 343 if (UseValueSimplify && !isa<Constant>(V)) { 344 bool UsedAssumedInformation = false; 345 Optional<Constant *> C = 346 A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation); 347 if (!C.hasValue()) 348 continue; 349 if (Value *NewV = C.getValue()) { 350 Worklist.push_back({NewV, CtxI}); 351 continue; 352 } 353 } 354 355 // Once a leaf is reached we inform the user through the callback. 356 if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) 357 return false; 358 } while (!Worklist.empty()); 359 360 // If we actually used liveness information so we have to record a dependence. 361 if (AnyDead) 362 A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); 363 364 // All values have been visited. 365 return true; 366 } 367 368 const Value *stripAndAccumulateMinimalOffsets( 369 Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val, 370 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 371 bool UseAssumed = false) { 372 373 auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool { 374 const IRPosition &Pos = IRPosition::value(V); 375 // Only track dependence if we are going to use the assumed info. 376 const AAValueConstantRange &ValueConstantRangeAA = 377 A.getAAFor<AAValueConstantRange>(QueryingAA, Pos, 378 /* TrackDependence */ UseAssumed); 379 ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed() 380 : ValueConstantRangeAA.getKnown(); 381 // We can only use the lower part of the range because the upper part can 382 // be higher than what the value can really be. 383 ROffset = Range.getSignedMin(); 384 return true; 385 }; 386 387 return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds, 388 AttributorAnalysis); 389 } 390 391 static const Value *getMinimalBaseOfAccsesPointerOperand( 392 Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I, 393 int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) { 394 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); 395 if (!Ptr) 396 return nullptr; 397 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 398 const Value *Base = stripAndAccumulateMinimalOffsets( 399 A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds); 400 401 BytesOffset = OffsetAPInt.getSExtValue(); 402 return Base; 403 } 404 405 static const Value * 406 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset, 407 const DataLayout &DL, 408 bool AllowNonInbounds = false) { 409 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); 410 if (!Ptr) 411 return nullptr; 412 413 return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL, 414 AllowNonInbounds); 415 } 416 417 /// Helper function to clamp a state \p S of type \p StateType with the 418 /// information in \p R and indicate/return if \p S did change (as-in update is 419 /// required to be run again). 420 template <typename StateType> 421 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) { 422 auto Assumed = S.getAssumed(); 423 S ^= R; 424 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 425 : ChangeStatus::CHANGED; 426 } 427 428 /// Clamp the information known for all returned values of a function 429 /// (identified by \p QueryingAA) into \p S. 430 template <typename AAType, typename StateType = typename AAType::StateType> 431 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA, 432 StateType &S) { 433 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " 434 << QueryingAA << " into " << S << "\n"); 435 436 assert((QueryingAA.getIRPosition().getPositionKind() == 437 IRPosition::IRP_RETURNED || 438 QueryingAA.getIRPosition().getPositionKind() == 439 IRPosition::IRP_CALL_SITE_RETURNED) && 440 "Can only clamp returned value states for a function returned or call " 441 "site returned position!"); 442 443 // Use an optional state as there might not be any return values and we want 444 // to join (IntegerState::operator&) the state of all there are. 445 Optional<StateType> T; 446 447 // Callback for each possibly returned value. 448 auto CheckReturnValue = [&](Value &RV) -> bool { 449 const IRPosition &RVPos = IRPosition::value(RV); 450 const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos); 451 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr() 452 << " @ " << RVPos << "\n"); 453 const StateType &AAS = AA.getState(); 454 if (T.hasValue()) 455 *T &= AAS; 456 else 457 T = AAS; 458 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T 459 << "\n"); 460 return T->isValidState(); 461 }; 462 463 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA)) 464 S.indicatePessimisticFixpoint(); 465 else if (T.hasValue()) 466 S ^= *T; 467 } 468 469 /// Helper class for generic deduction: return value -> returned position. 470 template <typename AAType, typename BaseType, 471 typename StateType = typename BaseType::StateType> 472 struct AAReturnedFromReturnedValues : public BaseType { 473 AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A) 474 : BaseType(IRP, A) {} 475 476 /// See AbstractAttribute::updateImpl(...). 477 ChangeStatus updateImpl(Attributor &A) override { 478 StateType S(StateType::getBestState(this->getState())); 479 clampReturnedValueStates<AAType, StateType>(A, *this, S); 480 // TODO: If we know we visited all returned values, thus no are assumed 481 // dead, we can take the known information from the state T. 482 return clampStateAndIndicateChange<StateType>(this->getState(), S); 483 } 484 }; 485 486 /// Clamp the information known at all call sites for a given argument 487 /// (identified by \p QueryingAA) into \p S. 488 template <typename AAType, typename StateType = typename AAType::StateType> 489 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, 490 StateType &S) { 491 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " 492 << QueryingAA << " into " << S << "\n"); 493 494 assert(QueryingAA.getIRPosition().getPositionKind() == 495 IRPosition::IRP_ARGUMENT && 496 "Can only clamp call site argument states for an argument position!"); 497 498 // Use an optional state as there might not be any return values and we want 499 // to join (IntegerState::operator&) the state of all there are. 500 Optional<StateType> T; 501 502 // The argument number which is also the call site argument number. 503 unsigned ArgNo = QueryingAA.getIRPosition().getArgNo(); 504 505 auto CallSiteCheck = [&](AbstractCallSite ACS) { 506 const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 507 // Check if a coresponding argument was found or if it is on not associated 508 // (which can happen for callback calls). 509 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 510 return false; 511 512 const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos); 513 LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() 514 << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n"); 515 const StateType &AAS = AA.getState(); 516 if (T.hasValue()) 517 *T &= AAS; 518 else 519 T = AAS; 520 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T 521 << "\n"); 522 return T->isValidState(); 523 }; 524 525 bool AllCallSitesKnown; 526 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true, 527 AllCallSitesKnown)) 528 S.indicatePessimisticFixpoint(); 529 else if (T.hasValue()) 530 S ^= *T; 531 } 532 533 /// Helper class for generic deduction: call site argument -> argument position. 534 template <typename AAType, typename BaseType, 535 typename StateType = typename AAType::StateType> 536 struct AAArgumentFromCallSiteArguments : public BaseType { 537 AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A) 538 : BaseType(IRP, A) {} 539 540 /// See AbstractAttribute::updateImpl(...). 541 ChangeStatus updateImpl(Attributor &A) override { 542 StateType S(StateType::getBestState(this->getState())); 543 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S); 544 // TODO: If we know we visited all incoming values, thus no are assumed 545 // dead, we can take the known information from the state T. 546 return clampStateAndIndicateChange<StateType>(this->getState(), S); 547 } 548 }; 549 550 /// Helper class for generic replication: function returned -> cs returned. 551 template <typename AAType, typename BaseType, 552 typename StateType = typename BaseType::StateType> 553 struct AACallSiteReturnedFromReturned : public BaseType { 554 AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A) 555 : BaseType(IRP, A) {} 556 557 /// See AbstractAttribute::updateImpl(...). 558 ChangeStatus updateImpl(Attributor &A) override { 559 assert(this->getIRPosition().getPositionKind() == 560 IRPosition::IRP_CALL_SITE_RETURNED && 561 "Can only wrap function returned positions for call site returned " 562 "positions!"); 563 auto &S = this->getState(); 564 565 const Function *AssociatedFunction = 566 this->getIRPosition().getAssociatedFunction(); 567 if (!AssociatedFunction) 568 return S.indicatePessimisticFixpoint(); 569 570 IRPosition FnPos = IRPosition::returned(*AssociatedFunction); 571 const AAType &AA = A.getAAFor<AAType>(*this, FnPos); 572 return clampStateAndIndicateChange(S, AA.getState()); 573 } 574 }; 575 576 /// Helper function to accumulate uses. 577 template <class AAType, typename StateType = typename AAType::StateType> 578 static void followUsesInContext(AAType &AA, Attributor &A, 579 MustBeExecutedContextExplorer &Explorer, 580 const Instruction *CtxI, 581 SetVector<const Use *> &Uses, 582 StateType &State) { 583 auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI); 584 for (unsigned u = 0; u < Uses.size(); ++u) { 585 const Use *U = Uses[u]; 586 if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) { 587 bool Found = Explorer.findInContextOf(UserI, EIt, EEnd); 588 if (Found && AA.followUseInMBEC(A, U, UserI, State)) 589 for (const Use &Us : UserI->uses()) 590 Uses.insert(&Us); 591 } 592 } 593 } 594 595 /// Use the must-be-executed-context around \p I to add information into \p S. 596 /// The AAType class is required to have `followUseInMBEC` method with the 597 /// following signature and behaviour: 598 /// 599 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I) 600 /// U - Underlying use. 601 /// I - The user of the \p U. 602 /// Returns true if the value should be tracked transitively. 603 /// 604 template <class AAType, typename StateType = typename AAType::StateType> 605 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S, 606 Instruction &CtxI) { 607 608 // Container for (transitive) uses of the associated value. 609 SetVector<const Use *> Uses; 610 for (const Use &U : AA.getIRPosition().getAssociatedValue().uses()) 611 Uses.insert(&U); 612 613 MustBeExecutedContextExplorer &Explorer = 614 A.getInfoCache().getMustBeExecutedContextExplorer(); 615 616 followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S); 617 618 if (S.isAtFixpoint()) 619 return; 620 621 SmallVector<const BranchInst *, 4> BrInsts; 622 auto Pred = [&](const Instruction *I) { 623 if (const BranchInst *Br = dyn_cast<BranchInst>(I)) 624 if (Br->isConditional()) 625 BrInsts.push_back(Br); 626 return true; 627 }; 628 629 // Here, accumulate conditional branch instructions in the context. We 630 // explore the child paths and collect the known states. The disjunction of 631 // those states can be merged to its own state. Let ParentState_i be a state 632 // to indicate the known information for an i-th branch instruction in the 633 // context. ChildStates are created for its successors respectively. 634 // 635 // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1} 636 // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2} 637 // ... 638 // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m} 639 // 640 // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m 641 // 642 // FIXME: Currently, recursive branches are not handled. For example, we 643 // can't deduce that ptr must be dereferenced in below function. 644 // 645 // void f(int a, int c, int *ptr) { 646 // if(a) 647 // if (b) { 648 // *ptr = 0; 649 // } else { 650 // *ptr = 1; 651 // } 652 // else { 653 // if (b) { 654 // *ptr = 0; 655 // } else { 656 // *ptr = 1; 657 // } 658 // } 659 // } 660 661 Explorer.checkForAllContext(&CtxI, Pred); 662 for (const BranchInst *Br : BrInsts) { 663 StateType ParentState; 664 665 // The known state of the parent state is a conjunction of children's 666 // known states so it is initialized with a best state. 667 ParentState.indicateOptimisticFixpoint(); 668 669 for (const BasicBlock *BB : Br->successors()) { 670 StateType ChildState; 671 672 size_t BeforeSize = Uses.size(); 673 followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState); 674 675 // Erase uses which only appear in the child. 676 for (auto It = Uses.begin() + BeforeSize; It != Uses.end();) 677 It = Uses.erase(It); 678 679 ParentState &= ChildState; 680 } 681 682 // Use only known state. 683 S += ParentState; 684 } 685 } 686 687 /// -----------------------NoUnwind Function Attribute-------------------------- 688 689 struct AANoUnwindImpl : AANoUnwind { 690 AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {} 691 692 const std::string getAsStr() const override { 693 return getAssumed() ? "nounwind" : "may-unwind"; 694 } 695 696 /// See AbstractAttribute::updateImpl(...). 697 ChangeStatus updateImpl(Attributor &A) override { 698 auto Opcodes = { 699 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, 700 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet, 701 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; 702 703 auto CheckForNoUnwind = [&](Instruction &I) { 704 if (!I.mayThrow()) 705 return true; 706 707 if (const auto *CB = dyn_cast<CallBase>(&I)) { 708 const auto &NoUnwindAA = 709 A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB)); 710 return NoUnwindAA.isAssumedNoUnwind(); 711 } 712 return false; 713 }; 714 715 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes)) 716 return indicatePessimisticFixpoint(); 717 718 return ChangeStatus::UNCHANGED; 719 } 720 }; 721 722 struct AANoUnwindFunction final : public AANoUnwindImpl { 723 AANoUnwindFunction(const IRPosition &IRP, Attributor &A) 724 : AANoUnwindImpl(IRP, A) {} 725 726 /// See AbstractAttribute::trackStatistics() 727 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } 728 }; 729 730 /// NoUnwind attribute deduction for a call sites. 731 struct AANoUnwindCallSite final : AANoUnwindImpl { 732 AANoUnwindCallSite(const IRPosition &IRP, Attributor &A) 733 : AANoUnwindImpl(IRP, A) {} 734 735 /// See AbstractAttribute::initialize(...). 736 void initialize(Attributor &A) override { 737 AANoUnwindImpl::initialize(A); 738 Function *F = getAssociatedFunction(); 739 if (!F) 740 indicatePessimisticFixpoint(); 741 } 742 743 /// See AbstractAttribute::updateImpl(...). 744 ChangeStatus updateImpl(Attributor &A) override { 745 // TODO: Once we have call site specific value information we can provide 746 // call site specific liveness information and then it makes 747 // sense to specialize attributes for call sites arguments instead of 748 // redirecting requests to the callee argument. 749 Function *F = getAssociatedFunction(); 750 const IRPosition &FnPos = IRPosition::function(*F); 751 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos); 752 return clampStateAndIndicateChange(getState(), FnAA.getState()); 753 } 754 755 /// See AbstractAttribute::trackStatistics() 756 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } 757 }; 758 759 /// --------------------- Function Return Values ------------------------------- 760 761 /// "Attribute" that collects all potential returned values and the return 762 /// instructions that they arise from. 763 /// 764 /// If there is a unique returned value R, the manifest method will: 765 /// - mark R with the "returned" attribute, if R is an argument. 766 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState { 767 768 /// Mapping of values potentially returned by the associated function to the 769 /// return instructions that might return them. 770 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues; 771 772 /// Mapping to remember the number of returned values for a call site such 773 /// that we can avoid updates if nothing changed. 774 DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA; 775 776 /// Set of unresolved calls returned by the associated function. 777 SmallSetVector<CallBase *, 4> UnresolvedCalls; 778 779 /// State flags 780 /// 781 ///{ 782 bool IsFixed = false; 783 bool IsValidState = true; 784 ///} 785 786 public: 787 AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A) 788 : AAReturnedValues(IRP, A) {} 789 790 /// See AbstractAttribute::initialize(...). 791 void initialize(Attributor &A) override { 792 // Reset the state. 793 IsFixed = false; 794 IsValidState = true; 795 ReturnedValues.clear(); 796 797 Function *F = getAssociatedFunction(); 798 if (!F) { 799 indicatePessimisticFixpoint(); 800 return; 801 } 802 assert(!F->getReturnType()->isVoidTy() && 803 "Did not expect a void return type!"); 804 805 // The map from instruction opcodes to those instructions in the function. 806 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F); 807 808 // Look through all arguments, if one is marked as returned we are done. 809 for (Argument &Arg : F->args()) { 810 if (Arg.hasReturnedAttr()) { 811 auto &ReturnInstSet = ReturnedValues[&Arg]; 812 if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret)) 813 for (Instruction *RI : *Insts) 814 ReturnInstSet.insert(cast<ReturnInst>(RI)); 815 816 indicateOptimisticFixpoint(); 817 return; 818 } 819 } 820 821 if (!A.isFunctionIPOAmendable(*F)) 822 indicatePessimisticFixpoint(); 823 } 824 825 /// See AbstractAttribute::manifest(...). 826 ChangeStatus manifest(Attributor &A) override; 827 828 /// See AbstractAttribute::getState(...). 829 AbstractState &getState() override { return *this; } 830 831 /// See AbstractAttribute::getState(...). 832 const AbstractState &getState() const override { return *this; } 833 834 /// See AbstractAttribute::updateImpl(Attributor &A). 835 ChangeStatus updateImpl(Attributor &A) override; 836 837 llvm::iterator_range<iterator> returned_values() override { 838 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 839 } 840 841 llvm::iterator_range<const_iterator> returned_values() const override { 842 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 843 } 844 845 const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override { 846 return UnresolvedCalls; 847 } 848 849 /// Return the number of potential return values, -1 if unknown. 850 size_t getNumReturnValues() const override { 851 return isValidState() ? ReturnedValues.size() : -1; 852 } 853 854 /// Return an assumed unique return value if a single candidate is found. If 855 /// there cannot be one, return a nullptr. If it is not clear yet, return the 856 /// Optional::NoneType. 857 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; 858 859 /// See AbstractState::checkForAllReturnedValues(...). 860 bool checkForAllReturnedValuesAndReturnInsts( 861 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 862 const override; 863 864 /// Pretty print the attribute similar to the IR representation. 865 const std::string getAsStr() const override; 866 867 /// See AbstractState::isAtFixpoint(). 868 bool isAtFixpoint() const override { return IsFixed; } 869 870 /// See AbstractState::isValidState(). 871 bool isValidState() const override { return IsValidState; } 872 873 /// See AbstractState::indicateOptimisticFixpoint(...). 874 ChangeStatus indicateOptimisticFixpoint() override { 875 IsFixed = true; 876 return ChangeStatus::UNCHANGED; 877 } 878 879 ChangeStatus indicatePessimisticFixpoint() override { 880 IsFixed = true; 881 IsValidState = false; 882 return ChangeStatus::CHANGED; 883 } 884 }; 885 886 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { 887 ChangeStatus Changed = ChangeStatus::UNCHANGED; 888 889 // Bookkeeping. 890 assert(isValidState()); 891 STATS_DECLTRACK(KnownReturnValues, FunctionReturn, 892 "Number of function with known return values"); 893 894 // Check if we have an assumed unique return value that we could manifest. 895 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A); 896 897 if (!UniqueRV.hasValue() || !UniqueRV.getValue()) 898 return Changed; 899 900 // Bookkeeping. 901 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, 902 "Number of function with unique return"); 903 904 // Callback to replace the uses of CB with the constant C. 905 auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) { 906 if (CB.use_empty()) 907 return ChangeStatus::UNCHANGED; 908 if (A.changeValueAfterManifest(CB, C)) 909 return ChangeStatus::CHANGED; 910 return ChangeStatus::UNCHANGED; 911 }; 912 913 // If the assumed unique return value is an argument, annotate it. 914 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { 915 if (UniqueRVArg->getType()->canLosslesslyBitCastTo( 916 getAssociatedFunction()->getReturnType())) { 917 getIRPosition() = IRPosition::argument(*UniqueRVArg); 918 Changed = IRAttribute::manifest(A); 919 } 920 } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) { 921 // We can replace the returned value with the unique returned constant. 922 Value &AnchorValue = getAnchorValue(); 923 if (Function *F = dyn_cast<Function>(&AnchorValue)) { 924 for (const Use &U : F->uses()) 925 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) 926 if (CB->isCallee(&U)) { 927 Constant *RVCCast = 928 CB->getType() == RVC->getType() 929 ? RVC 930 : ConstantExpr::getTruncOrBitCast(RVC, CB->getType()); 931 Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed; 932 } 933 } else { 934 assert(isa<CallBase>(AnchorValue) && 935 "Expcected a function or call base anchor!"); 936 Constant *RVCCast = 937 AnchorValue.getType() == RVC->getType() 938 ? RVC 939 : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType()); 940 Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast); 941 } 942 if (Changed == ChangeStatus::CHANGED) 943 STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn, 944 "Number of function returns replaced by constant return"); 945 } 946 947 return Changed; 948 } 949 950 const std::string AAReturnedValuesImpl::getAsStr() const { 951 return (isAtFixpoint() ? "returns(#" : "may-return(#") + 952 (isValidState() ? std::to_string(getNumReturnValues()) : "?") + 953 ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]"; 954 } 955 956 Optional<Value *> 957 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const { 958 // If checkForAllReturnedValues provides a unique value, ignoring potential 959 // undef values that can also be present, it is assumed to be the actual 960 // return value and forwarded to the caller of this method. If there are 961 // multiple, a nullptr is returned indicating there cannot be a unique 962 // returned value. 963 Optional<Value *> UniqueRV; 964 965 auto Pred = [&](Value &RV) -> bool { 966 // If we found a second returned value and neither the current nor the saved 967 // one is an undef, there is no unique returned value. Undefs are special 968 // since we can pretend they have any value. 969 if (UniqueRV.hasValue() && UniqueRV != &RV && 970 !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) { 971 UniqueRV = nullptr; 972 return false; 973 } 974 975 // Do not overwrite a value with an undef. 976 if (!UniqueRV.hasValue() || !isa<UndefValue>(RV)) 977 UniqueRV = &RV; 978 979 return true; 980 }; 981 982 if (!A.checkForAllReturnedValues(Pred, *this)) 983 UniqueRV = nullptr; 984 985 return UniqueRV; 986 } 987 988 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts( 989 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 990 const { 991 if (!isValidState()) 992 return false; 993 994 // Check all returned values but ignore call sites as long as we have not 995 // encountered an overdefined one during an update. 996 for (auto &It : ReturnedValues) { 997 Value *RV = It.first; 998 999 CallBase *CB = dyn_cast<CallBase>(RV); 1000 if (CB && !UnresolvedCalls.count(CB)) 1001 continue; 1002 1003 if (!Pred(*RV, It.second)) 1004 return false; 1005 } 1006 1007 return true; 1008 } 1009 1010 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { 1011 size_t NumUnresolvedCalls = UnresolvedCalls.size(); 1012 bool Changed = false; 1013 1014 // State used in the value traversals starting in returned values. 1015 struct RVState { 1016 // The map in which we collect return values -> return instrs. 1017 decltype(ReturnedValues) &RetValsMap; 1018 // The flag to indicate a change. 1019 bool &Changed; 1020 // The return instrs we come from. 1021 SmallSetVector<ReturnInst *, 4> RetInsts; 1022 }; 1023 1024 // Callback for a leaf value returned by the associated function. 1025 auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS, 1026 bool) -> bool { 1027 auto Size = RVS.RetValsMap[&Val].size(); 1028 RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end()); 1029 bool Inserted = RVS.RetValsMap[&Val].size() != Size; 1030 RVS.Changed |= Inserted; 1031 LLVM_DEBUG({ 1032 if (Inserted) 1033 dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val 1034 << " => " << RVS.RetInsts.size() << "\n"; 1035 }); 1036 return true; 1037 }; 1038 1039 // Helper method to invoke the generic value traversal. 1040 auto VisitReturnedValue = [&](Value &RV, RVState &RVS, 1041 const Instruction *CtxI) { 1042 IRPosition RetValPos = IRPosition::value(RV); 1043 return genericValueTraversal<AAReturnedValues, RVState>( 1044 A, RetValPos, *this, RVS, VisitValueCB, CtxI, 1045 /* UseValueSimplify */ false); 1046 }; 1047 1048 // Callback for all "return intructions" live in the associated function. 1049 auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) { 1050 ReturnInst &Ret = cast<ReturnInst>(I); 1051 RVState RVS({ReturnedValues, Changed, {}}); 1052 RVS.RetInsts.insert(&Ret); 1053 return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I); 1054 }; 1055 1056 // Start by discovering returned values from all live returned instructions in 1057 // the associated function. 1058 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret})) 1059 return indicatePessimisticFixpoint(); 1060 1061 // Once returned values "directly" present in the code are handled we try to 1062 // resolve returned calls. To avoid modifications to the ReturnedValues map 1063 // while we iterate over it we kept record of potential new entries in a copy 1064 // map, NewRVsMap. 1065 decltype(ReturnedValues) NewRVsMap; 1066 1067 auto HandleReturnValue = [&](Value *RV, 1068 SmallSetVector<ReturnInst *, 4> &RIs) { 1069 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #" 1070 << RIs.size() << " RIs\n"); 1071 CallBase *CB = dyn_cast<CallBase>(RV); 1072 if (!CB || UnresolvedCalls.count(CB)) 1073 return; 1074 1075 if (!CB->getCalledFunction()) { 1076 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1077 << "\n"); 1078 UnresolvedCalls.insert(CB); 1079 return; 1080 } 1081 1082 // TODO: use the function scope once we have call site AAReturnedValues. 1083 const auto &RetValAA = A.getAAFor<AAReturnedValues>( 1084 *this, IRPosition::function(*CB->getCalledFunction())); 1085 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: " 1086 << RetValAA << "\n"); 1087 1088 // Skip dead ends, thus if we do not know anything about the returned 1089 // call we mark it as unresolved and it will stay that way. 1090 if (!RetValAA.getState().isValidState()) { 1091 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1092 << "\n"); 1093 UnresolvedCalls.insert(CB); 1094 return; 1095 } 1096 1097 // Do not try to learn partial information. If the callee has unresolved 1098 // return values we will treat the call as unresolved/opaque. 1099 auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls(); 1100 if (!RetValAAUnresolvedCalls.empty()) { 1101 UnresolvedCalls.insert(CB); 1102 return; 1103 } 1104 1105 // Now check if we can track transitively returned values. If possible, thus 1106 // if all return value can be represented in the current scope, do so. 1107 bool Unresolved = false; 1108 for (auto &RetValAAIt : RetValAA.returned_values()) { 1109 Value *RetVal = RetValAAIt.first; 1110 if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) || 1111 isa<Constant>(RetVal)) 1112 continue; 1113 // Anything that did not fit in the above categories cannot be resolved, 1114 // mark the call as unresolved. 1115 LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value " 1116 "cannot be translated: " 1117 << *RetVal << "\n"); 1118 UnresolvedCalls.insert(CB); 1119 Unresolved = true; 1120 break; 1121 } 1122 1123 if (Unresolved) 1124 return; 1125 1126 // Now track transitively returned values. 1127 unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB]; 1128 if (NumRetAA == RetValAA.getNumReturnValues()) { 1129 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not " 1130 "changed since it was seen last\n"); 1131 return; 1132 } 1133 NumRetAA = RetValAA.getNumReturnValues(); 1134 1135 for (auto &RetValAAIt : RetValAA.returned_values()) { 1136 Value *RetVal = RetValAAIt.first; 1137 if (Argument *Arg = dyn_cast<Argument>(RetVal)) { 1138 // Arguments are mapped to call site operands and we begin the traversal 1139 // again. 1140 bool Unused = false; 1141 RVState RVS({NewRVsMap, Unused, RetValAAIt.second}); 1142 VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB); 1143 continue; 1144 } else if (isa<CallBase>(RetVal)) { 1145 // Call sites are resolved by the callee attribute over time, no need to 1146 // do anything for us. 1147 continue; 1148 } else if (isa<Constant>(RetVal)) { 1149 // Constants are valid everywhere, we can simply take them. 1150 NewRVsMap[RetVal].insert(RIs.begin(), RIs.end()); 1151 continue; 1152 } 1153 } 1154 }; 1155 1156 for (auto &It : ReturnedValues) 1157 HandleReturnValue(It.first, It.second); 1158 1159 // Because processing the new information can again lead to new return values 1160 // we have to be careful and iterate until this iteration is complete. The 1161 // idea is that we are in a stable state at the end of an update. All return 1162 // values have been handled and properly categorized. We might not update 1163 // again if we have not requested a non-fix attribute so we cannot "wait" for 1164 // the next update to analyze a new return value. 1165 while (!NewRVsMap.empty()) { 1166 auto It = std::move(NewRVsMap.back()); 1167 NewRVsMap.pop_back(); 1168 1169 assert(!It.second.empty() && "Entry does not add anything."); 1170 auto &ReturnInsts = ReturnedValues[It.first]; 1171 for (ReturnInst *RI : It.second) 1172 if (ReturnInsts.insert(RI)) { 1173 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value " 1174 << *It.first << " => " << *RI << "\n"); 1175 HandleReturnValue(It.first, ReturnInsts); 1176 Changed = true; 1177 } 1178 } 1179 1180 Changed |= (NumUnresolvedCalls != UnresolvedCalls.size()); 1181 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 1182 } 1183 1184 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl { 1185 AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A) 1186 : AAReturnedValuesImpl(IRP, A) {} 1187 1188 /// See AbstractAttribute::trackStatistics() 1189 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) } 1190 }; 1191 1192 /// Returned values information for a call sites. 1193 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl { 1194 AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A) 1195 : AAReturnedValuesImpl(IRP, A) {} 1196 1197 /// See AbstractAttribute::initialize(...). 1198 void initialize(Attributor &A) override { 1199 // TODO: Once we have call site specific value information we can provide 1200 // call site specific liveness information and then it makes 1201 // sense to specialize attributes for call sites instead of 1202 // redirecting requests to the callee. 1203 llvm_unreachable("Abstract attributes for returned values are not " 1204 "supported for call sites yet!"); 1205 } 1206 1207 /// See AbstractAttribute::updateImpl(...). 1208 ChangeStatus updateImpl(Attributor &A) override { 1209 return indicatePessimisticFixpoint(); 1210 } 1211 1212 /// See AbstractAttribute::trackStatistics() 1213 void trackStatistics() const override {} 1214 }; 1215 1216 /// ------------------------ NoSync Function Attribute ------------------------- 1217 1218 struct AANoSyncImpl : AANoSync { 1219 AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {} 1220 1221 const std::string getAsStr() const override { 1222 return getAssumed() ? "nosync" : "may-sync"; 1223 } 1224 1225 /// See AbstractAttribute::updateImpl(...). 1226 ChangeStatus updateImpl(Attributor &A) override; 1227 1228 /// Helper function used to determine whether an instruction is non-relaxed 1229 /// atomic. In other words, if an atomic instruction does not have unordered 1230 /// or monotonic ordering 1231 static bool isNonRelaxedAtomic(Instruction *I); 1232 1233 /// Helper function used to determine whether an instruction is volatile. 1234 static bool isVolatile(Instruction *I); 1235 1236 /// Helper function uset to check if intrinsic is volatile (memcpy, memmove, 1237 /// memset). 1238 static bool isNoSyncIntrinsic(Instruction *I); 1239 }; 1240 1241 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) { 1242 if (!I->isAtomic()) 1243 return false; 1244 1245 AtomicOrdering Ordering; 1246 switch (I->getOpcode()) { 1247 case Instruction::AtomicRMW: 1248 Ordering = cast<AtomicRMWInst>(I)->getOrdering(); 1249 break; 1250 case Instruction::Store: 1251 Ordering = cast<StoreInst>(I)->getOrdering(); 1252 break; 1253 case Instruction::Load: 1254 Ordering = cast<LoadInst>(I)->getOrdering(); 1255 break; 1256 case Instruction::Fence: { 1257 auto *FI = cast<FenceInst>(I); 1258 if (FI->getSyncScopeID() == SyncScope::SingleThread) 1259 return false; 1260 Ordering = FI->getOrdering(); 1261 break; 1262 } 1263 case Instruction::AtomicCmpXchg: { 1264 AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering(); 1265 AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering(); 1266 // Only if both are relaxed, than it can be treated as relaxed. 1267 // Otherwise it is non-relaxed. 1268 if (Success != AtomicOrdering::Unordered && 1269 Success != AtomicOrdering::Monotonic) 1270 return true; 1271 if (Failure != AtomicOrdering::Unordered && 1272 Failure != AtomicOrdering::Monotonic) 1273 return true; 1274 return false; 1275 } 1276 default: 1277 llvm_unreachable( 1278 "New atomic operations need to be known in the attributor."); 1279 } 1280 1281 // Relaxed. 1282 if (Ordering == AtomicOrdering::Unordered || 1283 Ordering == AtomicOrdering::Monotonic) 1284 return false; 1285 return true; 1286 } 1287 1288 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics. 1289 /// FIXME: We should ipmrove the handling of intrinsics. 1290 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) { 1291 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1292 switch (II->getIntrinsicID()) { 1293 /// Element wise atomic memory intrinsics are can only be unordered, 1294 /// therefore nosync. 