1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Assumptions.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/NoFolder.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Support/Alignment.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <cassert>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "attributor"
67 
68 static cl::opt<bool> ManifestInternal(
69     "attributor-manifest-internal", cl::Hidden,
70     cl::desc("Manifest Attributor internal string attributes."),
71     cl::init(false));
72 
73 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
74                                        cl::Hidden);
75 
76 template <>
77 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
78 
79 template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
80 
81 static cl::opt<unsigned, true> MaxPotentialValues(
82     "attributor-max-potential-values", cl::Hidden,
83     cl::desc("Maximum number of potential values to be "
84              "tracked for each position."),
85     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
86     cl::init(7));
87 
88 static cl::opt<int> MaxPotentialValuesIterations(
89     "attributor-max-potential-values-iterations", cl::Hidden,
90     cl::desc(
91         "Maximum number of iterations we keep dismantling potential values."),
92     cl::init(64));
93 
94 static cl::opt<unsigned> MaxInterferingAccesses(
95     "attributor-max-interfering-accesses", cl::Hidden,
96     cl::desc("Maximum number of interfering accesses to "
97              "check before assuming all might interfere."),
98     cl::init(6));
99 
100 STATISTIC(NumAAs, "Number of abstract attributes created");
101 
102 // Some helper macros to deal with statistics tracking.
103 //
104 // Usage:
105 // For simple IR attribute tracking overload trackStatistics in the abstract
106 // attribute and choose the right STATS_DECLTRACK_********* macro,
107 // e.g.,:
108 //  void trackStatistics() const override {
109 //    STATS_DECLTRACK_ARG_ATTR(returned)
110 //  }
111 // If there is a single "increment" side one can use the macro
112 // STATS_DECLTRACK with a custom message. If there are multiple increment
113 // sides, STATS_DECL and STATS_TRACK can also be used separately.
114 //
115 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
116   ("Number of " #TYPE " marked '" #NAME "'")
117 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
118 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
119 #define STATS_DECL(NAME, TYPE, MSG)                                            \
120   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
121 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
122 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
123   {                                                                            \
124     STATS_DECL(NAME, TYPE, MSG)                                                \
125     STATS_TRACK(NAME, TYPE)                                                    \
126   }
127 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
128   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
129 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
130   STATS_DECLTRACK(NAME, CSArguments,                                           \
131                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
132 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
133   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
134 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
135   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
136 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
137   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
138                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
139 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
140   STATS_DECLTRACK(NAME, CSReturn,                                              \
141                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
142 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
143   STATS_DECLTRACK(NAME, Floating,                                              \
144                   ("Number of floating values known to be '" #NAME "'"))
145 
146 // Specialization of the operator<< for abstract attributes subclasses. This
147 // disambiguates situations where multiple operators are applicable.
148 namespace llvm {
149 #define PIPE_OPERATOR(CLASS)                                                   \
150   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
151     return OS << static_cast<const AbstractAttribute &>(AA);                   \
152   }
153 
154 PIPE_OPERATOR(AAIsDead)
155 PIPE_OPERATOR(AANoUnwind)
156 PIPE_OPERATOR(AANoSync)
157 PIPE_OPERATOR(AANoRecurse)
158 PIPE_OPERATOR(AAWillReturn)
159 PIPE_OPERATOR(AANoReturn)
160 PIPE_OPERATOR(AAReturnedValues)
161 PIPE_OPERATOR(AANonNull)
162 PIPE_OPERATOR(AANoAlias)
163 PIPE_OPERATOR(AADereferenceable)
164 PIPE_OPERATOR(AAAlign)
165 PIPE_OPERATOR(AAInstanceInfo)
166 PIPE_OPERATOR(AANoCapture)
167 PIPE_OPERATOR(AAValueSimplify)
168 PIPE_OPERATOR(AANoFree)
169 PIPE_OPERATOR(AAHeapToStack)
170 PIPE_OPERATOR(AAReachability)
171 PIPE_OPERATOR(AAMemoryBehavior)
172 PIPE_OPERATOR(AAMemoryLocation)
173 PIPE_OPERATOR(AAValueConstantRange)
174 PIPE_OPERATOR(AAPrivatizablePtr)
175 PIPE_OPERATOR(AAUndefinedBehavior)
176 PIPE_OPERATOR(AAPotentialConstantValues)
177 PIPE_OPERATOR(AAPotentialValues)
178 PIPE_OPERATOR(AANoUndef)
179 PIPE_OPERATOR(AACallEdges)
180 PIPE_OPERATOR(AAFunctionReachability)
181 PIPE_OPERATOR(AAPointerInfo)
182 PIPE_OPERATOR(AAAssumptionInfo)
183 
184 #undef PIPE_OPERATOR
185 
186 template <>
187 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
188                                                      const DerefState &R) {
189   ChangeStatus CS0 =
190       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
191   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
192   return CS0 | CS1;
193 }
194 
195 } // namespace llvm
196 
197 /// Checks if a type could have padding bytes.
198 static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
199   // There is no size information, so be conservative.
200   if (!Ty->isSized())
201     return false;
202 
203   // If the alloc size is not equal to the storage size, then there are padding
204   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
205   if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
206     return false;
207 
208   // FIXME: This isn't the right way to check for padding in vectors with
209   // non-byte-size elements.
210   if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
211     return isDenselyPacked(SeqTy->getElementType(), DL);
212 
213   // For array types, check for padding within members.
214   if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
215     return isDenselyPacked(SeqTy->getElementType(), DL);
216 
217   if (!isa<StructType>(Ty))
218     return true;
219 
220   // Check for padding within and between elements of a struct.
221   StructType *StructTy = cast<StructType>(Ty);
222   const StructLayout *Layout = DL.getStructLayout(StructTy);
223   uint64_t StartPos = 0;
224   for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
225     Type *ElTy = StructTy->getElementType(I);
226     if (!isDenselyPacked(ElTy, DL))
227       return false;
228     if (StartPos != Layout->getElementOffsetInBits(I))
229       return false;
230     StartPos += DL.getTypeAllocSizeInBits(ElTy);
231   }
232 
233   return true;
234 }
235 
236 /// Get pointer operand of memory accessing instruction. If \p I is
237 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
238 /// is set to false and the instruction is volatile, return nullptr.
239 static const Value *getPointerOperand(const Instruction *I,
240                                       bool AllowVolatile) {
241   if (!AllowVolatile && I->isVolatile())
242     return nullptr;
243 
244   if (auto *LI = dyn_cast<LoadInst>(I)) {
245     return LI->getPointerOperand();
246   }
247 
248   if (auto *SI = dyn_cast<StoreInst>(I)) {
249     return SI->getPointerOperand();
250   }
251 
252   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
253     return CXI->getPointerOperand();
254   }
255 
256   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
257     return RMWI->getPointerOperand();
258   }
259 
260   return nullptr;
261 }
262 
263 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
264 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
265 /// getelement pointer instructions that traverse the natural type of \p Ptr if
266 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
267 /// through a cast to i8*.
268 ///
269 /// TODO: This could probably live somewhere more prominantly if it doesn't
270 ///       already exist.
271 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
272                                int64_t Offset, IRBuilder<NoFolder> &IRB,
273                                const DataLayout &DL) {
274   assert(Offset >= 0 && "Negative offset not supported yet!");
275   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
276                     << "-bytes as " << *ResTy << "\n");
277 
278   if (Offset) {
279     Type *Ty = PtrElemTy;
280     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
281     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
282 
283     SmallVector<Value *, 4> ValIndices;
284     std::string GEPName = Ptr->getName().str();
285     for (const APInt &Index : IntIndices) {
286       ValIndices.push_back(IRB.getInt(Index));
287       GEPName += "." + std::to_string(Index.getZExtValue());
288     }
289 
290     // Create a GEP for the indices collected above.
291     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
292 
293     // If an offset is left we use byte-wise adjustment.
294     if (IntOffset != 0) {
295       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
296       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
297                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
298     }
299   }
300 
301   // Ensure the result has the requested type.
302   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
303                                                 Ptr->getName() + ".cast");
304 
305   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
306   return Ptr;
307 }
308 
309 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
310                                      SmallSetVector<Value *, 8> &Objects,
311                                      const AbstractAttribute &QueryingAA,
312                                      const Instruction *CtxI,
313                                      bool &UsedAssumedInformation,
314                                      AA::ValueScope S,
315                                      SmallPtrSetImpl<Value *> *SeenObjects) {
316   SmallPtrSet<Value *, 8> LocalSeenObjects;
317   if (!SeenObjects)
318     SeenObjects = &LocalSeenObjects;
319 
320   SmallVector<AA::ValueAndContext> Values;
321   if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), &QueryingAA, Values,
322                                     S, UsedAssumedInformation)) {
323     Objects.insert(const_cast<Value *>(&Ptr));
324     return true;
325   }
326 
327   for (auto &VAC : Values) {
328     Value *UO = getUnderlyingObject(VAC.getValue());
329     if (UO && UO != VAC.getValue() && SeenObjects->insert(UO).second) {
330       if (!getAssumedUnderlyingObjects(A, *UO, Objects, QueryingAA,
331                                        VAC.getCtxI(), UsedAssumedInformation, S,
332                                        SeenObjects))
333         return false;
334       continue;
335     }
336     Objects.insert(VAC.getValue());
337   }
338   return true;
339 }
340 
341 static const Value *
342 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
343                           const Value *Val, const DataLayout &DL, APInt &Offset,
344                           bool GetMinOffset, bool AllowNonInbounds,
345                           bool UseAssumed = false) {
346 
347   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
348     const IRPosition &Pos = IRPosition::value(V);
349     // Only track dependence if we are going to use the assumed info.
350     const AAValueConstantRange &ValueConstantRangeAA =
351         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
352                                          UseAssumed ? DepClassTy::OPTIONAL
353                                                     : DepClassTy::NONE);
354     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
355                                      : ValueConstantRangeAA.getKnown();
356     if (Range.isFullSet())
357       return false;
358 
359     // We can only use the lower part of the range because the upper part can
360     // be higher than what the value can really be.
361     if (GetMinOffset)
362       ROffset = Range.getSignedMin();
363     else
364       ROffset = Range.getSignedMax();
365     return true;
366   };
367 
368   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
369                                                 /* AllowInvariant */ true,
370                                                 AttributorAnalysis);
371 }
372 
373 static const Value *
374 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
375                         const Value *Ptr, int64_t &BytesOffset,
376                         const DataLayout &DL, bool AllowNonInbounds = false) {
377   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
378   const Value *Base =
379       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
380                                 /* GetMinOffset */ true, AllowNonInbounds);
381 
382   BytesOffset = OffsetAPInt.getSExtValue();
383   return Base;
384 }
385 
386 /// Clamp the information known for all returned values of a function
387 /// (identified by \p QueryingAA) into \p S.
388 template <typename AAType, typename StateType = typename AAType::StateType>
389 static void clampReturnedValueStates(
390     Attributor &A, const AAType &QueryingAA, StateType &S,
391     const IRPosition::CallBaseContext *CBContext = nullptr) {
392   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
393                     << QueryingAA << " into " << S << "\n");
394 
395   assert((QueryingAA.getIRPosition().getPositionKind() ==
396               IRPosition::IRP_RETURNED ||
397           QueryingAA.getIRPosition().getPositionKind() ==
398               IRPosition::IRP_CALL_SITE_RETURNED) &&
399          "Can only clamp returned value states for a function returned or call "
400          "site returned position!");
401 
402   // Use an optional state as there might not be any return values and we want
403   // to join (IntegerState::operator&) the state of all there are.
404   Optional<StateType> T;
405 
406   // Callback for each possibly returned value.
407   auto CheckReturnValue = [&](Value &RV) -> bool {
408     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
409     const AAType &AA =
410         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
411     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
412                       << " @ " << RVPos << "\n");
413     const StateType &AAS = AA.getState();
414     if (!T)
415       T = StateType::getBestState(AAS);
416     *T &= AAS;
417     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
418                       << "\n");
419     return T->isValidState();
420   };
421 
422   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
423     S.indicatePessimisticFixpoint();
424   else if (T)
425     S ^= *T;
426 }
427 
428 namespace {
429 /// Helper class for generic deduction: return value -> returned position.
430 template <typename AAType, typename BaseType,
431           typename StateType = typename BaseType::StateType,
432           bool PropagateCallBaseContext = false>
433 struct AAReturnedFromReturnedValues : public BaseType {
434   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
435       : BaseType(IRP, A) {}
436 
437   /// See AbstractAttribute::updateImpl(...).
438   ChangeStatus updateImpl(Attributor &A) override {
439     StateType S(StateType::getBestState(this->getState()));
440     clampReturnedValueStates<AAType, StateType>(
441         A, *this, S,
442         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
443     // TODO: If we know we visited all returned values, thus no are assumed
444     // dead, we can take the known information from the state T.
445     return clampStateAndIndicateChange<StateType>(this->getState(), S);
446   }
447 };
448 
449 /// Clamp the information known at all call sites for a given argument
450 /// (identified by \p QueryingAA) into \p S.
451 template <typename AAType, typename StateType = typename AAType::StateType>
452 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
453                                         StateType &S) {
454   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
455                     << QueryingAA << " into " << S << "\n");
456 
457   assert(QueryingAA.getIRPosition().getPositionKind() ==
458              IRPosition::IRP_ARGUMENT &&
459          "Can only clamp call site argument states for an argument position!");
460 
461   // Use an optional state as there might not be any return values and we want
462   // to join (IntegerState::operator&) the state of all there are.
463   Optional<StateType> T;
464 
465   // The argument number which is also the call site argument number.
466   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
467 
468   auto CallSiteCheck = [&](AbstractCallSite ACS) {
469     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
470     // Check if a coresponding argument was found or if it is on not associated
471     // (which can happen for callback calls).
472     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
473       return false;
474 
475     const AAType &AA =
476         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
477     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
478                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
479     const StateType &AAS = AA.getState();
480     if (!T)
481       T = StateType::getBestState(AAS);
482     *T &= AAS;
483     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
484                       << "\n");
485     return T->isValidState();
486   };
487 
488   bool UsedAssumedInformation = false;
489   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
490                               UsedAssumedInformation))
491     S.indicatePessimisticFixpoint();
492   else if (T)
493     S ^= *T;
494 }
495 
496 /// This function is the bridge between argument position and the call base
497 /// context.
498 template <typename AAType, typename BaseType,
499           typename StateType = typename AAType::StateType>
500 bool getArgumentStateFromCallBaseContext(Attributor &A,
501                                          BaseType &QueryingAttribute,
502                                          IRPosition &Pos, StateType &State) {
503   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
504          "Expected an 'argument' position !");
505   const CallBase *CBContext = Pos.getCallBaseContext();
506   if (!CBContext)
507     return false;
508 
509   int ArgNo = Pos.getCallSiteArgNo();
510   assert(ArgNo >= 0 && "Invalid Arg No!");
511 
512   const auto &AA = A.getAAFor<AAType>(
513       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
514       DepClassTy::REQUIRED);
515   const StateType &CBArgumentState =
516       static_cast<const StateType &>(AA.getState());
517 
518   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
519                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
520                     << "\n");
521 
522   // NOTE: If we want to do call site grouping it should happen here.
523   State ^= CBArgumentState;
524   return true;
525 }
526 
527 /// Helper class for generic deduction: call site argument -> argument position.
528 template <typename AAType, typename BaseType,
529           typename StateType = typename AAType::StateType,
530           bool BridgeCallBaseContext = false>
531 struct AAArgumentFromCallSiteArguments : public BaseType {
532   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
533       : BaseType(IRP, A) {}
534 
535   /// See AbstractAttribute::updateImpl(...).
536   ChangeStatus updateImpl(Attributor &A) override {
537     StateType S = StateType::getBestState(this->getState());
538 
539     if (BridgeCallBaseContext) {
540       bool Success =
541           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
542               A, *this, this->getIRPosition(), S);
543       if (Success)
544         return clampStateAndIndicateChange<StateType>(this->getState(), S);
545     }
546     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
547 
548     // TODO: If we know we visited all incoming values, thus no are assumed
549     // dead, we can take the known information from the state T.
550     return clampStateAndIndicateChange<StateType>(this->getState(), S);
551   }
552 };
553 
554 /// Helper class for generic replication: function returned -> cs returned.
555 template <typename AAType, typename BaseType,
556           typename StateType = typename BaseType::StateType,
557           bool IntroduceCallBaseContext = false>
558 struct AACallSiteReturnedFromReturned : public BaseType {
559   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
560       : BaseType(IRP, A) {}
561 
562   /// See AbstractAttribute::updateImpl(...).
563   ChangeStatus updateImpl(Attributor &A) override {
564     assert(this->getIRPosition().getPositionKind() ==
565                IRPosition::IRP_CALL_SITE_RETURNED &&
566            "Can only wrap function returned positions for call site returned "
567            "positions!");
568     auto &S = this->getState();
569 
570     const Function *AssociatedFunction =
571         this->getIRPosition().getAssociatedFunction();
572     if (!AssociatedFunction)
573       return S.indicatePessimisticFixpoint();
574 
575     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
576     if (IntroduceCallBaseContext)
577       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
578                         << CBContext << "\n");
579 
580     IRPosition FnPos = IRPosition::returned(
581         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
582     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
583     return clampStateAndIndicateChange(S, AA.getState());
584   }
585 };
586 
587 /// Helper function to accumulate uses.
588 template <class AAType, typename StateType = typename AAType::StateType>
589 static void followUsesInContext(AAType &AA, Attributor &A,
590                                 MustBeExecutedContextExplorer &Explorer,
591                                 const Instruction *CtxI,
592                                 SetVector<const Use *> &Uses,
593                                 StateType &State) {
594   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
595   for (unsigned u = 0; u < Uses.size(); ++u) {
596     const Use *U = Uses[u];
597     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
598       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
599       if (Found && AA.followUseInMBEC(A, U, UserI, State))
600         for (const Use &Us : UserI->uses())
601           Uses.insert(&Us);
602     }
603   }
604 }
605 
606 /// Use the must-be-executed-context around \p I to add information into \p S.
607 /// The AAType class is required to have `followUseInMBEC` method with the
608 /// following signature and behaviour:
609 ///
610 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
611 /// U - Underlying use.
612 /// I - The user of the \p U.
613 /// Returns true if the value should be tracked transitively.
614 ///
615 template <class AAType, typename StateType = typename AAType::StateType>
616 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
617                              Instruction &CtxI) {
618 
619   // Container for (transitive) uses of the associated value.
620   SetVector<const Use *> Uses;
621   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
622     Uses.insert(&U);
623 
624   MustBeExecutedContextExplorer &Explorer =
625       A.getInfoCache().getMustBeExecutedContextExplorer();
626 
627   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
628 
629   if (S.isAtFixpoint())
630     return;
631 
632   SmallVector<const BranchInst *, 4> BrInsts;
633   auto Pred = [&](const Instruction *I) {
634     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
635       if (Br->isConditional())
636         BrInsts.push_back(Br);
637     return true;
638   };
639 
640   // Here, accumulate conditional branch instructions in the context. We
641   // explore the child paths and collect the known states. The disjunction of
642   // those states can be merged to its own state. Let ParentState_i be a state
643   // to indicate the known information for an i-th branch instruction in the
644   // context. ChildStates are created for its successors respectively.
645   //
646   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
647   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
648   //      ...
649   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
650   //
651   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
652   //
653   // FIXME: Currently, recursive branches are not handled. For example, we
654   // can't deduce that ptr must be dereferenced in below function.
655   //
656   // void f(int a, int c, int *ptr) {
657   //    if(a)
658   //      if (b) {
659   //        *ptr = 0;
660   //      } else {
661   //        *ptr = 1;
662   //      }
663   //    else {
664   //      if (b) {
665   //        *ptr = 0;
666   //      } else {
667   //        *ptr = 1;
668   //      }
669   //    }
670   // }
671 
672   Explorer.checkForAllContext(&CtxI, Pred);
673   for (const BranchInst *Br : BrInsts) {
674     StateType ParentState;
675 
676     // The known state of the parent state is a conjunction of children's
677     // known states so it is initialized with a best state.
678     ParentState.indicateOptimisticFixpoint();
679 
680     for (const BasicBlock *BB : Br->successors()) {
681       StateType ChildState;
682 
683       size_t BeforeSize = Uses.size();
684       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
685 
686       // Erase uses which only appear in the child.
687       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
688         It = Uses.erase(It);
689 
690       ParentState &= ChildState;
691     }
692 
693     // Use only known state.
694     S += ParentState;
695   }
696 }
697 } // namespace
698 
699 /// ------------------------ PointerInfo ---------------------------------------
700 
701 namespace llvm {
702 namespace AA {
703 namespace PointerInfo {
704 
705 struct State;
706 
707 } // namespace PointerInfo
708 } // namespace AA
709 
710 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
711 template <>
712 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
713   using Access = AAPointerInfo::Access;
714   static inline Access getEmptyKey();
715   static inline Access getTombstoneKey();
716   static unsigned getHashValue(const Access &A);
717   static bool isEqual(const Access &LHS, const Access &RHS);
718 };
719 
720 /// Helper that allows OffsetAndSize as a key in a DenseMap.
721 template <>
722 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
723     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
724 
725 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
726 /// but the instruction
727 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
728   using Base = DenseMapInfo<Instruction *>;
729   using Access = AAPointerInfo::Access;
730   static inline Access getEmptyKey();
731   static inline Access getTombstoneKey();
732   static unsigned getHashValue(const Access &A);
733   static bool isEqual(const Access &LHS, const Access &RHS);
734 };
735 
736 } // namespace llvm
737 
738 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
739 struct AA::PointerInfo::State : public AbstractState {
740 
741   ~State() {
742     // We do not delete the Accesses objects but need to destroy them still.
743     for (auto &It : AccessBins)
744       It.second->~Accesses();
745   }
746 
747   /// Return the best possible representable state.
748   static State getBestState(const State &SIS) { return State(); }
749 
750   /// Return the worst possible representable state.
751   static State getWorstState(const State &SIS) {
752     State R;
753     R.indicatePessimisticFixpoint();
754     return R;
755   }
756 
757   State() = default;
758   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {
759     SIS.AccessBins.clear();
760   }
761 
762   const State &getAssumed() const { return *this; }
763 
764   /// See AbstractState::isValidState().
765   bool isValidState() const override { return BS.isValidState(); }
766 
767   /// See AbstractState::isAtFixpoint().
768   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
769 
770   /// See AbstractState::indicateOptimisticFixpoint().
771   ChangeStatus indicateOptimisticFixpoint() override {
772     BS.indicateOptimisticFixpoint();
773     return ChangeStatus::UNCHANGED;
774   }
775 
776   /// See AbstractState::indicatePessimisticFixpoint().
777   ChangeStatus indicatePessimisticFixpoint() override {
778     BS.indicatePessimisticFixpoint();
779     return ChangeStatus::CHANGED;
780   }
781 
782   State &operator=(const State &R) {
783     if (this == &R)
784       return *this;
785     BS = R.BS;
786     AccessBins = R.AccessBins;
787     return *this;
788   }
789 
790   State &operator=(State &&R) {
791     if (this == &R)
792       return *this;
793     std::swap(BS, R.BS);
794     std::swap(AccessBins, R.AccessBins);
795     return *this;
796   }
797 
798   bool operator==(const State &R) const {
799     if (BS != R.BS)
800       return false;
801     if (AccessBins.size() != R.AccessBins.size())
802       return false;
803     auto It = begin(), RIt = R.begin(), E = end();
804     while (It != E) {
805       if (It->getFirst() != RIt->getFirst())
806         return false;
807       auto &Accs = It->getSecond();
808       auto &RAccs = RIt->getSecond();
809       if (Accs->size() != RAccs->size())
810         return false;
811       for (const auto &ZipIt : llvm::zip(*Accs, *RAccs))
812         if (std::get<0>(ZipIt) != std::get<1>(ZipIt))
813           return false;
814       ++It;
815       ++RIt;
816     }
817     return true;
818   }
819   bool operator!=(const State &R) const { return !(*this == R); }
820 
821   /// We store accesses in a set with the instruction as key.
822   struct Accesses {
823     SmallVector<AAPointerInfo::Access, 4> Accesses;
824     DenseMap<const Instruction *, unsigned> Map;
825 
826     unsigned size() const { return Accesses.size(); }
827 
828     using vec_iterator = decltype(Accesses)::iterator;
829     vec_iterator begin() { return Accesses.begin(); }
830     vec_iterator end() { return Accesses.end(); }
831 
832     using iterator = decltype(Map)::const_iterator;
833     iterator find(AAPointerInfo::Access &Acc) {
834       return Map.find(Acc.getRemoteInst());
835     }
836     iterator find_end() { return Map.end(); }
837 
838     AAPointerInfo::Access &get(iterator &It) {
839       return Accesses[It->getSecond()];
840     }
841 
842     void insert(AAPointerInfo::Access &Acc) {
843       Map[Acc.getRemoteInst()] = Accesses.size();
844       Accesses.push_back(Acc);
845     }
846   };
847 
848   /// We store all accesses in bins denoted by their offset and size.
849   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses *>;
850 
851   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
852   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
853 
854 protected:
855   /// The bins with all the accesses for the associated pointer.
856   AccessBinsTy AccessBins;
857 
858   /// Add a new access to the state at offset \p Offset and with size \p Size.
859   /// The access is associated with \p I, writes \p Content (if anything), and
860   /// is of kind \p Kind.
861   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
862   ChangeStatus addAccess(Attributor &A, int64_t Offset, int64_t Size,
863                          Instruction &I, Optional<Value *> Content,
864                          AAPointerInfo::AccessKind Kind, Type *Ty,
865                          Instruction *RemoteI = nullptr,
866                          Accesses *BinPtr = nullptr) {
867     AAPointerInfo::OffsetAndSize Key{Offset, Size};
868     Accesses *&Bin = BinPtr ? BinPtr : AccessBins[Key];
869     if (!Bin)
870       Bin = new (A.Allocator) Accesses;
871     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
872     // Check if we have an access for this instruction in this bin, if not,
873     // simply add it.
874     auto It = Bin->find(Acc);
875     if (It == Bin->find_end()) {
876       Bin->insert(Acc);
877       return ChangeStatus::CHANGED;
878     }
879     // If the existing access is the same as then new one, nothing changed.
880     AAPointerInfo::Access &Current = Bin->get(It);
881     AAPointerInfo::Access Before = Current;
882     // The new one will be combined with the existing one.
883     Current &= Acc;
884     return Current == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
885   }
886 
887   /// See AAPointerInfo::forallInterferingAccesses.
888   bool forallInterferingAccesses(
889       AAPointerInfo::OffsetAndSize OAS,
890       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
891     if (!isValidState())
892       return false;
893 
894     for (auto &It : AccessBins) {
895       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
896       if (!OAS.mayOverlap(ItOAS))
897         continue;
898       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
899       for (auto &Access : *It.getSecond())
900         if (!CB(Access, IsExact))
901           return false;
902     }
903     return true;
904   }
905 
906   /// See AAPointerInfo::forallInterferingAccesses.
907   bool forallInterferingAccesses(
908       Instruction &I,
909       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
910     if (!isValidState())
911       return false;
912 
913     // First find the offset and size of I.
914     AAPointerInfo::OffsetAndSize OAS(-1, -1);
915     for (auto &It : AccessBins) {
916       for (auto &Access : *It.getSecond()) {
917         if (Access.getRemoteInst() == &I) {
918           OAS = It.getFirst();
919           break;
920         }
921       }
922       if (OAS.getSize() != -1)
923         break;
924     }
925     // No access for I was found, we are done.
926     if (OAS.getSize() == -1)
927       return true;
928 
929     // Now that we have an offset and size, find all overlapping ones and use
930     // the callback on the accesses.
931     return forallInterferingAccesses(OAS, CB);
932   }
933 
934 private:
935   /// State to track fixpoint and validity.
936   BooleanState BS;
937 };
938 
939 namespace {
940 struct AAPointerInfoImpl
941     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
942   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
943   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
944 
945   /// See AbstractAttribute::initialize(...).
946   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
947 
948   /// See AbstractAttribute::getAsStr().
949   const std::string getAsStr() const override {
950     return std::string("PointerInfo ") +
951            (isValidState() ? (std::string("#") +
952                               std::to_string(AccessBins.size()) + " bins")
953                            : "<invalid>");
954   }
955 
956   /// See AbstractAttribute::manifest(...).
957   ChangeStatus manifest(Attributor &A) override {
958     return AAPointerInfo::manifest(A);
959   }
960 
961   bool forallInterferingAccesses(
962       OffsetAndSize OAS,
963       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
964       const override {
965     return State::forallInterferingAccesses(OAS, CB);
966   }
967   bool forallInterferingAccesses(
968       Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
969       function_ref<bool(const Access &, bool)> UserCB) const override {
970     SmallPtrSet<const Access *, 8> DominatingWrites;
971     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
972 
973     Function &Scope = *I.getFunction();
974     const auto &NoSyncAA = A.getAAFor<AANoSync>(
975         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
976     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
977         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
978     const bool NoSync = NoSyncAA.isAssumedNoSync();
979 
980     // Helper to determine if we need to consider threading, which we cannot
981     // right now. However, if the function is (assumed) nosync or the thread
982     // executing all instructions is the main thread only we can ignore
983     // threading.
984     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
985       if (NoSync)
986         return true;
987       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
988         return true;
989       return false;
990     };
991 
992     // Helper to determine if the access is executed by the same thread as the
993     // load, for now it is sufficient to avoid any potential threading effects
994     // as we cannot deal with them anyway.
995     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
996       return CanIgnoreThreading(*Acc.getLocalInst());
997     };
998 
999     // TODO: Use inter-procedural reachability and dominance.
1000     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1001         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1002 
1003     const bool FindInterferingWrites = I.mayReadFromMemory();
1004     const bool FindInterferingReads = I.mayWriteToMemory();
1005     const bool UseDominanceReasoning = FindInterferingWrites;
1006     const bool CanUseCFGResoning = CanIgnoreThreading(I);
1007     InformationCache &InfoCache = A.getInfoCache();
1008     const DominatorTree *DT =
1009         NoRecurseAA.isKnownNoRecurse() && UseDominanceReasoning
1010             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1011                   Scope)
1012             : nullptr;
1013 
1014     enum GPUAddressSpace : unsigned {
1015       Generic = 0,
1016       Global = 1,
1017       Shared = 3,
1018       Constant = 4,
1019       Local = 5,
1020     };
1021 
1022     // Helper to check if a value has "kernel lifetime", that is it will not
1023     // outlive a GPU kernel. This is true for shared, constant, and local
1024     // globals on AMD and NVIDIA GPUs.
1025     auto HasKernelLifetime = [&](Value *V, Module &M) {
1026       Triple T(M.getTargetTriple());
1027       if (!(T.isAMDGPU() || T.isNVPTX()))
1028         return false;
1029       switch (V->getType()->getPointerAddressSpace()) {
1030       case GPUAddressSpace::Shared:
1031       case GPUAddressSpace::Constant:
1032       case GPUAddressSpace::Local:
1033         return true;
1034       default:
1035         return false;
1036       };
1037     };
1038 
1039     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1040     // to determine if we should look at reachability from the callee. For
1041     // certain pointers we know the lifetime and we do not have to step into the
1042     // callee to determine reachability as the pointer would be dead in the
1043     // callee. See the conditional initialization below.
1044     std::function<bool(const Function &)> IsLiveInCalleeCB;
1045 
1046     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1047       // If the alloca containing function is not recursive the alloca
1048       // must be dead in the callee.
1049       const Function *AIFn = AI->getFunction();
1050       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1051           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1052       if (NoRecurseAA.isAssumedNoRecurse()) {
1053         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1054       }
1055     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1056       // If the global has kernel lifetime we can stop if we reach a kernel
1057       // as it is "dead" in the (unknown) callees.
1058       if (HasKernelLifetime(GV, *GV->getParent()))
1059         IsLiveInCalleeCB = [](const Function &Fn) {
1060           return !Fn.hasFnAttribute("kernel");
1061         };
1062     }
1063 
1064     auto AccessCB = [&](const Access &Acc, bool Exact) {
1065       if ((!FindInterferingWrites || !Acc.isWrite()) &&
1066           (!FindInterferingReads || !Acc.isRead()))
1067         return true;
1068 
1069       // For now we only filter accesses based on CFG reasoning which does not
1070       // work yet if we have threading effects, or the access is complicated.
1071       if (CanUseCFGResoning) {
1072         if ((!Acc.isWrite() ||
1073              !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1074                                          IsLiveInCalleeCB)) &&
1075             (!Acc.isRead() ||
1076              !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1077                                          IsLiveInCalleeCB)))
1078           return true;
1079         if (DT && Exact && (Acc.getLocalInst()->getFunction() == &Scope) &&
1080             IsSameThreadAsLoad(Acc)) {
1081           if (DT->dominates(Acc.getLocalInst(), &I))
1082             DominatingWrites.insert(&Acc);
1083         }
1084       }
1085 
1086       InterferingAccesses.push_back({&Acc, Exact});
1087       return true;
1088     };
1089     if (!State::forallInterferingAccesses(I, AccessCB))
1090       return false;
1091 
1092     // If we cannot use CFG reasoning we only filter the non-write accesses
1093     // and are done here.
1094     if (!CanUseCFGResoning) {
1095       for (auto &It : InterferingAccesses)
1096         if (!UserCB(*It.first, It.second))
1097           return false;
1098       return true;
1099     }
1100 
1101     // Helper to determine if we can skip a specific write access. This is in
1102     // the worst case quadratic as we are looking for another write that will
1103     // hide the effect of this one.
1104     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1105       if (!IsSameThreadAsLoad(Acc))
1106         return false;
1107       if (!DominatingWrites.count(&Acc))
1108         return false;
1109       for (const Access *DomAcc : DominatingWrites) {
1110         assert(Acc.getLocalInst()->getFunction() ==
1111                    DomAcc->getLocalInst()->getFunction() &&
1112                "Expected dominating writes to be in the same function!");
1113 
1114         if (DomAcc != &Acc &&
1115             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1116           return true;
1117         }
1118       }
1119       return false;
1120     };
1121 
1122     // Run the user callback on all accesses we cannot skip and return if that
1123     // succeeded for all or not.
1124     unsigned NumInterferingAccesses = InterferingAccesses.size();
1125     for (auto &It : InterferingAccesses) {
1126       if (!DT || NumInterferingAccesses > MaxInterferingAccesses ||
1127           !CanSkipAccess(*It.first, It.second)) {
1128         if (!UserCB(*It.first, It.second))
1129           return false;
1130       }
1131     }
1132     return true;
1133   }
1134 
1135   ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
1136                                     int64_t Offset, CallBase &CB,
1137                                     bool FromCallee = false) {
1138     using namespace AA::PointerInfo;
1139     if (!OtherAA.getState().isValidState() || !isValidState())
1140       return indicatePessimisticFixpoint();
1141 
1142     const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
1143     bool IsByval =
1144         FromCallee && OtherAAImpl.getAssociatedArgument()->hasByValAttr();
1145 
1146     // Combine the accesses bin by bin.
1147     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1148     for (auto &It : OtherAAImpl.getState()) {
1149       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1150       if (Offset != OffsetAndSize::Unknown)
1151         OAS = OffsetAndSize(It.first.getOffset() + Offset, It.first.getSize());
1152       Accesses *Bin = AccessBins.lookup(OAS);
1153       for (const AAPointerInfo::Access &RAcc : *It.second) {
1154         if (IsByval && !RAcc.isRead())
1155           continue;
1156         bool UsedAssumedInformation = false;
1157         AccessKind AK = RAcc.getKind();
1158         Optional<Value *> Content = RAcc.getContent();
1159         if (FromCallee) {
1160           Content = A.translateArgumentToCallSiteContent(
1161               RAcc.getContent(), CB, *this, UsedAssumedInformation);
1162           AK = AccessKind(
1163               AK & (IsByval ? AccessKind::AK_READ : AccessKind::AK_READ_WRITE));
1164         }
1165         Changed =
1166             Changed | addAccess(A, OAS.getOffset(), OAS.getSize(), CB, Content,
1167                                 AK, RAcc.getType(), RAcc.getRemoteInst(), Bin);
1168       }
1169     }
1170     return Changed;
1171   }
1172 
1173   /// Statistic tracking for all AAPointerInfo implementations.
1174   /// See AbstractAttribute::trackStatistics().
1175   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1176 
1177   /// Dump the state into \p O.
1178   void dumpState(raw_ostream &O) {
1179     for (auto &It : AccessBins) {
1180       O << "[" << It.first.getOffset() << "-"
1181         << It.first.getOffset() + It.first.getSize()
1182         << "] : " << It.getSecond()->size() << "\n";
1183       for (auto &Acc : *It.getSecond()) {
1184         O << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
1185         if (Acc.getLocalInst() != Acc.getRemoteInst())
1186           O << "     -->                         " << *Acc.getRemoteInst()
1187             << "\n";
1188         if (!Acc.isWrittenValueYetUndetermined()) {
1189           if (Acc.getWrittenValue())
1190             O << "       - c: " << *Acc.getWrittenValue() << "\n";
1191           else
1192             O << "       - c: <unknown>\n";
1193         }
1194       }
1195     }
1196   }
1197 };
1198 
1199 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1200   using AccessKind = AAPointerInfo::AccessKind;
1201   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1202       : AAPointerInfoImpl(IRP, A) {}
1203 
1204   /// See AbstractAttribute::initialize(...).
1205   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1206 
1207   /// Deal with an access and signal if it was handled successfully.
1208   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1209                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1210                     ChangeStatus &Changed, Type *Ty,
1211                     int64_t Size = OffsetAndSize::Unknown) {
1212     using namespace AA::PointerInfo;
1213     // No need to find a size if one is given or the offset is unknown.
1214     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1215         Ty) {
1216       const DataLayout &DL = A.getDataLayout();
1217       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1218       if (!AccessSize.isScalable())
1219         Size = AccessSize.getFixedSize();
1220     }
1221     Changed = Changed | addAccess(A, Offset, Size, I, Content, Kind, Ty);
1222     return true;
1223   };
1224 
1225   /// Helper struct, will support ranges eventually.
1226   struct OffsetInfo {
1227     int64_t Offset = OffsetAndSize::Unknown;
1228 
1229     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1230   };
1231 
1232   /// See AbstractAttribute::updateImpl(...).
1233   ChangeStatus updateImpl(Attributor &A) override {
1234     using namespace AA::PointerInfo;
1235     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1236     Value &AssociatedValue = getAssociatedValue();
1237 
1238     const DataLayout &DL = A.getDataLayout();
1239     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1240     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1241 
1242     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo PtrOI,
1243                                      bool &Follow) {
1244       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1245       UsrOI = PtrOI;
1246       Follow = true;
1247       return true;
1248     };
1249 
1250     const auto *TLI = getAnchorScope()
1251                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1252                                 *getAnchorScope())
1253                           : nullptr;
1254     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1255       Value *CurPtr = U.get();
1256       User *Usr = U.getUser();
1257       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1258                         << *Usr << "\n");
1259       assert(OffsetInfoMap.count(CurPtr) &&
1260              "The current pointer offset should have been seeded!");
1261 
1262       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1263         if (CE->isCast())
1264           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1265         if (CE->isCompare())
1266           return true;
1267         if (!isa<GEPOperator>(CE)) {
1268           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1269                             << "\n");
1270           return false;
1271         }
1272       }
1273       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1274         // Note the order here, the Usr access might change the map, CurPtr is
1275         // already in it though.
1276         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1277         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1278         UsrOI = PtrOI;
1279 
1280         // TODO: Use range information.
1281         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1282             !GEP->hasAllConstantIndices()) {
1283           UsrOI.Offset = OffsetAndSize::Unknown;
1284           Follow = true;
1285           return true;
1286         }
1287 
1288         SmallVector<Value *, 8> Indices;
1289         for (Use &Idx : GEP->indices()) {
1290           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1291             Indices.push_back(CIdx);
1292             continue;
1293           }
1294 
1295           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1296                             << " : " << *Idx << "\n");
1297           return false;
1298         }
1299         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1300                                           GEP->getSourceElementType(), Indices);
1301         Follow = true;
1302         return true;
1303       }
1304       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
1305         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1306 
1307       // For PHIs we need to take care of the recurrence explicitly as the value
1308       // might change while we iterate through a loop. For now, we give up if
1309       // the PHI is not invariant.
1310       if (isa<PHINode>(Usr)) {
1311         // Note the order here, the Usr access might change the map, CurPtr is
1312         // already in it though.
1313         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1314         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1315         // Check if the PHI is invariant (so far).
1316         if (UsrOI == PtrOI)
1317           return true;
1318 
1319         // Check if the PHI operand has already an unknown offset as we can't
1320         // improve on that anymore.
1321         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1322           UsrOI = PtrOI;
1323           Follow = true;
1324           return true;
1325         }
1326 
1327         // Check if the PHI operand is not dependent on the PHI itself.
1328         // TODO: This is not great as we look at the pointer type. However, it
1329         // is unclear where the Offset size comes from with typeless pointers.
1330         APInt Offset(
1331             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1332             0);
1333         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1334                                     DL, Offset, /* AllowNonInbounds */ true)) {
1335           if (Offset != PtrOI.Offset) {
1336             LLVM_DEBUG(dbgs()
1337                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1338                        << *CurPtr << " in " << *Usr << "\n");
1339             return false;
1340           }
1341           return HandlePassthroughUser(Usr, PtrOI, Follow);
1342         }
1343 
1344         // TODO: Approximate in case we know the direction of the recurrence.
1345         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1346                           << *CurPtr << " in " << *Usr << "\n");
1347         UsrOI = PtrOI;
1348         UsrOI.Offset = OffsetAndSize::Unknown;
1349         Follow = true;
1350         return true;
1351       }
1352 
1353       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1354         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1355                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1356                             Changed, LoadI->getType());
1357       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1358         if (StoreI->getValueOperand() == CurPtr) {
1359           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1360                             << *StoreI << "\n");
1361           return false;
1362         }
1363         bool UsedAssumedInformation = false;
1364         Optional<Value *> Content =
1365             A.getAssumedSimplified(*StoreI->getValueOperand(), *this,
1366                                    UsedAssumedInformation, AA::Interprocedural);
1367         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1368                             OffsetInfoMap[CurPtr].Offset, Changed,
1369                             StoreI->getValueOperand()->getType());
1370       }
1371       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1372         if (CB->isLifetimeStartOrEnd())
1373           return true;
1374         if (TLI && isFreeCall(CB, TLI))
1375           return true;
1376         if (CB->isArgOperand(&U)) {
1377           unsigned ArgNo = CB->getArgOperandNo(&U);
1378           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1379               *this, IRPosition::callsite_argument(*CB, ArgNo),
1380               DepClassTy::REQUIRED);
1381           Changed = translateAndAddState(A, CSArgPI,
1382                                          OffsetInfoMap[CurPtr].Offset, *CB) |
1383                     Changed;
1384           return true;
1385         }
1386         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1387                           << "\n");
1388         // TODO: Allow some call uses
1389         return false;
1390       }
1391 
1392       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1393       return false;
1394     };
1395     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1396       if (OffsetInfoMap.count(NewU)) {
1397         LLVM_DEBUG({
1398           if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
1399             dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
1400                    << OffsetInfoMap[NewU].Offset << " vs "
1401                    << OffsetInfoMap[OldU].Offset << "\n";
1402           }
1403         });
1404         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1405       }
1406       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1407       return true;
1408     };
1409     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1410                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1411                            /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
1412       LLVM_DEBUG(
1413           dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
1414       return indicatePessimisticFixpoint();
1415     }
1416 
1417     LLVM_DEBUG({
1418       dbgs() << "Accesses by bin after update:\n";
1419       dumpState(dbgs());
1420     });
1421 
1422     return Changed;
1423   }
1424 
1425   /// See AbstractAttribute::trackStatistics()
1426   void trackStatistics() const override {
1427     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1428   }
1429 };
1430 
1431 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1432   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1433       : AAPointerInfoImpl(IRP, A) {}
1434 
1435   /// See AbstractAttribute::updateImpl(...).
