1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Transforms/IPO/Attributor.h"
16 
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Assumptions.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/NoFolder.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/Support/Alignment.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/GraphWriter.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include <cassert>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "attributor"
60 
61 static cl::opt<bool> ManifestInternal(
62     "attributor-manifest-internal", cl::Hidden,
63     cl::desc("Manifest Attributor internal string attributes."),
64     cl::init(false));
65 
66 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
67                                        cl::Hidden);
68 
69 template <>
70 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
71 
72 static cl::opt<unsigned, true> MaxPotentialValues(
73     "attributor-max-potential-values", cl::Hidden,
74     cl::desc("Maximum number of potential values to be "
75              "tracked for each position."),
76     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
77     cl::init(7));
78 
79 static cl::opt<unsigned> MaxInterferingAccesses(
80     "attributor-max-interfering-accesses", cl::Hidden,
81     cl::desc("Maximum number of interfering accesses to "
82              "check before assuming all might interfere."),
83     cl::init(6));
84 
85 STATISTIC(NumAAs, "Number of abstract attributes created");
86 
87 // Some helper macros to deal with statistics tracking.
88 //
89 // Usage:
90 // For simple IR attribute tracking overload trackStatistics in the abstract
91 // attribute and choose the right STATS_DECLTRACK_********* macro,
92 // e.g.,:
93 //  void trackStatistics() const override {
94 //    STATS_DECLTRACK_ARG_ATTR(returned)
95 //  }
96 // If there is a single "increment" side one can use the macro
97 // STATS_DECLTRACK with a custom message. If there are multiple increment
98 // sides, STATS_DECL and STATS_TRACK can also be used separately.
99 //
100 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
101   ("Number of " #TYPE " marked '" #NAME "'")
102 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
103 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
104 #define STATS_DECL(NAME, TYPE, MSG)                                            \
105   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
106 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
107 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
108   {                                                                            \
109     STATS_DECL(NAME, TYPE, MSG)                                                \
110     STATS_TRACK(NAME, TYPE)                                                    \
111   }
112 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
113   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
114 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
115   STATS_DECLTRACK(NAME, CSArguments,                                           \
116                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
117 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
118   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
119 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
120   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
121 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
122   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
123                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
124 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
125   STATS_DECLTRACK(NAME, CSReturn,                                              \
126                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
127 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
128   STATS_DECLTRACK(NAME, Floating,                                              \
129                   ("Number of floating values known to be '" #NAME "'"))
130 
131 // Specialization of the operator<< for abstract attributes subclasses. This
132 // disambiguates situations where multiple operators are applicable.
133 namespace llvm {
134 #define PIPE_OPERATOR(CLASS)                                                   \
135   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
136     return OS << static_cast<const AbstractAttribute &>(AA);                   \
137   }
138 
139 PIPE_OPERATOR(AAIsDead)
140 PIPE_OPERATOR(AANoUnwind)
141 PIPE_OPERATOR(AANoSync)
142 PIPE_OPERATOR(AANoRecurse)
143 PIPE_OPERATOR(AAWillReturn)
144 PIPE_OPERATOR(AANoReturn)
145 PIPE_OPERATOR(AAReturnedValues)
146 PIPE_OPERATOR(AANonNull)
147 PIPE_OPERATOR(AANoAlias)
148 PIPE_OPERATOR(AADereferenceable)
149 PIPE_OPERATOR(AAAlign)
150 PIPE_OPERATOR(AANoCapture)
151 PIPE_OPERATOR(AAValueSimplify)
152 PIPE_OPERATOR(AANoFree)
153 PIPE_OPERATOR(AAHeapToStack)
154 PIPE_OPERATOR(AAReachability)
155 PIPE_OPERATOR(AAMemoryBehavior)
156 PIPE_OPERATOR(AAMemoryLocation)
157 PIPE_OPERATOR(AAValueConstantRange)
158 PIPE_OPERATOR(AAPrivatizablePtr)
159 PIPE_OPERATOR(AAUndefinedBehavior)
160 PIPE_OPERATOR(AAPotentialValues)
161 PIPE_OPERATOR(AANoUndef)
162 PIPE_OPERATOR(AACallEdges)
163 PIPE_OPERATOR(AAFunctionReachability)
164 PIPE_OPERATOR(AAPointerInfo)
165 PIPE_OPERATOR(AAAssumptionInfo)
166 
167 #undef PIPE_OPERATOR
168 
169 template <>
170 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
171                                                      const DerefState &R) {
172   ChangeStatus CS0 =
173       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
174   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
175   return CS0 | CS1;
176 }
177 
178 } // namespace llvm
179 
180 /// Get pointer operand of memory accessing instruction. If \p I is
181 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
182 /// is set to false and the instruction is volatile, return nullptr.
183 static const Value *getPointerOperand(const Instruction *I,
184                                       bool AllowVolatile) {
185   if (!AllowVolatile && I->isVolatile())
186     return nullptr;
187 
188   if (auto *LI = dyn_cast<LoadInst>(I)) {
189     return LI->getPointerOperand();
190   }
191 
192   if (auto *SI = dyn_cast<StoreInst>(I)) {
193     return SI->getPointerOperand();
194   }
195 
196   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
197     return CXI->getPointerOperand();
198   }
199 
200   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
201     return RMWI->getPointerOperand();
202   }
203 
204   return nullptr;
205 }
206 
207 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
208 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
209 /// getelement pointer instructions that traverse the natural type of \p Ptr if
210 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
211 /// through a cast to i8*.
212 ///
213 /// TODO: This could probably live somewhere more prominantly if it doesn't
214 ///       already exist.
215 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
216                                int64_t Offset, IRBuilder<NoFolder> &IRB,
217                                const DataLayout &DL) {
218   assert(Offset >= 0 && "Negative offset not supported yet!");
219   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
220                     << "-bytes as " << *ResTy << "\n");
221 
222   if (Offset) {
223     Type *Ty = PtrElemTy;
224     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
225     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
226 
227     SmallVector<Value *, 4> ValIndices;
228     std::string GEPName = Ptr->getName().str();
229     for (const APInt &Index : IntIndices) {
230       ValIndices.push_back(IRB.getInt(Index));
231       GEPName += "." + std::to_string(Index.getZExtValue());
232     }
233 
234     // Create a GEP for the indices collected above.
235     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
236 
237     // If an offset is left we use byte-wise adjustment.
238     if (IntOffset != 0) {
239       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
240       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
241                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
242     }
243   }
244 
245   // Ensure the result has the requested type.
246   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
247                                                 Ptr->getName() + ".cast");
248 
249   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
250   return Ptr;
251 }
252 
253 /// Recursively visit all values that might become \p IRP at some point. This
254 /// will be done by looking through cast instructions, selects, phis, and calls
255 /// with the "returned" attribute. Once we cannot look through the value any
256 /// further, the callback \p VisitValueCB is invoked and passed the current
257 /// value, the \p State, and a flag to indicate if we stripped anything.
258 /// Stripped means that we unpacked the value associated with \p IRP at least
259 /// once. Note that the value used for the callback may still be the value
260 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
261 /// we will never visit more values than specified by \p MaxValues.
262 /// If \p Intraprocedural is set to true only values valid in the scope of
263 /// \p CtxI will be visited and simplification into other scopes is prevented.
264 template <typename StateTy>
265 static bool genericValueTraversal(
266     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
267     StateTy &State,
268     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
269         VisitValueCB,
270     const Instruction *CtxI, bool &UsedAssumedInformation,
271     bool UseValueSimplify = true, int MaxValues = 16,
272     function_ref<Value *(Value *)> StripCB = nullptr,
273     bool Intraprocedural = false) {
274 
275   struct LivenessInfo {
276     const AAIsDead *LivenessAA = nullptr;
277     bool AnyDead = false;
278   };
279   SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
280   auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
281     LivenessInfo &LI = LivenessAAs[&F];
282     if (!LI.LivenessAA)
283       LI.LivenessAA = &A.getAAFor<AAIsDead>(QueryingAA, IRPosition::function(F),
284                                             DepClassTy::NONE);
285     return LI;
286   };
287 
288   Value *InitialV = &IRP.getAssociatedValue();
289   using Item = std::pair<Value *, const Instruction *>;
290   SmallSet<Item, 16> Visited;
291   SmallVector<Item, 16> Worklist;
292   Worklist.push_back({InitialV, CtxI});
293 
294   int Iteration = 0;
295   do {
296     Item I = Worklist.pop_back_val();
297     Value *V = I.first;
298     CtxI = I.second;
299     if (StripCB)
300       V = StripCB(V);
301 
302     // Check if we should process the current value. To prevent endless
303     // recursion keep a record of the values we followed!
304     if (!Visited.insert(I).second)
305       continue;
306 
307     // Make sure we limit the compile time for complex expressions.
308     if (Iteration++ >= MaxValues) {
309       LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
310                         << Iteration << "!\n");
311       return false;
312     }
313 
314     // Explicitly look through calls with a "returned" attribute if we do
315     // not have a pointer as stripPointerCasts only works on them.