1295 case Intrinsic::memset_element_unordered_atomic: 1296 case Intrinsic::memmove_element_unordered_atomic: 1297 case Intrinsic::memcpy_element_unordered_atomic: 1298 return true; 1299 case Intrinsic::memset: 1300 case Intrinsic::memmove: 1301 case Intrinsic::memcpy: 1302 if (!cast<MemIntrinsic>(II)->isVolatile()) 1303 return true; 1304 return false; 1305 default: 1306 return false; 1307 } 1308 } 1309 return false; 1310 } 1311 1312 bool AANoSyncImpl::isVolatile(Instruction *I) { 1313 assert(!isa<CallBase>(I) && "Calls should not be checked here"); 1314 1315 switch (I->getOpcode()) { 1316 case Instruction::AtomicRMW: 1317 return cast<AtomicRMWInst>(I)->isVolatile(); 1318 case Instruction::Store: 1319 return cast<StoreInst>(I)->isVolatile(); 1320 case Instruction::Load: 1321 return cast<LoadInst>(I)->isVolatile(); 1322 case Instruction::AtomicCmpXchg: 1323 return cast<AtomicCmpXchgInst>(I)->isVolatile(); 1324 default: 1325 return false; 1326 } 1327 } 1328 1329 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { 1330 1331 auto CheckRWInstForNoSync = [&](Instruction &I) { 1332 /// We are looking for volatile instructions or Non-Relaxed atomics. 1333 /// FIXME: We should improve the handling of intrinsics. 1334 1335 if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I)) 1336 return true; 1337 1338 if (const auto *CB = dyn_cast<CallBase>(&I)) { 1339 if (CB->hasFnAttr(Attribute::NoSync)) 1340 return true; 1341 1342 const auto &NoSyncAA = 1343 A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB)); 1344 if (NoSyncAA.isAssumedNoSync()) 1345 return true; 1346 return false; 1347 } 1348 1349 if (!isVolatile(&I) && !isNonRelaxedAtomic(&I)) 1350 return true; 1351 1352 return false; 1353 }; 1354 1355 auto CheckForNoSync = [&](Instruction &I) { 1356 // At this point we handled all read/write effects and they are all 1357 // nosync, so they can be skipped. 1358 if (I.mayReadOrWriteMemory()) 1359 return true; 1360 1361 // non-convergent and readnone imply nosync. 1362 return !cast<CallBase>(I).isConvergent(); 1363 }; 1364 1365 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) || 1366 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this)) 1367 return indicatePessimisticFixpoint(); 1368 1369 return ChangeStatus::UNCHANGED; 1370 } 1371 1372 struct AANoSyncFunction final : public AANoSyncImpl { 1373 AANoSyncFunction(const IRPosition &IRP, Attributor &A) 1374 : AANoSyncImpl(IRP, A) {} 1375 1376 /// See AbstractAttribute::trackStatistics() 1377 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } 1378 }; 1379 1380 /// NoSync attribute deduction for a call sites. 1381 struct AANoSyncCallSite final : AANoSyncImpl { 1382 AANoSyncCallSite(const IRPosition &IRP, Attributor &A) 1383 : AANoSyncImpl(IRP, A) {} 1384 1385 /// See AbstractAttribute::initialize(...). 1386 void initialize(Attributor &A) override { 1387 AANoSyncImpl::initialize(A); 1388 Function *F = getAssociatedFunction(); 1389 if (!F) 1390 indicatePessimisticFixpoint(); 1391 } 1392 1393 /// See AbstractAttribute::updateImpl(...). 1394 ChangeStatus updateImpl(Attributor &A) override { 1395 // TODO: Once we have call site specific value information we can provide 1396 // call site specific liveness information and then it makes 1397 // sense to specialize attributes for call sites arguments instead of 1398 // redirecting requests to the callee argument. 1399 Function *F = getAssociatedFunction(); 1400 const IRPosition &FnPos = IRPosition::function(*F); 1401 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos); 1402 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1403 } 1404 1405 /// See AbstractAttribute::trackStatistics() 1406 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } 1407 }; 1408 1409 /// ------------------------ No-Free Attributes ---------------------------- 1410 1411 struct AANoFreeImpl : public AANoFree { 1412 AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {} 1413 1414 /// See AbstractAttribute::updateImpl(...). 1415 ChangeStatus updateImpl(Attributor &A) override { 1416 auto CheckForNoFree = [&](Instruction &I) { 1417 const auto &CB = cast<CallBase>(I); 1418 if (CB.hasFnAttr(Attribute::NoFree)) 1419 return true; 1420 1421 const auto &NoFreeAA = 1422 A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB)); 1423 return NoFreeAA.isAssumedNoFree(); 1424 }; 1425 1426 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this)) 1427 return indicatePessimisticFixpoint(); 1428 return ChangeStatus::UNCHANGED; 1429 } 1430 1431 /// See AbstractAttribute::getAsStr(). 1432 const std::string getAsStr() const override { 1433 return getAssumed() ? "nofree" : "may-free"; 1434 } 1435 }; 1436 1437 struct AANoFreeFunction final : public AANoFreeImpl { 1438 AANoFreeFunction(const IRPosition &IRP, Attributor &A) 1439 : AANoFreeImpl(IRP, A) {} 1440 1441 /// See AbstractAttribute::trackStatistics() 1442 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } 1443 }; 1444 1445 /// NoFree attribute deduction for a call sites. 1446 struct AANoFreeCallSite final : AANoFreeImpl { 1447 AANoFreeCallSite(const IRPosition &IRP, Attributor &A) 1448 : AANoFreeImpl(IRP, A) {} 1449 1450 /// See AbstractAttribute::initialize(...). 1451 void initialize(Attributor &A) override { 1452 AANoFreeImpl::initialize(A); 1453 Function *F = getAssociatedFunction(); 1454 if (!F) 1455 indicatePessimisticFixpoint(); 1456 } 1457 1458 /// See AbstractAttribute::updateImpl(...). 1459 ChangeStatus updateImpl(Attributor &A) override { 1460 // TODO: Once we have call site specific value information we can provide 1461 // call site specific liveness information and then it makes 1462 // sense to specialize attributes for call sites arguments instead of 1463 // redirecting requests to the callee argument. 1464 Function *F = getAssociatedFunction(); 1465 const IRPosition &FnPos = IRPosition::function(*F); 1466 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos); 1467 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1468 } 1469 1470 /// See AbstractAttribute::trackStatistics() 1471 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } 1472 }; 1473 1474 /// NoFree attribute for floating values. 1475 struct AANoFreeFloating : AANoFreeImpl { 1476 AANoFreeFloating(const IRPosition &IRP, Attributor &A) 1477 : AANoFreeImpl(IRP, A) {} 1478 1479 /// See AbstractAttribute::trackStatistics() 1480 void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} 1481 1482 /// See Abstract Attribute::updateImpl(...). 1483 ChangeStatus updateImpl(Attributor &A) override { 1484 const IRPosition &IRP = getIRPosition(); 1485 1486 const auto &NoFreeAA = 1487 A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP)); 1488 if (NoFreeAA.isAssumedNoFree()) 1489 return ChangeStatus::UNCHANGED; 1490 1491 Value &AssociatedValue = getIRPosition().getAssociatedValue(); 1492 auto Pred = [&](const Use &U, bool &Follow) -> bool { 1493 Instruction *UserI = cast<Instruction>(U.getUser()); 1494 if (auto *CB = dyn_cast<CallBase>(UserI)) { 1495 if (CB->isBundleOperand(&U)) 1496 return false; 1497 if (!CB->isArgOperand(&U)) 1498 return true; 1499 unsigned ArgNo = CB->getArgOperandNo(&U); 1500 1501 const auto &NoFreeArg = A.getAAFor<AANoFree>( 1502 *this, IRPosition::callsite_argument(*CB, ArgNo)); 1503 return NoFreeArg.isAssumedNoFree(); 1504 } 1505 1506 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 1507 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 1508 Follow = true; 1509 return true; 1510 } 1511 if (isa<ReturnInst>(UserI)) 1512 return true; 1513 1514 // Unknown user. 1515 return false; 1516 }; 1517 if (!A.checkForAllUses(Pred, *this, AssociatedValue)) 1518 return indicatePessimisticFixpoint(); 1519 1520 return ChangeStatus::UNCHANGED; 1521 } 1522 }; 1523 1524 /// NoFree attribute for a call site argument. 1525 struct AANoFreeArgument final : AANoFreeFloating { 1526 AANoFreeArgument(const IRPosition &IRP, Attributor &A) 1527 : AANoFreeFloating(IRP, A) {} 1528 1529 /// See AbstractAttribute::trackStatistics() 1530 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } 1531 }; 1532 1533 /// NoFree attribute for call site arguments. 1534 struct AANoFreeCallSiteArgument final : AANoFreeFloating { 1535 AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A) 1536 : AANoFreeFloating(IRP, A) {} 1537 1538 /// See AbstractAttribute::updateImpl(...). 1539 ChangeStatus updateImpl(Attributor &A) override { 1540 // TODO: Once we have call site specific value information we can provide 1541 // call site specific liveness information and then it makes 1542 // sense to specialize attributes for call sites arguments instead of 1543 // redirecting requests to the callee argument. 1544 Argument *Arg = getAssociatedArgument(); 1545 if (!Arg) 1546 return indicatePessimisticFixpoint(); 1547 const IRPosition &ArgPos = IRPosition::argument(*Arg); 1548 auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos); 1549 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 1550 } 1551 1552 /// See AbstractAttribute::trackStatistics() 1553 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)}; 1554 }; 1555 1556 /// NoFree attribute for function return value. 1557 struct AANoFreeReturned final : AANoFreeFloating { 1558 AANoFreeReturned(const IRPosition &IRP, Attributor &A) 1559 : AANoFreeFloating(IRP, A) { 1560 llvm_unreachable("NoFree is not applicable to function returns!"); 1561 } 1562 1563 /// See AbstractAttribute::initialize(...). 1564 void initialize(Attributor &A) override { 1565 llvm_unreachable("NoFree is not applicable to function returns!"); 1566 } 1567 1568 /// See AbstractAttribute::updateImpl(...). 1569 ChangeStatus updateImpl(Attributor &A) override { 1570 llvm_unreachable("NoFree is not applicable to function returns!"); 1571 } 1572 1573 /// See AbstractAttribute::trackStatistics() 1574 void trackStatistics() const override {} 1575 }; 1576 1577 /// NoFree attribute deduction for a call site return value. 1578 struct AANoFreeCallSiteReturned final : AANoFreeFloating { 1579 AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A) 1580 : AANoFreeFloating(IRP, A) {} 1581 1582 ChangeStatus manifest(Attributor &A) override { 1583 return ChangeStatus::UNCHANGED; 1584 } 1585 /// See AbstractAttribute::trackStatistics() 1586 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } 1587 }; 1588 1589 /// ------------------------ NonNull Argument Attribute ------------------------ 1590 static int64_t getKnownNonNullAndDerefBytesForUse( 1591 Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue, 1592 const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { 1593 TrackUse = false; 1594 1595 const Value *UseV = U->get(); 1596 if (!UseV->getType()->isPointerTy()) 1597 return 0; 1598 1599 Type *PtrTy = UseV->getType(); 1600 const Function *F = I->getFunction(); 1601 bool NullPointerIsDefined = 1602 F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true; 1603 const DataLayout &DL = A.getInfoCache().getDL(); 1604 if (const auto *CB = dyn_cast<CallBase>(I)) { 1605 if (CB->isBundleOperand(U)) { 1606 if (RetainedKnowledge RK = getKnowledgeFromUse( 1607 U, {Attribute::NonNull, Attribute::Dereferenceable})) { 1608 IsNonNull |= 1609 (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined); 1610 return RK.ArgValue; 1611 } 1612 return 0; 1613 } 1614 1615 if (CB->isCallee(U)) { 1616 IsNonNull |= !NullPointerIsDefined; 1617 return 0; 1618 } 1619 1620 unsigned ArgNo = CB->getArgOperandNo(U); 1621 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); 1622 // As long as we only use known information there is no need to track 1623 // dependences here. 1624 auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP, 1625 /* TrackDependence */ false); 1626 IsNonNull |= DerefAA.isKnownNonNull(); 1627 return DerefAA.getKnownDereferenceableBytes(); 1628 } 1629 1630 // We need to follow common pointer manipulation uses to the accesses they 1631 // feed into. We can try to be smart to avoid looking through things we do not 1632 // like for now, e.g., non-inbounds GEPs. 1633 if (isa<CastInst>(I)) { 1634 TrackUse = true; 1635 return 0; 1636 } 1637 1638 if (isa<GetElementPtrInst>(I)) { 1639 TrackUse = true; 1640 return 0; 1641 } 1642 1643 int64_t Offset; 1644 const Value *Base = 1645 getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL); 1646 if (Base) { 1647 if (Base == &AssociatedValue && 1648 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 1649 int64_t DerefBytes = 1650 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset; 1651 1652 IsNonNull |= !NullPointerIsDefined; 1653 return std::max(int64_t(0), DerefBytes); 1654 } 1655 } 1656 1657 /// Corner case when an offset is 0. 1658 Base = getBasePointerOfAccessPointerOperand(I, Offset, DL, 1659 /*AllowNonInbounds*/ true); 1660 if (Base) { 1661 if (Offset == 0 && Base == &AssociatedValue && 1662 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 1663 int64_t DerefBytes = 1664 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()); 1665 IsNonNull |= !NullPointerIsDefined; 1666 return std::max(int64_t(0), DerefBytes); 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 struct AANonNullImpl : AANonNull { 1674 AANonNullImpl(const IRPosition &IRP, Attributor &A) 1675 : AANonNull(IRP, A), 1676 NullIsDefined(NullPointerIsDefined( 1677 getAnchorScope(), 1678 getAssociatedValue().getType()->getPointerAddressSpace())) {} 1679 1680 /// See AbstractAttribute::initialize(...). 1681 void initialize(Attributor &A) override { 1682 Value &V = getAssociatedValue(); 1683 if (!NullIsDefined && 1684 hasAttr({Attribute::NonNull, Attribute::Dereferenceable}, 1685 /* IgnoreSubsumingPositions */ false, &A)) { 1686 indicateOptimisticFixpoint(); 1687 return; 1688 } 1689 1690 if (isa<ConstantPointerNull>(V)) { 1691 indicatePessimisticFixpoint(); 1692 return; 1693 } 1694 1695 AANonNull::initialize(A); 1696 1697 bool CanBeNull = true; 1698 if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) { 1699 if (!CanBeNull) { 1700 indicateOptimisticFixpoint(); 1701 return; 1702 } 1703 } 1704 1705 if (isa<GlobalValue>(&getAssociatedValue())) { 1706 indicatePessimisticFixpoint(); 1707 return; 1708 } 1709 1710 if (Instruction *CtxI = getCtxI()) 1711 followUsesInMBEC(*this, A, getState(), *CtxI); 1712 } 1713 1714 /// See followUsesInMBEC 1715 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 1716 AANonNull::StateType &State) { 1717 bool IsNonNull = false; 1718 bool TrackUse = false; 1719 getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I, 1720 IsNonNull, TrackUse); 1721 State.setKnown(IsNonNull); 1722 return TrackUse; 1723 } 1724 1725 /// See AbstractAttribute::getAsStr(). 1726 const std::string getAsStr() const override { 1727 return getAssumed() ? "nonnull" : "may-null"; 1728 } 1729 1730 /// Flag to determine if the underlying value can be null and still allow 1731 /// valid accesses. 1732 const bool NullIsDefined; 1733 }; 1734 1735 /// NonNull attribute for a floating value. 1736 struct AANonNullFloating : public AANonNullImpl { 1737 AANonNullFloating(const IRPosition &IRP, Attributor &A) 1738 : AANonNullImpl(IRP, A) {} 1739 1740 /// See AbstractAttribute::updateImpl(...). 1741 ChangeStatus updateImpl(Attributor &A) override { 1742 const DataLayout &DL = A.getDataLayout(); 1743 1744 DominatorTree *DT = nullptr; 1745 AssumptionCache *AC = nullptr; 1746 InformationCache &InfoCache = A.getInfoCache(); 1747 if (const Function *Fn = getAnchorScope()) { 1748 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn); 1749 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn); 1750 } 1751 1752 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 1753 AANonNull::StateType &T, bool Stripped) -> bool { 1754 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V)); 1755 if (!Stripped && this == &AA) { 1756 if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT)) 1757 T.indicatePessimisticFixpoint(); 1758 } else { 1759 // Use abstract attribute information. 1760 const AANonNull::StateType &NS = AA.getState(); 1761 T ^= NS; 1762 } 1763 return T.isValidState(); 1764 }; 1765 1766 StateType T; 1767 if (!genericValueTraversal<AANonNull, StateType>( 1768 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 1769 return indicatePessimisticFixpoint(); 1770 1771 return clampStateAndIndicateChange(getState(), T); 1772 } 1773 1774 /// See AbstractAttribute::trackStatistics() 1775 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 1776 }; 1777 1778 /// NonNull attribute for function return value. 1779 struct AANonNullReturned final 1780 : AAReturnedFromReturnedValues<AANonNull, AANonNull> { 1781 AANonNullReturned(const IRPosition &IRP, Attributor &A) 1782 : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {} 1783 1784 /// See AbstractAttribute::getAsStr(). 1785 const std::string getAsStr() const override { 1786 return getAssumed() ? "nonnull" : "may-null"; 1787 } 1788 1789 /// See AbstractAttribute::trackStatistics() 1790 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 1791 }; 1792 1793 /// NonNull attribute for function argument. 1794 struct AANonNullArgument final 1795 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> { 1796 AANonNullArgument(const IRPosition &IRP, Attributor &A) 1797 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {} 1798 1799 /// See AbstractAttribute::trackStatistics() 1800 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } 1801 }; 1802 1803 struct AANonNullCallSiteArgument final : AANonNullFloating { 1804 AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A) 1805 : AANonNullFloating(IRP, A) {} 1806 1807 /// See AbstractAttribute::trackStatistics() 1808 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } 1809 }; 1810 1811 /// NonNull attribute for a call site return position. 1812 struct AANonNullCallSiteReturned final 1813 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> { 1814 AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A) 1815 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {} 1816 1817 /// See AbstractAttribute::trackStatistics() 1818 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } 1819 }; 1820 1821 /// ------------------------ No-Recurse Attributes ---------------------------- 1822 1823 struct AANoRecurseImpl : public AANoRecurse { 1824 AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {} 1825 1826 /// See AbstractAttribute::getAsStr() 1827 const std::string getAsStr() const override { 1828 return getAssumed() ? "norecurse" : "may-recurse"; 1829 } 1830 }; 1831 1832 struct AANoRecurseFunction final : AANoRecurseImpl { 1833 AANoRecurseFunction(const IRPosition &IRP, Attributor &A) 1834 : AANoRecurseImpl(IRP, A) {} 1835 1836 /// See AbstractAttribute::initialize(...). 1837 void initialize(Attributor &A) override { 1838 AANoRecurseImpl::initialize(A); 1839 if (const Function *F = getAnchorScope()) 1840 if (A.getInfoCache().getSccSize(*F) != 1) 1841 indicatePessimisticFixpoint(); 1842 } 1843 1844 /// See AbstractAttribute::updateImpl(...). 1845 ChangeStatus updateImpl(Attributor &A) override { 1846 1847 // If all live call sites are known to be no-recurse, we are as well. 1848 auto CallSitePred = [&](AbstractCallSite ACS) { 1849 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>( 1850 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 1851 /* TrackDependence */ false, DepClassTy::OPTIONAL); 1852 return NoRecurseAA.isKnownNoRecurse(); 1853 }; 1854 bool AllCallSitesKnown; 1855 if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) { 1856 // If we know all call sites and all are known no-recurse, we are done. 1857 // If all known call sites, which might not be all that exist, are known 1858 // to be no-recurse, we are not done but we can continue to assume 1859 // no-recurse. If one of the call sites we have not visited will become 1860 // live, another update is triggered. 1861 if (AllCallSitesKnown) 1862 indicateOptimisticFixpoint(); 1863 return ChangeStatus::UNCHANGED; 1864 } 1865 1866 // If the above check does not hold anymore we look at the calls. 1867 auto CheckForNoRecurse = [&](Instruction &I) { 1868 const auto &CB = cast<CallBase>(I); 1869 if (CB.hasFnAttr(Attribute::NoRecurse)) 1870 return true; 1871 1872 const auto &NoRecurseAA = 1873 A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB)); 1874 if (!NoRecurseAA.isAssumedNoRecurse()) 1875 return false; 1876 1877 // Recursion to the same function 1878 if (CB.getCalledFunction() == getAnchorScope()) 1879 return false; 1880 1881 return true; 1882 }; 1883 1884 if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this)) 1885 return indicatePessimisticFixpoint(); 1886 return ChangeStatus::UNCHANGED; 1887 } 1888 1889 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } 1890 }; 1891 1892 /// NoRecurse attribute deduction for a call sites. 1893 struct AANoRecurseCallSite final : AANoRecurseImpl { 1894 AANoRecurseCallSite(const IRPosition &IRP, Attributor &A) 1895 : AANoRecurseImpl(IRP, A) {} 1896 1897 /// See AbstractAttribute::initialize(...). 1898 void initialize(Attributor &A) override { 1899 AANoRecurseImpl::initialize(A); 1900 Function *F = getAssociatedFunction(); 1901 if (!F) 1902 indicatePessimisticFixpoint(); 1903 } 1904 1905 /// See AbstractAttribute::updateImpl(...). 1906 ChangeStatus updateImpl(Attributor &A) override { 1907 // TODO: Once we have call site specific value information we can provide 1908 // call site specific liveness information and then it makes 1909 // sense to specialize attributes for call sites arguments instead of 1910 // redirecting requests to the callee argument. 1911 Function *F = getAssociatedFunction(); 1912 const IRPosition &FnPos = IRPosition::function(*F); 1913 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos); 1914 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1915 } 1916 1917 /// See AbstractAttribute::trackStatistics() 1918 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } 1919 }; 1920 1921 /// -------------------- Undefined-Behavior Attributes ------------------------ 1922 1923 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior { 1924 AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A) 1925 : AAUndefinedBehavior(IRP, A) {} 1926 1927 /// See AbstractAttribute::updateImpl(...). 1928 // through a pointer (i.e. also branches etc.) 1929 ChangeStatus updateImpl(Attributor &A) override { 1930 const size_t UBPrevSize = KnownUBInsts.size(); 1931 const size_t NoUBPrevSize = AssumedNoUBInsts.size(); 1932 1933 auto InspectMemAccessInstForUB = [&](Instruction &I) { 1934 // Skip instructions that are already saved. 1935 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 1936 return true; 1937 1938 // If we reach here, we know we have an instruction 1939 // that accesses memory through a pointer operand, 1940 // for which getPointerOperand() should give it to us. 1941 const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true); 1942 assert(PtrOp && 1943 "Expected pointer operand of memory accessing instruction"); 1944 1945 // Either we stopped and the appropriate action was taken, 1946 // or we got back a simplified value to continue. 1947 Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I); 1948 if (!SimplifiedPtrOp.hasValue()) 1949 return true; 1950 const Value *PtrOpVal = SimplifiedPtrOp.getValue(); 1951 1952 // A memory access through a pointer is considered UB 1953 // only if the pointer has constant null value. 1954 // TODO: Expand it to not only check constant values. 1955 if (!isa<ConstantPointerNull>(PtrOpVal)) { 1956 AssumedNoUBInsts.insert(&I); 1957 return true; 1958 } 1959 const Type *PtrTy = PtrOpVal->getType(); 1960 1961 // Because we only consider instructions inside functions, 1962 // assume that a parent function exists. 1963 const Function *F = I.getFunction(); 1964 1965 // A memory access using constant null pointer is only considered UB 1966 // if null pointer is _not_ defined for the target platform. 1967 if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace())) 1968 AssumedNoUBInsts.insert(&I); 1969 else 1970 KnownUBInsts.insert(&I); 1971 return true; 1972 }; 1973 1974 auto InspectBrInstForUB = [&](Instruction &I) { 1975 // A conditional branch instruction is considered UB if it has `undef` 1976 // condition. 1977 1978 // Skip instructions that are already saved. 1979 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 1980 return true; 1981 1982 // We know we have a branch instruction. 1983 auto BrInst = cast<BranchInst>(&I); 1984 1985 // Unconditional branches are never considered UB. 1986 if (BrInst->isUnconditional()) 1987 return true; 1988 1989 // Either we stopped and the appropriate action was taken, 1990 // or we got back a simplified value to continue. 1991 Optional<Value *> SimplifiedCond = 1992 stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst); 1993 if (!SimplifiedCond.hasValue()) 1994 return true; 1995 AssumedNoUBInsts.insert(&I); 1996 return true; 1997 }; 1998 1999 auto InspectCallSiteForUB = [&](Instruction &I) { 2000 // Check whether a callsite always cause UB or not 2001 2002 // Skip instructions that are already saved. 2003 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 2004 return true; 2005 2006 // Check nonnull and noundef argument attribute violation for each 2007 // callsite. 2008 CallBase &CB = cast<CallBase>(I); 2009 Function *Callee = CB.getCalledFunction(); 2010 if (!Callee) 2011 return true; 2012 for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) { 2013 // If current argument is known to be simplified to null pointer and the 2014 // corresponding argument position is known to have nonnull attribute, 2015 // the argument is poison. Furthermore, if the argument is poison and 2016 // the position is known to have noundef attriubte, this callsite is 2017 // considered UB. 2018 // TODO: Check also nopoison attribute if it is introduced. 2019 if (idx >= Callee->arg_size()) 2020 break; 2021 Value *ArgVal = CB.getArgOperand(idx); 2022 if (!ArgVal || !ArgVal->getType()->isPointerTy()) 2023 continue; 2024 IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx); 2025 if (!CalleeArgumentIRP.hasAttr({Attribute::NoUndef})) 2026 continue; 2027 auto &NonNullAA = A.getAAFor<AANonNull>(*this, CalleeArgumentIRP); 2028 if (!NonNullAA.isKnownNonNull()) 2029 continue; 2030 const auto &ValueSimplifyAA = 2031 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*ArgVal)); 2032 Optional<Value *> SimplifiedVal = 2033 ValueSimplifyAA.getAssumedSimplifiedValue(A); 2034 2035 if (!ValueSimplifyAA.isKnown()) 2036 continue; 2037 // Here, we handle three cases. 2038 // (1) Not having a value means it is dead. (we can replace the value 2039 // with undef) 2040 // (2) Simplified to null pointer. The argument is a poison value and 2041 // violate noundef attribute. 2042 // (3) Simplified to undef. The argument violate noundef attriubte. 2043 if (!SimplifiedVal.hasValue() || 2044 isa<ConstantPointerNull>(*SimplifiedVal.getValue()) || 2045 isa<UndefValue>(*SimplifiedVal.getValue())) { 2046 KnownUBInsts.insert(&I); 2047 return true; 2048 } 2049 } 2050 return true; 2051 }; 2052 2053 auto InspectReturnInstForUB = 2054 [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) { 2055 // Check if a return instruction always cause UB or not 2056 // Note: It is guaranteed that the returned position of the anchor 2057 // scope has noundef attribute when this is called. 2058 2059 // When the returned position has noundef attriubte, UB occur in the 2060 // following cases. 2061 // (1) Returned value is known to be undef. 2062 // (2) The value is known to be a null pointer and the returned 2063 // position has nonnull attribute (because the returned value is 2064 // poison). 2065 // Note: This callback is not called for a dead returned value because 2066 // such values are ignored in 2067 // checkForAllReturnedValuesAndReturnedInsts. 2068 bool FoundUB = false; 2069 if (isa<UndefValue>(V)) { 2070 FoundUB = true; 2071 } else { 2072 if (isa<ConstantPointerNull>(V)) { 2073 auto &NonNullAA = A.getAAFor<AANonNull>( 2074 *this, IRPosition::returned(*getAnchorScope())); 2075 if (NonNullAA.isKnownNonNull()) 2076 FoundUB = true; 2077 } 2078 } 2079 2080 if (FoundUB) 2081 for (ReturnInst *RI : RetInsts) 2082 KnownUBInsts.insert(RI); 2083 return true; 2084 }; 2085 2086 A.checkForAllInstructions(InspectMemAccessInstForUB, *this, 2087 {Instruction::Load, Instruction::Store, 2088 Instruction::AtomicCmpXchg, 2089 Instruction::AtomicRMW}, 2090 /* CheckBBLivenessOnly */ true); 2091 A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br}, 2092 /* CheckBBLivenessOnly */ true); 2093 A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this); 2094 2095 // If the returned position of the anchor scope has noundef attriubte, check 2096 // all returned instructions. 2097 // TODO: If AANoUndef is implemented, ask it here. 2098 if (IRPosition::returned(*getAnchorScope()).hasAttr({Attribute::NoUndef})) 2099 A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB, *this); 2100 2101 if (NoUBPrevSize != AssumedNoUBInsts.size() || 2102 UBPrevSize != KnownUBInsts.size()) 2103 return ChangeStatus::CHANGED; 2104 return ChangeStatus::UNCHANGED; 2105 } 2106 2107 bool isKnownToCauseUB(Instruction *I) const override { 2108 return KnownUBInsts.count(I); 2109 } 2110 2111 bool isAssumedToCauseUB(Instruction *I) const override { 2112 // In simple words, if an instruction is not in the assumed to _not_ 2113 // cause UB, then it is assumed UB (that includes those 2114 // in the KnownUBInsts set). The rest is boilerplate 2115 // is to ensure that it is one of the instructions we test 2116 // for UB. 2117 2118 switch (I->getOpcode()) { 2119 case Instruction::Load: 2120 case Instruction::Store: 2121 case Instruction::AtomicCmpXchg: 2122 case Instruction::AtomicRMW: 2123 return !AssumedNoUBInsts.count(I); 2124 case Instruction::Br: { 2125 auto BrInst = cast<BranchInst>(I); 2126 if (BrInst->isUnconditional()) 2127 return false; 2128 return !AssumedNoUBInsts.count(I); 2129 } break; 2130 default: 2131 return false; 2132 } 2133 return false; 2134 } 2135 2136 ChangeStatus manifest(Attributor &A) override { 2137 if (KnownUBInsts.empty()) 2138 return ChangeStatus::UNCHANGED; 2139 for (Instruction *I : KnownUBInsts) 2140 A.changeToUnreachableAfterManifest(I); 2141 return ChangeStatus::CHANGED; 2142 } 2143 2144 /// See AbstractAttribute::getAsStr() 2145 const std::string getAsStr() const override { 2146 return getAssumed() ? "undefined-behavior" : "no-ub"; 2147 } 2148 2149 /// Note: The correctness of this analysis depends on the fact that the 2150 /// following 2 sets will stop changing after some point. 2151 /// "Change" here means that their size changes. 2152 /// The size of each set is monotonically increasing 2153 /// (we only add items to them) and it is upper bounded by the number of 2154 /// instructions in the processed function (we can never save more 2155 /// elements in either set than this number). Hence, at some point, 2156 /// they will stop increasing. 2157 /// Consequently, at some point, both sets will have stopped 2158 /// changing, effectively making the analysis reach a fixpoint. 2159 2160 /// Note: These 2 sets are disjoint and an instruction can be considered 2161 /// one of 3 things: 2162 /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in 2163 /// the KnownUBInsts set. 2164 /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior 2165 /// has a reason to assume it). 2166 /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior 2167 /// could not find a reason to assume or prove that it can cause UB, 2168 /// hence it assumes it doesn't. We have a set for these instructions 2169 /// so that we don't reprocess them in every update. 2170 /// Note however that instructions in this set may cause UB. 2171 2172 protected: 2173 /// A set of all live instructions _known_ to cause UB. 2174 SmallPtrSet<Instruction *, 8> KnownUBInsts; 2175 2176 private: 2177 /// A set of all the (live) instructions that are assumed to _not_ cause UB. 2178 SmallPtrSet<Instruction *, 8> AssumedNoUBInsts; 2179 2180 // Should be called on updates in which if we're processing an instruction 2181 // \p I that depends on a value \p V, one of the following has to happen: 2182 // - If the value is assumed, then stop. 2183 // - If the value is known but undef, then consider it UB. 2184 // - Otherwise, do specific processing with the simplified value. 2185 // We return None in the first 2 cases to signify that an appropriate 2186 // action was taken and the caller should stop. 2187 // Otherwise, we return the simplified value that the caller should 2188 // use for specific processing. 2189 Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V, 2190 Instruction *I) { 2191 const auto &ValueSimplifyAA = 2192 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V)); 2193 Optional<Value *> SimplifiedV = 2194 ValueSimplifyAA.getAssumedSimplifiedValue(A); 2195 if (!ValueSimplifyAA.isKnown()) { 2196 // Don't depend on assumed values. 2197 return llvm::None; 2198 } 2199 if (!SimplifiedV.hasValue()) { 2200 // If it is known (which we tested above) but it doesn't have a value, 2201 // then we can assume `undef` and hence the instruction is UB. 2202 KnownUBInsts.insert(I); 2203 return llvm::None; 2204 } 2205 Value *Val = SimplifiedV.getValue(); 2206 if (isa<UndefValue>(Val)) { 2207 KnownUBInsts.insert(I); 2208 return llvm::None; 2209 } 2210 return Val; 2211 } 2212 }; 2213 2214 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl { 2215 AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A) 2216 : AAUndefinedBehaviorImpl(IRP, A) {} 2217 2218 /// See AbstractAttribute::trackStatistics() 2219 void trackStatistics() const override { 2220 STATS_DECL(UndefinedBehaviorInstruction, Instruction, 2221 "Number of instructions known to have UB"); 2222 BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) += 2223 KnownUBInsts.size(); 2224 } 2225 }; 2226 2227 /// ------------------------ Will-Return Attributes ---------------------------- 2228 2229 // Helper function that checks whether a function has any cycle which we don't 2230 // know if it is bounded or not. 2231 // Loops with maximum trip count are considered bounded, any other cycle not. 2232 static bool mayContainUnboundedCycle(Function &F, Attributor &A) { 2233 ScalarEvolution *SE = 2234 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F); 2235 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F); 2236 // If either SCEV or LoopInfo is not available for the function then we assume 2237 // any cycle to be unbounded cycle. 2238 // We use scc_iterator which uses Tarjan algorithm to find all the maximal 2239 // SCCs.To detect if there's a cycle, we only need to find the maximal ones. 2240 if (!SE || !LI) { 2241 for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI) 2242 if (SCCI.hasCycle()) 2243 return true; 2244 return false; 2245 } 2246 2247 // If there's irreducible control, the function may contain non-loop cycles. 2248 if (mayContainIrreducibleControl(F, LI)) 2249 return true; 2250 2251 // Any loop that does not have a max trip count is considered unbounded cycle. 2252 for (auto *L : LI->getLoopsInPreorder()) { 2253 if (!SE->getSmallConstantMaxTripCount(L)) 2254 return true; 2255 } 2256 return false; 2257 } 2258 2259 struct AAWillReturnImpl : public AAWillReturn { 2260 AAWillReturnImpl(const IRPosition &IRP, Attributor &A) 2261 : AAWillReturn(IRP, A) {} 2262 2263 /// See AbstractAttribute::initialize(...). 