1436   ChangeStatus updateImpl(Attributor &A) override {
1437     return indicatePessimisticFixpoint();
1438   }
1439 
1440   /// See AbstractAttribute::trackStatistics()
1441   void trackStatistics() const override {
1442     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1443   }
1444 };
1445 
1446 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1447   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1448       : AAPointerInfoFloating(IRP, A) {}
1449 
1450   /// See AbstractAttribute::initialize(...).
1451   void initialize(Attributor &A) override {
1452     AAPointerInfoFloating::initialize(A);
1453     if (getAnchorScope()->isDeclaration())
1454       indicatePessimisticFixpoint();
1455   }
1456 
1457   /// See AbstractAttribute::trackStatistics()
1458   void trackStatistics() const override {
1459     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1460   }
1461 };
1462 
1463 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1464   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1465       : AAPointerInfoFloating(IRP, A) {}
1466 
1467   /// See AbstractAttribute::updateImpl(...).
1468   ChangeStatus updateImpl(Attributor &A) override {
1469     using namespace AA::PointerInfo;
1470     // We handle memory intrinsics explicitly, at least the first (=
1471     // destination) and second (=source) arguments as we know how they are
1472     // accessed.
1473     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1474       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1475       int64_t LengthVal = OffsetAndSize::Unknown;
1476       if (Length)
1477         LengthVal = Length->getSExtValue();
1478       Value &Ptr = getAssociatedValue();
1479       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1480       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1481       if (ArgNo == 0) {
1482         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1483                      nullptr, LengthVal);
1484       } else if (ArgNo == 1) {
1485         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1486                      nullptr, LengthVal);
1487       } else {
1488         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1489                           << *MI << "\n");
1490         return indicatePessimisticFixpoint();
1491       }
1492 
1493       LLVM_DEBUG({
1494         dbgs() << "Accesses by bin after update:\n";
1495         dumpState(dbgs());
1496       });
1497 
1498       return Changed;
1499     }
1500 
1501     // TODO: Once we have call site specific value information we can provide
1502     //       call site specific liveness information and then it makes
1503     //       sense to specialize attributes for call sites arguments instead of
1504     //       redirecting requests to the callee argument.
1505     Argument *Arg = getAssociatedArgument();
1506     if (!Arg)
1507       return indicatePessimisticFixpoint();
1508     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1509     auto &ArgAA =
1510         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1511     return translateAndAddState(A, ArgAA, 0, *cast<CallBase>(getCtxI()),
1512                                 /* FromCallee */ true);
1513   }
1514 
1515   /// See AbstractAttribute::trackStatistics()
1516   void trackStatistics() const override {
1517     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1518   }
1519 };
1520 
1521 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1522   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1523       : AAPointerInfoFloating(IRP, A) {}
1524 
1525   /// See AbstractAttribute::trackStatistics()
1526   void trackStatistics() const override {
1527     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1528   }
1529 };
1530 } // namespace
1531 
1532 /// -----------------------NoUnwind Function Attribute--------------------------
1533 
1534 namespace {
1535 struct AANoUnwindImpl : AANoUnwind {
1536   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1537 
1538   const std::string getAsStr() const override {
1539     return getAssumed() ? "nounwind" : "may-unwind";
1540   }
1541 
1542   /// See AbstractAttribute::updateImpl(...).
1543   ChangeStatus updateImpl(Attributor &A) override {
1544     auto Opcodes = {
1545         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1546         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1547         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1548 
1549     auto CheckForNoUnwind = [&](Instruction &I) {
1550       if (!I.mayThrow())
1551         return true;
1552 
1553       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1554         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1555             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1556         return NoUnwindAA.isAssumedNoUnwind();
1557       }
1558       return false;
1559     };
1560 
1561     bool UsedAssumedInformation = false;
1562     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1563                                    UsedAssumedInformation))
1564       return indicatePessimisticFixpoint();
1565 
1566     return ChangeStatus::UNCHANGED;
1567   }
1568 };
1569 
1570 struct AANoUnwindFunction final : public AANoUnwindImpl {
1571   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1572       : AANoUnwindImpl(IRP, A) {}
1573 
1574   /// See AbstractAttribute::trackStatistics()
1575   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1576 };
1577 
1578 /// NoUnwind attribute deduction for a call sites.
1579 struct AANoUnwindCallSite final : AANoUnwindImpl {
1580   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1581       : AANoUnwindImpl(IRP, A) {}
1582 
1583   /// See AbstractAttribute::initialize(...).
1584   void initialize(Attributor &A) override {
1585     AANoUnwindImpl::initialize(A);
1586     Function *F = getAssociatedFunction();
1587     if (!F || F->isDeclaration())
1588       indicatePessimisticFixpoint();
1589   }
1590 
1591   /// See AbstractAttribute::updateImpl(...).
1592   ChangeStatus updateImpl(Attributor &A) override {
1593     // TODO: Once we have call site specific value information we can provide
1594     //       call site specific liveness information and then it makes
1595     //       sense to specialize attributes for call sites arguments instead of
1596     //       redirecting requests to the callee argument.
1597     Function *F = getAssociatedFunction();
1598     const IRPosition &FnPos = IRPosition::function(*F);
1599     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1600     return clampStateAndIndicateChange(getState(), FnAA.getState());
1601   }
1602 
1603   /// See AbstractAttribute::trackStatistics()
1604   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1605 };
1606 } // namespace
1607 
1608 /// --------------------- Function Return Values -------------------------------
1609 
1610 namespace {
1611 /// "Attribute" that collects all potential returned values and the return
1612 /// instructions that they arise from.
1613 ///
1614 /// If there is a unique returned value R, the manifest method will:
1615 ///   - mark R with the "returned" attribute, if R is an argument.
1616 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1617 
1618   /// Mapping of values potentially returned by the associated function to the
1619   /// return instructions that might return them.
1620   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1621 
1622   /// State flags
1623   ///
1624   ///{
1625   bool IsFixed = false;
1626   bool IsValidState = true;
1627   ///}
1628 
1629 public:
1630   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1631       : AAReturnedValues(IRP, A) {}
1632 
1633   /// See AbstractAttribute::initialize(...).
1634   void initialize(Attributor &A) override {
1635     // Reset the state.
1636     IsFixed = false;
1637     IsValidState = true;
1638     ReturnedValues.clear();
1639 
1640     Function *F = getAssociatedFunction();
1641     if (!F || F->isDeclaration()) {
1642       indicatePessimisticFixpoint();
1643       return;
1644     }
1645     assert(!F->getReturnType()->isVoidTy() &&
1646            "Did not expect a void return type!");
1647 
1648     // The map from instruction opcodes to those instructions in the function.
1649     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1650 
1651     // Look through all arguments, if one is marked as returned we are done.
1652     for (Argument &Arg : F->args()) {
1653       if (Arg.hasReturnedAttr()) {
1654         auto &ReturnInstSet = ReturnedValues[&Arg];
1655         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1656           for (Instruction *RI : *Insts)
1657             ReturnInstSet.insert(cast<ReturnInst>(RI));
1658 
1659         indicateOptimisticFixpoint();
1660         return;
1661       }
1662     }
1663 
1664     if (!A.isFunctionIPOAmendable(*F))
1665       indicatePessimisticFixpoint();
1666   }
1667 
1668   /// See AbstractAttribute::manifest(...).
1669   ChangeStatus manifest(Attributor &A) override;
1670 
1671   /// See AbstractAttribute::getState(...).
1672   AbstractState &getState() override { return *this; }
1673 
1674   /// See AbstractAttribute::getState(...).
1675   const AbstractState &getState() const override { return *this; }
1676 
1677   /// See AbstractAttribute::updateImpl(Attributor &A).
1678   ChangeStatus updateImpl(Attributor &A) override;
1679 
1680   llvm::iterator_range<iterator> returned_values() override {
1681     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1682   }
1683 
1684   llvm::iterator_range<const_iterator> returned_values() const override {
1685     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1686   }
1687 
1688   /// Return the number of potential return values, -1 if unknown.
1689   size_t getNumReturnValues() const override {
1690     return isValidState() ? ReturnedValues.size() : -1;
1691   }
1692 
1693   /// Return an assumed unique return value if a single candidate is found. If
1694   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1695   /// Optional::NoneType.
1696   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1697 
1698   /// See AbstractState::checkForAllReturnedValues(...).
1699   bool checkForAllReturnedValuesAndReturnInsts(
1700       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1701       const override;
1702 
1703   /// Pretty print the attribute similar to the IR representation.
1704   const std::string getAsStr() const override;
1705 
1706   /// See AbstractState::isAtFixpoint().
1707   bool isAtFixpoint() const override { return IsFixed; }
1708 
1709   /// See AbstractState::isValidState().
1710   bool isValidState() const override { return IsValidState; }
1711 
1712   /// See AbstractState::indicateOptimisticFixpoint(...).
1713   ChangeStatus indicateOptimisticFixpoint() override {
1714     IsFixed = true;
1715     return ChangeStatus::UNCHANGED;
1716   }
1717 
1718   ChangeStatus indicatePessimisticFixpoint() override {
1719     IsFixed = true;
1720     IsValidState = false;
1721     return ChangeStatus::CHANGED;
1722   }
1723 };
1724 
1725 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1726   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1727 
1728   // Bookkeeping.
1729   assert(isValidState());
1730   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1731                   "Number of function with known return values");
1732 
1733   // Check if we have an assumed unique return value that we could manifest.
1734   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1735 
1736   if (!UniqueRV || !UniqueRV.value())
1737     return Changed;
1738 
1739   // Bookkeeping.
1740   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1741                   "Number of function with unique return");
1742   // If the assumed unique return value is an argument, annotate it.
1743   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.value())) {
1744     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1745             getAssociatedFunction()->getReturnType())) {
1746       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1747       Changed = IRAttribute::manifest(A);
1748     }
1749   }
1750   return Changed;
1751 }
1752 
1753 const std::string AAReturnedValuesImpl::getAsStr() const {
1754   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1755          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1756 }
1757 
1758 Optional<Value *>
1759 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1760   // If checkForAllReturnedValues provides a unique value, ignoring potential
1761   // undef values that can also be present, it is assumed to be the actual
1762   // return value and forwarded to the caller of this method. If there are
1763   // multiple, a nullptr is returned indicating there cannot be a unique
1764   // returned value.
1765   Optional<Value *> UniqueRV;
1766   Type *Ty = getAssociatedFunction()->getReturnType();
1767 
1768   auto Pred = [&](Value &RV) -> bool {
1769     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1770     return UniqueRV != Optional<Value *>(nullptr);
1771   };
1772 
1773   if (!A.checkForAllReturnedValues(Pred, *this))
1774     UniqueRV = nullptr;
1775 
1776   return UniqueRV;
1777 }
1778 
1779 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1780     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1781     const {
1782   if (!isValidState())
1783     return false;
1784 
1785   // Check all returned values but ignore call sites as long as we have not
1786   // encountered an overdefined one during an update.
1787   for (auto &It : ReturnedValues) {
1788     Value *RV = It.first;
1789     if (!Pred(*RV, It.second))
1790       return false;
1791   }
1792 
1793   return true;
1794 }
1795 
1796 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1797   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1798 
1799   SmallVector<AA::ValueAndContext> Values;
1800   bool UsedAssumedInformation = false;
1801   auto ReturnInstCB = [&](Instruction &I) {
1802     ReturnInst &Ret = cast<ReturnInst>(I);
1803     Values.clear();
1804     if (!A.getAssumedSimplifiedValues(IRPosition::value(*Ret.getReturnValue()),
1805                                       *this, Values, AA::Intraprocedural,
1806                                       UsedAssumedInformation))
1807       Values.push_back({*Ret.getReturnValue(), Ret});
1808 
1809     for (auto &VAC : Values) {
1810       assert(AA::isValidInScope(*VAC.getValue(), Ret.getFunction()) &&
1811              "Assumed returned value should be valid in function scope!");
1812       if (ReturnedValues[VAC.getValue()].insert(&Ret))
1813         Changed = ChangeStatus::CHANGED;
1814     }
1815     return true;
1816   };
1817 
1818   // Discover returned values from all live returned instructions in the
1819   // associated function.
1820   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1821                                  UsedAssumedInformation))
1822     return indicatePessimisticFixpoint();
1823   return Changed;
1824 }
1825 
1826 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1827   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1828       : AAReturnedValuesImpl(IRP, A) {}
1829 
1830   /// See AbstractAttribute::trackStatistics()
1831   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1832 };
1833 
1834 /// Returned values information for a call sites.
1835 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1836   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1837       : AAReturnedValuesImpl(IRP, A) {}
1838 
1839   /// See AbstractAttribute::initialize(...).
1840   void initialize(Attributor &A) override {
1841     // TODO: Once we have call site specific value information we can provide
1842     //       call site specific liveness information and then it makes
1843     //       sense to specialize attributes for call sites instead of
1844     //       redirecting requests to the callee.
1845     llvm_unreachable("Abstract attributes for returned values are not "
1846                      "supported for call sites yet!");
1847   }
1848 
1849   /// See AbstractAttribute::updateImpl(...).
1850   ChangeStatus updateImpl(Attributor &A) override {
1851     return indicatePessimisticFixpoint();
1852   }
1853 
1854   /// See AbstractAttribute::trackStatistics()
1855   void trackStatistics() const override {}
1856 };
1857 } // namespace
1858 
1859 /// ------------------------ NoSync Function Attribute -------------------------
1860 
1861 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1862   if (!I->isAtomic())
1863     return false;
1864 
1865   if (auto *FI = dyn_cast<FenceInst>(I))
1866     // All legal orderings for fence are stronger than monotonic.
1867     return FI->getSyncScopeID() != SyncScope::SingleThread;
1868   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1869     // Unordered is not a legal ordering for cmpxchg.
1870     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1871             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1872   }
1873 
1874   AtomicOrdering Ordering;
1875   switch (I->getOpcode()) {
1876   case Instruction::AtomicRMW:
1877     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1878     break;
1879   case Instruction::Store:
1880     Ordering = cast<StoreInst>(I)->getOrdering();
1881     break;
1882   case Instruction::Load:
1883     Ordering = cast<LoadInst>(I)->getOrdering();
1884     break;
1885   default:
1886     llvm_unreachable(
1887         "New atomic operations need to be known in the attributor.");
1888   }
1889 
1890   return (Ordering != AtomicOrdering::Unordered &&
1891           Ordering != AtomicOrdering::Monotonic);
1892 }
1893 
1894 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1895 /// which would be nosync except that they have a volatile flag.  All other
1896 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1897 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
1898   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1899     return !MI->isVolatile();
1900   return false;
1901 }
1902 
1903 namespace {
1904 struct AANoSyncImpl : AANoSync {
1905   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1906 
1907   const std::string getAsStr() const override {
1908     return getAssumed() ? "nosync" : "may-sync";
1909   }
1910 
1911   /// See AbstractAttribute::updateImpl(...).
1912   ChangeStatus updateImpl(Attributor &A) override;
1913 };
1914 
1915 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1916 
1917   auto CheckRWInstForNoSync = [&](Instruction &I) {
1918     return AA::isNoSyncInst(A, I, *this);
1919   };
1920 
1921   auto CheckForNoSync = [&](Instruction &I) {
1922     // At this point we handled all read/write effects and they are all
1923     // nosync, so they can be skipped.
1924     if (I.mayReadOrWriteMemory())
1925       return true;
1926 
1927     // non-convergent and readnone imply nosync.
1928     return !cast<CallBase>(I).isConvergent();
1929   };
1930 
1931   bool UsedAssumedInformation = false;
1932   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1933                                           UsedAssumedInformation) ||
1934       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1935                                          UsedAssumedInformation))
1936     return indicatePessimisticFixpoint();
1937 
1938   return ChangeStatus::UNCHANGED;
1939 }
1940 
1941 struct AANoSyncFunction final : public AANoSyncImpl {
1942   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1943       : AANoSyncImpl(IRP, A) {}
1944 
1945   /// See AbstractAttribute::trackStatistics()
1946   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1947 };
1948 
1949 /// NoSync attribute deduction for a call sites.
1950 struct AANoSyncCallSite final : AANoSyncImpl {
1951   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1952       : AANoSyncImpl(IRP, A) {}
1953 
1954   /// See AbstractAttribute::initialize(...).
1955   void initialize(Attributor &A) override {
1956     AANoSyncImpl::initialize(A);
1957     Function *F = getAssociatedFunction();
1958     if (!F || F->isDeclaration())
1959       indicatePessimisticFixpoint();
1960   }
1961 
1962   /// See AbstractAttribute::updateImpl(...).
1963   ChangeStatus updateImpl(Attributor &A) override {
1964     // TODO: Once we have call site specific value information we can provide
1965     //       call site specific liveness information and then it makes
1966     //       sense to specialize attributes for call sites arguments instead of
1967     //       redirecting requests to the callee argument.
1968     Function *F = getAssociatedFunction();
1969     const IRPosition &FnPos = IRPosition::function(*F);
1970     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1971     return clampStateAndIndicateChange(getState(), FnAA.getState());
1972   }
1973 
1974   /// See AbstractAttribute::trackStatistics()
1975   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1976 };
1977 } // namespace
1978 
1979 /// ------------------------ No-Free Attributes ----------------------------
1980 
1981 namespace {
1982 struct AANoFreeImpl : public AANoFree {
1983   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1984 
1985   /// See AbstractAttribute::updateImpl(...).
1986   ChangeStatus updateImpl(Attributor &A) override {
1987     auto CheckForNoFree = [&](Instruction &I) {
1988       const auto &CB = cast<CallBase>(I);
1989       if (CB.hasFnAttr(Attribute::NoFree))
1990         return true;
1991 
1992       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1993           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1994       return NoFreeAA.isAssumedNoFree();
1995     };
1996 
1997     bool UsedAssumedInformation = false;
1998     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1999                                            UsedAssumedInformation))
2000       return indicatePessimisticFixpoint();
2001     return ChangeStatus::UNCHANGED;
2002   }
2003 
2004   /// See AbstractAttribute::getAsStr().
2005   const std::string getAsStr() const override {
2006     return getAssumed() ? "nofree" : "may-free";
2007   }
2008 };
2009 
2010 struct AANoFreeFunction final : public AANoFreeImpl {
2011   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2012       : AANoFreeImpl(IRP, A) {}
2013 
2014   /// See AbstractAttribute::trackStatistics()
2015   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2016 };
2017 
2018 /// NoFree attribute deduction for a call sites.
2019 struct AANoFreeCallSite final : AANoFreeImpl {
2020   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2021       : AANoFreeImpl(IRP, A) {}
2022 
2023   /// See AbstractAttribute::initialize(...).
2024   void initialize(Attributor &A) override {
2025     AANoFreeImpl::initialize(A);
2026     Function *F = getAssociatedFunction();
2027     if (!F || F->isDeclaration())
2028       indicatePessimisticFixpoint();
2029   }
2030 
2031   /// See AbstractAttribute::updateImpl(...).
2032   ChangeStatus updateImpl(Attributor &A) override {
2033     // TODO: Once we have call site specific value information we can provide
2034     //       call site specific liveness information and then it makes
2035     //       sense to specialize attributes for call sites arguments instead of
2036     //       redirecting requests to the callee argument.
2037     Function *F = getAssociatedFunction();
2038     const IRPosition &FnPos = IRPosition::function(*F);
2039     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2040     return clampStateAndIndicateChange(getState(), FnAA.getState());
2041   }
2042 
2043   /// See AbstractAttribute::trackStatistics()
2044   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2045 };
2046 
2047 /// NoFree attribute for floating values.
2048 struct AANoFreeFloating : AANoFreeImpl {
2049   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2050       : AANoFreeImpl(IRP, A) {}
2051 
2052   /// See AbstractAttribute::trackStatistics()
2053   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2054 
2055   /// See Abstract Attribute::updateImpl(...).
2056   ChangeStatus updateImpl(Attributor &A) override {
2057     const IRPosition &IRP = getIRPosition();
2058 
2059     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2060         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2061     if (NoFreeAA.isAssumedNoFree())
2062       return ChangeStatus::UNCHANGED;
2063 
2064     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2065     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2066       Instruction *UserI = cast<Instruction>(U.getUser());
2067       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2068         if (CB->isBundleOperand(&U))
2069           return false;
2070         if (!CB->isArgOperand(&U))
2071           return true;
2072         unsigned ArgNo = CB->getArgOperandNo(&U);
2073 
2074         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2075             *this, IRPosition::callsite_argument(*CB, ArgNo),
2076             DepClassTy::REQUIRED);
2077         return NoFreeArg.isAssumedNoFree();
2078       }
2079 
2080       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2081           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2082         Follow = true;
2083         return true;
2084       }
2085       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2086           isa<ReturnInst>(UserI))
2087         return true;
2088 
2089       // Unknown user.
2090       return false;
2091     };
2092     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2093       return indicatePessimisticFixpoint();
2094 
2095     return ChangeStatus::UNCHANGED;
2096   }
2097 };
2098 
2099 /// NoFree attribute for a call site argument.
2100 struct AANoFreeArgument final : AANoFreeFloating {
2101   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2102       : AANoFreeFloating(IRP, A) {}
2103 
2104   /// See AbstractAttribute::trackStatistics()
2105   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2106 };
2107 
2108 /// NoFree attribute for call site arguments.
2109 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2110   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2111       : AANoFreeFloating(IRP, A) {}
2112 
2113   /// See AbstractAttribute::updateImpl(...).
2114   ChangeStatus updateImpl(Attributor &A) override {
2115     // TODO: Once we have call site specific value information we can provide
2116     //       call site specific liveness information and then it makes
2117     //       sense to specialize attributes for call sites arguments instead of
2118     //       redirecting requests to the callee argument.
2119     Argument *Arg = getAssociatedArgument();
2120     if (!Arg)
2121       return indicatePessimisticFixpoint();
2122     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2123     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2124     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2125   }
2126 
2127   /// See AbstractAttribute::trackStatistics()
2128   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2129 };
2130 
2131 /// NoFree attribute for function return value.
2132 struct AANoFreeReturned final : AANoFreeFloating {
2133   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2134       : AANoFreeFloating(IRP, A) {
2135     llvm_unreachable("NoFree is not applicable to function returns!");
2136   }
2137 
2138   /// See AbstractAttribute::initialize(...).
2139   void initialize(Attributor &A) override {
2140     llvm_unreachable("NoFree is not applicable to function returns!");
2141   }
2142 
2143   /// See AbstractAttribute::updateImpl(...).
2144   ChangeStatus updateImpl(Attributor &A) override {
2145     llvm_unreachable("NoFree is not applicable to function returns!");
2146   }
2147 
2148   /// See AbstractAttribute::trackStatistics()
2149   void trackStatistics() const override {}
2150 };
2151 
2152 /// NoFree attribute deduction for a call site return value.
2153 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2154   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2155       : AANoFreeFloating(IRP, A) {}
2156 
2157   ChangeStatus manifest(Attributor &A) override {
2158     return ChangeStatus::UNCHANGED;
2159   }
2160   /// See AbstractAttribute::trackStatistics()
2161   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2162 };
2163 } // namespace
2164 
2165 /// ------------------------ NonNull Argument Attribute ------------------------
2166 namespace {
2167 static int64_t getKnownNonNullAndDerefBytesForUse(
2168     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2169     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2170   TrackUse = false;
2171 
2172   const Value *UseV = U->get();
2173   if (!UseV->getType()->isPointerTy())
2174     return 0;
2175 
2176   // We need to follow common pointer manipulation uses to the accesses they
2177   // feed into. We can try to be smart to avoid looking through things we do not
2178   // like for now, e.g., non-inbounds GEPs.
2179   if (isa<CastInst>(I)) {
2180     TrackUse = true;
2181     return 0;
2182   }
2183 
2184   if (isa<GetElementPtrInst>(I)) {
2185     TrackUse = true;
2186     return 0;
2187   }
2188 
2189   Type *PtrTy = UseV->getType();
2190   const Function *F = I->getFunction();
2191   bool NullPointerIsDefined =
2192       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2193   const DataLayout &DL = A.getInfoCache().getDL();
2194   if (const auto *CB = dyn_cast<CallBase>(I)) {
2195     if (CB->isBundleOperand(U)) {
2196       if (RetainedKnowledge RK = getKnowledgeFromUse(
2197               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2198         IsNonNull |=
2199             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2200         return RK.ArgValue;
2201       }
2202       return 0;
2203     }
2204 
2205     if (CB->isCallee(U)) {
2206       IsNonNull |= !NullPointerIsDefined;
2207       return 0;
2208     }
2209 
2210     unsigned ArgNo = CB->getArgOperandNo(U);
2211     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2212     // As long as we only use known information there is no need to track
2213     // dependences here.
2214     auto &DerefAA =
2215         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2216     IsNonNull |= DerefAA.isKnownNonNull();
2217     return DerefAA.getKnownDereferenceableBytes();
2218   }
2219 
2220   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2221   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2222     return 0;
2223 
2224   int64_t Offset;
2225   const Value *Base =
2226       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2227   if (Base && Base == &AssociatedValue) {
2228     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2229     IsNonNull |= !NullPointerIsDefined;
2230     return std::max(int64_t(0), DerefBytes);
2231   }
2232 
2233   /// Corner case when an offset is 0.
2234   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2235                                           /*AllowNonInbounds*/ true);
2236   if (Base && Base == &AssociatedValue && Offset == 0) {
2237     int64_t DerefBytes = Loc->Size.getValue();
2238     IsNonNull |= !NullPointerIsDefined;
2239     return std::max(int64_t(0), DerefBytes);
2240   }
2241 
2242   return 0;
2243 }
2244 
2245 struct AANonNullImpl : AANonNull {
2246   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2247       : AANonNull(IRP, A),
2248         NullIsDefined(NullPointerIsDefined(
2249             getAnchorScope(),
2250             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2251 
2252   /// See AbstractAttribute::initialize(...).
2253   void initialize(Attributor &A) override {
2254     Value &V = *getAssociatedValue().stripPointerCasts();
2255     if (!NullIsDefined &&
2256         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2257                 /* IgnoreSubsumingPositions */ false, &A)) {
2258       indicateOptimisticFixpoint();
2259       return;
2260     }
2261 
2262     if (isa<ConstantPointerNull>(V)) {
2263       indicatePessimisticFixpoint();
2264       return;
2265     }
2266 
2267     AANonNull::initialize(A);
2268 
2269     bool CanBeNull, CanBeFreed;
2270     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2271                                          CanBeFreed)) {
2272       if (!CanBeNull) {
2273         indicateOptimisticFixpoint();
2274         return;
2275       }
2276     }
2277 
2278     if (isa<GlobalValue>(V)) {
2279       indicatePessimisticFixpoint();
2280       return;
2281     }
2282 
2283     if (Instruction *CtxI = getCtxI())
2284       followUsesInMBEC(*this, A, getState(), *CtxI);
2285   }
2286 
2287   /// See followUsesInMBEC
2288   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2289                        AANonNull::StateType &State) {
2290     bool IsNonNull = false;
2291     bool TrackUse = false;
2292     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2293                                        IsNonNull, TrackUse);
2294     State.setKnown(IsNonNull);
2295     return TrackUse;
2296   }
2297 
2298   /// See AbstractAttribute::getAsStr().
2299   const std::string getAsStr() const override {
2300     return getAssumed() ? "nonnull" : "may-null";
2301   }
2302 
2303   /// Flag to determine if the underlying value can be null and still allow
2304   /// valid accesses.
2305   const bool NullIsDefined;
2306 };
2307 
2308 /// NonNull attribute for a floating value.
2309 struct AANonNullFloating : public AANonNullImpl {
2310   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2311       : AANonNullImpl(IRP, A) {}
2312 
2313   /// See AbstractAttribute::updateImpl(...).
2314   ChangeStatus updateImpl(Attributor &A) override {
2315     const DataLayout &DL = A.getDataLayout();
2316 
2317     bool Stripped;
2318     bool UsedAssumedInformation = false;
2319     SmallVector<AA::ValueAndContext> Values;
2320     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
2321                                       AA::AnyScope, UsedAssumedInformation)) {
2322       Values.push_back({getAssociatedValue(), getCtxI()});
2323       Stripped = false;
2324     } else {
2325       Stripped = Values.size() != 1 ||
2326                  Values.front().getValue() != &getAssociatedValue();
2327     }
2328 
2329     DominatorTree *DT = nullptr;
2330     AssumptionCache *AC = nullptr;
2331     InformationCache &InfoCache = A.getInfoCache();
2332     if (const Function *Fn = getAnchorScope()) {
2333       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2334       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2335     }
2336 
2337     AANonNull::StateType T;
2338     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
2339       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2340                                              DepClassTy::REQUIRED);
2341       if (!Stripped && this == &AA) {
2342         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2343           T.indicatePessimisticFixpoint();
2344       } else {
2345         // Use abstract attribute information.
2346         const AANonNull::StateType &NS = AA.getState();
2347         T ^= NS;
2348       }
2349       return T.isValidState();
2350     };
2351 
2352     for (const auto &VAC : Values)
2353       if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
2354         return indicatePessimisticFixpoint();
2355 
2356     return clampStateAndIndicateChange(getState(), T);
2357   }
2358 
2359   /// See AbstractAttribute::trackStatistics()
2360   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2361 };
2362 
2363 /// NonNull attribute for function return value.
2364 struct AANonNullReturned final
2365     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2366   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2367       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2368 
2369   /// See AbstractAttribute::getAsStr().
2370   const std::string getAsStr() const override {
2371     return getAssumed() ? "nonnull" : "may-null";
2372   }
2373 
2374   /// See AbstractAttribute::trackStatistics()
2375   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2376 };
2377 
2378 /// NonNull attribute for function argument.
2379 struct AANonNullArgument final
2380     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2381   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2382       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2383 
2384   /// See AbstractAttribute::trackStatistics()
2385   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2386 };
2387 
2388 struct AANonNullCallSiteArgument final : AANonNullFloating {
2389   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2390       : AANonNullFloating(IRP, A) {}
2391 
2392   /// See AbstractAttribute::trackStatistics()
2393   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2394 };
2395 
2396 /// NonNull attribute for a call site return position.
2397 struct AANonNullCallSiteReturned final
2398     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2399   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2400       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2401 
2402   /// See AbstractAttribute::trackStatistics()
2403   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2404 };
2405 } // namespace
2406 
2407 /// ------------------------ No-Recurse Attributes ----------------------------
2408 
2409 namespace {
2410 struct AANoRecurseImpl : public AANoRecurse {
2411   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2412 
2413   /// See AbstractAttribute::getAsStr()
2414   const std::string getAsStr() const override {
2415     return getAssumed() ? "norecurse" : "may-recurse";
2416   }
2417 };
2418 
2419 struct AANoRecurseFunction final : AANoRecurseImpl {
2420   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2421       : AANoRecurseImpl(IRP, A) {}
2422 
2423   /// See AbstractAttribute::updateImpl(...).
2424   ChangeStatus updateImpl(Attributor &A) override {
2425 
2426     // If all live call sites are known to be no-recurse, we are as well.
2427     auto CallSitePred = [&](AbstractCallSite ACS) {
2428       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2429           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2430           DepClassTy::NONE);
2431       return NoRecurseAA.isKnownNoRecurse();
2432     };
2433     bool UsedAssumedInformation = false;
2434     if (A.checkForAllCallSites(CallSitePred, *this, true,
2435                                UsedAssumedInformation)) {
2436       // If we know all call sites and all are known no-recurse, we are done.
2437       // If all known call sites, which might not be all that exist, are known
2438       // to be no-recurse, we are not done but we can continue to assume
2439       // no-recurse. If one of the call sites we have not visited will become
2440       // live, another update is triggered.
2441       if (!UsedAssumedInformation)
2442         indicateOptimisticFixpoint();
2443       return ChangeStatus::UNCHANGED;
2444     }
2445 
2446     const AAFunctionReachability &EdgeReachability =
2447         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2448                                            DepClassTy::REQUIRED);
2449     if (EdgeReachability.canReach(A, *getAnchorScope()))
2450       return indicatePessimisticFixpoint();
2451     return ChangeStatus::UNCHANGED;
2452   }
2453 
2454   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2455 };
2456 
2457 /// NoRecurse attribute deduction for a call sites.
2458 struct AANoRecurseCallSite final : AANoRecurseImpl {
2459   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2460       : AANoRecurseImpl(IRP, A) {}
2461 
2462   /// See AbstractAttribute::initialize(...).
2463   void initialize(Attributor &A) override {
2464     AANoRecurseImpl::initialize(A);
2465     Function *F = getAssociatedFunction();
2466     if (!F || F->isDeclaration())
2467       indicatePessimisticFixpoint();
2468   }
2469 
2470   /// See AbstractAttribute::updateImpl(...).
2471   ChangeStatus updateImpl(Attributor &A) override {
2472     // TODO: Once we have call site specific value information we can provide
2473     //       call site specific liveness information and then it makes
2474     //       sense to specialize attributes for call sites arguments instead of
2475     //       redirecting requests to the callee argument.
2476     Function *F = getAssociatedFunction();
2477     const IRPosition &FnPos = IRPosition::function(*F);
2478     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2479     return clampStateAndIndicateChange(getState(), FnAA.getState());
2480   }
2481 
2482   /// See AbstractAttribute::trackStatistics()
2483   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2484 };
2485 } // namespace
2486 
2487 /// -------------------- Undefined-Behavior Attributes ------------------------
2488 
2489 namespace {
2490 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2491   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2492       : AAUndefinedBehavior(IRP, A) {}
2493 
2494   /// See AbstractAttribute::updateImpl(...).
2495   // through a pointer (i.e. also branches etc.)
2496   ChangeStatus updateImpl(Attributor &A) override {
2497     const size_t UBPrevSize = KnownUBInsts.size();
2498     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2499 
2500     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2501       // Lang ref now states volatile store is not UB, let's skip them.
2502       if (I.isVolatile() && I.mayWriteToMemory())
2503         return true;
2504 
2505       // Skip instructions that are already saved.
2506       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2507         return true;
2508 
2509       // If we reach here, we know we have an instruction
2510       // that accesses memory through a pointer operand,
2511       // for which getPointerOperand() should give it to us.
2512       Value *PtrOp =
2513           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2514       assert(PtrOp &&
2515              "Expected pointer operand of memory accessing instruction");
2516 
2517       // Either we stopped and the appropriate action was taken,
2518       // or we got back a simplified value to continue.
2519       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2520       if (!SimplifiedPtrOp || !SimplifiedPtrOp.value())
2521         return true;
2522       const Value *PtrOpVal = SimplifiedPtrOp.value();
2523 
2524       // A memory access through a pointer is considered UB
2525       // only if the pointer has constant null value.
2526       // TODO: Expand it to not only check constant values.
2527       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2528         AssumedNoUBInsts.insert(&I);
2529         return true;
2530       }
2531       const Type *PtrTy = PtrOpVal->getType();
2532 
2533       // Because we only consider instructions inside functions,
2534       // assume that a parent function exists.
2535       const Function *F = I.getFunction();
2536 
2537       // A memory access using constant null pointer is only considered UB
2538       // if null pointer is _not_ defined for the target platform.
2539       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2540         AssumedNoUBInsts.insert(&I);
2541       else
2542         KnownUBInsts.insert(&I);
2543       return true;
2544     };
2545 
2546     auto InspectBrInstForUB = [&](Instruction &I) {
2547       // A conditional branch instruction is considered UB if it has `undef`
2548       // condition.
2549 
2550       // Skip instructions that are already saved.
2551       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2552         return true;
2553 
2554       // We know we have a branch instruction.
2555       auto *BrInst = cast<BranchInst>(&I);
2556 
2557       // Unconditional branches are never considered UB.
2558       if (BrInst->isUnconditional())
2559         return true;
2560 
2561       // Either we stopped and the appropriate action was taken,
2562       // or we got back a simplified value to continue.
2563       Optional<Value *> SimplifiedCond =
2564           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2565       if (!SimplifiedCond || !*SimplifiedCond)
2566         return true;
2567       AssumedNoUBInsts.insert(&I);
2568       return true;
2569     };
2570 
2571     auto InspectCallSiteForUB = [&](Instruction &I) {
2572       // Check whether a callsite always cause UB or not
2573 
2574       // Skip instructions that are already saved.
2575       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2576         return true;
2577 
2578       // Check nonnull and noundef argument attribute violation for each
2579       // callsite.
2580       CallBase &CB = cast<CallBase>(I);
2581       Function *Callee = CB.getCalledFunction();
2582       if (!Callee)
2583         return true;
2584       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2585         // If current argument is known to be simplified to null pointer and the
2586         // corresponding argument position is known to have nonnull attribute,
2587         // the argument is poison. Furthermore, if the argument is poison and
2588         // the position is known to have noundef attriubte, this callsite is
2589         // considered UB.
2590         if (idx >= Callee->arg_size())
2591           break;
2592         Value *ArgVal = CB.getArgOperand(idx);
2593         if (!ArgVal)
2594           continue;
2595         // Here, we handle three cases.
2596         //   (1) Not having a value means it is dead. (we can replace the value
2597         //       with undef)
2598         //   (2) Simplified to undef. The argument violate noundef attriubte.
2599         //   (3) Simplified to null pointer where known to be nonnull.
2600         //       The argument is a poison value and violate noundef attribute.
2601         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2602         auto &NoUndefAA =
2603             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2604         if (!NoUndefAA.isKnownNoUndef())
2605           continue;
2606         bool UsedAssumedInformation = false;
2607         Optional<Value *> SimplifiedVal =
2608             A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
2609                                    UsedAssumedInformation, AA::Interprocedural);
2610         if (UsedAssumedInformation)
2611           continue;
2612         if (SimplifiedVal && !SimplifiedVal.value())
2613           return true;
2614         if (!SimplifiedVal || isa<UndefValue>(*SimplifiedVal.value())) {
2615           KnownUBInsts.insert(&I);
2616           continue;
2617         }
2618         if (!ArgVal->getType()->isPointerTy() ||
2619             !isa<ConstantPointerNull>(*SimplifiedVal.value()))
2620           continue;
2621         auto &NonNullAA =
2622             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2623         if (NonNullAA.isKnownNonNull())
2624           KnownUBInsts.insert(&I);
2625       }
2626       return true;
2627     };
2628 
2629     auto InspectReturnInstForUB = [&](Instruction &I) {
2630       auto &RI = cast<ReturnInst>(I);
2631       // Either we stopped and the appropriate action was taken,
2632       // or we got back a simplified return value to continue.
2633       Optional<Value *> SimplifiedRetValue =
2634           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2635       if (!SimplifiedRetValue || !*SimplifiedRetValue)
2636         return true;
2637 
2638       // Check if a return instruction always cause UB or not
2639       // Note: It is guaranteed that the returned position of the anchor
2640       //       scope has noundef attribute when this is called.
2641       //       We also ensure the return position is not "assumed dead"
2642       //       because the returned value was then potentially simplified to
2643       //       `undef` in AAReturnedValues without removing the `noundef`
2644       //       attribute yet.
2645 
2646       // When the returned position has noundef attriubte, UB occurs in the
2647       // following cases.
2648       //   (1) Returned value is known to be undef.
2649       //   (2) The value is known to be a null pointer and the returned
2650       //       position has nonnull attribute (because the returned value is
2651       //       poison).
2652       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2653         auto &NonNullAA = A.getAAFor<AANonNull>(
2654             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2655         if (NonNullAA.isKnownNonNull())
2656           KnownUBInsts.insert(&I);
2657       }
2658 
2659       return true;
2660     };
2661 
2662     bool UsedAssumedInformation = false;
2663     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2664                               {Instruction::Load, Instruction::Store,
2665                                Instruction::AtomicCmpXchg,
2666                                Instruction::AtomicRMW},
2667                               UsedAssumedInformation,
2668                               /* CheckBBLivenessOnly */ true);
2669     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2670                               UsedAssumedInformation,
2671                               /* CheckBBLivenessOnly */ true);
2672     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2673                                       UsedAssumedInformation);
2674 
2675     // If the returned position of the anchor scope has noundef attriubte, check
2676     // all returned instructions.
2677     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2678       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2679       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2680         auto &RetPosNoUndefAA =
2681             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2682         if (RetPosNoUndefAA.isKnownNoUndef())
2683           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2684                                     {Instruction::Ret}, UsedAssumedInformation,
2685                                     /* CheckBBLivenessOnly */ true);
2686       }
2687     }
2688 
2689     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2690         UBPrevSize != KnownUBInsts.size())
2691       return ChangeStatus::CHANGED;
2692     return ChangeStatus::UNCHANGED;
2693   }
2694 
2695   bool isKnownToCauseUB(Instruction *I) const override {
2696     return KnownUBInsts.count(I);
2697   }
2698 
2699   bool isAssumedToCauseUB(Instruction *I) const override {
2700     // In simple words, if an instruction is not in the assumed to _not_
2701     // cause UB, then it is assumed UB (that includes those
2702     // in the KnownUBInsts set). The rest is boilerplate
2703     // is to ensure that it is one of the instructions we test
2704     // for UB.
2705 
2706     switch (I->getOpcode()) {
2707     case Instruction::Load:
2708     case Instruction::Store:
2709     case Instruction::AtomicCmpXchg:
2710     case Instruction::AtomicRMW:
2711       return !AssumedNoUBInsts.count(I);
2712     case Instruction::Br: {
2713       auto *BrInst = cast<BranchInst>(I);
2714       if (BrInst->isUnconditional())
2715         return false;
2716       return !AssumedNoUBInsts.count(I);
2717     } break;
2718     default:
2719       return false;
2720     }
2721     return false;
2722   }
2723 
2724   ChangeStatus manifest(Attributor &A) override {
2725     if (KnownUBInsts.empty())
2726       return ChangeStatus::UNCHANGED;
2727     for (Instruction *I : KnownUBInsts)
2728       A.changeToUnreachableAfterManifest(I);
2729     return ChangeStatus::CHANGED;
2730   }
2731 
2732   /// See AbstractAttribute::getAsStr()
2733   const std::string getAsStr() const override {
2734     return getAssumed() ? "undefined-behavior" : "no-ub";
2735   }
2736 
2737   /// Note: The correctness of this analysis depends on the fact that the
2738   /// following 2 sets will stop changing after some point.
2739   /// "Change" here means that their size changes.