316     Value *NewV = nullptr;
317     if (V->getType()->isPointerTy()) {
318       NewV = V->stripPointerCasts();
319     } else {
320       auto *CB = dyn_cast<CallBase>(V);
321       if (CB && CB->getCalledFunction()) {
322         for (Argument &Arg : CB->getCalledFunction()->args())
323           if (Arg.hasReturnedAttr()) {
324             NewV = CB->getArgOperand(Arg.getArgNo());
325             break;
326           }
327       }
328     }
329     if (NewV && NewV != V) {
330       Worklist.push_back({NewV, CtxI});
331       continue;
332     }
333 
334     // Look through select instructions, visit assumed potential values.
335     if (auto *SI = dyn_cast<SelectInst>(V)) {
336       Optional<Constant *> C = A.getAssumedConstant(
337           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
338       bool NoValueYet = !C.hasValue();
339       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
340         continue;
341       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
342         if (CI->isZero())
343           Worklist.push_back({SI->getFalseValue(), CtxI});
344         else
345           Worklist.push_back({SI->getTrueValue(), CtxI});
346         continue;
347       }
348       // We could not simplify the condition, assume both values.(
349       Worklist.push_back({SI->getTrueValue(), CtxI});
350       Worklist.push_back({SI->getFalseValue(), CtxI});
351       continue;
352     }
353 
354     // Look through phi nodes, visit all live operands.
355     if (auto *PHI = dyn_cast<PHINode>(V)) {
356       LivenessInfo &LI = GetLivenessInfo(*PHI->getFunction());
357       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
358         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
359         if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI->getParent())) {
360           LI.AnyDead = true;
361           UsedAssumedInformation |= !LI.LivenessAA->isAtFixpoint();
362           continue;
363         }
364         Worklist.push_back(
365             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
366       }
367       continue;
368     }
369 
370     if (auto *Arg = dyn_cast<Argument>(V)) {
371       if (!Intraprocedural && !Arg->hasPassPointeeByValueCopyAttr()) {
372         SmallVector<Item> CallSiteValues;
373         bool UsedAssumedInformation = false;
374         if (A.checkForAllCallSites(
375                 [&](AbstractCallSite ACS) {
376                   // Callbacks might not have a corresponding call site operand,
377                   // stick with the argument in that case.
378                   Value *CSOp = ACS.getCallArgOperand(*Arg);
379                   if (!CSOp)
380                     return false;
381                   CallSiteValues.push_back({CSOp, ACS.getInstruction()});
382                   return true;
383                 },
384                 *Arg->getParent(), true, &QueryingAA, UsedAssumedInformation)) {
385           Worklist.append(CallSiteValues);
386           continue;
387         }
388       }
389     }
390 
391     if (UseValueSimplify && !isa<Constant>(V)) {
392       Optional<Value *> SimpleV =
393           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
394       if (!SimpleV.hasValue())
395         continue;
396       Value *NewV = SimpleV.getValue();
397       if (NewV && NewV != V) {
398         if (!Intraprocedural || !CtxI ||
399             AA::isValidInScope(*NewV, CtxI->getFunction())) {
400           Worklist.push_back({NewV, CtxI});
401           continue;
402         }
403       }
404     }
405 
406     if (auto *LI = dyn_cast<LoadInst>(V)) {
407       bool UsedAssumedInformation = false;
408       // If we ask for the potentially loaded values from the initial pointer we
409       // will simply end up here again. The load is as far as we can make it.
410       if (LI->getPointerOperand() != InitialV) {
411         SmallSetVector<Value *, 4> PotentialCopies;
412         if (AA::getPotentiallyLoadedValues(A, *LI, PotentialCopies, QueryingAA,
413                                            UsedAssumedInformation,
414                                            /* OnlyExact */ true)) {
415           // Values have to be dynamically unique or we loose the fact that a
416           // single llvm::Value might represent two runtime values (e.g., stack
417           // locations in different recursive calls).
418           bool DynamicallyUnique =
419               llvm::all_of(PotentialCopies, [&A, &QueryingAA](Value *PC) {
420                 return AA::isDynamicallyUnique(A, QueryingAA, *PC);
421               });
422           if (DynamicallyUnique &&
423               (!Intraprocedural || !CtxI ||
424                llvm::all_of(PotentialCopies, [CtxI](Value *PC) {
425                  return AA::isValidInScope(*PC, CtxI->getFunction());
426                }))) {
427             for (auto *PotentialCopy : PotentialCopies)
428               Worklist.push_back({PotentialCopy, CtxI});
429             continue;
430           }
431         }
432       }
433     }
434 
435     // Once a leaf is reached we inform the user through the callback.
436     if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) {
437       LLVM_DEBUG(dbgs() << "Generic value traversal visit callback failed for: "
438                         << *V << "!\n");
439       return false;
440     }
441   } while (!Worklist.empty());
442 
443   // If we actually used liveness information so we have to record a dependence.
444   for (auto &It : LivenessAAs)
445     if (It.second.AnyDead)
446       A.recordDependence(*It.second.LivenessAA, QueryingAA,
447                          DepClassTy::OPTIONAL);
448 
449   // All values have been visited.
450   return true;
451 }
452 
453 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
454                                      SmallVectorImpl<Value *> &Objects,
455                                      const AbstractAttribute &QueryingAA,
456                                      const Instruction *CtxI,
457                                      bool &UsedAssumedInformation,
458                                      bool Intraprocedural) {
459   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
460   SmallPtrSet<Value *, 8> SeenObjects;
461   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
462                                      SmallVectorImpl<Value *> &Objects,
463                                      bool) -> bool {
464     if (SeenObjects.insert(&Val).second)
465       Objects.push_back(&Val);
466     return true;
467   };
468   if (!genericValueTraversal<decltype(Objects)>(
469           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
470           UsedAssumedInformation, true, 32, StripCB, Intraprocedural))
471     return false;
472   return true;
473 }
474 
475 static const Value *
476 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
477                           const Value *Val, const DataLayout &DL, APInt &Offset,
478                           bool GetMinOffset, bool AllowNonInbounds,
479                           bool UseAssumed = false) {
480 
481   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
482     const IRPosition &Pos = IRPosition::value(V);
483     // Only track dependence if we are going to use the assumed info.
484     const AAValueConstantRange &ValueConstantRangeAA =
485         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
486                                          UseAssumed ? DepClassTy::OPTIONAL
487                                                     : DepClassTy::NONE);
488     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
489                                      : ValueConstantRangeAA.getKnown();
490     if (Range.isFullSet())
491       return false;
492 
493     // We can only use the lower part of the range because the upper part can
494     // be higher than what the value can really be.
495     if (GetMinOffset)
496       ROffset = Range.getSignedMin();
497     else
498       ROffset = Range.getSignedMax();
499     return true;
500   };
501 
502   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
503                                                 /* AllowInvariant */ true,
504                                                 AttributorAnalysis);
505 }
506 
507 static const Value *
508 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
509                         const Value *Ptr, int64_t &BytesOffset,
510                         const DataLayout &DL, bool AllowNonInbounds = false) {
511   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
512   const Value *Base =
513       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
514                                 /* GetMinOffset */ true, AllowNonInbounds);
515 
516   BytesOffset = OffsetAPInt.getSExtValue();
517   return Base;
518 }
519 
520 /// Clamp the information known for all returned values of a function
521 /// (identified by \p QueryingAA) into \p S.
522 template <typename AAType, typename StateType = typename AAType::StateType>
523 static void clampReturnedValueStates(
524     Attributor &A, const AAType &QueryingAA, StateType &S,
525     const IRPosition::CallBaseContext *CBContext = nullptr) {
526   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
527                     << QueryingAA << " into " << S << "\n");
528 
529   assert((QueryingAA.getIRPosition().getPositionKind() ==
530               IRPosition::IRP_RETURNED ||
531           QueryingAA.getIRPosition().getPositionKind() ==
532               IRPosition::IRP_CALL_SITE_RETURNED) &&
533          "Can only clamp returned value states for a function returned or call "
534          "site returned position!");
535 
536   // Use an optional state as there might not be any return values and we want
537   // to join (IntegerState::operator&) the state of all there are.
538   Optional<StateType> T;
539 
540   // Callback for each possibly returned value.
541   auto CheckReturnValue = [&](Value &RV) -> bool {
542     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
543     const AAType &AA =
544         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
545     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
546                       << " @ " << RVPos << "\n");
547     const StateType &AAS = AA.getState();
548     if (T.hasValue())
549       *T &= AAS;
550     else
551       T = AAS;
552     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
553                       << "\n");
554     return T->isValidState();
555   };
556 
557   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
558     S.indicatePessimisticFixpoint();
559   else if (T.hasValue())
560     S ^= *T;
561 }
562 
563 namespace {
564 /// Helper class for generic deduction: return value -> returned position.
565 template <typename AAType, typename BaseType,
566           typename StateType = typename BaseType::StateType,
567           bool PropagateCallBaseContext = false>
568 struct AAReturnedFromReturnedValues : public BaseType {
569   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
570       : BaseType(IRP, A) {}
571 
572   /// See AbstractAttribute::updateImpl(...).
573   ChangeStatus updateImpl(Attributor &A) override {
574     StateType S(StateType::getBestState(this->getState()));
575     clampReturnedValueStates<AAType, StateType>(
576         A, *this, S,
577         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
578     // TODO: If we know we visited all returned values, thus no are assumed
579     // dead, we can take the known information from the state T.