2264 void initialize(Attributor &A) override { 2265 AAWillReturn::initialize(A); 2266 2267 Function *F = getAnchorScope(); 2268 if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A)) 2269 indicatePessimisticFixpoint(); 2270 } 2271 2272 /// See AbstractAttribute::updateImpl(...). 2273 ChangeStatus updateImpl(Attributor &A) override { 2274 auto CheckForWillReturn = [&](Instruction &I) { 2275 IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I)); 2276 const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos); 2277 if (WillReturnAA.isKnownWillReturn()) 2278 return true; 2279 if (!WillReturnAA.isAssumedWillReturn()) 2280 return false; 2281 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos); 2282 return NoRecurseAA.isAssumedNoRecurse(); 2283 }; 2284 2285 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this)) 2286 return indicatePessimisticFixpoint(); 2287 2288 return ChangeStatus::UNCHANGED; 2289 } 2290 2291 /// See AbstractAttribute::getAsStr() 2292 const std::string getAsStr() const override { 2293 return getAssumed() ? "willreturn" : "may-noreturn"; 2294 } 2295 }; 2296 2297 struct AAWillReturnFunction final : AAWillReturnImpl { 2298 AAWillReturnFunction(const IRPosition &IRP, Attributor &A) 2299 : AAWillReturnImpl(IRP, A) {} 2300 2301 /// See AbstractAttribute::trackStatistics() 2302 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } 2303 }; 2304 2305 /// WillReturn attribute deduction for a call sites. 2306 struct AAWillReturnCallSite final : AAWillReturnImpl { 2307 AAWillReturnCallSite(const IRPosition &IRP, Attributor &A) 2308 : AAWillReturnImpl(IRP, A) {} 2309 2310 /// See AbstractAttribute::initialize(...). 2311 void initialize(Attributor &A) override { 2312 AAWillReturnImpl::initialize(A); 2313 Function *F = getAssociatedFunction(); 2314 if (!F) 2315 indicatePessimisticFixpoint(); 2316 } 2317 2318 /// See AbstractAttribute::updateImpl(...). 2319 ChangeStatus updateImpl(Attributor &A) override { 2320 // TODO: Once we have call site specific value information we can provide 2321 // call site specific liveness information and then it makes 2322 // sense to specialize attributes for call sites arguments instead of 2323 // redirecting requests to the callee argument. 2324 Function *F = getAssociatedFunction(); 2325 const IRPosition &FnPos = IRPosition::function(*F); 2326 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos); 2327 return clampStateAndIndicateChange(getState(), FnAA.getState()); 2328 } 2329 2330 /// See AbstractAttribute::trackStatistics() 2331 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } 2332 }; 2333 2334 /// -------------------AAReachability Attribute-------------------------- 2335 2336 struct AAReachabilityImpl : AAReachability { 2337 AAReachabilityImpl(const IRPosition &IRP, Attributor &A) 2338 : AAReachability(IRP, A) {} 2339 2340 const std::string getAsStr() const override { 2341 // TODO: Return the number of reachable queries. 2342 return "reachable"; 2343 } 2344 2345 /// See AbstractAttribute::initialize(...). 2346 void initialize(Attributor &A) override { indicatePessimisticFixpoint(); } 2347 2348 /// See AbstractAttribute::updateImpl(...). 2349 ChangeStatus updateImpl(Attributor &A) override { 2350 return indicatePessimisticFixpoint(); 2351 } 2352 }; 2353 2354 struct AAReachabilityFunction final : public AAReachabilityImpl { 2355 AAReachabilityFunction(const IRPosition &IRP, Attributor &A) 2356 : AAReachabilityImpl(IRP, A) {} 2357 2358 /// See AbstractAttribute::trackStatistics() 2359 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); } 2360 }; 2361 2362 /// ------------------------ NoAlias Argument Attribute ------------------------ 2363 2364 struct AANoAliasImpl : AANoAlias { 2365 AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) { 2366 assert(getAssociatedType()->isPointerTy() && 2367 "Noalias is a pointer attribute"); 2368 } 2369 2370 const std::string getAsStr() const override { 2371 return getAssumed() ? "noalias" : "may-alias"; 2372 } 2373 }; 2374 2375 /// NoAlias attribute for a floating value. 2376 struct AANoAliasFloating final : AANoAliasImpl { 2377 AANoAliasFloating(const IRPosition &IRP, Attributor &A) 2378 : AANoAliasImpl(IRP, A) {} 2379 2380 /// See AbstractAttribute::initialize(...). 2381 void initialize(Attributor &A) override { 2382 AANoAliasImpl::initialize(A); 2383 Value *Val = &getAssociatedValue(); 2384 do { 2385 CastInst *CI = dyn_cast<CastInst>(Val); 2386 if (!CI) 2387 break; 2388 Value *Base = CI->getOperand(0); 2389 if (!Base->hasOneUse()) 2390 break; 2391 Val = Base; 2392 } while (true); 2393 2394 if (!Val->getType()->isPointerTy()) { 2395 indicatePessimisticFixpoint(); 2396 return; 2397 } 2398 2399 if (isa<AllocaInst>(Val)) 2400 indicateOptimisticFixpoint(); 2401 else if (isa<ConstantPointerNull>(Val) && 2402 !NullPointerIsDefined(getAnchorScope(), 2403 Val->getType()->getPointerAddressSpace())) 2404 indicateOptimisticFixpoint(); 2405 else if (Val != &getAssociatedValue()) { 2406 const auto &ValNoAliasAA = 2407 A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val)); 2408 if (ValNoAliasAA.isKnownNoAlias()) 2409 indicateOptimisticFixpoint(); 2410 } 2411 } 2412 2413 /// See AbstractAttribute::updateImpl(...). 2414 ChangeStatus updateImpl(Attributor &A) override { 2415 // TODO: Implement this. 2416 return indicatePessimisticFixpoint(); 2417 } 2418 2419 /// See AbstractAttribute::trackStatistics() 2420 void trackStatistics() const override { 2421 STATS_DECLTRACK_FLOATING_ATTR(noalias) 2422 } 2423 }; 2424 2425 /// NoAlias attribute for an argument. 2426 struct AANoAliasArgument final 2427 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { 2428 using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>; 2429 AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} 2430 2431 /// See AbstractAttribute::initialize(...). 2432 void initialize(Attributor &A) override { 2433 Base::initialize(A); 2434 // See callsite argument attribute and callee argument attribute. 2435 if (hasAttr({Attribute::ByVal})) 2436 indicateOptimisticFixpoint(); 2437 } 2438 2439 /// See AbstractAttribute::update(...). 2440 ChangeStatus updateImpl(Attributor &A) override { 2441 // We have to make sure no-alias on the argument does not break 2442 // synchronization when this is a callback argument, see also [1] below. 2443 // If synchronization cannot be affected, we delegate to the base updateImpl 2444 // function, otherwise we give up for now. 2445 2446 // If the function is no-sync, no-alias cannot break synchronization. 2447 const auto &NoSyncAA = A.getAAFor<AANoSync>( 2448 *this, IRPosition::function_scope(getIRPosition())); 2449 if (NoSyncAA.isAssumedNoSync()) 2450 return Base::updateImpl(A); 2451 2452 // If the argument is read-only, no-alias cannot break synchronization. 2453 const auto &MemBehaviorAA = 2454 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 2455 if (MemBehaviorAA.isAssumedReadOnly()) 2456 return Base::updateImpl(A); 2457 2458 // If the argument is never passed through callbacks, no-alias cannot break 2459 // synchronization. 2460 bool AllCallSitesKnown; 2461 if (A.checkForAllCallSites( 2462 [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this, 2463 true, AllCallSitesKnown)) 2464 return Base::updateImpl(A); 2465 2466 // TODO: add no-alias but make sure it doesn't break synchronization by 2467 // introducing fake uses. See: 2468 // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel, 2469 // International Workshop on OpenMP 2018, 2470 // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf 2471 2472 return indicatePessimisticFixpoint(); 2473 } 2474 2475 /// See AbstractAttribute::trackStatistics() 2476 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } 2477 }; 2478 2479 struct AANoAliasCallSiteArgument final : AANoAliasImpl { 2480 AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A) 2481 : AANoAliasImpl(IRP, A) {} 2482 2483 /// See AbstractAttribute::initialize(...). 2484 void initialize(Attributor &A) override { 2485 // See callsite argument attribute and callee argument attribute. 2486 const auto &CB = cast<CallBase>(getAnchorValue()); 2487 if (CB.paramHasAttr(getArgNo(), Attribute::NoAlias)) 2488 indicateOptimisticFixpoint(); 2489 Value &Val = getAssociatedValue(); 2490 if (isa<ConstantPointerNull>(Val) && 2491 !NullPointerIsDefined(getAnchorScope(), 2492 Val.getType()->getPointerAddressSpace())) 2493 indicateOptimisticFixpoint(); 2494 } 2495 2496 /// Determine if the underlying value may alias with the call site argument 2497 /// \p OtherArgNo of \p ICS (= the underlying call site). 2498 bool mayAliasWithArgument(Attributor &A, AAResults *&AAR, 2499 const AAMemoryBehavior &MemBehaviorAA, 2500 const CallBase &CB, unsigned OtherArgNo) { 2501 // We do not need to worry about aliasing with the underlying IRP. 2502 if (this->getArgNo() == (int)OtherArgNo) 2503 return false; 2504 2505 // If it is not a pointer or pointer vector we do not alias. 2506 const Value *ArgOp = CB.getArgOperand(OtherArgNo); 2507 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 2508 return false; 2509 2510 auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 2511 *this, IRPosition::callsite_argument(CB, OtherArgNo), 2512 /* TrackDependence */ false); 2513 2514 // If the argument is readnone, there is no read-write aliasing. 2515 if (CBArgMemBehaviorAA.isAssumedReadNone()) { 2516 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2517 return false; 2518 } 2519 2520 // If the argument is readonly and the underlying value is readonly, there 2521 // is no read-write aliasing. 2522 bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly(); 2523 if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) { 2524 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2525 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2526 return false; 2527 } 2528 2529 // We have to utilize actual alias analysis queries so we need the object. 2530 if (!AAR) 2531 AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope()); 2532 2533 // Try to rule it out at the call site. 2534 bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp); 2535 LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between " 2536 "callsite arguments: " 2537 << getAssociatedValue() << " " << *ArgOp << " => " 2538 << (IsAliasing ? "" : "no-") << "alias \n"); 2539 2540 return IsAliasing; 2541 } 2542 2543 bool 2544 isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR, 2545 const AAMemoryBehavior &MemBehaviorAA, 2546 const AANoAlias &NoAliasAA) { 2547 // We can deduce "noalias" if the following conditions hold. 2548 // (i) Associated value is assumed to be noalias in the definition. 2549 // (ii) Associated value is assumed to be no-capture in all the uses 2550 // possibly executed before this callsite. 2551 // (iii) There is no other pointer argument which could alias with the 2552 // value. 2553 2554 bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias(); 2555 if (!AssociatedValueIsNoAliasAtDef) { 2556 LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue() 2557 << " is not no-alias at the definition\n"); 2558 return false; 2559 } 2560 2561 A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL); 2562 2563 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2564 auto &NoCaptureAA = 2565 A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false); 2566 // Check whether the value is captured in the scope using AANoCapture. 2567 // Look at CFG and check only uses possibly executed before this 2568 // callsite. 2569 auto UsePred = [&](const Use &U, bool &Follow) -> bool { 2570 Instruction *UserI = cast<Instruction>(U.getUser()); 2571 2572 // If user if curr instr and only use. 2573 if (UserI == getCtxI() && UserI->hasOneUse()) 2574 return true; 2575 2576 const Function *ScopeFn = VIRP.getAnchorScope(); 2577 if (ScopeFn) { 2578 const auto &ReachabilityAA = 2579 A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn)); 2580 2581 if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI())) 2582 return true; 2583 2584 if (auto *CB = dyn_cast<CallBase>(UserI)) { 2585 if (CB->isArgOperand(&U)) { 2586 2587 unsigned ArgNo = CB->getArgOperandNo(&U); 2588 2589 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 2590 *this, IRPosition::callsite_argument(*CB, ArgNo)); 2591 2592 if (NoCaptureAA.isAssumedNoCapture()) 2593 return true; 2594 } 2595 } 2596 } 2597 2598 // For cases which can potentially have more users 2599 if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) || 2600 isa<SelectInst>(U)) { 2601 Follow = true; 2602 return true; 2603 } 2604 2605 LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n"); 2606 return false; 2607 }; 2608 2609 if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 2610 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) { 2611 LLVM_DEBUG( 2612 dbgs() << "[AANoAliasCSArg] " << getAssociatedValue() 2613 << " cannot be noalias as it is potentially captured\n"); 2614 return false; 2615 } 2616 } 2617 A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL); 2618 2619 // Check there is no other pointer argument which could alias with the 2620 // value passed at this call site. 2621 // TODO: AbstractCallSite 2622 const auto &CB = cast<CallBase>(getAnchorValue()); 2623 for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands(); 2624 OtherArgNo++) 2625 if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo)) 2626 return false; 2627 2628 return true; 2629 } 2630 2631 /// See AbstractAttribute::updateImpl(...). 2632 ChangeStatus updateImpl(Attributor &A) override { 2633 // If the argument is readnone we are done as there are no accesses via the 2634 // argument. 2635 auto &MemBehaviorAA = 2636 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), 2637 /* TrackDependence */ false); 2638 if (MemBehaviorAA.isAssumedReadNone()) { 2639 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2640 return ChangeStatus::UNCHANGED; 2641 } 2642 2643 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2644 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP, 2645 /* TrackDependence */ false); 2646 2647 AAResults *AAR = nullptr; 2648 if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA, 2649 NoAliasAA)) { 2650 LLVM_DEBUG( 2651 dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n"); 2652 return ChangeStatus::UNCHANGED; 2653 } 2654 2655 return indicatePessimisticFixpoint(); 2656 } 2657 2658 /// See AbstractAttribute::trackStatistics() 2659 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } 2660 }; 2661 2662 /// NoAlias attribute for function return value. 2663 struct AANoAliasReturned final : AANoAliasImpl { 2664 AANoAliasReturned(const IRPosition &IRP, Attributor &A) 2665 : AANoAliasImpl(IRP, A) {} 2666 2667 /// See AbstractAttribute::updateImpl(...). 2668 virtual ChangeStatus updateImpl(Attributor &A) override { 2669 2670 auto CheckReturnValue = [&](Value &RV) -> bool { 2671 if (Constant *C = dyn_cast<Constant>(&RV)) 2672 if (C->isNullValue() || isa<UndefValue>(C)) 2673 return true; 2674 2675 /// For now, we can only deduce noalias if we have call sites. 2676 /// FIXME: add more support. 2677 if (!isa<CallBase>(&RV)) 2678 return false; 2679 2680 const IRPosition &RVPos = IRPosition::value(RV); 2681 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos); 2682 if (!NoAliasAA.isAssumedNoAlias()) 2683 return false; 2684 2685 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos); 2686 return NoCaptureAA.isAssumedNoCaptureMaybeReturned(); 2687 }; 2688 2689 if (!A.checkForAllReturnedValues(CheckReturnValue, *this)) 2690 return indicatePessimisticFixpoint(); 2691 2692 return ChangeStatus::UNCHANGED; 2693 } 2694 2695 /// See AbstractAttribute::trackStatistics() 2696 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } 2697 }; 2698 2699 /// NoAlias attribute deduction for a call site return value. 2700 struct AANoAliasCallSiteReturned final : AANoAliasImpl { 2701 AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A) 2702 : AANoAliasImpl(IRP, A) {} 2703 2704 /// See AbstractAttribute::initialize(...). 2705 void initialize(Attributor &A) override { 2706 AANoAliasImpl::initialize(A); 2707 Function *F = getAssociatedFunction(); 2708 if (!F) 2709 indicatePessimisticFixpoint(); 2710 } 2711 2712 /// See AbstractAttribute::updateImpl(...). 2713 ChangeStatus updateImpl(Attributor &A) override { 2714 // TODO: Once we have call site specific value information we can provide 2715 // call site specific liveness information and then it makes 2716 // sense to specialize attributes for call sites arguments instead of 2717 // redirecting requests to the callee argument. 2718 Function *F = getAssociatedFunction(); 2719 const IRPosition &FnPos = IRPosition::returned(*F); 2720 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos); 2721 return clampStateAndIndicateChange(getState(), FnAA.getState()); 2722 } 2723 2724 /// See AbstractAttribute::trackStatistics() 2725 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } 2726 }; 2727 2728 /// -------------------AAIsDead Function Attribute----------------------- 2729 2730 struct AAIsDeadValueImpl : public AAIsDead { 2731 AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} 2732 2733 /// See AAIsDead::isAssumedDead(). 2734 bool isAssumedDead() const override { return getAssumed(); } 2735 2736 /// See AAIsDead::isKnownDead(). 2737 bool isKnownDead() const override { return getKnown(); } 2738 2739 /// See AAIsDead::isAssumedDead(BasicBlock *). 2740 bool isAssumedDead(const BasicBlock *BB) const override { return false; } 2741 2742 /// See AAIsDead::isKnownDead(BasicBlock *). 2743 bool isKnownDead(const BasicBlock *BB) const override { return false; } 2744 2745 /// See AAIsDead::isAssumedDead(Instruction *I). 2746 bool isAssumedDead(const Instruction *I) const override { 2747 return I == getCtxI() && isAssumedDead(); 2748 } 2749 2750 /// See AAIsDead::isKnownDead(Instruction *I). 2751 bool isKnownDead(const Instruction *I) const override { 2752 return isAssumedDead(I) && getKnown(); 2753 } 2754 2755 /// See AbstractAttribute::getAsStr(). 2756 const std::string getAsStr() const override { 2757 return isAssumedDead() ? "assumed-dead" : "assumed-live"; 2758 } 2759 2760 /// Check if all uses are assumed dead. 2761 bool areAllUsesAssumedDead(Attributor &A, Value &V) { 2762 auto UsePred = [&](const Use &U, bool &Follow) { return false; }; 2763 // Explicitly set the dependence class to required because we want a long 2764 // chain of N dependent instructions to be considered live as soon as one is 2765 // without going through N update cycles. This is not required for 2766 // correctness. 2767 return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED); 2768 } 2769 2770 /// Determine if \p I is assumed to be side-effect free. 2771 bool isAssumedSideEffectFree(Attributor &A, Instruction *I) { 2772 if (!I || wouldInstructionBeTriviallyDead(I)) 2773 return true; 2774 2775 auto *CB = dyn_cast<CallBase>(I); 2776 if (!CB || isa<IntrinsicInst>(CB)) 2777 return false; 2778 2779 const IRPosition &CallIRP = IRPosition::callsite_function(*CB); 2780 const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>( 2781 *this, CallIRP, /* TrackDependence */ false); 2782 if (!NoUnwindAA.isAssumedNoUnwind()) 2783 return false; 2784 if (!NoUnwindAA.isKnownNoUnwind()) 2785 A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL); 2786 2787 const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>( 2788 *this, CallIRP, /* TrackDependence */ false); 2789 if (MemBehaviorAA.isAssumedReadOnly()) { 2790 if (!MemBehaviorAA.isKnownReadOnly()) 2791 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2792 return true; 2793 } 2794 return false; 2795 } 2796 }; 2797 2798 struct AAIsDeadFloating : public AAIsDeadValueImpl { 2799 AAIsDeadFloating(const IRPosition &IRP, Attributor &A) 2800 : AAIsDeadValueImpl(IRP, A) {} 2801 2802 /// See AbstractAttribute::initialize(...). 2803 void initialize(Attributor &A) override { 2804 if (isa<UndefValue>(getAssociatedValue())) { 2805 indicatePessimisticFixpoint(); 2806 return; 2807 } 2808 2809 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 2810 if (!isAssumedSideEffectFree(A, I)) 2811 indicatePessimisticFixpoint(); 2812 } 2813 2814 /// See AbstractAttribute::updateImpl(...). 2815 ChangeStatus updateImpl(Attributor &A) override { 2816 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 2817 if (!isAssumedSideEffectFree(A, I)) 2818 return indicatePessimisticFixpoint(); 2819 2820 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 2821 return indicatePessimisticFixpoint(); 2822 return ChangeStatus::UNCHANGED; 2823 } 2824 2825 /// See AbstractAttribute::manifest(...). 2826 ChangeStatus manifest(Attributor &A) override { 2827 Value &V = getAssociatedValue(); 2828 if (auto *I = dyn_cast<Instruction>(&V)) { 2829 // If we get here we basically know the users are all dead. We check if 2830 // isAssumedSideEffectFree returns true here again because it might not be 2831 // the case and only the users are dead but the instruction (=call) is 2832 // still needed. 2833 if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) { 2834 A.deleteAfterManifest(*I); 2835 return ChangeStatus::CHANGED; 2836 } 2837 } 2838 if (V.use_empty()) 2839 return ChangeStatus::UNCHANGED; 2840 2841 bool UsedAssumedInformation = false; 2842 Optional<Constant *> C = 2843 A.getAssumedConstant(V, *this, UsedAssumedInformation); 2844 if (C.hasValue() && C.getValue()) 2845 return ChangeStatus::UNCHANGED; 2846 2847 // Replace the value with undef as it is dead but keep droppable uses around 2848 // as they provide information we don't want to give up on just yet. 2849 UndefValue &UV = *UndefValue::get(V.getType()); 2850 bool AnyChange = 2851 A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false); 2852 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 2853 } 2854 2855 /// See AbstractAttribute::trackStatistics() 2856 void trackStatistics() const override { 2857 STATS_DECLTRACK_FLOATING_ATTR(IsDead) 2858 } 2859 }; 2860 2861 struct AAIsDeadArgument : public AAIsDeadFloating { 2862 AAIsDeadArgument(const IRPosition &IRP, Attributor &A) 2863 : AAIsDeadFloating(IRP, A) {} 2864 2865 /// See AbstractAttribute::initialize(...). 2866 void initialize(Attributor &A) override { 2867 if (!A.isFunctionIPOAmendable(*getAnchorScope())) 2868 indicatePessimisticFixpoint(); 2869 } 2870 2871 /// See AbstractAttribute::manifest(...). 2872 ChangeStatus manifest(Attributor &A) override { 2873 ChangeStatus Changed = AAIsDeadFloating::manifest(A); 2874 Argument &Arg = *getAssociatedArgument(); 2875 if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {})) 2876 if (A.registerFunctionSignatureRewrite( 2877 Arg, /* ReplacementTypes */ {}, 2878 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{}, 2879 Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) { 2880 Arg.dropDroppableUses(); 2881 return ChangeStatus::CHANGED; 2882 } 2883 return Changed; 2884 } 2885 2886 /// See AbstractAttribute::trackStatistics() 2887 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } 2888 }; 2889 2890 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { 2891 AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A) 2892 : AAIsDeadValueImpl(IRP, A) {} 2893 2894 /// See AbstractAttribute::initialize(...). 2895 void initialize(Attributor &A) override { 2896 if (isa<UndefValue>(getAssociatedValue())) 2897 indicatePessimisticFixpoint(); 2898 } 2899 2900 /// See AbstractAttribute::updateImpl(...). 2901 ChangeStatus updateImpl(Attributor &A) override { 2902 // TODO: Once we have call site specific value information we can provide 2903 // call site specific liveness information and then it makes 2904 // sense to specialize attributes for call sites arguments instead of 2905 // redirecting requests to the callee argument. 2906 Argument *Arg = getAssociatedArgument(); 2907 if (!Arg) 2908 return indicatePessimisticFixpoint(); 2909 const IRPosition &ArgPos = IRPosition::argument(*Arg); 2910 auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos); 2911 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 2912 } 2913 2914 /// See AbstractAttribute::manifest(...). 2915 ChangeStatus manifest(Attributor &A) override { 2916 CallBase &CB = cast<CallBase>(getAnchorValue()); 2917 Use &U = CB.getArgOperandUse(getArgNo()); 2918 assert(!isa<UndefValue>(U.get()) && 2919 "Expected undef values to be filtered out!"); 2920 UndefValue &UV = *UndefValue::get(U->getType()); 2921 if (A.changeUseAfterManifest(U, UV)) 2922 return ChangeStatus::CHANGED; 2923 return ChangeStatus::UNCHANGED; 2924 } 2925 2926 /// See AbstractAttribute::trackStatistics() 2927 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } 2928 }; 2929 2930 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { 2931 AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A) 2932 : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {} 2933 2934 /// See AAIsDead::isAssumedDead(). 2935 bool isAssumedDead() const override { 2936 return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree; 2937 } 2938 2939 /// See AbstractAttribute::initialize(...). 2940 void initialize(Attributor &A) override { 2941 if (isa<UndefValue>(getAssociatedValue())) { 2942 indicatePessimisticFixpoint(); 2943 return; 2944 } 2945 2946 // We track this separately as a secondary state. 2947 IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI()); 2948 } 2949 2950 /// See AbstractAttribute::updateImpl(...). 2951 ChangeStatus updateImpl(Attributor &A) override { 2952 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2953 if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) { 2954 IsAssumedSideEffectFree = false; 2955 Changed = ChangeStatus::CHANGED; 2956 } 2957 2958 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 2959 return indicatePessimisticFixpoint(); 2960 return Changed; 2961 } 2962 2963 /// See AbstractAttribute::trackStatistics() 2964 void trackStatistics() const override { 2965 if (IsAssumedSideEffectFree) 2966 STATS_DECLTRACK_CSRET_ATTR(IsDead) 2967 else 2968 STATS_DECLTRACK_CSRET_ATTR(UnusedResult) 2969 } 2970 2971 /// See AbstractAttribute::getAsStr(). 2972 const std::string getAsStr() const override { 2973 return isAssumedDead() 2974 ? "assumed-dead" 2975 : (getAssumed() ? "assumed-dead-users" : "assumed-live"); 2976 } 2977 2978 private: 2979 bool IsAssumedSideEffectFree; 2980 }; 2981 2982 struct AAIsDeadReturned : public AAIsDeadValueImpl { 2983 AAIsDeadReturned(const IRPosition &IRP, Attributor &A) 2984 : AAIsDeadValueImpl(IRP, A) {} 2985 2986 /// See AbstractAttribute::updateImpl(...). 2987 ChangeStatus updateImpl(Attributor &A) override { 2988 2989 A.checkForAllInstructions([](Instruction &) { return true; }, *this, 2990 {Instruction::Ret}); 2991 2992 auto PredForCallSite = [&](AbstractCallSite ACS) { 2993 if (ACS.isCallbackCall() || !ACS.getInstruction()) 2994 return false; 2995 return areAllUsesAssumedDead(A, *ACS.getInstruction()); 2996 }; 2997 2998 bool AllCallSitesKnown; 2999 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 3000 AllCallSitesKnown)) 3001 return indicatePessimisticFixpoint(); 3002 3003 return ChangeStatus::UNCHANGED; 3004 } 3005 3006 /// See AbstractAttribute::manifest(...). 3007 ChangeStatus manifest(Attributor &A) override { 3008 // TODO: Rewrite the signature to return void? 3009 bool AnyChange = false; 3010 UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType()); 3011 auto RetInstPred = [&](Instruction &I) { 3012 ReturnInst &RI = cast<ReturnInst>(I); 3013 if (!isa<UndefValue>(RI.getReturnValue())) 3014 AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV); 3015 return true; 3016 }; 3017 A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret}); 3018 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 3019 } 3020 3021 /// See AbstractAttribute::trackStatistics() 3022 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } 3023 }; 3024 3025 struct AAIsDeadFunction : public AAIsDead { 3026 AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} 3027 3028 /// See AbstractAttribute::initialize(...). 3029 void initialize(Attributor &A) override { 3030 const Function *F = getAnchorScope(); 3031 if (F && !F->isDeclaration()) { 3032 ToBeExploredFrom.insert(&F->getEntryBlock().front()); 3033 assumeLive(A, F->getEntryBlock()); 3034 } 3035 } 3036 3037 /// See AbstractAttribute::getAsStr(). 3038 const std::string getAsStr() const override { 3039 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" + 3040 std::to_string(getAnchorScope()->size()) + "][#TBEP " + 3041 std::to_string(ToBeExploredFrom.size()) + "][#KDE " + 3042 std::to_string(KnownDeadEnds.size()) + "]"; 3043 } 3044 3045 /// See AbstractAttribute::manifest(...). 3046 ChangeStatus manifest(Attributor &A) override { 3047 assert(getState().isValidState() && 3048 "Attempted to manifest an invalid state!"); 3049 3050 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 3051 Function &F = *getAnchorScope(); 3052 3053 if (AssumedLiveBlocks.empty()) { 3054 A.deleteAfterManifest(F); 3055 return ChangeStatus::CHANGED; 3056 } 3057 3058 // Flag to determine if we can change an invoke to a call assuming the 3059 // callee is nounwind. This is not possible if the personality of the 3060 // function allows to catch asynchronous exceptions. 3061 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); 3062 3063 KnownDeadEnds.set_union(ToBeExploredFrom); 3064 for (const Instruction *DeadEndI : KnownDeadEnds) { 3065 auto *CB = dyn_cast<CallBase>(DeadEndI); 3066 if (!CB) 3067 continue; 3068 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>( 3069 *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true, 3070 DepClassTy::OPTIONAL); 3071 bool MayReturn = !NoReturnAA.isAssumedNoReturn(); 3072 if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB))) 3073 continue; 3074 3075 if (auto *II = dyn_cast<InvokeInst>(DeadEndI)) 3076 A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II)); 3077 else 3078 A.changeToUnreachableAfterManifest( 3079 const_cast<Instruction *>(DeadEndI->getNextNode())); 3080 HasChanged = ChangeStatus::CHANGED; 3081 } 3082 3083 STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted."); 3084 for (BasicBlock &BB : F) 3085 if (!AssumedLiveBlocks.count(&BB)) { 3086 A.deleteAfterManifest(BB); 3087 ++BUILD_STAT_NAME(AAIsDead, BasicBlock); 3088 } 3089 3090 return HasChanged; 3091 } 3092 3093 /// See AbstractAttribute::updateImpl(...). 3094 ChangeStatus updateImpl(Attributor &A) override; 3095 3096 /// See AbstractAttribute::trackStatistics() 3097 void trackStatistics() const override {} 3098 3099 /// Returns true if the function is assumed dead. 3100 bool isAssumedDead() const override { return false; } 3101 3102 /// See AAIsDead::isKnownDead(). 3103 bool isKnownDead() const override { return false; } 3104 3105 /// See AAIsDead::isAssumedDead(BasicBlock *). 3106 bool isAssumedDead(const BasicBlock *BB) const override { 3107 assert(BB->getParent() == getAnchorScope() && 3108 "BB must be in the same anchor scope function."); 3109 3110 if (!getAssumed()) 3111 return false; 3112 return !AssumedLiveBlocks.count(BB); 3113 } 3114 3115 /// See AAIsDead::isKnownDead(BasicBlock *). 3116 bool isKnownDead(const BasicBlock *BB) const override { 3117 return getKnown() && isAssumedDead(BB); 3118 } 3119 3120 /// See AAIsDead::isAssumed(Instruction *I). 3121 bool isAssumedDead(const Instruction *I) const override { 3122 assert(I->getParent()->getParent() == getAnchorScope() && 3123 "Instruction must be in the same anchor scope function."); 3124 3125 if (!getAssumed()) 3126 return false; 3127 3128 // If it is not in AssumedLiveBlocks then it for sure dead. 3129 // Otherwise, it can still be after noreturn call in a live block. 3130 if (!AssumedLiveBlocks.count(I->getParent())) 3131 return true; 3132 3133 // If it is not after a liveness barrier it is live. 3134 const Instruction *PrevI = I->getPrevNode(); 3135 while (PrevI) { 3136 if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI)) 3137 return true; 3138 PrevI = PrevI->getPrevNode(); 3139 } 3140 return false; 3141 } 3142 3143 /// See AAIsDead::isKnownDead(Instruction *I). 3144 bool isKnownDead(const Instruction *I) const override { 3145 return getKnown() && isAssumedDead(I); 3146 } 3147 3148 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A 3149 /// that internal function called from \p BB should now be looked at. 3150 bool assumeLive(Attributor &A, const BasicBlock &BB) { 3151 if (!AssumedLiveBlocks.insert(&BB).second) 3152 return false; 3153 3154 // We assume that all of BB is (probably) live now and if there are calls to 3155 // internal functions we will assume that those are now live as well. This 3156 // is a performance optimization for blocks with calls to a lot of internal 3157 // functions. It can however cause dead functions to be treated as live. 3158 for (const Instruction &I : BB) 3159 if (const auto *CB = dyn_cast<CallBase>(&I)) 3160 if (const Function *F = CB->getCalledFunction()) 3161 if (F->hasLocalLinkage()) 3162 A.markLiveInternalFunction(*F); 3163 return true; 3164 } 3165 3166 /// Collection of instructions that need to be explored again, e.g., we 3167 /// did assume they do not transfer control to (one of their) successors. 3168 SmallSetVector<const Instruction *, 8> ToBeExploredFrom; 3169 3170 /// Collection of instructions that are known to not transfer control. 3171 SmallSetVector<const Instruction *, 8> KnownDeadEnds; 3172 3173 /// Collection of all assumed live BasicBlocks. 3174 DenseSet<const BasicBlock *> AssumedLiveBlocks; 3175 }; 3176 3177 static bool 3178 identifyAliveSuccessors(Attributor &A, const CallBase &CB, 3179 AbstractAttribute &AA, 3180 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3181 const IRPosition &IPos = IRPosition::callsite_function(CB); 3182 3183 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>( 3184 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 3185 if (NoReturnAA.isAssumedNoReturn()) 3186 return !NoReturnAA.isKnownNoReturn(); 3187 if (CB.isTerminator()) 3188 AliveSuccessors.push_back(&CB.getSuccessor(0)->front()); 3189 else 3190 AliveSuccessors.push_back(CB.getNextNode()); 3191 return false; 3192 } 3193 3194 static bool 3195 identifyAliveSuccessors(Attributor &A, const InvokeInst &II, 3196 AbstractAttribute &AA, 3197 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3198 bool UsedAssumedInformation = 3199 identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors); 3200 3201 // First, determine if we can change an invoke to a call assuming the 3202 // callee is nounwind. This is not possible if the personality of the 3203 // function allows to catch asynchronous exceptions. 