2740   /// The size of each set is monotonically increasing
2741   /// (we only add items to them) and it is upper bounded by the number of
2742   /// instructions in the processed function (we can never save more
2743   /// elements in either set than this number). Hence, at some point,
2744   /// they will stop increasing.
2745   /// Consequently, at some point, both sets will have stopped
2746   /// changing, effectively making the analysis reach a fixpoint.
2747 
2748   /// Note: These 2 sets are disjoint and an instruction can be considered
2749   /// one of 3 things:
2750   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2751   ///    the KnownUBInsts set.
2752   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2753   ///    has a reason to assume it).
2754   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2755   ///    could not find a reason to assume or prove that it can cause UB,
2756   ///    hence it assumes it doesn't. We have a set for these instructions
2757   ///    so that we don't reprocess them in every update.
2758   ///    Note however that instructions in this set may cause UB.
2759 
2760 protected:
2761   /// A set of all live instructions _known_ to cause UB.
2762   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2763 
2764 private:
2765   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2766   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2767 
2768   // Should be called on updates in which if we're processing an instruction
2769   // \p I that depends on a value \p V, one of the following has to happen:
2770   // - If the value is assumed, then stop.
2771   // - If the value is known but undef, then consider it UB.
2772   // - Otherwise, do specific processing with the simplified value.
2773   // We return None in the first 2 cases to signify that an appropriate
2774   // action was taken and the caller should stop.
2775   // Otherwise, we return the simplified value that the caller should
2776   // use for specific processing.
2777   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2778                                          Instruction *I) {
2779     bool UsedAssumedInformation = false;
2780     Optional<Value *> SimplifiedV =
2781         A.getAssumedSimplified(IRPosition::value(*V), *this,
2782                                UsedAssumedInformation, AA::Interprocedural);
2783     if (!UsedAssumedInformation) {
2784       // Don't depend on assumed values.
2785       if (!SimplifiedV) {
2786         // If it is known (which we tested above) but it doesn't have a value,
2787         // then we can assume `undef` and hence the instruction is UB.
2788         KnownUBInsts.insert(I);
2789         return llvm::None;
2790       }
2791       if (!*SimplifiedV)
2792         return nullptr;
2793       V = *SimplifiedV;
2794     }
2795     if (isa<UndefValue>(V)) {
2796       KnownUBInsts.insert(I);
2797       return llvm::None;
2798     }
2799     return V;
2800   }
2801 };
2802 
2803 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2804   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2805       : AAUndefinedBehaviorImpl(IRP, A) {}
2806 
2807   /// See AbstractAttribute::trackStatistics()
2808   void trackStatistics() const override {
2809     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2810                "Number of instructions known to have UB");
2811     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2812         KnownUBInsts.size();
2813   }
2814 };
2815 } // namespace
2816 
2817 /// ------------------------ Will-Return Attributes ----------------------------
2818 
2819 namespace {
2820 // Helper function that checks whether a function has any cycle which we don't
2821 // know if it is bounded or not.
2822 // Loops with maximum trip count are considered bounded, any other cycle not.
2823 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2824   ScalarEvolution *SE =
2825       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2826   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2827   // If either SCEV or LoopInfo is not available for the function then we assume
2828   // any cycle to be unbounded cycle.
2829   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2830   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2831   if (!SE || !LI) {
2832     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2833       if (SCCI.hasCycle())
2834         return true;
2835     return false;
2836   }
2837 
2838   // If there's irreducible control, the function may contain non-loop cycles.
2839   if (mayContainIrreducibleControl(F, LI))
2840     return true;
2841 
2842   // Any loop that does not have a max trip count is considered unbounded cycle.
2843   for (auto *L : LI->getLoopsInPreorder()) {
2844     if (!SE->getSmallConstantMaxTripCount(L))
2845       return true;
2846   }
2847   return false;
2848 }
2849 
2850 struct AAWillReturnImpl : public AAWillReturn {
2851   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2852       : AAWillReturn(IRP, A) {}
2853 
2854   /// See AbstractAttribute::initialize(...).
2855   void initialize(Attributor &A) override {
2856     AAWillReturn::initialize(A);
2857 
2858     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2859       indicateOptimisticFixpoint();
2860       return;
2861     }
2862   }
2863 
2864   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2865   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2866     // Check for `mustprogress` in the scope and the associated function which
2867     // might be different if this is a call site.
2868     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2869         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2870       return false;
2871 
2872     bool IsKnown;
2873     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2874       return IsKnown || !KnownOnly;
2875     return false;
2876   }
2877 
2878   /// See AbstractAttribute::updateImpl(...).
2879   ChangeStatus updateImpl(Attributor &A) override {
2880     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2881       return ChangeStatus::UNCHANGED;
2882 
2883     auto CheckForWillReturn = [&](Instruction &I) {
2884       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2885       const auto &WillReturnAA =
2886           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2887       if (WillReturnAA.isKnownWillReturn())
2888         return true;
2889       if (!WillReturnAA.isAssumedWillReturn())
2890         return false;
2891       const auto &NoRecurseAA =
2892           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2893       return NoRecurseAA.isAssumedNoRecurse();
2894     };
2895 
2896     bool UsedAssumedInformation = false;
2897     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2898                                            UsedAssumedInformation))
2899       return indicatePessimisticFixpoint();
2900 
2901     return ChangeStatus::UNCHANGED;
2902   }
2903 
2904   /// See AbstractAttribute::getAsStr()
2905   const std::string getAsStr() const override {
2906     return getAssumed() ? "willreturn" : "may-noreturn";
2907   }
2908 };
2909 
2910 struct AAWillReturnFunction final : AAWillReturnImpl {
2911   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2912       : AAWillReturnImpl(IRP, A) {}
2913 
2914   /// See AbstractAttribute::initialize(...).
2915   void initialize(Attributor &A) override {
2916     AAWillReturnImpl::initialize(A);
2917 
2918     Function *F = getAnchorScope();
2919     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2920       indicatePessimisticFixpoint();
2921   }
2922 
2923   /// See AbstractAttribute::trackStatistics()
2924   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2925 };
2926 
2927 /// WillReturn attribute deduction for a call sites.
2928 struct AAWillReturnCallSite final : AAWillReturnImpl {
2929   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2930       : AAWillReturnImpl(IRP, A) {}
2931 
2932   /// See AbstractAttribute::initialize(...).
2933   void initialize(Attributor &A) override {
2934     AAWillReturnImpl::initialize(A);
2935     Function *F = getAssociatedFunction();
2936     if (!F || !A.isFunctionIPOAmendable(*F))
2937       indicatePessimisticFixpoint();
2938   }
2939 
2940   /// See AbstractAttribute::updateImpl(...).
2941   ChangeStatus updateImpl(Attributor &A) override {
2942     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2943       return ChangeStatus::UNCHANGED;
2944 
2945     // TODO: Once we have call site specific value information we can provide
2946     //       call site specific liveness information and then it makes
2947     //       sense to specialize attributes for call sites arguments instead of
2948     //       redirecting requests to the callee argument.
2949     Function *F = getAssociatedFunction();
2950     const IRPosition &FnPos = IRPosition::function(*F);
2951     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2952     return clampStateAndIndicateChange(getState(), FnAA.getState());
2953   }
2954 
2955   /// See AbstractAttribute::trackStatistics()
2956   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2957 };
2958 } // namespace
2959 
2960 /// -------------------AAReachability Attribute--------------------------
2961 
2962 namespace {
2963 struct AAReachabilityImpl : AAReachability {
2964   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2965       : AAReachability(IRP, A) {}
2966 
2967   const std::string getAsStr() const override {
2968     // TODO: Return the number of reachable queries.
2969     return "reachable";
2970   }
2971 
2972   /// See AbstractAttribute::updateImpl(...).
2973   ChangeStatus updateImpl(Attributor &A) override {
2974     return ChangeStatus::UNCHANGED;
2975   }
2976 };
2977 
2978 struct AAReachabilityFunction final : public AAReachabilityImpl {
2979   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2980       : AAReachabilityImpl(IRP, A) {}
2981 
2982   /// See AbstractAttribute::trackStatistics()
2983   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2984 };
2985 } // namespace
2986 
2987 /// ------------------------ NoAlias Argument Attribute ------------------------
2988 
2989 namespace {
2990 struct AANoAliasImpl : AANoAlias {
2991   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2992     assert(getAssociatedType()->isPointerTy() &&
2993            "Noalias is a pointer attribute");
2994   }
2995 
2996   const std::string getAsStr() const override {
2997     return getAssumed() ? "noalias" : "may-alias";
2998   }
2999 };
3000 
3001 /// NoAlias attribute for a floating value.
3002 struct AANoAliasFloating final : AANoAliasImpl {
3003   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3004       : AANoAliasImpl(IRP, A) {}
3005 
3006   /// See AbstractAttribute::initialize(...).
3007   void initialize(Attributor &A) override {
3008     AANoAliasImpl::initialize(A);
3009     Value *Val = &getAssociatedValue();
3010     do {
3011       CastInst *CI = dyn_cast<CastInst>(Val);
3012       if (!CI)
3013         break;
3014       Value *Base = CI->getOperand(0);
3015       if (!Base->hasOneUse())
3016         break;
3017       Val = Base;
3018     } while (true);
3019 
3020     if (!Val->getType()->isPointerTy()) {
3021       indicatePessimisticFixpoint();
3022       return;
3023     }
3024 
3025     if (isa<AllocaInst>(Val))
3026       indicateOptimisticFixpoint();
3027     else if (isa<ConstantPointerNull>(Val) &&
3028              !NullPointerIsDefined(getAnchorScope(),
3029                                    Val->getType()->getPointerAddressSpace()))
3030       indicateOptimisticFixpoint();
3031     else if (Val != &getAssociatedValue()) {
3032       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3033           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3034       if (ValNoAliasAA.isKnownNoAlias())
3035         indicateOptimisticFixpoint();
3036     }
3037   }
3038 
3039   /// See AbstractAttribute::updateImpl(...).
3040   ChangeStatus updateImpl(Attributor &A) override {
3041     // TODO: Implement this.
3042     return indicatePessimisticFixpoint();
3043   }
3044 
3045   /// See AbstractAttribute::trackStatistics()
3046   void trackStatistics() const override {
3047     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3048   }
3049 };
3050 
3051 /// NoAlias attribute for an argument.
3052 struct AANoAliasArgument final
3053     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3054   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3055   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3056 
3057   /// See AbstractAttribute::initialize(...).
3058   void initialize(Attributor &A) override {
3059     Base::initialize(A);
3060     // See callsite argument attribute and callee argument attribute.
3061     if (hasAttr({Attribute::ByVal}))
3062       indicateOptimisticFixpoint();
3063   }
3064 
3065   /// See AbstractAttribute::update(...).
3066   ChangeStatus updateImpl(Attributor &A) override {
3067     // We have to make sure no-alias on the argument does not break
3068     // synchronization when this is a callback argument, see also [1] below.
3069     // If synchronization cannot be affected, we delegate to the base updateImpl
3070     // function, otherwise we give up for now.
3071 
3072     // If the function is no-sync, no-alias cannot break synchronization.
3073     const auto &NoSyncAA =
3074         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3075                              DepClassTy::OPTIONAL);
3076     if (NoSyncAA.isAssumedNoSync())
3077       return Base::updateImpl(A);
3078 
3079     // If the argument is read-only, no-alias cannot break synchronization.
3080     bool IsKnown;
3081     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3082       return Base::updateImpl(A);
3083 
3084     // If the argument is never passed through callbacks, no-alias cannot break
3085     // synchronization.
3086     bool UsedAssumedInformation = false;
3087     if (A.checkForAllCallSites(
3088             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3089             true, UsedAssumedInformation))
3090       return Base::updateImpl(A);
3091 
3092     // TODO: add no-alias but make sure it doesn't break synchronization by
3093     // introducing fake uses. See:
3094     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3095     //     International Workshop on OpenMP 2018,
3096     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3097 
3098     return indicatePessimisticFixpoint();
3099   }
3100 
3101   /// See AbstractAttribute::trackStatistics()
3102   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3103 };
3104 
3105 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3106   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3107       : AANoAliasImpl(IRP, A) {}
3108 
3109   /// See AbstractAttribute::initialize(...).
3110   void initialize(Attributor &A) override {
3111     // See callsite argument attribute and callee argument attribute.
3112     const auto &CB = cast<CallBase>(getAnchorValue());
3113     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3114       indicateOptimisticFixpoint();
3115     Value &Val = getAssociatedValue();
3116     if (isa<ConstantPointerNull>(Val) &&
3117         !NullPointerIsDefined(getAnchorScope(),
3118                               Val.getType()->getPointerAddressSpace()))
3119       indicateOptimisticFixpoint();
3120   }
3121 
3122   /// Determine if the underlying value may alias with the call site argument
3123   /// \p OtherArgNo of \p ICS (= the underlying call site).
3124   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3125                             const AAMemoryBehavior &MemBehaviorAA,
3126                             const CallBase &CB, unsigned OtherArgNo) {
3127     // We do not need to worry about aliasing with the underlying IRP.
3128     if (this->getCalleeArgNo() == (int)OtherArgNo)
3129       return false;
3130 
3131     // If it is not a pointer or pointer vector we do not alias.
3132     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3133     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3134       return false;
3135 
3136     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3137         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3138 
3139     // If the argument is readnone, there is no read-write aliasing.
3140     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3141       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3142       return false;
3143     }
3144 
3145     // If the argument is readonly and the underlying value is readonly, there
3146     // is no read-write aliasing.
3147     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3148     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3149       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3150       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3151       return false;
3152     }
3153 
3154     // We have to utilize actual alias analysis queries so we need the object.
3155     if (!AAR)
3156       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3157 
3158     // Try to rule it out at the call site.
3159     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3160     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3161                          "callsite arguments: "
3162                       << getAssociatedValue() << " " << *ArgOp << " => "
3163                       << (IsAliasing ? "" : "no-") << "alias \n");
3164 
3165     return IsAliasing;
3166   }
3167 
3168   bool
3169   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3170                                          const AAMemoryBehavior &MemBehaviorAA,
3171                                          const AANoAlias &NoAliasAA) {
3172     // We can deduce "noalias" if the following conditions hold.
3173     // (i)   Associated value is assumed to be noalias in the definition.
3174     // (ii)  Associated value is assumed to be no-capture in all the uses
3175     //       possibly executed before this callsite.
3176     // (iii) There is no other pointer argument which could alias with the
3177     //       value.
3178 
3179     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3180     if (!AssociatedValueIsNoAliasAtDef) {
3181       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3182                         << " is not no-alias at the definition\n");
3183       return false;
3184     }
3185 
3186     auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
3187       const auto &DerefAA = A.getAAFor<AADereferenceable>(
3188           *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
3189       return DerefAA.getAssumedDereferenceableBytes();
3190     };
3191 
3192     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3193 
3194     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3195     const Function *ScopeFn = VIRP.getAnchorScope();
3196     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3197     // Check whether the value is captured in the scope using AANoCapture.
3198     // Look at CFG and check only uses possibly executed before this
3199     // callsite.
3200     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3201       Instruction *UserI = cast<Instruction>(U.getUser());
3202 
3203       // If UserI is the curr instruction and there is a single potential use of
3204       // the value in UserI we allow the use.
3205       // TODO: We should inspect the operands and allow those that cannot alias
3206       //       with the value.
3207       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3208         return true;
3209 
3210       if (ScopeFn) {
3211         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3212           if (CB->isArgOperand(&U)) {
3213 
3214             unsigned ArgNo = CB->getArgOperandNo(&U);
3215 
3216             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3217                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3218                 DepClassTy::OPTIONAL);
3219 
3220             if (NoCaptureAA.isAssumedNoCapture())
3221               return true;
3222           }
3223         }
3224 
3225         if (!AA::isPotentiallyReachable(A, *UserI, *getCtxI(), *this))
3226           return true;
3227       }
3228 
3229       // TODO: We should track the capturing uses in AANoCapture but the problem
3230       //       is CGSCC runs. For those we would need to "allow" AANoCapture for
3231       //       a value in the module slice.
3232       switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
3233       case UseCaptureKind::NO_CAPTURE:
3234         return true;
3235       case UseCaptureKind::MAY_CAPTURE:
3236         LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
3237                           << "\n");
3238         return false;
3239       case UseCaptureKind::PASSTHROUGH:
3240         Follow = true;
3241         return true;
3242       }
3243       llvm_unreachable("unknown UseCaptureKind");
3244     };
3245 
3246     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3247       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3248         LLVM_DEBUG(
3249             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3250                    << " cannot be noalias as it is potentially captured\n");
3251         return false;
3252       }
3253     }
3254     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3255 
3256     // Check there is no other pointer argument which could alias with the
3257     // value passed at this call site.
3258     // TODO: AbstractCallSite
3259     const auto &CB = cast<CallBase>(getAnchorValue());
3260     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3261       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3262         return false;
3263 
3264     return true;
3265   }
3266 
3267   /// See AbstractAttribute::updateImpl(...).
3268   ChangeStatus updateImpl(Attributor &A) override {
3269     // If the argument is readnone we are done as there are no accesses via the
3270     // argument.
3271     auto &MemBehaviorAA =
3272         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3273     if (MemBehaviorAA.isAssumedReadNone()) {
3274       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3275       return ChangeStatus::UNCHANGED;
3276     }
3277 
3278     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3279     const auto &NoAliasAA =
3280         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3281 
3282     AAResults *AAR = nullptr;
3283     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3284                                                NoAliasAA)) {
3285       LLVM_DEBUG(
3286           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3287       return ChangeStatus::UNCHANGED;
3288     }
3289 
3290     return indicatePessimisticFixpoint();
3291   }
3292 
3293   /// See AbstractAttribute::trackStatistics()
3294   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3295 };
3296 
3297 /// NoAlias attribute for function return value.
3298 struct AANoAliasReturned final : AANoAliasImpl {
3299   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3300       : AANoAliasImpl(IRP, A) {}
3301 
3302   /// See AbstractAttribute::initialize(...).
3303   void initialize(Attributor &A) override {
3304     AANoAliasImpl::initialize(A);
3305     Function *F = getAssociatedFunction();
3306     if (!F || F->isDeclaration())
3307       indicatePessimisticFixpoint();
3308   }
3309 
3310   /// See AbstractAttribute::updateImpl(...).
3311   virtual ChangeStatus updateImpl(Attributor &A) override {
3312 
3313     auto CheckReturnValue = [&](Value &RV) -> bool {
3314       if (Constant *C = dyn_cast<Constant>(&RV))
3315         if (C->isNullValue() || isa<UndefValue>(C))
3316           return true;
3317 
3318       /// For now, we can only deduce noalias if we have call sites.
3319       /// FIXME: add more support.
3320       if (!isa<CallBase>(&RV))
3321         return false;
3322 
3323       const IRPosition &RVPos = IRPosition::value(RV);
3324       const auto &NoAliasAA =
3325           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3326       if (!NoAliasAA.isAssumedNoAlias())
3327         return false;
3328 
3329       const auto &NoCaptureAA =
3330           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3331       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3332     };
3333 
3334     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3335       return indicatePessimisticFixpoint();
3336 
3337     return ChangeStatus::UNCHANGED;
3338   }
3339 
3340   /// See AbstractAttribute::trackStatistics()
3341   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3342 };
3343 
3344 /// NoAlias attribute deduction for a call site return value.
3345 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3346   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3347       : AANoAliasImpl(IRP, A) {}
3348 
3349   /// See AbstractAttribute::initialize(...).
3350   void initialize(Attributor &A) override {
3351     AANoAliasImpl::initialize(A);
3352     Function *F = getAssociatedFunction();
3353     if (!F || F->isDeclaration())
3354       indicatePessimisticFixpoint();
3355   }
3356 
3357   /// See AbstractAttribute::updateImpl(...).
3358   ChangeStatus updateImpl(Attributor &A) override {
3359     // TODO: Once we have call site specific value information we can provide
3360     //       call site specific liveness information and then it makes
3361     //       sense to specialize attributes for call sites arguments instead of
3362     //       redirecting requests to the callee argument.
3363     Function *F = getAssociatedFunction();
3364     const IRPosition &FnPos = IRPosition::returned(*F);
3365     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3366     return clampStateAndIndicateChange(getState(), FnAA.getState());
3367   }
3368 
3369   /// See AbstractAttribute::trackStatistics()
3370   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3371 };
3372 } // namespace
3373 
3374 /// -------------------AAIsDead Function Attribute-----------------------
3375 
3376 namespace {
3377 struct AAIsDeadValueImpl : public AAIsDead {
3378   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3379 
3380   /// See AbstractAttribute::initialize(...).
3381   void initialize(Attributor &A) override {
3382     if (auto *Scope = getAnchorScope())
3383       if (!A.isRunOn(*Scope))
3384         indicatePessimisticFixpoint();
3385   }
3386 
3387   /// See AAIsDead::isAssumedDead().
3388   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3389 
3390   /// See AAIsDead::isKnownDead().
3391   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3392 
3393   /// See AAIsDead::isAssumedDead(BasicBlock *).
3394   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3395 
3396   /// See AAIsDead::isKnownDead(BasicBlock *).
3397   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3398 
3399   /// See AAIsDead::isAssumedDead(Instruction *I).
3400   bool isAssumedDead(const Instruction *I) const override {
3401     return I == getCtxI() && isAssumedDead();
3402   }
3403 
3404   /// See AAIsDead::isKnownDead(Instruction *I).
3405   bool isKnownDead(const Instruction *I) const override {
3406     return isAssumedDead(I) && isKnownDead();
3407   }
3408 
3409   /// See AbstractAttribute::getAsStr().
3410   virtual const std::string getAsStr() const override {
3411     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3412   }
3413 
3414   /// Check if all uses are assumed dead.
3415   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3416     // Callers might not check the type, void has no uses.
3417     if (V.getType()->isVoidTy() || V.use_empty())
3418       return true;
3419 
3420     // If we replace a value with a constant there are no uses left afterwards.
3421     if (!isa<Constant>(V)) {
3422       if (auto *I = dyn_cast<Instruction>(&V))
3423         if (!A.isRunOn(*I->getFunction()))
3424           return false;
3425       bool UsedAssumedInformation = false;
3426       Optional<Constant *> C =
3427           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3428       if (!C || *C)
3429         return true;
3430     }
3431 
3432     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3433     // Explicitly set the dependence class to required because we want a long
3434     // chain of N dependent instructions to be considered live as soon as one is
3435     // without going through N update cycles. This is not required for
3436     // correctness.
3437     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3438                              DepClassTy::REQUIRED,
3439                              /* IgnoreDroppableUses */ false);
3440   }
3441 
3442   /// Determine if \p I is assumed to be side-effect free.
3443   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3444     if (!I || wouldInstructionBeTriviallyDead(I))
3445       return true;
3446 
3447     auto *CB = dyn_cast<CallBase>(I);
3448     if (!CB || isa<IntrinsicInst>(CB))
3449       return false;
3450 
3451     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3452     const auto &NoUnwindAA =
3453         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3454     if (!NoUnwindAA.isAssumedNoUnwind())
3455       return false;
3456     if (!NoUnwindAA.isKnownNoUnwind())
3457       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3458 
3459     bool IsKnown;
3460     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3461   }
3462 };
3463 
3464 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3465   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3466       : AAIsDeadValueImpl(IRP, A) {}
3467 
3468   /// See AbstractAttribute::initialize(...).
3469   void initialize(Attributor &A) override {
3470     AAIsDeadValueImpl::initialize(A);
3471 
3472     if (isa<UndefValue>(getAssociatedValue())) {
3473       indicatePessimisticFixpoint();
3474       return;
3475     }
3476 
3477     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3478     if (!isAssumedSideEffectFree(A, I)) {
3479       if (!isa_and_nonnull<StoreInst>(I))
3480         indicatePessimisticFixpoint();
3481       else
3482         removeAssumedBits(HAS_NO_EFFECT);
3483     }
3484   }
3485 
3486   bool isDeadStore(Attributor &A, StoreInst &SI) {
3487     // Lang ref now states volatile store is not UB/dead, let's skip them.
3488     if (SI.isVolatile())
3489       return false;
3490 
3491     bool UsedAssumedInformation = false;
3492     SmallSetVector<Value *, 4> PotentialCopies;
3493     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3494                                              UsedAssumedInformation))
3495       return false;
3496     return llvm::all_of(PotentialCopies, [&](Value *V) {
3497       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3498                              UsedAssumedInformation);
3499     });
3500   }
3501 
3502   /// See AbstractAttribute::getAsStr().
3503   const std::string getAsStr() const override {
3504     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3505     if (isa_and_nonnull<StoreInst>(I))
3506       if (isValidState())
3507         return "assumed-dead-store";
3508     return AAIsDeadValueImpl::getAsStr();
3509   }
3510 
3511   /// See AbstractAttribute::updateImpl(...).
3512   ChangeStatus updateImpl(Attributor &A) override {
3513     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3514     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3515       if (!isDeadStore(A, *SI))
3516         return indicatePessimisticFixpoint();
3517     } else {
3518       if (!isAssumedSideEffectFree(A, I))
3519         return indicatePessimisticFixpoint();
3520       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3521         return indicatePessimisticFixpoint();
3522     }
3523     return ChangeStatus::UNCHANGED;
3524   }
3525 
3526   bool isRemovableStore() const override {
3527     return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
3528   }
3529 
3530   /// See AbstractAttribute::manifest(...).
3531   ChangeStatus manifest(Attributor &A) override {
3532     Value &V = getAssociatedValue();
3533     if (auto *I = dyn_cast<Instruction>(&V)) {
3534       // If we get here we basically know the users are all dead. We check if
3535       // isAssumedSideEffectFree returns true here again because it might not be
3536       // the case and only the users are dead but the instruction (=call) is
3537       // still needed.
3538       if (isa<StoreInst>(I) ||
3539           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3540         A.deleteAfterManifest(*I);
3541         return ChangeStatus::CHANGED;
3542       }
3543     }
3544     return ChangeStatus::UNCHANGED;
3545   }
3546 
3547   /// See AbstractAttribute::trackStatistics()
3548   void trackStatistics() const override {
3549     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3550   }
3551 };
3552 
3553 struct AAIsDeadArgument : public AAIsDeadFloating {
3554   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3555       : AAIsDeadFloating(IRP, A) {}
3556 
3557   /// See AbstractAttribute::initialize(...).
3558   void initialize(Attributor &A) override {
3559     AAIsDeadFloating::initialize(A);
3560     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3561       indicatePessimisticFixpoint();
3562   }
3563 
3564   /// See AbstractAttribute::manifest(...).
3565   ChangeStatus manifest(Attributor &A) override {
3566     Argument &Arg = *getAssociatedArgument();
3567     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3568       if (A.registerFunctionSignatureRewrite(
3569               Arg, /* ReplacementTypes */ {},
3570               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3571               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3572         return ChangeStatus::CHANGED;
3573       }
3574     return ChangeStatus::UNCHANGED;
3575   }
3576 
3577   /// See AbstractAttribute::trackStatistics()
3578   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3579 };
3580 
3581 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3582   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3583       : AAIsDeadValueImpl(IRP, A) {}
3584 
3585   /// See AbstractAttribute::initialize(...).
3586   void initialize(Attributor &A) override {
3587     AAIsDeadValueImpl::initialize(A);
3588     if (isa<UndefValue>(getAssociatedValue()))
3589       indicatePessimisticFixpoint();
3590   }
3591 
3592   /// See AbstractAttribute::updateImpl(...).
3593   ChangeStatus updateImpl(Attributor &A) override {
3594     // TODO: Once we have call site specific value information we can provide
3595     //       call site specific liveness information and then it makes
3596     //       sense to specialize attributes for call sites arguments instead of
3597     //       redirecting requests to the callee argument.
3598     Argument *Arg = getAssociatedArgument();
3599     if (!Arg)
3600       return indicatePessimisticFixpoint();
3601     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3602     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3603     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3604   }
3605 
3606   /// See AbstractAttribute::manifest(...).
3607   ChangeStatus manifest(Attributor &A) override {
3608     CallBase &CB = cast<CallBase>(getAnchorValue());
3609     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3610     assert(!isa<UndefValue>(U.get()) &&
3611            "Expected undef values to be filtered out!");
3612     UndefValue &UV = *UndefValue::get(U->getType());
3613     if (A.changeUseAfterManifest(U, UV))
3614       return ChangeStatus::CHANGED;
3615     return ChangeStatus::UNCHANGED;
3616   }
3617 
3618   /// See AbstractAttribute::trackStatistics()
3619   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3620 };
3621 
3622 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3623   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3624       : AAIsDeadFloating(IRP, A) {}
3625 
3626   /// See AAIsDead::isAssumedDead().
3627   bool isAssumedDead() const override {
3628     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3629   }
3630 
3631   /// See AbstractAttribute::initialize(...).
3632   void initialize(Attributor &A) override {
3633     AAIsDeadFloating::initialize(A);
3634     if (isa<UndefValue>(getAssociatedValue())) {
3635       indicatePessimisticFixpoint();
3636       return;
3637     }
3638 
3639     // We track this separately as a secondary state.
3640     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3641   }
3642 
3643   /// See AbstractAttribute::updateImpl(...).
3644   ChangeStatus updateImpl(Attributor &A) override {
3645     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3646     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3647       IsAssumedSideEffectFree = false;
3648       Changed = ChangeStatus::CHANGED;
3649     }
3650     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3651       return indicatePessimisticFixpoint();
3652     return Changed;
3653   }
3654 
3655   /// See AbstractAttribute::trackStatistics()
3656   void trackStatistics() const override {
3657     if (IsAssumedSideEffectFree)
3658       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3659     else
3660       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3661   }
3662 
3663   /// See AbstractAttribute::getAsStr().
3664   const std::string getAsStr() const override {
3665     return isAssumedDead()
3666                ? "assumed-dead"
3667                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3668   }
3669 
3670 private:
3671   bool IsAssumedSideEffectFree = true;
3672 };
3673 
3674 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3675   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3676       : AAIsDeadValueImpl(IRP, A) {}
3677 
3678   /// See AbstractAttribute::updateImpl(...).
3679   ChangeStatus updateImpl(Attributor &A) override {
3680 
3681     bool UsedAssumedInformation = false;
3682     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3683                               {Instruction::Ret}, UsedAssumedInformation);
3684 
3685     auto PredForCallSite = [&](AbstractCallSite ACS) {
3686       if (ACS.isCallbackCall() || !ACS.getInstruction())
3687         return false;
3688       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3689     };
3690 
3691     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3692                                 UsedAssumedInformation))
3693       return indicatePessimisticFixpoint();
3694 
3695     return ChangeStatus::UNCHANGED;
3696   }
3697 
3698   /// See AbstractAttribute::manifest(...).
3699   ChangeStatus manifest(Attributor &A) override {
3700     // TODO: Rewrite the signature to return void?
3701     bool AnyChange = false;
3702     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3703     auto RetInstPred = [&](Instruction &I) {
3704       ReturnInst &RI = cast<ReturnInst>(I);
3705       if (!isa<UndefValue>(RI.getReturnValue()))
3706         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3707       return true;
3708     };
3709     bool UsedAssumedInformation = false;
3710     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3711                               UsedAssumedInformation);
3712     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3713   }
3714 
3715   /// See AbstractAttribute::trackStatistics()
3716   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3717 };
3718 
3719 struct AAIsDeadFunction : public AAIsDead {
3720   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3721 
3722   /// See AbstractAttribute::initialize(...).
3723   void initialize(Attributor &A) override {
3724     Function *F = getAnchorScope();
3725     if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
3726       indicatePessimisticFixpoint();
3727       return;
3728     }
3729     ToBeExploredFrom.insert(&F->getEntryBlock().front());
3730     assumeLive(A, F->getEntryBlock());
3731   }
3732 
3733   /// See AbstractAttribute::getAsStr().
3734   const std::string getAsStr() const override {
3735     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3736            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3737            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3738            std::to_string(KnownDeadEnds.size()) + "]";
3739   }
3740 
3741   /// See AbstractAttribute::manifest(...).
3742   ChangeStatus manifest(Attributor &A) override {
3743     assert(getState().isValidState() &&
3744            "Attempted to manifest an invalid state!");
3745 
3746     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3747     Function &F = *getAnchorScope();
3748 
3749     if (AssumedLiveBlocks.empty()) {
3750       A.deleteAfterManifest(F);
3751       return ChangeStatus::CHANGED;
3752     }
3753 
3754     // Flag to determine if we can change an invoke to a call assuming the
3755     // callee is nounwind. This is not possible if the personality of the
3756     // function allows to catch asynchronous exceptions.
3757     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3758 
3759     KnownDeadEnds.set_union(ToBeExploredFrom);
3760     for (const Instruction *DeadEndI : KnownDeadEnds) {
3761       auto *CB = dyn_cast<CallBase>(DeadEndI);
3762       if (!CB)
3763         continue;
3764       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3765           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3766       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3767       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3768         continue;
3769 
3770       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3771         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3772       else
3773         A.changeToUnreachableAfterManifest(
3774             const_cast<Instruction *>(DeadEndI->getNextNode()));
3775       HasChanged = ChangeStatus::CHANGED;
3776     }
3777 
3778     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3779     for (BasicBlock &BB : F)
3780       if (!AssumedLiveBlocks.count(&BB)) {
3781         A.deleteAfterManifest(BB);
3782         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3783         HasChanged = ChangeStatus::CHANGED;
3784       }
3785 
3786     return HasChanged;
3787   }
3788 
3789   /// See AbstractAttribute::updateImpl(...).
3790   ChangeStatus updateImpl(Attributor &A) override;
3791 
3792   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3793     assert(From->getParent() == getAnchorScope() &&
3794            To->getParent() == getAnchorScope() &&
3795            "Used AAIsDead of the wrong function");
3796     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3797   }
3798 
3799   /// See AbstractAttribute::trackStatistics()
3800   void trackStatistics() const override {}
3801 
3802   /// Returns true if the function is assumed dead.
3803   bool isAssumedDead() const override { return false; }
3804 
3805   /// See AAIsDead::isKnownDead().
3806   bool isKnownDead() const override { return false; }
3807 
3808   /// See AAIsDead::isAssumedDead(BasicBlock *).
3809   bool isAssumedDead(const BasicBlock *BB) const override {
3810     assert(BB->getParent() == getAnchorScope() &&
3811            "BB must be in the same anchor scope function.");
3812 
3813     if (!getAssumed())
3814       return false;
3815     return !AssumedLiveBlocks.count(BB);
3816   }
3817 
3818   /// See AAIsDead::isKnownDead(BasicBlock *).
3819   bool isKnownDead(const BasicBlock *BB) const override {
3820     return getKnown() && isAssumedDead(BB);
3821   }
3822 
3823   /// See AAIsDead::isAssumed(Instruction *I).
3824   bool isAssumedDead(const Instruction *I) const override {
3825     assert(I->getParent()->getParent() == getAnchorScope() &&
3826            "Instruction must be in the same anchor scope function.");
3827 
3828     if (!getAssumed())
3829       return false;
3830 
3831     // If it is not in AssumedLiveBlocks then it for sure dead.
3832     // Otherwise, it can still be after noreturn call in a live block.
3833     if (!AssumedLiveBlocks.count(I->getParent()))
3834       return true;
3835 
3836     // If it is not after a liveness barrier it is live.
3837     const Instruction *PrevI = I->getPrevNode();
3838     while (PrevI) {
3839       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3840         return true;
3841       PrevI = PrevI->getPrevNode();
3842     }
3843     return false;
3844   }
3845 
3846   /// See AAIsDead::isKnownDead(Instruction *I).
3847   bool isKnownDead(const Instruction *I) const override {
3848     return getKnown() && isAssumedDead(I);
3849   }
3850 
3851   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3852   /// that internal function called from \p BB should now be looked at.
3853   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3854     if (!AssumedLiveBlocks.insert(&BB).second)
3855       return false;
3856 
3857     // We assume that all of BB is (probably) live now and if there are calls to
3858     // internal functions we will assume that those are now live as well. This
3859     // is a performance optimization for blocks with calls to a lot of internal
3860     // functions. It can however cause dead functions to be treated as live.
3861     for (const Instruction &I : BB)
3862       if (const auto *CB = dyn_cast<CallBase>(&I))
3863         if (const Function *F = CB->getCalledFunction())
3864           if (F->hasLocalLinkage())
3865             A.markLiveInternalFunction(*F);
3866     return true;
3867   }
3868 
3869   /// Collection of instructions that need to be explored again, e.g., we
3870   /// did assume they do not transfer control to (one of their) successors.
3871   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3872 
3873   /// Collection of instructions that are known to not transfer control.
3874   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3875 
3876   /// Collection of all assumed live edges
3877   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3878 
3879   /// Collection of all assumed live BasicBlocks.
3880   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3881 };
3882 
3883 static bool
3884 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3885                         AbstractAttribute &AA,
3886                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3887   const IRPosition &IPos = IRPosition::callsite_function(CB);
3888 
3889   const auto &NoReturnAA =
3890       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3891   if (NoReturnAA.isAssumedNoReturn())
3892     return !NoReturnAA.isKnownNoReturn();
3893   if (CB.isTerminator())
3894     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3895   else
3896     AliveSuccessors.push_back(CB.getNextNode());
3897   return false;
3898 }
3899 
3900 static bool
3901 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3902                         AbstractAttribute &AA,
3903                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3904   bool UsedAssumedInformation =
3905       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3906 
3907   // First, determine if we can change an invoke to a call assuming the
3908   // callee is nounwind. This is not possible if the personality of the
3909   // function allows to catch asynchronous exceptions.
3910   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3911     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3912   } else {
3913     const IRPosition &IPos = IRPosition::callsite_function(II);
3914     const auto &AANoUnw =
3915         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3916     if (AANoUnw.isAssumedNoUnwind()) {
3917       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3918     } else {
3919       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3920     }
3921   }
3922   return UsedAssumedInformation;
3923 }
3924 
3925 static bool
3926 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3927                         AbstractAttribute &AA,
3928                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3929   bool UsedAssumedInformation = false;
3930   if (BI.getNumSuccessors() == 1) {
3931     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3932   } else {
3933     Optional<Constant *> C =
3934         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3935     if (!C || isa_and_nonnull<UndefValue>(*C)) {
3936       // No value yet, assume both edges are dead.
3937     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3938       const BasicBlock *SuccBB =
3939           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3940       AliveSuccessors.push_back(&SuccBB->front());
3941     } else {
3942       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3943       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3944       UsedAssumedInformation = false;
3945     }
3946   }
3947   return UsedAssumedInformation;
3948 }
3949 
3950 static bool
3951 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3952                         AbstractAttribute &AA,
3953                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3954   bool UsedAssumedInformation = false;
3955   Optional<Constant *> C =
3956       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3957   if (!C || isa_and_nonnull<UndefValue>(C.value())) {
3958     // No value yet, assume all edges are dead.
3959   } else if (isa_and_nonnull<ConstantInt>(C.value())) {
3960     for (auto &CaseIt : SI.cases()) {
3961       if (CaseIt.getCaseValue() == C.value()) {
3962         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3963         return UsedAssumedInformation;
3964       }
3965     }
3966     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3967     return UsedAssumedInformation;
3968   } else {
3969     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3970       AliveSuccessors.push_back(&SuccBB->front());
3971   }
3972   return UsedAssumedInformation;
3973 }
3974 
3975 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3976   ChangeStatus Change = ChangeStatus::UNCHANGED;
3977 
3978   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3979                     << getAnchorScope()->size() << "] BBs and "
3980                     << ToBeExploredFrom.size() << " exploration points and "
3981                     << KnownDeadEnds.size() << " known dead ends\n");
3982 
3983   // Copy and clear the list of instructions we need to explore from. It is
3984   // refilled with instructions the next update has to look at.
3985   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3986                                                ToBeExploredFrom.end());
3987   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3988 
3989   SmallVector<const Instruction *, 8> AliveSuccessors;
3990   while (!Worklist.empty()) {
3991     const Instruction *I = Worklist.pop_back_val();
3992     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3993 
3994     // Fast forward for uninteresting instructions. We could look for UB here
3995     // though.
3996     while (!I->isTerminator() && !isa<CallBase>(I))
3997       I = I->getNextNode();
3998 
3999     AliveSuccessors.clear();
4000 
4001     bool UsedAssumedInformation = false;
4002     switch (I->getOpcode()) {
4003     // TODO: look for (assumed) UB to backwards propagate "deadness".
4004     default:
4005       assert(I->isTerminator() &&
4006              "Expected non-terminators to be handled already!");
4007       for (const BasicBlock *SuccBB : successors(I->getParent()))
4008         AliveSuccessors.push_back(&SuccBB->front());
4009       break;
4010     case Instruction::Call:
4011       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4012                                                        *this, AliveSuccessors);
4013       break;
4014     case Instruction::Invoke:
4015       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4016                                                        *this, AliveSuccessors);
4017       break;
4018     case Instruction::Br:
4019       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4020                                                        *this, AliveSuccessors);
4021       break;
4022     case Instruction::Switch:
4023       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4024                                                        *this, AliveSuccessors);
4025       break;
4026     }
4027 
4028     if (UsedAssumedInformation) {
4029       NewToBeExploredFrom.insert(I);
4030     } else if (AliveSuccessors.empty() ||
4031                (I->isTerminator() &&
4032                 AliveSuccessors.size() < I->getNumSuccessors())) {
4033       if (KnownDeadEnds.insert(I))
4034         Change = ChangeStatus::CHANGED;
4035     }
4036 
4037     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4038                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4039                       << UsedAssumedInformation << "\n");
4040 
4041     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4042       if (!I->isTerminator()) {
4043         assert(AliveSuccessors.size() == 1 &&
4044                "Non-terminator expected to have a single successor!");
4045         Worklist.push_back(AliveSuccessor);
4046       } else {
4047         // record the assumed live edge
4048         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4049         if (AssumedLiveEdges.insert(Edge).second)
4050           Change = ChangeStatus::CHANGED;
4051         if (assumeLive(A, *AliveSuccessor->getParent()))
4052           Worklist.push_back(AliveSuccessor);
4053       }
4054     }
4055   }
4056 
4057   // Check if the content of ToBeExploredFrom changed, ignore the order.
4058   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4059       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4060         return !ToBeExploredFrom.count(I);
4061       })) {
4062     Change = ChangeStatus::CHANGED;
4063     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4064   }
4065 
4066   // If we know everything is live there is no need to query for liveness.
4067   // Instead, indicating a pessimistic fixpoint will cause the state to be
4068   // "invalid" and all queries to be answered conservatively without lookups.
4069   // To be in this state we have to (1) finished the exploration and (3) not
4070   // discovered any non-trivial dead end and (2) not ruled unreachable code
4071   // dead.
4072   if (ToBeExploredFrom.empty() &&
4073       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4074       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4075         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4076       }))
4077     return indicatePessimisticFixpoint();
4078   return Change;
4079 }
4080 
4081 /// Liveness information for a call sites.
4082 struct AAIsDeadCallSite final : AAIsDeadFunction {
4083   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4084       : AAIsDeadFunction(IRP, A) {}
4085 
4086   /// See AbstractAttribute::initialize(...).