580     return clampStateAndIndicateChange<StateType>(this->getState(), S);
581   }
582 };
583 
584 /// Clamp the information known at all call sites for a given argument
585 /// (identified by \p QueryingAA) into \p S.
586 template <typename AAType, typename StateType = typename AAType::StateType>
587 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
588                                         StateType &S) {
589   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
590                     << QueryingAA << " into " << S << "\n");
591 
592   assert(QueryingAA.getIRPosition().getPositionKind() ==
593              IRPosition::IRP_ARGUMENT &&
594          "Can only clamp call site argument states for an argument position!");
595 
596   // Use an optional state as there might not be any return values and we want
597   // to join (IntegerState::operator&) the state of all there are.
598   Optional<StateType> T;
599 
600   // The argument number which is also the call site argument number.
601   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
602 
603   auto CallSiteCheck = [&](AbstractCallSite ACS) {
604     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
605     // Check if a coresponding argument was found or if it is on not associated
606     // (which can happen for callback calls).
607     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
608       return false;
609 
610     const AAType &AA =
611         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
612     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
613                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
614     const StateType &AAS = AA.getState();
615     if (T.hasValue())
616       *T &= AAS;
617     else
618       T = AAS;
619     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
620                       << "\n");
621     return T->isValidState();
622   };
623 
624   bool UsedAssumedInformation = false;
625   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
626                               UsedAssumedInformation))
627     S.indicatePessimisticFixpoint();
628   else if (T.hasValue())
629     S ^= *T;
630 }
631 
632 /// This function is the bridge between argument position and the call base
633 /// context.
634 template <typename AAType, typename BaseType,
635           typename StateType = typename AAType::StateType>
636 bool getArgumentStateFromCallBaseContext(Attributor &A,
637                                          BaseType &QueryingAttribute,
638                                          IRPosition &Pos, StateType &State) {
639   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
640          "Expected an 'argument' position !");
641   const CallBase *CBContext = Pos.getCallBaseContext();
642   if (!CBContext)
643     return false;
644 
645   int ArgNo = Pos.getCallSiteArgNo();
646   assert(ArgNo >= 0 && "Invalid Arg No!");
647 
648   const auto &AA = A.getAAFor<AAType>(
649       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
650       DepClassTy::REQUIRED);
651   const StateType &CBArgumentState =
652       static_cast<const StateType &>(AA.getState());
653 
654   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
655                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
656                     << "\n");
657 
658   // NOTE: If we want to do call site grouping it should happen here.
659   State ^= CBArgumentState;
660   return true;
661 }
662 
663 /// Helper class for generic deduction: call site argument -> argument position.
664 template <typename AAType, typename BaseType,
665           typename StateType = typename AAType::StateType,
666           bool BridgeCallBaseContext = false>
667 struct AAArgumentFromCallSiteArguments : public BaseType {
668   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
669       : BaseType(IRP, A) {}
670 
671   /// See AbstractAttribute::updateImpl(...).
672   ChangeStatus updateImpl(Attributor &A) override {
673     StateType S = StateType::getBestState(this->getState());
674 
675     if (BridgeCallBaseContext) {
676       bool Success =
677           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
678               A, *this, this->getIRPosition(), S);
679       if (Success)
680         return clampStateAndIndicateChange<StateType>(this->getState(), S);
681     }
682     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
683 
684     // TODO: If we know we visited all incoming values, thus no are assumed
685     // dead, we can take the known information from the state T.
686     return clampStateAndIndicateChange<StateType>(this->getState(), S);
687   }
688 };
689 
690 /// Helper class for generic replication: function returned -> cs returned.
691 template <typename AAType, typename BaseType,
692           typename StateType = typename BaseType::StateType,
693           bool IntroduceCallBaseContext = false>
694 struct AACallSiteReturnedFromReturned : public BaseType {
695   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
696       : BaseType(IRP, A) {}
697 
698   /// See AbstractAttribute::updateImpl(...).
699   ChangeStatus updateImpl(Attributor &A) override {
700     assert(this->getIRPosition().getPositionKind() ==
701                IRPosition::IRP_CALL_SITE_RETURNED &&
702            "Can only wrap function returned positions for call site returned "
703            "positions!");
704     auto &S = this->getState();
705 
706     const Function *AssociatedFunction =
707         this->getIRPosition().getAssociatedFunction();
708     if (!AssociatedFunction)
709       return S.indicatePessimisticFixpoint();
710 
711     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
712     if (IntroduceCallBaseContext)
713       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
714                         << CBContext << "\n");
715 
716     IRPosition FnPos = IRPosition::returned(
717         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
718     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
719     return clampStateAndIndicateChange(S, AA.getState());
720   }
721 };
722 
723 /// Helper function to accumulate uses.
724 template <class AAType, typename StateType = typename AAType::StateType>
725 static void followUsesInContext(AAType &AA, Attributor &A,
726                                 MustBeExecutedContextExplorer &Explorer,
727                                 const Instruction *CtxI,
728                                 SetVector<const Use *> &Uses,
729                                 StateType &State) {
730   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
731   for (unsigned u = 0; u < Uses.size(); ++u) {
732     const Use *U = Uses[u];
733     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
734       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
735       if (Found && AA.followUseInMBEC(A, U, UserI, State))
736         for (const Use &Us : UserI->uses())
737           Uses.insert(&Us);
738     }
739   }
740 }
741 
742 /// Use the must-be-executed-context around \p I to add information into \p S.
743 /// The AAType class is required to have `followUseInMBEC` method with the
744 /// following signature and behaviour:
745 ///
746 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
747 /// U - Underlying use.
748 /// I - The user of the \p U.
749 /// Returns true if the value should be tracked transitively.
750 ///
751 template <class AAType, typename StateType = typename AAType::StateType>
752 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
753                              Instruction &CtxI) {
754 
755   // Container for (transitive) uses of the associated value.
756   SetVector<const Use *> Uses;
757   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
758     Uses.insert(&U);
759 
760   MustBeExecutedContextExplorer &Explorer =
761       A.getInfoCache().getMustBeExecutedContextExplorer();
762 
763   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
764 
765   if (S.isAtFixpoint())
766     return;
767 
768   SmallVector<const BranchInst *, 4> BrInsts;
769   auto Pred = [&](const Instruction *I) {
770     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
771       if (Br->isConditional())
772         BrInsts.push_back(Br);
773     return true;
774   };
775 
776   // Here, accumulate conditional branch instructions in the context. We
777   // explore the child paths and collect the known states. The disjunction of
778   // those states can be merged to its own state. Let ParentState_i be a state
779   // to indicate the known information for an i-th branch instruction in the
780   // context. ChildStates are created for its successors respectively.
781   //
782   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
783   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
784   //      ...
785   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
786   //
787   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
788   //
789   // FIXME: Currently, recursive branches are not handled. For example, we
790   // can't deduce that ptr must be dereferenced in below function.
791   //
792   // void f(int a, int c, int *ptr) {
793   //    if(a)
794   //      if (b) {
795   //        *ptr = 0;
796   //      } else {
797   //        *ptr = 1;
798   //      }
799   //    else {
800   //      if (b) {
801   //        *ptr = 0;
802   //      } else {
803   //        *ptr = 1;
804   //      }
805   //    }
806   // }
807 
808   Explorer.checkForAllContext(&CtxI, Pred);
809   for (const BranchInst *Br : BrInsts) {
810     StateType ParentState;
811 
812     // The known state of the parent state is a conjunction of children's
813     // known states so it is initialized with a best state.
814     ParentState.indicateOptimisticFixpoint();
815 
816     for (const BasicBlock *BB : Br->successors()) {
817       StateType ChildState;
818 
819       size_t BeforeSize = Uses.size();
820       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
821 
822       // Erase uses which only appear in the child.
823       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
824         It = Uses.erase(It);
825 
826       ParentState &= ChildState;
827     }
828 
829     // Use only known state.
830     S += ParentState;
831   }
832 }
833 } // namespace
834 
835 /// ------------------------ PointerInfo ---------------------------------------
836 
837 namespace llvm {
838 namespace AA {
839 namespace PointerInfo {
840 
841 struct State;
842 
843 } // namespace PointerInfo
844 } // namespace AA
845 
846 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
847 template <>
848 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
849   using Access = AAPointerInfo::Access;
850   static inline Access getEmptyKey();
851   static inline Access getTombstoneKey();
852   static unsigned getHashValue(const Access &A);
853   static bool isEqual(const Access &LHS, const Access &RHS);
854 };
855 
856 /// Helper that allows OffsetAndSize as a key in a DenseMap.
857 template <>
858 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
859     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
860 
861 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
862 /// but the instruction
863 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
864   using Base = DenseMapInfo<Instruction *>;
865   using Access = AAPointerInfo::Access;
866   static inline Access getEmptyKey();
867   static inline Access getTombstoneKey();
868   static unsigned getHashValue(const Access &A);
869   static bool isEqual(const Access &LHS, const Access &RHS);
870 };
871 
872 } // namespace llvm
873 
874 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
875 struct AA::PointerInfo::State : public AbstractState {
876 
877   ~State() {
878     // We do not delete the Accesses objects but need to destroy them still.