3204 if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) { 3205 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3206 } else { 3207 const IRPosition &IPos = IRPosition::callsite_function(II); 3208 const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>( 3209 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 3210 if (AANoUnw.isAssumedNoUnwind()) { 3211 UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind(); 3212 } else { 3213 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3214 } 3215 } 3216 return UsedAssumedInformation; 3217 } 3218 3219 static bool 3220 identifyAliveSuccessors(Attributor &A, const BranchInst &BI, 3221 AbstractAttribute &AA, 3222 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3223 bool UsedAssumedInformation = false; 3224 if (BI.getNumSuccessors() == 1) { 3225 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3226 } else { 3227 Optional<ConstantInt *> CI = getAssumedConstantInt( 3228 A, *BI.getCondition(), AA, UsedAssumedInformation); 3229 if (!CI.hasValue()) { 3230 // No value yet, assume both edges are dead. 3231 } else if (CI.getValue()) { 3232 const BasicBlock *SuccBB = 3233 BI.getSuccessor(1 - CI.getValue()->getZExtValue()); 3234 AliveSuccessors.push_back(&SuccBB->front()); 3235 } else { 3236 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3237 AliveSuccessors.push_back(&BI.getSuccessor(1)->front()); 3238 UsedAssumedInformation = false; 3239 } 3240 } 3241 return UsedAssumedInformation; 3242 } 3243 3244 static bool 3245 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, 3246 AbstractAttribute &AA, 3247 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3248 bool UsedAssumedInformation = false; 3249 Optional<ConstantInt *> CI = 3250 getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation); 3251 if (!CI.hasValue()) { 3252 // No value yet, assume all edges are dead. 3253 } else if (CI.getValue()) { 3254 for (auto &CaseIt : SI.cases()) { 3255 if (CaseIt.getCaseValue() == CI.getValue()) { 3256 AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front()); 3257 return UsedAssumedInformation; 3258 } 3259 } 3260 AliveSuccessors.push_back(&SI.getDefaultDest()->front()); 3261 return UsedAssumedInformation; 3262 } else { 3263 for (const BasicBlock *SuccBB : successors(SI.getParent())) 3264 AliveSuccessors.push_back(&SuccBB->front()); 3265 } 3266 return UsedAssumedInformation; 3267 } 3268 3269 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { 3270 ChangeStatus Change = ChangeStatus::UNCHANGED; 3271 3272 LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" 3273 << getAnchorScope()->size() << "] BBs and " 3274 << ToBeExploredFrom.size() << " exploration points and " 3275 << KnownDeadEnds.size() << " known dead ends\n"); 3276 3277 // Copy and clear the list of instructions we need to explore from. It is 3278 // refilled with instructions the next update has to look at. 3279 SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), 3280 ToBeExploredFrom.end()); 3281 decltype(ToBeExploredFrom) NewToBeExploredFrom; 3282 3283 SmallVector<const Instruction *, 8> AliveSuccessors; 3284 while (!Worklist.empty()) { 3285 const Instruction *I = Worklist.pop_back_val(); 3286 LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n"); 3287 3288 // Fast forward for uninteresting instructions. We could look for UB here 3289 // though. 3290 while(!I->isTerminator() && !isa<CallBase>(I)) { 3291 Change = ChangeStatus::CHANGED; 3292 I = I->getNextNode(); 3293 } 3294 3295 AliveSuccessors.clear(); 3296 3297 bool UsedAssumedInformation = false; 3298 switch (I->getOpcode()) { 3299 // TODO: look for (assumed) UB to backwards propagate "deadness". 3300 default: 3301 assert(I->isTerminator() && 3302 "Expected non-terminators to be handled already!"); 3303 for (const BasicBlock *SuccBB : successors(I->getParent())) 3304 AliveSuccessors.push_back(&SuccBB->front()); 3305 break; 3306 case Instruction::Call: 3307 UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I), 3308 *this, AliveSuccessors); 3309 break; 3310 case Instruction::Invoke: 3311 UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I), 3312 *this, AliveSuccessors); 3313 break; 3314 case Instruction::Br: 3315 UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I), 3316 *this, AliveSuccessors); 3317 break; 3318 case Instruction::Switch: 3319 UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I), 3320 *this, AliveSuccessors); 3321 break; 3322 } 3323 3324 if (UsedAssumedInformation) { 3325 NewToBeExploredFrom.insert(I); 3326 } else { 3327 Change = ChangeStatus::CHANGED; 3328 if (AliveSuccessors.empty() || 3329 (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors())) 3330 KnownDeadEnds.insert(I); 3331 } 3332 3333 LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " 3334 << AliveSuccessors.size() << " UsedAssumedInformation: " 3335 << UsedAssumedInformation << "\n"); 3336 3337 for (const Instruction *AliveSuccessor : AliveSuccessors) { 3338 if (!I->isTerminator()) { 3339 assert(AliveSuccessors.size() == 1 && 3340 "Non-terminator expected to have a single successor!"); 3341 Worklist.push_back(AliveSuccessor); 3342 } else { 3343 if (assumeLive(A, *AliveSuccessor->getParent())) 3344 Worklist.push_back(AliveSuccessor); 3345 } 3346 } 3347 } 3348 3349 ToBeExploredFrom = std::move(NewToBeExploredFrom); 3350 3351 // If we know everything is live there is no need to query for liveness. 3352 // Instead, indicating a pessimistic fixpoint will cause the state to be 3353 // "invalid" and all queries to be answered conservatively without lookups. 3354 // To be in this state we have to (1) finished the exploration and (3) not 3355 // discovered any non-trivial dead end and (2) not ruled unreachable code 3356 // dead. 3357 if (ToBeExploredFrom.empty() && 3358 getAnchorScope()->size() == AssumedLiveBlocks.size() && 3359 llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) { 3360 return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; 3361 })) 3362 return indicatePessimisticFixpoint(); 3363 return Change; 3364 } 3365 3366 /// Liveness information for a call sites. 3367 struct AAIsDeadCallSite final : AAIsDeadFunction { 3368 AAIsDeadCallSite(const IRPosition &IRP, Attributor &A) 3369 : AAIsDeadFunction(IRP, A) {} 3370 3371 /// See AbstractAttribute::initialize(...). 3372 void initialize(Attributor &A) override { 3373 // TODO: Once we have call site specific value information we can provide 3374 // call site specific liveness information and then it makes 3375 // sense to specialize attributes for call sites instead of 3376 // redirecting requests to the callee. 3377 llvm_unreachable("Abstract attributes for liveness are not " 3378 "supported for call sites yet!"); 3379 } 3380 3381 /// See AbstractAttribute::updateImpl(...). 3382 ChangeStatus updateImpl(Attributor &A) override { 3383 return indicatePessimisticFixpoint(); 3384 } 3385 3386 /// See AbstractAttribute::trackStatistics() 3387 void trackStatistics() const override {} 3388 }; 3389 3390 /// -------------------- Dereferenceable Argument Attribute -------------------- 3391 3392 template <> 3393 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, 3394 const DerefState &R) { 3395 ChangeStatus CS0 = 3396 clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState); 3397 ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState); 3398 return CS0 | CS1; 3399 } 3400 3401 struct AADereferenceableImpl : AADereferenceable { 3402 AADereferenceableImpl(const IRPosition &IRP, Attributor &A) 3403 : AADereferenceable(IRP, A) {} 3404 using StateType = DerefState; 3405 3406 /// See AbstractAttribute::initialize(...). 3407 void initialize(Attributor &A) override { 3408 SmallVector<Attribute, 4> Attrs; 3409 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, 3410 Attrs, /* IgnoreSubsumingPositions */ false, &A); 3411 for (const Attribute &Attr : Attrs) 3412 takeKnownDerefBytesMaximum(Attr.getValueAsInt()); 3413 3414 const IRPosition &IRP = this->getIRPosition(); 3415 NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, 3416 /* TrackDependence */ false); 3417 3418 bool CanBeNull; 3419 takeKnownDerefBytesMaximum( 3420 IRP.getAssociatedValue().getPointerDereferenceableBytes( 3421 A.getDataLayout(), CanBeNull)); 3422 3423 bool IsFnInterface = IRP.isFnInterfaceKind(); 3424 Function *FnScope = IRP.getAnchorScope(); 3425 if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) { 3426 indicatePessimisticFixpoint(); 3427 return; 3428 } 3429 3430 if (Instruction *CtxI = getCtxI()) 3431 followUsesInMBEC(*this, A, getState(), *CtxI); 3432 } 3433 3434 /// See AbstractAttribute::getState() 3435 /// { 3436 StateType &getState() override { return *this; } 3437 const StateType &getState() const override { return *this; } 3438 /// } 3439 3440 /// Helper function for collecting accessed bytes in must-be-executed-context 3441 void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I, 3442 DerefState &State) { 3443 const Value *UseV = U->get(); 3444 if (!UseV->getType()->isPointerTy()) 3445 return; 3446 3447 Type *PtrTy = UseV->getType(); 3448 const DataLayout &DL = A.getDataLayout(); 3449 int64_t Offset; 3450 if (const Value *Base = getBasePointerOfAccessPointerOperand( 3451 I, Offset, DL, /*AllowNonInbounds*/ true)) { 3452 if (Base == &getAssociatedValue() && 3453 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 3454 uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType()); 3455 State.addAccessedBytes(Offset, Size); 3456 } 3457 } 3458 return; 3459 } 3460 3461 /// See followUsesInMBEC 3462 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 3463 AADereferenceable::StateType &State) { 3464 bool IsNonNull = false; 3465 bool TrackUse = false; 3466 int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( 3467 A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse); 3468 LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes 3469 << " for instruction " << *I << "\n"); 3470 3471 addAccessedBytesForUse(A, U, I, State); 3472 State.takeKnownDerefBytesMaximum(DerefBytes); 3473 return TrackUse; 3474 } 3475 3476 /// See AbstractAttribute::manifest(...). 3477 ChangeStatus manifest(Attributor &A) override { 3478 ChangeStatus Change = AADereferenceable::manifest(A); 3479 if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) { 3480 removeAttrs({Attribute::DereferenceableOrNull}); 3481 return ChangeStatus::CHANGED; 3482 } 3483 return Change; 3484 } 3485 3486 void getDeducedAttributes(LLVMContext &Ctx, 3487 SmallVectorImpl<Attribute> &Attrs) const override { 3488 // TODO: Add *_globally support 3489 if (isAssumedNonNull()) 3490 Attrs.emplace_back(Attribute::getWithDereferenceableBytes( 3491 Ctx, getAssumedDereferenceableBytes())); 3492 else 3493 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( 3494 Ctx, getAssumedDereferenceableBytes())); 3495 } 3496 3497 /// See AbstractAttribute::getAsStr(). 3498 const std::string getAsStr() const override { 3499 if (!getAssumedDereferenceableBytes()) 3500 return "unknown-dereferenceable"; 3501 return std::string("dereferenceable") + 3502 (isAssumedNonNull() ? "" : "_or_null") + 3503 (isAssumedGlobal() ? "_globally" : "") + "<" + 3504 std::to_string(getKnownDereferenceableBytes()) + "-" + 3505 std::to_string(getAssumedDereferenceableBytes()) + ">"; 3506 } 3507 }; 3508 3509 /// Dereferenceable attribute for a floating value. 3510 struct AADereferenceableFloating : AADereferenceableImpl { 3511 AADereferenceableFloating(const IRPosition &IRP, Attributor &A) 3512 : AADereferenceableImpl(IRP, A) {} 3513 3514 /// See AbstractAttribute::updateImpl(...). 3515 ChangeStatus updateImpl(Attributor &A) override { 3516 const DataLayout &DL = A.getDataLayout(); 3517 3518 auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T, 3519 bool Stripped) -> bool { 3520 unsigned IdxWidth = 3521 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); 3522 APInt Offset(IdxWidth, 0); 3523 const Value *Base = 3524 stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false); 3525 3526 const auto &AA = 3527 A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base)); 3528 int64_t DerefBytes = 0; 3529 if (!Stripped && this == &AA) { 3530 // Use IR information if we did not strip anything. 3531 // TODO: track globally. 3532 bool CanBeNull; 3533 DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull); 3534 T.GlobalState.indicatePessimisticFixpoint(); 3535 } else { 3536 const DerefState &DS = AA.getState(); 3537 DerefBytes = DS.DerefBytesState.getAssumed(); 3538 T.GlobalState &= DS.GlobalState; 3539 } 3540 3541 // For now we do not try to "increase" dereferenceability due to negative 3542 // indices as we first have to come up with code to deal with loops and 3543 // for overflows of the dereferenceable bytes. 3544 int64_t OffsetSExt = Offset.getSExtValue(); 3545 if (OffsetSExt < 0) 3546 OffsetSExt = 0; 3547 3548 T.takeAssumedDerefBytesMinimum( 3549 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3550 3551 if (this == &AA) { 3552 if (!Stripped) { 3553 // If nothing was stripped IR information is all we got. 3554 T.takeKnownDerefBytesMaximum( 3555 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3556 T.indicatePessimisticFixpoint(); 3557 } else if (OffsetSExt > 0) { 3558 // If something was stripped but there is circular reasoning we look 3559 // for the offset. If it is positive we basically decrease the 3560 // dereferenceable bytes in a circluar loop now, which will simply 3561 // drive them down to the known value in a very slow way which we 3562 // can accelerate. 3563 T.indicatePessimisticFixpoint(); 3564 } 3565 } 3566 3567 return T.isValidState(); 3568 }; 3569 3570 DerefState T; 3571 if (!genericValueTraversal<AADereferenceable, DerefState>( 3572 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 3573 return indicatePessimisticFixpoint(); 3574 3575 return clampStateAndIndicateChange(getState(), T); 3576 } 3577 3578 /// See AbstractAttribute::trackStatistics() 3579 void trackStatistics() const override { 3580 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) 3581 } 3582 }; 3583 3584 /// Dereferenceable attribute for a return value. 3585 struct AADereferenceableReturned final 3586 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> { 3587 AADereferenceableReturned(const IRPosition &IRP, Attributor &A) 3588 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>( 3589 IRP, A) {} 3590 3591 /// See AbstractAttribute::trackStatistics() 3592 void trackStatistics() const override { 3593 STATS_DECLTRACK_FNRET_ATTR(dereferenceable) 3594 } 3595 }; 3596 3597 /// Dereferenceable attribute for an argument 3598 struct AADereferenceableArgument final 3599 : AAArgumentFromCallSiteArguments<AADereferenceable, 3600 AADereferenceableImpl> { 3601 using Base = 3602 AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>; 3603 AADereferenceableArgument(const IRPosition &IRP, Attributor &A) 3604 : Base(IRP, A) {} 3605 3606 /// See AbstractAttribute::trackStatistics() 3607 void trackStatistics() const override { 3608 STATS_DECLTRACK_ARG_ATTR(dereferenceable) 3609 } 3610 }; 3611 3612 /// Dereferenceable attribute for a call site argument. 3613 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { 3614 AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A) 3615 : AADereferenceableFloating(IRP, A) {} 3616 3617 /// See AbstractAttribute::trackStatistics() 3618 void trackStatistics() const override { 3619 STATS_DECLTRACK_CSARG_ATTR(dereferenceable) 3620 } 3621 }; 3622 3623 /// Dereferenceable attribute deduction for a call site return value. 3624 struct AADereferenceableCallSiteReturned final 3625 : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> { 3626 using Base = 3627 AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>; 3628 AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A) 3629 : Base(IRP, A) {} 3630 3631 /// See AbstractAttribute::trackStatistics() 3632 void trackStatistics() const override { 3633 STATS_DECLTRACK_CS_ATTR(dereferenceable); 3634 } 3635 }; 3636 3637 // ------------------------ Align Argument Attribute ------------------------ 3638 3639 static unsigned getKnownAlignForUse(Attributor &A, 3640 AbstractAttribute &QueryingAA, 3641 Value &AssociatedValue, const Use *U, 3642 const Instruction *I, bool &TrackUse) { 3643 // We need to follow common pointer manipulation uses to the accesses they 3644 // feed into. 3645 if (isa<CastInst>(I)) { 3646 // Follow all but ptr2int casts. 3647 TrackUse = !isa<PtrToIntInst>(I); 3648 return 0; 3649 } 3650 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3651 if (GEP->hasAllConstantIndices()) { 3652 TrackUse = true; 3653 return 0; 3654 } 3655 } 3656 3657 MaybeAlign MA; 3658 if (const auto *CB = dyn_cast<CallBase>(I)) { 3659 if (CB->isBundleOperand(U) || CB->isCallee(U)) 3660 return 0; 3661 3662 unsigned ArgNo = CB->getArgOperandNo(U); 3663 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); 3664 // As long as we only use known information there is no need to track 3665 // dependences here. 3666 auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, 3667 /* TrackDependence */ false); 3668 MA = MaybeAlign(AlignAA.getKnownAlign()); 3669 } 3670 3671 const DataLayout &DL = A.getDataLayout(); 3672 const Value *UseV = U->get(); 3673 if (auto *SI = dyn_cast<StoreInst>(I)) { 3674 if (SI->getPointerOperand() == UseV) 3675 MA = SI->getAlign(); 3676 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 3677 if (LI->getPointerOperand() == UseV) 3678 MA = LI->getAlign(); 3679 } 3680 3681 if (!MA || *MA <= 1) 3682 return 0; 3683 3684 unsigned Alignment = MA->value(); 3685 int64_t Offset; 3686 3687 if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) { 3688 if (Base == &AssociatedValue) { 3689 // BasePointerAddr + Offset = Alignment * Q for some integer Q. 3690 // So we can say that the maximum power of two which is a divisor of 3691 // gcd(Offset, Alignment) is an alignment. 3692 3693 uint32_t gcd = 3694 greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment); 3695 Alignment = llvm::PowerOf2Floor(gcd); 3696 } 3697 } 3698 3699 return Alignment; 3700 } 3701 3702 struct AAAlignImpl : AAAlign { 3703 AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {} 3704 3705 /// See AbstractAttribute::initialize(...). 3706 void initialize(Attributor &A) override { 3707 SmallVector<Attribute, 4> Attrs; 3708 getAttrs({Attribute::Alignment}, Attrs); 3709 for (const Attribute &Attr : Attrs) 3710 takeKnownMaximum(Attr.getValueAsInt()); 3711 3712 Value &V = getAssociatedValue(); 3713 // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int 3714 // use of the function pointer. This was caused by D73131. We want to 3715 // avoid this for function pointers especially because we iterate 3716 // their uses and int2ptr is not handled. It is not a correctness 3717 // problem though! 3718 if (!V.getType()->getPointerElementType()->isFunctionTy()) 3719 takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value()); 3720 3721 if (getIRPosition().isFnInterfaceKind() && 3722 (!getAnchorScope() || 3723 !A.isFunctionIPOAmendable(*getAssociatedFunction()))) { 3724 indicatePessimisticFixpoint(); 3725 return; 3726 } 3727 3728 if (Instruction *CtxI = getCtxI()) 3729 followUsesInMBEC(*this, A, getState(), *CtxI); 3730 } 3731 3732 /// See AbstractAttribute::manifest(...). 3733 ChangeStatus manifest(Attributor &A) override { 3734 ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED; 3735 3736 // Check for users that allow alignment annotations. 3737 Value &AssociatedValue = getAssociatedValue(); 3738 for (const Use &U : AssociatedValue.uses()) { 3739 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) { 3740 if (SI->getPointerOperand() == &AssociatedValue) 3741 if (SI->getAlignment() < getAssumedAlign()) { 3742 STATS_DECLTRACK(AAAlign, Store, 3743 "Number of times alignment added to a store"); 3744 SI->setAlignment(Align(getAssumedAlign())); 3745 LoadStoreChanged = ChangeStatus::CHANGED; 3746 } 3747 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) { 3748 if (LI->getPointerOperand() == &AssociatedValue) 3749 if (LI->getAlignment() < getAssumedAlign()) { 3750 LI->setAlignment(Align(getAssumedAlign())); 3751 STATS_DECLTRACK(AAAlign, Load, 3752 "Number of times alignment added to a load"); 3753 LoadStoreChanged = ChangeStatus::CHANGED; 3754 } 3755 } 3756 } 3757 3758 ChangeStatus Changed = AAAlign::manifest(A); 3759 3760 Align InheritAlign = 3761 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 3762 if (InheritAlign >= getAssumedAlign()) 3763 return LoadStoreChanged; 3764 return Changed | LoadStoreChanged; 3765 } 3766 3767 // TODO: Provide a helper to determine the implied ABI alignment and check in 3768 // the existing manifest method and a new one for AAAlignImpl that value 3769 // to avoid making the alignment explicit if it did not improve. 3770 3771 /// See AbstractAttribute::getDeducedAttributes 3772 virtual void 3773 getDeducedAttributes(LLVMContext &Ctx, 3774 SmallVectorImpl<Attribute> &Attrs) const override { 3775 if (getAssumedAlign() > 1) 3776 Attrs.emplace_back( 3777 Attribute::getWithAlignment(Ctx, Align(getAssumedAlign()))); 3778 } 3779 3780 /// See followUsesInMBEC 3781 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 3782 AAAlign::StateType &State) { 3783 bool TrackUse = false; 3784 3785 unsigned int KnownAlign = 3786 getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse); 3787 State.takeKnownMaximum(KnownAlign); 3788 3789 return TrackUse; 3790 } 3791 3792 /// See AbstractAttribute::getAsStr(). 3793 const std::string getAsStr() const override { 3794 return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) + 3795 "-" + std::to_string(getAssumedAlign()) + ">") 3796 : "unknown-align"; 3797 } 3798 }; 3799 3800 /// Align attribute for a floating value. 3801 struct AAAlignFloating : AAAlignImpl { 3802 AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {} 3803 3804 /// See AbstractAttribute::updateImpl(...). 3805 ChangeStatus updateImpl(Attributor &A) override { 3806 const DataLayout &DL = A.getDataLayout(); 3807 3808 auto VisitValueCB = [&](Value &V, const Instruction *, 3809 AAAlign::StateType &T, bool Stripped) -> bool { 3810 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V)); 3811 if (!Stripped && this == &AA) { 3812 // Use only IR information if we did not strip anything. 3813 Align PA = V.getPointerAlignment(DL); 3814 T.takeKnownMaximum(PA.value()); 3815 T.indicatePessimisticFixpoint(); 3816 } else { 3817 // Use abstract attribute information. 3818 const AAAlign::StateType &DS = AA.getState(); 3819 T ^= DS; 3820 } 3821 return T.isValidState(); 3822 }; 3823 3824 StateType T; 3825 if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T, 3826 VisitValueCB, getCtxI())) 3827 return indicatePessimisticFixpoint(); 3828 3829 // TODO: If we know we visited all incoming values, thus no are assumed 3830 // dead, we can take the known information from the state T. 3831 return clampStateAndIndicateChange(getState(), T); 3832 } 3833 3834 /// See AbstractAttribute::trackStatistics() 3835 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } 3836 }; 3837 3838 /// Align attribute for function return value. 3839 struct AAAlignReturned final 3840 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { 3841 AAAlignReturned(const IRPosition &IRP, Attributor &A) 3842 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP, A) {} 3843 3844 /// See AbstractAttribute::trackStatistics() 3845 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } 3846 }; 3847 3848 /// Align attribute for function argument. 3849 struct AAAlignArgument final 3850 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> { 3851 using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>; 3852 AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} 3853 3854 /// See AbstractAttribute::manifest(...). 3855 ChangeStatus manifest(Attributor &A) override { 3856 // If the associated argument is involved in a must-tail call we give up 3857 // because we would need to keep the argument alignments of caller and 3858 // callee in-sync. Just does not seem worth the trouble right now. 3859 if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument())) 3860 return ChangeStatus::UNCHANGED; 3861 return Base::manifest(A); 3862 } 3863 3864 /// See AbstractAttribute::trackStatistics() 3865 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } 3866 }; 3867 3868 struct AAAlignCallSiteArgument final : AAAlignFloating { 3869 AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A) 3870 : AAAlignFloating(IRP, A) {} 3871 3872 /// See AbstractAttribute::manifest(...). 3873 ChangeStatus manifest(Attributor &A) override { 3874 // If the associated argument is involved in a must-tail call we give up 3875 // because we would need to keep the argument alignments of caller and 3876 // callee in-sync. Just does not seem worth the trouble right now. 3877 if (Argument *Arg = getAssociatedArgument()) 3878 if (A.getInfoCache().isInvolvedInMustTailCall(*Arg)) 3879 return ChangeStatus::UNCHANGED; 3880 ChangeStatus Changed = AAAlignImpl::manifest(A); 3881 Align InheritAlign = 3882 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 3883 if (InheritAlign >= getAssumedAlign()) 3884 Changed = ChangeStatus::UNCHANGED; 3885 return Changed; 3886 } 3887 3888 /// See AbstractAttribute::updateImpl(Attributor &A). 3889 ChangeStatus updateImpl(Attributor &A) override { 3890 ChangeStatus Changed = AAAlignFloating::updateImpl(A); 3891 if (Argument *Arg = getAssociatedArgument()) { 3892 // We only take known information from the argument 3893 // so we do not need to track a dependence. 3894 const auto &ArgAlignAA = A.getAAFor<AAAlign>( 3895 *this, IRPosition::argument(*Arg), /* TrackDependence */ false); 3896 takeKnownMaximum(ArgAlignAA.getKnownAlign()); 3897 } 3898 return Changed; 3899 } 3900 3901 /// See AbstractAttribute::trackStatistics() 3902 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } 3903 }; 3904 3905 /// Align attribute deduction for a call site return value. 3906 struct AAAlignCallSiteReturned final 3907 : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> { 3908 using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>; 3909 AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A) 3910 : Base(IRP, A) {} 3911 3912 /// See AbstractAttribute::initialize(...). 3913 void initialize(Attributor &A) override { 3914 Base::initialize(A); 3915 Function *F = getAssociatedFunction(); 3916 if (!F) 3917 indicatePessimisticFixpoint(); 3918 } 3919 3920 /// See AbstractAttribute::trackStatistics() 3921 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } 3922 }; 3923 3924 /// ------------------ Function No-Return Attribute ---------------------------- 3925 struct AANoReturnImpl : public AANoReturn { 3926 AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {} 3927 3928 /// See AbstractAttribute::initialize(...). 3929 void initialize(Attributor &A) override { 3930 AANoReturn::initialize(A); 3931 Function *F = getAssociatedFunction(); 3932 if (!F) 3933 indicatePessimisticFixpoint(); 3934 } 3935 3936 /// See AbstractAttribute::getAsStr(). 3937 const std::string getAsStr() const override { 3938 return getAssumed() ? "noreturn" : "may-return"; 3939 } 3940 3941 /// See AbstractAttribute::updateImpl(Attributor &A). 3942 virtual ChangeStatus updateImpl(Attributor &A) override { 3943 auto CheckForNoReturn = [](Instruction &) { return false; }; 3944 if (!A.checkForAllInstructions(CheckForNoReturn, *this, 3945 {(unsigned)Instruction::Ret})) 3946 return indicatePessimisticFixpoint(); 3947 return ChangeStatus::UNCHANGED; 3948 } 3949 }; 3950 3951 struct AANoReturnFunction final : AANoReturnImpl { 3952 AANoReturnFunction(const IRPosition &IRP, Attributor &A) 3953 : AANoReturnImpl(IRP, A) {} 3954 3955 /// See AbstractAttribute::trackStatistics() 3956 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } 3957 }; 3958 3959 /// NoReturn attribute deduction for a call sites. 3960 struct AANoReturnCallSite final : AANoReturnImpl { 3961 AANoReturnCallSite(const IRPosition &IRP, Attributor &A) 3962 : AANoReturnImpl(IRP, A) {} 3963 3964 /// See AbstractAttribute::updateImpl(...). 3965 ChangeStatus updateImpl(Attributor &A) override { 3966 // TODO: Once we have call site specific value information we can provide 3967 // call site specific liveness information and then it makes 3968 // sense to specialize attributes for call sites arguments instead of 3969 // redirecting requests to the callee argument. 3970 Function *F = getAssociatedFunction(); 3971 const IRPosition &FnPos = IRPosition::function(*F); 3972 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos); 3973 return clampStateAndIndicateChange(getState(), FnAA.getState()); 3974 } 3975 3976 /// See AbstractAttribute::trackStatistics() 3977 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } 3978 }; 3979 3980 /// ----------------------- Variable Capturing --------------------------------- 3981 3982 /// A class to hold the state of for no-capture attributes. 3983 struct AANoCaptureImpl : public AANoCapture { 3984 AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {} 3985 3986 /// See AbstractAttribute::initialize(...). 3987 void initialize(Attributor &A) override { 3988 if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) { 3989 indicateOptimisticFixpoint(); 3990 return; 3991 } 3992 Function *AnchorScope = getAnchorScope(); 3993 if (isFnInterfaceKind() && 3994 (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) { 3995 indicatePessimisticFixpoint(); 3996 return; 3997 } 3998 3999 // You cannot "capture" null in the default address space. 4000 if (isa<ConstantPointerNull>(getAssociatedValue()) && 4001 getAssociatedValue().getType()->getPointerAddressSpace() == 0) { 4002 indicateOptimisticFixpoint(); 4003 return; 4004 } 4005 4006 const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope; 4007 4008 // Check what state the associated function can actually capture. 4009 if (F) 4010 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); 4011 else 4012 indicatePessimisticFixpoint(); 4013 } 4014 4015 /// See AbstractAttribute::updateImpl(...). 4016 ChangeStatus updateImpl(Attributor &A) override; 4017 4018 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). 4019 virtual void 4020 getDeducedAttributes(LLVMContext &Ctx, 4021 SmallVectorImpl<Attribute> &Attrs) const override { 4022 if (!isAssumedNoCaptureMaybeReturned()) 4023 return; 4024 4025 if (getArgNo() >= 0) { 4026 if (isAssumedNoCapture()) 4027 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture)); 4028 else if (ManifestInternal) 4029 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned")); 4030 } 4031 } 4032 4033 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known 4034 /// depending on the ability of the function associated with \p IRP to capture 4035 /// state in memory and through "returning/throwing", respectively. 4036 static void determineFunctionCaptureCapabilities(const IRPosition &IRP, 4037 const Function &F, 4038 BitIntegerState &State) { 4039 // TODO: Once we have memory behavior attributes we should use them here. 4040 4041 // If we know we cannot communicate or write to memory, we do not care about 4042 // ptr2int anymore. 4043 if (F.onlyReadsMemory() && F.doesNotThrow() && 4044 F.getReturnType()->isVoidTy()) { 4045 State.addKnownBits(NO_CAPTURE); 4046 return; 4047 } 4048 4049 // A function cannot capture state in memory if it only reads memory, it can 4050 // however return/throw state and the state might be influenced by the 4051 // pointer value, e.g., loading from a returned pointer might reveal a bit. 4052 if (F.onlyReadsMemory()) 4053 State.addKnownBits(NOT_CAPTURED_IN_MEM); 4054 4055 // A function cannot communicate state back if it does not through 4056 // exceptions and doesn not return values. 4057 if (F.doesNotThrow() && F.getReturnType()->isVoidTy()) 4058 State.addKnownBits(NOT_CAPTURED_IN_RET); 4059 4060 // Check existing "returned" attributes. 4061 int ArgNo = IRP.getArgNo(); 4062 if (F.doesNotThrow() && ArgNo >= 0) { 4063 for (unsigned u = 0, e = F.arg_size(); u < e; ++u) 4064 if (F.hasParamAttribute(u, Attribute::Returned)) { 4065 if (u == unsigned(ArgNo)) 4066 State.removeAssumedBits(NOT_CAPTURED_IN_RET); 4067 else if (F.onlyReadsMemory()) 4068 State.addKnownBits(NO_CAPTURE); 4069 else 4070 State.addKnownBits(NOT_CAPTURED_IN_RET); 4071 break; 4072 } 4073 } 4074 } 4075 4076 /// See AbstractState::getAsStr(). 4077 const std::string getAsStr() const override { 4078 if (isKnownNoCapture()) 4079 return "known not-captured"; 4080 if (isAssumedNoCapture()) 4081 return "assumed not-captured"; 4082 if (isKnownNoCaptureMaybeReturned()) 4083 return "known not-captured-maybe-returned"; 4084 if (isAssumedNoCaptureMaybeReturned()) 4085 return "assumed not-captured-maybe-returned"; 4086 return "assumed-captured"; 4087 } 4088 }; 4089 4090 /// Attributor-aware capture tracker. 4091 struct AACaptureUseTracker final : public CaptureTracker { 4092 4093 /// Create a capture tracker that can lookup in-flight abstract attributes 4094 /// through the Attributor \p A. 4095 /// 4096 /// If a use leads to a potential capture, \p CapturedInMemory is set and the 4097 /// search is stopped. If a use leads to a return instruction, 4098 /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed. 4099 /// If a use leads to a ptr2int which may capture the value, 4100 /// \p CapturedInInteger is set. If a use is found that is currently assumed 4101 /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies 4102 /// set. All values in \p PotentialCopies are later tracked as well. For every 4103 /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0, 4104 /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger 4105 /// conservatively set to true. 4106 AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA, 4107 const AAIsDead &IsDeadAA, AANoCapture::StateType &State, 4108 SmallVectorImpl<const Value *> &PotentialCopies, 4109 unsigned &RemainingUsesToExplore) 4110 : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State), 4111 PotentialCopies(PotentialCopies), 4112 RemainingUsesToExplore(RemainingUsesToExplore) {} 4113 4114 /// Determine if \p V maybe captured. *Also updates the state!* 4115 bool valueMayBeCaptured(const Value *V) { 4116 if (V->getType()->isPointerTy()) { 4117 PointerMayBeCaptured(V, this); 4118 } else { 4119 State.indicatePessimisticFixpoint(); 4120 } 4121 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4122 } 4123 4124 /// See CaptureTracker::tooManyUses(). 4125 void tooManyUses() override { 4126 State.removeAssumedBits(AANoCapture::NO_CAPTURE); 4127 } 4128 4129 bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override { 4130 if (CaptureTracker::isDereferenceableOrNull(O, DL)) 4131 return true; 4132 const auto &DerefAA = A.getAAFor<AADereferenceable>( 4133 NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true, 4134 DepClassTy::OPTIONAL); 4135 return DerefAA.getAssumedDereferenceableBytes(); 4136 } 4137 4138 /// See CaptureTracker::captured(...). 4139 bool captured(const Use *U) override { 4140 Instruction *UInst = cast<Instruction>(U->getUser()); 4141 LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst 4142 << "\n"); 4143 4144 // Because we may reuse the tracker multiple times we keep track of the 4145 // number of explored uses ourselves as well. 4146 if (RemainingUsesToExplore-- == 0) { 4147 LLVM_DEBUG(dbgs() << " - too many uses to explore!\n"); 4148 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4149 /* Return */ true); 4150 } 4151 4152 // Deal with ptr2int by following uses. 4153 if (isa<PtrToIntInst>(UInst)) { 4154 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n"); 4155 return valueMayBeCaptured(UInst); 4156 } 4157 4158 // Explicitly catch return instructions. 