4087   void initialize(Attributor &A) override {
4088     // TODO: Once we have call site specific value information we can provide
4089     //       call site specific liveness information and then it makes
4090     //       sense to specialize attributes for call sites instead of
4091     //       redirecting requests to the callee.
4092     llvm_unreachable("Abstract attributes for liveness are not "
4093                      "supported for call sites yet!");
4094   }
4095 
4096   /// See AbstractAttribute::updateImpl(...).
4097   ChangeStatus updateImpl(Attributor &A) override {
4098     return indicatePessimisticFixpoint();
4099   }
4100 
4101   /// See AbstractAttribute::trackStatistics()
4102   void trackStatistics() const override {}
4103 };
4104 } // namespace
4105 
4106 /// -------------------- Dereferenceable Argument Attribute --------------------
4107 
4108 namespace {
4109 struct AADereferenceableImpl : AADereferenceable {
4110   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4111       : AADereferenceable(IRP, A) {}
4112   using StateType = DerefState;
4113 
4114   /// See AbstractAttribute::initialize(...).
4115   void initialize(Attributor &A) override {
4116     Value &V = *getAssociatedValue().stripPointerCasts();
4117     SmallVector<Attribute, 4> Attrs;
4118     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4119              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4120     for (const Attribute &Attr : Attrs)
4121       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4122 
4123     const IRPosition &IRP = this->getIRPosition();
4124     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4125 
4126     bool CanBeNull, CanBeFreed;
4127     takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
4128         A.getDataLayout(), CanBeNull, CanBeFreed));
4129 
4130     bool IsFnInterface = IRP.isFnInterfaceKind();
4131     Function *FnScope = IRP.getAnchorScope();
4132     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4133       indicatePessimisticFixpoint();
4134       return;
4135     }
4136 
4137     if (Instruction *CtxI = getCtxI())
4138       followUsesInMBEC(*this, A, getState(), *CtxI);
4139   }
4140 
4141   /// See AbstractAttribute::getState()
4142   /// {
4143   StateType &getState() override { return *this; }
4144   const StateType &getState() const override { return *this; }
4145   /// }
4146 
4147   /// Helper function for collecting accessed bytes in must-be-executed-context
4148   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4149                               DerefState &State) {
4150     const Value *UseV = U->get();
4151     if (!UseV->getType()->isPointerTy())
4152       return;
4153 
4154     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4155     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4156       return;
4157 
4158     int64_t Offset;
4159     const Value *Base = GetPointerBaseWithConstantOffset(
4160         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4161     if (Base && Base == &getAssociatedValue())
4162       State.addAccessedBytes(Offset, Loc->Size.getValue());
4163   }
4164 
4165   /// See followUsesInMBEC
4166   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4167                        AADereferenceable::StateType &State) {
4168     bool IsNonNull = false;
4169     bool TrackUse = false;
4170     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4171         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4172     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4173                       << " for instruction " << *I << "\n");
4174 
4175     addAccessedBytesForUse(A, U, I, State);
4176     State.takeKnownDerefBytesMaximum(DerefBytes);
4177     return TrackUse;
4178   }
4179 
4180   /// See AbstractAttribute::manifest(...).
4181   ChangeStatus manifest(Attributor &A) override {
4182     ChangeStatus Change = AADereferenceable::manifest(A);
4183     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4184       removeAttrs({Attribute::DereferenceableOrNull});
4185       return ChangeStatus::CHANGED;
4186     }
4187     return Change;
4188   }
4189 
4190   void getDeducedAttributes(LLVMContext &Ctx,
4191                             SmallVectorImpl<Attribute> &Attrs) const override {
4192     // TODO: Add *_globally support
4193     if (isAssumedNonNull())
4194       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4195           Ctx, getAssumedDereferenceableBytes()));
4196     else
4197       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4198           Ctx, getAssumedDereferenceableBytes()));
4199   }
4200 
4201   /// See AbstractAttribute::getAsStr().
4202   const std::string getAsStr() const override {
4203     if (!getAssumedDereferenceableBytes())
4204       return "unknown-dereferenceable";
4205     return std::string("dereferenceable") +
4206            (isAssumedNonNull() ? "" : "_or_null") +
4207            (isAssumedGlobal() ? "_globally" : "") + "<" +
4208            std::to_string(getKnownDereferenceableBytes()) + "-" +
4209            std::to_string(getAssumedDereferenceableBytes()) + ">";
4210   }
4211 };
4212 
4213 /// Dereferenceable attribute for a floating value.
4214 struct AADereferenceableFloating : AADereferenceableImpl {
4215   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4216       : AADereferenceableImpl(IRP, A) {}
4217 
4218   /// See AbstractAttribute::updateImpl(...).
4219   ChangeStatus updateImpl(Attributor &A) override {
4220 
4221     bool Stripped;
4222     bool UsedAssumedInformation = false;
4223     SmallVector<AA::ValueAndContext> Values;
4224     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4225                                       AA::AnyScope, UsedAssumedInformation)) {
4226       Values.push_back({getAssociatedValue(), getCtxI()});
4227       Stripped = false;
4228     } else {
4229       Stripped = Values.size() != 1 ||
4230                  Values.front().getValue() != &getAssociatedValue();
4231     }
4232 
4233     const DataLayout &DL = A.getDataLayout();
4234     DerefState T;
4235 
4236     auto VisitValueCB = [&](const Value &V) -> bool {
4237       unsigned IdxWidth =
4238           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4239       APInt Offset(IdxWidth, 0);
4240       const Value *Base = stripAndAccumulateOffsets(
4241           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4242           /* AllowNonInbounds */ true);
4243 
4244       const auto &AA = A.getAAFor<AADereferenceable>(
4245           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4246       int64_t DerefBytes = 0;
4247       if (!Stripped && this == &AA) {
4248         // Use IR information if we did not strip anything.
4249         // TODO: track globally.
4250         bool CanBeNull, CanBeFreed;
4251         DerefBytes =
4252             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4253         T.GlobalState.indicatePessimisticFixpoint();
4254       } else {
4255         const DerefState &DS = AA.getState();
4256         DerefBytes = DS.DerefBytesState.getAssumed();
4257         T.GlobalState &= DS.GlobalState;
4258       }
4259 
4260       // For now we do not try to "increase" dereferenceability due to negative
4261       // indices as we first have to come up with code to deal with loops and
4262       // for overflows of the dereferenceable bytes.
4263       int64_t OffsetSExt = Offset.getSExtValue();
4264       if (OffsetSExt < 0)
4265         OffsetSExt = 0;
4266 
4267       T.takeAssumedDerefBytesMinimum(
4268           std::max(int64_t(0), DerefBytes - OffsetSExt));
4269 
4270       if (this == &AA) {
4271         if (!Stripped) {
4272           // If nothing was stripped IR information is all we got.
4273           T.takeKnownDerefBytesMaximum(
4274               std::max(int64_t(0), DerefBytes - OffsetSExt));
4275           T.indicatePessimisticFixpoint();
4276         } else if (OffsetSExt > 0) {
4277           // If something was stripped but there is circular reasoning we look
4278           // for the offset. If it is positive we basically decrease the
4279           // dereferenceable bytes in a circluar loop now, which will simply
4280           // drive them down to the known value in a very slow way which we
4281           // can accelerate.
4282           T.indicatePessimisticFixpoint();
4283         }
4284       }
4285 
4286       return T.isValidState();
4287     };
4288 
4289     for (const auto &VAC : Values)
4290       if (!VisitValueCB(*VAC.getValue()))
4291         return indicatePessimisticFixpoint();
4292 
4293     return clampStateAndIndicateChange(getState(), T);
4294   }
4295 
4296   /// See AbstractAttribute::trackStatistics()
4297   void trackStatistics() const override {
4298     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4299   }
4300 };
4301 
4302 /// Dereferenceable attribute for a return value.
4303 struct AADereferenceableReturned final
4304     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4305   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4306       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4307             IRP, A) {}
4308 
4309   /// See AbstractAttribute::trackStatistics()
4310   void trackStatistics() const override {
4311     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4312   }
4313 };
4314 
4315 /// Dereferenceable attribute for an argument
4316 struct AADereferenceableArgument final
4317     : AAArgumentFromCallSiteArguments<AADereferenceable,
4318                                       AADereferenceableImpl> {
4319   using Base =
4320       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4321   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4322       : Base(IRP, A) {}
4323 
4324   /// See AbstractAttribute::trackStatistics()
4325   void trackStatistics() const override {
4326     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4327   }
4328 };
4329 
4330 /// Dereferenceable attribute for a call site argument.
4331 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4332   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4333       : AADereferenceableFloating(IRP, A) {}
4334 
4335   /// See AbstractAttribute::trackStatistics()
4336   void trackStatistics() const override {
4337     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4338   }
4339 };
4340 
4341 /// Dereferenceable attribute deduction for a call site return value.
4342 struct AADereferenceableCallSiteReturned final
4343     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4344   using Base =
4345       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4346   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4347       : Base(IRP, A) {}
4348 
4349   /// See AbstractAttribute::trackStatistics()
4350   void trackStatistics() const override {
4351     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4352   }
4353 };
4354 } // namespace
4355 
4356 // ------------------------ Align Argument Attribute ------------------------
4357 
4358 namespace {
4359 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4360                                     Value &AssociatedValue, const Use *U,
4361                                     const Instruction *I, bool &TrackUse) {
4362   // We need to follow common pointer manipulation uses to the accesses they
4363   // feed into.
4364   if (isa<CastInst>(I)) {
4365     // Follow all but ptr2int casts.
4366     TrackUse = !isa<PtrToIntInst>(I);
4367     return 0;
4368   }
4369   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4370     if (GEP->hasAllConstantIndices())
4371       TrackUse = true;
4372     return 0;
4373   }
4374 
4375   MaybeAlign MA;
4376   if (const auto *CB = dyn_cast<CallBase>(I)) {
4377     if (CB->isBundleOperand(U) || CB->isCallee(U))
4378       return 0;
4379 
4380     unsigned ArgNo = CB->getArgOperandNo(U);
4381     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4382     // As long as we only use known information there is no need to track
4383     // dependences here.
4384     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4385     MA = MaybeAlign(AlignAA.getKnownAlign());
4386   }
4387 
4388   const DataLayout &DL = A.getDataLayout();
4389   const Value *UseV = U->get();
4390   if (auto *SI = dyn_cast<StoreInst>(I)) {
4391     if (SI->getPointerOperand() == UseV)
4392       MA = SI->getAlign();
4393   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4394     if (LI->getPointerOperand() == UseV)
4395       MA = LI->getAlign();
4396   }
4397 
4398   if (!MA || *MA <= QueryingAA.getKnownAlign())
4399     return 0;
4400 
4401   unsigned Alignment = MA->value();
4402   int64_t Offset;
4403 
4404   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4405     if (Base == &AssociatedValue) {
4406       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4407       // So we can say that the maximum power of two which is a divisor of
4408       // gcd(Offset, Alignment) is an alignment.
4409 
4410       uint32_t gcd =
4411           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4412       Alignment = llvm::PowerOf2Floor(gcd);
4413     }
4414   }
4415 
4416   return Alignment;
4417 }
4418 
4419 struct AAAlignImpl : AAAlign {
4420   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4421 
4422   /// See AbstractAttribute::initialize(...).
4423   void initialize(Attributor &A) override {
4424     SmallVector<Attribute, 4> Attrs;
4425     getAttrs({Attribute::Alignment}, Attrs);
4426     for (const Attribute &Attr : Attrs)
4427       takeKnownMaximum(Attr.getValueAsInt());
4428 
4429     Value &V = *getAssociatedValue().stripPointerCasts();
4430     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4431 
4432     if (getIRPosition().isFnInterfaceKind() &&
4433         (!getAnchorScope() ||
4434          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4435       indicatePessimisticFixpoint();
4436       return;
4437     }
4438 
4439     if (Instruction *CtxI = getCtxI())
4440       followUsesInMBEC(*this, A, getState(), *CtxI);
4441   }
4442 
4443   /// See AbstractAttribute::manifest(...).
4444   ChangeStatus manifest(Attributor &A) override {
4445     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4446 
4447     // Check for users that allow alignment annotations.
4448     Value &AssociatedValue = getAssociatedValue();
4449     for (const Use &U : AssociatedValue.uses()) {
4450       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4451         if (SI->getPointerOperand() == &AssociatedValue)
4452           if (SI->getAlign() < getAssumedAlign()) {
4453             STATS_DECLTRACK(AAAlign, Store,
4454                             "Number of times alignment added to a store");
4455             SI->setAlignment(getAssumedAlign());
4456             LoadStoreChanged = ChangeStatus::CHANGED;
4457           }
4458       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4459         if (LI->getPointerOperand() == &AssociatedValue)
4460           if (LI->getAlign() < getAssumedAlign()) {
4461             LI->setAlignment(getAssumedAlign());
4462             STATS_DECLTRACK(AAAlign, Load,
4463                             "Number of times alignment added to a load");
4464             LoadStoreChanged = ChangeStatus::CHANGED;
4465           }
4466       }
4467     }
4468 
4469     ChangeStatus Changed = AAAlign::manifest(A);
4470 
4471     Align InheritAlign =
4472         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4473     if (InheritAlign >= getAssumedAlign())
4474       return LoadStoreChanged;
4475     return Changed | LoadStoreChanged;
4476   }
4477 
4478   // TODO: Provide a helper to determine the implied ABI alignment and check in
4479   //       the existing manifest method and a new one for AAAlignImpl that value
4480   //       to avoid making the alignment explicit if it did not improve.
4481 
4482   /// See AbstractAttribute::getDeducedAttributes
4483   virtual void
4484   getDeducedAttributes(LLVMContext &Ctx,
4485                        SmallVectorImpl<Attribute> &Attrs) const override {
4486     if (getAssumedAlign() > 1)
4487       Attrs.emplace_back(
4488           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4489   }
4490 
4491   /// See followUsesInMBEC
4492   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4493                        AAAlign::StateType &State) {
4494     bool TrackUse = false;
4495 
4496     unsigned int KnownAlign =
4497         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4498     State.takeKnownMaximum(KnownAlign);
4499 
4500     return TrackUse;
4501   }
4502 
4503   /// See AbstractAttribute::getAsStr().
4504   const std::string getAsStr() const override {
4505     return "align<" + std::to_string(getKnownAlign().value()) + "-" +
4506            std::to_string(getAssumedAlign().value()) + ">";
4507   }
4508 };
4509 
4510 /// Align attribute for a floating value.
4511 struct AAAlignFloating : AAAlignImpl {
4512   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4513 
4514   /// See AbstractAttribute::updateImpl(...).
4515   ChangeStatus updateImpl(Attributor &A) override {
4516     const DataLayout &DL = A.getDataLayout();
4517 
4518     bool Stripped;
4519     bool UsedAssumedInformation = false;
4520     SmallVector<AA::ValueAndContext> Values;
4521     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4522                                       AA::AnyScope, UsedAssumedInformation)) {
4523       Values.push_back({getAssociatedValue(), getCtxI()});
4524       Stripped = false;
4525     } else {
4526       Stripped = Values.size() != 1 ||
4527                  Values.front().getValue() != &getAssociatedValue();
4528     }
4529 
4530     StateType T;
4531     auto VisitValueCB = [&](Value &V) -> bool {
4532       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4533         return true;
4534       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4535                                            DepClassTy::REQUIRED);
4536       if (!Stripped && this == &AA) {
4537         int64_t Offset;
4538         unsigned Alignment = 1;
4539         if (const Value *Base =
4540                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4541           // TODO: Use AAAlign for the base too.
4542           Align PA = Base->getPointerAlignment(DL);
4543           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4544           // So we can say that the maximum power of two which is a divisor of
4545           // gcd(Offset, Alignment) is an alignment.
4546 
4547           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4548                                                uint32_t(PA.value()));
4549           Alignment = llvm::PowerOf2Floor(gcd);
4550         } else {
4551           Alignment = V.getPointerAlignment(DL).value();
4552         }
4553         // Use only IR information if we did not strip anything.
4554         T.takeKnownMaximum(Alignment);
4555         T.indicatePessimisticFixpoint();
4556       } else {
4557         // Use abstract attribute information.
4558         const AAAlign::StateType &DS = AA.getState();
4559         T ^= DS;
4560       }
4561       return T.isValidState();
4562     };
4563 
4564     for (const auto &VAC : Values) {
4565       if (!VisitValueCB(*VAC.getValue()))
4566         return indicatePessimisticFixpoint();
4567     }
4568 
4569     //  TODO: If we know we visited all incoming values, thus no are assumed
4570     //  dead, we can take the known information from the state T.
4571     return clampStateAndIndicateChange(getState(), T);
4572   }
4573 
4574   /// See AbstractAttribute::trackStatistics()
4575   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4576 };
4577 
4578 /// Align attribute for function return value.
4579 struct AAAlignReturned final
4580     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4581   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4582   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4583 
4584   /// See AbstractAttribute::initialize(...).
4585   void initialize(Attributor &A) override {
4586     Base::initialize(A);
4587     Function *F = getAssociatedFunction();
4588     if (!F || F->isDeclaration())
4589       indicatePessimisticFixpoint();
4590   }
4591 
4592   /// See AbstractAttribute::trackStatistics()
4593   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4594 };
4595 
4596 /// Align attribute for function argument.
4597 struct AAAlignArgument final
4598     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4599   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4600   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4601 
4602   /// See AbstractAttribute::manifest(...).
4603   ChangeStatus manifest(Attributor &A) override {
4604     // If the associated argument is involved in a must-tail call we give up
4605     // because we would need to keep the argument alignments of caller and
4606     // callee in-sync. Just does not seem worth the trouble right now.
4607     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4608       return ChangeStatus::UNCHANGED;
4609     return Base::manifest(A);
4610   }
4611 
4612   /// See AbstractAttribute::trackStatistics()
4613   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4614 };
4615 
4616 struct AAAlignCallSiteArgument final : AAAlignFloating {
4617   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4618       : AAAlignFloating(IRP, A) {}
4619 
4620   /// See AbstractAttribute::manifest(...).
4621   ChangeStatus manifest(Attributor &A) override {
4622     // If the associated argument is involved in a must-tail call we give up
4623     // because we would need to keep the argument alignments of caller and
4624     // callee in-sync. Just does not seem worth the trouble right now.
4625     if (Argument *Arg = getAssociatedArgument())
4626       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4627         return ChangeStatus::UNCHANGED;
4628     ChangeStatus Changed = AAAlignImpl::manifest(A);
4629     Align InheritAlign =
4630         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4631     if (InheritAlign >= getAssumedAlign())
4632       Changed = ChangeStatus::UNCHANGED;
4633     return Changed;
4634   }
4635 
4636   /// See AbstractAttribute::updateImpl(Attributor &A).
4637   ChangeStatus updateImpl(Attributor &A) override {
4638     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4639     if (Argument *Arg = getAssociatedArgument()) {
4640       // We only take known information from the argument
4641       // so we do not need to track a dependence.
4642       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4643           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4644       takeKnownMaximum(ArgAlignAA.getKnownAlign().value());
4645     }
4646     return Changed;
4647   }
4648 
4649   /// See AbstractAttribute::trackStatistics()
4650   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4651 };
4652 
4653 /// Align attribute deduction for a call site return value.
4654 struct AAAlignCallSiteReturned final
4655     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4656   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4657   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4658       : Base(IRP, A) {}
4659 
4660   /// See AbstractAttribute::initialize(...).
4661   void initialize(Attributor &A) override {
4662     Base::initialize(A);
4663     Function *F = getAssociatedFunction();
4664     if (!F || F->isDeclaration())
4665       indicatePessimisticFixpoint();
4666   }
4667 
4668   /// See AbstractAttribute::trackStatistics()
4669   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4670 };
4671 } // namespace
4672 
4673 /// ------------------ Function No-Return Attribute ----------------------------
4674 namespace {
4675 struct AANoReturnImpl : public AANoReturn {
4676   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4677 
4678   /// See AbstractAttribute::initialize(...).
4679   void initialize(Attributor &A) override {
4680     AANoReturn::initialize(A);
4681     Function *F = getAssociatedFunction();
4682     if (!F || F->isDeclaration())
4683       indicatePessimisticFixpoint();
4684   }
4685 
4686   /// See AbstractAttribute::getAsStr().
4687   const std::string getAsStr() const override {
4688     return getAssumed() ? "noreturn" : "may-return";
4689   }
4690 
4691   /// See AbstractAttribute::updateImpl(Attributor &A).
4692   virtual ChangeStatus updateImpl(Attributor &A) override {
4693     auto CheckForNoReturn = [](Instruction &) { return false; };
4694     bool UsedAssumedInformation = false;
4695     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4696                                    {(unsigned)Instruction::Ret},
4697                                    UsedAssumedInformation))
4698       return indicatePessimisticFixpoint();
4699     return ChangeStatus::UNCHANGED;
4700   }
4701 };
4702 
4703 struct AANoReturnFunction final : AANoReturnImpl {
4704   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4705       : AANoReturnImpl(IRP, A) {}
4706 
4707   /// See AbstractAttribute::trackStatistics()
4708   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4709 };
4710 
4711 /// NoReturn attribute deduction for a call sites.
4712 struct AANoReturnCallSite final : AANoReturnImpl {
4713   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4714       : AANoReturnImpl(IRP, A) {}
4715 
4716   /// See AbstractAttribute::initialize(...).
4717   void initialize(Attributor &A) override {
4718     AANoReturnImpl::initialize(A);
4719     if (Function *F = getAssociatedFunction()) {
4720       const IRPosition &FnPos = IRPosition::function(*F);
4721       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4722       if (!FnAA.isAssumedNoReturn())
4723         indicatePessimisticFixpoint();
4724     }
4725   }
4726 
4727   /// See AbstractAttribute::updateImpl(...).
4728   ChangeStatus updateImpl(Attributor &A) override {
4729     // TODO: Once we have call site specific value information we can provide
4730     //       call site specific liveness information and then it makes
4731     //       sense to specialize attributes for call sites arguments instead of
4732     //       redirecting requests to the callee argument.
4733     Function *F = getAssociatedFunction();
4734     const IRPosition &FnPos = IRPosition::function(*F);
4735     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4736     return clampStateAndIndicateChange(getState(), FnAA.getState());
4737   }
4738 
4739   /// See AbstractAttribute::trackStatistics()
4740   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4741 };
4742 } // namespace
4743 
4744 /// ----------------------- Instance Info ---------------------------------
4745 
4746 namespace {
4747 /// A class to hold the state of for no-capture attributes.
4748 struct AAInstanceInfoImpl : public AAInstanceInfo {
4749   AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
4750       : AAInstanceInfo(IRP, A) {}
4751 
4752   /// See AbstractAttribute::initialize(...).
4753   void initialize(Attributor &A) override {
4754     Value &V = getAssociatedValue();
4755     if (auto *C = dyn_cast<Constant>(&V)) {
4756       if (C->isThreadDependent())
4757         indicatePessimisticFixpoint();
4758       else
4759         indicateOptimisticFixpoint();
4760       return;
4761     }
4762     if (auto *CB = dyn_cast<CallBase>(&V))
4763       if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
4764           !CB->mayReadFromMemory()) {
4765         indicateOptimisticFixpoint();
4766         return;
4767       }
4768   }
4769 
4770   /// See AbstractAttribute::updateImpl(...).
4771   ChangeStatus updateImpl(Attributor &A) override {
4772     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4773 
4774     Value &V = getAssociatedValue();
4775     const Function *Scope = nullptr;
4776     if (auto *I = dyn_cast<Instruction>(&V))
4777       Scope = I->getFunction();
4778     if (auto *A = dyn_cast<Argument>(&V)) {
4779       Scope = A->getParent();
4780       if (!Scope->hasLocalLinkage())
4781         return Changed;
4782     }
4783     if (!Scope)
4784       return indicateOptimisticFixpoint();
4785 
4786     auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
4787         *this, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
4788     if (NoRecurseAA.isAssumedNoRecurse())
4789       return Changed;
4790 
4791     auto UsePred = [&](const Use &U, bool &Follow) {
4792       const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
4793       if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
4794           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4795         Follow = true;
4796         return true;
4797       }
4798       if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
4799           (isa<StoreInst>(UserI) &&
4800            cast<StoreInst>(UserI)->getValueOperand() != U.get()))
4801         return true;
4802       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4803         // This check is not guaranteeing uniqueness but for now that we cannot
4804         // end up with two versions of \p U thinking it was one.
4805         if (!CB->getCalledFunction() ||
4806             !CB->getCalledFunction()->hasLocalLinkage())
4807           return true;
4808         if (!CB->isArgOperand(&U))
4809           return false;
4810         const auto &ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
4811             *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
4812             DepClassTy::OPTIONAL);
4813         if (!ArgInstanceInfoAA.isAssumedUniqueForAnalysis())
4814           return false;
4815         // If this call base might reach the scope again we might forward the
4816         // argument back here. This is very conservative.
4817         if (AA::isPotentiallyReachable(A, *CB, *Scope, *this, nullptr))
4818           return false;
4819         return true;
4820       }
4821       return false;
4822     };
4823 
4824     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
4825       if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
4826         auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
4827         if (isa<AllocaInst>(Ptr) && AA::isDynamicallyUnique(A, *this, *Ptr))
4828           return true;
4829         auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(
4830             *SI->getFunction());
4831         if (isAllocationFn(Ptr, TLI) && AA::isDynamicallyUnique(A, *this, *Ptr))
4832           return true;
4833       }
4834       return false;
4835     };
4836 
4837     if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
4838                            DepClassTy::OPTIONAL,
4839                            /* IgnoreDroppableUses */ true, EquivalentUseCB))
4840       return indicatePessimisticFixpoint();
4841 
4842     return Changed;
4843   }
4844 
4845   /// See AbstractState::getAsStr().
4846   const std::string getAsStr() const override {
4847     return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
4848   }
4849 
4850   /// See AbstractAttribute::trackStatistics()
4851   void trackStatistics() const override {}
4852 };
4853 
4854 /// InstanceInfo attribute for floating values.
4855 struct AAInstanceInfoFloating : AAInstanceInfoImpl {
4856   AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
4857       : AAInstanceInfoImpl(IRP, A) {}
4858 };
4859 
4860 /// NoCapture attribute for function arguments.
4861 struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
4862   AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
4863       : AAInstanceInfoFloating(IRP, A) {}
4864 };
4865 
4866 /// InstanceInfo attribute for call site arguments.
4867 struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
4868   AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
4869       : AAInstanceInfoImpl(IRP, A) {}
4870 
4871   /// See AbstractAttribute::updateImpl(...).
4872   ChangeStatus updateImpl(Attributor &A) override {
4873     // TODO: Once we have call site specific value information we can provide
4874     //       call site specific liveness information and then it makes
4875     //       sense to specialize attributes for call sites arguments instead of
4876     //       redirecting requests to the callee argument.
4877     Argument *Arg = getAssociatedArgument();
4878     if (!Arg)
4879       return indicatePessimisticFixpoint();
4880     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4881     auto &ArgAA =
4882         A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
4883     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4884   }
4885 };
4886 
4887 /// InstanceInfo attribute for function return value.
4888 struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
4889   AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
4890       : AAInstanceInfoImpl(IRP, A) {
4891     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4892   }
4893 
4894   /// See AbstractAttribute::initialize(...).
4895   void initialize(Attributor &A) override {
4896     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4897   }
4898 
4899   /// See AbstractAttribute::updateImpl(...).
4900   ChangeStatus updateImpl(Attributor &A) override {
4901     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4902   }
4903 };
4904 
4905 /// InstanceInfo attribute deduction for a call site return value.
4906 struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
4907   AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
4908       : AAInstanceInfoFloating(IRP, A) {}
4909 };
4910 } // namespace
4911 
4912 /// ----------------------- Variable Capturing ---------------------------------
4913 
4914 namespace {
4915 /// A class to hold the state of for no-capture attributes.
4916 struct AANoCaptureImpl : public AANoCapture {
4917   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4918 
4919   /// See AbstractAttribute::initialize(...).
4920   void initialize(Attributor &A) override {
4921     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4922       indicateOptimisticFixpoint();
4923       return;
4924     }
4925     Function *AnchorScope = getAnchorScope();
4926     if (isFnInterfaceKind() &&
4927         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4928       indicatePessimisticFixpoint();
4929       return;
4930     }
4931 
4932     // You cannot "capture" null in the default address space.
4933     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4934         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4935       indicateOptimisticFixpoint();
4936       return;
4937     }
4938 
4939     const Function *F =
4940         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4941 
4942     // Check what state the associated function can actually capture.
4943     if (F)
4944       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4945     else
4946       indicatePessimisticFixpoint();
4947   }
4948 
4949   /// See AbstractAttribute::updateImpl(...).
4950   ChangeStatus updateImpl(Attributor &A) override;
4951 
4952   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4953   virtual void
4954   getDeducedAttributes(LLVMContext &Ctx,
4955                        SmallVectorImpl<Attribute> &Attrs) const override {
4956     if (!isAssumedNoCaptureMaybeReturned())
4957       return;
4958 
4959     if (isArgumentPosition()) {
4960       if (isAssumedNoCapture())
4961         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4962       else if (ManifestInternal)
4963         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4964     }
4965   }
4966 
4967   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4968   /// depending on the ability of the function associated with \p IRP to capture
4969   /// state in memory and through "returning/throwing", respectively.
4970   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4971                                                    const Function &F,
4972                                                    BitIntegerState &State) {
4973     // TODO: Once we have memory behavior attributes we should use them here.
4974 
4975     // If we know we cannot communicate or write to memory, we do not care about
4976     // ptr2int anymore.
4977     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4978         F.getReturnType()->isVoidTy()) {
4979       State.addKnownBits(NO_CAPTURE);
4980       return;
4981     }
4982 
4983     // A function cannot capture state in memory if it only reads memory, it can
4984     // however return/throw state and the state might be influenced by the
4985     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4986     if (F.onlyReadsMemory())
4987       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4988 
4989     // A function cannot communicate state back if it does not through
4990     // exceptions and doesn not return values.
4991     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4992       State.addKnownBits(NOT_CAPTURED_IN_RET);
4993 
4994     // Check existing "returned" attributes.
4995     int ArgNo = IRP.getCalleeArgNo();
4996     if (F.doesNotThrow() && ArgNo >= 0) {
4997       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4998         if (F.hasParamAttribute(u, Attribute::Returned)) {
4999           if (u == unsigned(ArgNo))
5000             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
5001           else if (F.onlyReadsMemory())
5002             State.addKnownBits(NO_CAPTURE);
5003           else
5004             State.addKnownBits(NOT_CAPTURED_IN_RET);
5005           break;
5006         }
5007     }
5008   }
5009 
5010   /// See AbstractState::getAsStr().
5011   const std::string getAsStr() const override {
5012     if (isKnownNoCapture())
5013       return "known not-captured";
5014     if (isAssumedNoCapture())
5015       return "assumed not-captured";
5016     if (isKnownNoCaptureMaybeReturned())
5017       return "known not-captured-maybe-returned";
5018     if (isAssumedNoCaptureMaybeReturned())
5019       return "assumed not-captured-maybe-returned";
5020     return "assumed-captured";
5021   }
5022 
5023   /// Check the use \p U and update \p State accordingly. Return true if we
5024   /// should continue to update the state.
5025   bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
5026                 bool &Follow) {
5027     Instruction *UInst = cast<Instruction>(U.getUser());
5028     LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
5029                       << *UInst << "\n");
5030 
5031     // Deal with ptr2int by following uses.
5032     if (isa<PtrToIntInst>(UInst)) {
5033       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5034       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5035                           /* Return */ true);
5036     }
5037 
5038     // For stores we already checked if we can follow them, if they make it
5039     // here we give up.
5040     if (isa<StoreInst>(UInst))
5041       return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
5042                           /* Return */ false);
5043 
5044     // Explicitly catch return instructions.
5045     if (isa<ReturnInst>(UInst)) {
5046       if (UInst->getFunction() == getAnchorScope())
5047         return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5048                             /* Return */ true);
5049       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5050                           /* Return */ true);
5051     }
5052 
5053     // For now we only use special logic for call sites. However, the tracker
5054     // itself knows about a lot of other non-capturing cases already.
5055     auto *CB = dyn_cast<CallBase>(UInst);
5056     if (!CB || !CB->isArgOperand(&U))
5057       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5058                           /* Return */ true);
5059 
5060     unsigned ArgNo = CB->getArgOperandNo(&U);
5061     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5062     // If we have a abstract no-capture attribute for the argument we can use
5063     // it to justify a non-capture attribute here. This allows recursion!
5064     auto &ArgNoCaptureAA =
5065         A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
5066     if (ArgNoCaptureAA.isAssumedNoCapture())
5067       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5068                           /* Return */ false);
5069     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5070       Follow = true;
5071       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5072                           /* Return */ false);
5073     }
5074 
5075     // Lastly, we could not find a reason no-capture can be assumed so we don't.
5076     return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5077                         /* Return */ true);
5078   }
5079 
5080   /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
5081   /// \p CapturedInRet, then return true if we should continue updating the
5082   /// state.
5083   static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
5084                            bool CapturedInInt, bool CapturedInRet) {
5085     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5086                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5087     if (CapturedInMem)
5088       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5089     if (CapturedInInt)
5090       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5091     if (CapturedInRet)
5092       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5093     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5094   }
5095 };
5096 
5097 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5098   const IRPosition &IRP = getIRPosition();
5099   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5100                                   : &IRP.getAssociatedValue();
5101   if (!V)
5102     return indicatePessimisticFixpoint();
5103 
5104   const Function *F =
5105       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5106   assert(F && "Expected a function!");
5107   const IRPosition &FnPos = IRPosition::function(*F);
5108 
5109   AANoCapture::StateType T;
5110 
5111   // Readonly means we cannot capture through memory.
5112   bool IsKnown;
5113   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5114     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5115     if (IsKnown)
5116       addKnownBits(NOT_CAPTURED_IN_MEM);
5117   }
5118 
5119   // Make sure all returned values are different than the underlying value.
5120   // TODO: we could do this in a more sophisticated way inside
5121   //       AAReturnedValues, e.g., track all values that escape through returns
5122   //       directly somehow.
5123   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5124     if (!RVAA.getState().isValidState())
5125       return false;
5126     bool SeenConstant = false;
5127     for (auto &It : RVAA.returned_values()) {
5128       if (isa<Constant>(It.first)) {
5129         if (SeenConstant)
5130           return false;
5131         SeenConstant = true;
5132       } else if (!isa<Argument>(It.first) ||
5133                  It.first == getAssociatedArgument())
5134         return false;
5135     }
5136     return true;
5137   };
5138 
5139   const auto &NoUnwindAA =
5140       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5141   if (NoUnwindAA.isAssumedNoUnwind()) {
5142     bool IsVoidTy = F->getReturnType()->isVoidTy();
5143     const AAReturnedValues *RVAA =
5144         IsVoidTy ? nullptr
5145                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5146 
5147                                                  DepClassTy::OPTIONAL);
5148     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5149       T.addKnownBits(NOT_CAPTURED_IN_RET);
5150       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5151         return ChangeStatus::UNCHANGED;
5152       if (NoUnwindAA.isKnownNoUnwind() &&
5153           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5154         addKnownBits(NOT_CAPTURED_IN_RET);
5155         if (isKnown(NOT_CAPTURED_IN_MEM))
5156           return indicateOptimisticFixpoint();
5157       }
5158     }
5159   }
5160 
5161   auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5162     const auto &DerefAA = A.getAAFor<AADereferenceable>(
5163         *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5164     return DerefAA.getAssumedDereferenceableBytes();
5165   };
5166 
5167   auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5168     switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5169     case UseCaptureKind::NO_CAPTURE:
5170       return true;
5171     case UseCaptureKind::MAY_CAPTURE:
5172       return checkUse(A, T, U, Follow);
5173     case UseCaptureKind::PASSTHROUGH:
5174       Follow = true;
5175       return true;
5176     }
5177     llvm_unreachable("Unexpected use capture kind!");
5178   };
5179 
5180   if (!A.checkForAllUses(UseCheck, *this, *V))
5181     return indicatePessimisticFixpoint();
5182 
5183   AANoCapture::StateType &S = getState();
5184   auto Assumed = S.getAssumed();
5185   S.intersectAssumedBits(T.getAssumed());
5186   if (!isAssumedNoCaptureMaybeReturned())
5187     return indicatePessimisticFixpoint();
5188   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5189                                    : ChangeStatus::CHANGED;
5190 }
5191 
5192 /// NoCapture attribute for function arguments.
5193 struct AANoCaptureArgument final : AANoCaptureImpl {
5194   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5195       : AANoCaptureImpl(IRP, A) {}
5196 
5197   /// See AbstractAttribute::trackStatistics()
5198   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5199 };
5200 
5201 /// NoCapture attribute for call site arguments.
5202 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5203   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5204       : AANoCaptureImpl(IRP, A) {}
5205 
5206   /// See AbstractAttribute::initialize(...).
5207   void initialize(Attributor &A) override {
5208     if (Argument *Arg = getAssociatedArgument())
5209       if (Arg->hasByValAttr())
5210         indicateOptimisticFixpoint();
5211     AANoCaptureImpl::initialize(A);
5212   }
5213 
5214   /// See AbstractAttribute::updateImpl(...).
5215   ChangeStatus updateImpl(Attributor &A) override {
5216     // TODO: Once we have call site specific value information we can provide
5217     //       call site specific liveness information and then it makes
5218     //       sense to specialize attributes for call sites arguments instead of
5219     //       redirecting requests to the callee argument.
5220     Argument *Arg = getAssociatedArgument();
5221     if (!Arg)
5222       return indicatePessimisticFixpoint();
5223     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5224     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5225     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5226   }
5227 
5228   /// See AbstractAttribute::trackStatistics()
5229   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5230 };
5231 
5232 /// NoCapture attribute for floating values.
5233 struct AANoCaptureFloating final : AANoCaptureImpl {
5234   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5235       : AANoCaptureImpl(IRP, A) {}
5236 
5237   /// See AbstractAttribute::trackStatistics()
5238   void trackStatistics() const override {
5239     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5240   }
5241 };
5242 
5243 /// NoCapture attribute for function return value.
5244 struct AANoCaptureReturned final : AANoCaptureImpl {
5245   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5246       : AANoCaptureImpl(IRP, A) {
5247     llvm_unreachable("NoCapture is not applicable to function returns!");
5248   }
5249 
5250   /// See AbstractAttribute::initialize(...).
5251   void initialize(Attributor &A) override {
5252     llvm_unreachable("NoCapture is not applicable to function returns!");
5253   }
5254 
5255   /// See AbstractAttribute::updateImpl(...).
5256   ChangeStatus updateImpl(Attributor &A) override {
5257     llvm_unreachable("NoCapture is not applicable to function returns!");
5258   }
5259 
5260   /// See AbstractAttribute::trackStatistics()
5261   void trackStatistics() const override {}
5262 };
5263 
5264 /// NoCapture attribute deduction for a call site return value.
5265 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5266   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5267       : AANoCaptureImpl(IRP, A) {}
5268 
5269   /// See AbstractAttribute::initialize(...).
5270   void initialize(Attributor &A) override {
5271     const Function *F = getAnchorScope();
5272     // Check what state the associated function can actually capture.
5273     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5274   }
5275 
5276   /// See AbstractAttribute::trackStatistics()
5277   void trackStatistics() const override {
5278     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5279   }
5280 };
5281 } // namespace
5282 
5283 /// ------------------ Value Simplify Attribute ----------------------------
5284 
5285 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5286   // FIXME: Add a typecast support.
5287   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5288       SimplifiedAssociatedValue, Other, Ty);
5289   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5290     return false;
5291 
5292   LLVM_DEBUG({
5293     if (SimplifiedAssociatedValue)
5294       dbgs() << "[ValueSimplify] is assumed to be "
5295              << **SimplifiedAssociatedValue << "\n";
5296     else
5297       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5298   });
5299   return true;
5300 }
5301 
5302 namespace {
5303 struct AAValueSimplifyImpl : AAValueSimplify {
5304   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5305       : AAValueSimplify(IRP, A) {}
5306 
5307   /// See AbstractAttribute::initialize(...).
5308   void initialize(Attributor &A) override {
5309     if (getAssociatedValue().getType()->isVoidTy())
5310       indicatePessimisticFixpoint();
5311     if (A.hasSimplificationCallback(getIRPosition()))
5312       indicatePessimisticFixpoint();
5313   }
5314 
5315   /// See AbstractAttribute::getAsStr().
5316   const std::string getAsStr() const override {
5317     LLVM_DEBUG({
5318       dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
5319       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5320         dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5321     });
5322     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5323                           : "not-simple";
5324   }
5325 
5326   /// See AbstractAttribute::trackStatistics()
5327   void trackStatistics() const override {}
5328 
5329   /// See AAValueSimplify::getAssumedSimplifiedValue()
5330   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5331     return SimplifiedAssociatedValue;
5332   }
5333 
5334   /// Ensure the return value is \p V with type \p Ty, if not possible return
5335   /// nullptr. If \p Check is true we will only verify such an operation would
5336   /// suceed and return a non-nullptr value if that is the case. No IR is
5337   /// generated or modified.
5338   static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
5339                            bool Check) {
5340     if (auto *TypedV = AA::getWithType(V, Ty))
5341       return TypedV;
5342     if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
5343       return Check ? &V
5344                    : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
5345                                                                       "", CtxI);
5346     return nullptr;
5347   }
5348 
5349   /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
5350   /// If \p Check is true we will only verify such an operation would suceed and
5351   /// return a non-nullptr value if that is the case. No IR is generated or
5352   /// modified.
5353   static Value *reproduceInst(Attributor &A,
5354                               const AbstractAttribute &QueryingAA,
5355                               Instruction &I, Type &Ty, Instruction *CtxI,
5356                               bool Check, ValueToValueMapTy &VMap) {
5357     assert(CtxI && "Cannot reproduce an instruction without context!");
5358     if (Check && (I.mayReadFromMemory() ||
5359                   !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
5360                                                 /* TLI */ nullptr)))
5361       return nullptr;
5362     for (Value *Op : I.operands()) {
5363       Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
5364       if (!NewOp) {
5365         assert(Check && "Manifest of new value unexpectedly failed!");
5366         return nullptr;
5367       }
5368       if (!Check)
5369         VMap[Op] = NewOp;
5370     }
5371     if (Check)
5372       return &I;
5373 
5374     Instruction *CloneI = I.clone();
5375     // TODO: Try to salvage debug information here.
5376     CloneI->setDebugLoc(DebugLoc());
5377     VMap[&I] = CloneI;
5378     CloneI->insertBefore(CtxI);
5379     RemapInstruction(CloneI, VMap);
5380     return CloneI;
5381   }
5382 
5383   /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
5384   /// If \p Check is true we will only verify such an operation would suceed and
5385   /// return a non-nullptr value if that is the case. No IR is generated or
5386   /// modified.