879     for (auto &It : AccessBins)
880       It.second->~Accesses();
881   }
882 
883   /// Return the best possible representable state.
884   static State getBestState(const State &SIS) { return State(); }
885 
886   /// Return the worst possible representable state.
887   static State getWorstState(const State &SIS) {
888     State R;
889     R.indicatePessimisticFixpoint();
890     return R;
891   }
892 
893   State() = default;
894   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {
895     SIS.AccessBins.clear();
896   }
897 
898   const State &getAssumed() const { return *this; }
899 
900   /// See AbstractState::isValidState().
901   bool isValidState() const override { return BS.isValidState(); }
902 
903   /// See AbstractState::isAtFixpoint().
904   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
905 
906   /// See AbstractState::indicateOptimisticFixpoint().
907   ChangeStatus indicateOptimisticFixpoint() override {
908     BS.indicateOptimisticFixpoint();
909     return ChangeStatus::UNCHANGED;
910   }
911 
912   /// See AbstractState::indicatePessimisticFixpoint().
913   ChangeStatus indicatePessimisticFixpoint() override {
914     BS.indicatePessimisticFixpoint();
915     return ChangeStatus::CHANGED;
916   }
917 
918   State &operator=(const State &R) {
919     if (this == &R)
920       return *this;
921     BS = R.BS;
922     AccessBins = R.AccessBins;
923     return *this;
924   }
925 
926   State &operator=(State &&R) {
927     if (this == &R)
928       return *this;
929     std::swap(BS, R.BS);
930     std::swap(AccessBins, R.AccessBins);
931     return *this;
932   }
933 
934   bool operator==(const State &R) const {
935     if (BS != R.BS)
936       return false;
937     if (AccessBins.size() != R.AccessBins.size())
938       return false;
939     auto It = begin(), RIt = R.begin(), E = end();
940     while (It != E) {
941       if (It->getFirst() != RIt->getFirst())
942         return false;
943       auto &Accs = It->getSecond();
944       auto &RAccs = RIt->getSecond();
945       if (Accs->size() != RAccs->size())
946         return false;
947       for (const auto &ZipIt : llvm::zip(*Accs, *RAccs))
948         if (std::get<0>(ZipIt) != std::get<1>(ZipIt))
949           return false;
950       ++It;
951       ++RIt;
952     }
953     return true;
954   }
955   bool operator!=(const State &R) const { return !(*this == R); }
956 
957   /// We store accesses in a set with the instruction as key.
958   struct Accesses {
959     SmallVector<AAPointerInfo::Access, 4> Accesses;
960     DenseMap<const Instruction *, unsigned> Map;
961 
962     unsigned size() const { return Accesses.size(); }
963 
964     using vec_iterator = decltype(Accesses)::iterator;
965     vec_iterator begin() { return Accesses.begin(); }
966     vec_iterator end() { return Accesses.end(); }
967 
968     using iterator = decltype(Map)::const_iterator;
969     iterator find(AAPointerInfo::Access &Acc) {
970       return Map.find(Acc.getRemoteInst());
971     }
972     iterator find_end() { return Map.end(); }
973 
974     AAPointerInfo::Access &get(iterator &It) {
975       return Accesses[It->getSecond()];
976     }
977 
978     void insert(AAPointerInfo::Access &Acc) {
979       Map[Acc.getRemoteInst()] = Accesses.size();
980       Accesses.push_back(Acc);
981     }
982   };
983 
984   /// We store all accesses in bins denoted by their offset and size.
985   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses *>;
986 
987   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
988   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
989 
990 protected:
991   /// The bins with all the accesses for the associated pointer.
992   AccessBinsTy AccessBins;
993 
994   /// Add a new access to the state at offset \p Offset and with size \p Size.
995   /// The access is associated with \p I, writes \p Content (if anything), and
996   /// is of kind \p Kind.
997   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
998   ChangeStatus addAccess(Attributor &A, int64_t Offset, int64_t Size,
999                          Instruction &I, Optional<Value *> Content,
1000                          AAPointerInfo::AccessKind Kind, Type *Ty,
1001                          Instruction *RemoteI = nullptr,
1002                          Accesses *BinPtr = nullptr) {
1003     AAPointerInfo::OffsetAndSize Key{Offset, Size};
1004     Accesses *&Bin = BinPtr ? BinPtr : AccessBins[Key];
1005     if (!Bin)
1006       Bin = new (A.Allocator) Accesses;
1007     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1008     // Check if we have an access for this instruction in this bin, if not,
1009     // simply add it.
1010     auto It = Bin->find(Acc);
1011     if (It == Bin->find_end()) {
1012       Bin->insert(Acc);
1013       return ChangeStatus::CHANGED;
1014     }
1015     // If the existing access is the same as then new one, nothing changed.
1016     AAPointerInfo::Access &Current = Bin->get(It);
1017     AAPointerInfo::Access Before = Current;
1018     // The new one will be combined with the existing one.
1019     Current &= Acc;
1020     return Current == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1021   }
1022 
1023   /// See AAPointerInfo::forallInterferingAccesses.
1024   bool forallInterferingAccesses(
1025       AAPointerInfo::OffsetAndSize OAS,
1026       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1027     if (!isValidState())
1028       return false;
1029 
1030     for (auto &It : AccessBins) {
1031       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
1032       if (!OAS.mayOverlap(ItOAS))
1033         continue;
1034       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1035       for (auto &Access : *It.getSecond())
1036         if (!CB(Access, IsExact))
1037           return false;
1038     }
1039     return true;
1040   }
1041 
1042   /// See AAPointerInfo::forallInterferingAccesses.
1043   bool forallInterferingAccesses(
1044       Instruction &I,
1045       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1046     if (!isValidState())
1047       return false;
1048 
1049     // First find the offset and size of I.
1050     AAPointerInfo::OffsetAndSize OAS(-1, -1);
1051     for (auto &It : AccessBins) {
1052       for (auto &Access : *It.getSecond()) {
1053         if (Access.getRemoteInst() == &I) {
1054           OAS = It.getFirst();
1055           break;
1056         }
1057       }
1058       if (OAS.getSize() != -1)
1059         break;
1060     }
1061     // No access for I was found, we are done.
1062     if (OAS.getSize() == -1)
1063       return true;
1064 
1065     // Now that we have an offset and size, find all overlapping ones and use
1066     // the callback on the accesses.
1067     return forallInterferingAccesses(OAS, CB);
1068   }
1069 
1070 private:
1071   /// State to track fixpoint and validity.
1072   BooleanState BS;
1073 };
1074 
1075 namespace {
1076 struct AAPointerInfoImpl
1077     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1078   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1079   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1080 
1081   /// See AbstractAttribute::initialize(...).
1082   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1083 
1084   /// See AbstractAttribute::getAsStr().
1085   const std::string getAsStr() const override {
1086     return std::string("PointerInfo ") +
1087            (isValidState() ? (std::string("#") +
1088                               std::to_string(AccessBins.size()) + " bins")
1089                            : "<invalid>");
1090   }
1091 
1092   /// See AbstractAttribute::manifest(...).
1093   ChangeStatus manifest(Attributor &A) override {
1094     return AAPointerInfo::manifest(A);
1095   }
1096 
1097   bool forallInterferingAccesses(
1098       OffsetAndSize OAS,
1099       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1100       const override {
1101     return State::forallInterferingAccesses(OAS, CB);
1102   }
1103   bool forallInterferingAccesses(
1104       Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
1105       function_ref<bool(const Access &, bool)> UserCB) const override {
1106     SmallPtrSet<const Access *, 8> DominatingWrites;
1107     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
1108 
1109     Function &Scope = *I.getFunction();
1110     const auto &NoSyncAA = A.getAAFor<AANoSync>(
1111         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1112     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1113         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
1114     const bool NoSync = NoSyncAA.isAssumedNoSync();
1115 
1116     // Helper to determine if we need to consider threading, which we cannot
1117     // right now. However, if the function is (assumed) nosync or the thread
1118     // executing all instructions is the main thread only we can ignore
1119     // threading.
1120     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
1121       if (NoSync)
1122         return true;
1123       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
1124         return true;
1125       return false;
1126     };
1127 
1128     // Helper to determine if the access is executed by the same thread as the
1129     // load, for now it is sufficient to avoid any potential threading effects
1130     // as we cannot deal with them anyway.
1131     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
1132       return CanIgnoreThreading(*Acc.getLocalInst());
1133     };
1134 
1135     // TODO: Use inter-procedural reachability and dominance.
1136     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1137         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1138 
1139     const bool FindInterferingWrites = I.mayReadFromMemory();
1140     const bool FindInterferingReads = I.mayWriteToMemory();
1141     const bool UseDominanceReasoning = FindInterferingWrites;
1142     const bool CanUseCFGResoning = CanIgnoreThreading(I);
1143     InformationCache &InfoCache = A.getInfoCache();
1144     const DominatorTree *DT =
1145         NoRecurseAA.isKnownNoRecurse() && UseDominanceReasoning
1146             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1147                   Scope)
1148             : nullptr;
1149 
1150     enum GPUAddressSpace : unsigned {
1151       Generic = 0,
1152       Global = 1,
1153       Shared = 3,
1154       Constant = 4,
1155       Local = 5,
1156     };
1157 
1158     // Helper to check if a value has "kernel lifetime", that is it will not
1159     // outlive a GPU kernel. This is true for shared, constant, and local
1160     // globals on AMD and NVIDIA GPUs.