4159 if (isa<ReturnInst>(UInst)) 4160 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4161 /* Return */ true); 4162 4163 // For now we only use special logic for call sites. However, the tracker 4164 // itself knows about a lot of other non-capturing cases already. 4165 auto *CB = dyn_cast<CallBase>(UInst); 4166 if (!CB || !CB->isArgOperand(U)) 4167 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4168 /* Return */ true); 4169 4170 unsigned ArgNo = CB->getArgOperandNo(U); 4171 const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo); 4172 // If we have a abstract no-capture attribute for the argument we can use 4173 // it to justify a non-capture attribute here. This allows recursion! 4174 auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos); 4175 if (ArgNoCaptureAA.isAssumedNoCapture()) 4176 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4177 /* Return */ false); 4178 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 4179 addPotentialCopy(*CB); 4180 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4181 /* Return */ false); 4182 } 4183 4184 // Lastly, we could not find a reason no-capture can be assumed so we don't. 4185 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4186 /* Return */ true); 4187 } 4188 4189 /// Register \p CS as potential copy of the value we are checking. 4190 void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); } 4191 4192 /// See CaptureTracker::shouldExplore(...). 4193 bool shouldExplore(const Use *U) override { 4194 // Check liveness and ignore droppable users. 4195 return !U->getUser()->isDroppable() && 4196 !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA); 4197 } 4198 4199 /// Update the state according to \p CapturedInMem, \p CapturedInInt, and 4200 /// \p CapturedInRet, then return the appropriate value for use in the 4201 /// CaptureTracker::captured() interface. 4202 bool isCapturedIn(bool CapturedInMem, bool CapturedInInt, 4203 bool CapturedInRet) { 4204 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " 4205 << CapturedInInt << "|Ret " << CapturedInRet << "]\n"); 4206 if (CapturedInMem) 4207 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM); 4208 if (CapturedInInt) 4209 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT); 4210 if (CapturedInRet) 4211 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET); 4212 return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4213 } 4214 4215 private: 4216 /// The attributor providing in-flight abstract attributes. 4217 Attributor &A; 4218 4219 /// The abstract attribute currently updated. 4220 AANoCapture &NoCaptureAA; 4221 4222 /// The abstract liveness state. 4223 const AAIsDead &IsDeadAA; 4224 4225 /// The state currently updated. 4226 AANoCapture::StateType &State; 4227 4228 /// Set of potential copies of the tracked value. 4229 SmallVectorImpl<const Value *> &PotentialCopies; 4230 4231 /// Global counter to limit the number of explored uses. 4232 unsigned &RemainingUsesToExplore; 4233 }; 4234 4235 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { 4236 const IRPosition &IRP = getIRPosition(); 4237 const Value *V = 4238 getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue(); 4239 if (!V) 4240 return indicatePessimisticFixpoint(); 4241 4242 const Function *F = 4243 getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); 4244 assert(F && "Expected a function!"); 4245 const IRPosition &FnPos = IRPosition::function(*F); 4246 const auto &IsDeadAA = 4247 A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false); 4248 4249 AANoCapture::StateType T; 4250 4251 // Readonly means we cannot capture through memory. 4252 const auto &FnMemAA = 4253 A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false); 4254 if (FnMemAA.isAssumedReadOnly()) { 4255 T.addKnownBits(NOT_CAPTURED_IN_MEM); 4256 if (FnMemAA.isKnownReadOnly()) 4257 addKnownBits(NOT_CAPTURED_IN_MEM); 4258 else 4259 A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL); 4260 } 4261 4262 // Make sure all returned values are different than the underlying value. 4263 // TODO: we could do this in a more sophisticated way inside 4264 // AAReturnedValues, e.g., track all values that escape through returns 4265 // directly somehow. 4266 auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) { 4267 bool SeenConstant = false; 4268 for (auto &It : RVAA.returned_values()) { 4269 if (isa<Constant>(It.first)) { 4270 if (SeenConstant) 4271 return false; 4272 SeenConstant = true; 4273 } else if (!isa<Argument>(It.first) || 4274 It.first == getAssociatedArgument()) 4275 return false; 4276 } 4277 return true; 4278 }; 4279 4280 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>( 4281 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 4282 if (NoUnwindAA.isAssumedNoUnwind()) { 4283 bool IsVoidTy = F->getReturnType()->isVoidTy(); 4284 const AAReturnedValues *RVAA = 4285 IsVoidTy ? nullptr 4286 : &A.getAAFor<AAReturnedValues>(*this, FnPos, 4287 /* TrackDependence */ true, 4288 DepClassTy::OPTIONAL); 4289 if (IsVoidTy || CheckReturnedArgs(*RVAA)) { 4290 T.addKnownBits(NOT_CAPTURED_IN_RET); 4291 if (T.isKnown(NOT_CAPTURED_IN_MEM)) 4292 return ChangeStatus::UNCHANGED; 4293 if (NoUnwindAA.isKnownNoUnwind() && 4294 (IsVoidTy || RVAA->getState().isAtFixpoint())) { 4295 addKnownBits(NOT_CAPTURED_IN_RET); 4296 if (isKnown(NOT_CAPTURED_IN_MEM)) 4297 return indicateOptimisticFixpoint(); 4298 } 4299 } 4300 } 4301 4302 // Use the CaptureTracker interface and logic with the specialized tracker, 4303 // defined in AACaptureUseTracker, that can look at in-flight abstract 4304 // attributes and directly updates the assumed state. 4305 SmallVector<const Value *, 4> PotentialCopies; 4306 unsigned RemainingUsesToExplore = 4307 getDefaultMaxUsesToExploreForCaptureTracking(); 4308 AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies, 4309 RemainingUsesToExplore); 4310 4311 // Check all potential copies of the associated value until we can assume 4312 // none will be captured or we have to assume at least one might be. 4313 unsigned Idx = 0; 4314 PotentialCopies.push_back(V); 4315 while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size()) 4316 Tracker.valueMayBeCaptured(PotentialCopies[Idx++]); 4317 4318 AANoCapture::StateType &S = getState(); 4319 auto Assumed = S.getAssumed(); 4320 S.intersectAssumedBits(T.getAssumed()); 4321 if (!isAssumedNoCaptureMaybeReturned()) 4322 return indicatePessimisticFixpoint(); 4323 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 4324 : ChangeStatus::CHANGED; 4325 } 4326 4327 /// NoCapture attribute for function arguments. 4328 struct AANoCaptureArgument final : AANoCaptureImpl { 4329 AANoCaptureArgument(const IRPosition &IRP, Attributor &A) 4330 : AANoCaptureImpl(IRP, A) {} 4331 4332 /// See AbstractAttribute::trackStatistics() 4333 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } 4334 }; 4335 4336 /// NoCapture attribute for call site arguments. 4337 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { 4338 AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A) 4339 : AANoCaptureImpl(IRP, A) {} 4340 4341 /// See AbstractAttribute::initialize(...). 4342 void initialize(Attributor &A) override { 4343 if (Argument *Arg = getAssociatedArgument()) 4344 if (Arg->hasByValAttr()) 4345 indicateOptimisticFixpoint(); 4346 AANoCaptureImpl::initialize(A); 4347 } 4348 4349 /// See AbstractAttribute::updateImpl(...). 4350 ChangeStatus updateImpl(Attributor &A) override { 4351 // TODO: Once we have call site specific value information we can provide 4352 // call site specific liveness information and then it makes 4353 // sense to specialize attributes for call sites arguments instead of 4354 // redirecting requests to the callee argument. 4355 Argument *Arg = getAssociatedArgument(); 4356 if (!Arg) 4357 return indicatePessimisticFixpoint(); 4358 const IRPosition &ArgPos = IRPosition::argument(*Arg); 4359 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos); 4360 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 4361 } 4362 4363 /// See AbstractAttribute::trackStatistics() 4364 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)}; 4365 }; 4366 4367 /// NoCapture attribute for floating values. 4368 struct AANoCaptureFloating final : AANoCaptureImpl { 4369 AANoCaptureFloating(const IRPosition &IRP, Attributor &A) 4370 : AANoCaptureImpl(IRP, A) {} 4371 4372 /// See AbstractAttribute::trackStatistics() 4373 void trackStatistics() const override { 4374 STATS_DECLTRACK_FLOATING_ATTR(nocapture) 4375 } 4376 }; 4377 4378 /// NoCapture attribute for function return value. 4379 struct AANoCaptureReturned final : AANoCaptureImpl { 4380 AANoCaptureReturned(const IRPosition &IRP, Attributor &A) 4381 : AANoCaptureImpl(IRP, A) { 4382 llvm_unreachable("NoCapture is not applicable to function returns!"); 4383 } 4384 4385 /// See AbstractAttribute::initialize(...). 4386 void initialize(Attributor &A) override { 4387 llvm_unreachable("NoCapture is not applicable to function returns!"); 4388 } 4389 4390 /// See AbstractAttribute::updateImpl(...). 4391 ChangeStatus updateImpl(Attributor &A) override { 4392 llvm_unreachable("NoCapture is not applicable to function returns!"); 4393 } 4394 4395 /// See AbstractAttribute::trackStatistics() 4396 void trackStatistics() const override {} 4397 }; 4398 4399 /// NoCapture attribute deduction for a call site return value. 4400 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { 4401 AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A) 4402 : AANoCaptureImpl(IRP, A) {} 4403 4404 /// See AbstractAttribute::trackStatistics() 4405 void trackStatistics() const override { 4406 STATS_DECLTRACK_CSRET_ATTR(nocapture) 4407 } 4408 }; 4409 4410 /// ------------------ Value Simplify Attribute ---------------------------- 4411 struct AAValueSimplifyImpl : AAValueSimplify { 4412 AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A) 4413 : AAValueSimplify(IRP, A) {} 4414 4415 /// See AbstractAttribute::initialize(...). 4416 void initialize(Attributor &A) override { 4417 if (getAssociatedValue().getType()->isVoidTy()) 4418 indicatePessimisticFixpoint(); 4419 } 4420 4421 /// See AbstractAttribute::getAsStr(). 4422 const std::string getAsStr() const override { 4423 return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple") 4424 : "not-simple"; 4425 } 4426 4427 /// See AbstractAttribute::trackStatistics() 4428 void trackStatistics() const override {} 4429 4430 /// See AAValueSimplify::getAssumedSimplifiedValue() 4431 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { 4432 if (!getAssumed()) 4433 return const_cast<Value *>(&getAssociatedValue()); 4434 return SimplifiedAssociatedValue; 4435 } 4436 4437 /// Helper function for querying AAValueSimplify and updating candicate. 4438 /// \param QueryingValue Value trying to unify with SimplifiedValue 4439 /// \param AccumulatedSimplifiedValue Current simplification result. 4440 static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, 4441 Value &QueryingValue, 4442 Optional<Value *> &AccumulatedSimplifiedValue) { 4443 // FIXME: Add a typecast support. 4444 4445 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>( 4446 QueryingAA, IRPosition::value(QueryingValue)); 4447 4448 Optional<Value *> QueryingValueSimplified = 4449 ValueSimplifyAA.getAssumedSimplifiedValue(A); 4450 4451 if (!QueryingValueSimplified.hasValue()) 4452 return true; 4453 4454 if (!QueryingValueSimplified.getValue()) 4455 return false; 4456 4457 Value &QueryingValueSimplifiedUnwrapped = 4458 *QueryingValueSimplified.getValue(); 4459 4460 if (AccumulatedSimplifiedValue.hasValue() && 4461 !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) && 4462 !isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4463 return AccumulatedSimplifiedValue == QueryingValueSimplified; 4464 if (AccumulatedSimplifiedValue.hasValue() && 4465 isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4466 return true; 4467 4468 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue 4469 << " is assumed to be " 4470 << QueryingValueSimplifiedUnwrapped << "\n"); 4471 4472 AccumulatedSimplifiedValue = QueryingValueSimplified; 4473 return true; 4474 } 4475 4476 /// Returns a candidate is found or not 4477 template <typename AAType> bool askSimplifiedValueFor(Attributor &A) { 4478 if (!getAssociatedValue().getType()->isIntegerTy()) 4479 return false; 4480 4481 const auto &AA = 4482 A.getAAFor<AAType>(*this, getIRPosition(), /* TrackDependence */ false); 4483 4484 Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A); 4485 4486 if (!COpt.hasValue()) { 4487 SimplifiedAssociatedValue = llvm::None; 4488 A.recordDependence(AA, *this, DepClassTy::OPTIONAL); 4489 return true; 4490 } 4491 if (auto *C = COpt.getValue()) { 4492 SimplifiedAssociatedValue = C; 4493 A.recordDependence(AA, *this, DepClassTy::OPTIONAL); 4494 return true; 4495 } 4496 return false; 4497 } 4498 4499 bool askSimplifiedValueForOtherAAs(Attributor &A) { 4500 if (askSimplifiedValueFor<AAValueConstantRange>(A)) 4501 return true; 4502 if (askSimplifiedValueFor<AAPotentialValues>(A)) 4503 return true; 4504 return false; 4505 } 4506 4507 /// See AbstractAttribute::manifest(...). 4508 ChangeStatus manifest(Attributor &A) override { 4509 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4510 4511 if (SimplifiedAssociatedValue.hasValue() && 4512 !SimplifiedAssociatedValue.getValue()) 4513 return Changed; 4514 4515 Value &V = getAssociatedValue(); 4516 auto *C = SimplifiedAssociatedValue.hasValue() 4517 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4518 : UndefValue::get(V.getType()); 4519 if (C) { 4520 // We can replace the AssociatedValue with the constant. 4521 if (!V.user_empty() && &V != C && V.getType() == C->getType()) { 4522 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C 4523 << " :: " << *this << "\n"); 4524 if (A.changeValueAfterManifest(V, *C)) 4525 Changed = ChangeStatus::CHANGED; 4526 } 4527 } 4528 4529 return Changed | AAValueSimplify::manifest(A); 4530 } 4531 4532 /// See AbstractState::indicatePessimisticFixpoint(...). 4533 ChangeStatus indicatePessimisticFixpoint() override { 4534 // NOTE: Associated value will be returned in a pessimistic fixpoint and is 4535 // regarded as known. That's why`indicateOptimisticFixpoint` is called. 4536 SimplifiedAssociatedValue = &getAssociatedValue(); 4537 indicateOptimisticFixpoint(); 4538 return ChangeStatus::CHANGED; 4539 } 4540 4541 protected: 4542 // An assumed simplified value. Initially, it is set to Optional::None, which 4543 // means that the value is not clear under current assumption. If in the 4544 // pessimistic state, getAssumedSimplifiedValue doesn't return this value but 4545 // returns orignal associated value. 4546 Optional<Value *> SimplifiedAssociatedValue; 4547 }; 4548 4549 struct AAValueSimplifyArgument final : AAValueSimplifyImpl { 4550 AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A) 4551 : AAValueSimplifyImpl(IRP, A) {} 4552 4553 void initialize(Attributor &A) override { 4554 AAValueSimplifyImpl::initialize(A); 4555 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) 4556 indicatePessimisticFixpoint(); 4557 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated, 4558 Attribute::StructRet, Attribute::Nest}, 4559 /* IgnoreSubsumingPositions */ true)) 4560 indicatePessimisticFixpoint(); 4561 4562 // FIXME: This is a hack to prevent us from propagating function poiner in 4563 // the new pass manager CGSCC pass as it creates call edges the 4564 // CallGraphUpdater cannot handle yet. 4565 Value &V = getAssociatedValue(); 4566 if (V.getType()->isPointerTy() && 4567 V.getType()->getPointerElementType()->isFunctionTy() && 4568 !A.isModulePass()) 4569 indicatePessimisticFixpoint(); 4570 } 4571 4572 /// See AbstractAttribute::updateImpl(...). 4573 ChangeStatus updateImpl(Attributor &A) override { 4574 // Byval is only replacable if it is readonly otherwise we would write into 4575 // the replaced value and not the copy that byval creates implicitly. 4576 Argument *Arg = getAssociatedArgument(); 4577 if (Arg->hasByValAttr()) { 4578 // TODO: We probably need to verify synchronization is not an issue, e.g., 4579 // there is no race by not copying a constant byval. 4580 const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 4581 if (!MemAA.isAssumedReadOnly()) 4582 return indicatePessimisticFixpoint(); 4583 } 4584 4585 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4586 4587 auto PredForCallSite = [&](AbstractCallSite ACS) { 4588 const IRPosition &ACSArgPos = 4589 IRPosition::callsite_argument(ACS, getArgNo()); 4590 // Check if a coresponding argument was found or if it is on not 4591 // associated (which can happen for callback calls). 4592 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 4593 return false; 4594 4595 // We can only propagate thread independent values through callbacks. 4596 // This is different to direct/indirect call sites because for them we 4597 // know the thread executing the caller and callee is the same. For 4598 // callbacks this is not guaranteed, thus a thread dependent value could 4599 // be different for the caller and callee, making it invalid to propagate. 4600 Value &ArgOp = ACSArgPos.getAssociatedValue(); 4601 if (ACS.isCallbackCall()) 4602 if (auto *C = dyn_cast<Constant>(&ArgOp)) 4603 if (C->isThreadDependent()) 4604 return false; 4605 return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue); 4606 }; 4607 4608 bool AllCallSitesKnown; 4609 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 4610 AllCallSitesKnown)) 4611 if (!askSimplifiedValueForOtherAAs(A)) 4612 return indicatePessimisticFixpoint(); 4613 4614 // If a candicate was found in this update, return CHANGED. 4615 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4616 ? ChangeStatus::UNCHANGED 4617 : ChangeStatus ::CHANGED; 4618 } 4619 4620 /// See AbstractAttribute::trackStatistics() 4621 void trackStatistics() const override { 4622 STATS_DECLTRACK_ARG_ATTR(value_simplify) 4623 } 4624 }; 4625 4626 struct AAValueSimplifyReturned : AAValueSimplifyImpl { 4627 AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A) 4628 : AAValueSimplifyImpl(IRP, A) {} 4629 4630 /// See AbstractAttribute::updateImpl(...). 4631 ChangeStatus updateImpl(Attributor &A) override { 4632 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4633 4634 auto PredForReturned = [&](Value &V) { 4635 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4636 }; 4637 4638 if (!A.checkForAllReturnedValues(PredForReturned, *this)) 4639 if (!askSimplifiedValueForOtherAAs(A)) 4640 return indicatePessimisticFixpoint(); 4641 4642 // If a candicate was found in this update, return CHANGED. 4643 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4644 ? ChangeStatus::UNCHANGED 4645 : ChangeStatus ::CHANGED; 4646 } 4647 4648 ChangeStatus manifest(Attributor &A) override { 4649 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4650 4651 if (SimplifiedAssociatedValue.hasValue() && 4652 !SimplifiedAssociatedValue.getValue()) 4653 return Changed; 4654 4655 Value &V = getAssociatedValue(); 4656 auto *C = SimplifiedAssociatedValue.hasValue() 4657 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4658 : UndefValue::get(V.getType()); 4659 if (C) { 4660 auto PredForReturned = 4661 [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) { 4662 // We can replace the AssociatedValue with the constant. 4663 if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V)) 4664 return true; 4665 4666 for (ReturnInst *RI : RetInsts) { 4667 if (RI->getFunction() != getAnchorScope()) 4668 continue; 4669 auto *RC = C; 4670 if (RC->getType() != RI->getReturnValue()->getType()) 4671 RC = ConstantExpr::getBitCast(RC, 4672 RI->getReturnValue()->getType()); 4673 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC 4674 << " in " << *RI << " :: " << *this << "\n"); 4675 if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC)) 4676 Changed = ChangeStatus::CHANGED; 4677 } 4678 return true; 4679 }; 4680 A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this); 4681 } 4682 4683 return Changed | AAValueSimplify::manifest(A); 4684 } 4685 4686 /// See AbstractAttribute::trackStatistics() 4687 void trackStatistics() const override { 4688 STATS_DECLTRACK_FNRET_ATTR(value_simplify) 4689 } 4690 }; 4691 4692 struct AAValueSimplifyFloating : AAValueSimplifyImpl { 4693 AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A) 4694 : AAValueSimplifyImpl(IRP, A) {} 4695 4696 /// See AbstractAttribute::initialize(...). 4697 void initialize(Attributor &A) override { 4698 // FIXME: This might have exposed a SCC iterator update bug in the old PM. 4699 // Needs investigation. 4700 // AAValueSimplifyImpl::initialize(A); 4701 Value &V = getAnchorValue(); 4702 4703 // TODO: add other stuffs 4704 if (isa<Constant>(V)) 4705 indicatePessimisticFixpoint(); 4706 } 4707 4708 /// Check if \p ICmp is an equality comparison (==/!=) with at least one 4709 /// nullptr. If so, try to simplify it using AANonNull on the other operand. 4710 /// Return true if successful, in that case SimplifiedAssociatedValue will be 4711 /// updated and \p Changed is set appropriately. 4712 bool checkForNullPtrCompare(Attributor &A, ICmpInst *ICmp, 4713 ChangeStatus &Changed) { 4714 if (!ICmp) 4715 return false; 4716 if (!ICmp->isEquality()) 4717 return false; 4718 4719 // This is a comparison with == or !-. We check for nullptr now. 4720 bool Op0IsNull = isa<ConstantPointerNull>(ICmp->getOperand(0)); 4721 bool Op1IsNull = isa<ConstantPointerNull>(ICmp->getOperand(1)); 4722 if (!Op0IsNull && !Op1IsNull) 4723 return false; 4724 4725 LLVMContext &Ctx = ICmp->getContext(); 4726 // Check for `nullptr ==/!= nullptr` first: 4727 if (Op0IsNull && Op1IsNull) { 4728 Value *NewVal = ConstantInt::get( 4729 Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_EQ); 4730 SimplifiedAssociatedValue = NewVal; 4731 indicateOptimisticFixpoint(); 4732 assert(!SimplifiedAssociatedValue.hasValue() && 4733 "Did not expect non-fixed value for constant comparison"); 4734 Changed = ChangeStatus::CHANGED; 4735 return true; 4736 } 4737 4738 // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the 4739 // non-nullptr operand and if we assume it's non-null we can conclude the 4740 // result of the comparison. 4741 assert((Op0IsNull || Op1IsNull) && 4742 "Expected nullptr versus non-nullptr comparison at this point"); 4743 4744 // The index is the operand that we assume is not null. 4745 unsigned PtrIdx = Op0IsNull; 4746 auto &PtrNonNullAA = A.getAAFor<AANonNull>( 4747 *this, IRPosition::value(*ICmp->getOperand(PtrIdx))); 4748 if (!PtrNonNullAA.isAssumedNonNull()) 4749 return false; 4750 4751 // The new value depends on the predicate, true for != and false for ==. 4752 Value *NewVal = ConstantInt::get(Type::getInt1Ty(Ctx), 4753 ICmp->getPredicate() == CmpInst::ICMP_NE); 4754 4755 assert((!SimplifiedAssociatedValue.hasValue() || 4756 SimplifiedAssociatedValue == NewVal) && 4757 "Did not expect to change value for zero-comparison"); 4758 4759 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4760 SimplifiedAssociatedValue = NewVal; 4761 4762 if (PtrNonNullAA.isKnownNonNull()) 4763 indicateOptimisticFixpoint(); 4764 4765 Changed = HasValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus ::CHANGED; 4766 return true; 4767 } 4768 4769 /// See AbstractAttribute::updateImpl(...). 4770 ChangeStatus updateImpl(Attributor &A) override { 4771 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4772 4773 ChangeStatus Changed; 4774 if (checkForNullPtrCompare(A, dyn_cast<ICmpInst>(&getAnchorValue()), 4775 Changed)) 4776 return Changed; 4777 4778 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &, 4779 bool Stripped) -> bool { 4780 auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V)); 4781 if (!Stripped && this == &AA) { 4782 // TODO: Look the instruction and check recursively. 4783 4784 LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V 4785 << "\n"); 4786 return false; 4787 } 4788 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4789 }; 4790 4791 bool Dummy = false; 4792 if (!genericValueTraversal<AAValueSimplify, bool>( 4793 A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(), 4794 /* UseValueSimplify */ false)) 4795 if (!askSimplifiedValueForOtherAAs(A)) 4796 return indicatePessimisticFixpoint(); 4797 4798 // If a candicate was found in this update, return CHANGED. 4799 4800 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4801 ? ChangeStatus::UNCHANGED 4802 : ChangeStatus ::CHANGED; 4803 } 4804 4805 /// See AbstractAttribute::trackStatistics() 4806 void trackStatistics() const override { 4807 STATS_DECLTRACK_FLOATING_ATTR(value_simplify) 4808 } 4809 }; 4810 4811 struct AAValueSimplifyFunction : AAValueSimplifyImpl { 4812 AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A) 4813 : AAValueSimplifyImpl(IRP, A) {} 4814 4815 /// See AbstractAttribute::initialize(...). 4816 void initialize(Attributor &A) override { 4817 SimplifiedAssociatedValue = &getAnchorValue(); 4818 indicateOptimisticFixpoint(); 4819 } 4820 /// See AbstractAttribute::initialize(...). 4821 ChangeStatus updateImpl(Attributor &A) override { 4822 llvm_unreachable( 4823 "AAValueSimplify(Function|CallSite)::updateImpl will not be called"); 4824 } 4825 /// See AbstractAttribute::trackStatistics() 4826 void trackStatistics() const override { 4827 STATS_DECLTRACK_FN_ATTR(value_simplify) 4828 } 4829 }; 4830 4831 struct AAValueSimplifyCallSite : AAValueSimplifyFunction { 4832 AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A) 4833 : AAValueSimplifyFunction(IRP, A) {} 4834 /// See AbstractAttribute::trackStatistics() 4835 void trackStatistics() const override { 4836 STATS_DECLTRACK_CS_ATTR(value_simplify) 4837 } 4838 }; 4839 4840 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned { 4841 AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A) 4842 : AAValueSimplifyReturned(IRP, A) {} 4843 4844 /// See AbstractAttribute::manifest(...). 4845 ChangeStatus manifest(Attributor &A) override { 4846 return AAValueSimplifyImpl::manifest(A); 4847 } 4848 4849 void trackStatistics() const override { 4850 STATS_DECLTRACK_CSRET_ATTR(value_simplify) 4851 } 4852 }; 4853 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { 4854 AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A) 4855 : AAValueSimplifyFloating(IRP, A) {} 4856 4857 /// See AbstractAttribute::manifest(...). 4858 ChangeStatus manifest(Attributor &A) override { 4859 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4860 4861 if (SimplifiedAssociatedValue.hasValue() && 4862 !SimplifiedAssociatedValue.getValue()) 4863 return Changed; 4864 4865 Value &V = getAssociatedValue(); 4866 auto *C = SimplifiedAssociatedValue.hasValue() 4867 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4868 : UndefValue::get(V.getType()); 4869 if (C) { 4870 Use &U = cast<CallBase>(&getAnchorValue())->getArgOperandUse(getArgNo()); 4871 // We can replace the AssociatedValue with the constant. 4872 if (&V != C && V.getType() == C->getType()) { 4873 if (A.changeUseAfterManifest(U, *C)) 4874 Changed = ChangeStatus::CHANGED; 4875 } 4876 } 4877 4878 return Changed | AAValueSimplify::manifest(A); 4879 } 4880 4881 void trackStatistics() const override { 4882 STATS_DECLTRACK_CSARG_ATTR(value_simplify) 4883 } 4884 }; 4885 4886 /// ----------------------- Heap-To-Stack Conversion --------------------------- 4887 struct AAHeapToStackImpl : public AAHeapToStack { 4888 AAHeapToStackImpl(const IRPosition &IRP, Attributor &A) 4889 : AAHeapToStack(IRP, A) {} 4890 4891 const std::string getAsStr() const override { 4892 return "[H2S] Mallocs: " + std::to_string(MallocCalls.size()); 4893 } 4894 4895 ChangeStatus manifest(Attributor &A) override { 4896 assert(getState().isValidState() && 4897 "Attempted to manifest an invalid state!"); 4898 4899 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 4900 Function *F = getAnchorScope(); 4901 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 4902 4903 for (Instruction *MallocCall : MallocCalls) { 4904 // This malloc cannot be replaced. 4905 if (BadMallocCalls.count(MallocCall)) 4906 continue; 4907 4908 for (Instruction *FreeCall : FreesForMalloc[MallocCall]) { 4909 LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n"); 4910 A.deleteAfterManifest(*FreeCall); 4911 HasChanged = ChangeStatus::CHANGED; 4912 } 4913 4914 LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall 4915 << "\n"); 4916 4917 Align Alignment; 4918 Constant *Size; 4919 if (isCallocLikeFn(MallocCall, TLI)) { 4920 auto *Num = cast<ConstantInt>(MallocCall->getOperand(0)); 4921 auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1)); 4922 APInt TotalSize = SizeT->getValue() * Num->getValue(); 4923 Size = 4924 ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize); 4925 } else if (isAlignedAllocLikeFn(MallocCall, TLI)) { 4926 Size = cast<ConstantInt>(MallocCall->getOperand(1)); 4927 Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0)) 4928 ->getValue() 4929 .getZExtValue()) 4930 .valueOrOne(); 4931 } else { 4932 Size = cast<ConstantInt>(MallocCall->getOperand(0)); 4933 } 4934 4935 unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace(); 4936 Instruction *AI = 4937 new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment, 4938 "", MallocCall->getNextNode()); 4939 4940 if (AI->getType() != MallocCall->getType()) 4941 AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc", 4942 AI->getNextNode()); 4943 4944 A.changeValueAfterManifest(*MallocCall, *AI); 4945 4946 if (auto *II = dyn_cast<InvokeInst>(MallocCall)) { 4947 auto *NBB = II->getNormalDest(); 4948 BranchInst::Create(NBB, MallocCall->getParent()); 4949 A.deleteAfterManifest(*MallocCall); 4950 } else { 4951 A.deleteAfterManifest(*MallocCall); 4952 } 4953 4954 // Zero out the allocated memory if it was a calloc. 4955 if (isCallocLikeFn(MallocCall, TLI)) { 4956 auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc", 4957 AI->getNextNode()); 4958 Value *Ops[] = { 4959 BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size, 4960 ConstantInt::get(Type::getInt1Ty(F->getContext()), false)}; 4961 4962 Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()}; 4963 Module *M = F->getParent(); 4964 Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); 4965 CallInst::Create(Fn, Ops, "", BI->getNextNode()); 4966 } 4967 HasChanged = ChangeStatus::CHANGED; 4968 } 4969 4970 return HasChanged; 4971 } 4972 4973 /// Collection of all malloc calls in a function. 4974 SmallSetVector<Instruction *, 4> MallocCalls; 4975 4976 /// Collection of malloc calls that cannot be converted. 4977 DenseSet<const Instruction *> BadMallocCalls; 4978 4979 /// A map for each malloc call to the set of associated free calls. 4980 DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc; 4981 4982 ChangeStatus updateImpl(Attributor &A) override; 4983 }; 4984 4985 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) { 4986 const Function *F = getAnchorScope(); 4987 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 4988 4989 MustBeExecutedContextExplorer &Explorer = 4990 A.getInfoCache().getMustBeExecutedContextExplorer(); 4991 4992 auto FreeCheck = [&](Instruction &I) { 4993 const auto &Frees = FreesForMalloc.lookup(&I); 4994 if (Frees.size() != 1) 4995 return false; 4996 Instruction *UniqueFree = *Frees.begin(); 4997 return Explorer.findInContextOf(UniqueFree, I.getNextNode()); 4998 }; 4999 5000 auto UsesCheck = [&](Instruction &I) { 5001 bool ValidUsesOnly = true; 5002 bool MustUse = true; 5003 auto Pred = [&](const Use &U, bool &Follow) -> bool { 5004 Instruction *UserI = cast<Instruction>(U.getUser()); 5005 if (isa<LoadInst>(UserI)) 5006 return true; 5007 if (auto *SI = dyn_cast<StoreInst>(UserI)) { 5008 if (SI->getValueOperand() == U.get()) { 5009 LLVM_DEBUG(dbgs() 5010 << "[H2S] escaping store to memory: " << *UserI << "\n"); 5011 ValidUsesOnly = false; 5012 } else { 5013 // A store into the malloc'ed memory is fine. 5014 } 5015 return true; 5016 } 5017 if (auto *CB = dyn_cast<CallBase>(UserI)) { 5018 if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd()) 5019 return true; 5020 // Record malloc. 5021 if (isFreeCall(UserI, TLI)) { 5022 if (MustUse) { 5023 FreesForMalloc[&I].insert(UserI); 5024 } else { 5025 LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: " 5026 << *UserI << "\n"); 5027 ValidUsesOnly = false; 5028 } 5029 return true; 5030 } 5031 5032 unsigned ArgNo = CB->getArgOperandNo(&U); 5033 5034 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 5035 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5036 5037 // If a callsite argument use is nofree, we are fine. 5038 const auto &ArgNoFreeAA = A.getAAFor<AANoFree>( 5039 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5040 5041 if (!NoCaptureAA.isAssumedNoCapture() || 5042 !ArgNoFreeAA.isAssumedNoFree()) { 5043 LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n"); 5044 ValidUsesOnly = false; 5045 } 5046 return true; 5047 } 5048 5049 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 5050 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 5051 MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI)); 5052 Follow = true; 5053 return true; 5054 } 5055 // Unknown user for which we can not track uses further (in a way that 5056 // makes sense). 5057 LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n"); 5058 ValidUsesOnly = false; 5059 return true; 5060 }; 5061 A.checkForAllUses(Pred, *this, I); 5062 return ValidUsesOnly; 5063 }; 5064 5065 auto MallocCallocCheck = [&](Instruction &I) { 5066 if (BadMallocCalls.count(&I)) 5067 return true; 5068 5069 bool IsMalloc = isMallocLikeFn(&I, TLI); 5070 bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI); 5071 bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI); 5072 if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) { 5073 BadMallocCalls.insert(&I); 5074 return true; 5075 } 5076 5077 if (IsMalloc) { 5078 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0))) 5079 if (Size->getValue().ule(MaxHeapToStackSize)) 5080 if (UsesCheck(I) || FreeCheck(I)) { 5081 MallocCalls.insert(&I); 5082 return true; 5083 } 5084 } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) { 5085 // Only if the alignment and sizes are constant. 5086 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) 5087 if (Size->getValue().ule(MaxHeapToStackSize)) 5088 if (UsesCheck(I) || FreeCheck(I)) { 5089 MallocCalls.insert(&I); 5090 return true; 5091 } 5092 } else if (IsCalloc) { 5093 bool Overflow = false; 5094 if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0))) 5095 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) 5096 if ((Size->getValue().umul_ov(Num->getValue(), Overflow)) 5097 .ule(MaxHeapToStackSize)) 5098 if (!Overflow && (UsesCheck(I) || FreeCheck(I))) { 5099 MallocCalls.insert(&I); 5100 return true; 5101 } 5102 } 5103 5104 BadMallocCalls.insert(&I); 5105 return true; 5106 }; 5107 5108 size_t NumBadMallocs = BadMallocCalls.size(); 5109 5110 A.checkForAllCallLikeInstructions(MallocCallocCheck, *this); 5111 5112 if (NumBadMallocs != BadMallocCalls.size()) 5113 return ChangeStatus::CHANGED; 5114 5115 return ChangeStatus::UNCHANGED; 5116 } 5117 5118 struct AAHeapToStackFunction final : public AAHeapToStackImpl { 5119 AAHeapToStackFunction(const IRPosition &IRP, Attributor &A) 5120 : AAHeapToStackImpl(IRP, A) {} 5121 5122 /// See AbstractAttribute::trackStatistics(). 