5387   static Value *reproduceValue(Attributor &A,
5388                                const AbstractAttribute &QueryingAA, Value &V,
5389                                Type &Ty, Instruction *CtxI, bool Check,
5390                                ValueToValueMapTy &VMap) {
5391     if (const auto &NewV = VMap.lookup(&V))
5392       return NewV;
5393     bool UsedAssumedInformation = false;
5394     Optional<Value *> SimpleV = A.getAssumedSimplified(
5395         V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5396     if (!SimpleV.has_value())
5397       return PoisonValue::get(&Ty);
5398     Value *EffectiveV = &V;
5399     if (SimpleV.value())
5400       EffectiveV = SimpleV.value();
5401     if (auto *C = dyn_cast<Constant>(EffectiveV))
5402       return C;
5403     if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
5404                                       A.getInfoCache()))
5405       return ensureType(A, *EffectiveV, Ty, CtxI, Check);
5406     if (auto *I = dyn_cast<Instruction>(EffectiveV))
5407       if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
5408         return ensureType(A, *NewV, Ty, CtxI, Check);
5409     return nullptr;
5410   }
5411 
5412   /// Return a value we can use as replacement for the associated one, or
5413   /// nullptr if we don't have one that makes sense.
5414   Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
5415     Value *NewV = SimplifiedAssociatedValue
5416                       ? SimplifiedAssociatedValue.value()
5417                       : UndefValue::get(getAssociatedType());
5418     if (NewV && NewV != &getAssociatedValue()) {
5419       ValueToValueMapTy VMap;
5420       // First verify we can reprduce the value with the required type at the
5421       // context location before we actually start modifying the IR.
5422       if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5423                          /* CheckOnly */ true, VMap))
5424         return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5425                               /* CheckOnly */ false, VMap);
5426     }
5427     return nullptr;
5428   }
5429 
5430   /// Helper function for querying AAValueSimplify and updating candicate.
5431   /// \param IRP The value position we are trying to unify with SimplifiedValue
5432   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5433                       const IRPosition &IRP, bool Simplify = true) {
5434     bool UsedAssumedInformation = false;
5435     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5436     if (Simplify)
5437       QueryingValueSimplified = A.getAssumedSimplified(
5438           IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5439     return unionAssumed(QueryingValueSimplified);
5440   }
5441 
5442   /// Returns a candidate is found or not
5443   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5444     if (!getAssociatedValue().getType()->isIntegerTy())
5445       return false;
5446 
5447     // This will also pass the call base context.
5448     const auto &AA =
5449         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5450 
5451     Optional<Constant *> COpt = AA.getAssumedConstant(A);
5452 
5453     if (!COpt) {
5454       SimplifiedAssociatedValue = llvm::None;
5455       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5456       return true;
5457     }
5458     if (auto *C = *COpt) {
5459       SimplifiedAssociatedValue = C;
5460       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5461       return true;
5462     }
5463     return false;
5464   }
5465 
5466   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5467     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5468       return true;
5469     if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
5470       return true;
5471     return false;
5472   }
5473 
5474   /// See AbstractAttribute::manifest(...).
5475   ChangeStatus manifest(Attributor &A) override {
5476     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5477     for (auto &U : getAssociatedValue().uses()) {
5478       // Check if we need to adjust the insertion point to make sure the IR is
5479       // valid.
5480       Instruction *IP = dyn_cast<Instruction>(U.getUser());
5481       if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
5482         IP = PHI->getIncomingBlock(U)->getTerminator();
5483       if (auto *NewV = manifestReplacementValue(A, IP)) {
5484         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
5485                           << " -> " << *NewV << " :: " << *this << "\n");
5486         if (A.changeUseAfterManifest(U, *NewV))
5487           Changed = ChangeStatus::CHANGED;
5488       }
5489     }
5490 
5491     return Changed | AAValueSimplify::manifest(A);
5492   }
5493 
5494   /// See AbstractState::indicatePessimisticFixpoint(...).
5495   ChangeStatus indicatePessimisticFixpoint() override {
5496     SimplifiedAssociatedValue = &getAssociatedValue();
5497     return AAValueSimplify::indicatePessimisticFixpoint();
5498   }
5499 };
5500 
5501 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5502   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5503       : AAValueSimplifyImpl(IRP, A) {}
5504 
5505   void initialize(Attributor &A) override {
5506     AAValueSimplifyImpl::initialize(A);
5507     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5508       indicatePessimisticFixpoint();
5509     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5510                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5511                 /* IgnoreSubsumingPositions */ true))
5512       indicatePessimisticFixpoint();
5513   }
5514 
5515   /// See AbstractAttribute::updateImpl(...).
5516   ChangeStatus updateImpl(Attributor &A) override {
5517     // Byval is only replacable if it is readonly otherwise we would write into
5518     // the replaced value and not the copy that byval creates implicitly.
5519     Argument *Arg = getAssociatedArgument();
5520     if (Arg->hasByValAttr()) {
5521       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5522       //       there is no race by not copying a constant byval.
5523       bool IsKnown;
5524       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5525         return indicatePessimisticFixpoint();
5526     }
5527 
5528     auto Before = SimplifiedAssociatedValue;
5529 
5530     auto PredForCallSite = [&](AbstractCallSite ACS) {
5531       const IRPosition &ACSArgPos =
5532           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5533       // Check if a coresponding argument was found or if it is on not
5534       // associated (which can happen for callback calls).
5535       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5536         return false;
5537 
5538       // Simplify the argument operand explicitly and check if the result is
5539       // valid in the current scope. This avoids refering to simplified values
5540       // in other functions, e.g., we don't want to say a an argument in a
5541       // static function is actually an argument in a different function.
5542       bool UsedAssumedInformation = false;
5543       Optional<Constant *> SimpleArgOp =
5544           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5545       if (!SimpleArgOp)
5546         return true;
5547       if (!SimpleArgOp.value())
5548         return false;
5549       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5550         return false;
5551       return unionAssumed(*SimpleArgOp);
5552     };
5553 
5554     // Generate a answer specific to a call site context.
5555     bool Success;
5556     bool UsedAssumedInformation = false;
5557     if (hasCallBaseContext() &&
5558         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5559       Success = PredForCallSite(
5560           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5561     else
5562       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5563                                        UsedAssumedInformation);
5564 
5565     if (!Success)
5566       if (!askSimplifiedValueForOtherAAs(A))
5567         return indicatePessimisticFixpoint();
5568 
5569     // If a candicate was found in this update, return CHANGED.
5570     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5571                                                : ChangeStatus ::CHANGED;
5572   }
5573 
5574   /// See AbstractAttribute::trackStatistics()
5575   void trackStatistics() const override {
5576     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5577   }
5578 };
5579 
5580 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5581   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5582       : AAValueSimplifyImpl(IRP, A) {}
5583 
5584   /// See AAValueSimplify::getAssumedSimplifiedValue()
5585   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5586     if (!isValidState())
5587       return nullptr;
5588     return SimplifiedAssociatedValue;
5589   }
5590 
5591   /// See AbstractAttribute::updateImpl(...).
5592   ChangeStatus updateImpl(Attributor &A) override {
5593     auto Before = SimplifiedAssociatedValue;
5594 
5595     auto ReturnInstCB = [&](Instruction &I) {
5596       auto &RI = cast<ReturnInst>(I);
5597       return checkAndUpdate(
5598           A, *this,
5599           IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
5600     };
5601 
5602     bool UsedAssumedInformation = false;
5603     if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
5604                                    UsedAssumedInformation))
5605       if (!askSimplifiedValueForOtherAAs(A))
5606         return indicatePessimisticFixpoint();
5607 
5608     // If a candicate was found in this update, return CHANGED.
5609     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5610                                                : ChangeStatus ::CHANGED;
5611   }
5612 
5613   ChangeStatus manifest(Attributor &A) override {
5614     // We queried AAValueSimplify for the returned values so they will be
5615     // replaced if a simplified form was found. Nothing to do here.
5616     return ChangeStatus::UNCHANGED;
5617   }
5618 
5619   /// See AbstractAttribute::trackStatistics()
5620   void trackStatistics() const override {
5621     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5622   }
5623 };
5624 
5625 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5626   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5627       : AAValueSimplifyImpl(IRP, A) {}
5628 
5629   /// See AbstractAttribute::initialize(...).
5630   void initialize(Attributor &A) override {
5631     AAValueSimplifyImpl::initialize(A);
5632     Value &V = getAnchorValue();
5633 
5634     // TODO: add other stuffs
5635     if (isa<Constant>(V))
5636       indicatePessimisticFixpoint();
5637   }
5638 
5639   /// See AbstractAttribute::updateImpl(...).
5640   ChangeStatus updateImpl(Attributor &A) override {
5641     auto Before = SimplifiedAssociatedValue;
5642     if (!askSimplifiedValueForOtherAAs(A))
5643       return indicatePessimisticFixpoint();
5644 
5645     // If a candicate was found in this update, return CHANGED.
5646     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5647                                                : ChangeStatus ::CHANGED;
5648   }
5649 
5650   /// See AbstractAttribute::trackStatistics()
5651   void trackStatistics() const override {
5652     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5653   }
5654 };
5655 
5656 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5657   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5658       : AAValueSimplifyImpl(IRP, A) {}
5659 
5660   /// See AbstractAttribute::initialize(...).
5661   void initialize(Attributor &A) override {
5662     SimplifiedAssociatedValue = nullptr;
5663     indicateOptimisticFixpoint();
5664   }
5665   /// See AbstractAttribute::initialize(...).
5666   ChangeStatus updateImpl(Attributor &A) override {
5667     llvm_unreachable(
5668         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5669   }
5670   /// See AbstractAttribute::trackStatistics()
5671   void trackStatistics() const override {
5672     STATS_DECLTRACK_FN_ATTR(value_simplify)
5673   }
5674 };
5675 
5676 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5677   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5678       : AAValueSimplifyFunction(IRP, A) {}
5679   /// See AbstractAttribute::trackStatistics()
5680   void trackStatistics() const override {
5681     STATS_DECLTRACK_CS_ATTR(value_simplify)
5682   }
5683 };
5684 
5685 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5686   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5687       : AAValueSimplifyImpl(IRP, A) {}
5688 
5689   void initialize(Attributor &A) override {
5690     AAValueSimplifyImpl::initialize(A);
5691     Function *Fn = getAssociatedFunction();
5692     if (!Fn) {
5693       indicatePessimisticFixpoint();
5694       return;
5695     }
5696     for (Argument &Arg : Fn->args()) {
5697       if (Arg.hasReturnedAttr()) {
5698         auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
5699                                                  Arg.getArgNo());
5700         if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
5701             checkAndUpdate(A, *this, IRP))
5702           indicateOptimisticFixpoint();
5703         else
5704           indicatePessimisticFixpoint();
5705         return;
5706       }
5707     }
5708   }
5709 
5710   /// See AbstractAttribute::updateImpl(...).
5711   ChangeStatus updateImpl(Attributor &A) override {
5712     auto Before = SimplifiedAssociatedValue;
5713     auto &RetAA = A.getAAFor<AAReturnedValues>(
5714         *this, IRPosition::function(*getAssociatedFunction()),
5715         DepClassTy::REQUIRED);
5716     auto PredForReturned =
5717         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5718           bool UsedAssumedInformation = false;
5719           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5720               &RetVal, *cast<CallBase>(getCtxI()), *this,
5721               UsedAssumedInformation);
5722           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5723               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5724           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5725         };
5726     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5727       if (!askSimplifiedValueForOtherAAs(A))
5728         return indicatePessimisticFixpoint();
5729     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5730                                                : ChangeStatus ::CHANGED;
5731   }
5732 
5733   void trackStatistics() const override {
5734     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5735   }
5736 };
5737 
5738 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5739   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5740       : AAValueSimplifyFloating(IRP, A) {}
5741 
5742   /// See AbstractAttribute::manifest(...).
5743   ChangeStatus manifest(Attributor &A) override {
5744     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5745     // TODO: We should avoid simplification duplication to begin with.
5746     auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
5747         IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
5748     if (FloatAA && FloatAA->getState().isValidState())
5749       return Changed;
5750 
5751     if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
5752       Use &U = cast<CallBase>(&getAnchorValue())
5753                    ->getArgOperandUse(getCallSiteArgNo());
5754       if (A.changeUseAfterManifest(U, *NewV))
5755         Changed = ChangeStatus::CHANGED;
5756     }
5757 
5758     return Changed | AAValueSimplify::manifest(A);
5759   }
5760 
5761   void trackStatistics() const override {
5762     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5763   }
5764 };
5765 } // namespace
5766 
5767 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5768 namespace {
5769 struct AAHeapToStackFunction final : public AAHeapToStack {
5770 
5771   struct AllocationInfo {
5772     /// The call that allocates the memory.
5773     CallBase *const CB;
5774 
5775     /// The library function id for the allocation.
5776     LibFunc LibraryFunctionId = NotLibFunc;
5777 
5778     /// The status wrt. a rewrite.
5779     enum {
5780       STACK_DUE_TO_USE,
5781       STACK_DUE_TO_FREE,
5782       INVALID,
5783     } Status = STACK_DUE_TO_USE;
5784 
5785     /// Flag to indicate if we encountered a use that might free this allocation
5786     /// but which is not in the deallocation infos.
5787     bool HasPotentiallyFreeingUnknownUses = false;
5788 
5789     /// Flag to indicate that we should place the new alloca in the function
5790     /// entry block rather than where the call site (CB) is.
5791     bool MoveAllocaIntoEntry = true;
5792 
5793     /// The set of free calls that use this allocation.
5794     SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
5795   };
5796 
5797   struct DeallocationInfo {
5798     /// The call that deallocates the memory.
5799     CallBase *const CB;
5800 
5801     /// Flag to indicate if we don't know all objects this deallocation might
5802     /// free.
5803     bool MightFreeUnknownObjects = false;
5804 
5805     /// The set of allocation calls that are potentially freed.
5806     SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
5807   };
5808 
5809   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5810       : AAHeapToStack(IRP, A) {}
5811 
5812   ~AAHeapToStackFunction() {
5813     // Ensure we call the destructor so we release any memory allocated in the
5814     // sets.
5815     for (auto &It : AllocationInfos)
5816       It.second->~AllocationInfo();
5817     for (auto &It : DeallocationInfos)
5818       It.second->~DeallocationInfo();
5819   }
5820 
5821   void initialize(Attributor &A) override {
5822     AAHeapToStack::initialize(A);
5823 
5824     const Function *F = getAnchorScope();
5825     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5826 
5827     auto AllocationIdentifierCB = [&](Instruction &I) {
5828       CallBase *CB = dyn_cast<CallBase>(&I);
5829       if (!CB)
5830         return true;
5831       if (isFreeCall(CB, TLI)) {
5832         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5833         return true;
5834       }
5835       // To do heap to stack, we need to know that the allocation itself is
5836       // removable once uses are rewritten, and that we can initialize the
5837       // alloca to the same pattern as the original allocation result.
5838       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5839         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5840         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5841           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5842           AllocationInfos[CB] = AI;
5843           if (TLI)
5844             TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5845         }
5846       }
5847       return true;
5848     };
5849 
5850     bool UsedAssumedInformation = false;
5851     bool Success = A.checkForAllCallLikeInstructions(
5852         AllocationIdentifierCB, *this, UsedAssumedInformation,
5853         /* CheckBBLivenessOnly */ false,
5854         /* CheckPotentiallyDead */ true);
5855     (void)Success;
5856     assert(Success && "Did not expect the call base visit callback to fail!");
5857 
5858     Attributor::SimplifictionCallbackTy SCB =
5859         [](const IRPosition &, const AbstractAttribute *,
5860            bool &) -> Optional<Value *> { return nullptr; };
5861     for (const auto &It : AllocationInfos)
5862       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5863                                        SCB);
5864     for (const auto &It : DeallocationInfos)
5865       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5866                                        SCB);
5867   }
5868 
5869   const std::string getAsStr() const override {
5870     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5871     for (const auto &It : AllocationInfos) {
5872       if (It.second->Status == AllocationInfo::INVALID)
5873         ++NumInvalidMallocs;
5874       else
5875         ++NumH2SMallocs;
5876     }
5877     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5878            std::to_string(NumInvalidMallocs);
5879   }
5880 
5881   /// See AbstractAttribute::trackStatistics().
5882   void trackStatistics() const override {
5883     STATS_DECL(
5884         MallocCalls, Function,
5885         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5886     for (auto &It : AllocationInfos)
5887       if (It.second->Status != AllocationInfo::INVALID)
5888         ++BUILD_STAT_NAME(MallocCalls, Function);
5889   }
5890 
5891   bool isAssumedHeapToStack(const CallBase &CB) const override {
5892     if (isValidState())
5893       if (AllocationInfo *AI =
5894               AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
5895         return AI->Status != AllocationInfo::INVALID;
5896     return false;
5897   }
5898 
5899   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5900     if (!isValidState())
5901       return false;
5902 
5903     for (auto &It : AllocationInfos) {
5904       AllocationInfo &AI = *It.second;
5905       if (AI.Status == AllocationInfo::INVALID)
5906         continue;
5907 
5908       if (AI.PotentialFreeCalls.count(&CB))
5909         return true;
5910     }
5911 
5912     return false;
5913   }
5914 
5915   ChangeStatus manifest(Attributor &A) override {
5916     assert(getState().isValidState() &&
5917            "Attempted to manifest an invalid state!");
5918 
5919     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5920     Function *F = getAnchorScope();
5921     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5922 
5923     for (auto &It : AllocationInfos) {
5924       AllocationInfo &AI = *It.second;
5925       if (AI.Status == AllocationInfo::INVALID)
5926         continue;
5927 
5928       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5929         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5930         A.deleteAfterManifest(*FreeCall);
5931         HasChanged = ChangeStatus::CHANGED;
5932       }
5933 
5934       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5935                         << "\n");
5936 
5937       auto Remark = [&](OptimizationRemark OR) {
5938         LibFunc IsAllocShared;
5939         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5940           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5941             return OR << "Moving globalized variable to the stack.";
5942         return OR << "Moving memory allocation from the heap to the stack.";
5943       };
5944       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5945         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5946       else
5947         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5948 
5949       const DataLayout &DL = A.getInfoCache().getDL();
5950       Value *Size;
5951       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5952       if (SizeAPI) {
5953         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5954       } else {
5955         LLVMContext &Ctx = AI.CB->getContext();
5956         ObjectSizeOpts Opts;
5957         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
5958         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
5959         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
5960                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
5961         Size = SizeOffsetPair.first;
5962       }
5963 
5964       Instruction *IP =
5965           AI.MoveAllocaIntoEntry ? &F->getEntryBlock().front() : AI.CB;
5966 
5967       Align Alignment(1);
5968       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5969         Alignment = std::max(Alignment, *RetAlign);
5970       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
5971         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
5972         assert(AlignmentAPI && AlignmentAPI.value().getZExtValue() > 0 &&
5973                "Expected an alignment during manifest!");
5974         Alignment = std::max(
5975             Alignment, assumeAligned(AlignmentAPI.value().getZExtValue()));
5976       }
5977 
5978       // TODO: Hoist the alloca towards the function entry.
5979       unsigned AS = DL.getAllocaAddrSpace();
5980       Instruction *Alloca =
5981           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5982                          AI.CB->getName() + ".h2s", IP);
5983 
5984       if (Alloca->getType() != AI.CB->getType())
5985         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
5986             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
5987 
5988       auto *I8Ty = Type::getInt8Ty(F->getContext());
5989       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
5990       assert(InitVal &&
5991              "Must be able to materialize initial memory state of allocation");
5992 
5993       A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
5994 
5995       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5996         auto *NBB = II->getNormalDest();
5997         BranchInst::Create(NBB, AI.CB->getParent());
5998         A.deleteAfterManifest(*AI.CB);
5999       } else {
6000         A.deleteAfterManifest(*AI.CB);
6001       }
6002 
6003       // Initialize the alloca with the same value as used by the allocation
6004       // function.  We can skip undef as the initial value of an alloc is
6005       // undef, and the memset would simply end up being DSEd.
6006       if (!isa<UndefValue>(InitVal)) {
6007         IRBuilder<> Builder(Alloca->getNextNode());
6008         // TODO: Use alignment above if align!=1
6009         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6010       }
6011       HasChanged = ChangeStatus::CHANGED;
6012     }
6013 
6014     return HasChanged;
6015   }
6016 
6017   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6018                            Value &V) {
6019     bool UsedAssumedInformation = false;
6020     Optional<Constant *> SimpleV =
6021         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6022     if (!SimpleV)
6023       return APInt(64, 0);
6024     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.value()))
6025       return CI->getValue();
6026     return llvm::None;
6027   }
6028 
6029   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6030                           AllocationInfo &AI) {
6031     auto Mapper = [&](const Value *V) -> const Value * {
6032       bool UsedAssumedInformation = false;
6033       if (Optional<Constant *> SimpleV =
6034               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6035         if (*SimpleV)
6036           return *SimpleV;
6037       return V;
6038     };
6039 
6040     const Function *F = getAnchorScope();
6041     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6042     return getAllocSize(AI.CB, TLI, Mapper);
6043   }
6044 
6045   /// Collection of all malloc-like calls in a function with associated
6046   /// information.
6047   MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6048 
6049   /// Collection of all free-like calls in a function with associated
6050   /// information.
6051   MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6052 
6053   ChangeStatus updateImpl(Attributor &A) override;
6054 };
6055 
6056 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6057   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6058   const Function *F = getAnchorScope();
6059   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6060 
6061   const auto &LivenessAA =
6062       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6063 
6064   MustBeExecutedContextExplorer &Explorer =
6065       A.getInfoCache().getMustBeExecutedContextExplorer();
6066 
6067   bool StackIsAccessibleByOtherThreads =
6068       A.getInfoCache().stackIsAccessibleByOtherThreads();
6069 
6070   LoopInfo *LI =
6071       A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
6072   Optional<bool> MayContainIrreducibleControl;
6073   auto IsInLoop = [&](BasicBlock &BB) {
6074     if (&F->getEntryBlock() == &BB)
6075       return false;
6076     if (!MayContainIrreducibleControl.has_value())
6077       MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
6078     if (MayContainIrreducibleControl.value())
6079       return true;
6080     if (!LI)
6081       return true;
6082     return LI->getLoopFor(&BB) != nullptr;
6083   };
6084 
6085   // Flag to ensure we update our deallocation information at most once per
6086   // updateImpl call and only if we use the free check reasoning.
6087   bool HasUpdatedFrees = false;
6088 
6089   auto UpdateFrees = [&]() {
6090     HasUpdatedFrees = true;
6091 
6092     for (auto &It : DeallocationInfos) {
6093       DeallocationInfo &DI = *It.second;
6094       // For now we cannot use deallocations that have unknown inputs, skip
6095       // them.
6096       if (DI.MightFreeUnknownObjects)
6097         continue;
6098 
6099       // No need to analyze dead calls, ignore them instead.
6100       bool UsedAssumedInformation = false;
6101       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6102                           /* CheckBBLivenessOnly */ true))
6103         continue;
6104 
6105       // Use the non-optimistic version to get the freed object.
6106       Value *Obj = getUnderlyingObject(DI.CB->getArgOperand(0));
6107       if (!Obj) {
6108         LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
6109         DI.MightFreeUnknownObjects = true;
6110         continue;
6111       }
6112 
6113       // Free of null and undef can be ignored as no-ops (or UB in the latter
6114       // case).
6115       if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6116         continue;
6117 
6118       CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6119       if (!ObjCB) {
6120         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
6121                           << "\n");
6122         DI.MightFreeUnknownObjects = true;
6123         continue;
6124       }
6125 
6126       AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6127       if (!AI) {
6128         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6129                           << "\n");
6130         DI.MightFreeUnknownObjects = true;
6131         continue;
6132       }
6133 
6134       DI.PotentialAllocationCalls.insert(ObjCB);
6135     }
6136   };
6137 
6138   auto FreeCheck = [&](AllocationInfo &AI) {
6139     // If the stack is not accessible by other threads, the "must-free" logic
6140     // doesn't apply as the pointer could be shared and needs to be places in
6141     // "shareable" memory.
6142     if (!StackIsAccessibleByOtherThreads) {
6143       auto &NoSyncAA =
6144           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6145       if (!NoSyncAA.isAssumedNoSync()) {
6146         LLVM_DEBUG(
6147             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6148                       "other threads and function is not nosync:\n");
6149         return false;
6150       }
6151     }
6152     if (!HasUpdatedFrees)
6153       UpdateFrees();
6154 
6155     // TODO: Allow multi exit functions that have different free calls.
6156     if (AI.PotentialFreeCalls.size() != 1) {
6157       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6158                         << AI.PotentialFreeCalls.size() << "\n");
6159       return false;
6160     }
6161     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6162     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6163     if (!DI) {
6164       LLVM_DEBUG(
6165           dbgs() << "[H2S] unique free call was not known as deallocation call "
6166                  << *UniqueFree << "\n");
6167       return false;
6168     }
6169     if (DI->MightFreeUnknownObjects) {
6170       LLVM_DEBUG(
6171           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6172       return false;
6173     }
6174     if (DI->PotentialAllocationCalls.empty())
6175       return true;
6176     if (DI->PotentialAllocationCalls.size() > 1) {
6177       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6178                         << DI->PotentialAllocationCalls.size()
6179                         << " different allocations\n");
6180       return false;
6181     }
6182     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6183       LLVM_DEBUG(
6184           dbgs()
6185           << "[H2S] unique free call not known to free this allocation but "
6186           << **DI->PotentialAllocationCalls.begin() << "\n");
6187       return false;
6188     }
6189     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6190     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6191       LLVM_DEBUG(
6192           dbgs()
6193           << "[H2S] unique free call might not be executed with the allocation "
6194           << *UniqueFree << "\n");
6195       return false;
6196     }
6197     return true;
6198   };
6199 
6200   auto UsesCheck = [&](AllocationInfo &AI) {
6201     bool ValidUsesOnly = true;
6202 
6203     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6204       Instruction *UserI = cast<Instruction>(U.getUser());
6205       if (isa<LoadInst>(UserI))
6206         return true;
6207       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6208         if (SI->getValueOperand() == U.get()) {
6209           LLVM_DEBUG(dbgs()
6210                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6211           ValidUsesOnly = false;
6212         } else {
6213           // A store into the malloc'ed memory is fine.
6214         }
6215         return true;
6216       }
6217       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6218         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6219           return true;
6220         if (DeallocationInfos.count(CB)) {
6221           AI.PotentialFreeCalls.insert(CB);
6222           return true;
6223         }
6224 
6225         unsigned ArgNo = CB->getArgOperandNo(&U);
6226 
6227         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6228             *this, IRPosition::callsite_argument(*CB, ArgNo),
6229             DepClassTy::OPTIONAL);
6230 
6231         // If a call site argument use is nofree, we are fine.
6232         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6233             *this, IRPosition::callsite_argument(*CB, ArgNo),
6234             DepClassTy::OPTIONAL);
6235 
6236         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6237         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6238         if (MaybeCaptured ||
6239             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6240              MaybeFreed)) {
6241           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6242 
6243           // Emit a missed remark if this is missed OpenMP globalization.
6244           auto Remark = [&](OptimizationRemarkMissed ORM) {
6245             return ORM
6246                    << "Could not move globalized variable to the stack. "
6247                       "Variable is potentially captured in call. Mark "
6248                       "parameter as `__attribute__((noescape))` to override.";
6249           };
6250 
6251           if (ValidUsesOnly &&
6252               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6253             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6254 
6255           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6256           ValidUsesOnly = false;
6257         }
6258         return true;
6259       }
6260 
6261       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6262           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6263         Follow = true;
6264         return true;
6265       }
6266       // Unknown user for which we can not track uses further (in a way that
6267       // makes sense).
6268       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6269       ValidUsesOnly = false;
6270       return true;
6271     };
6272     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6273       return false;
6274     return ValidUsesOnly;
6275   };
6276 
6277   // The actual update starts here. We look at all allocations and depending on
6278   // their status perform the appropriate check(s).
6279   for (auto &It : AllocationInfos) {
6280     AllocationInfo &AI = *It.second;
6281     if (AI.Status == AllocationInfo::INVALID)
6282       continue;
6283 
6284     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6285       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6286       if (!APAlign) {
6287         // Can't generate an alloca which respects the required alignment
6288         // on the allocation.
6289         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6290                           << "\n");
6291         AI.Status = AllocationInfo::INVALID;
6292         Changed = ChangeStatus::CHANGED;
6293         continue;
6294       }
6295       if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
6296           !APAlign->isPowerOf2()) {
6297         LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
6298                           << "\n");
6299         AI.Status = AllocationInfo::INVALID;
6300         Changed = ChangeStatus::CHANGED;
6301         continue;
6302       }
6303     }
6304 
6305     Optional<APInt> Size = getSize(A, *this, AI);
6306     if (MaxHeapToStackSize != -1) {
6307       if (!Size || Size.value().ugt(MaxHeapToStackSize)) {
6308         LLVM_DEBUG({
6309           if (!Size)
6310             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6311           else
6312             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6313                    << MaxHeapToStackSize << "\n";
6314         });
6315 
6316         AI.Status = AllocationInfo::INVALID;
6317         Changed = ChangeStatus::CHANGED;
6318         continue;
6319       }
6320     }
6321 
6322     switch (AI.Status) {
6323     case AllocationInfo::STACK_DUE_TO_USE:
6324       if (UsesCheck(AI))
6325         break;
6326       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6327       LLVM_FALLTHROUGH;
6328     case AllocationInfo::STACK_DUE_TO_FREE:
6329       if (FreeCheck(AI))
6330         break;
6331       AI.Status = AllocationInfo::INVALID;
6332       Changed = ChangeStatus::CHANGED;
6333       break;
6334     case AllocationInfo::INVALID:
6335       llvm_unreachable("Invalid allocations should never reach this point!");
6336     };
6337 
6338     // Check if we still think we can move it into the entry block.
6339     if (AI.MoveAllocaIntoEntry &&
6340         (!Size.has_value() || IsInLoop(*AI.CB->getParent())))
6341       AI.MoveAllocaIntoEntry = false;
6342   }
6343 
6344   return Changed;
6345 }
6346 } // namespace
6347 
6348 /// ----------------------- Privatizable Pointers ------------------------------
6349 namespace {
6350 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6351   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6352       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6353 
6354   ChangeStatus indicatePessimisticFixpoint() override {
6355     AAPrivatizablePtr::indicatePessimisticFixpoint();
6356     PrivatizableType = nullptr;
6357     return ChangeStatus::CHANGED;
6358   }
6359 
6360   /// Identify the type we can chose for a private copy of the underlying
6361   /// argument. None means it is not clear yet, nullptr means there is none.
6362   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6363 
6364   /// Return a privatizable type that encloses both T0 and T1.
6365   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6366   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6367     if (!T0)
6368       return T1;
6369     if (!T1)
6370       return T0;
6371     if (T0 == T1)
6372       return T0;
6373     return nullptr;
6374   }
6375 
6376   Optional<Type *> getPrivatizableType() const override {
6377     return PrivatizableType;
6378   }
6379 
6380   const std::string getAsStr() const override {
6381     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6382   }
6383 
6384 protected:
6385   Optional<Type *> PrivatizableType;
6386 };
6387 
6388 // TODO: Do this for call site arguments (probably also other values) as well.
6389 
6390 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6391   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6392       : AAPrivatizablePtrImpl(IRP, A) {}
6393 
6394   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6395   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6396     // If this is a byval argument and we know all the call sites (so we can
6397     // rewrite them), there is no need to check them explicitly.
6398     bool UsedAssumedInformation = false;
6399     SmallVector<Attribute, 1> Attrs;
6400     getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
6401     if (!Attrs.empty() &&
6402         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6403                                true, UsedAssumedInformation))
6404       return Attrs[0].getValueAsType();
6405 
6406     Optional<Type *> Ty;
6407     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6408 
6409     // Make sure the associated call site argument has the same type at all call
6410     // sites and it is an allocation we know is safe to privatize, for now that
6411     // means we only allow alloca instructions.
6412     // TODO: We can additionally analyze the accesses in the callee to  create
6413     //       the type from that information instead. That is a little more
6414     //       involved and will be done in a follow up patch.
6415     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6416       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6417       // Check if a coresponding argument was found or if it is one not
6418       // associated (which can happen for callback calls).
6419       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6420         return false;
6421 
6422       // Check that all call sites agree on a type.
6423       auto &PrivCSArgAA =
6424           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6425       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6426 
6427       LLVM_DEBUG({
6428         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6429         if (CSTy && CSTy.value())
6430           CSTy.value()->print(dbgs());
6431         else if (CSTy)
6432           dbgs() << "<nullptr>";
6433         else
6434           dbgs() << "<none>";
6435       });
6436 
6437       Ty = combineTypes(Ty, CSTy);
6438 
6439       LLVM_DEBUG({
6440         dbgs() << " : New Type: ";
6441         if (Ty && Ty.value())
6442           Ty.value()->print(dbgs());
6443         else if (Ty)
6444           dbgs() << "<nullptr>";
6445         else
6446           dbgs() << "<none>";
6447         dbgs() << "\n";
6448       });
6449 
6450       return !Ty || Ty.value();
6451     };
6452 
6453     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6454                                 UsedAssumedInformation))
6455       return nullptr;
6456     return Ty;
6457   }
6458 
6459   /// See AbstractAttribute::updateImpl(...).
6460   ChangeStatus updateImpl(Attributor &A) override {
6461     PrivatizableType = identifyPrivatizableType(A);
6462     if (!PrivatizableType)
6463       return ChangeStatus::UNCHANGED;
6464     if (!PrivatizableType.value())
6465       return indicatePessimisticFixpoint();
6466 
6467     // The dependence is optional so we don't give up once we give up on the
6468     // alignment.
6469     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6470                         DepClassTy::OPTIONAL);
6471 
6472     // Avoid arguments with padding for now.
6473     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6474         !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
6475       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6476       return indicatePessimisticFixpoint();
6477     }
6478 
6479     // Collect the types that will replace the privatizable type in the function
6480     // signature.
6481     SmallVector<Type *, 16> ReplacementTypes;
6482     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6483 
6484     // Verify callee and caller agree on how the promoted argument would be
6485     // passed.
6486     Function &Fn = *getIRPosition().getAnchorScope();
6487     const auto *TTI =
6488         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6489     if (!TTI) {
6490       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6491                         << Fn.getName() << "\n");
6492       return indicatePessimisticFixpoint();
6493     }
6494 
6495     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6496       CallBase *CB = ACS.getInstruction();
6497       return TTI->areTypesABICompatible(
6498           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6499     };
6500     bool UsedAssumedInformation = false;
6501     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6502                                 UsedAssumedInformation)) {
6503       LLVM_DEBUG(
6504           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6505                  << Fn.getName() << "\n");
6506       return indicatePessimisticFixpoint();
6507     }
6508 
6509     // Register a rewrite of the argument.
6510     Argument *Arg = getAssociatedArgument();
6511     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6512       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6513       return indicatePessimisticFixpoint();
6514     }
6515 
6516     unsigned ArgNo = Arg->getArgNo();
6517 
6518     // Helper to check if for the given call site the associated argument is
6519     // passed to a callback where the privatization would be different.
6520     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6521       SmallVector<const Use *, 4> CallbackUses;
6522       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6523       for (const Use *U : CallbackUses) {
6524         AbstractCallSite CBACS(U);
6525         assert(CBACS && CBACS.isCallbackCall());
6526         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6527           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6528 
6529           LLVM_DEBUG({
6530             dbgs()
6531                 << "[AAPrivatizablePtr] Argument " << *Arg
6532                 << "check if can be privatized in the context of its parent ("
6533                 << Arg->getParent()->getName()
6534                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6535                    "callback ("
6536                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6537                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6538                 << CBACS.getCallArgOperand(CBArg) << " vs "
6539                 << CB.getArgOperand(ArgNo) << "\n"
6540                 << "[AAPrivatizablePtr] " << CBArg << " : "
6541                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6542           });
6543 
6544           if (CBArgNo != int(ArgNo))
6545             continue;
6546           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6547               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6548           if (CBArgPrivAA.isValidState()) {
6549             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6550             if (!CBArgPrivTy)
6551               continue;
6552             if (CBArgPrivTy.value() == PrivatizableType)
6553               continue;
6554           }
6555 
6556           LLVM_DEBUG({
6557             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6558                    << " cannot be privatized in the context of its parent ("
6559                    << Arg->getParent()->getName()
6560                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6561                       "callback ("
6562                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6563                    << ").\n[AAPrivatizablePtr] for which the argument "
6564                       "privatization is not compatible.\n";
6565           });
6566           return false;
6567         }
6568       }
6569       return true;
6570     };
6571 
6572     // Helper to check if for the given call site the associated argument is
6573     // passed to a direct call where the privatization would be different.
6574     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6575       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6576       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6577       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6578              "Expected a direct call operand for callback call operand");
6579 
6580       LLVM_DEBUG({
6581         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6582                << " check if be privatized in the context of its parent ("
6583                << Arg->getParent()->getName()
6584                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6585                   "direct call of ("
6586                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6587                << ").\n";
6588       });
6589 
6590       Function *DCCallee = DC->getCalledFunction();
6591       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6592         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6593             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6594             DepClassTy::REQUIRED);
6595         if (DCArgPrivAA.isValidState()) {
6596           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6597           if (!DCArgPrivTy)
6598             return true;
6599           if (DCArgPrivTy.value() == PrivatizableType)
6600             return true;
6601         }
6602       }
6603 
6604       LLVM_DEBUG({
6605         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6606                << " cannot be privatized in the context of its parent ("
6607                << Arg->getParent()->getName()
6608                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6609                   "direct call of ("
6610                << ACS.getInstruction()->getCalledFunction()->getName()
6611                << ").\n[AAPrivatizablePtr] for which the argument "
6612                   "privatization is not compatible.\n";
6613       });
6614       return false;
6615     };
6616 
6617     // Helper to check if the associated argument is used at the given abstract
6618     // call site in a way that is incompatible with the privatization assumed
6619     // here.
6620     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6621       if (ACS.isDirectCall())
6622         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6623       if (ACS.isCallbackCall())
6624         return IsCompatiblePrivArgOfDirectCS(ACS);
6625       return false;
6626     };
6627 
6628     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6629                                 UsedAssumedInformation))
6630       return indicatePessimisticFixpoint();
6631 
6632     return ChangeStatus::UNCHANGED;
6633   }
6634 
6635   /// Given a type to private \p PrivType, collect the constituates (which are
6636   /// used) in \p ReplacementTypes.
6637   static void
6638   identifyReplacementTypes(Type *PrivType,
6639                            SmallVectorImpl<Type *> &ReplacementTypes) {
6640     // TODO: For now we expand the privatization type to the fullest which can
6641     //       lead to dead arguments that need to be removed later.
6642     assert(PrivType && "Expected privatizable type!");
6643 
6644     // Traverse the type, extract constituate types on the outermost level.
6645     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6646       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6647         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6648     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6649       ReplacementTypes.append(PrivArrayType->getNumElements(),
6650                               PrivArrayType->getElementType());
6651     } else {
6652       ReplacementTypes.push_back(PrivType);
6653     }
6654   }
6655 
6656   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6657   /// The values needed are taken from the arguments of \p F starting at
6658   /// position \p ArgNo.
6659   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6660                                    unsigned ArgNo, Instruction &IP) {
6661     assert(PrivType && "Expected privatizable type!");
6662 
6663     IRBuilder<NoFolder> IRB(&IP);
6664     const DataLayout &DL = F.getParent()->getDataLayout();
6665 
6666     // Traverse the type, build GEPs and stores.
6667     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6668       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6669       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6670         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6671         Value *Ptr =
6672             constructPointer(PointeeTy, PrivType, &Base,
6673                              PrivStructLayout->getElementOffset(u), IRB, DL);
6674         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6675       }
6676     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6677       Type *PointeeTy = PrivArrayType->getElementType();
6678       Type *PointeePtrTy = PointeeTy->getPointerTo();
6679       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6680       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6681         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6682                                       u * PointeeTySize, IRB, DL);
6683         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6684       }
6685     } else {
6686       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6687     }
6688   }
6689 
6690   /// Extract values from \p Base according to the type \p PrivType at the
6691   /// call position \p ACS. The values are appended to \p ReplacementValues.
6692   void createReplacementValues(Align Alignment, Type *PrivType,
6693                                AbstractCallSite ACS, Value *Base,
6694                                SmallVectorImpl<Value *> &ReplacementValues) {
6695     assert(Base && "Expected base value!");
6696     assert(PrivType && "Expected privatizable type!");
6697     Instruction *IP = ACS.getInstruction();
6698 
6699     IRBuilder<NoFolder> IRB(IP);
6700     const DataLayout &DL = IP->getModule()->getDataLayout();
6701 
6702     Type *PrivPtrType = PrivType->getPointerTo();
6703     if (Base->getType() != PrivPtrType)
6704       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6705           Base, PrivPtrType, "", ACS.getInstruction());
6706 
6707     // Traverse the type, build GEPs and loads.
6708     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6709       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6710       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6711         Type *PointeeTy = PrivStructType->getElementType(u);
6712         Value *Ptr =
6713             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6714                              PrivStructLayout->getElementOffset(u), IRB, DL);
6715         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6716         L->setAlignment(Alignment);
6717         ReplacementValues.push_back(L);
6718       }
6719     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6720       Type *PointeeTy = PrivArrayType->getElementType();
6721       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6722       Type *PointeePtrTy = PointeeTy->getPointerTo();
6723       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6724         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6725                                       u * PointeeTySize, IRB, DL);
6726         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6727         L->setAlignment(Alignment);
6728         ReplacementValues.push_back(L);
6729       }
6730     } else {
6731       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6732       L->setAlignment(Alignment);
6733       ReplacementValues.push_back(L);
6734     }
6735   }
6736 
6737   /// See AbstractAttribute::manifest(...)
6738   ChangeStatus manifest(Attributor &A) override {
6739     if (!PrivatizableType)
6740       return ChangeStatus::UNCHANGED;
6741     assert(PrivatizableType.value() && "Expected privatizable type!");
6742 
6743     // Collect all tail calls in the function as we cannot allow new allocas to
6744     // escape into tail recursion.
6745     // TODO: Be smarter about new allocas escaping into tail calls.
6746     SmallVector<CallInst *, 16> TailCalls;
6747     bool UsedAssumedInformation = false;
6748     if (!A.checkForAllInstructions(
6749             [&](Instruction &I) {
6750               CallInst &CI = cast<CallInst>(I);
6751               if (CI.isTailCall())
6752                 TailCalls.push_back(&CI);
6753               return true;
6754             },
6755             *this, {Instruction::Call}, UsedAssumedInformation))
6756       return ChangeStatus::UNCHANGED;
6757 
6758     Argument *Arg = getAssociatedArgument();
6759     // Query AAAlign attribute for alignment of associated argument to
6760     // determine the best alignment of loads.
6761     const auto &AlignAA =
6762         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6763 
6764     // Callback to repair the associated function. A new alloca is placed at the
6765     // beginning and initialized with the values passed through arguments. The
6766     // new alloca replaces the use of the old pointer argument.