1161     auto HasKernelLifetime = [&](Value *V, Module &M) {
1162       Triple T(M.getTargetTriple());
1163       if (!(T.isAMDGPU() || T.isNVPTX()))
1164         return false;
1165       switch (V->getType()->getPointerAddressSpace()) {
1166       case GPUAddressSpace::Shared:
1167       case GPUAddressSpace::Constant:
1168       case GPUAddressSpace::Local:
1169         return true;
1170       default:
1171         return false;
1172       };
1173     };
1174 
1175     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1176     // to determine if we should look at reachability from the callee. For
1177     // certain pointers we know the lifetime and we do not have to step into the
1178     // callee to determine reachability as the pointer would be dead in the
1179     // callee. See the conditional initialization below.
1180     std::function<bool(const Function &)> IsLiveInCalleeCB;
1181 
1182     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1183       // If the alloca containing function is not recursive the alloca
1184       // must be dead in the callee.
1185       const Function *AIFn = AI->getFunction();
1186       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1187           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1188       if (NoRecurseAA.isAssumedNoRecurse()) {
1189         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1190       }
1191     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1192       // If the global has kernel lifetime we can stop if we reach a kernel
1193       // as it is "dead" in the (unknown) callees.
1194       if (HasKernelLifetime(GV, *GV->getParent()))
1195         IsLiveInCalleeCB = [](const Function &Fn) {
1196           return !Fn.hasFnAttribute("kernel");
1197         };
1198     }
1199 
1200     auto AccessCB = [&](const Access &Acc, bool Exact) {
1201       if ((!FindInterferingWrites || !Acc.isWrite()) &&
1202           (!FindInterferingReads || !Acc.isRead()))
1203         return true;
1204 
1205       // For now we only filter accesses based on CFG reasoning which does not
1206       // work yet if we have threading effects, or the access is complicated.
1207       if (CanUseCFGResoning) {
1208         if ((!Acc.isWrite() ||
1209              !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1210                                          IsLiveInCalleeCB)) &&
1211             (!Acc.isRead() ||
1212              !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1213                                          IsLiveInCalleeCB)))
1214           return true;
1215         if (DT && Exact && (Acc.getLocalInst()->getFunction() == &Scope) &&
1216             IsSameThreadAsLoad(Acc)) {
1217           if (DT->dominates(Acc.getLocalInst(), &I))
1218             DominatingWrites.insert(&Acc);
1219         }
1220       }
1221 
1222       InterferingAccesses.push_back({&Acc, Exact});
1223       return true;
1224     };
1225     if (!State::forallInterferingAccesses(I, AccessCB))
1226       return false;
1227 
1228     // If we cannot use CFG reasoning we only filter the non-write accesses
1229     // and are done here.
1230     if (!CanUseCFGResoning) {
1231       for (auto &It : InterferingAccesses)
1232         if (!UserCB(*It.first, It.second))
1233           return false;
1234       return true;
1235     }
1236 
1237     // Helper to determine if we can skip a specific write access. This is in
1238     // the worst case quadratic as we are looking for another write that will
1239     // hide the effect of this one.
1240     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1241       if (!IsSameThreadAsLoad(Acc))
1242         return false;
1243       if (!DominatingWrites.count(&Acc))
1244         return false;
1245       for (const Access *DomAcc : DominatingWrites) {
1246         assert(Acc.getLocalInst()->getFunction() ==
1247                    DomAcc->getLocalInst()->getFunction() &&
1248                "Expected dominating writes to be in the same function!");
1249 
1250         if (DomAcc != &Acc &&
1251             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1252           return true;
1253         }
1254       }
1255       return false;
1256     };
1257 
1258     // Run the user callback on all accesses we cannot skip and return if that
1259     // succeeded for all or not.
1260     unsigned NumInterferingAccesses = InterferingAccesses.size();
1261     for (auto &It : InterferingAccesses) {
1262       if (!DT || NumInterferingAccesses > MaxInterferingAccesses ||
1263           !CanSkipAccess(*It.first, It.second)) {
1264         if (!UserCB(*It.first, It.second))
1265           return false;
1266       }
1267     }
1268     return true;
1269   }
1270 
1271   ChangeStatus translateAndAddCalleeState(Attributor &A,
1272                                           const AAPointerInfo &CalleeAA,
1273                                           int64_t CallArgOffset, CallBase &CB) {
1274     using namespace AA::PointerInfo;
1275     if (!CalleeAA.getState().isValidState() || !isValidState())
1276       return indicatePessimisticFixpoint();
1277 
1278     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1279     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1280 
1281     // Combine the accesses bin by bin.
1282     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1283     for (auto &It : CalleeImplAA.getState()) {
1284       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1285       if (CallArgOffset != OffsetAndSize::Unknown)
1286         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1287                             It.first.getSize());
1288       Accesses *Bin = AccessBins[OAS];
1289       for (const AAPointerInfo::Access &RAcc : *It.second) {
1290         if (IsByval && !RAcc.isRead())
1291           continue;
1292         bool UsedAssumedInformation = false;
1293         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1294             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1295         AccessKind AK =
1296             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1297                                                  : AccessKind::AK_READ_WRITE));
1298         Changed =
1299             Changed | addAccess(A, OAS.getOffset(), OAS.getSize(), CB, Content,
1300                                 AK, RAcc.getType(), RAcc.getRemoteInst(), Bin);
1301       }
1302     }
1303     return Changed;
1304   }
1305 
1306   /// Statistic tracking for all AAPointerInfo implementations.
1307   /// See AbstractAttribute::trackStatistics().
1308   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1309 };
1310 
1311 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1312   using AccessKind = AAPointerInfo::AccessKind;
1313   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1314       : AAPointerInfoImpl(IRP, A) {}
1315 
1316   /// See AbstractAttribute::initialize(...).
1317   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1318 
1319   /// Deal with an access and signal if it was handled successfully.
1320   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1321                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1322                     ChangeStatus &Changed, Type *Ty,
1323                     int64_t Size = OffsetAndSize::Unknown) {
1324     using namespace AA::PointerInfo;
1325     // No need to find a size if one is given or the offset is unknown.
1326     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1327         Ty) {
1328       const DataLayout &DL = A.getDataLayout();
1329       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1330       if (!AccessSize.isScalable())
1331         Size = AccessSize.getFixedSize();
1332     }
1333     Changed = Changed | addAccess(A, Offset, Size, I, Content, Kind, Ty);
1334     return true;
1335   };
1336 
1337   /// Helper struct, will support ranges eventually.
1338   struct OffsetInfo {
1339     int64_t Offset = OffsetAndSize::Unknown;
1340 
1341     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1342   };
1343 
1344   /// See AbstractAttribute::updateImpl(...).
1345   ChangeStatus updateImpl(Attributor &A) override {
1346     using namespace AA::PointerInfo;
1347     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1348     Value &AssociatedValue = getAssociatedValue();
1349 
1350     const DataLayout &DL = A.getDataLayout();
1351     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1352     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1353 
1354     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo PtrOI,
1355                                      bool &Follow) {
1356       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1357       UsrOI = PtrOI;
1358       Follow = true;
1359       return true;
1360     };
1361 
1362     const auto *TLI = getAnchorScope()
1363                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1364                                 *getAnchorScope())
1365                           : nullptr;
1366     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1367       Value *CurPtr = U.get();
1368       User *Usr = U.getUser();
1369       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1370                         << *Usr << "\n");
1371       assert(OffsetInfoMap.count(CurPtr) &&
1372              "The current pointer offset should have been seeded!");
1373 
1374       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1375         if (CE->isCast())
1376           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1377         if (CE->isCompare())
1378           return true;
1379         if (!isa<GEPOperator>(CE)) {
1380           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1381                             << "\n");
1382           return false;
1383         }
1384       }
1385       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1386         // Note the order here, the Usr access might change the map, CurPtr is
1387         // already in it though.
1388         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1389         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1390         UsrOI = PtrOI;
1391 
1392         // TODO: Use range information.
1393         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1394             !GEP->hasAllConstantIndices()) {
1395           UsrOI.Offset = OffsetAndSize::Unknown;
1396           Follow = true;
1397           return true;
1398         }
1399 
1400         SmallVector<Value *, 8> Indices;
1401         for (Use &Idx : GEP->indices()) {
1402           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1403             Indices.push_back(CIdx);
1404             continue;
1405           }
1406 
1407           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1408                             << " : " << *Idx << "\n");
1409           return false;
1410         }
1411         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1412                                           GEP->getSourceElementType(), Indices);
1413         Follow = true;
1414         return true;
1415       }
1416       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1417         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1418 
1419       // For PHIs we need to take care of the recurrence explicitly as the value
1420       // might change while we iterate through a loop. For now, we give up if
1421       // the PHI is not invariant.
1422       if (isa<PHINode>(Usr)) {
1423         // Note the order here, the Usr access might change the map, CurPtr is
1424         // already in it though.
1425         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1426         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1427         // Check if the PHI is invariant (so far).
1428         if (UsrOI == PtrOI)
1429           return true;
1430 
1431         // Check if the PHI operand has already an unknown offset as we can't
1432         // improve on that anymore.