5123 void trackStatistics() const override { 5124 STATS_DECL( 5125 MallocCalls, Function, 5126 "Number of malloc/calloc/aligned_alloc calls converted to allocas"); 5127 for (auto *C : MallocCalls) 5128 if (!BadMallocCalls.count(C)) 5129 ++BUILD_STAT_NAME(MallocCalls, Function); 5130 } 5131 }; 5132 5133 /// ----------------------- Privatizable Pointers ------------------------------ 5134 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr { 5135 AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A) 5136 : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {} 5137 5138 ChangeStatus indicatePessimisticFixpoint() override { 5139 AAPrivatizablePtr::indicatePessimisticFixpoint(); 5140 PrivatizableType = nullptr; 5141 return ChangeStatus::CHANGED; 5142 } 5143 5144 /// Identify the type we can chose for a private copy of the underlying 5145 /// argument. None means it is not clear yet, nullptr means there is none. 5146 virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0; 5147 5148 /// Return a privatizable type that encloses both T0 and T1. 5149 /// TODO: This is merely a stub for now as we should manage a mapping as well. 5150 Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) { 5151 if (!T0.hasValue()) 5152 return T1; 5153 if (!T1.hasValue()) 5154 return T0; 5155 if (T0 == T1) 5156 return T0; 5157 return nullptr; 5158 } 5159 5160 Optional<Type *> getPrivatizableType() const override { 5161 return PrivatizableType; 5162 } 5163 5164 const std::string getAsStr() const override { 5165 return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]"; 5166 } 5167 5168 protected: 5169 Optional<Type *> PrivatizableType; 5170 }; 5171 5172 // TODO: Do this for call site arguments (probably also other values) as well. 5173 5174 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl { 5175 AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A) 5176 : AAPrivatizablePtrImpl(IRP, A) {} 5177 5178 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5179 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5180 // If this is a byval argument and we know all the call sites (so we can 5181 // rewrite them), there is no need to check them explicitly. 5182 bool AllCallSitesKnown; 5183 if (getIRPosition().hasAttr(Attribute::ByVal) && 5184 A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this, 5185 true, AllCallSitesKnown)) 5186 return getAssociatedValue().getType()->getPointerElementType(); 5187 5188 Optional<Type *> Ty; 5189 unsigned ArgNo = getIRPosition().getArgNo(); 5190 5191 // Make sure the associated call site argument has the same type at all call 5192 // sites and it is an allocation we know is safe to privatize, for now that 5193 // means we only allow alloca instructions. 5194 // TODO: We can additionally analyze the accesses in the callee to create 5195 // the type from that information instead. That is a little more 5196 // involved and will be done in a follow up patch. 5197 auto CallSiteCheck = [&](AbstractCallSite ACS) { 5198 IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 5199 // Check if a coresponding argument was found or if it is one not 5200 // associated (which can happen for callback calls). 5201 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 5202 return false; 5203 5204 // Check that all call sites agree on a type. 5205 auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos); 5206 Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType(); 5207 5208 LLVM_DEBUG({ 5209 dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: "; 5210 if (CSTy.hasValue() && CSTy.getValue()) 5211 CSTy.getValue()->print(dbgs()); 5212 else if (CSTy.hasValue()) 5213 dbgs() << "<nullptr>"; 5214 else 5215 dbgs() << "<none>"; 5216 }); 5217 5218 Ty = combineTypes(Ty, CSTy); 5219 5220 LLVM_DEBUG({ 5221 dbgs() << " : New Type: "; 5222 if (Ty.hasValue() && Ty.getValue()) 5223 Ty.getValue()->print(dbgs()); 5224 else if (Ty.hasValue()) 5225 dbgs() << "<nullptr>"; 5226 else 5227 dbgs() << "<none>"; 5228 dbgs() << "\n"; 5229 }); 5230 5231 return !Ty.hasValue() || Ty.getValue(); 5232 }; 5233 5234 if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown)) 5235 return nullptr; 5236 return Ty; 5237 } 5238 5239 /// See AbstractAttribute::updateImpl(...). 5240 ChangeStatus updateImpl(Attributor &A) override { 5241 PrivatizableType = identifyPrivatizableType(A); 5242 if (!PrivatizableType.hasValue()) 5243 return ChangeStatus::UNCHANGED; 5244 if (!PrivatizableType.getValue()) 5245 return indicatePessimisticFixpoint(); 5246 5247 // The dependence is optional so we don't give up once we give up on the 5248 // alignment. 5249 A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()), 5250 /* TrackDependence */ true, DepClassTy::OPTIONAL); 5251 5252 // Avoid arguments with padding for now. 5253 if (!getIRPosition().hasAttr(Attribute::ByVal) && 5254 !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(), 5255 A.getInfoCache().getDL())) { 5256 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n"); 5257 return indicatePessimisticFixpoint(); 5258 } 5259 5260 // Verify callee and caller agree on how the promoted argument would be 5261 // passed. 5262 // TODO: The use of the ArgumentPromotion interface here is ugly, we need a 5263 // specialized form of TargetTransformInfo::areFunctionArgsABICompatible 5264 // which doesn't require the arguments ArgumentPromotion wanted to pass. 5265 Function &Fn = *getIRPosition().getAnchorScope(); 5266 SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy; 5267 ArgsToPromote.insert(getAssociatedArgument()); 5268 const auto *TTI = 5269 A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn); 5270 if (!TTI || 5271 !ArgumentPromotionPass::areFunctionArgsABICompatible( 5272 Fn, *TTI, ArgsToPromote, Dummy) || 5273 ArgsToPromote.empty()) { 5274 LLVM_DEBUG( 5275 dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for " 5276 << Fn.getName() << "\n"); 5277 return indicatePessimisticFixpoint(); 5278 } 5279 5280 // Collect the types that will replace the privatizable type in the function 5281 // signature. 5282 SmallVector<Type *, 16> ReplacementTypes; 5283 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5284 5285 // Register a rewrite of the argument. 5286 Argument *Arg = getAssociatedArgument(); 5287 if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) { 5288 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n"); 5289 return indicatePessimisticFixpoint(); 5290 } 5291 5292 unsigned ArgNo = Arg->getArgNo(); 5293 5294 // Helper to check if for the given call site the associated argument is 5295 // passed to a callback where the privatization would be different. 5296 auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) { 5297 SmallVector<const Use *, 4> CallbackUses; 5298 AbstractCallSite::getCallbackUses(CB, CallbackUses); 5299 for (const Use *U : CallbackUses) { 5300 AbstractCallSite CBACS(U); 5301 assert(CBACS && CBACS.isCallbackCall()); 5302 for (Argument &CBArg : CBACS.getCalledFunction()->args()) { 5303 int CBArgNo = CBACS.getCallArgOperandNo(CBArg); 5304 5305 LLVM_DEBUG({ 5306 dbgs() 5307 << "[AAPrivatizablePtr] Argument " << *Arg 5308 << "check if can be privatized in the context of its parent (" 5309 << Arg->getParent()->getName() 5310 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5311 "callback (" 5312 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5313 << ")\n[AAPrivatizablePtr] " << CBArg << " : " 5314 << CBACS.getCallArgOperand(CBArg) << " vs " 5315 << CB.getArgOperand(ArgNo) << "\n" 5316 << "[AAPrivatizablePtr] " << CBArg << " : " 5317 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n"; 5318 }); 5319 5320 if (CBArgNo != int(ArgNo)) 5321 continue; 5322 const auto &CBArgPrivAA = 5323 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg)); 5324 if (CBArgPrivAA.isValidState()) { 5325 auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType(); 5326 if (!CBArgPrivTy.hasValue()) 5327 continue; 5328 if (CBArgPrivTy.getValue() == PrivatizableType) 5329 continue; 5330 } 5331 5332 LLVM_DEBUG({ 5333 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5334 << " cannot be privatized in the context of its parent (" 5335 << Arg->getParent()->getName() 5336 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5337 "callback (" 5338 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5339 << ").\n[AAPrivatizablePtr] for which the argument " 5340 "privatization is not compatible.\n"; 5341 }); 5342 return false; 5343 } 5344 } 5345 return true; 5346 }; 5347 5348 // Helper to check if for the given call site the associated argument is 5349 // passed to a direct call where the privatization would be different. 5350 auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) { 5351 CallBase *DC = cast<CallBase>(ACS.getInstruction()); 5352 int DCArgNo = ACS.getCallArgOperandNo(ArgNo); 5353 assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() && 5354 "Expected a direct call operand for callback call operand"); 5355 5356 LLVM_DEBUG({ 5357 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5358 << " check if be privatized in the context of its parent (" 5359 << Arg->getParent()->getName() 5360 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5361 "direct call of (" 5362 << DCArgNo << "@" << DC->getCalledFunction()->getName() 5363 << ").\n"; 5364 }); 5365 5366 Function *DCCallee = DC->getCalledFunction(); 5367 if (unsigned(DCArgNo) < DCCallee->arg_size()) { 5368 const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>( 5369 *this, IRPosition::argument(*DCCallee->getArg(DCArgNo))); 5370 if (DCArgPrivAA.isValidState()) { 5371 auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType(); 5372 if (!DCArgPrivTy.hasValue()) 5373 return true; 5374 if (DCArgPrivTy.getValue() == PrivatizableType) 5375 return true; 5376 } 5377 } 5378 5379 LLVM_DEBUG({ 5380 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5381 << " cannot be privatized in the context of its parent (" 5382 << Arg->getParent()->getName() 5383 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5384 "direct call of (" 5385 << ACS.getInstruction()->getCalledFunction()->getName() 5386 << ").\n[AAPrivatizablePtr] for which the argument " 5387 "privatization is not compatible.\n"; 5388 }); 5389 return false; 5390 }; 5391 5392 // Helper to check if the associated argument is used at the given abstract 5393 // call site in a way that is incompatible with the privatization assumed 5394 // here. 5395 auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) { 5396 if (ACS.isDirectCall()) 5397 return IsCompatiblePrivArgOfCallback(*ACS.getInstruction()); 5398 if (ACS.isCallbackCall()) 5399 return IsCompatiblePrivArgOfDirectCS(ACS); 5400 return false; 5401 }; 5402 5403 bool AllCallSitesKnown; 5404 if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true, 5405 AllCallSitesKnown)) 5406 return indicatePessimisticFixpoint(); 5407 5408 return ChangeStatus::UNCHANGED; 5409 } 5410 5411 /// Given a type to private \p PrivType, collect the constituates (which are 5412 /// used) in \p ReplacementTypes. 5413 static void 5414 identifyReplacementTypes(Type *PrivType, 5415 SmallVectorImpl<Type *> &ReplacementTypes) { 5416 // TODO: For now we expand the privatization type to the fullest which can 5417 // lead to dead arguments that need to be removed later. 5418 assert(PrivType && "Expected privatizable type!"); 5419 5420 // Traverse the type, extract constituate types on the outermost level. 5421 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5422 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) 5423 ReplacementTypes.push_back(PrivStructType->getElementType(u)); 5424 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5425 ReplacementTypes.append(PrivArrayType->getNumElements(), 5426 PrivArrayType->getElementType()); 5427 } else { 5428 ReplacementTypes.push_back(PrivType); 5429 } 5430 } 5431 5432 /// Initialize \p Base according to the type \p PrivType at position \p IP. 5433 /// The values needed are taken from the arguments of \p F starting at 5434 /// position \p ArgNo. 5435 static void createInitialization(Type *PrivType, Value &Base, Function &F, 5436 unsigned ArgNo, Instruction &IP) { 5437 assert(PrivType && "Expected privatizable type!"); 5438 5439 IRBuilder<NoFolder> IRB(&IP); 5440 const DataLayout &DL = F.getParent()->getDataLayout(); 5441 5442 // Traverse the type, build GEPs and stores. 5443 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5444 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5445 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5446 Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo(); 5447 Value *Ptr = constructPointer( 5448 PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL); 5449 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5450 } 5451 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5452 Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo(); 5453 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy); 5454 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5455 Value *Ptr = 5456 constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL); 5457 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5458 } 5459 } else { 5460 new StoreInst(F.getArg(ArgNo), &Base, &IP); 5461 } 5462 } 5463 5464 /// Extract values from \p Base according to the type \p PrivType at the 5465 /// call position \p ACS. The values are appended to \p ReplacementValues. 5466 void createReplacementValues(Align Alignment, Type *PrivType, 5467 AbstractCallSite ACS, Value *Base, 5468 SmallVectorImpl<Value *> &ReplacementValues) { 5469 assert(Base && "Expected base value!"); 5470 assert(PrivType && "Expected privatizable type!"); 5471 Instruction *IP = ACS.getInstruction(); 5472 5473 IRBuilder<NoFolder> IRB(IP); 5474 const DataLayout &DL = IP->getModule()->getDataLayout(); 5475 5476 if (Base->getType()->getPointerElementType() != PrivType) 5477 Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(), 5478 "", ACS.getInstruction()); 5479 5480 // Traverse the type, build GEPs and loads. 5481 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5482 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5483 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5484 Type *PointeeTy = PrivStructType->getElementType(u); 5485 Value *Ptr = 5486 constructPointer(PointeeTy->getPointerTo(), Base, 5487 PrivStructLayout->getElementOffset(u), IRB, DL); 5488 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP); 5489 L->setAlignment(Alignment); 5490 ReplacementValues.push_back(L); 5491 } 5492 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5493 Type *PointeeTy = PrivArrayType->getElementType(); 5494 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy); 5495 Type *PointeePtrTy = PointeeTy->getPointerTo(); 5496 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5497 Value *Ptr = 5498 constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL); 5499 LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP); 5500 L->setAlignment(Alignment); 5501 ReplacementValues.push_back(L); 5502 } 5503 } else { 5504 LoadInst *L = new LoadInst(PrivType, Base, "", IP); 5505 L->setAlignment(Alignment); 5506 ReplacementValues.push_back(L); 5507 } 5508 } 5509 5510 /// See AbstractAttribute::manifest(...) 5511 ChangeStatus manifest(Attributor &A) override { 5512 if (!PrivatizableType.hasValue()) 5513 return ChangeStatus::UNCHANGED; 5514 assert(PrivatizableType.getValue() && "Expected privatizable type!"); 5515 5516 // Collect all tail calls in the function as we cannot allow new allocas to 5517 // escape into tail recursion. 5518 // TODO: Be smarter about new allocas escaping into tail calls. 5519 SmallVector<CallInst *, 16> TailCalls; 5520 if (!A.checkForAllInstructions( 5521 [&](Instruction &I) { 5522 CallInst &CI = cast<CallInst>(I); 5523 if (CI.isTailCall()) 5524 TailCalls.push_back(&CI); 5525 return true; 5526 }, 5527 *this, {Instruction::Call})) 5528 return ChangeStatus::UNCHANGED; 5529 5530 Argument *Arg = getAssociatedArgument(); 5531 // Query AAAlign attribute for alignment of associated argument to 5532 // determine the best alignment of loads. 5533 const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg)); 5534 5535 // Callback to repair the associated function. A new alloca is placed at the 5536 // beginning and initialized with the values passed through arguments. The 5537 // new alloca replaces the use of the old pointer argument. 5538 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB = 5539 [=](const Attributor::ArgumentReplacementInfo &ARI, 5540 Function &ReplacementFn, Function::arg_iterator ArgIt) { 5541 BasicBlock &EntryBB = ReplacementFn.getEntryBlock(); 5542 Instruction *IP = &*EntryBB.getFirstInsertionPt(); 5543 auto *AI = new AllocaInst(PrivatizableType.getValue(), 0, 5544 Arg->getName() + ".priv", IP); 5545 createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn, 5546 ArgIt->getArgNo(), *IP); 5547 Arg->replaceAllUsesWith(AI); 5548 5549 for (CallInst *CI : TailCalls) 5550 CI->setTailCall(false); 5551 }; 5552 5553 // Callback to repair a call site of the associated function. The elements 5554 // of the privatizable type are loaded prior to the call and passed to the 5555 // new function version. 5556 Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB = 5557 [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI, 5558 AbstractCallSite ACS, 5559 SmallVectorImpl<Value *> &NewArgOperands) { 5560 // When no alignment is specified for the load instruction, 5561 // natural alignment is assumed. 5562 createReplacementValues( 5563 assumeAligned(AlignAA.getAssumedAlign()), 5564 PrivatizableType.getValue(), ACS, 5565 ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()), 5566 NewArgOperands); 5567 }; 5568 5569 // Collect the types that will replace the privatizable type in the function 5570 // signature. 5571 SmallVector<Type *, 16> ReplacementTypes; 5572 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5573 5574 // Register a rewrite of the argument. 5575 if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes, 5576 std::move(FnRepairCB), 5577 std::move(ACSRepairCB))) 5578 return ChangeStatus::CHANGED; 5579 return ChangeStatus::UNCHANGED; 5580 } 5581 5582 /// See AbstractAttribute::trackStatistics() 5583 void trackStatistics() const override { 5584 STATS_DECLTRACK_ARG_ATTR(privatizable_ptr); 5585 } 5586 }; 5587 5588 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl { 5589 AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A) 5590 : AAPrivatizablePtrImpl(IRP, A) {} 5591 5592 /// See AbstractAttribute::initialize(...). 5593 virtual void initialize(Attributor &A) override { 5594 // TODO: We can privatize more than arguments. 5595 indicatePessimisticFixpoint(); 5596 } 5597 5598 ChangeStatus updateImpl(Attributor &A) override { 5599 llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::" 5600 "updateImpl will not be called"); 5601 } 5602 5603 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5604 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5605 Value *Obj = getUnderlyingObject(&getAssociatedValue()); 5606 if (!Obj) { 5607 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n"); 5608 return nullptr; 5609 } 5610 5611 if (auto *AI = dyn_cast<AllocaInst>(Obj)) 5612 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) 5613 if (CI->isOne()) 5614 return Obj->getType()->getPointerElementType(); 5615 if (auto *Arg = dyn_cast<Argument>(Obj)) { 5616 auto &PrivArgAA = 5617 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg)); 5618 if (PrivArgAA.isAssumedPrivatizablePtr()) 5619 return Obj->getType()->getPointerElementType(); 5620 } 5621 5622 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid " 5623 "alloca nor privatizable argument: " 5624 << *Obj << "!\n"); 5625 return nullptr; 5626 } 5627 5628 /// See AbstractAttribute::trackStatistics() 5629 void trackStatistics() const override { 5630 STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr); 5631 } 5632 }; 5633 5634 struct AAPrivatizablePtrCallSiteArgument final 5635 : public AAPrivatizablePtrFloating { 5636 AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A) 5637 : AAPrivatizablePtrFloating(IRP, A) {} 5638 5639 /// See AbstractAttribute::initialize(...). 5640 void initialize(Attributor &A) override { 5641 if (getIRPosition().hasAttr(Attribute::ByVal)) 5642 indicateOptimisticFixpoint(); 5643 } 5644 5645 /// See AbstractAttribute::updateImpl(...). 5646 ChangeStatus updateImpl(Attributor &A) override { 5647 PrivatizableType = identifyPrivatizableType(A); 5648 if (!PrivatizableType.hasValue()) 5649 return ChangeStatus::UNCHANGED; 5650 if (!PrivatizableType.getValue()) 5651 return indicatePessimisticFixpoint(); 5652 5653 const IRPosition &IRP = getIRPosition(); 5654 auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP); 5655 if (!NoCaptureAA.isAssumedNoCapture()) { 5656 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n"); 5657 return indicatePessimisticFixpoint(); 5658 } 5659 5660 auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP); 5661 if (!NoAliasAA.isAssumedNoAlias()) { 5662 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n"); 5663 return indicatePessimisticFixpoint(); 5664 } 5665 5666 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP); 5667 if (!MemBehaviorAA.isAssumedReadOnly()) { 5668 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n"); 5669 return indicatePessimisticFixpoint(); 5670 } 5671 5672 return ChangeStatus::UNCHANGED; 5673 } 5674 5675 /// See AbstractAttribute::trackStatistics() 5676 void trackStatistics() const override { 5677 STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr); 5678 } 5679 }; 5680 5681 struct AAPrivatizablePtrCallSiteReturned final 5682 : public AAPrivatizablePtrFloating { 5683 AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A) 5684 : AAPrivatizablePtrFloating(IRP, A) {} 5685 5686 /// See AbstractAttribute::initialize(...). 5687 void initialize(Attributor &A) override { 5688 // TODO: We can privatize more than arguments. 5689 indicatePessimisticFixpoint(); 5690 } 5691 5692 /// See AbstractAttribute::trackStatistics() 5693 void trackStatistics() const override { 5694 STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr); 5695 } 5696 }; 5697 5698 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating { 5699 AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A) 5700 : AAPrivatizablePtrFloating(IRP, A) {} 5701 5702 /// See AbstractAttribute::initialize(...). 5703 void initialize(Attributor &A) override { 5704 // TODO: We can privatize more than arguments. 5705 indicatePessimisticFixpoint(); 5706 } 5707 5708 /// See AbstractAttribute::trackStatistics() 5709 void trackStatistics() const override { 5710 STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr); 5711 } 5712 }; 5713 5714 /// -------------------- Memory Behavior Attributes ---------------------------- 5715 /// Includes read-none, read-only, and write-only. 5716 /// ---------------------------------------------------------------------------- 5717 struct AAMemoryBehaviorImpl : public AAMemoryBehavior { 5718 AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A) 5719 : AAMemoryBehavior(IRP, A) {} 5720 5721 /// See AbstractAttribute::initialize(...). 5722 void initialize(Attributor &A) override { 5723 intersectAssumedBits(BEST_STATE); 5724 getKnownStateFromValue(getIRPosition(), getState()); 5725 IRAttribute::initialize(A); 5726 } 5727 5728 /// Return the memory behavior information encoded in the IR for \p IRP. 5729 static void getKnownStateFromValue(const IRPosition &IRP, 5730 BitIntegerState &State, 5731 bool IgnoreSubsumingPositions = false) { 5732 SmallVector<Attribute, 2> Attrs; 5733 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 5734 for (const Attribute &Attr : Attrs) { 5735 switch (Attr.getKindAsEnum()) { 5736 case Attribute::ReadNone: 5737 State.addKnownBits(NO_ACCESSES); 5738 break; 5739 case Attribute::ReadOnly: 5740 State.addKnownBits(NO_WRITES); 5741 break; 5742 case Attribute::WriteOnly: 5743 State.addKnownBits(NO_READS); 5744 break; 5745 default: 5746 llvm_unreachable("Unexpected attribute!"); 5747 } 5748 } 5749 5750 if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) { 5751 if (!I->mayReadFromMemory()) 5752 State.addKnownBits(NO_READS); 5753 if (!I->mayWriteToMemory()) 5754 State.addKnownBits(NO_WRITES); 5755 } 5756 } 5757 5758 /// See AbstractAttribute::getDeducedAttributes(...). 5759 void getDeducedAttributes(LLVMContext &Ctx, 5760 SmallVectorImpl<Attribute> &Attrs) const override { 5761 assert(Attrs.size() == 0); 5762 if (isAssumedReadNone()) 5763 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 5764 else if (isAssumedReadOnly()) 5765 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly)); 5766 else if (isAssumedWriteOnly()) 5767 Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly)); 5768 assert(Attrs.size() <= 1); 5769 } 5770 5771 /// See AbstractAttribute::manifest(...). 5772 ChangeStatus manifest(Attributor &A) override { 5773 if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true)) 5774 return ChangeStatus::UNCHANGED; 5775 5776 const IRPosition &IRP = getIRPosition(); 5777 5778 // Check if we would improve the existing attributes first. 5779 SmallVector<Attribute, 4> DeducedAttrs; 5780 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 5781 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 5782 return IRP.hasAttr(Attr.getKindAsEnum(), 5783 /* IgnoreSubsumingPositions */ true); 5784 })) 5785 return ChangeStatus::UNCHANGED; 5786 5787 // Clear existing attributes. 5788 IRP.removeAttrs(AttrKinds); 5789 5790 // Use the generic manifest method. 5791 return IRAttribute::manifest(A); 5792 } 5793 5794 /// See AbstractState::getAsStr(). 5795 const std::string getAsStr() const override { 5796 if (isAssumedReadNone()) 5797 return "readnone"; 5798 if (isAssumedReadOnly()) 5799 return "readonly"; 5800 if (isAssumedWriteOnly()) 5801 return "writeonly"; 5802 return "may-read/write"; 5803 } 5804 5805 /// The set of IR attributes AAMemoryBehavior deals with. 5806 static const Attribute::AttrKind AttrKinds[3]; 5807 }; 5808 5809 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { 5810 Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; 5811 5812 /// Memory behavior attribute for a floating value. 5813 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { 5814 AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A) 5815 : AAMemoryBehaviorImpl(IRP, A) {} 5816 5817 /// See AbstractAttribute::initialize(...). 5818 void initialize(Attributor &A) override { 5819 AAMemoryBehaviorImpl::initialize(A); 5820 // Initialize the use vector with all direct uses of the associated value. 5821 for (const Use &U : getAssociatedValue().uses()) 5822 Uses.insert(&U); 5823 } 5824 5825 /// See AbstractAttribute::updateImpl(...). 5826 ChangeStatus updateImpl(Attributor &A) override; 5827 5828 /// See AbstractAttribute::trackStatistics() 5829 void trackStatistics() const override { 5830 if (isAssumedReadNone()) 5831 STATS_DECLTRACK_FLOATING_ATTR(readnone) 5832 else if (isAssumedReadOnly()) 5833 STATS_DECLTRACK_FLOATING_ATTR(readonly) 5834 else if (isAssumedWriteOnly()) 5835 STATS_DECLTRACK_FLOATING_ATTR(writeonly) 5836 } 5837 5838 private: 5839 /// Return true if users of \p UserI might access the underlying 5840 /// variable/location described by \p U and should therefore be analyzed. 5841 bool followUsersOfUseIn(Attributor &A, const Use *U, 5842 const Instruction *UserI); 5843 5844 /// Update the state according to the effect of use \p U in \p UserI. 5845 void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI); 5846 5847 protected: 5848 /// Container for (transitive) uses of the associated argument. 5849 SetVector<const Use *> Uses; 5850 }; 5851 5852 /// Memory behavior attribute for function argument. 5853 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { 5854 AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A) 5855 : AAMemoryBehaviorFloating(IRP, A) {} 5856 5857 /// See AbstractAttribute::initialize(...). 5858 void initialize(Attributor &A) override { 5859 intersectAssumedBits(BEST_STATE); 5860 const IRPosition &IRP = getIRPosition(); 5861 // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we 5862 // can query it when we use has/getAttr. That would allow us to reuse the 5863 // initialize of the base class here. 5864 bool HasByVal = 5865 IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true); 5866 getKnownStateFromValue(IRP, getState(), 5867 /* IgnoreSubsumingPositions */ HasByVal); 5868 5869 // Initialize the use vector with all direct uses of the associated value. 5870 Argument *Arg = getAssociatedArgument(); 5871 if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) { 5872 indicatePessimisticFixpoint(); 5873 } else { 5874 // Initialize the use vector with all direct uses of the associated value. 5875 for (const Use &U : Arg->uses()) 5876 Uses.insert(&U); 5877 } 5878 } 5879 5880 ChangeStatus manifest(Attributor &A) override { 5881 // TODO: Pointer arguments are not supported on vectors of pointers yet. 5882 if (!getAssociatedValue().getType()->isPointerTy()) 5883 return ChangeStatus::UNCHANGED; 5884 5885 // TODO: From readattrs.ll: "inalloca parameters are always 5886 // considered written" 5887 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) { 5888 removeKnownBits(NO_WRITES); 5889 removeAssumedBits(NO_WRITES); 5890 } 5891 return AAMemoryBehaviorFloating::manifest(A); 5892 } 5893 5894 /// See AbstractAttribute::trackStatistics() 5895 void trackStatistics() const override { 5896 if (isAssumedReadNone()) 5897 STATS_DECLTRACK_ARG_ATTR(readnone) 5898 else if (isAssumedReadOnly()) 5899 STATS_DECLTRACK_ARG_ATTR(readonly) 5900 else if (isAssumedWriteOnly()) 5901 STATS_DECLTRACK_ARG_ATTR(writeonly) 5902 } 5903 }; 5904 5905 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { 5906 AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A) 5907 : AAMemoryBehaviorArgument(IRP, A) {} 5908 5909 /// See AbstractAttribute::initialize(...). 5910 void initialize(Attributor &A) override { 5911 if (Argument *Arg = getAssociatedArgument()) { 5912 if (Arg->hasByValAttr()) { 5913 addKnownBits(NO_WRITES); 5914 removeKnownBits(NO_READS); 5915 removeAssumedBits(NO_READS); 5916 } 5917 } 5918 AAMemoryBehaviorArgument::initialize(A); 5919 } 5920 5921 /// See AbstractAttribute::updateImpl(...). 5922 ChangeStatus updateImpl(Attributor &A) override { 5923 // TODO: Once we have call site specific value information we can provide 5924 // call site specific liveness liveness information and then it makes 5925 // sense to specialize attributes for call sites arguments instead of 5926 // redirecting requests to the callee argument. 5927 Argument *Arg = getAssociatedArgument(); 5928 const IRPosition &ArgPos = IRPosition::argument(*Arg); 5929 auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos); 5930 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 5931 } 5932 5933 /// See AbstractAttribute::trackStatistics() 5934 void trackStatistics() const override { 5935 if (isAssumedReadNone()) 5936 STATS_DECLTRACK_CSARG_ATTR(readnone) 5937 else if (isAssumedReadOnly()) 5938 STATS_DECLTRACK_CSARG_ATTR(readonly) 5939 else if (isAssumedWriteOnly()) 5940 STATS_DECLTRACK_CSARG_ATTR(writeonly) 5941 } 5942 }; 5943 5944 /// Memory behavior attribute for a call site return position. 5945 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { 5946 AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A) 5947 : AAMemoryBehaviorFloating(IRP, A) {} 5948 5949 /// See AbstractAttribute::manifest(...). 5950 ChangeStatus manifest(Attributor &A) override { 5951 // We do not annotate returned values. 5952 return ChangeStatus::UNCHANGED; 5953 } 5954 5955 /// See AbstractAttribute::trackStatistics() 5956 void trackStatistics() const override {} 5957 }; 5958 5959 /// An AA to represent the memory behavior function attributes. 5960 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { 5961 AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A) 5962 : AAMemoryBehaviorImpl(IRP, A) {} 5963 5964 /// See AbstractAttribute::updateImpl(Attributor &A). 5965 virtual ChangeStatus updateImpl(Attributor &A) override; 5966 5967 /// See AbstractAttribute::manifest(...). 5968 ChangeStatus manifest(Attributor &A) override { 5969 Function &F = cast<Function>(getAnchorValue()); 5970 if (isAssumedReadNone()) { 5971 F.removeFnAttr(Attribute::ArgMemOnly); 5972 F.removeFnAttr(Attribute::InaccessibleMemOnly); 5973 F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); 5974 } 5975 return AAMemoryBehaviorImpl::manifest(A); 5976 } 5977 5978 /// See AbstractAttribute::trackStatistics() 5979 void trackStatistics() const override { 5980 if (isAssumedReadNone()) 5981 STATS_DECLTRACK_FN_ATTR(readnone) 5982 else if (isAssumedReadOnly()) 5983 STATS_DECLTRACK_FN_ATTR(readonly) 5984 else if (isAssumedWriteOnly()) 5985 STATS_DECLTRACK_FN_ATTR(writeonly) 5986 } 5987 }; 5988 5989 /// AAMemoryBehavior attribute for call sites. 5990 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl { 5991 AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A) 5992 : AAMemoryBehaviorImpl(IRP, A) {} 5993 5994 /// See AbstractAttribute::initialize(...). 5995 void initialize(Attributor &A) override { 5996 AAMemoryBehaviorImpl::initialize(A); 5997 Function *F = getAssociatedFunction(); 5998 if (!F || !A.isFunctionIPOAmendable(*F)) { 5999 indicatePessimisticFixpoint(); 6000 return; 6001 } 6002 } 6003 6004 /// See AbstractAttribute::updateImpl(...). 6005 ChangeStatus updateImpl(Attributor &A) override { 6006 // TODO: Once we have call site specific value information we can provide 6007 // call site specific liveness liveness information and then it makes 6008 // sense to specialize attributes for call sites arguments instead of 6009 // redirecting requests to the callee argument. 6010 Function *F = getAssociatedFunction(); 6011 const IRPosition &FnPos = IRPosition::function(*F); 6012 auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); 6013 return clampStateAndIndicateChange(getState(), FnAA.getState()); 6014 } 6015 6016 /// See AbstractAttribute::trackStatistics() 6017 void trackStatistics() const override { 6018 if (isAssumedReadNone()) 6019 STATS_DECLTRACK_CS_ATTR(readnone) 6020 else if (isAssumedReadOnly()) 6021 STATS_DECLTRACK_CS_ATTR(readonly) 6022 else if (isAssumedWriteOnly()) 6023 STATS_DECLTRACK_CS_ATTR(writeonly) 6024 } 6025 }; 6026 6027 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { 6028 6029 // The current assumed state used to determine a change. 