6767     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6768         [=](const Attributor::ArgumentReplacementInfo &ARI,
6769             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6770           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6771           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6772           const DataLayout &DL = IP->getModule()->getDataLayout();
6773           unsigned AS = DL.getAllocaAddrSpace();
6774           Instruction *AI = new AllocaInst(PrivatizableType.value(), AS,
6775                                            Arg->getName() + ".priv", IP);
6776           createInitialization(PrivatizableType.value(), *AI, ReplacementFn,
6777                                ArgIt->getArgNo(), *IP);
6778 
6779           if (AI->getType() != Arg->getType())
6780             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6781                 AI, Arg->getType(), "", IP);
6782           Arg->replaceAllUsesWith(AI);
6783 
6784           for (CallInst *CI : TailCalls)
6785             CI->setTailCall(false);
6786         };
6787 
6788     // Callback to repair a call site of the associated function. The elements
6789     // of the privatizable type are loaded prior to the call and passed to the
6790     // new function version.
6791     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6792         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6793                       AbstractCallSite ACS,
6794                       SmallVectorImpl<Value *> &NewArgOperands) {
6795           // When no alignment is specified for the load instruction,
6796           // natural alignment is assumed.
6797           createReplacementValues(
6798               AlignAA.getAssumedAlign(), *PrivatizableType, ACS,
6799               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6800               NewArgOperands);
6801         };
6802 
6803     // Collect the types that will replace the privatizable type in the function
6804     // signature.
6805     SmallVector<Type *, 16> ReplacementTypes;
6806     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6807 
6808     // Register a rewrite of the argument.
6809     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6810                                            std::move(FnRepairCB),
6811                                            std::move(ACSRepairCB)))
6812       return ChangeStatus::CHANGED;
6813     return ChangeStatus::UNCHANGED;
6814   }
6815 
6816   /// See AbstractAttribute::trackStatistics()
6817   void trackStatistics() const override {
6818     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6819   }
6820 };
6821 
6822 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6823   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6824       : AAPrivatizablePtrImpl(IRP, A) {}
6825 
6826   /// See AbstractAttribute::initialize(...).
6827   virtual void initialize(Attributor &A) override {
6828     // TODO: We can privatize more than arguments.
6829     indicatePessimisticFixpoint();
6830   }
6831 
6832   ChangeStatus updateImpl(Attributor &A) override {
6833     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6834                      "updateImpl will not be called");
6835   }
6836 
6837   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6838   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6839     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6840     if (!Obj) {
6841       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6842       return nullptr;
6843     }
6844 
6845     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6846       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6847         if (CI->isOne())
6848           return AI->getAllocatedType();
6849     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6850       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6851           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6852       if (PrivArgAA.isAssumedPrivatizablePtr())
6853         return PrivArgAA.getPrivatizableType();
6854     }
6855 
6856     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6857                          "alloca nor privatizable argument: "
6858                       << *Obj << "!\n");
6859     return nullptr;
6860   }
6861 
6862   /// See AbstractAttribute::trackStatistics()
6863   void trackStatistics() const override {
6864     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6865   }
6866 };
6867 
6868 struct AAPrivatizablePtrCallSiteArgument final
6869     : public AAPrivatizablePtrFloating {
6870   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6871       : AAPrivatizablePtrFloating(IRP, A) {}
6872 
6873   /// See AbstractAttribute::initialize(...).
6874   void initialize(Attributor &A) override {
6875     if (getIRPosition().hasAttr(Attribute::ByVal))
6876       indicateOptimisticFixpoint();
6877   }
6878 
6879   /// See AbstractAttribute::updateImpl(...).
6880   ChangeStatus updateImpl(Attributor &A) override {
6881     PrivatizableType = identifyPrivatizableType(A);
6882     if (!PrivatizableType)
6883       return ChangeStatus::UNCHANGED;
6884     if (!PrivatizableType.value())
6885       return indicatePessimisticFixpoint();
6886 
6887     const IRPosition &IRP = getIRPosition();
6888     auto &NoCaptureAA =
6889         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6890     if (!NoCaptureAA.isAssumedNoCapture()) {
6891       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6892       return indicatePessimisticFixpoint();
6893     }
6894 
6895     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6896     if (!NoAliasAA.isAssumedNoAlias()) {
6897       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6898       return indicatePessimisticFixpoint();
6899     }
6900 
6901     bool IsKnown;
6902     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
6903       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6904       return indicatePessimisticFixpoint();
6905     }
6906 
6907     return ChangeStatus::UNCHANGED;
6908   }
6909 
6910   /// See AbstractAttribute::trackStatistics()
6911   void trackStatistics() const override {
6912     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6913   }
6914 };
6915 
6916 struct AAPrivatizablePtrCallSiteReturned final
6917     : public AAPrivatizablePtrFloating {
6918   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6919       : AAPrivatizablePtrFloating(IRP, A) {}
6920 
6921   /// See AbstractAttribute::initialize(...).
6922   void initialize(Attributor &A) override {
6923     // TODO: We can privatize more than arguments.
6924     indicatePessimisticFixpoint();
6925   }
6926 
6927   /// See AbstractAttribute::trackStatistics()
6928   void trackStatistics() const override {
6929     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6930   }
6931 };
6932 
6933 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6934   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6935       : AAPrivatizablePtrFloating(IRP, A) {}
6936 
6937   /// See AbstractAttribute::initialize(...).
6938   void initialize(Attributor &A) override {
6939     // TODO: We can privatize more than arguments.
6940     indicatePessimisticFixpoint();
6941   }
6942 
6943   /// See AbstractAttribute::trackStatistics()
6944   void trackStatistics() const override {
6945     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6946   }
6947 };
6948 } // namespace
6949 
6950 /// -------------------- Memory Behavior Attributes ----------------------------
6951 /// Includes read-none, read-only, and write-only.
6952 /// ----------------------------------------------------------------------------
6953 namespace {
6954 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6955   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6956       : AAMemoryBehavior(IRP, A) {}
6957 
6958   /// See AbstractAttribute::initialize(...).
6959   void initialize(Attributor &A) override {
6960     intersectAssumedBits(BEST_STATE);
6961     getKnownStateFromValue(getIRPosition(), getState());
6962     AAMemoryBehavior::initialize(A);
6963   }
6964 
6965   /// Return the memory behavior information encoded in the IR for \p IRP.
6966   static void getKnownStateFromValue(const IRPosition &IRP,
6967                                      BitIntegerState &State,
6968                                      bool IgnoreSubsumingPositions = false) {
6969     SmallVector<Attribute, 2> Attrs;
6970     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6971     for (const Attribute &Attr : Attrs) {
6972       switch (Attr.getKindAsEnum()) {
6973       case Attribute::ReadNone:
6974         State.addKnownBits(NO_ACCESSES);
6975         break;
6976       case Attribute::ReadOnly:
6977         State.addKnownBits(NO_WRITES);
6978         break;
6979       case Attribute::WriteOnly:
6980         State.addKnownBits(NO_READS);
6981         break;
6982       default:
6983         llvm_unreachable("Unexpected attribute!");
6984       }
6985     }
6986 
6987     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6988       if (!I->mayReadFromMemory())
6989         State.addKnownBits(NO_READS);
6990       if (!I->mayWriteToMemory())
6991         State.addKnownBits(NO_WRITES);
6992     }
6993   }
6994 
6995   /// See AbstractAttribute::getDeducedAttributes(...).
6996   void getDeducedAttributes(LLVMContext &Ctx,
6997                             SmallVectorImpl<Attribute> &Attrs) const override {
6998     assert(Attrs.size() == 0);
6999     if (isAssumedReadNone())
7000       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7001     else if (isAssumedReadOnly())
7002       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7003     else if (isAssumedWriteOnly())
7004       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7005     assert(Attrs.size() <= 1);
7006   }
7007 
7008   /// See AbstractAttribute::manifest(...).
7009   ChangeStatus manifest(Attributor &A) override {
7010     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7011       return ChangeStatus::UNCHANGED;
7012 
7013     const IRPosition &IRP = getIRPosition();
7014 
7015     // Check if we would improve the existing attributes first.
7016     SmallVector<Attribute, 4> DeducedAttrs;
7017     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7018     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7019           return IRP.hasAttr(Attr.getKindAsEnum(),
7020                              /* IgnoreSubsumingPositions */ true);
7021         }))
7022       return ChangeStatus::UNCHANGED;
7023 
7024     // Clear existing attributes.
7025     IRP.removeAttrs(AttrKinds);
7026 
7027     // Use the generic manifest method.
7028     return IRAttribute::manifest(A);
7029   }
7030 
7031   /// See AbstractState::getAsStr().
7032   const std::string getAsStr() const override {
7033     if (isAssumedReadNone())
7034       return "readnone";
7035     if (isAssumedReadOnly())
7036       return "readonly";
7037     if (isAssumedWriteOnly())
7038       return "writeonly";
7039     return "may-read/write";
7040   }
7041 
7042   /// The set of IR attributes AAMemoryBehavior deals with.
7043   static const Attribute::AttrKind AttrKinds[3];
7044 };
7045 
7046 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7047     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7048 
7049 /// Memory behavior attribute for a floating value.
7050 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7051   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7052       : AAMemoryBehaviorImpl(IRP, A) {}
7053 
7054   /// See AbstractAttribute::updateImpl(...).
7055   ChangeStatus updateImpl(Attributor &A) override;
7056 
7057   /// See AbstractAttribute::trackStatistics()
7058   void trackStatistics() const override {
7059     if (isAssumedReadNone())
7060       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7061     else if (isAssumedReadOnly())
7062       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7063     else if (isAssumedWriteOnly())
7064       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7065   }
7066 
7067 private:
7068   /// Return true if users of \p UserI might access the underlying
7069   /// variable/location described by \p U and should therefore be analyzed.
7070   bool followUsersOfUseIn(Attributor &A, const Use &U,
7071                           const Instruction *UserI);
7072 
7073   /// Update the state according to the effect of use \p U in \p UserI.
7074   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7075 };
7076 
7077 /// Memory behavior attribute for function argument.
7078 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7079   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7080       : AAMemoryBehaviorFloating(IRP, A) {}
7081 
7082   /// See AbstractAttribute::initialize(...).
7083   void initialize(Attributor &A) override {
7084     intersectAssumedBits(BEST_STATE);
7085     const IRPosition &IRP = getIRPosition();
7086     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7087     // can query it when we use has/getAttr. That would allow us to reuse the
7088     // initialize of the base class here.
7089     bool HasByVal =
7090         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7091     getKnownStateFromValue(IRP, getState(),
7092                            /* IgnoreSubsumingPositions */ HasByVal);
7093 
7094     // Initialize the use vector with all direct uses of the associated value.
7095     Argument *Arg = getAssociatedArgument();
7096     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7097       indicatePessimisticFixpoint();
7098   }
7099 
7100   ChangeStatus manifest(Attributor &A) override {
7101     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7102     if (!getAssociatedValue().getType()->isPointerTy())
7103       return ChangeStatus::UNCHANGED;
7104 
7105     // TODO: From readattrs.ll: "inalloca parameters are always
7106     //                           considered written"
7107     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7108       removeKnownBits(NO_WRITES);
7109       removeAssumedBits(NO_WRITES);
7110     }
7111     return AAMemoryBehaviorFloating::manifest(A);
7112   }
7113 
7114   /// See AbstractAttribute::trackStatistics()
7115   void trackStatistics() const override {
7116     if (isAssumedReadNone())
7117       STATS_DECLTRACK_ARG_ATTR(readnone)
7118     else if (isAssumedReadOnly())
7119       STATS_DECLTRACK_ARG_ATTR(readonly)
7120     else if (isAssumedWriteOnly())
7121       STATS_DECLTRACK_ARG_ATTR(writeonly)
7122   }
7123 };
7124 
7125 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7126   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7127       : AAMemoryBehaviorArgument(IRP, A) {}
7128 
7129   /// See AbstractAttribute::initialize(...).
7130   void initialize(Attributor &A) override {
7131     // If we don't have an associated attribute this is either a variadic call
7132     // or an indirect call, either way, nothing to do here.
7133     Argument *Arg = getAssociatedArgument();
7134     if (!Arg) {
7135       indicatePessimisticFixpoint();
7136       return;
7137     }
7138     if (Arg->hasByValAttr()) {
7139       addKnownBits(NO_WRITES);
7140       removeKnownBits(NO_READS);
7141       removeAssumedBits(NO_READS);
7142     }
7143     AAMemoryBehaviorArgument::initialize(A);
7144     if (getAssociatedFunction()->isDeclaration())
7145       indicatePessimisticFixpoint();
7146   }
7147 
7148   /// See AbstractAttribute::updateImpl(...).
7149   ChangeStatus updateImpl(Attributor &A) override {
7150     // TODO: Once we have call site specific value information we can provide
7151     //       call site specific liveness liveness information and then it makes
7152     //       sense to specialize attributes for call sites arguments instead of
7153     //       redirecting requests to the callee argument.
7154     Argument *Arg = getAssociatedArgument();
7155     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7156     auto &ArgAA =
7157         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7158     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7159   }
7160 
7161   /// See AbstractAttribute::trackStatistics()
7162   void trackStatistics() const override {
7163     if (isAssumedReadNone())
7164       STATS_DECLTRACK_CSARG_ATTR(readnone)
7165     else if (isAssumedReadOnly())
7166       STATS_DECLTRACK_CSARG_ATTR(readonly)
7167     else if (isAssumedWriteOnly())
7168       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7169   }
7170 };
7171 
7172 /// Memory behavior attribute for a call site return position.
7173 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7174   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7175       : AAMemoryBehaviorFloating(IRP, A) {}
7176 
7177   /// See AbstractAttribute::initialize(...).
7178   void initialize(Attributor &A) override {
7179     AAMemoryBehaviorImpl::initialize(A);
7180     Function *F = getAssociatedFunction();
7181     if (!F || F->isDeclaration())
7182       indicatePessimisticFixpoint();
7183   }
7184 
7185   /// See AbstractAttribute::manifest(...).
7186   ChangeStatus manifest(Attributor &A) override {
7187     // We do not annotate returned values.
7188     return ChangeStatus::UNCHANGED;
7189   }
7190 
7191   /// See AbstractAttribute::trackStatistics()
7192   void trackStatistics() const override {}
7193 };
7194 
7195 /// An AA to represent the memory behavior function attributes.
7196 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7197   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7198       : AAMemoryBehaviorImpl(IRP, A) {}
7199 
7200   /// See AbstractAttribute::updateImpl(Attributor &A).
7201   virtual ChangeStatus updateImpl(Attributor &A) override;
7202 
7203   /// See AbstractAttribute::manifest(...).
7204   ChangeStatus manifest(Attributor &A) override {
7205     Function &F = cast<Function>(getAnchorValue());
7206     if (isAssumedReadNone()) {
7207       F.removeFnAttr(Attribute::ArgMemOnly);
7208       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7209       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7210     }
7211     return AAMemoryBehaviorImpl::manifest(A);
7212   }
7213 
7214   /// See AbstractAttribute::trackStatistics()
7215   void trackStatistics() const override {
7216     if (isAssumedReadNone())
7217       STATS_DECLTRACK_FN_ATTR(readnone)
7218     else if (isAssumedReadOnly())
7219       STATS_DECLTRACK_FN_ATTR(readonly)
7220     else if (isAssumedWriteOnly())
7221       STATS_DECLTRACK_FN_ATTR(writeonly)
7222   }
7223 };
7224 
7225 /// AAMemoryBehavior attribute for call sites.
7226 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7227   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7228       : AAMemoryBehaviorImpl(IRP, A) {}
7229 
7230   /// See AbstractAttribute::initialize(...).
7231   void initialize(Attributor &A) override {
7232     AAMemoryBehaviorImpl::initialize(A);
7233     Function *F = getAssociatedFunction();
7234     if (!F || F->isDeclaration())
7235       indicatePessimisticFixpoint();
7236   }
7237 
7238   /// See AbstractAttribute::updateImpl(...).
7239   ChangeStatus updateImpl(Attributor &A) override {
7240     // TODO: Once we have call site specific value information we can provide
7241     //       call site specific liveness liveness information and then it makes
7242     //       sense to specialize attributes for call sites arguments instead of
7243     //       redirecting requests to the callee argument.
7244     Function *F = getAssociatedFunction();
7245     const IRPosition &FnPos = IRPosition::function(*F);
7246     auto &FnAA =
7247         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7248     return clampStateAndIndicateChange(getState(), FnAA.getState());
7249   }
7250 
7251   /// See AbstractAttribute::trackStatistics()
7252   void trackStatistics() const override {
7253     if (isAssumedReadNone())
7254       STATS_DECLTRACK_CS_ATTR(readnone)
7255     else if (isAssumedReadOnly())
7256       STATS_DECLTRACK_CS_ATTR(readonly)
7257     else if (isAssumedWriteOnly())
7258       STATS_DECLTRACK_CS_ATTR(writeonly)
7259   }
7260 };
7261 
7262 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7263 
7264   // The current assumed state used to determine a change.
7265   auto AssumedState = getAssumed();
7266 
7267   auto CheckRWInst = [&](Instruction &I) {
7268     // If the instruction has an own memory behavior state, use it to restrict
7269     // the local state. No further analysis is required as the other memory
7270     // state is as optimistic as it gets.
7271     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7272       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7273           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7274       intersectAssumedBits(MemBehaviorAA.getAssumed());
7275       return !isAtFixpoint();
7276     }
7277 
7278     // Remove access kind modifiers if necessary.
7279     if (I.mayReadFromMemory())
7280       removeAssumedBits(NO_READS);
7281     if (I.mayWriteToMemory())
7282       removeAssumedBits(NO_WRITES);
7283     return !isAtFixpoint();
7284   };
7285 
7286   bool UsedAssumedInformation = false;
7287   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7288                                           UsedAssumedInformation))
7289     return indicatePessimisticFixpoint();
7290 
7291   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7292                                         : ChangeStatus::UNCHANGED;
7293 }
7294 
7295 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7296 
7297   const IRPosition &IRP = getIRPosition();
7298   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7299   AAMemoryBehavior::StateType &S = getState();
7300 
7301   // First, check the function scope. We take the known information and we avoid
7302   // work if the assumed information implies the current assumed information for
7303   // this attribute. This is a valid for all but byval arguments.
7304   Argument *Arg = IRP.getAssociatedArgument();
7305   AAMemoryBehavior::base_t FnMemAssumedState =
7306       AAMemoryBehavior::StateType::getWorstState();
7307   if (!Arg || !Arg->hasByValAttr()) {
7308     const auto &FnMemAA =
7309         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7310     FnMemAssumedState = FnMemAA.getAssumed();
7311     S.addKnownBits(FnMemAA.getKnown());
7312     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7313       return ChangeStatus::UNCHANGED;
7314   }
7315 
7316   // The current assumed state used to determine a change.
7317   auto AssumedState = S.getAssumed();
7318 
7319   // Make sure the value is not captured (except through "return"), if
7320   // it is, any information derived would be irrelevant anyway as we cannot
7321   // check the potential aliases introduced by the capture. However, no need
7322   // to fall back to anythign less optimistic than the function state.
7323   const auto &ArgNoCaptureAA =
7324       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7325   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7326     S.intersectAssumedBits(FnMemAssumedState);
7327     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7328                                           : ChangeStatus::UNCHANGED;
7329   }
7330 
7331   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7332   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7333     Instruction *UserI = cast<Instruction>(U.getUser());
7334     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7335                       << " \n");
7336 
7337     // Droppable users, e.g., llvm::assume does not actually perform any action.
7338     if (UserI->isDroppable())
7339       return true;
7340 
7341     // Check if the users of UserI should also be visited.
7342     Follow = followUsersOfUseIn(A, U, UserI);
7343 
7344     // If UserI might touch memory we analyze the use in detail.
7345     if (UserI->mayReadOrWriteMemory())
7346       analyzeUseIn(A, U, UserI);
7347 
7348     return !isAtFixpoint();
7349   };
7350 
7351   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7352     return indicatePessimisticFixpoint();
7353 
7354   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7355                                         : ChangeStatus::UNCHANGED;
7356 }
7357 
7358 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7359                                                   const Instruction *UserI) {
7360   // The loaded value is unrelated to the pointer argument, no need to
7361   // follow the users of the load.
7362   if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
7363     return false;
7364 
7365   // By default we follow all uses assuming UserI might leak information on U,
7366   // we have special handling for call sites operands though.
7367   const auto *CB = dyn_cast<CallBase>(UserI);
7368   if (!CB || !CB->isArgOperand(&U))
7369     return true;
7370 
7371   // If the use is a call argument known not to be captured, the users of
7372   // the call do not need to be visited because they have to be unrelated to
7373   // the input. Note that this check is not trivial even though we disallow
7374   // general capturing of the underlying argument. The reason is that the
7375   // call might the argument "through return", which we allow and for which we
7376   // need to check call users.
7377   if (U.get()->getType()->isPointerTy()) {
7378     unsigned ArgNo = CB->getArgOperandNo(&U);
7379     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7380         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7381     return !ArgNoCaptureAA.isAssumedNoCapture();
7382   }
7383 
7384   return true;
7385 }
7386 
7387 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7388                                             const Instruction *UserI) {
7389   assert(UserI->mayReadOrWriteMemory());
7390 
7391   switch (UserI->getOpcode()) {
7392   default:
7393     // TODO: Handle all atomics and other side-effect operations we know of.
7394     break;
7395   case Instruction::Load:
7396     // Loads cause the NO_READS property to disappear.
7397     removeAssumedBits(NO_READS);
7398     return;
7399 
7400   case Instruction::Store:
7401     // Stores cause the NO_WRITES property to disappear if the use is the
7402     // pointer operand. Note that while capturing was taken care of somewhere
7403     // else we need to deal with stores of the value that is not looked through.
7404     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7405       removeAssumedBits(NO_WRITES);
7406     else
7407       indicatePessimisticFixpoint();
7408     return;
7409 
7410   case Instruction::Call:
7411   case Instruction::CallBr:
7412   case Instruction::Invoke: {
7413     // For call sites we look at the argument memory behavior attribute (this
7414     // could be recursive!) in order to restrict our own state.
7415     const auto *CB = cast<CallBase>(UserI);
7416 
7417     // Give up on operand bundles.
7418     if (CB->isBundleOperand(&U)) {
7419       indicatePessimisticFixpoint();
7420       return;
7421     }
7422 
7423     // Calling a function does read the function pointer, maybe write it if the
7424     // function is self-modifying.
7425     if (CB->isCallee(&U)) {
7426       removeAssumedBits(NO_READS);
7427       break;
7428     }
7429 
7430     // Adjust the possible access behavior based on the information on the
7431     // argument.
7432     IRPosition Pos;
7433     if (U.get()->getType()->isPointerTy())
7434       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7435     else
7436       Pos = IRPosition::callsite_function(*CB);
7437     const auto &MemBehaviorAA =
7438         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7439     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7440     // and at least "known".
7441     intersectAssumedBits(MemBehaviorAA.getAssumed());
7442     return;
7443   }
7444   };
7445 
7446   // Generally, look at the "may-properties" and adjust the assumed state if we
7447   // did not trigger special handling before.
7448   if (UserI->mayReadFromMemory())
7449     removeAssumedBits(NO_READS);
7450   if (UserI->mayWriteToMemory())
7451     removeAssumedBits(NO_WRITES);
7452 }
7453 } // namespace
7454 
7455 /// -------------------- Memory Locations Attributes ---------------------------
7456 /// Includes read-none, argmemonly, inaccessiblememonly,
7457 /// inaccessiblememorargmemonly
7458 /// ----------------------------------------------------------------------------
7459 
7460 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7461     AAMemoryLocation::MemoryLocationsKind MLK) {
7462   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7463     return "all memory";
7464   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7465     return "no memory";
7466   std::string S = "memory:";
7467   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7468     S += "stack,";
7469   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7470     S += "constant,";
7471   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7472     S += "internal global,";
7473   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7474     S += "external global,";
7475   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7476     S += "argument,";
7477   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7478     S += "inaccessible,";
7479   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7480     S += "malloced,";
7481   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7482     S += "unknown,";
7483   S.pop_back();
7484   return S;
7485 }
7486 
7487 namespace {
7488 struct AAMemoryLocationImpl : public AAMemoryLocation {
7489 
7490   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7491       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7492     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7493       AccessKind2Accesses[u] = nullptr;
7494   }
7495 
7496   ~AAMemoryLocationImpl() {
7497     // The AccessSets are allocated via a BumpPtrAllocator, we call
7498     // the destructor manually.
7499     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7500       if (AccessKind2Accesses[u])
7501         AccessKind2Accesses[u]->~AccessSet();
7502   }
7503 
7504   /// See AbstractAttribute::initialize(...).
7505   void initialize(Attributor &A) override {
7506     intersectAssumedBits(BEST_STATE);
7507     getKnownStateFromValue(A, getIRPosition(), getState());
7508     AAMemoryLocation::initialize(A);
7509   }
7510 
7511   /// Return the memory behavior information encoded in the IR for \p IRP.
7512   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7513                                      BitIntegerState &State,
7514                                      bool IgnoreSubsumingPositions = false) {
7515     // For internal functions we ignore `argmemonly` and
7516     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7517     // constant propagation. It is unclear if this is the best way but it is
7518     // unlikely this will cause real performance problems. If we are deriving
7519     // attributes for the anchor function we even remove the attribute in
7520     // addition to ignoring it.
7521     bool UseArgMemOnly = true;
7522     Function *AnchorFn = IRP.getAnchorScope();
7523     if (AnchorFn && A.isRunOn(*AnchorFn))
7524       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7525 
7526     SmallVector<Attribute, 2> Attrs;
7527     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7528     for (const Attribute &Attr : Attrs) {
7529       switch (Attr.getKindAsEnum()) {
7530       case Attribute::ReadNone:
7531         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7532         break;
7533       case Attribute::InaccessibleMemOnly:
7534         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7535         break;
7536       case Attribute::ArgMemOnly:
7537         if (UseArgMemOnly)
7538           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7539         else
7540           IRP.removeAttrs({Attribute::ArgMemOnly});
7541         break;
7542       case Attribute::InaccessibleMemOrArgMemOnly:
7543         if (UseArgMemOnly)
7544           State.addKnownBits(inverseLocation(
7545               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7546         else
7547           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7548         break;
7549       default:
7550         llvm_unreachable("Unexpected attribute!");
7551       }
7552     }
7553   }
7554 
7555   /// See AbstractAttribute::getDeducedAttributes(...).
7556   void getDeducedAttributes(LLVMContext &Ctx,
7557                             SmallVectorImpl<Attribute> &Attrs) const override {
7558     assert(Attrs.size() == 0);
7559     if (isAssumedReadNone()) {
7560       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7561     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7562       if (isAssumedInaccessibleMemOnly())
7563         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7564       else if (isAssumedArgMemOnly())
7565         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7566       else if (isAssumedInaccessibleOrArgMemOnly())
7567         Attrs.push_back(
7568             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7569     }
7570     assert(Attrs.size() <= 1);
7571   }
7572 
7573   /// See AbstractAttribute::manifest(...).
7574   ChangeStatus manifest(Attributor &A) override {
7575     const IRPosition &IRP = getIRPosition();
7576 
7577     // Check if we would improve the existing attributes first.
7578     SmallVector<Attribute, 4> DeducedAttrs;
7579     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7580     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7581           return IRP.hasAttr(Attr.getKindAsEnum(),
7582                              /* IgnoreSubsumingPositions */ true);
7583         }))
7584       return ChangeStatus::UNCHANGED;
7585 
7586     // Clear existing attributes.
7587     IRP.removeAttrs(AttrKinds);
7588     if (isAssumedReadNone())
7589       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7590 
7591     // Use the generic manifest method.
7592     return IRAttribute::manifest(A);
7593   }
7594 
7595   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7596   bool checkForAllAccessesToMemoryKind(
7597       function_ref<bool(const Instruction *, const Value *, AccessKind,
7598                         MemoryLocationsKind)>
7599           Pred,
7600       MemoryLocationsKind RequestedMLK) const override {
7601     if (!isValidState())
7602       return false;
7603 
7604     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7605     if (AssumedMLK == NO_LOCATIONS)
7606       return true;
7607 
7608     unsigned Idx = 0;
7609     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7610          CurMLK *= 2, ++Idx) {
7611       if (CurMLK & RequestedMLK)
7612         continue;
7613 
7614       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7615         for (const AccessInfo &AI : *Accesses)
7616           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7617             return false;
7618     }
7619 
7620     return true;
7621   }
7622 
7623   ChangeStatus indicatePessimisticFixpoint() override {
7624     // If we give up and indicate a pessimistic fixpoint this instruction will
7625     // become an access for all potential access kinds:
7626     // TODO: Add pointers for argmemonly and globals to improve the results of
7627     //       checkForAllAccessesToMemoryKind.
7628     bool Changed = false;
7629     MemoryLocationsKind KnownMLK = getKnown();
7630     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7631     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7632       if (!(CurMLK & KnownMLK))
7633         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7634                                   getAccessKindFromInst(I));
7635     return AAMemoryLocation::indicatePessimisticFixpoint();
7636   }
7637 
7638 protected:
7639   /// Helper struct to tie together an instruction that has a read or write
7640   /// effect with the pointer it accesses (if any).
7641   struct AccessInfo {
7642 
7643     /// The instruction that caused the access.
7644     const Instruction *I;
7645 
7646     /// The base pointer that is accessed, or null if unknown.
7647     const Value *Ptr;
7648 
7649     /// The kind of access (read/write/read+write).
7650     AccessKind Kind;
7651 
7652     bool operator==(const AccessInfo &RHS) const {
7653       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7654     }
7655     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7656       if (LHS.I != RHS.I)
7657         return LHS.I < RHS.I;
7658       if (LHS.Ptr != RHS.Ptr)
7659         return LHS.Ptr < RHS.Ptr;
7660       if (LHS.Kind != RHS.Kind)
7661         return LHS.Kind < RHS.Kind;
7662       return false;
7663     }
7664   };
7665 
7666   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7667   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7668   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7669   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7670 
7671   /// Categorize the pointer arguments of CB that might access memory in
7672   /// AccessedLoc and update the state and access map accordingly.
7673   void
7674   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7675                                      AAMemoryLocation::StateType &AccessedLocs,
7676                                      bool &Changed);
7677 
7678   /// Return the kind(s) of location that may be accessed by \p V.
7679   AAMemoryLocation::MemoryLocationsKind
7680   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7681 
7682   /// Return the access kind as determined by \p I.
7683   AccessKind getAccessKindFromInst(const Instruction *I) {
7684     AccessKind AK = READ_WRITE;
7685     if (I) {
7686       AK = I->mayReadFromMemory() ? READ : NONE;
7687       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7688     }
7689     return AK;
7690   }
7691 
7692   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7693   /// an access of kind \p AK to a \p MLK memory location with the access
7694   /// pointer \p Ptr.
7695   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7696                                  MemoryLocationsKind MLK, const Instruction *I,
7697                                  const Value *Ptr, bool &Changed,
7698                                  AccessKind AK = READ_WRITE) {
7699 
7700     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7701     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7702     if (!Accesses)
7703       Accesses = new (Allocator) AccessSet();
7704     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7705     State.removeAssumedBits(MLK);
7706   }
7707 
7708   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7709   /// arguments, and update the state and access map accordingly.
7710   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7711                           AAMemoryLocation::StateType &State, bool &Changed);
7712 
7713   /// Used to allocate access sets.
7714   BumpPtrAllocator &Allocator;
7715 
7716   /// The set of IR attributes AAMemoryLocation deals with.
7717   static const Attribute::AttrKind AttrKinds[4];
7718 };
7719 
7720 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7721     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7722     Attribute::InaccessibleMemOrArgMemOnly};
7723 
7724 void AAMemoryLocationImpl::categorizePtrValue(
7725     Attributor &A, const Instruction &I, const Value &Ptr,
7726     AAMemoryLocation::StateType &State, bool &Changed) {
7727   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7728                     << Ptr << " ["
7729                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7730 
7731   SmallSetVector<Value *, 8> Objects;
7732   bool UsedAssumedInformation = false;
7733   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7734                                        UsedAssumedInformation,
7735                                        AA::Intraprocedural)) {
7736     LLVM_DEBUG(
7737         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7738     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7739                               getAccessKindFromInst(&I));
7740     return;
7741   }
7742 
7743   for (Value *Obj : Objects) {
7744     // TODO: recognize the TBAA used for constant accesses.
7745     MemoryLocationsKind MLK = NO_LOCATIONS;
7746     if (isa<UndefValue>(Obj))
7747       continue;
7748     if (isa<Argument>(Obj)) {
7749       // TODO: For now we do not treat byval arguments as local copies performed
7750       // on the call edge, though, we should. To make that happen we need to
7751       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7752       // would also allow us to mark functions only accessing byval arguments as
7753       // readnone again, atguably their acceses have no effect outside of the
7754       // function, like accesses to allocas.
7755       MLK = NO_ARGUMENT_MEM;
7756     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7757       // Reading constant memory is not treated as a read "effect" by the
7758       // function attr pass so we won't neither. Constants defined by TBAA are
7759       // similar. (We know we do not write it because it is constant.)
7760       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7761         if (GVar->isConstant())
7762           continue;
7763 
7764       if (GV->hasLocalLinkage())
7765         MLK = NO_GLOBAL_INTERNAL_MEM;
7766       else
7767         MLK = NO_GLOBAL_EXTERNAL_MEM;
7768     } else if (isa<ConstantPointerNull>(Obj) &&
7769                !NullPointerIsDefined(getAssociatedFunction(),
7770                                      Ptr.getType()->getPointerAddressSpace())) {
7771       continue;
7772     } else if (isa<AllocaInst>(Obj)) {
7773       MLK = NO_LOCAL_MEM;
7774     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7775       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7776           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7777       if (NoAliasAA.isAssumedNoAlias())
7778         MLK = NO_MALLOCED_MEM;
7779       else
7780         MLK = NO_UNKOWN_MEM;
7781     } else {
7782       MLK = NO_UNKOWN_MEM;
7783     }
7784 
7785     assert(MLK != NO_LOCATIONS && "No location specified!");
7786     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7787                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7788                       << "\n");
7789     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7790                               getAccessKindFromInst(&I));
7791   }
7792 
7793   LLVM_DEBUG(
7794       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7795              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7796 }
7797 
7798 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7799     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7800     bool &Changed) {
7801   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7802 
7803     // Skip non-pointer arguments.
7804     const Value *ArgOp = CB.getArgOperand(ArgNo);
7805     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7806       continue;
7807 
7808     // Skip readnone arguments.
7809     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7810     const auto &ArgOpMemLocationAA =
7811         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7812 
7813     if (ArgOpMemLocationAA.isAssumedReadNone())
7814       continue;
7815 
7816     // Categorize potentially accessed pointer arguments as if there was an
7817     // access instruction with them as pointer.
7818     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7819   }
7820 }
7821 
7822 AAMemoryLocation::MemoryLocationsKind
7823 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7824                                                   bool &Changed) {
7825   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7826                     << I << "\n");
7827 
7828   AAMemoryLocation::StateType AccessedLocs;
7829   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7830 
7831   if (auto *CB = dyn_cast<CallBase>(&I)) {
7832 
7833     // First check if we assume any memory is access is visible.
7834     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7835         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7836     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7837                       << " [" << CBMemLocationAA << "]\n");
7838 
7839     if (CBMemLocationAA.isAssumedReadNone())
7840       return NO_LOCATIONS;
7841 
7842     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7843       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7844                                 Changed, getAccessKindFromInst(&I));
7845       return AccessedLocs.getAssumed();
7846     }
7847 
7848     uint32_t CBAssumedNotAccessedLocs =
7849         CBMemLocationAA.getAssumedNotAccessedLocation();
7850 
7851     // Set the argmemonly and global bit as we handle them separately below.
7852     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7853         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7854 
7855     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7856       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7857         continue;
7858       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7859                                 getAccessKindFromInst(&I));
7860     }
7861 
7862     // Now handle global memory if it might be accessed. This is slightly tricky
7863     // as NO_GLOBAL_MEM has multiple bits set.
7864     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7865     if (HasGlobalAccesses) {
7866       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7867                             AccessKind Kind, MemoryLocationsKind MLK) {
7868         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7869                                   getAccessKindFromInst(&I));
7870         return true;
7871       };
7872       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7873               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7874         return AccessedLocs.getWorstState();
7875     }
7876 
7877     LLVM_DEBUG(
7878         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7879                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7880 
7881     // Now handle argument memory if it might be accessed.
7882     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7883     if (HasArgAccesses)
7884       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7885 
7886     LLVM_DEBUG(
7887         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7888                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7889 
7890     return AccessedLocs.getAssumed();
7891   }
7892 
7893   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7894     LLVM_DEBUG(
7895         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7896                << I << " [" << *Ptr << "]\n");
7897     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7898     return AccessedLocs.getAssumed();
7899   }
7900 
7901   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7902                     << I << "\n");
7903   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7904                             getAccessKindFromInst(&I));
7905   return AccessedLocs.getAssumed();
7906 }
7907 
7908 /// An AA to represent the memory behavior function attributes.
7909 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7910   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7911       : AAMemoryLocationImpl(IRP, A) {}
7912 
7913   /// See AbstractAttribute::updateImpl(Attributor &A).
7914   virtual ChangeStatus updateImpl(Attributor &A) override {
7915 
7916     const auto &MemBehaviorAA =
7917         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7918     if (MemBehaviorAA.isAssumedReadNone()) {
7919       if (MemBehaviorAA.isKnownReadNone())
7920         return indicateOptimisticFixpoint();
7921       assert(isAssumedReadNone() &&
7922              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7923       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7924       return ChangeStatus::UNCHANGED;
7925     }
7926 
7927     // The current assumed state used to determine a change.
7928     auto AssumedState = getAssumed();
7929     bool Changed = false;
7930 
7931     auto CheckRWInst = [&](Instruction &I) {
7932       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7933       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7934                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7935       removeAssumedBits(inverseLocation(MLK, false, false));
7936       // Stop once only the valid bit set in the *not assumed location*, thus
7937       // once we don't actually exclude any memory locations in the state.
7938       return getAssumedNotAccessedLocation() != VALID_STATE;
7939     };
7940 
7941     bool UsedAssumedInformation = false;
7942     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7943                                             UsedAssumedInformation))
7944       return indicatePessimisticFixpoint();
7945 
7946     Changed |= AssumedState != getAssumed();
7947     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7948   }
7949 
7950   /// See AbstractAttribute::trackStatistics()
7951   void trackStatistics() const override {
7952     if (isAssumedReadNone())
7953       STATS_DECLTRACK_FN_ATTR(readnone)
7954     else if (isAssumedArgMemOnly())
7955       STATS_DECLTRACK_FN_ATTR(argmemonly)
7956     else if (isAssumedInaccessibleMemOnly())
7957       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7958     else if (isAssumedInaccessibleOrArgMemOnly())
7959       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7960   }
7961 };
7962 
7963 /// AAMemoryLocation attribute for call sites.
7964 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7965   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7966       : AAMemoryLocationImpl(IRP, A) {}
7967 
7968   /// See AbstractAttribute::initialize(...).
7969   void initialize(Attributor &A) override {
7970     AAMemoryLocationImpl::initialize(A);
7971     Function *F = getAssociatedFunction();
7972     if (!F || F->isDeclaration())
7973       indicatePessimisticFixpoint();
7974   }
7975 
7976   /// See AbstractAttribute::updateImpl(...).
7977   ChangeStatus updateImpl(Attributor &A) override {
7978     // TODO: Once we have call site specific value information we can provide
7979     //       call site specific liveness liveness information and then it makes
7980     //       sense to specialize attributes for call sites arguments instead of
7981     //       redirecting requests to the callee argument.
7982     Function *F = getAssociatedFunction();
7983     const IRPosition &FnPos = IRPosition::function(*F);
7984     auto &FnAA =
7985         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7986     bool Changed = false;
7987     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7988                           AccessKind Kind, MemoryLocationsKind MLK) {
7989       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7990                                 getAccessKindFromInst(I));
7991       return true;
7992     };
7993     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7994       return indicatePessimisticFixpoint();
7995     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7996   }
7997 
7998   /// See AbstractAttribute::trackStatistics()
7999   void trackStatistics() const override {
8000     if (isAssumedReadNone())
8001       STATS_DECLTRACK_CS_ATTR(readnone)
8002   }
8003 };
8004 } // namespace
8005 
8006 /// ------------------ Value Constant Range Attribute -------------------------
8007 
8008 namespace {
8009 struct AAValueConstantRangeImpl : AAValueConstantRange {
8010   using StateType = IntegerRangeState;
8011   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8012       : AAValueConstantRange(IRP, A) {}
8013 
8014   /// See AbstractAttribute::initialize(..).
8015   void initialize(Attributor &A) override {
8016     if (A.hasSimplificationCallback(getIRPosition())) {
8017       indicatePessimisticFixpoint();
8018       return;
8019     }
8020 
8021     // Intersect a range given by SCEV.
8022     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8023 
8024     // Intersect a range given by LVI.
8025     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8026   }
8027 
8028   /// See AbstractAttribute::getAsStr().
8029   const std::string getAsStr() const override {
8030     std::string Str;
8031     llvm::raw_string_ostream OS(Str);
8032     OS << "range(" << getBitWidth() << ")<";
8033     getKnown().print(OS);
8034     OS << " / ";
8035     getAssumed().print(OS);
8036     OS << ">";
8037     return OS.str();
8038   }
8039 
8040   /// Helper function to get a SCEV expr for the associated value at program
8041   /// point \p I.
8042   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8043     if (!getAnchorScope())
8044       return nullptr;
8045 
8046     ScalarEvolution *SE =
8047         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8048             *getAnchorScope());
8049 
8050     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8051         *getAnchorScope());
8052 
8053     if (!SE || !LI)
8054       return nullptr;
8055 
8056     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8057     if (!I)
8058       return S;
8059 
8060     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8061   }
8062 
8063   /// Helper function to get a range from SCEV for the associated value at
8064   /// program point \p I.
8065   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8066                                          const Instruction *I = nullptr) const {
8067     if (!getAnchorScope())
8068       return getWorstState(getBitWidth());
8069 
8070     ScalarEvolution *SE =
8071         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8072             *getAnchorScope());
8073 
8074     const SCEV *S = getSCEV(A, I);
8075     if (!SE || !S)
8076       return getWorstState(getBitWidth());
8077 
8078     return SE->getUnsignedRange(S);
8079   }
8080 
8081   /// Helper function to get a range from LVI for the associated value at
8082   /// program point \p I.
8083   ConstantRange
8084   getConstantRangeFromLVI(Attributor &A,
8085                           const Instruction *CtxI = nullptr) const {
8086     if (!getAnchorScope())
8087       return getWorstState(getBitWidth());
8088 
8089     LazyValueInfo *LVI =
8090         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8091             *getAnchorScope());
8092 
8093     if (!LVI || !CtxI)
8094       return getWorstState(getBitWidth());
8095     return LVI->getConstantRange(&getAssociatedValue(),
8096                                  const_cast<Instruction *>(CtxI));
8097   }
8098 
8099   /// Return true if \p CtxI is valid for querying outside analyses.
8100   /// This basically makes sure we do not ask intra-procedural analysis
8101   /// about a context in the wrong function or a context that violates
8102   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8103   /// if the original context of this AA is OK or should be considered invalid.
8104   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8105                                                const Instruction *CtxI,
8106                                                bool AllowAACtxI) const {
8107     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8108       return false;
8109 
8110     // Our context might be in a different function, neither intra-procedural
8111     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8112     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8113       return false;
8114 
8115     // If the context is not dominated by the value there are paths to the
8116     // context that do not define the value. This cannot be handled by
8117     // LazyValueInfo so we need to bail.