1433         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1434           UsrOI = PtrOI;
1435           Follow = true;
1436           return true;
1437         }
1438 
1439         // Check if the PHI operand is not dependent on the PHI itself.
1440         // TODO: This is not great as we look at the pointer type. However, it
1441         // is unclear where the Offset size comes from with typeless pointers.
1442         APInt Offset(
1443             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1444             0);
1445         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1446                                     DL, Offset, /* AllowNonInbounds */ true)) {
1447           if (Offset != PtrOI.Offset) {
1448             LLVM_DEBUG(dbgs()
1449                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1450                        << *CurPtr << " in " << *Usr << "\n");
1451             return false;
1452           }
1453           return HandlePassthroughUser(Usr, PtrOI, Follow);
1454         }
1455 
1456         // TODO: Approximate in case we know the direction of the recurrence.
1457         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1458                           << *CurPtr << " in " << *Usr << "\n");
1459         UsrOI = PtrOI;
1460         UsrOI.Offset = OffsetAndSize::Unknown;
1461         Follow = true;
1462         return true;
1463       }
1464 
1465       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1466         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1467                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1468                             Changed, LoadI->getType());
1469       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1470         if (StoreI->getValueOperand() == CurPtr) {
1471           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1472                             << *StoreI << "\n");
1473           return false;
1474         }
1475         bool UsedAssumedInformation = false;
1476         Optional<Value *> Content = A.getAssumedSimplified(
1477             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1478         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1479                             OffsetInfoMap[CurPtr].Offset, Changed,
1480                             StoreI->getValueOperand()->getType());
1481       }
1482       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1483         if (CB->isLifetimeStartOrEnd())
1484           return true;
1485         if (TLI && isFreeCall(CB, TLI))
1486           return true;
1487         if (CB->isArgOperand(&U)) {
1488           unsigned ArgNo = CB->getArgOperandNo(&U);
1489           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1490               *this, IRPosition::callsite_argument(*CB, ArgNo),
1491               DepClassTy::REQUIRED);
1492           Changed = translateAndAddCalleeState(
1493                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1494                     Changed;
1495           return true;
1496         }
1497         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1498                           << "\n");
1499         // TODO: Allow some call uses
1500         return false;
1501       }
1502 
1503       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1504       return false;
1505     };
1506     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1507       if (OffsetInfoMap.count(NewU))
1508         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1509       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1510       return true;
1511     };
1512     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1513                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1514                            EquivalentUseCB))
1515       return indicatePessimisticFixpoint();
1516 
1517     LLVM_DEBUG({
1518       dbgs() << "Accesses by bin after update:\n";
1519       for (auto &It : AccessBins) {
1520         dbgs() << "[" << It.first.getOffset() << "-"
1521                << It.first.getOffset() + It.first.getSize()
1522                << "] : " << It.getSecond()->size() << "\n";
1523         for (auto &Acc : *It.getSecond()) {
1524           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1525                  << "\n";
1526           if (Acc.getLocalInst() != Acc.getRemoteInst())
1527             dbgs() << "     -->                         "
1528                    << *Acc.getRemoteInst() << "\n";
1529           if (!Acc.isWrittenValueYetUndetermined()) {
1530             if (Acc.getWrittenValue())
1531               dbgs() << "       - c: " << *Acc.getWrittenValue() << "\n";
1532             else
1533               dbgs() << "       - c: <unknown>\n";
1534           }
1535         }
1536       }
1537     });
1538 
1539     return Changed;
1540   }
1541 
1542   /// See AbstractAttribute::trackStatistics()
1543   void trackStatistics() const override {
1544     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1545   }
1546 };
1547 
1548 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1549   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1550       : AAPointerInfoImpl(IRP, A) {}
1551 
1552   /// See AbstractAttribute::updateImpl(...).
1553   ChangeStatus updateImpl(Attributor &A) override {
1554     return indicatePessimisticFixpoint();
1555   }
1556 
1557   /// See AbstractAttribute::trackStatistics()
1558   void trackStatistics() const override {
1559     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1560   }
1561 };
1562 
1563 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1564   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1565       : AAPointerInfoFloating(IRP, A) {}
1566 
1567   /// See AbstractAttribute::initialize(...).
1568   void initialize(Attributor &A) override {
1569     AAPointerInfoFloating::initialize(A);
1570     if (getAnchorScope()->isDeclaration())
1571       indicatePessimisticFixpoint();
1572   }
1573 
1574   /// See AbstractAttribute::trackStatistics()
1575   void trackStatistics() const override {
1576     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1577   }
1578 };
1579 
1580 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1581   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1582       : AAPointerInfoFloating(IRP, A) {}
1583 
1584   /// See AbstractAttribute::updateImpl(...).
1585   ChangeStatus updateImpl(Attributor &A) override {
1586     using namespace AA::PointerInfo;
1587     // We handle memory intrinsics explicitly, at least the first (=
1588     // destination) and second (=source) arguments as we know how they are
1589     // accessed.
1590     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1591       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1592       int64_t LengthVal = OffsetAndSize::Unknown;
1593       if (Length)
1594         LengthVal = Length->getSExtValue();
1595       Value &Ptr = getAssociatedValue();
1596       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1597       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1598       if (ArgNo == 0) {
1599         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1600                      nullptr, LengthVal);
1601       } else if (ArgNo == 1) {
1602         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1603                      nullptr, LengthVal);
1604       } else {
1605         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1606                           << *MI << "\n");
1607         return indicatePessimisticFixpoint();
1608       }
1609       return Changed;
1610     }
1611 
1612     // TODO: Once we have call site specific value information we can provide
1613     //       call site specific liveness information and then it makes
1614     //       sense to specialize attributes for call sites arguments instead of
1615     //       redirecting requests to the callee argument.
1616     Argument *Arg = getAssociatedArgument();
1617     if (!Arg)
1618       return indicatePessimisticFixpoint();
1619     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1620     auto &ArgAA =
1621         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1622     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1623   }
1624 
1625   /// See AbstractAttribute::trackStatistics()
1626   void trackStatistics() const override {
1627     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1628   }
1629 };
1630 
1631 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1632   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1633       : AAPointerInfoFloating(IRP, A) {}
1634 
1635   /// See AbstractAttribute::trackStatistics()
1636   void trackStatistics() const override {
1637     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1638   }
1639 };
1640 } // namespace
1641 
1642 /// -----------------------NoUnwind Function Attribute--------------------------
1643 
1644 namespace {
1645 struct AANoUnwindImpl : AANoUnwind {
1646   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1647 
1648   const std::string getAsStr() const override {
1649     return getAssumed() ? "nounwind" : "may-unwind";
1650   }
1651 
1652   /// See AbstractAttribute::updateImpl(...).
1653   ChangeStatus updateImpl(Attributor &A) override {
1654     auto Opcodes = {
1655         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1656         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1657         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1658 
1659     auto CheckForNoUnwind = [&](Instruction &I) {
1660       if (!I.mayThrow())
1661         return true;
1662 
1663       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1664         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1665             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1666         return NoUnwindAA.isAssumedNoUnwind();
1667       }
1668       return false;
1669     };
1670 
1671     bool UsedAssumedInformation = false;
1672     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1673                                    UsedAssumedInformation))
1674       return indicatePessimisticFixpoint();
1675 
1676     return ChangeStatus::UNCHANGED;
1677   }
1678 };
1679 
1680 struct AANoUnwindFunction final : public AANoUnwindImpl {
1681   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1682       : AANoUnwindImpl(IRP, A) {}
1683 
1684   /// See AbstractAttribute::trackStatistics()
1685   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1686 };
1687 
1688 /// NoUnwind attribute deduction for a call sites.
1689 struct AANoUnwindCallSite final : AANoUnwindImpl {
1690   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1691       : AANoUnwindImpl(IRP, A) {}
1692 
1693   /// See AbstractAttribute::initialize(...).
1694   void initialize(Attributor &A) override {
1695     AANoUnwindImpl::initialize(A);
1696     Function *F = getAssociatedFunction();
1697     if (!F || F->isDeclaration())
1698       indicatePessimisticFixpoint();
1699   }
1700 
1701   /// See AbstractAttribute::updateImpl(...).
1702   ChangeStatus updateImpl(Attributor &A) override {
1703     // TODO: Once we have call site specific value information we can provide
1704     //       call site specific liveness information and then it makes
1705     //       sense to specialize attributes for call sites arguments instead of
1706     //       redirecting requests to the callee argument.
1707     Function *F = getAssociatedFunction();
1708     const IRPosition &FnPos = IRPosition::function(*F);
1709     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1710     return clampStateAndIndicateChange(getState(), FnAA.getState());
1711   }
1712 
1713   /// See AbstractAttribute::trackStatistics()
1714   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1715 };
1716 } // namespace
1717 
1718 /// --------------------- Function Return Values -------------------------------
1719 
1720 namespace {
1721 /// "Attribute" that collects all potential returned values and the return
1722 /// instructions that they arise from.
1723 ///
1724 /// If there is a unique returned value R, the manifest method will:
1725 ///   - mark R with the "returned" attribute, if R is an argument.
1726 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1727 
1728   /// Mapping of values potentially returned by the associated function to the
1729   /// return instructions that might return them.