6030 auto AssumedState = getAssumed(); 6031 6032 auto CheckRWInst = [&](Instruction &I) { 6033 // If the instruction has an own memory behavior state, use it to restrict 6034 // the local state. No further analysis is required as the other memory 6035 // state is as optimistic as it gets. 6036 if (const auto *CB = dyn_cast<CallBase>(&I)) { 6037 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6038 *this, IRPosition::callsite_function(*CB)); 6039 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6040 return !isAtFixpoint(); 6041 } 6042 6043 // Remove access kind modifiers if necessary. 6044 if (I.mayReadFromMemory()) 6045 removeAssumedBits(NO_READS); 6046 if (I.mayWriteToMemory()) 6047 removeAssumedBits(NO_WRITES); 6048 return !isAtFixpoint(); 6049 }; 6050 6051 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6052 return indicatePessimisticFixpoint(); 6053 6054 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6055 : ChangeStatus::UNCHANGED; 6056 } 6057 6058 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { 6059 6060 const IRPosition &IRP = getIRPosition(); 6061 const IRPosition &FnPos = IRPosition::function_scope(IRP); 6062 AAMemoryBehavior::StateType &S = getState(); 6063 6064 // First, check the function scope. We take the known information and we avoid 6065 // work if the assumed information implies the current assumed information for 6066 // this attribute. This is a valid for all but byval arguments. 6067 Argument *Arg = IRP.getAssociatedArgument(); 6068 AAMemoryBehavior::base_t FnMemAssumedState = 6069 AAMemoryBehavior::StateType::getWorstState(); 6070 if (!Arg || !Arg->hasByValAttr()) { 6071 const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>( 6072 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6073 FnMemAssumedState = FnMemAA.getAssumed(); 6074 S.addKnownBits(FnMemAA.getKnown()); 6075 if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed()) 6076 return ChangeStatus::UNCHANGED; 6077 } 6078 6079 // Make sure the value is not captured (except through "return"), if 6080 // it is, any information derived would be irrelevant anyway as we cannot 6081 // check the potential aliases introduced by the capture. However, no need 6082 // to fall back to anythign less optimistic than the function state. 6083 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6084 *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6085 if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 6086 S.intersectAssumedBits(FnMemAssumedState); 6087 return ChangeStatus::CHANGED; 6088 } 6089 6090 // The current assumed state used to determine a change. 6091 auto AssumedState = S.getAssumed(); 6092 6093 // Liveness information to exclude dead users. 6094 // TODO: Take the FnPos once we have call site specific liveness information. 6095 const auto &LivenessAA = A.getAAFor<AAIsDead>( 6096 *this, IRPosition::function(*IRP.getAssociatedFunction()), 6097 /* TrackDependence */ false); 6098 6099 // Visit and expand uses until all are analyzed or a fixpoint is reached. 6100 for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) { 6101 const Use *U = Uses[i]; 6102 Instruction *UserI = cast<Instruction>(U->getUser()); 6103 LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI 6104 << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA)) 6105 << "]\n"); 6106 if (A.isAssumedDead(*U, this, &LivenessAA)) 6107 continue; 6108 6109 // Droppable users, e.g., llvm::assume does not actually perform any action. 6110 if (UserI->isDroppable()) 6111 continue; 6112 6113 // Check if the users of UserI should also be visited. 6114 if (followUsersOfUseIn(A, U, UserI)) 6115 for (const Use &UserIUse : UserI->uses()) 6116 Uses.insert(&UserIUse); 6117 6118 // If UserI might touch memory we analyze the use in detail. 6119 if (UserI->mayReadOrWriteMemory()) 6120 analyzeUseIn(A, U, UserI); 6121 } 6122 6123 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6124 : ChangeStatus::UNCHANGED; 6125 } 6126 6127 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U, 6128 const Instruction *UserI) { 6129 // The loaded value is unrelated to the pointer argument, no need to 6130 // follow the users of the load. 6131 if (isa<LoadInst>(UserI)) 6132 return false; 6133 6134 // By default we follow all uses assuming UserI might leak information on U, 6135 // we have special handling for call sites operands though. 6136 const auto *CB = dyn_cast<CallBase>(UserI); 6137 if (!CB || !CB->isArgOperand(U)) 6138 return true; 6139 6140 // If the use is a call argument known not to be captured, the users of 6141 // the call do not need to be visited because they have to be unrelated to 6142 // the input. Note that this check is not trivial even though we disallow 6143 // general capturing of the underlying argument. The reason is that the 6144 // call might the argument "through return", which we allow and for which we 6145 // need to check call users. 6146 if (U->get()->getType()->isPointerTy()) { 6147 unsigned ArgNo = CB->getArgOperandNo(U); 6148 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6149 *this, IRPosition::callsite_argument(*CB, ArgNo), 6150 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6151 return !ArgNoCaptureAA.isAssumedNoCapture(); 6152 } 6153 6154 return true; 6155 } 6156 6157 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U, 6158 const Instruction *UserI) { 6159 assert(UserI->mayReadOrWriteMemory()); 6160 6161 switch (UserI->getOpcode()) { 6162 default: 6163 // TODO: Handle all atomics and other side-effect operations we know of. 6164 break; 6165 case Instruction::Load: 6166 // Loads cause the NO_READS property to disappear. 6167 removeAssumedBits(NO_READS); 6168 return; 6169 6170 case Instruction::Store: 6171 // Stores cause the NO_WRITES property to disappear if the use is the 6172 // pointer operand. Note that we do assume that capturing was taken care of 6173 // somewhere else. 6174 if (cast<StoreInst>(UserI)->getPointerOperand() == U->get()) 6175 removeAssumedBits(NO_WRITES); 6176 return; 6177 6178 case Instruction::Call: 6179 case Instruction::CallBr: 6180 case Instruction::Invoke: { 6181 // For call sites we look at the argument memory behavior attribute (this 6182 // could be recursive!) in order to restrict our own state. 6183 const auto *CB = cast<CallBase>(UserI); 6184 6185 // Give up on operand bundles. 6186 if (CB->isBundleOperand(U)) { 6187 indicatePessimisticFixpoint(); 6188 return; 6189 } 6190 6191 // Calling a function does read the function pointer, maybe write it if the 6192 // function is self-modifying. 6193 if (CB->isCallee(U)) { 6194 removeAssumedBits(NO_READS); 6195 break; 6196 } 6197 6198 // Adjust the possible access behavior based on the information on the 6199 // argument. 6200 IRPosition Pos; 6201 if (U->get()->getType()->isPointerTy()) 6202 Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U)); 6203 else 6204 Pos = IRPosition::callsite_function(*CB); 6205 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6206 *this, Pos, 6207 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6208 // "assumed" has at most the same bits as the MemBehaviorAA assumed 6209 // and at least "known". 6210 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6211 return; 6212 } 6213 }; 6214 6215 // Generally, look at the "may-properties" and adjust the assumed state if we 6216 // did not trigger special handling before. 6217 if (UserI->mayReadFromMemory()) 6218 removeAssumedBits(NO_READS); 6219 if (UserI->mayWriteToMemory()) 6220 removeAssumedBits(NO_WRITES); 6221 } 6222 6223 } // namespace 6224 6225 /// -------------------- Memory Locations Attributes --------------------------- 6226 /// Includes read-none, argmemonly, inaccessiblememonly, 6227 /// inaccessiblememorargmemonly 6228 /// ---------------------------------------------------------------------------- 6229 6230 std::string AAMemoryLocation::getMemoryLocationsAsStr( 6231 AAMemoryLocation::MemoryLocationsKind MLK) { 6232 if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS)) 6233 return "all memory"; 6234 if (MLK == AAMemoryLocation::NO_LOCATIONS) 6235 return "no memory"; 6236 std::string S = "memory:"; 6237 if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM)) 6238 S += "stack,"; 6239 if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM)) 6240 S += "constant,"; 6241 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM)) 6242 S += "internal global,"; 6243 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM)) 6244 S += "external global,"; 6245 if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM)) 6246 S += "argument,"; 6247 if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM)) 6248 S += "inaccessible,"; 6249 if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM)) 6250 S += "malloced,"; 6251 if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM)) 6252 S += "unknown,"; 6253 S.pop_back(); 6254 return S; 6255 } 6256 6257 namespace { 6258 struct AAMemoryLocationImpl : public AAMemoryLocation { 6259 6260 AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A) 6261 : AAMemoryLocation(IRP, A), Allocator(A.Allocator) { 6262 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) 6263 AccessKind2Accesses[u] = nullptr; 6264 } 6265 6266 ~AAMemoryLocationImpl() { 6267 // The AccessSets are allocated via a BumpPtrAllocator, we call 6268 // the destructor manually. 6269 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) 6270 if (AccessKind2Accesses[u]) 6271 AccessKind2Accesses[u]->~AccessSet(); 6272 } 6273 6274 /// See AbstractAttribute::initialize(...). 6275 void initialize(Attributor &A) override { 6276 intersectAssumedBits(BEST_STATE); 6277 getKnownStateFromValue(A, getIRPosition(), getState()); 6278 IRAttribute::initialize(A); 6279 } 6280 6281 /// Return the memory behavior information encoded in the IR for \p IRP. 6282 static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP, 6283 BitIntegerState &State, 6284 bool IgnoreSubsumingPositions = false) { 6285 // For internal functions we ignore `argmemonly` and 6286 // `inaccessiblememorargmemonly` as we might break it via interprocedural 6287 // constant propagation. It is unclear if this is the best way but it is 6288 // unlikely this will cause real performance problems. If we are deriving 6289 // attributes for the anchor function we even remove the attribute in 6290 // addition to ignoring it. 6291 bool UseArgMemOnly = true; 6292 Function *AnchorFn = IRP.getAnchorScope(); 6293 if (AnchorFn && A.isRunOn(*AnchorFn)) 6294 UseArgMemOnly = !AnchorFn->hasLocalLinkage(); 6295 6296 SmallVector<Attribute, 2> Attrs; 6297 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 6298 for (const Attribute &Attr : Attrs) { 6299 switch (Attr.getKindAsEnum()) { 6300 case Attribute::ReadNone: 6301 State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM); 6302 break; 6303 case Attribute::InaccessibleMemOnly: 6304 State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); 6305 break; 6306 case Attribute::ArgMemOnly: 6307 if (UseArgMemOnly) 6308 State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true)); 6309 else 6310 IRP.removeAttrs({Attribute::ArgMemOnly}); 6311 break; 6312 case Attribute::InaccessibleMemOrArgMemOnly: 6313 if (UseArgMemOnly) 6314 State.addKnownBits(inverseLocation( 6315 NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); 6316 else 6317 IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly}); 6318 break; 6319 default: 6320 llvm_unreachable("Unexpected attribute!"); 6321 } 6322 } 6323 } 6324 6325 /// See AbstractAttribute::getDeducedAttributes(...). 6326 void getDeducedAttributes(LLVMContext &Ctx, 6327 SmallVectorImpl<Attribute> &Attrs) const override { 6328 assert(Attrs.size() == 0); 6329 if (isAssumedReadNone()) { 6330 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 6331 } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) { 6332 if (isAssumedInaccessibleMemOnly()) 6333 Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly)); 6334 else if (isAssumedArgMemOnly()) 6335 Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly)); 6336 else if (isAssumedInaccessibleOrArgMemOnly()) 6337 Attrs.push_back( 6338 Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly)); 6339 } 6340 assert(Attrs.size() <= 1); 6341 } 6342 6343 /// See AbstractAttribute::manifest(...). 6344 ChangeStatus manifest(Attributor &A) override { 6345 const IRPosition &IRP = getIRPosition(); 6346 6347 // Check if we would improve the existing attributes first. 6348 SmallVector<Attribute, 4> DeducedAttrs; 6349 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 6350 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 6351 return IRP.hasAttr(Attr.getKindAsEnum(), 6352 /* IgnoreSubsumingPositions */ true); 6353 })) 6354 return ChangeStatus::UNCHANGED; 6355 6356 // Clear existing attributes. 6357 IRP.removeAttrs(AttrKinds); 6358 if (isAssumedReadNone()) 6359 IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds); 6360 6361 // Use the generic manifest method. 6362 return IRAttribute::manifest(A); 6363 } 6364 6365 /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...). 6366 bool checkForAllAccessesToMemoryKind( 6367 function_ref<bool(const Instruction *, const Value *, AccessKind, 6368 MemoryLocationsKind)> 6369 Pred, 6370 MemoryLocationsKind RequestedMLK) const override { 6371 if (!isValidState()) 6372 return false; 6373 6374 MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation(); 6375 if (AssumedMLK == NO_LOCATIONS) 6376 return true; 6377 6378 unsigned Idx = 0; 6379 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; 6380 CurMLK *= 2, ++Idx) { 6381 if (CurMLK & RequestedMLK) 6382 continue; 6383 6384 if (const AccessSet *Accesses = AccessKind2Accesses[Idx]) 6385 for (const AccessInfo &AI : *Accesses) 6386 if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK)) 6387 return false; 6388 } 6389 6390 return true; 6391 } 6392 6393 ChangeStatus indicatePessimisticFixpoint() override { 6394 // If we give up and indicate a pessimistic fixpoint this instruction will 6395 // become an access for all potential access kinds: 6396 // TODO: Add pointers for argmemonly and globals to improve the results of 6397 // checkForAllAccessesToMemoryKind. 6398 bool Changed = false; 6399 MemoryLocationsKind KnownMLK = getKnown(); 6400 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 6401 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) 6402 if (!(CurMLK & KnownMLK)) 6403 updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed, 6404 getAccessKindFromInst(I)); 6405 return AAMemoryLocation::indicatePessimisticFixpoint(); 6406 } 6407 6408 protected: 6409 /// Helper struct to tie together an instruction that has a read or write 6410 /// effect with the pointer it accesses (if any). 6411 struct AccessInfo { 6412 6413 /// The instruction that caused the access. 6414 const Instruction *I; 6415 6416 /// The base pointer that is accessed, or null if unknown. 6417 const Value *Ptr; 6418 6419 /// The kind of access (read/write/read+write). 6420 AccessKind Kind; 6421 6422 bool operator==(const AccessInfo &RHS) const { 6423 return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind; 6424 } 6425 bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const { 6426 if (LHS.I != RHS.I) 6427 return LHS.I < RHS.I; 6428 if (LHS.Ptr != RHS.Ptr) 6429 return LHS.Ptr < RHS.Ptr; 6430 if (LHS.Kind != RHS.Kind) 6431 return LHS.Kind < RHS.Kind; 6432 return false; 6433 } 6434 }; 6435 6436 /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the 6437 /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind. 6438 using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>; 6439 AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()]; 6440 6441 /// Categorize the pointer arguments of CB that might access memory in 6442 /// AccessedLoc and update the state and access map accordingly. 6443 void 6444 categorizeArgumentPointerLocations(Attributor &A, CallBase &CB, 6445 AAMemoryLocation::StateType &AccessedLocs, 6446 bool &Changed); 6447 6448 /// Return the kind(s) of location that may be accessed by \p V. 6449 AAMemoryLocation::MemoryLocationsKind 6450 categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed); 6451 6452 /// Return the access kind as determined by \p I. 6453 AccessKind getAccessKindFromInst(const Instruction *I) { 6454 AccessKind AK = READ_WRITE; 6455 if (I) { 6456 AK = I->mayReadFromMemory() ? READ : NONE; 6457 AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE)); 6458 } 6459 return AK; 6460 } 6461 6462 /// Update the state \p State and the AccessKind2Accesses given that \p I is 6463 /// an access of kind \p AK to a \p MLK memory location with the access 6464 /// pointer \p Ptr. 6465 void updateStateAndAccessesMap(AAMemoryLocation::StateType &State, 6466 MemoryLocationsKind MLK, const Instruction *I, 6467 const Value *Ptr, bool &Changed, 6468 AccessKind AK = READ_WRITE) { 6469 6470 assert(isPowerOf2_32(MLK) && "Expected a single location set!"); 6471 auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)]; 6472 if (!Accesses) 6473 Accesses = new (Allocator) AccessSet(); 6474 Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second; 6475 State.removeAssumedBits(MLK); 6476 } 6477 6478 /// Determine the underlying locations kinds for \p Ptr, e.g., globals or 6479 /// arguments, and update the state and access map accordingly. 6480 void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr, 6481 AAMemoryLocation::StateType &State, bool &Changed); 6482 6483 /// Used to allocate access sets. 6484 BumpPtrAllocator &Allocator; 6485 6486 /// The set of IR attributes AAMemoryLocation deals with. 6487 static const Attribute::AttrKind AttrKinds[4]; 6488 }; 6489 6490 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = { 6491 Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly, 6492 Attribute::InaccessibleMemOrArgMemOnly}; 6493 6494 void AAMemoryLocationImpl::categorizePtrValue( 6495 Attributor &A, const Instruction &I, const Value &Ptr, 6496 AAMemoryLocation::StateType &State, bool &Changed) { 6497 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for " 6498 << Ptr << " [" 6499 << getMemoryLocationsAsStr(State.getAssumed()) << "]\n"); 6500 6501 auto StripGEPCB = [](Value *V) -> Value * { 6502 auto *GEP = dyn_cast<GEPOperator>(V); 6503 while (GEP) { 6504 V = GEP->getPointerOperand(); 6505 GEP = dyn_cast<GEPOperator>(V); 6506 } 6507 return V; 6508 }; 6509 6510 auto VisitValueCB = [&](Value &V, const Instruction *, 6511 AAMemoryLocation::StateType &T, 6512 bool Stripped) -> bool { 6513 MemoryLocationsKind MLK = NO_LOCATIONS; 6514 assert(!isa<GEPOperator>(V) && "GEPs should have been stripped."); 6515 if (isa<UndefValue>(V)) 6516 return true; 6517 if (auto *Arg = dyn_cast<Argument>(&V)) { 6518 if (Arg->hasByValAttr()) 6519 MLK = NO_LOCAL_MEM; 6520 else 6521 MLK = NO_ARGUMENT_MEM; 6522 } else if (auto *GV = dyn_cast<GlobalValue>(&V)) { 6523 if (GV->hasLocalLinkage()) 6524 MLK = NO_GLOBAL_INTERNAL_MEM; 6525 else 6526 MLK = NO_GLOBAL_EXTERNAL_MEM; 6527 } else if (isa<ConstantPointerNull>(V) && 6528 !NullPointerIsDefined(getAssociatedFunction(), 6529 V.getType()->getPointerAddressSpace())) { 6530 return true; 6531 } else if (isa<AllocaInst>(V)) { 6532 MLK = NO_LOCAL_MEM; 6533 } else if (const auto *CB = dyn_cast<CallBase>(&V)) { 6534 const auto &NoAliasAA = 6535 A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB)); 6536 if (NoAliasAA.isAssumedNoAlias()) 6537 MLK = NO_MALLOCED_MEM; 6538 else 6539 MLK = NO_UNKOWN_MEM; 6540 } else { 6541 MLK = NO_UNKOWN_MEM; 6542 } 6543 6544 assert(MLK != NO_LOCATIONS && "No location specified!"); 6545 updateStateAndAccessesMap(T, MLK, &I, &V, Changed, 6546 getAccessKindFromInst(&I)); 6547 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: " 6548 << V << " -> " << getMemoryLocationsAsStr(T.getAssumed()) 6549 << "\n"); 6550 return true; 6551 }; 6552 6553 if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>( 6554 A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(), 6555 /* UseValueSimplify */ true, 6556 /* MaxValues */ 32, StripGEPCB)) { 6557 LLVM_DEBUG( 6558 dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n"); 6559 updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed, 6560 getAccessKindFromInst(&I)); 6561 } else { 6562 LLVM_DEBUG( 6563 dbgs() 6564 << "[AAMemoryLocation] Accessed locations with pointer locations: " 6565 << getMemoryLocationsAsStr(State.getAssumed()) << "\n"); 6566 } 6567 } 6568 6569 void AAMemoryLocationImpl::categorizeArgumentPointerLocations( 6570 Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs, 6571 bool &Changed) { 6572 for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) { 6573 6574 // Skip non-pointer arguments. 6575 const Value *ArgOp = CB.getArgOperand(ArgNo); 6576 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 6577 continue; 6578 6579 // Skip readnone arguments. 6580 const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo); 6581 const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>( 6582 *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6583 6584 if (ArgOpMemLocationAA.isAssumedReadNone()) 6585 continue; 6586 6587 // Categorize potentially accessed pointer arguments as if there was an 6588 // access instruction with them as pointer. 6589 categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed); 6590 } 6591 } 6592 6593 AAMemoryLocation::MemoryLocationsKind 6594 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I, 6595 bool &Changed) { 6596 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for " 6597 << I << "\n"); 6598 6599 AAMemoryLocation::StateType AccessedLocs; 6600 AccessedLocs.intersectAssumedBits(NO_LOCATIONS); 6601 6602 if (auto *CB = dyn_cast<CallBase>(&I)) { 6603 6604 // First check if we assume any memory is access is visible. 6605 const auto &CBMemLocationAA = 6606 A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB)); 6607 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I 6608 << " [" << CBMemLocationAA << "]\n"); 6609 6610 if (CBMemLocationAA.isAssumedReadNone()) 6611 return NO_LOCATIONS; 6612 6613 if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) { 6614 updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr, 6615 Changed, getAccessKindFromInst(&I)); 6616 return AccessedLocs.getAssumed(); 6617 } 6618 6619 uint32_t CBAssumedNotAccessedLocs = 6620 CBMemLocationAA.getAssumedNotAccessedLocation(); 6621 6622 // Set the argmemonly and global bit as we handle them separately below. 6623 uint32_t CBAssumedNotAccessedLocsNoArgMem = 6624 CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM; 6625 6626 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { 6627 if (CBAssumedNotAccessedLocsNoArgMem & CurMLK) 6628 continue; 6629 updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed, 6630 getAccessKindFromInst(&I)); 6631 } 6632 6633 // Now handle global memory if it might be accessed. This is slightly tricky 6634 // as NO_GLOBAL_MEM has multiple bits set. 6635 bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM); 6636 if (HasGlobalAccesses) { 6637 auto AccessPred = [&](const Instruction *, const Value *Ptr, 6638 AccessKind Kind, MemoryLocationsKind MLK) { 6639 updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed, 6640 getAccessKindFromInst(&I)); 6641 return true; 6642 }; 6643 if (!CBMemLocationAA.checkForAllAccessesToMemoryKind( 6644 AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false))) 6645 return AccessedLocs.getWorstState(); 6646 } 6647 6648 LLVM_DEBUG( 6649 dbgs() << "[AAMemoryLocation] Accessed state before argument handling: " 6650 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6651 6652 // Now handle argument memory if it might be accessed. 6653 bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM); 6654 if (HasArgAccesses) 6655 categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed); 6656 6657 LLVM_DEBUG( 6658 dbgs() << "[AAMemoryLocation] Accessed state after argument handling: " 6659 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6660 6661 return AccessedLocs.getAssumed(); 6662 } 6663 6664 if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) { 6665 LLVM_DEBUG( 6666 dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: " 6667 << I << " [" << *Ptr << "]\n"); 6668 categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed); 6669 return AccessedLocs.getAssumed(); 6670 } 6671 6672 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: " 6673 << I << "\n"); 6674 updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed, 6675 getAccessKindFromInst(&I)); 6676 return AccessedLocs.getAssumed(); 6677 } 6678 6679 /// An AA to represent the memory behavior function attributes. 6680 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl { 6681 AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A) 6682 : AAMemoryLocationImpl(IRP, A) {} 6683 6684 /// See AbstractAttribute::updateImpl(Attributor &A). 6685 virtual ChangeStatus updateImpl(Attributor &A) override { 6686 6687 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6688 *this, getIRPosition(), /* TrackDependence */ false); 6689 if (MemBehaviorAA.isAssumedReadNone()) { 6690 if (MemBehaviorAA.isKnownReadNone()) 6691 return indicateOptimisticFixpoint(); 6692 assert(isAssumedReadNone() && 6693 "AAMemoryLocation was not read-none but AAMemoryBehavior was!"); 6694 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 6695 return ChangeStatus::UNCHANGED; 6696 } 6697 6698 // The current assumed state used to determine a change. 6699 auto AssumedState = getAssumed(); 6700 bool Changed = false; 6701 6702 auto CheckRWInst = [&](Instruction &I) { 6703 MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed); 6704 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I 6705 << ": " << getMemoryLocationsAsStr(MLK) << "\n"); 6706 removeAssumedBits(inverseLocation(MLK, false, false)); 6707 // Stop once only the valid bit set in the *not assumed location*, thus 6708 // once we don't actually exclude any memory locations in the state. 6709 return getAssumedNotAccessedLocation() != VALID_STATE; 6710 }; 6711 6712 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6713 return indicatePessimisticFixpoint(); 6714 6715 Changed |= AssumedState != getAssumed(); 6716 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6717 } 6718 6719 /// See AbstractAttribute::trackStatistics() 6720 void trackStatistics() const override { 6721 if (isAssumedReadNone()) 6722 STATS_DECLTRACK_FN_ATTR(readnone) 6723 else if (isAssumedArgMemOnly()) 6724 STATS_DECLTRACK_FN_ATTR(argmemonly) 6725 else if (isAssumedInaccessibleMemOnly()) 6726 STATS_DECLTRACK_FN_ATTR(inaccessiblememonly) 6727 else if (isAssumedInaccessibleOrArgMemOnly()) 6728 STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly) 6729 } 6730 }; 6731 6732 /// AAMemoryLocation attribute for call sites. 6733 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl { 6734 AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A) 6735 : AAMemoryLocationImpl(IRP, A) {} 6736 6737 /// See AbstractAttribute::initialize(...). 6738 void initialize(Attributor &A) override { 6739 AAMemoryLocationImpl::initialize(A); 6740 Function *F = getAssociatedFunction(); 6741 if (!F || !A.isFunctionIPOAmendable(*F)) { 6742 indicatePessimisticFixpoint(); 6743 return; 6744 } 6745 } 6746 6747 /// See AbstractAttribute::updateImpl(...). 6748 ChangeStatus updateImpl(Attributor &A) override { 6749 // TODO: Once we have call site specific value information we can provide 6750 // call site specific liveness liveness information and then it makes 6751 // sense to specialize attributes for call sites arguments instead of 6752 // redirecting requests to the callee argument. 6753 Function *F = getAssociatedFunction(); 6754 const IRPosition &FnPos = IRPosition::function(*F); 6755 auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos); 6756 bool Changed = false; 6757 auto AccessPred = [&](const Instruction *I, const Value *Ptr, 6758 AccessKind Kind, MemoryLocationsKind MLK) { 6759 updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed, 6760 getAccessKindFromInst(I)); 6761 return true; 6762 }; 6763 if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS)) 6764 return indicatePessimisticFixpoint(); 6765 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6766 } 6767 6768 /// See AbstractAttribute::trackStatistics() 6769 void trackStatistics() const override { 6770 if (isAssumedReadNone()) 6771 STATS_DECLTRACK_CS_ATTR(readnone) 6772 } 6773 }; 6774 6775 /// ------------------ Value Constant Range Attribute ------------------------- 6776 6777 struct AAValueConstantRangeImpl : AAValueConstantRange { 6778 using StateType = IntegerRangeState; 6779 AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A) 6780 : AAValueConstantRange(IRP, A) {} 6781 6782 /// See AbstractAttribute::getAsStr(). 6783 const std::string getAsStr() const override { 6784 std::string Str; 6785 llvm::raw_string_ostream OS(Str); 6786 OS << "range(" << getBitWidth() << ")<"; 6787 getKnown().print(OS); 6788 OS << " / "; 6789 getAssumed().print(OS); 6790 OS << ">"; 6791 return OS.str(); 6792 } 6793 6794 /// Helper function to get a SCEV expr for the associated value at program 6795 /// point \p I. 6796 const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const { 6797 if (!getAnchorScope()) 6798 return nullptr; 6799 6800 ScalarEvolution *SE = 6801 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6802 *getAnchorScope()); 6803 6804 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>( 6805 *getAnchorScope()); 6806 6807 if (!SE || !LI) 6808 return nullptr; 6809 6810 const SCEV *S = SE->getSCEV(&getAssociatedValue()); 6811 if (!I) 6812 return S; 6813 6814 return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent())); 6815 } 6816 6817 /// Helper function to get a range from SCEV for the associated value at 6818 /// program point \p I. 6819 ConstantRange getConstantRangeFromSCEV(Attributor &A, 6820 const Instruction *I = nullptr) const { 6821 if (!getAnchorScope()) 6822 return getWorstState(getBitWidth()); 6823 6824 ScalarEvolution *SE = 6825 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6826 *getAnchorScope()); 6827 6828 const SCEV *S = getSCEV(A, I); 6829 if (!SE || !S) 6830 return getWorstState(getBitWidth()); 6831 6832 return SE->getUnsignedRange(S); 6833 } 6834 6835 /// Helper function to get a range from LVI for the associated value at 6836 /// program point \p I. 6837 ConstantRange 6838 getConstantRangeFromLVI(Attributor &A, 6839 const Instruction *CtxI = nullptr) const { 6840 if (!getAnchorScope()) 6841 return getWorstState(getBitWidth()); 6842 6843 LazyValueInfo *LVI = 6844 A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>( 6845 *getAnchorScope()); 6846 6847 if (!LVI || !CtxI) 6848 return getWorstState(getBitWidth()); 6849 return LVI->getConstantRange(&getAssociatedValue(), 6850 const_cast<BasicBlock *>(CtxI->getParent()), 6851 const_cast<Instruction *>(CtxI)); 6852 } 6853 6854 /// See AAValueConstantRange::getKnownConstantRange(..). 6855 ConstantRange 6856 getKnownConstantRange(Attributor &A, 6857 const Instruction *CtxI = nullptr) const override { 6858 if (!CtxI || CtxI == getCtxI()) 6859 return getKnown(); 6860 6861 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6862 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6863 return getKnown().intersectWith(SCEVR).intersectWith(LVIR); 6864 } 6865 6866 /// See AAValueConstantRange::getAssumedConstantRange(..). 6867 ConstantRange 6868 getAssumedConstantRange(Attributor &A, 6869 const Instruction *CtxI = nullptr) const override { 6870 // TODO: Make SCEV use Attributor assumption. 6871 // We may be able to bound a variable range via assumptions in 6872 // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to 6873 // evolve to x^2 + x, then we can say that y is in [2, 12]. 6874 6875 if (!CtxI || CtxI == getCtxI()) 6876 return getAssumed(); 6877 6878 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6879 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6880 return getAssumed().intersectWith(SCEVR).intersectWith(LVIR); 6881 } 6882 6883 /// See AbstractAttribute::initialize(..). 6884 void initialize(Attributor &A) override { 6885 // Intersect a range given by SCEV. 6886 intersectKnown(getConstantRangeFromSCEV(A, getCtxI())); 6887 6888 // Intersect a range given by LVI. 6889 intersectKnown(getConstantRangeFromLVI(A, getCtxI())); 6890 } 6891 6892 /// Helper function to create MDNode for range metadata. 6893 static MDNode * 6894 getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx, 6895 const ConstantRange &AssumedConstantRange) { 6896 Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get( 6897 Ty, AssumedConstantRange.getLower())), 6898 ConstantAsMetadata::get(ConstantInt::get( 6899 Ty, AssumedConstantRange.getUpper()))}; 6900 return MDNode::get(Ctx, LowAndHigh); 6901 } 6902 6903 /// Return true if \p Assumed is included in \p KnownRanges. 6904 static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) { 6905 6906 if (Assumed.isFullSet()) 6907 return false; 6908 6909 if (!KnownRanges) 6910 return true; 6911 6912 // If multiple ranges are annotated in IR, we give up to annotate assumed 6913 // range for now. 6914 6915 // TODO: If there exists a known range which containts assumed range, we 6916 // can say assumed range is better. 6917 if (KnownRanges->getNumOperands() > 2) 6918 return false; 6919 6920 ConstantInt *Lower = 6921 mdconst::extract<ConstantInt>(KnownRanges->getOperand(0)); 6922 ConstantInt *Upper = 6923 mdconst::extract<ConstantInt>(KnownRanges->getOperand(1)); 6924 6925 ConstantRange Known(Lower->getValue(), Upper->getValue()); 6926 return Known.contains(Assumed) && Known != Assumed; 6927 } 6928 6929 /// Helper function to set range metadata. 6930 static bool 6931 setRangeMetadataIfisBetterRange(Instruction *I, 6932 const ConstantRange &AssumedConstantRange) { 6933 auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range); 6934 if (isBetterRange(AssumedConstantRange, OldRangeMD)) { 6935 if (!AssumedConstantRange.isEmptySet()) { 6936 I->setMetadata(LLVMContext::MD_range, 6937 getMDNodeForConstantRange(I->getType(), I->getContext(), 6938 AssumedConstantRange)); 6939 return true; 6940 } 6941 } 6942 return false; 6943 } 6944 6945 /// See AbstractAttribute::manifest() 6946 ChangeStatus manifest(Attributor &A) override { 6947 ChangeStatus Changed = ChangeStatus::UNCHANGED; 6948 ConstantRange AssumedConstantRange = getAssumedConstantRange(A); 6949 assert(!AssumedConstantRange.isFullSet() && "Invalid state"); 6950 6951 auto &V = getAssociatedValue(); 6952 if (!AssumedConstantRange.isEmptySet() && 6953 !AssumedConstantRange.isSingleElement()) { 6954 if (Instruction *I = dyn_cast<Instruction>(&V)) 6955 if (isa<CallInst>(I) || isa<LoadInst>(I)) 6956 if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange)) 6957 Changed = ChangeStatus::CHANGED; 6958 } 6959 6960 return Changed; 6961 } 6962 }; 6963 6964 struct AAValueConstantRangeArgument final 6965 : AAArgumentFromCallSiteArguments< 6966 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> { 6967 using Base = AAArgumentFromCallSiteArguments< 6968 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>; 6969 AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A) 6970 : Base(IRP, A) {} 6971 6972 /// See AbstractAttribute::initialize(..). 