8118     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8119       InformationCache &InfoCache = A.getInfoCache();
8120       const DominatorTree *DT =
8121           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8122               *I->getFunction());
8123       return DT && DT->dominates(I, CtxI);
8124     }
8125 
8126     return true;
8127   }
8128 
8129   /// See AAValueConstantRange::getKnownConstantRange(..).
8130   ConstantRange
8131   getKnownConstantRange(Attributor &A,
8132                         const Instruction *CtxI = nullptr) const override {
8133     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8134                                                  /* AllowAACtxI */ false))
8135       return getKnown();
8136 
8137     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8138     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8139     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8140   }
8141 
8142   /// See AAValueConstantRange::getAssumedConstantRange(..).
8143   ConstantRange
8144   getAssumedConstantRange(Attributor &A,
8145                           const Instruction *CtxI = nullptr) const override {
8146     // TODO: Make SCEV use Attributor assumption.
8147     //       We may be able to bound a variable range via assumptions in
8148     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8149     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8150     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8151                                                  /* AllowAACtxI */ false))
8152       return getAssumed();
8153 
8154     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8155     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8156     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8157   }
8158 
8159   /// Helper function to create MDNode for range metadata.
8160   static MDNode *
8161   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8162                             const ConstantRange &AssumedConstantRange) {
8163     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8164                                   Ty, AssumedConstantRange.getLower())),
8165                               ConstantAsMetadata::get(ConstantInt::get(
8166                                   Ty, AssumedConstantRange.getUpper()))};
8167     return MDNode::get(Ctx, LowAndHigh);
8168   }
8169 
8170   /// Return true if \p Assumed is included in \p KnownRanges.
8171   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8172 
8173     if (Assumed.isFullSet())
8174       return false;
8175 
8176     if (!KnownRanges)
8177       return true;
8178 
8179     // If multiple ranges are annotated in IR, we give up to annotate assumed
8180     // range for now.
8181 
8182     // TODO:  If there exists a known range which containts assumed range, we
8183     // can say assumed range is better.
8184     if (KnownRanges->getNumOperands() > 2)
8185       return false;
8186 
8187     ConstantInt *Lower =
8188         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8189     ConstantInt *Upper =
8190         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8191 
8192     ConstantRange Known(Lower->getValue(), Upper->getValue());
8193     return Known.contains(Assumed) && Known != Assumed;
8194   }
8195 
8196   /// Helper function to set range metadata.
8197   static bool
8198   setRangeMetadataIfisBetterRange(Instruction *I,
8199                                   const ConstantRange &AssumedConstantRange) {
8200     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8201     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8202       if (!AssumedConstantRange.isEmptySet()) {
8203         I->setMetadata(LLVMContext::MD_range,
8204                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8205                                                  AssumedConstantRange));
8206         return true;
8207       }
8208     }
8209     return false;
8210   }
8211 
8212   /// See AbstractAttribute::manifest()
8213   ChangeStatus manifest(Attributor &A) override {
8214     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8215     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8216     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8217 
8218     auto &V = getAssociatedValue();
8219     if (!AssumedConstantRange.isEmptySet() &&
8220         !AssumedConstantRange.isSingleElement()) {
8221       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8222         assert(I == getCtxI() && "Should not annotate an instruction which is "
8223                                  "not the context instruction");
8224         if (isa<CallInst>(I) || isa<LoadInst>(I))
8225           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8226             Changed = ChangeStatus::CHANGED;
8227       }
8228     }
8229 
8230     return Changed;
8231   }
8232 };
8233 
8234 struct AAValueConstantRangeArgument final
8235     : AAArgumentFromCallSiteArguments<
8236           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8237           true /* BridgeCallBaseContext */> {
8238   using Base = AAArgumentFromCallSiteArguments<
8239       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8240       true /* BridgeCallBaseContext */>;
8241   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8242       : Base(IRP, A) {}
8243 
8244   /// See AbstractAttribute::initialize(..).
8245   void initialize(Attributor &A) override {
8246     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8247       indicatePessimisticFixpoint();
8248     } else {
8249       Base::initialize(A);
8250     }
8251   }
8252 
8253   /// See AbstractAttribute::trackStatistics()
8254   void trackStatistics() const override {
8255     STATS_DECLTRACK_ARG_ATTR(value_range)
8256   }
8257 };
8258 
8259 struct AAValueConstantRangeReturned
8260     : AAReturnedFromReturnedValues<AAValueConstantRange,
8261                                    AAValueConstantRangeImpl,
8262                                    AAValueConstantRangeImpl::StateType,
8263                                    /* PropogateCallBaseContext */ true> {
8264   using Base =
8265       AAReturnedFromReturnedValues<AAValueConstantRange,
8266                                    AAValueConstantRangeImpl,
8267                                    AAValueConstantRangeImpl::StateType,
8268                                    /* PropogateCallBaseContext */ true>;
8269   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8270       : Base(IRP, A) {}
8271 
8272   /// See AbstractAttribute::initialize(...).
8273   void initialize(Attributor &A) override {}
8274 
8275   /// See AbstractAttribute::trackStatistics()
8276   void trackStatistics() const override {
8277     STATS_DECLTRACK_FNRET_ATTR(value_range)
8278   }
8279 };
8280 
8281 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8282   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8283       : AAValueConstantRangeImpl(IRP, A) {}
8284 
8285   /// See AbstractAttribute::initialize(...).
8286   void initialize(Attributor &A) override {
8287     AAValueConstantRangeImpl::initialize(A);
8288     if (isAtFixpoint())
8289       return;
8290 
8291     Value &V = getAssociatedValue();
8292 
8293     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8294       unionAssumed(ConstantRange(C->getValue()));
8295       indicateOptimisticFixpoint();
8296       return;
8297     }
8298 
8299     if (isa<UndefValue>(&V)) {
8300       // Collapse the undef state to 0.
8301       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8302       indicateOptimisticFixpoint();
8303       return;
8304     }
8305 
8306     if (isa<CallBase>(&V))
8307       return;
8308 
8309     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8310       return;
8311 
8312     // If it is a load instruction with range metadata, use it.
8313     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8314       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8315         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8316         return;
8317       }
8318 
8319     // We can work with PHI and select instruction as we traverse their operands
8320     // during update.
8321     if (isa<SelectInst>(V) || isa<PHINode>(V))
8322       return;
8323 
8324     // Otherwise we give up.
8325     indicatePessimisticFixpoint();
8326 
8327     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8328                       << getAssociatedValue() << "\n");
8329   }
8330 
8331   bool calculateBinaryOperator(
8332       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8333       const Instruction *CtxI,
8334       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8335     Value *LHS = BinOp->getOperand(0);
8336     Value *RHS = BinOp->getOperand(1);
8337 
8338     // Simplify the operands first.
8339     bool UsedAssumedInformation = false;
8340     const auto &SimplifiedLHS = A.getAssumedSimplified(
8341         IRPosition::value(*LHS, getCallBaseContext()), *this,
8342         UsedAssumedInformation, AA::Interprocedural);
8343     if (!SimplifiedLHS.has_value())
8344       return true;
8345     if (!SimplifiedLHS.value())
8346       return false;
8347     LHS = *SimplifiedLHS;
8348 
8349     const auto &SimplifiedRHS = A.getAssumedSimplified(
8350         IRPosition::value(*RHS, getCallBaseContext()), *this,
8351         UsedAssumedInformation, AA::Interprocedural);
8352     if (!SimplifiedRHS.has_value())
8353       return true;
8354     if (!SimplifiedRHS.value())
8355       return false;
8356     RHS = *SimplifiedRHS;
8357 
8358     // TODO: Allow non integers as well.
8359     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8360       return false;
8361 
8362     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8363         *this, IRPosition::value(*LHS, getCallBaseContext()),
8364         DepClassTy::REQUIRED);
8365     QuerriedAAs.push_back(&LHSAA);
8366     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8367 
8368     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8369         *this, IRPosition::value(*RHS, getCallBaseContext()),
8370         DepClassTy::REQUIRED);
8371     QuerriedAAs.push_back(&RHSAA);
8372     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8373 
8374     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8375 
8376     T.unionAssumed(AssumedRange);
8377 
8378     // TODO: Track a known state too.
8379 
8380     return T.isValidState();
8381   }
8382 
8383   bool calculateCastInst(
8384       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8385       const Instruction *CtxI,
8386       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8387     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8388     // TODO: Allow non integers as well.
8389     Value *OpV = CastI->getOperand(0);
8390 
8391     // Simplify the operand first.
8392     bool UsedAssumedInformation = false;
8393     const auto &SimplifiedOpV = A.getAssumedSimplified(
8394         IRPosition::value(*OpV, getCallBaseContext()), *this,
8395         UsedAssumedInformation, AA::Interprocedural);
8396     if (!SimplifiedOpV.has_value())
8397       return true;
8398     if (!SimplifiedOpV.value())
8399       return false;
8400     OpV = *SimplifiedOpV;
8401 
8402     if (!OpV->getType()->isIntegerTy())
8403       return false;
8404 
8405     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8406         *this, IRPosition::value(*OpV, getCallBaseContext()),
8407         DepClassTy::REQUIRED);
8408     QuerriedAAs.push_back(&OpAA);
8409     T.unionAssumed(
8410         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8411     return T.isValidState();
8412   }
8413 
8414   bool
8415   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8416                    const Instruction *CtxI,
8417                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8418     Value *LHS = CmpI->getOperand(0);
8419     Value *RHS = CmpI->getOperand(1);
8420 
8421     // Simplify the operands first.
8422     bool UsedAssumedInformation = false;
8423     const auto &SimplifiedLHS = A.getAssumedSimplified(
8424         IRPosition::value(*LHS, getCallBaseContext()), *this,
8425         UsedAssumedInformation, AA::Interprocedural);
8426     if (!SimplifiedLHS.has_value())
8427       return true;
8428     if (!SimplifiedLHS.value())
8429       return false;
8430     LHS = *SimplifiedLHS;
8431 
8432     const auto &SimplifiedRHS = A.getAssumedSimplified(
8433         IRPosition::value(*RHS, getCallBaseContext()), *this,
8434         UsedAssumedInformation, AA::Interprocedural);
8435     if (!SimplifiedRHS.has_value())
8436       return true;
8437     if (!SimplifiedRHS.value())
8438       return false;
8439     RHS = *SimplifiedRHS;
8440 
8441     // TODO: Allow non integers as well.
8442     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8443       return false;
8444 
8445     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8446         *this, IRPosition::value(*LHS, getCallBaseContext()),
8447         DepClassTy::REQUIRED);
8448     QuerriedAAs.push_back(&LHSAA);
8449     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8450         *this, IRPosition::value(*RHS, getCallBaseContext()),
8451         DepClassTy::REQUIRED);
8452     QuerriedAAs.push_back(&RHSAA);
8453     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8454     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8455 
8456     // If one of them is empty set, we can't decide.
8457     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8458       return true;
8459 
8460     bool MustTrue = false, MustFalse = false;
8461 
8462     auto AllowedRegion =
8463         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8464 
8465     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8466       MustFalse = true;
8467 
8468     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8469       MustTrue = true;
8470 
8471     assert((!MustTrue || !MustFalse) &&
8472            "Either MustTrue or MustFalse should be false!");
8473 
8474     if (MustTrue)
8475       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8476     else if (MustFalse)
8477       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8478     else
8479       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8480 
8481     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8482                       << " " << RHSAA << "\n");
8483 
8484     // TODO: Track a known state too.
8485     return T.isValidState();
8486   }
8487 
8488   /// See AbstractAttribute::updateImpl(...).
8489   ChangeStatus updateImpl(Attributor &A) override {
8490 
8491     IntegerRangeState T(getBitWidth());
8492     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
8493       Instruction *I = dyn_cast<Instruction>(&V);
8494       if (!I || isa<CallBase>(I)) {
8495 
8496         // Simplify the operand first.
8497         bool UsedAssumedInformation = false;
8498         const auto &SimplifiedOpV = A.getAssumedSimplified(
8499             IRPosition::value(V, getCallBaseContext()), *this,
8500             UsedAssumedInformation, AA::Interprocedural);
8501         if (!SimplifiedOpV.has_value())
8502           return true;
8503         if (!SimplifiedOpV.value())
8504           return false;
8505         Value *VPtr = *SimplifiedOpV;
8506 
8507         // If the value is not instruction, we query AA to Attributor.
8508         const auto &AA = A.getAAFor<AAValueConstantRange>(
8509             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8510             DepClassTy::REQUIRED);
8511 
8512         // Clamp operator is not used to utilize a program point CtxI.
8513         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8514 
8515         return T.isValidState();
8516       }
8517 
8518       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8519       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8520         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8521           return false;
8522       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8523         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8524           return false;
8525       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8526         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8527           return false;
8528       } else {
8529         // Give up with other instructions.
8530         // TODO: Add other instructions
8531 
8532         T.indicatePessimisticFixpoint();
8533         return false;
8534       }
8535 
8536       // Catch circular reasoning in a pessimistic way for now.
8537       // TODO: Check how the range evolves and if we stripped anything, see also
8538       //       AADereferenceable or AAAlign for similar situations.
8539       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8540         if (QueriedAA != this)
8541           continue;
8542         // If we are in a stady state we do not need to worry.
8543         if (T.getAssumed() == getState().getAssumed())
8544           continue;
8545         T.indicatePessimisticFixpoint();
8546       }
8547 
8548       return T.isValidState();
8549     };
8550 
8551     if (!VisitValueCB(getAssociatedValue(), getCtxI()))
8552       return indicatePessimisticFixpoint();
8553 
8554     // Ensure that long def-use chains can't cause circular reasoning either by
8555     // introducing a cutoff below.
8556     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8557       return ChangeStatus::UNCHANGED;
8558     if (++NumChanges > MaxNumChanges) {
8559       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8560                         << " but only " << MaxNumChanges
8561                         << " are allowed to avoid cyclic reasoning.");
8562       return indicatePessimisticFixpoint();
8563     }
8564     return ChangeStatus::CHANGED;
8565   }
8566 
8567   /// See AbstractAttribute::trackStatistics()
8568   void trackStatistics() const override {
8569     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8570   }
8571 
8572   /// Tracker to bail after too many widening steps of the constant range.
8573   int NumChanges = 0;
8574 
8575   /// Upper bound for the number of allowed changes (=widening steps) for the
8576   /// constant range before we give up.
8577   static constexpr int MaxNumChanges = 5;
8578 };
8579 
8580 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8581   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8582       : AAValueConstantRangeImpl(IRP, A) {}
8583 
8584   /// See AbstractAttribute::initialize(...).
8585   ChangeStatus updateImpl(Attributor &A) override {
8586     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8587                      "not be called");
8588   }
8589 
8590   /// See AbstractAttribute::trackStatistics()
8591   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8592 };
8593 
8594 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8595   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8596       : AAValueConstantRangeFunction(IRP, A) {}
8597 
8598   /// See AbstractAttribute::trackStatistics()
8599   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8600 };
8601 
8602 struct AAValueConstantRangeCallSiteReturned
8603     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8604                                      AAValueConstantRangeImpl,
8605                                      AAValueConstantRangeImpl::StateType,
8606                                      /* IntroduceCallBaseContext */ true> {
8607   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8608       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8609                                        AAValueConstantRangeImpl,
8610                                        AAValueConstantRangeImpl::StateType,
8611                                        /* IntroduceCallBaseContext */ true>(IRP,
8612                                                                             A) {
8613   }
8614 
8615   /// See AbstractAttribute::initialize(...).
8616   void initialize(Attributor &A) override {
8617     // If it is a load instruction with range metadata, use the metadata.
8618     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8619       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8620         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8621 
8622     AAValueConstantRangeImpl::initialize(A);
8623   }
8624 
8625   /// See AbstractAttribute::trackStatistics()
8626   void trackStatistics() const override {
8627     STATS_DECLTRACK_CSRET_ATTR(value_range)
8628   }
8629 };
8630 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8631   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8632       : AAValueConstantRangeFloating(IRP, A) {}
8633 
8634   /// See AbstractAttribute::manifest()
8635   ChangeStatus manifest(Attributor &A) override {
8636     return ChangeStatus::UNCHANGED;
8637   }
8638 
8639   /// See AbstractAttribute::trackStatistics()
8640   void trackStatistics() const override {
8641     STATS_DECLTRACK_CSARG_ATTR(value_range)
8642   }
8643 };
8644 } // namespace
8645 
8646 /// ------------------ Potential Values Attribute -------------------------
8647 
8648 namespace {
8649 struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
8650   using StateType = PotentialConstantIntValuesState;
8651 
8652   AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
8653       : AAPotentialConstantValues(IRP, A) {}
8654 
8655   /// See AbstractAttribute::initialize(..).
8656   void initialize(Attributor &A) override {
8657     if (A.hasSimplificationCallback(getIRPosition()))
8658       indicatePessimisticFixpoint();
8659     else
8660       AAPotentialConstantValues::initialize(A);
8661   }
8662 
8663   bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
8664                                  bool &ContainsUndef) {
8665     SmallVector<AA::ValueAndContext> Values;
8666     bool UsedAssumedInformation = false;
8667     if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
8668                                       UsedAssumedInformation)) {
8669       if (!IRP.getAssociatedType()->isIntegerTy())
8670         return false;
8671       auto &PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
8672           *this, IRP, DepClassTy::REQUIRED);
8673       if (!PotentialValuesAA.getState().isValidState())
8674         return false;
8675       ContainsUndef = PotentialValuesAA.getState().undefIsContained();
8676       S = PotentialValuesAA.getState().getAssumedSet();
8677       return true;
8678     }
8679 
8680     for (auto &It : Values) {
8681       if (isa<UndefValue>(It.getValue()))
8682         continue;
8683       auto *CI = dyn_cast<ConstantInt>(It.getValue());
8684       if (!CI)
8685         return false;
8686       S.insert(CI->getValue());
8687     }
8688     ContainsUndef = S.empty();
8689 
8690     return true;
8691   }
8692 
8693   /// See AbstractAttribute::getAsStr().
8694   const std::string getAsStr() const override {
8695     std::string Str;
8696     llvm::raw_string_ostream OS(Str);
8697     OS << getState();
8698     return OS.str();
8699   }
8700 
8701   /// See AbstractAttribute::updateImpl(...).
8702   ChangeStatus updateImpl(Attributor &A) override {
8703     return indicatePessimisticFixpoint();
8704   }
8705 };
8706 
8707 struct AAPotentialConstantValuesArgument final
8708     : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8709                                       AAPotentialConstantValuesImpl,
8710                                       PotentialConstantIntValuesState> {
8711   using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8712                                                AAPotentialConstantValuesImpl,
8713                                                PotentialConstantIntValuesState>;
8714   AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
8715       : Base(IRP, A) {}
8716 
8717   /// See AbstractAttribute::initialize(..).
8718   void initialize(Attributor &A) override {
8719     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8720       indicatePessimisticFixpoint();
8721     } else {
8722       Base::initialize(A);
8723     }
8724   }
8725 
8726   /// See AbstractAttribute::trackStatistics()
8727   void trackStatistics() const override {
8728     STATS_DECLTRACK_ARG_ATTR(potential_values)
8729   }
8730 };
8731 
8732 struct AAPotentialConstantValuesReturned
8733     : AAReturnedFromReturnedValues<AAPotentialConstantValues,
8734                                    AAPotentialConstantValuesImpl> {
8735   using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
8736                                             AAPotentialConstantValuesImpl>;
8737   AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
8738       : Base(IRP, A) {}
8739 
8740   /// See AbstractAttribute::trackStatistics()
8741   void trackStatistics() const override {
8742     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8743   }
8744 };
8745 
8746 struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
8747   AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
8748       : AAPotentialConstantValuesImpl(IRP, A) {}
8749 
8750   /// See AbstractAttribute::initialize(..).
8751   void initialize(Attributor &A) override {
8752     AAPotentialConstantValuesImpl::initialize(A);
8753     if (isAtFixpoint())
8754       return;
8755 
8756     Value &V = getAssociatedValue();
8757 
8758     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8759       unionAssumed(C->getValue());
8760       indicateOptimisticFixpoint();
8761       return;
8762     }
8763 
8764     if (isa<UndefValue>(&V)) {
8765       unionAssumedWithUndef();
8766       indicateOptimisticFixpoint();
8767       return;
8768     }
8769 
8770     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8771       return;
8772 
8773     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8774       return;
8775 
8776     indicatePessimisticFixpoint();
8777 
8778     LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
8779                       << getAssociatedValue() << "\n");
8780   }
8781 
8782   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8783                                 const APInt &RHS) {
8784     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8785   }
8786 
8787   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8788                                  uint32_t ResultBitWidth) {
8789     Instruction::CastOps CastOp = CI->getOpcode();
8790     switch (CastOp) {
8791     default:
8792       llvm_unreachable("unsupported or not integer cast");
8793     case Instruction::Trunc:
8794       return Src.trunc(ResultBitWidth);
8795     case Instruction::SExt:
8796       return Src.sext(ResultBitWidth);
8797     case Instruction::ZExt:
8798       return Src.zext(ResultBitWidth);
8799     case Instruction::BitCast:
8800       return Src;
8801     }
8802   }
8803 
8804   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8805                                        const APInt &LHS, const APInt &RHS,
8806                                        bool &SkipOperation, bool &Unsupported) {
8807     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8808     // Unsupported is set to true when the binary operator is not supported.
8809     // SkipOperation is set to true when UB occur with the given operand pair
8810     // (LHS, RHS).
8811     // TODO: we should look at nsw and nuw keywords to handle operations
8812     //       that create poison or undef value.
8813     switch (BinOpcode) {
8814     default:
8815       Unsupported = true;
8816       return LHS;
8817     case Instruction::Add:
8818       return LHS + RHS;
8819     case Instruction::Sub:
8820       return LHS - RHS;
8821     case Instruction::Mul:
8822       return LHS * RHS;
8823     case Instruction::UDiv:
8824       if (RHS.isZero()) {
8825         SkipOperation = true;
8826         return LHS;
8827       }
8828       return LHS.udiv(RHS);
8829     case Instruction::SDiv:
8830       if (RHS.isZero()) {
8831         SkipOperation = true;
8832         return LHS;
8833       }
8834       return LHS.sdiv(RHS);
8835     case Instruction::URem:
8836       if (RHS.isZero()) {
8837         SkipOperation = true;
8838         return LHS;
8839       }
8840       return LHS.urem(RHS);
8841     case Instruction::SRem:
8842       if (RHS.isZero()) {
8843         SkipOperation = true;
8844         return LHS;
8845       }
8846       return LHS.srem(RHS);
8847     case Instruction::Shl:
8848       return LHS.shl(RHS);
8849     case Instruction::LShr:
8850       return LHS.lshr(RHS);
8851     case Instruction::AShr:
8852       return LHS.ashr(RHS);
8853     case Instruction::And:
8854       return LHS & RHS;
8855     case Instruction::Or:
8856       return LHS | RHS;
8857     case Instruction::Xor:
8858       return LHS ^ RHS;
8859     }
8860   }
8861 
8862   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8863                                            const APInt &LHS, const APInt &RHS) {
8864     bool SkipOperation = false;
8865     bool Unsupported = false;
8866     APInt Result =
8867         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8868     if (Unsupported)
8869       return false;
8870     // If SkipOperation is true, we can ignore this operand pair (L, R).
8871     if (!SkipOperation)
8872       unionAssumed(Result);
8873     return isValidState();
8874   }
8875 
8876   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8877     auto AssumedBefore = getAssumed();
8878     Value *LHS = ICI->getOperand(0);
8879     Value *RHS = ICI->getOperand(1);
8880 
8881     bool LHSContainsUndef = false, RHSContainsUndef = false;
8882     SetTy LHSAAPVS, RHSAAPVS;
8883     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
8884                                    LHSContainsUndef) ||
8885         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
8886                                    RHSContainsUndef))
8887       return indicatePessimisticFixpoint();
8888 
8889     // TODO: make use of undef flag to limit potential values aggressively.
8890     bool MaybeTrue = false, MaybeFalse = false;
8891     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8892     if (LHSContainsUndef && RHSContainsUndef) {
8893       // The result of any comparison between undefs can be soundly replaced
8894       // with undef.
8895       unionAssumedWithUndef();
8896     } else if (LHSContainsUndef) {
8897       for (const APInt &R : RHSAAPVS) {
8898         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8899         MaybeTrue |= CmpResult;
8900         MaybeFalse |= !CmpResult;
8901         if (MaybeTrue & MaybeFalse)
8902           return indicatePessimisticFixpoint();
8903       }
8904     } else if (RHSContainsUndef) {
8905       for (const APInt &L : LHSAAPVS) {
8906         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8907         MaybeTrue |= CmpResult;
8908         MaybeFalse |= !CmpResult;
8909         if (MaybeTrue & MaybeFalse)
8910           return indicatePessimisticFixpoint();
8911       }
8912     } else {
8913       for (const APInt &L : LHSAAPVS) {
8914         for (const APInt &R : RHSAAPVS) {
8915           bool CmpResult = calculateICmpInst(ICI, L, R);
8916           MaybeTrue |= CmpResult;
8917           MaybeFalse |= !CmpResult;
8918           if (MaybeTrue & MaybeFalse)
8919             return indicatePessimisticFixpoint();
8920         }
8921       }
8922     }
8923     if (MaybeTrue)
8924       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8925     if (MaybeFalse)
8926       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8927     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8928                                          : ChangeStatus::CHANGED;
8929   }
8930 
8931   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8932     auto AssumedBefore = getAssumed();
8933     Value *LHS = SI->getTrueValue();
8934     Value *RHS = SI->getFalseValue();
8935 
8936     bool UsedAssumedInformation = false;
8937     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8938                                                   UsedAssumedInformation);
8939 
8940     // Check if we only need one operand.
8941     bool OnlyLeft = false, OnlyRight = false;
8942     if (C && *C && (*C)->isOneValue())
8943       OnlyLeft = true;
8944     else if (C && *C && (*C)->isZeroValue())
8945       OnlyRight = true;
8946 
8947     bool LHSContainsUndef = false, RHSContainsUndef = false;
8948     SetTy LHSAAPVS, RHSAAPVS;
8949     if (!OnlyRight && !fillSetWithConstantValues(A, IRPosition::value(*LHS),
8950                                                  LHSAAPVS, LHSContainsUndef))
8951       return indicatePessimisticFixpoint();
8952 
8953     if (!OnlyLeft && !fillSetWithConstantValues(A, IRPosition::value(*RHS),
8954                                                 RHSAAPVS, RHSContainsUndef))
8955       return indicatePessimisticFixpoint();
8956 
8957     if (OnlyLeft || OnlyRight) {
8958       // select (true/false), lhs, rhs
8959       auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
8960       auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
8961 
8962       if (Undef)
8963         unionAssumedWithUndef();
8964       else {
8965         for (auto &It : *OpAA)
8966           unionAssumed(It);
8967       }
8968 
8969     } else if (LHSContainsUndef && RHSContainsUndef) {
8970       // select i1 *, undef , undef => undef
8971       unionAssumedWithUndef();
8972     } else {
8973       for (auto &It : LHSAAPVS)
8974         unionAssumed(It);
8975       for (auto &It : RHSAAPVS)
8976         unionAssumed(It);
8977     }
8978     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8979                                          : ChangeStatus::CHANGED;
8980   }
8981 
8982   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8983     auto AssumedBefore = getAssumed();
8984     if (!CI->isIntegerCast())
8985       return indicatePessimisticFixpoint();
8986     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8987     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8988     Value *Src = CI->getOperand(0);
8989 
8990     bool SrcContainsUndef = false;
8991     SetTy SrcPVS;
8992     if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
8993                                    SrcContainsUndef))
8994       return indicatePessimisticFixpoint();
8995 
8996     if (SrcContainsUndef)
8997       unionAssumedWithUndef();
8998     else {
8999       for (const APInt &S : SrcPVS) {
9000         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9001         unionAssumed(T);
9002       }
9003     }
9004     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9005                                          : ChangeStatus::CHANGED;
9006   }
9007 
9008   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9009     auto AssumedBefore = getAssumed();
9010     Value *LHS = BinOp->getOperand(0);
9011     Value *RHS = BinOp->getOperand(1);
9012 
9013     bool LHSContainsUndef = false, RHSContainsUndef = false;
9014     SetTy LHSAAPVS, RHSAAPVS;
9015     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9016                                    LHSContainsUndef) ||
9017         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9018                                    RHSContainsUndef))
9019       return indicatePessimisticFixpoint();
9020 
9021     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9022 
9023     // TODO: make use of undef flag to limit potential values aggressively.
9024     if (LHSContainsUndef && RHSContainsUndef) {
9025       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9026         return indicatePessimisticFixpoint();
9027     } else if (LHSContainsUndef) {
9028       for (const APInt &R : RHSAAPVS) {
9029         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9030           return indicatePessimisticFixpoint();
9031       }
9032     } else if (RHSContainsUndef) {
9033       for (const APInt &L : LHSAAPVS) {
9034         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9035           return indicatePessimisticFixpoint();
9036       }
9037     } else {
9038       for (const APInt &L : LHSAAPVS) {
9039         for (const APInt &R : RHSAAPVS) {
9040           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9041             return indicatePessimisticFixpoint();
9042         }
9043       }
9044     }
9045     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9046                                          : ChangeStatus::CHANGED;
9047   }
9048 
9049   /// See AbstractAttribute::updateImpl(...).
9050   ChangeStatus updateImpl(Attributor &A) override {
9051     Value &V = getAssociatedValue();
9052     Instruction *I = dyn_cast<Instruction>(&V);
9053 
9054     if (auto *ICI = dyn_cast<ICmpInst>(I))
9055       return updateWithICmpInst(A, ICI);
9056 
9057     if (auto *SI = dyn_cast<SelectInst>(I))
9058       return updateWithSelectInst(A, SI);
9059 
9060     if (auto *CI = dyn_cast<CastInst>(I))
9061       return updateWithCastInst(A, CI);
9062 
9063     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9064       return updateWithBinaryOperator(A, BinOp);
9065 
9066     return indicatePessimisticFixpoint();
9067   }
9068 
9069   /// See AbstractAttribute::trackStatistics()
9070   void trackStatistics() const override {
9071     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9072   }
9073 };
9074 
9075 struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
9076   AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
9077       : AAPotentialConstantValuesImpl(IRP, A) {}
9078 
9079   /// See AbstractAttribute::initialize(...).
9080   ChangeStatus updateImpl(Attributor &A) override {
9081     llvm_unreachable(
9082         "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
9083         "not be called");
9084   }
9085 
9086   /// See AbstractAttribute::trackStatistics()
9087   void trackStatistics() const override {
9088     STATS_DECLTRACK_FN_ATTR(potential_values)
9089   }
9090 };
9091 
9092 struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
9093   AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
9094       : AAPotentialConstantValuesFunction(IRP, A) {}
9095 
9096   /// See AbstractAttribute::trackStatistics()
9097   void trackStatistics() const override {
9098     STATS_DECLTRACK_CS_ATTR(potential_values)
9099   }
9100 };
9101 
9102 struct AAPotentialConstantValuesCallSiteReturned
9103     : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9104                                      AAPotentialConstantValuesImpl> {
9105   AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
9106                                             Attributor &A)
9107       : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9108                                        AAPotentialConstantValuesImpl>(IRP, A) {}
9109 
9110   /// See AbstractAttribute::trackStatistics()
9111   void trackStatistics() const override {
9112     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9113   }
9114 };
9115 
9116 struct AAPotentialConstantValuesCallSiteArgument
9117     : AAPotentialConstantValuesFloating {
9118   AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
9119                                             Attributor &A)
9120       : AAPotentialConstantValuesFloating(IRP, A) {}
9121 
9122   /// See AbstractAttribute::initialize(..).
9123   void initialize(Attributor &A) override {
9124     AAPotentialConstantValuesImpl::initialize(A);
9125     if (isAtFixpoint())
9126       return;
9127 
9128     Value &V = getAssociatedValue();
9129 
9130     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9131       unionAssumed(C->getValue());
9132       indicateOptimisticFixpoint();
9133       return;
9134     }
9135 
9136     if (isa<UndefValue>(&V)) {
9137       unionAssumedWithUndef();
9138       indicateOptimisticFixpoint();
9139       return;
9140     }
9141   }
9142 
9143   /// See AbstractAttribute::updateImpl(...).
9144   ChangeStatus updateImpl(Attributor &A) override {
9145     Value &V = getAssociatedValue();
9146     auto AssumedBefore = getAssumed();
9147     auto &AA = A.getAAFor<AAPotentialConstantValues>(
9148         *this, IRPosition::value(V), DepClassTy::REQUIRED);
9149     const auto &S = AA.getAssumed();
9150     unionAssumed(S);
9151     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9152                                          : ChangeStatus::CHANGED;
9153   }
9154 
9155   /// See AbstractAttribute::trackStatistics()
9156   void trackStatistics() const override {
9157     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9158   }
9159 };
9160 
9161 /// ------------------------ NoUndef Attribute ---------------------------------
9162 struct AANoUndefImpl : AANoUndef {
9163   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9164 
9165   /// See AbstractAttribute::initialize(...).
9166   void initialize(Attributor &A) override {
9167     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9168       indicateOptimisticFixpoint();
9169       return;
9170     }
9171     Value &V = getAssociatedValue();
9172     if (isa<UndefValue>(V))
9173       indicatePessimisticFixpoint();
9174     else if (isa<FreezeInst>(V))
9175       indicateOptimisticFixpoint();
9176     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9177              isGuaranteedNotToBeUndefOrPoison(&V))
9178       indicateOptimisticFixpoint();
9179     else
9180       AANoUndef::initialize(A);
9181   }
9182 
9183   /// See followUsesInMBEC
9184   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9185                        AANoUndef::StateType &State) {
9186     const Value *UseV = U->get();
9187     const DominatorTree *DT = nullptr;
9188     AssumptionCache *AC = nullptr;
9189     InformationCache &InfoCache = A.getInfoCache();
9190     if (Function *F = getAnchorScope()) {
9191       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9192       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9193     }
9194     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9195     bool TrackUse = false;
9196     // Track use for instructions which must produce undef or poison bits when
9197     // at least one operand contains such bits.
9198     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9199       TrackUse = true;
9200     return TrackUse;
9201   }
9202 
9203   /// See AbstractAttribute::getAsStr().
9204   const std::string getAsStr() const override {
9205     return getAssumed() ? "noundef" : "may-undef-or-poison";
9206   }
9207 
9208   ChangeStatus manifest(Attributor &A) override {
9209     // We don't manifest noundef attribute for dead positions because the
9210     // associated values with dead positions would be replaced with undef
9211     // values.
9212     bool UsedAssumedInformation = false;
9213     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9214                         UsedAssumedInformation))
9215       return ChangeStatus::UNCHANGED;
9216     // A position whose simplified value does not have any value is
9217     // considered to be dead. We don't manifest noundef in such positions for
9218     // the same reason above.
9219     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
9220                                 AA::Interprocedural)
9221              .has_value())
9222       return ChangeStatus::UNCHANGED;
9223     return AANoUndef::manifest(A);
9224   }
9225 };
9226 
9227 struct AANoUndefFloating : public AANoUndefImpl {
9228   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9229       : AANoUndefImpl(IRP, A) {}
9230 
9231   /// See AbstractAttribute::initialize(...).
9232   void initialize(Attributor &A) override {
9233     AANoUndefImpl::initialize(A);
9234     if (!getState().isAtFixpoint())
9235       if (Instruction *CtxI = getCtxI())
9236         followUsesInMBEC(*this, A, getState(), *CtxI);
9237   }
9238 
9239   /// See AbstractAttribute::updateImpl(...).
9240   ChangeStatus updateImpl(Attributor &A) override {
9241 
9242     SmallVector<AA::ValueAndContext> Values;
9243     bool UsedAssumedInformation = false;
9244     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
9245                                       AA::AnyScope, UsedAssumedInformation)) {
9246       Values.push_back({getAssociatedValue(), getCtxI()});
9247     }
9248 
9249     StateType T;
9250     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
9251       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9252                                              DepClassTy::REQUIRED);
9253       if (this == &AA) {
9254         T.indicatePessimisticFixpoint();
9255       } else {
9256         const AANoUndef::StateType &S =
9257             static_cast<const AANoUndef::StateType &>(AA.getState());
9258         T ^= S;
9259       }
9260       return T.isValidState();
9261     };
9262 
9263     for (const auto &VAC : Values)
9264       if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
9265         return indicatePessimisticFixpoint();
9266 
9267     return clampStateAndIndicateChange(getState(), T);
9268   }
9269 
9270   /// See AbstractAttribute::trackStatistics()
9271   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9272 };
9273 
9274 struct AANoUndefReturned final
9275     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9276   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9277       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9278 
9279   /// See AbstractAttribute::trackStatistics()
9280   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9281 };
9282 
9283 struct AANoUndefArgument final
9284     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9285   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9286       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9287 
9288   /// See AbstractAttribute::trackStatistics()
9289   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9290 };
9291 
9292 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9293   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9294       : AANoUndefFloating(IRP, A) {}
9295 
9296   /// See AbstractAttribute::trackStatistics()
9297   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9298 };
9299 
9300 struct AANoUndefCallSiteReturned final
9301     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9302   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9303       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9304 
9305   /// See AbstractAttribute::trackStatistics()
9306   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9307 };
9308 
9309 struct AACallEdgesImpl : public AACallEdges {
9310   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9311 
9312   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9313     return CalledFunctions;
9314   }
9315 
9316   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9317 
9318   virtual bool hasNonAsmUnknownCallee() const override {
9319     return HasUnknownCalleeNonAsm;
9320   }
9321 
9322   const std::string getAsStr() const override {
9323     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9324            std::to_string(CalledFunctions.size()) + "]";
9325   }
9326 
9327   void trackStatistics() const override {}
9328 
9329 protected:
9330   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9331     if (CalledFunctions.insert(Fn)) {
9332       Change = ChangeStatus::CHANGED;
9333       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9334                         << "\n");
9335     }
9336   }
9337 
9338   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9339     if (!HasUnknownCallee)
9340       Change = ChangeStatus::CHANGED;
9341     if (NonAsm && !HasUnknownCalleeNonAsm)
9342       Change = ChangeStatus::CHANGED;
9343     HasUnknownCalleeNonAsm |= NonAsm;
9344     HasUnknownCallee = true;
9345   }
9346 
9347 private:
9348   /// Optimistic set of functions that might be called by this position.
9349   SetVector<Function *> CalledFunctions;
9350 
9351   /// Is there any call with a unknown callee.
9352   bool HasUnknownCallee = false;
9353 
9354   /// Is there any call with a unknown callee, excluding any inline asm.
9355   bool HasUnknownCalleeNonAsm = false;
9356 };
9357 
9358 struct AACallEdgesCallSite : public AACallEdgesImpl {
9359   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9360       : AACallEdgesImpl(IRP, A) {}
9361   /// See AbstractAttribute::updateImpl(...).
9362   ChangeStatus updateImpl(Attributor &A) override {
9363     ChangeStatus Change = ChangeStatus::UNCHANGED;
9364 
9365     auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
9366       if (Function *Fn = dyn_cast<Function>(&V)) {
9367         addCalledFunction(Fn, Change);
9368       } else {
9369         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9370         setHasUnknownCallee(true, Change);
9371       }
9372 
9373       // Explore all values.
9374       return true;
9375     };
9376 
9377     SmallVector<AA::ValueAndContext> Values;
9378     // Process any value that we might call.
9379     auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
9380       bool UsedAssumedInformation = false;
9381       Values.clear();
9382       if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
9383                                         AA::AnyScope, UsedAssumedInformation)) {
9384         Values.push_back({*V, CtxI});
9385       }
9386       for (auto &VAC : Values)
9387         VisitValue(*VAC.getValue(), VAC.getCtxI());
9388     };
9389 
9390     CallBase *CB = cast<CallBase>(getCtxI());
9391 
9392     if (CB->isInlineAsm()) {
9393       if (!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
9394           !hasAssumption(*CB, "ompx_no_call_asm"))
9395         setHasUnknownCallee(false, Change);
9396       return Change;
9397     }
9398 
9399     // Process callee metadata if available.
9400     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9401       for (auto &Op : MD->operands()) {
9402         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9403         if (Callee)
9404           addCalledFunction(Callee, Change);
9405       }
9406       return Change;
9407     }
9408 
9409     // The most simple case.
9410     ProcessCalledOperand(CB->getCalledOperand(), CB);
9411 
9412     // Process callback functions.
9413     SmallVector<const Use *, 4u> CallbackUses;
9414     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9415     for (const Use *U : CallbackUses)
9416       ProcessCalledOperand(U->get(), CB);
9417 
9418     return Change;
9419   }
9420 };
9421 
9422 struct AACallEdgesFunction : public AACallEdgesImpl {
9423   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9424       : AACallEdgesImpl(IRP, A) {}
9425 
9426   /// See AbstractAttribute::updateImpl(...).
9427   ChangeStatus updateImpl(Attributor &A) override {
9428     ChangeStatus Change = ChangeStatus::UNCHANGED;
9429 
9430     auto ProcessCallInst = [&](Instruction &Inst) {
9431       CallBase &CB = cast<CallBase>(Inst);
9432 
9433       auto &CBEdges = A.getAAFor<AACallEdges>(
9434           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9435       if (CBEdges.hasNonAsmUnknownCallee())
9436         setHasUnknownCallee(true, Change);
9437       if (CBEdges.hasUnknownCallee())
9438         setHasUnknownCallee(false, Change);
9439 
9440       for (Function *F : CBEdges.getOptimisticEdges())
9441         addCalledFunction(F, Change);
9442 
9443       return true;
9444     };
9445 
9446     // Visit all callable instructions.
9447     bool UsedAssumedInformation = false;
9448     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9449                                            UsedAssumedInformation,
9450                                            /* CheckBBLivenessOnly */ true)) {
9451       // If we haven't looked at all call like instructions, assume that there
9452       // are unknown callees.
9453       setHasUnknownCallee(true, Change);
9454     }
9455 
9456     return Change;
9457   }
9458 };
9459 
9460 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9461 private:
9462   struct QuerySet {
9463     void markReachable(const Function &Fn) {
9464       Reachable.insert(&Fn);
9465       Unreachable.erase(&Fn);
9466     }
9467 
9468     /// If there is no information about the function None is returned.
9469     Optional<bool> isCachedReachable(const Function &Fn) {
9470       // Assume that we can reach the function.
9471       // TODO: Be more specific with the unknown callee.
9472       if (CanReachUnknownCallee)
9473         return true;
9474 
9475       if (Reachable.count(&Fn))
9476         return true;
9477 
9478       if (Unreachable.count(&Fn))
9479         return false;
9480 
9481       return llvm::None;
9482     }
9483 
9484     /// Set of functions that we know for sure is reachable.
9485     DenseSet<const Function *> Reachable;
9486 
9487     /// Set of functions that are unreachable, but might become reachable.
9488     DenseSet<const Function *> Unreachable;
9489 
9490     /// If we can reach a function with a call to a unknown function we assume
9491     /// that we can reach any function.