1730   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1731 
1732   /// State flags
1733   ///
1734   ///{
1735   bool IsFixed = false;
1736   bool IsValidState = true;
1737   ///}
1738 
1739 public:
1740   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1741       : AAReturnedValues(IRP, A) {}
1742 
1743   /// See AbstractAttribute::initialize(...).
1744   void initialize(Attributor &A) override {
1745     // Reset the state.
1746     IsFixed = false;
1747     IsValidState = true;
1748     ReturnedValues.clear();
1749 
1750     Function *F = getAssociatedFunction();
1751     if (!F || F->isDeclaration()) {
1752       indicatePessimisticFixpoint();
1753       return;
1754     }
1755     assert(!F->getReturnType()->isVoidTy() &&
1756            "Did not expect a void return type!");
1757 
1758     // The map from instruction opcodes to those instructions in the function.
1759     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1760 
1761     // Look through all arguments, if one is marked as returned we are done.
1762     for (Argument &Arg : F->args()) {
1763       if (Arg.hasReturnedAttr()) {
1764         auto &ReturnInstSet = ReturnedValues[&Arg];
1765         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1766           for (Instruction *RI : *Insts)
1767             ReturnInstSet.insert(cast<ReturnInst>(RI));
1768 
1769         indicateOptimisticFixpoint();
1770         return;
1771       }
1772     }
1773 
1774     if (!A.isFunctionIPOAmendable(*F))
1775       indicatePessimisticFixpoint();
1776   }
1777 
1778   /// See AbstractAttribute::manifest(...).
1779   ChangeStatus manifest(Attributor &A) override;
1780 
1781   /// See AbstractAttribute::getState(...).
1782   AbstractState &getState() override { return *this; }
1783 
1784   /// See AbstractAttribute::getState(...).
1785   const AbstractState &getState() const override { return *this; }
1786 
1787   /// See AbstractAttribute::updateImpl(Attributor &A).
1788   ChangeStatus updateImpl(Attributor &A) override;
1789 
1790   llvm::iterator_range<iterator> returned_values() override {
1791     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1792   }
1793 
1794   llvm::iterator_range<const_iterator> returned_values() const override {
1795     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1796   }
1797 
1798   /// Return the number of potential return values, -1 if unknown.
1799   size_t getNumReturnValues() const override {
1800     return isValidState() ? ReturnedValues.size() : -1;
1801   }
1802 
1803   /// Return an assumed unique return value if a single candidate is found. If
1804   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1805   /// Optional::NoneType.
1806   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1807 
1808   /// See AbstractState::checkForAllReturnedValues(...).
1809   bool checkForAllReturnedValuesAndReturnInsts(
1810       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1811       const override;
1812 
1813   /// Pretty print the attribute similar to the IR representation.
1814   const std::string getAsStr() const override;
1815 
1816   /// See AbstractState::isAtFixpoint().
1817   bool isAtFixpoint() const override { return IsFixed; }
1818 
1819   /// See AbstractState::isValidState().
1820   bool isValidState() const override { return IsValidState; }
1821 
1822   /// See AbstractState::indicateOptimisticFixpoint(...).
1823   ChangeStatus indicateOptimisticFixpoint() override {
1824     IsFixed = true;
1825     return ChangeStatus::UNCHANGED;
1826   }
1827 
1828   ChangeStatus indicatePessimisticFixpoint() override {
1829     IsFixed = true;
1830     IsValidState = false;
1831     return ChangeStatus::CHANGED;
1832   }
1833 };
1834 
1835 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1836   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1837 
1838   // Bookkeeping.
1839   assert(isValidState());
1840   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1841                   "Number of function with known return values");
1842 
1843   // Check if we have an assumed unique return value that we could manifest.
1844   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1845 
1846   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1847     return Changed;
1848 
1849   // Bookkeeping.
1850   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1851                   "Number of function with unique return");
1852   // If the assumed unique return value is an argument, annotate it.
1853   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1854     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1855             getAssociatedFunction()->getReturnType())) {
1856       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1857       Changed = IRAttribute::manifest(A);
1858     }
1859   }
1860   return Changed;
1861 }
1862 
1863 const std::string AAReturnedValuesImpl::getAsStr() const {
1864   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1865          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1866 }
1867 
1868 Optional<Value *>
1869 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1870   // If checkForAllReturnedValues provides a unique value, ignoring potential
1871   // undef values that can also be present, it is assumed to be the actual
1872   // return value and forwarded to the caller of this method. If there are
1873   // multiple, a nullptr is returned indicating there cannot be a unique
1874   // returned value.
1875   Optional<Value *> UniqueRV;
1876   Type *Ty = getAssociatedFunction()->getReturnType();
1877 
1878   auto Pred = [&](Value &RV) -> bool {
1879     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1880     return UniqueRV != Optional<Value *>(nullptr);
1881   };
1882 
1883   if (!A.checkForAllReturnedValues(Pred, *this))
1884     UniqueRV = nullptr;
1885 
1886   return UniqueRV;
1887 }
1888 
1889 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1890     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1891     const {
1892   if (!isValidState())
1893     return false;
1894 
1895   // Check all returned values but ignore call sites as long as we have not
1896   // encountered an overdefined one during an update.
1897   for (auto &It : ReturnedValues) {
1898     Value *RV = It.first;
1899     if (!Pred(*RV, It.second))
1900       return false;
1901   }
1902 
1903   return true;
1904 }
1905 
1906 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1907   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1908 
1909   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1910                            bool) -> bool {
1911     assert(AA::isValidInScope(V, Ret.getFunction()) &&
1912            "Assumed returned value should be valid in function scope!");
1913     if (ReturnedValues[&V].insert(&Ret))
1914       Changed = ChangeStatus::CHANGED;
1915     return true;
1916   };
1917 
1918   bool UsedAssumedInformation = false;
1919   auto ReturnInstCB = [&](Instruction &I) {
1920     ReturnInst &Ret = cast<ReturnInst>(I);
1921     return genericValueTraversal<ReturnInst>(
1922         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1923         &I, UsedAssumedInformation, /* UseValueSimplify */ true,
1924         /* MaxValues */ 16,
1925         /* StripCB */ nullptr, /* Intraprocedural */ true);
1926   };
1927 
1928   // Discover returned values from all live returned instructions in the
1929   // associated function.
1930   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1931                                  UsedAssumedInformation))
1932     return indicatePessimisticFixpoint();
1933   return Changed;
1934 }
1935 
1936 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1937   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1938       : AAReturnedValuesImpl(IRP, A) {}
1939 
1940   /// See AbstractAttribute::trackStatistics()
1941   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1942 };
1943 
1944 /// Returned values information for a call sites.
1945 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1946   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1947       : AAReturnedValuesImpl(IRP, A) {}
1948 
1949   /// See AbstractAttribute::initialize(...).
1950   void initialize(Attributor &A) override {
1951     // TODO: Once we have call site specific value information we can provide
1952     //       call site specific liveness information and then it makes
1953     //       sense to specialize attributes for call sites instead of
1954     //       redirecting requests to the callee.
1955     llvm_unreachable("Abstract attributes for returned values are not "
1956                      "supported for call sites yet!");
1957   }
1958 
1959   /// See AbstractAttribute::updateImpl(...).
1960   ChangeStatus updateImpl(Attributor &A) override {
1961     return indicatePessimisticFixpoint();
1962   }
1963 
1964   /// See AbstractAttribute::trackStatistics()
1965   void trackStatistics() const override {}
1966 };
1967 } // namespace
1968 
1969 /// ------------------------ NoSync Function Attribute -------------------------
1970 
1971 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1972   if (!I->isAtomic())
1973     return false;
1974 
1975   if (auto *FI = dyn_cast<FenceInst>(I))
1976     // All legal orderings for fence are stronger than monotonic.
1977     return FI->getSyncScopeID() != SyncScope::SingleThread;
1978   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1979     // Unordered is not a legal ordering for cmpxchg.
1980     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1981             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1982   }
1983 
1984   AtomicOrdering Ordering;
1985   switch (I->getOpcode()) {
1986   case Instruction::AtomicRMW:
1987     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1988     break;
1989   case Instruction::Store:
1990     Ordering = cast<StoreInst>(I)->getOrdering();
1991     break;
1992   case Instruction::Load:
1993     Ordering = cast<LoadInst>(I)->getOrdering();
1994     break;
1995   default:
1996     llvm_unreachable(
1997         "New atomic operations need to be known in the attributor.");
1998   }
1999 
2000   return (Ordering != AtomicOrdering::Unordered &&
2001           Ordering != AtomicOrdering::Monotonic);
2002 }
2003 
2004 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
2005 /// which would be nosync except that they have a volatile flag.  All other
2006 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
2007 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
2008   if (auto *MI = dyn_cast<MemIntrinsic>(I))
2009     return !MI->isVolatile();
2010   return false;
2011 }
2012 
2013 namespace {
2014 struct AANoSyncImpl : AANoSync {
2015   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
2016 
2017   const std::string getAsStr() const override {
2018     return getAssumed() ? "nosync" : "may-sync";
2019   }
2020 
2021   /// See AbstractAttribute::updateImpl(...).