6973 void initialize(Attributor &A) override { 6974 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { 6975 indicatePessimisticFixpoint(); 6976 } else { 6977 Base::initialize(A); 6978 } 6979 } 6980 6981 /// See AbstractAttribute::trackStatistics() 6982 void trackStatistics() const override { 6983 STATS_DECLTRACK_ARG_ATTR(value_range) 6984 } 6985 }; 6986 6987 struct AAValueConstantRangeReturned 6988 : AAReturnedFromReturnedValues<AAValueConstantRange, 6989 AAValueConstantRangeImpl> { 6990 using Base = AAReturnedFromReturnedValues<AAValueConstantRange, 6991 AAValueConstantRangeImpl>; 6992 AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A) 6993 : Base(IRP, A) {} 6994 6995 /// See AbstractAttribute::initialize(...). 6996 void initialize(Attributor &A) override {} 6997 6998 /// See AbstractAttribute::trackStatistics() 6999 void trackStatistics() const override { 7000 STATS_DECLTRACK_FNRET_ATTR(value_range) 7001 } 7002 }; 7003 7004 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl { 7005 AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A) 7006 : AAValueConstantRangeImpl(IRP, A) {} 7007 7008 /// See AbstractAttribute::initialize(...). 7009 void initialize(Attributor &A) override { 7010 AAValueConstantRangeImpl::initialize(A); 7011 Value &V = getAssociatedValue(); 7012 7013 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7014 unionAssumed(ConstantRange(C->getValue())); 7015 indicateOptimisticFixpoint(); 7016 return; 7017 } 7018 7019 if (isa<UndefValue>(&V)) { 7020 // Collapse the undef state to 0. 7021 unionAssumed(ConstantRange(APInt(getBitWidth(), 0))); 7022 indicateOptimisticFixpoint(); 7023 return; 7024 } 7025 7026 if (isa<CallBase>(&V)) 7027 return; 7028 7029 if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V)) 7030 return; 7031 // If it is a load instruction with range metadata, use it. 7032 if (LoadInst *LI = dyn_cast<LoadInst>(&V)) 7033 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) { 7034 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7035 return; 7036 } 7037 7038 // We can work with PHI and select instruction as we traverse their operands 7039 // during update. 7040 if (isa<SelectInst>(V) || isa<PHINode>(V)) 7041 return; 7042 7043 // Otherwise we give up. 7044 indicatePessimisticFixpoint(); 7045 7046 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: " 7047 << getAssociatedValue() << "\n"); 7048 } 7049 7050 bool calculateBinaryOperator( 7051 Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T, 7052 const Instruction *CtxI, 7053 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7054 Value *LHS = BinOp->getOperand(0); 7055 Value *RHS = BinOp->getOperand(1); 7056 // TODO: Allow non integers as well. 7057 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7058 return false; 7059 7060 auto &LHSAA = 7061 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7062 QuerriedAAs.push_back(&LHSAA); 7063 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7064 7065 auto &RHSAA = 7066 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7067 QuerriedAAs.push_back(&RHSAA); 7068 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7069 7070 auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange); 7071 7072 T.unionAssumed(AssumedRange); 7073 7074 // TODO: Track a known state too. 7075 7076 return T.isValidState(); 7077 } 7078 7079 bool calculateCastInst( 7080 Attributor &A, CastInst *CastI, IntegerRangeState &T, 7081 const Instruction *CtxI, 7082 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7083 assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!"); 7084 // TODO: Allow non integers as well. 7085 Value &OpV = *CastI->getOperand(0); 7086 if (!OpV.getType()->isIntegerTy()) 7087 return false; 7088 7089 auto &OpAA = 7090 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV)); 7091 QuerriedAAs.push_back(&OpAA); 7092 T.unionAssumed( 7093 OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth())); 7094 return T.isValidState(); 7095 } 7096 7097 bool 7098 calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T, 7099 const Instruction *CtxI, 7100 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7101 Value *LHS = CmpI->getOperand(0); 7102 Value *RHS = CmpI->getOperand(1); 7103 // TODO: Allow non integers as well. 7104 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7105 return false; 7106 7107 auto &LHSAA = 7108 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7109 QuerriedAAs.push_back(&LHSAA); 7110 auto &RHSAA = 7111 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7112 QuerriedAAs.push_back(&RHSAA); 7113 7114 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7115 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7116 7117 // If one of them is empty set, we can't decide. 7118 if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet()) 7119 return true; 7120 7121 bool MustTrue = false, MustFalse = false; 7122 7123 auto AllowedRegion = 7124 ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange); 7125 7126 auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion( 7127 CmpI->getPredicate(), RHSAARange); 7128 7129 if (AllowedRegion.intersectWith(LHSAARange).isEmptySet()) 7130 MustFalse = true; 7131 7132 if (SatisfyingRegion.contains(LHSAARange)) 7133 MustTrue = true; 7134 7135 assert((!MustTrue || !MustFalse) && 7136 "Either MustTrue or MustFalse should be false!"); 7137 7138 if (MustTrue) 7139 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1))); 7140 else if (MustFalse) 7141 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0))); 7142 else 7143 T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true)); 7144 7145 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA 7146 << " " << RHSAA << "\n"); 7147 7148 // TODO: Track a known state too. 7149 return T.isValidState(); 7150 } 7151 7152 /// See AbstractAttribute::updateImpl(...). 7153 ChangeStatus updateImpl(Attributor &A) override { 7154 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 7155 IntegerRangeState &T, bool Stripped) -> bool { 7156 Instruction *I = dyn_cast<Instruction>(&V); 7157 if (!I || isa<CallBase>(I)) { 7158 7159 // If the value is not instruction, we query AA to Attributor. 7160 const auto &AA = 7161 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V)); 7162 7163 // Clamp operator is not used to utilize a program point CtxI. 7164 T.unionAssumed(AA.getAssumedConstantRange(A, CtxI)); 7165 7166 return T.isValidState(); 7167 } 7168 7169 SmallVector<const AAValueConstantRange *, 4> QuerriedAAs; 7170 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) { 7171 if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs)) 7172 return false; 7173 } else if (auto *CmpI = dyn_cast<CmpInst>(I)) { 7174 if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs)) 7175 return false; 7176 } else if (auto *CastI = dyn_cast<CastInst>(I)) { 7177 if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs)) 7178 return false; 7179 } else { 7180 // Give up with other instructions. 7181 // TODO: Add other instructions 7182 7183 T.indicatePessimisticFixpoint(); 7184 return false; 7185 } 7186 7187 // Catch circular reasoning in a pessimistic way for now. 7188 // TODO: Check how the range evolves and if we stripped anything, see also 7189 // AADereferenceable or AAAlign for similar situations. 7190 for (const AAValueConstantRange *QueriedAA : QuerriedAAs) { 7191 if (QueriedAA != this) 7192 continue; 7193 // If we are in a stady state we do not need to worry. 7194 if (T.getAssumed() == getState().getAssumed()) 7195 continue; 7196 T.indicatePessimisticFixpoint(); 7197 } 7198 7199 return T.isValidState(); 7200 }; 7201 7202 IntegerRangeState T(getBitWidth()); 7203 7204 if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>( 7205 A, getIRPosition(), *this, T, VisitValueCB, getCtxI(), 7206 /* UseValueSimplify */ false)) 7207 return indicatePessimisticFixpoint(); 7208 7209 return clampStateAndIndicateChange(getState(), T); 7210 } 7211 7212 /// See AbstractAttribute::trackStatistics() 7213 void trackStatistics() const override { 7214 STATS_DECLTRACK_FLOATING_ATTR(value_range) 7215 } 7216 }; 7217 7218 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl { 7219 AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A) 7220 : AAValueConstantRangeImpl(IRP, A) {} 7221 7222 /// See AbstractAttribute::initialize(...). 7223 ChangeStatus updateImpl(Attributor &A) override { 7224 llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will " 7225 "not be called"); 7226 } 7227 7228 /// See AbstractAttribute::trackStatistics() 7229 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) } 7230 }; 7231 7232 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction { 7233 AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A) 7234 : AAValueConstantRangeFunction(IRP, A) {} 7235 7236 /// See AbstractAttribute::trackStatistics() 7237 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) } 7238 }; 7239 7240 struct AAValueConstantRangeCallSiteReturned 7241 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7242 AAValueConstantRangeImpl> { 7243 AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A) 7244 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7245 AAValueConstantRangeImpl>(IRP, A) {} 7246 7247 /// See AbstractAttribute::initialize(...). 7248 void initialize(Attributor &A) override { 7249 // If it is a load instruction with range metadata, use the metadata. 7250 if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue())) 7251 if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range)) 7252 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7253 7254 AAValueConstantRangeImpl::initialize(A); 7255 } 7256 7257 /// See AbstractAttribute::trackStatistics() 7258 void trackStatistics() const override { 7259 STATS_DECLTRACK_CSRET_ATTR(value_range) 7260 } 7261 }; 7262 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating { 7263 AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A) 7264 : AAValueConstantRangeFloating(IRP, A) {} 7265 7266 /// See AbstractAttribute::trackStatistics() 7267 void trackStatistics() const override { 7268 STATS_DECLTRACK_CSARG_ATTR(value_range) 7269 } 7270 }; 7271 7272 /// ------------------ Potential Values Attribute ------------------------- 7273 7274 struct AAPotentialValuesImpl : AAPotentialValues { 7275 using StateType = PotentialConstantIntValuesState; 7276 7277 AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A) 7278 : AAPotentialValues(IRP, A) {} 7279 7280 /// See AbstractAttribute::getAsStr(). 7281 const std::string getAsStr() const override { 7282 std::string Str; 7283 llvm::raw_string_ostream OS(Str); 7284 OS << getState(); 7285 return OS.str(); 7286 } 7287 7288 /// See AbstractAttribute::updateImpl(...). 7289 ChangeStatus updateImpl(Attributor &A) override { 7290 return indicatePessimisticFixpoint(); 7291 } 7292 }; 7293 7294 struct AAPotentialValuesArgument final 7295 : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, 7296 PotentialConstantIntValuesState> { 7297 using Base = 7298 AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, 7299 PotentialConstantIntValuesState>; 7300 AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A) 7301 : Base(IRP, A) {} 7302 7303 /// See AbstractAttribute::initialize(..). 7304 void initialize(Attributor &A) override { 7305 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { 7306 indicatePessimisticFixpoint(); 7307 } else { 7308 Base::initialize(A); 7309 } 7310 } 7311 7312 /// See AbstractAttribute::trackStatistics() 7313 void trackStatistics() const override { 7314 STATS_DECLTRACK_ARG_ATTR(potential_values) 7315 } 7316 }; 7317 7318 struct AAPotentialValuesReturned 7319 : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> { 7320 using Base = 7321 AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>; 7322 AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A) 7323 : Base(IRP, A) {} 7324 7325 /// See AbstractAttribute::trackStatistics() 7326 void trackStatistics() const override { 7327 STATS_DECLTRACK_FNRET_ATTR(potential_values) 7328 } 7329 }; 7330 7331 struct AAPotentialValuesFloating : AAPotentialValuesImpl { 7332 AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A) 7333 : AAPotentialValuesImpl(IRP, A) {} 7334 7335 /// See AbstractAttribute::initialize(..). 7336 void initialize(Attributor &A) override { 7337 Value &V = getAssociatedValue(); 7338 7339 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7340 unionAssumed(C->getValue()); 7341 indicateOptimisticFixpoint(); 7342 return; 7343 } 7344 7345 if (isa<UndefValue>(&V)) { 7346 // Collapse the undef state to 0. 7347 unionAssumed( 7348 APInt(/* numBits */ getAssociatedType()->getIntegerBitWidth(), 7349 /* val */ 0)); 7350 indicateOptimisticFixpoint(); 7351 return; 7352 } 7353 7354 if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V)) 7355 return; 7356 7357 if (isa<SelectInst>(V) || isa<PHINode>(V)) 7358 return; 7359 7360 indicatePessimisticFixpoint(); 7361 7362 LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: " 7363 << getAssociatedValue() << "\n"); 7364 } 7365 7366 static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS, 7367 const APInt &RHS) { 7368 ICmpInst::Predicate Pred = ICI->getPredicate(); 7369 switch (Pred) { 7370 case ICmpInst::ICMP_UGT: 7371 return LHS.ugt(RHS); 7372 case ICmpInst::ICMP_SGT: 7373 return LHS.sgt(RHS); 7374 case ICmpInst::ICMP_EQ: 7375 return LHS.eq(RHS); 7376 case ICmpInst::ICMP_UGE: 7377 return LHS.uge(RHS); 7378 case ICmpInst::ICMP_SGE: 7379 return LHS.sge(RHS); 7380 case ICmpInst::ICMP_ULT: 7381 return LHS.ult(RHS); 7382 case ICmpInst::ICMP_SLT: 7383 return LHS.slt(RHS); 7384 case ICmpInst::ICMP_NE: 7385 return LHS.ne(RHS); 7386 case ICmpInst::ICMP_ULE: 7387 return LHS.ule(RHS); 7388 case ICmpInst::ICMP_SLE: 7389 return LHS.sle(RHS); 7390 default: 7391 llvm_unreachable("Invalid ICmp predicate!"); 7392 } 7393 } 7394 7395 static APInt calculateCastInst(const CastInst *CI, const APInt &Src, 7396 uint32_t ResultBitWidth) { 7397 Instruction::CastOps CastOp = CI->getOpcode(); 7398 switch (CastOp) { 7399 default: 7400 llvm_unreachable("unsupported or not integer cast"); 7401 case Instruction::Trunc: 7402 return Src.trunc(ResultBitWidth); 7403 case Instruction::SExt: 7404 return Src.sext(ResultBitWidth); 7405 case Instruction::ZExt: 7406 return Src.zext(ResultBitWidth); 7407 case Instruction::BitCast: 7408 return Src; 7409 } 7410 } 7411 7412 static APInt calculateBinaryOperator(const BinaryOperator *BinOp, 7413 const APInt &LHS, const APInt &RHS, 7414 bool &SkipOperation, bool &Unsupported) { 7415 Instruction::BinaryOps BinOpcode = BinOp->getOpcode(); 7416 // Unsupported is set to true when the binary operator is not supported. 7417 // SkipOperation is set to true when UB occur with the given operand pair 7418 // (LHS, RHS). 7419 // TODO: we should look at nsw and nuw keywords to handle operations 7420 // that create poison or undef value. 7421 switch (BinOpcode) { 7422 default: 7423 Unsupported = true; 7424 return LHS; 7425 case Instruction::Add: 7426 return LHS + RHS; 7427 case Instruction::Sub: 7428 return LHS - RHS; 7429 case Instruction::Mul: 7430 return LHS * RHS; 7431 case Instruction::UDiv: 7432 if (RHS.isNullValue()) { 7433 SkipOperation = true; 7434 return LHS; 7435 } 7436 return LHS.udiv(RHS); 7437 case Instruction::SDiv: 7438 if (RHS.isNullValue()) { 7439 SkipOperation = true; 7440 return LHS; 7441 } 7442 return LHS.sdiv(RHS); 7443 case Instruction::URem: 7444 if (RHS.isNullValue()) { 7445 SkipOperation = true; 7446 return LHS; 7447 } 7448 return LHS.urem(RHS); 7449 case Instruction::SRem: 7450 if (RHS.isNullValue()) { 7451 SkipOperation = true; 7452 return LHS; 7453 } 7454 return LHS.srem(RHS); 7455 case Instruction::Shl: 7456 return LHS.shl(RHS); 7457 case Instruction::LShr: 7458 return LHS.lshr(RHS); 7459 case Instruction::AShr: 7460 return LHS.ashr(RHS); 7461 case Instruction::And: 7462 return LHS & RHS; 7463 case Instruction::Or: 7464 return LHS | RHS; 7465 case Instruction::Xor: 7466 return LHS ^ RHS; 7467 } 7468 } 7469 7470 ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) { 7471 auto AssumedBefore = getAssumed(); 7472 Value *LHS = ICI->getOperand(0); 7473 Value *RHS = ICI->getOperand(1); 7474 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7475 return indicatePessimisticFixpoint(); 7476 7477 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7478 if (!LHSAA.isValidState()) 7479 return indicatePessimisticFixpoint(); 7480 7481 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7482 if (!RHSAA.isValidState()) 7483 return indicatePessimisticFixpoint(); 7484 7485 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); 7486 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); 7487 7488 // TODO: Handle undef correctly. 7489 bool MaybeTrue = false, MaybeFalse = false; 7490 for (const APInt &L : LHSAAPVS) { 7491 for (const APInt &R : RHSAAPVS) { 7492 bool CmpResult = calculateICmpInst(ICI, L, R); 7493 MaybeTrue |= CmpResult; 7494 MaybeFalse |= !CmpResult; 7495 if (MaybeTrue & MaybeFalse) 7496 return indicatePessimisticFixpoint(); 7497 } 7498 } 7499 if (MaybeTrue) 7500 unionAssumed(APInt(/* numBits */ 1, /* val */ 1)); 7501 if (MaybeFalse) 7502 unionAssumed(APInt(/* numBits */ 1, /* val */ 0)); 7503 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7504 : ChangeStatus::CHANGED; 7505 } 7506 7507 ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) { 7508 auto AssumedBefore = getAssumed(); 7509 Value *LHS = SI->getTrueValue(); 7510 Value *RHS = SI->getFalseValue(); 7511 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7512 return indicatePessimisticFixpoint(); 7513 7514 // TODO: Use assumed simplified condition value 7515 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7516 if (!LHSAA.isValidState()) 7517 return indicatePessimisticFixpoint(); 7518 7519 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7520 if (!RHSAA.isValidState()) 7521 return indicatePessimisticFixpoint(); 7522 7523 unionAssumed(LHSAA); 7524 unionAssumed(RHSAA); 7525 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7526 : ChangeStatus::CHANGED; 7527 } 7528 7529 ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) { 7530 auto AssumedBefore = getAssumed(); 7531 if (!CI->isIntegerCast()) 7532 return indicatePessimisticFixpoint(); 7533 assert(CI->getNumOperands() == 1 && "Expected cast to be unary!"); 7534 uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth(); 7535 Value *Src = CI->getOperand(0); 7536 auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src)); 7537 if (!SrcAA.isValidState()) 7538 return indicatePessimisticFixpoint(); 7539 const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet(); 7540 for (const APInt &S : SrcAAPVS) { 7541 APInt T = calculateCastInst(CI, S, ResultBitWidth); 7542 unionAssumed(T); 7543 } 7544 // TODO: Handle undef correctly. 7545 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7546 : ChangeStatus::CHANGED; 7547 } 7548 7549 ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) { 7550 auto AssumedBefore = getAssumed(); 7551 Value *LHS = BinOp->getOperand(0); 7552 Value *RHS = BinOp->getOperand(1); 7553 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7554 return indicatePessimisticFixpoint(); 7555 7556 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7557 if (!LHSAA.isValidState()) 7558 return indicatePessimisticFixpoint(); 7559 7560 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7561 if (!RHSAA.isValidState()) 7562 return indicatePessimisticFixpoint(); 7563 7564 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); 7565 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); 7566 7567 // TODO: Handle undef correctly 7568 for (const APInt &L : LHSAAPVS) { 7569 for (const APInt &R : RHSAAPVS) { 7570 bool SkipOperation = false; 7571 bool Unsupported = false; 7572 APInt Result = 7573 calculateBinaryOperator(BinOp, L, R, SkipOperation, Unsupported); 7574 if (Unsupported) 7575 return indicatePessimisticFixpoint(); 7576 // If SkipOperation is true, we can ignore this operand pair (L, R). 7577 if (!SkipOperation) 7578 unionAssumed(Result); 7579 } 7580 } 7581 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7582 : ChangeStatus::CHANGED; 7583 } 7584 7585 ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) { 7586 auto AssumedBefore = getAssumed(); 7587 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { 7588 Value *IncomingValue = PHI->getIncomingValue(u); 7589 auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>( 7590 *this, IRPosition::value(*IncomingValue)); 7591 if (!PotentialValuesAA.isValidState()) 7592 return indicatePessimisticFixpoint(); 7593 unionAssumed(PotentialValuesAA.getAssumed()); 7594 } 7595 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7596 : ChangeStatus::CHANGED; 7597 } 7598 7599 /// See AbstractAttribute::updateImpl(...). 7600 ChangeStatus updateImpl(Attributor &A) override { 7601 Value &V = getAssociatedValue(); 7602 Instruction *I = dyn_cast<Instruction>(&V); 7603 7604 if (auto *ICI = dyn_cast<ICmpInst>(I)) 7605 return updateWithICmpInst(A, ICI); 7606 7607 if (auto *SI = dyn_cast<SelectInst>(I)) 7608 return updateWithSelectInst(A, SI); 7609 7610 if (auto *CI = dyn_cast<CastInst>(I)) 7611 return updateWithCastInst(A, CI); 7612 7613 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) 7614 return updateWithBinaryOperator(A, BinOp); 7615 7616 if (auto *PHI = dyn_cast<PHINode>(I)) 7617 return updateWithPHINode(A, PHI); 7618 7619 return indicatePessimisticFixpoint(); 7620 } 7621 7622 /// See AbstractAttribute::trackStatistics() 7623 void trackStatistics() const override { 7624 STATS_DECLTRACK_FLOATING_ATTR(potential_values) 7625 } 7626 }; 7627 7628 struct AAPotentialValuesFunction : AAPotentialValuesImpl { 7629 AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A) 7630 : AAPotentialValuesImpl(IRP, A) {} 7631 7632 /// See AbstractAttribute::initialize(...). 7633 ChangeStatus updateImpl(Attributor &A) override { 7634 llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will " 7635 "not be called"); 7636 } 7637 7638 /// See AbstractAttribute::trackStatistics() 7639 void trackStatistics() const override { 7640 STATS_DECLTRACK_FN_ATTR(potential_values) 7641 } 7642 }; 7643 7644 struct AAPotentialValuesCallSite : AAPotentialValuesFunction { 7645 AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A) 7646 : AAPotentialValuesFunction(IRP, A) {} 7647 7648 /// See AbstractAttribute::trackStatistics() 7649 void trackStatistics() const override { 7650 STATS_DECLTRACK_CS_ATTR(potential_values) 7651 } 7652 }; 7653 7654 struct AAPotentialValuesCallSiteReturned 7655 : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> { 7656 AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A) 7657 : AACallSiteReturnedFromReturned<AAPotentialValues, 7658 AAPotentialValuesImpl>(IRP, A) {} 7659 7660 /// See AbstractAttribute::trackStatistics() 7661 void trackStatistics() const override { 7662 STATS_DECLTRACK_CSRET_ATTR(potential_values) 7663 } 7664 }; 7665 7666 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating { 7667 AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A) 7668 : AAPotentialValuesFloating(IRP, A) {} 7669 7670 /// See AbstractAttribute::initialize(..). 7671 void initialize(Attributor &A) override { 7672 Value &V = getAssociatedValue(); 7673 7674 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7675 unionAssumed(C->getValue()); 7676 indicateOptimisticFixpoint(); 7677 return; 7678 } 7679 7680 if (isa<UndefValue>(&V)) { 7681 // Collapse the undef state to 0. 7682 unionAssumed( 7683 APInt(/* numBits */ getAssociatedType()->getIntegerBitWidth(), 7684 /* val */ 0)); 7685 indicateOptimisticFixpoint(); 7686 return; 7687 } 7688 } 7689 7690 /// See AbstractAttribute::updateImpl(...). 7691 ChangeStatus updateImpl(Attributor &A) override { 7692 Value &V = getAssociatedValue(); 7693 auto AssumedBefore = getAssumed(); 7694 auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V)); 7695 const auto &S = AA.getAssumed(); 7696 unionAssumed(S); 7697 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7698 : ChangeStatus::CHANGED; 7699 } 7700 7701 /// See AbstractAttribute::trackStatistics() 7702 void trackStatistics() const override { 7703 STATS_DECLTRACK_CSARG_ATTR(potential_values) 7704 } 7705 }; 7706 7707 /// ------------------------ NoUndef Attribute --------------------------------- 7708 struct AANoUndefImpl : AANoUndef { 7709 AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {} 7710 7711 /// See AbstractAttribute::initialize(...). 7712 void initialize(Attributor &A) override { 7713 Value &V = getAssociatedValue(); 7714 if (isa<UndefValue>(V)) 7715 indicatePessimisticFixpoint(); 7716 else if (isa<FreezeInst>(V)) 7717 indicateOptimisticFixpoint(); 7718 else if (getPositionKind() != IRPosition::IRP_RETURNED && 7719 isGuaranteedNotToBeUndefOrPoison(&V)) 7720 indicateOptimisticFixpoint(); 7721 else 7722 AANoUndef::initialize(A); 7723 } 7724 7725 /// See followUsesInMBEC 7726 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 7727 AANoUndef::StateType &State) { 7728 const Value *UseV = U->get(); 7729 const DominatorTree *DT = nullptr; 7730 if (Function *F = getAnchorScope()) 7731 DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>( 7732 *F); 7733 State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, I, DT)); 7734 bool TrackUse = false; 7735 // Track use for instructions which must produce undef or poison bits when 7736 // at least one operand contains such bits. 7737 if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I)) 7738 TrackUse = true; 7739 return TrackUse; 7740 } 7741 7742 /// See AbstractAttribute::getAsStr(). 7743 const std::string getAsStr() const override { 7744 return getAssumed() ? "noundef" : "may-undef-or-poison"; 7745 } 7746 }; 7747 7748 struct AANoUndefFloating : public AANoUndefImpl { 7749 AANoUndefFloating(const IRPosition &IRP, Attributor &A) 7750 : AANoUndefImpl(IRP, A) {} 7751 7752 /// See AbstractAttribute::initialize(...). 7753 void initialize(Attributor &A) override { 7754 AANoUndefImpl::initialize(A); 7755 if (!getState().isAtFixpoint()) 7756 if (Instruction *CtxI = getCtxI()) 7757 followUsesInMBEC(*this, A, getState(), *CtxI); 7758 } 7759 7760 /// See AbstractAttribute::updateImpl(...). 7761 ChangeStatus updateImpl(Attributor &A) override { 7762 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 7763 AANoUndef::StateType &T, bool Stripped) -> bool { 7764 const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V)); 7765 if (!Stripped && this == &AA) { 7766 T.indicatePessimisticFixpoint(); 7767 } else { 7768 const AANoUndef::StateType &S = 7769 static_cast<const AANoUndef::StateType &>(AA.getState()); 7770 T ^= S; 7771 } 7772 return T.isValidState(); 7773 }; 7774 7775 StateType T; 7776 if (!genericValueTraversal<AANoUndef, StateType>( 7777 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 7778 return indicatePessimisticFixpoint(); 7779 7780 return clampStateAndIndicateChange(getState(), T); 7781 } 7782 7783 /// See AbstractAttribute::trackStatistics() 7784 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } 7785 }; 7786 7787 struct AANoUndefReturned final 7788 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> { 7789 AANoUndefReturned(const IRPosition &IRP, Attributor &A) 7790 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {} 7791 7792 /// See AbstractAttribute::trackStatistics() 7793 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } 7794 }; 7795 7796 struct AANoUndefArgument final 7797 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> { 7798 AANoUndefArgument(const IRPosition &IRP, Attributor &A) 7799 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {} 7800 7801 /// See AbstractAttribute::trackStatistics() 7802 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) } 7803 }; 7804 7805 struct AANoUndefCallSiteArgument final : AANoUndefFloating { 7806 AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A) 7807 : AANoUndefFloating(IRP, A) {} 7808 7809 /// See AbstractAttribute::trackStatistics() 7810 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) } 7811 }; 7812 7813 struct AANoUndefCallSiteReturned final 7814 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> { 7815 AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A) 7816 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {} 7817 7818 /// See AbstractAttribute::trackStatistics() 7819 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) } 7820 }; 7821 } // namespace 7822 7823 const char AAReturnedValues::ID = 0; 7824 const char AANoUnwind::ID = 0; 7825 const char AANoSync::ID = 0; 7826 const char AANoFree::ID = 0; 7827 const char AANonNull::ID = 0; 7828 const char AANoRecurse::ID = 0; 7829 const char AAWillReturn::ID = 0; 7830 const char AAUndefinedBehavior::ID = 0; 7831 const char AANoAlias::ID = 0; 7832 const char AAReachability::ID = 0; 7833 const char AANoReturn::ID = 0; 7834 const char AAIsDead::ID = 0; 7835 const char AADereferenceable::ID = 0; 7836 const char AAAlign::ID = 0; 7837 const char AANoCapture::ID = 0; 7838 const char AAValueSimplify::ID = 0; 7839 const char AAHeapToStack::ID = 0; 7840 const char AAPrivatizablePtr::ID = 0; 7841 const char AAMemoryBehavior::ID = 0; 7842 const char AAMemoryLocation::ID = 0; 7843 const char AAValueConstantRange::ID = 0; 7844 const char AAPotentialValues::ID = 0; 7845 const char AANoUndef::ID = 0; 7846 7847 // Macro magic to create the static generator function for attributes that 7848 // follow the naming scheme. 7849 7850 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \ 7851 case IRPosition::PK: \ 7852 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); 7853 7854 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \ 7855 case IRPosition::PK: \ 7856 AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \ 7857 ++NumAAs; \ 7858 break; 7859 7860 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7861 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7862 CLASS *AA = nullptr; \ 7863 switch (IRP.getPositionKind()) { \ 7864 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7865 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 7866 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 7867 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 7868 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 7869 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 7870 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7871 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 7872 } \ 7873 return *AA; \ 7874 } 7875 7876 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7877 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7878 CLASS *AA = nullptr; \ 7879 switch (IRP.getPositionKind()) { \ 7880 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7881 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \ 7882 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 7883 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 7884 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 7885 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 7886 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 7887 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 7888 } \ 7889 return *AA; \ 7890 } 7891 7892 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7893 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7894 CLASS *AA = nullptr; \ 7895 switch (IRP.getPositionKind()) { \ 7896 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7897 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7898 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 7899 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 7900 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 7901 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 7902 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 7903 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 7904 } \ 7905 return *AA; \ 7906 } 7907 7908 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7909 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7910 CLASS *AA = nullptr; \ 7911 switch (IRP.getPositionKind()) { \ 7912 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7913 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 7914 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 7915 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 7916 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 7917 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 7918 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 7919 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7920 } \ 7921 return *AA; \ 7922 } 7923 7924 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7925 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7926 CLASS *AA = nullptr; \ 7927 switch (IRP.getPositionKind()) { \ 7928 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7929 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 7930 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7931 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 7932 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 7933 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 7934 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 7935 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 7936 } \ 7937 return *AA; \ 7938 } 7939 7940 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) 7941 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) 7942 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) 7943 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) 7944 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) 7945 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues) 7946 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation) 7947 7948 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) 7949 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) 7950 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr) 7951 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) 7952 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) 7953 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) 7954 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange) 7955 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues) 7956 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef) 7957 7958 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) 7959 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) 7960 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) 7961 7962 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) 7963 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability) 7964 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior) 7965 7966 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) 7967 7968 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION 7969 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION 7970 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION 7971 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION 7972 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION 7973 #undef SWITCH_PK_CREATE 7974 #undef SWITCH_PK_INV 7975