9492     bool CanReachUnknownCallee = false;
9493   };
9494 
9495   struct QueryResolver : public QuerySet {
9496     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9497                         ArrayRef<const AACallEdges *> AAEdgesList) {
9498       ChangeStatus Change = ChangeStatus::UNCHANGED;
9499 
9500       for (auto *AAEdges : AAEdgesList) {
9501         if (AAEdges->hasUnknownCallee()) {
9502           if (!CanReachUnknownCallee) {
9503             LLVM_DEBUG(dbgs()
9504                        << "[QueryResolver] Edges include unknown callee!\n");
9505             Change = ChangeStatus::CHANGED;
9506           }
9507           CanReachUnknownCallee = true;
9508           return Change;
9509         }
9510       }
9511 
9512       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9513         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9514           Change = ChangeStatus::CHANGED;
9515           markReachable(*Fn);
9516         }
9517       }
9518       return Change;
9519     }
9520 
9521     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9522                      ArrayRef<const AACallEdges *> AAEdgesList,
9523                      const Function &Fn) {
9524       Optional<bool> Cached = isCachedReachable(Fn);
9525       if (Cached)
9526         return Cached.value();
9527 
9528       // The query was not cached, thus it is new. We need to request an update
9529       // explicitly to make sure this the information is properly run to a
9530       // fixpoint.
9531       A.registerForUpdate(AA);
9532 
9533       // We need to assume that this function can't reach Fn to prevent
9534       // an infinite loop if this function is recursive.
9535       Unreachable.insert(&Fn);
9536 
9537       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9538       if (Result)
9539         markReachable(Fn);
9540       return Result;
9541     }
9542 
9543     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9544                           ArrayRef<const AACallEdges *> AAEdgesList,
9545                           const Function &Fn) const {
9546 
9547       // Handle the most trivial case first.
9548       for (auto *AAEdges : AAEdgesList) {
9549         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9550 
9551         if (Edges.count(const_cast<Function *>(&Fn)))
9552           return true;
9553       }
9554 
9555       SmallVector<const AAFunctionReachability *, 8> Deps;
9556       for (auto &AAEdges : AAEdgesList) {
9557         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9558 
9559         for (Function *Edge : Edges) {
9560           // Functions that do not call back into the module can be ignored.
9561           if (Edge->hasFnAttribute(Attribute::NoCallback))
9562             continue;
9563 
9564           // We don't need a dependency if the result is reachable.
9565           const AAFunctionReachability &EdgeReachability =
9566               A.getAAFor<AAFunctionReachability>(
9567                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9568           Deps.push_back(&EdgeReachability);
9569 
9570           if (EdgeReachability.canReach(A, Fn))
9571             return true;
9572         }
9573       }
9574 
9575       // The result is false for now, set dependencies and leave.
9576       for (auto *Dep : Deps)
9577         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9578 
9579       return false;
9580     }
9581   };
9582 
9583   /// Get call edges that can be reached by this instruction.
9584   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9585                              const Instruction &Inst,
9586                              SmallVector<const AACallEdges *> &Result) const {
9587     // Determine call like instructions that we can reach from the inst.
9588     auto CheckCallBase = [&](Instruction &CBInst) {
9589       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9590         return true;
9591 
9592       auto &CB = cast<CallBase>(CBInst);
9593       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9594           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9595 
9596       Result.push_back(&AAEdges);
9597       return true;
9598     };
9599 
9600     bool UsedAssumedInformation = false;
9601     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9602                                              UsedAssumedInformation,
9603                                              /* CheckBBLivenessOnly */ true);
9604   }
9605 
9606 public:
9607   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9608       : AAFunctionReachability(IRP, A) {}
9609 
9610   bool canReach(Attributor &A, const Function &Fn) const override {
9611     if (!isValidState())
9612       return true;
9613 
9614     const AACallEdges &AAEdges =
9615         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9616 
9617     // Attributor returns attributes as const, so this function has to be
9618     // const for users of this attribute to use it without having to do
9619     // a const_cast.
9620     // This is a hack for us to be able to cache queries.
9621     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9622     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9623                                                           {&AAEdges}, Fn);
9624 
9625     return Result;
9626   }
9627 
9628   /// Can \p CB reach \p Fn
9629   bool canReach(Attributor &A, CallBase &CB,
9630                 const Function &Fn) const override {
9631     if (!isValidState())
9632       return true;
9633 
9634     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9635         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9636 
9637     // Attributor returns attributes as const, so this function has to be
9638     // const for users of this attribute to use it without having to do
9639     // a const_cast.
9640     // This is a hack for us to be able to cache queries.
9641     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9642     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9643 
9644     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9645 
9646     return Result;
9647   }
9648 
9649   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9650                            const Function &Fn,
9651                            bool UseBackwards) const override {
9652     if (!isValidState())
9653       return true;
9654 
9655     if (UseBackwards)
9656       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9657 
9658     const auto &Reachability = A.getAAFor<AAReachability>(
9659         *this, IRPosition::function(*getAssociatedFunction()),
9660         DepClassTy::REQUIRED);
9661 
9662     SmallVector<const AACallEdges *> CallEdges;
9663     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9664     // Attributor returns attributes as const, so this function has to be
9665     // const for users of this attribute to use it without having to do
9666     // a const_cast.
9667     // This is a hack for us to be able to cache queries.
9668     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9669     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9670     if (!AllKnown) {
9671       LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges known, "
9672                            "may reach unknown callee!\n");
9673       InstQSet.CanReachUnknownCallee = true;
9674     }
9675 
9676     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9677   }
9678 
9679   /// See AbstractAttribute::updateImpl(...).
9680   ChangeStatus updateImpl(Attributor &A) override {
9681     const AACallEdges &AAEdges =
9682         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9683     ChangeStatus Change = ChangeStatus::UNCHANGED;
9684 
9685     Change |= WholeFunction.update(A, *this, {&AAEdges});
9686 
9687     for (auto &CBPair : CBQueries) {
9688       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9689           *this, IRPosition::callsite_function(*CBPair.first),
9690           DepClassTy::REQUIRED);
9691 
9692       Change |= CBPair.second.update(A, *this, {&AAEdges});
9693     }
9694 
9695     // Update the Instruction queries.
9696     if (!InstQueries.empty()) {
9697       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9698           *this, IRPosition::function(*getAssociatedFunction()),
9699           DepClassTy::REQUIRED);
9700 
9701       // Check for local callbases first.
9702       for (auto &InstPair : InstQueries) {
9703         SmallVector<const AACallEdges *> CallEdges;
9704         bool AllKnown =
9705             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9706         // Update will return change if we this effects any queries.
9707         if (!AllKnown) {
9708           LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges "
9709                                "known, may reach unknown callee!\n");
9710           InstPair.second.CanReachUnknownCallee = true;
9711         }
9712         Change |= InstPair.second.update(A, *this, CallEdges);
9713       }
9714     }
9715 
9716     return Change;
9717   }
9718 
9719   const std::string getAsStr() const override {
9720     size_t QueryCount =
9721         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9722 
9723     return "FunctionReachability [" +
9724            (canReachUnknownCallee()
9725                 ? "unknown"
9726                 : (std::to_string(WholeFunction.Reachable.size()) + "," +
9727                    std::to_string(QueryCount))) +
9728            "]";
9729   }
9730 
9731   void trackStatistics() const override {}
9732 
9733 private:
9734   bool canReachUnknownCallee() const override {
9735     return WholeFunction.CanReachUnknownCallee;
9736   }
9737 
9738   /// Used to answer if a the whole function can reacha a specific function.
9739   QueryResolver WholeFunction;
9740 
9741   /// Used to answer if a call base inside this function can reach a specific
9742   /// function.
9743   MapVector<const CallBase *, QueryResolver> CBQueries;
9744 
9745   /// This is for instruction queries than scan "forward".
9746   MapVector<const Instruction *, QueryResolver> InstQueries;
9747 };
9748 } // namespace
9749 
9750 template <typename AAType>
9751 static Optional<Constant *>
9752 askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
9753                       const IRPosition &IRP, Type &Ty) {
9754   if (!Ty.isIntegerTy())
9755     return nullptr;
9756 
9757   // This will also pass the call base context.
9758   const auto &AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
9759 
9760   Optional<Constant *> COpt = AA.getAssumedConstant(A);
9761 
9762   if (!COpt.has_value()) {
9763     A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9764     return llvm::None;
9765   }
9766   if (auto *C = COpt.value()) {
9767     A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9768     return C;
9769   }
9770   return nullptr;
9771 }
9772 
9773 Value *AAPotentialValues::getSingleValue(
9774     Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
9775     SmallVectorImpl<AA::ValueAndContext> &Values) {
9776   Type &Ty = *IRP.getAssociatedType();
9777   Optional<Value *> V;
9778   for (auto &It : Values) {
9779     V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
9780     if (V.has_value() && !V.value())
9781       break;
9782   }
9783   if (!V.has_value())
9784     return UndefValue::get(&Ty);
9785   return V.value();
9786 }
9787 
9788 namespace {
9789 struct AAPotentialValuesImpl : AAPotentialValues {
9790   using StateType = PotentialLLVMValuesState;
9791 
9792   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
9793       : AAPotentialValues(IRP, A) {}
9794 
9795   /// See AbstractAttribute::initialize(..).
9796   void initialize(Attributor &A) override {
9797     if (A.hasSimplificationCallback(getIRPosition())) {
9798       indicatePessimisticFixpoint();
9799       return;
9800     }
9801     Value *Stripped = getAssociatedValue().stripPointerCasts();
9802     if (isa<Constant>(Stripped)) {
9803       addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
9804                getAnchorScope());
9805       indicateOptimisticFixpoint();
9806       return;
9807     }
9808     AAPotentialValues::initialize(A);
9809   }
9810 
9811   /// See AbstractAttribute::getAsStr().
9812   const std::string getAsStr() const override {
9813     std::string Str;
9814     llvm::raw_string_ostream OS(Str);
9815     OS << getState();
9816     return OS.str();
9817   }
9818 
9819   template <typename AAType>
9820   static Optional<Value *> askOtherAA(Attributor &A,
9821                                       const AbstractAttribute &AA,
9822                                       const IRPosition &IRP, Type &Ty) {
9823     if (isa<Constant>(IRP.getAssociatedValue()))
9824       return &IRP.getAssociatedValue();
9825     Optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
9826     if (!C)
9827       return llvm::None;
9828     if (C.value())
9829       if (auto *CC = AA::getWithType(**C, Ty))
9830         return CC;
9831     return nullptr;
9832   }
9833 
9834   void addValue(Attributor &A, StateType &State, Value &V,
9835                 const Instruction *CtxI, AA::ValueScope S,
9836                 Function *AnchorScope) const {
9837 
9838     IRPosition ValIRP = IRPosition::value(V);
9839     if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
9840       for (auto &U : CB->args()) {
9841         if (U.get() != &V)
9842           continue;
9843         ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
9844         break;
9845       }
9846     }
9847 
9848     Value *VPtr = &V;
9849     if (ValIRP.getAssociatedType()->isIntegerTy()) {
9850       Type &Ty = *getAssociatedType();
9851       Optional<Value *> SimpleV =
9852           askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
9853       if (SimpleV.has_value() && !SimpleV.value()) {
9854         auto &PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
9855             *this, ValIRP, DepClassTy::OPTIONAL);
9856         if (PotentialConstantsAA.isValidState()) {
9857           for (auto &It : PotentialConstantsAA.getAssumedSet()) {
9858             State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
9859           }
9860           assert(!PotentialConstantsAA.undefIsContained() &&
9861                  "Undef should be an explicit value!");
9862           return;
9863         }
9864       }
9865       if (!SimpleV.has_value())
9866         return;
9867 
9868       if (SimpleV.value())
9869         VPtr = SimpleV.value();
9870     }
9871 
9872     if (isa<ConstantInt>(VPtr))
9873       CtxI = nullptr;
9874     if (!AA::isValidInScope(*VPtr, AnchorScope))
9875       S = AA::ValueScope(S | AA::Interprocedural);
9876 
9877     State.unionAssumed({{*VPtr, CtxI}, S});
9878   }
9879 
9880   /// Helper struct to tie a value+context pair together with the scope for
9881   /// which this is the simplified version.
9882   struct ItemInfo {
9883     AA::ValueAndContext I;
9884     AA::ValueScope S;
9885   };
9886 
9887   bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
9888     SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
9889     for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
9890       if (!(CS & S))
9891         continue;
9892 
9893       bool UsedAssumedInformation = false;
9894       SmallVector<AA::ValueAndContext> Values;
9895       if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
9896                                         UsedAssumedInformation))
9897         return false;
9898 
9899       for (auto &It : Values)
9900         ValueScopeMap[It] += CS;
9901     }
9902     for (auto &It : ValueScopeMap)
9903       addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
9904                AA::ValueScope(It.second), getAnchorScope());
9905 
9906     return true;
9907   }
9908 
9909   void giveUpOnIntraprocedural(Attributor &A) {
9910     auto NewS = StateType::getBestState(getState());
9911     for (auto &It : getAssumedSet()) {
9912       if (It.second == AA::Intraprocedural)
9913         continue;
9914       addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
9915                AA::Interprocedural, getAnchorScope());
9916     }
9917     assert(!undefIsContained() && "Undef should be an explicit value!");
9918     addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
9919              getAnchorScope());
9920     getState() = NewS;
9921   }
9922 
9923   /// See AbstractState::indicatePessimisticFixpoint(...).
9924   ChangeStatus indicatePessimisticFixpoint() override {
9925     getState() = StateType::getBestState(getState());
9926     getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
9927     AAPotentialValues::indicateOptimisticFixpoint();
9928     return ChangeStatus::CHANGED;
9929   }
9930 
9931   /// See AbstractAttribute::updateImpl(...).
9932   ChangeStatus updateImpl(Attributor &A) override {
9933     return indicatePessimisticFixpoint();
9934   }
9935 
9936   /// See AbstractAttribute::manifest(...).
9937   ChangeStatus manifest(Attributor &A) override {
9938     SmallVector<AA::ValueAndContext> Values;
9939     for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
9940       Values.clear();
9941       if (!getAssumedSimplifiedValues(A, Values, S))
9942         continue;
9943       Value &OldV = getAssociatedValue();
9944       if (isa<UndefValue>(OldV))
9945         continue;
9946       Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
9947       if (!NewV || NewV == &OldV)
9948         continue;
9949       if (getCtxI() &&
9950           !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
9951         continue;
9952       if (A.changeAfterManifest(getIRPosition(), *NewV))
9953         return ChangeStatus::CHANGED;
9954     }
9955     return ChangeStatus::UNCHANGED;
9956   }
9957 
9958   bool getAssumedSimplifiedValues(Attributor &A,
9959                                   SmallVectorImpl<AA::ValueAndContext> &Values,
9960                                   AA::ValueScope S) const override {
9961     if (!isValidState())
9962       return false;
9963     for (auto &It : getAssumedSet())
9964       if (It.second & S)
9965         Values.push_back(It.first);
9966     assert(!undefIsContained() && "Undef should be an explicit value!");
9967     return true;
9968   }
9969 };
9970 
9971 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
9972   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
9973       : AAPotentialValuesImpl(IRP, A) {}
9974 
9975   /// See AbstractAttribute::updateImpl(...).
9976   ChangeStatus updateImpl(Attributor &A) override {
9977     auto AssumedBefore = getAssumed();
9978 
9979     genericValueTraversal(A);
9980 
9981     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
9982                                            : ChangeStatus::CHANGED;
9983   }
9984 
9985   /// Helper struct to remember which AAIsDead instances we actually used.
9986   struct LivenessInfo {
9987     const AAIsDead *LivenessAA = nullptr;
9988     bool AnyDead = false;
9989   };
9990 
9991   /// Check if \p Cmp is a comparison we can simplify.
9992   ///
9993   /// We handle multiple cases, one in which at least one operand is an
9994   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
9995   /// operand. Return true if successful, in that case Worklist will be updated.
9996   bool handleCmp(Attributor &A, CmpInst &Cmp, ItemInfo II,
9997                  SmallVectorImpl<ItemInfo> &Worklist) {
9998     Value *LHS = Cmp.getOperand(0);
9999     Value *RHS = Cmp.getOperand(1);
10000 
10001     // Simplify the operands first.
10002     bool UsedAssumedInformation = false;
10003     const auto &SimplifiedLHS = A.getAssumedSimplified(
10004         IRPosition::value(*LHS, getCallBaseContext()), *this,
10005         UsedAssumedInformation, AA::Intraprocedural);
10006     if (!SimplifiedLHS.has_value())
10007       return true;
10008     if (!SimplifiedLHS.value())
10009       return false;
10010     LHS = *SimplifiedLHS;
10011 
10012     const auto &SimplifiedRHS = A.getAssumedSimplified(
10013         IRPosition::value(*RHS, getCallBaseContext()), *this,
10014         UsedAssumedInformation, AA::Intraprocedural);
10015     if (!SimplifiedRHS.has_value())
10016       return true;
10017     if (!SimplifiedRHS.value())
10018       return false;
10019     RHS = *SimplifiedRHS;
10020 
10021     LLVMContext &Ctx = Cmp.getContext();
10022     // Handle the trivial case first in which we don't even need to think about
10023     // null or non-null.
10024     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
10025       Constant *NewV =
10026           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
10027       addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
10028                getAnchorScope());
10029       return true;
10030     }
10031 
10032     // From now on we only handle equalities (==, !=).
10033     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
10034     if (!ICmp || !ICmp->isEquality())
10035       return false;
10036 
10037     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
10038     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
10039     if (!LHSIsNull && !RHSIsNull)
10040       return false;
10041 
10042     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
10043     // non-nullptr operand and if we assume it's non-null we can conclude the
10044     // result of the comparison.
10045     assert((LHSIsNull || RHSIsNull) &&
10046            "Expected nullptr versus non-nullptr comparison at this point");
10047 
10048     // The index is the operand that we assume is not null.
10049     unsigned PtrIdx = LHSIsNull;
10050     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
10051         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
10052         DepClassTy::REQUIRED);
10053     if (!PtrNonNullAA.isAssumedNonNull())
10054       return false;
10055 
10056     // The new value depends on the predicate, true for != and false for ==.
10057     Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
10058                                       ICmp->getPredicate() == CmpInst::ICMP_NE);
10059     addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S, getAnchorScope());
10060     return true;
10061   }
10062 
10063   bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
10064                         SmallVectorImpl<ItemInfo> &Worklist) {
10065     const Instruction *CtxI = II.I.getCtxI();
10066     bool UsedAssumedInformation = false;
10067 
10068     Optional<Constant *> C =
10069         A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
10070     bool NoValueYet = !C.has_value();
10071     if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
10072       return true;
10073     if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
10074       if (CI->isZero())
10075         Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10076       else
10077         Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10078     } else {
10079       // We could not simplify the condition, assume both values.
10080       Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10081       Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10082     }
10083     return true;
10084   }
10085 
10086   bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
10087                       SmallVectorImpl<ItemInfo> &Worklist) {
10088     SmallSetVector<Value *, 4> PotentialCopies;
10089     SmallSetVector<Instruction *, 4> PotentialValueOrigins;
10090     bool UsedAssumedInformation = false;
10091     if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
10092                                         PotentialValueOrigins, *this,
10093                                         UsedAssumedInformation,
10094                                         /* OnlyExact */ true)) {
10095       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
10096                            "loaded values for load instruction "
10097                         << LI << "\n");
10098       return false;
10099     }
10100 
10101     // Do not simplify loads that are only used in llvm.assume if we cannot also
10102     // remove all stores that may feed into the load. The reason is that the
10103     // assume is probably worth something as long as the stores are around.
10104     InformationCache &InfoCache = A.getInfoCache();
10105     if (InfoCache.isOnlyUsedByAssume(LI)) {
10106       if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
10107             if (!I)
10108               return true;
10109             if (auto *SI = dyn_cast<StoreInst>(I))
10110               return A.isAssumedDead(SI->getOperandUse(0), this,
10111                                      /* LivenessAA */ nullptr,
10112                                      UsedAssumedInformation,
10113                                      /* CheckBBLivenessOnly */ false);
10114             return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
10115                                    UsedAssumedInformation,
10116                                    /* CheckBBLivenessOnly */ false);
10117           })) {
10118         LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
10119                              "and we cannot delete all the stores: "
10120                           << LI << "\n");
10121         return false;
10122       }
10123     }
10124 
10125     // Values have to be dynamically unique or we loose the fact that a
10126     // single llvm::Value might represent two runtime values (e.g.,
10127     // stack locations in different recursive calls).
10128     const Instruction *CtxI = II.I.getCtxI();
10129     bool ScopeIsLocal = (II.S & AA::Intraprocedural);
10130     bool AllLocal = ScopeIsLocal;
10131     bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
10132       AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
10133       return AA::isDynamicallyUnique(A, *this, *PC);
10134     });
10135     if (!DynamicallyUnique) {
10136       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
10137                            "values are dynamically unique: "
10138                         << LI << "\n");
10139       return false;
10140     }
10141 
10142     for (auto *PotentialCopy : PotentialCopies) {
10143       if (AllLocal) {
10144         Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
10145       } else {
10146         Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
10147       }
10148     }
10149     if (!AllLocal && ScopeIsLocal)
10150       addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
10151     return true;
10152   }
10153 
10154   bool handlePHINode(
10155       Attributor &A, PHINode &PHI, ItemInfo II,
10156       SmallVectorImpl<ItemInfo> &Worklist,
10157       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10158     auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
10159       LivenessInfo &LI = LivenessAAs[&F];
10160       if (!LI.LivenessAA)
10161         LI.LivenessAA = &A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
10162                                               DepClassTy::NONE);
10163       return LI;
10164     };
10165 
10166     LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
10167     for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
10168       BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
10169       if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
10170         LI.AnyDead = true;
10171         continue;
10172       }
10173       Worklist.push_back(
10174           {{*PHI.getIncomingValue(u), IncomingBB->getTerminator()}, II.S});
10175     }
10176     return true;
10177   }
10178 
10179   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
10180   /// simplify any operand of the instruction \p I. Return true if successful,
10181   /// in that case Worklist will be updated.
10182   bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
10183                          SmallVectorImpl<ItemInfo> &Worklist) {
10184     bool SomeSimplified = false;
10185     bool UsedAssumedInformation = false;
10186 
10187     SmallVector<Value *, 8> NewOps(I.getNumOperands());
10188     int Idx = 0;
10189     for (Value *Op : I.operands()) {
10190       const auto &SimplifiedOp = A.getAssumedSimplified(
10191           IRPosition::value(*Op, getCallBaseContext()), *this,
10192           UsedAssumedInformation, AA::Intraprocedural);
10193       // If we are not sure about any operand we are not sure about the entire
10194       // instruction, we'll wait.
10195       if (!SimplifiedOp.has_value())
10196         return true;
10197 
10198       if (SimplifiedOp.value())
10199         NewOps[Idx] = SimplifiedOp.value();
10200       else
10201         NewOps[Idx] = Op;
10202 
10203       SomeSimplified |= (NewOps[Idx] != Op);
10204       ++Idx;
10205     }
10206 
10207     // We won't bother with the InstSimplify interface if we didn't simplify any
10208     // operand ourselves.
10209     if (!SomeSimplified)
10210       return false;
10211 
10212     InformationCache &InfoCache = A.getInfoCache();
10213     Function *F = I.getFunction();
10214     const auto *DT =
10215         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
10216     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
10217     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
10218     OptimizationRemarkEmitter *ORE = nullptr;
10219 
10220     const DataLayout &DL = I.getModule()->getDataLayout();
10221     SimplifyQuery Q(DL, TLI, DT, AC, &I);
10222     Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q, ORE);
10223     if (!NewV || NewV == &I)
10224       return false;
10225 
10226     LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
10227                       << *NewV << "\n");
10228     Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
10229     return true;
10230   }
10231 
10232   bool simplifyInstruction(
10233       Attributor &A, Instruction &I, ItemInfo II,
10234       SmallVectorImpl<ItemInfo> &Worklist,
10235       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10236     if (auto *CI = dyn_cast<CmpInst>(&I))
10237       if (handleCmp(A, *CI, II, Worklist))
10238         return true;
10239 
10240     switch (I.getOpcode()) {
10241     case Instruction::Select:
10242       return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
10243     case Instruction::PHI:
10244       return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
10245     case Instruction::Load:
10246       return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
10247     default:
10248       return handleGenericInst(A, I, II, Worklist);
10249     };
10250     return false;
10251   }
10252 
10253   void genericValueTraversal(Attributor &A) {
10254     SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
10255 
10256     Value *InitialV = &getAssociatedValue();
10257     SmallSet<AA::ValueAndContext, 16> Visited;
10258     SmallVector<ItemInfo, 16> Worklist;
10259     Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
10260 
10261     int Iteration = 0;
10262     do {
10263       ItemInfo II = Worklist.pop_back_val();
10264       Value *V = II.I.getValue();
10265       assert(V);
10266       const Instruction *CtxI = II.I.getCtxI();
10267       AA::ValueScope S = II.S;
10268 
10269       // Check if we should process the current value. To prevent endless
10270       // recursion keep a record of the values we followed!
10271       if (!Visited.insert(II.I).second)
10272         continue;
10273 
10274       // Make sure we limit the compile time for complex expressions.
10275       if (Iteration++ >= MaxPotentialValuesIterations) {
10276         LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
10277                           << Iteration << "!\n");
10278         addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10279         continue;
10280       }
10281 
10282       // Explicitly look through calls with a "returned" attribute if we do
10283       // not have a pointer as stripPointerCasts only works on them.
10284       Value *NewV = nullptr;
10285       if (V->getType()->isPointerTy()) {
10286         NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
10287       } else {
10288         auto *CB = dyn_cast<CallBase>(V);
10289         if (CB && CB->getCalledFunction()) {
10290           for (Argument &Arg : CB->getCalledFunction()->args())
10291             if (Arg.hasReturnedAttr()) {
10292               NewV = CB->getArgOperand(Arg.getArgNo());
10293               break;
10294             }
10295         }
10296       }
10297       if (NewV && NewV != V) {
10298         Worklist.push_back({{*NewV, CtxI}, S});
10299         continue;
10300       }
10301 
10302       if (auto *I = dyn_cast<Instruction>(V)) {
10303         if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
10304           continue;
10305       }
10306 
10307       if (V != InitialV || isa<Argument>(V))
10308         if (recurseForValue(A, IRPosition::value(*V), II.S))
10309           continue;
10310 
10311       // If we haven't stripped anything we give up.
10312       if (V == InitialV && CtxI == getCtxI()) {
10313         indicatePessimisticFixpoint();
10314         return;
10315       }
10316 
10317       addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10318     } while (!Worklist.empty());
10319 
10320     // If we actually used liveness information so we have to record a
10321     // dependence.
10322     for (auto &It : LivenessAAs)
10323       if (It.second.AnyDead)
10324         A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
10325   }
10326 
10327   /// See AbstractAttribute::trackStatistics()
10328   void trackStatistics() const override {
10329     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
10330   }
10331 };
10332 
10333 struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
10334   using Base = AAPotentialValuesImpl;
10335   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
10336       : Base(IRP, A) {}
10337 
10338   /// See AbstractAttribute::initialize(..).
10339   void initialize(Attributor &A) override {
10340     auto &Arg = cast<Argument>(getAssociatedValue());
10341     if (Arg.hasPointeeInMemoryValueAttr())
10342       indicatePessimisticFixpoint();
10343   }
10344 
10345   /// See AbstractAttribute::updateImpl(...).
10346   ChangeStatus updateImpl(Attributor &A) override {
10347     auto AssumedBefore = getAssumed();
10348 
10349     unsigned CSArgNo = getCallSiteArgNo();
10350 
10351     bool UsedAssumedInformation = false;
10352     SmallVector<AA::ValueAndContext> Values;
10353     auto CallSitePred = [&](AbstractCallSite ACS) {
10354       const auto CSArgIRP = IRPosition::callsite_argument(ACS, CSArgNo);
10355       if (CSArgIRP.getPositionKind() == IRP_INVALID)
10356         return false;
10357 
10358       if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
10359                                         AA::Interprocedural,
10360                                         UsedAssumedInformation))
10361         return false;
10362 
10363       return isValidState();
10364     };
10365 
10366     if (!A.checkForAllCallSites(CallSitePred, *this,
10367                                 /* RequireAllCallSites */ true,
10368                                 UsedAssumedInformation))
10369       return indicatePessimisticFixpoint();
10370 
10371     Function *Fn = getAssociatedFunction();
10372     bool AnyNonLocal = false;
10373     for (auto &It : Values) {
10374       if (isa<Constant>(It.getValue())) {
10375         addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10376                  getAnchorScope());
10377         continue;
10378       }
10379       if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
10380         return indicatePessimisticFixpoint();
10381 
10382       if (auto *Arg = dyn_cast<Argument>(It.getValue()))
10383         if (Arg->getParent() == Fn) {
10384           addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10385                    getAnchorScope());
10386           continue;
10387         }
10388       addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
10389                getAnchorScope());
10390       AnyNonLocal = true;
10391     }
10392     if (undefIsContained())
10393       unionAssumedWithUndef();
10394     if (AnyNonLocal)
10395       giveUpOnIntraprocedural(A);
10396 
10397     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10398                                            : ChangeStatus::CHANGED;
10399   }
10400 
10401   /// See AbstractAttribute::trackStatistics()
10402   void trackStatistics() const override {
10403     STATS_DECLTRACK_ARG_ATTR(potential_values)
10404   }
10405 };
10406 
10407 struct AAPotentialValuesReturned
10408     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
10409   using Base =
10410       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
10411   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
10412       : Base(IRP, A) {}
10413 
10414   /// See AbstractAttribute::initialize(..).
10415   void initialize(Attributor &A) override {
10416     if (A.hasSimplificationCallback(getIRPosition()))
10417       indicatePessimisticFixpoint();
10418     else
10419       AAPotentialValues::initialize(A);
10420   }
10421 
10422   ChangeStatus manifest(Attributor &A) override {
10423     // We queried AAValueSimplify for the returned values so they will be
10424     // replaced if a simplified form was found. Nothing to do here.
10425     return ChangeStatus::UNCHANGED;
10426   }
10427 
10428   ChangeStatus indicatePessimisticFixpoint() override {
10429     return AAPotentialValues::indicatePessimisticFixpoint();
10430   }
10431 
10432   /// See AbstractAttribute::trackStatistics()
10433   void trackStatistics() const override {
10434     STATS_DECLTRACK_FNRET_ATTR(potential_values)
10435   }
10436 };
10437 
10438 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
10439   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
10440       : AAPotentialValuesImpl(IRP, A) {}
10441 
10442   /// See AbstractAttribute::updateImpl(...).
10443   ChangeStatus updateImpl(Attributor &A) override {
10444     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
10445                      "not be called");
10446   }
10447 
10448   /// See AbstractAttribute::trackStatistics()
10449   void trackStatistics() const override {
10450     STATS_DECLTRACK_FN_ATTR(potential_values)
10451   }
10452 };
10453 
10454 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
10455   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
10456       : AAPotentialValuesFunction(IRP, A) {}
10457 
10458   /// See AbstractAttribute::trackStatistics()
10459   void trackStatistics() const override {
10460     STATS_DECLTRACK_CS_ATTR(potential_values)
10461   }
10462 };
10463 
10464 struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
10465   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
10466       : AAPotentialValuesImpl(IRP, A) {}
10467 
10468   /// See AbstractAttribute::updateImpl(...).
10469   ChangeStatus updateImpl(Attributor &A) override {
10470     auto AssumedBefore = getAssumed();
10471 
10472     Function *Callee = getAssociatedFunction();
10473     if (!Callee)
10474       return indicatePessimisticFixpoint();
10475 
10476     bool UsedAssumedInformation = false;
10477     auto *CB = cast<CallBase>(getCtxI());
10478     if (CB->isMustTailCall() &&
10479         !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
10480                          UsedAssumedInformation))
10481       return indicatePessimisticFixpoint();
10482 
10483     SmallVector<AA::ValueAndContext> Values;
10484     if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10485                                       Values, AA::Intraprocedural,
10486                                       UsedAssumedInformation))
10487       return indicatePessimisticFixpoint();
10488 
10489     Function *Caller = CB->getCaller();
10490 
10491     bool AnyNonLocal = false;
10492     for (auto &It : Values) {
10493       Value *V = It.getValue();
10494       Optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
10495           V, *CB, *this, UsedAssumedInformation);
10496       if (!CallerV.has_value()) {
10497         // Nothing to do as long as no value was determined.
10498         continue;
10499       }
10500       V = CallerV.value() ? CallerV.value() : V;
10501       if (AA::isDynamicallyUnique(A, *this, *V) &&
10502           AA::isValidInScope(*V, Caller)) {
10503         if (CallerV.value()) {
10504           SmallVector<AA::ValueAndContext> ArgValues;
10505           IRPosition IRP = IRPosition::value(*V);
10506           if (auto *Arg = dyn_cast<Argument>(V))
10507             if (Arg->getParent() == CB->getCalledFunction())
10508               IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
10509           if (recurseForValue(A, IRP, AA::AnyScope))
10510             continue;
10511         }
10512         addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10513       } else {
10514         AnyNonLocal = true;
10515         break;
10516       }
10517     }
10518     if (AnyNonLocal) {
10519       Values.clear();
10520       if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10521                                         Values, AA::Interprocedural,
10522                                         UsedAssumedInformation))
10523         return indicatePessimisticFixpoint();
10524       AnyNonLocal = false;
10525       getState() = PotentialLLVMValuesState::getBestState();
10526       for (auto &It : Values) {
10527         Value *V = It.getValue();
10528         if (!AA::isDynamicallyUnique(A, *this, *V))
10529           return indicatePessimisticFixpoint();
10530         if (AA::isValidInScope(*V, Caller)) {
10531           addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10532         } else {
10533           AnyNonLocal = true;
10534           addValue(A, getState(), *V, CB, AA::Interprocedural,
10535                    getAnchorScope());
10536         }
10537       }
10538       if (AnyNonLocal)
10539         giveUpOnIntraprocedural(A);
10540     }
10541     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10542                                            : ChangeStatus::CHANGED;
10543   }
10544 
10545   ChangeStatus indicatePessimisticFixpoint() override {
10546     return AAPotentialValues::indicatePessimisticFixpoint();
10547   }
10548 
10549   /// See AbstractAttribute::trackStatistics()
10550   void trackStatistics() const override {
10551     STATS_DECLTRACK_CSRET_ATTR(potential_values)
10552   }
10553 };
10554 
10555 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
10556   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
10557       : AAPotentialValuesFloating(IRP, A) {}
10558 
10559   /// See AbstractAttribute::trackStatistics()
10560   void trackStatistics() const override {
10561     STATS_DECLTRACK_CSARG_ATTR(potential_values)
10562   }
10563 };
10564 } // namespace
10565 
10566 /// ---------------------- Assumption Propagation ------------------------------
10567 namespace {
10568 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
10569   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
10570                        const DenseSet<StringRef> &Known)
10571       : AAAssumptionInfo(IRP, A, Known) {}
10572 
10573   bool hasAssumption(const StringRef Assumption) const override {
10574     return isValidState() && setContains(Assumption);
10575   }
10576 
10577   /// See AbstractAttribute::getAsStr()
10578   const std::string getAsStr() const override {
10579     const SetContents &Known = getKnown();
10580     const SetContents &Assumed = getAssumed();
10581 
10582     const std::string KnownStr =
10583         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
10584     const std::string AssumedStr =
10585         (Assumed.isUniversal())
10586             ? "Universal"
10587             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
10588 
10589     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
10590   }
10591 };
10592 
10593 /// Propagates assumption information from parent functions to all of their
10594 /// successors. An assumption can be propagated if the containing function
10595 /// dominates the called function.
10596 ///
10597 /// We start with a "known" set of assumptions already valid for the associated
10598 /// function and an "assumed" set that initially contains all possible
10599 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10600 /// contents as concrete values are known. The concrete values are seeded by the
10601 /// first nodes that are either entries into the call graph, or contains no
10602 /// assumptions. Each node is updated as the intersection of the assumed state
10603 /// with all of its predecessors.
10604 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
10605   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10606       : AAAssumptionInfoImpl(IRP, A,
10607                              getAssumptions(*IRP.getAssociatedFunction())) {}
10608 
10609   /// See AbstractAttribute::manifest(...).
10610   ChangeStatus manifest(Attributor &A) override {
10611     const auto &Assumptions = getKnown();
10612 
10613     // Don't manifest a universal set if it somehow made it here.
10614     if (Assumptions.isUniversal())
10615       return ChangeStatus::UNCHANGED;
10616 
10617     Function *AssociatedFunction = getAssociatedFunction();
10618 
10619     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10620 
10621     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10622   }
10623 
10624   /// See AbstractAttribute::updateImpl(...).
10625   ChangeStatus updateImpl(Attributor &A) override {
10626     bool Changed = false;
10627 
10628     auto CallSitePred = [&](AbstractCallSite ACS) {
10629       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10630           *this, IRPosition::callsite_function(*ACS.getInstruction()),
10631           DepClassTy::REQUIRED);
10632       // Get the set of assumptions shared by all of this function's callers.
10633       Changed |= getIntersection(AssumptionAA.getAssumed());
10634       return !getAssumed().empty() || !getKnown().empty();
10635     };
10636 
10637     bool UsedAssumedInformation = false;
10638     // Get the intersection of all assumptions held by this node's predecessors.
10639     // If we don't know all the call sites then this is either an entry into the
10640     // call graph or an empty node. This node is known to only contain its own
10641     // assumptions and can be propagated to its successors.
10642     if (!A.checkForAllCallSites(CallSitePred, *this, true,
10643                                 UsedAssumedInformation))
10644       return indicatePessimisticFixpoint();
10645 
10646     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10647   }
10648 
10649   void trackStatistics() const override {}
10650 };
10651 
10652 /// Assumption Info defined for call sites.
10653 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10654 
10655   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10656       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10657 
10658   /// See AbstractAttribute::initialize(...).
10659   void initialize(Attributor &A) override {
10660     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10661     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10662   }
10663 
10664   /// See AbstractAttribute::manifest(...).
10665   ChangeStatus manifest(Attributor &A) override {
10666     // Don't manifest a universal set if it somehow made it here.
10667     if (getKnown().isUniversal())
10668       return ChangeStatus::UNCHANGED;
10669 
10670     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10671     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10672 
10673     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10674   }
10675 
10676   /// See AbstractAttribute::updateImpl(...).
10677   ChangeStatus updateImpl(Attributor &A) override {
10678     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10679     auto &AssumptionAA =
10680         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10681     bool Changed = getIntersection(AssumptionAA.getAssumed());
10682     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10683   }
10684 
10685   /// See AbstractAttribute::trackStatistics()
10686   void trackStatistics() const override {}
10687 
10688 private:
10689   /// Helper to initialized the known set as all the assumptions this call and
10690   /// the callee contain.
10691   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10692     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10693     auto Assumptions = getAssumptions(CB);
10694     if (Function *F = IRP.getAssociatedFunction())
10695       set_union(Assumptions, getAssumptions(*F));
10696     if (Function *F = IRP.getAssociatedFunction())
10697       set_union(Assumptions, getAssumptions(*F));
10698     return Assumptions;
10699   }
10700 };
10701 } // namespace
10702 
10703 AACallGraphNode *AACallEdgeIterator::operator*() const {
10704   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10705       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10706 }
10707 
10708 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10709 
10710 const char AAReturnedValues::ID = 0;
10711 const char AANoUnwind::ID = 0;
10712 const char AANoSync::ID = 0;
10713 const char AANoFree::ID = 0;
10714 const char AANonNull::ID = 0;
10715 const char AANoRecurse::ID = 0;
10716 const char AAWillReturn::ID = 0;
10717 const char AAUndefinedBehavior::ID = 0;
10718 const char AANoAlias::ID = 0;
10719 const char AAReachability::ID = 0;
10720 const char AANoReturn::ID = 0;
10721 const char AAIsDead::ID = 0;
10722 const char AADereferenceable::ID = 0;
10723 const char AAAlign::ID = 0;
10724 const char AAInstanceInfo::ID = 0;
10725 const char AANoCapture::ID = 0;
10726 const char AAValueSimplify::ID = 0;
10727 const char AAHeapToStack::ID = 0;
10728 const char AAPrivatizablePtr::ID = 0;
10729 const char AAMemoryBehavior::ID = 0;
10730 const char AAMemoryLocation::ID = 0;
10731 const char AAValueConstantRange::ID = 0;
10732 const char AAPotentialConstantValues::ID = 0;
10733 const char AAPotentialValues::ID = 0;
10734 const char AANoUndef::ID = 0;
10735 const char AACallEdges::ID = 0;
10736 const char AAFunctionReachability::ID = 0;
10737 const char AAPointerInfo::ID = 0;
10738 const char AAAssumptionInfo::ID = 0;
10739 
10740 // Macro magic to create the static generator function for attributes that
10741 // follow the naming scheme.
10742 
10743 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10744   case IRPosition::PK:                                                         \
10745     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10746 
10747 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10748   case IRPosition::PK:                                                         \
10749     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10750     ++NumAAs;                                                                  \
10751     break;
10752 
10753 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10754   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10755     CLASS *AA = nullptr;                                                       \
10756     switch (IRP.getPositionKind()) {                                           \
10757       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10758       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10759       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10760       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10761       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10762       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10763       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10764       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10765     }                                                                          \
10766     return *AA;                                                                \
10767   }
10768 
10769 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10770   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10771     CLASS *AA = nullptr;                                                       \
10772     switch (IRP.getPositionKind()) {                                           \
10773       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10774       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10775       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10776       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10777       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10778       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10779       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10780       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10781     }                                                                          \
10782     return *AA;                                                                \
10783   }
10784 
10785 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10786   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10787     CLASS *AA = nullptr;                                                       \
10788     switch (IRP.getPositionKind()) {                                           \
10789       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10790       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10791       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10792       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10793       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10794       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10795       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10796       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10797     }                                                                          \
10798     return *AA;                                                                \
10799   }
10800 
10801 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10802   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10803     CLASS *AA = nullptr;                                                       \
10804     switch (IRP.getPositionKind()) {                                           \
10805       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10806       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10807       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10808       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10809       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10810       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10811       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10812       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10813     }                                                                          \
10814     return *AA;                                                                \
10815   }
10816 
10817 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10818   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10819     CLASS *AA = nullptr;                                                       \
10820     switch (IRP.getPositionKind()) {                                           \
10821       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10822       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10823       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10824       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10825       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10826       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10827       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10828       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10829     }                                                                          \
10830     return *AA;                                                                \
10831   }
10832 
10833 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10834 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10835 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10836 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10837 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10838 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10839 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10840 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10841 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10842 
10843 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10844 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10845 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10846 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10847 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10848 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
10849 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10850 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10851 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
10852 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10853 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10854 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10855 
10856 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10857 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10858 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10859 
10860 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10861 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10862 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10863 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10864 
10865 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10866 
10867 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10868 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10869 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10870 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10871 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10872 #undef SWITCH_PK_CREATE
10873 #undef SWITCH_PK_INV
10874