2022   ChangeStatus updateImpl(Attributor &A) override;
2023 };
2024 
2025 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
2026 
2027   auto CheckRWInstForNoSync = [&](Instruction &I) {
2028     return AA::isNoSyncInst(A, I, *this);
2029   };
2030 
2031   auto CheckForNoSync = [&](Instruction &I) {
2032     // At this point we handled all read/write effects and they are all
2033     // nosync, so they can be skipped.
2034     if (I.mayReadOrWriteMemory())
2035       return true;
2036 
2037     // non-convergent and readnone imply nosync.
2038     return !cast<CallBase>(I).isConvergent();
2039   };
2040 
2041   bool UsedAssumedInformation = false;
2042   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2043                                           UsedAssumedInformation) ||
2044       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2045                                          UsedAssumedInformation))
2046     return indicatePessimisticFixpoint();
2047 
2048   return ChangeStatus::UNCHANGED;
2049 }
2050 
2051 struct AANoSyncFunction final : public AANoSyncImpl {
2052   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2053       : AANoSyncImpl(IRP, A) {}
2054 
2055   /// See AbstractAttribute::trackStatistics()
2056   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2057 };
2058 
2059 /// NoSync attribute deduction for a call sites.
2060 struct AANoSyncCallSite final : AANoSyncImpl {
2061   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2062       : AANoSyncImpl(IRP, A) {}
2063 
2064   /// See AbstractAttribute::initialize(...).
2065   void initialize(Attributor &A) override {
2066     AANoSyncImpl::initialize(A);
2067     Function *F = getAssociatedFunction();
2068     if (!F || F->isDeclaration())
2069       indicatePessimisticFixpoint();
2070   }
2071 
2072   /// See AbstractAttribute::updateImpl(...).
2073   ChangeStatus updateImpl(Attributor &A) override {
2074     // TODO: Once we have call site specific value information we can provide
2075     //       call site specific liveness information and then it makes
2076     //       sense to specialize attributes for call sites arguments instead of
2077     //       redirecting requests to the callee argument.
2078     Function *F = getAssociatedFunction();
2079     const IRPosition &FnPos = IRPosition::function(*F);
2080     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
2081     return clampStateAndIndicateChange(getState(), FnAA.getState());
2082   }
2083 
2084   /// See AbstractAttribute::trackStatistics()
2085   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2086 };
2087 } // namespace
2088 
2089 /// ------------------------ No-Free Attributes ----------------------------
2090 
2091 namespace {
2092 struct AANoFreeImpl : public AANoFree {
2093   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2094 
2095   /// See AbstractAttribute::updateImpl(...).
2096   ChangeStatus updateImpl(Attributor &A) override {
2097     auto CheckForNoFree = [&](Instruction &I) {
2098       const auto &CB = cast<CallBase>(I);
2099       if (CB.hasFnAttr(Attribute::NoFree))
2100         return true;
2101 
2102       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2103           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2104       return NoFreeAA.isAssumedNoFree();
2105     };
2106 
2107     bool UsedAssumedInformation = false;
2108     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2109                                            UsedAssumedInformation))
2110       return indicatePessimisticFixpoint();
2111     return ChangeStatus::UNCHANGED;
2112   }
2113 
2114   /// See AbstractAttribute::getAsStr().
2115   const std::string getAsStr() const override {
2116     return getAssumed() ? "nofree" : "may-free";
2117   }
2118 };
2119 
2120 struct AANoFreeFunction final : public AANoFreeImpl {
2121   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2122       : AANoFreeImpl(IRP, A) {}
2123 
2124   /// See AbstractAttribute::trackStatistics()
2125   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2126 };
2127 
2128 /// NoFree attribute deduction for a call sites.
2129 struct AANoFreeCallSite final : AANoFreeImpl {
2130   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2131       : AANoFreeImpl(IRP, A) {}
2132 
2133   /// See AbstractAttribute::initialize(...).
2134   void initialize(Attributor &A) override {
2135     AANoFreeImpl::initialize(A);
2136     Function *F = getAssociatedFunction();
2137     if (!F || F->isDeclaration())
2138       indicatePessimisticFixpoint();
2139   }
2140 
2141   /// See AbstractAttribute::updateImpl(...).
2142   ChangeStatus updateImpl(Attributor &A) override {
2143     // TODO: Once we have call site specific value information we can provide
2144     //       call site specific liveness information and then it makes
2145     //       sense to specialize attributes for call sites arguments instead of
2146     //       redirecting requests to the callee argument.
2147     Function *F = getAssociatedFunction();
2148     const IRPosition &FnPos = IRPosition::function(*F);
2149     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2150     return clampStateAndIndicateChange(getState(), FnAA.getState());
2151   }
2152 
2153   /// See AbstractAttribute::trackStatistics()
2154   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2155 };
2156 
2157 /// NoFree attribute for floating values.
2158 struct AANoFreeFloating : AANoFreeImpl {
2159   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2160       : AANoFreeImpl(IRP, A) {}
2161 
2162   /// See AbstractAttribute::trackStatistics()
2163   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2164 
2165   /// See Abstract Attribute::updateImpl(...).
2166   ChangeStatus updateImpl(Attributor &A) override {
2167     const IRPosition &IRP = getIRPosition();
2168 
2169     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2170         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2171     if (NoFreeAA.isAssumedNoFree())
2172       return ChangeStatus::UNCHANGED;
2173 
2174     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2175     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2176       Instruction *UserI = cast<Instruction>(U.getUser());
2177       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2178         if (CB->isBundleOperand(&U))
2179           return false;
2180         if (!CB->isArgOperand(&U))
2181           return true;
2182         unsigned ArgNo = CB->getArgOperandNo(&U);
2183 
2184         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2185             *this, IRPosition::callsite_argument(*CB, ArgNo),
2186             DepClassTy::REQUIRED);
2187         return NoFreeArg.isAssumedNoFree();
2188       }
2189 
2190       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2191           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2192         Follow = true;
2193         return true;
2194       }
2195       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2196           isa<ReturnInst>(UserI))
2197         return true;
2198 
2199       // Unknown user.
2200       return false;
2201     };
2202     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2203       return indicatePessimisticFixpoint();
2204 
2205     return ChangeStatus::UNCHANGED;
2206   }
2207 };
2208 
2209 /// NoFree attribute for a call site argument.
2210 struct AANoFreeArgument final : AANoFreeFloating {
2211   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2212       : AANoFreeFloating(IRP, A) {}
2213 
2214   /// See AbstractAttribute::trackStatistics()
2215   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2216 };
2217 
2218 /// NoFree attribute for call site arguments.
2219 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2220   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2221       : AANoFreeFloating(IRP, A) {}
2222 
2223   /// See AbstractAttribute::updateImpl(...).
2224   ChangeStatus updateImpl(Attributor &A) override {
2225     // TODO: Once we have call site specific value information we can provide
2226     //       call site specific liveness information and then it makes
2227     //       sense to specialize attributes for call sites arguments instead of
2228     //       redirecting requests to the callee argument.
2229     Argument *Arg = getAssociatedArgument();
2230     if (!Arg)
2231       return indicatePessimisticFixpoint();
2232     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2233     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2234     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2235   }
2236 
2237   /// See AbstractAttribute::trackStatistics()
2238   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2239 };
2240 
2241 /// NoFree attribute for function return value.
2242 struct AANoFreeReturned final : AANoFreeFloating {
2243   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2244       : AANoFreeFloating(IRP, A) {
2245     llvm_unreachable("NoFree is not applicable to function returns!");
2246   }
2247 
2248   /// See AbstractAttribute::initialize(...).
2249   void initialize(Attributor &A) override {
2250     llvm_unreachable("NoFree is not applicable to function returns!");
2251   }
2252 
2253   /// See AbstractAttribute::updateImpl(...).
2254   ChangeStatus updateImpl(Attributor &A) override {
2255     llvm_unreachable("NoFree is not applicable to function returns!");
2256   }
2257 
2258   /// See AbstractAttribute::trackStatistics()
2259   void trackStatistics() const override {}
2260 };
2261 
2262 /// NoFree attribute deduction for a call site return value.
2263 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2264   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2265       : AANoFreeFloating(IRP, A) {}
2266 
2267   ChangeStatus manifest(Attributor &A) override {
2268     return ChangeStatus::UNCHANGED;
2269   }
2270   /// See AbstractAttribute::trackStatistics()
2271   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2272 };
2273 } // namespace
2274 
2275 /// ------------------------ NonNull Argument Attribute ------------------------
2276 namespace {
2277 static int64_t getKnownNonNullAndDerefBytesForUse(
2278     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2279     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2280   TrackUse = false;
2281 
2282   const Value *UseV = U->get();
2283   if (!UseV->getType()->isPointerTy())
2284     return 0;
2285 
2286   // We need to follow common pointer manipulation uses to the accesses they
2287   // feed into. We can try to be smart to avoid looking through things we do not
2288   // like for now, e.g., non-inbounds GEPs.
2289   if (isa<CastInst>(I)) {
2290     TrackUse = true;
2291     return 0;
2292   }
2293 
2294   if (isa<GetElementPtrInst>(I)) {
2295     TrackUse = true;
2296     return 0;
2297   }
2298 
2299   Type *PtrTy = UseV->getType();
2300   const Function *F = I->getFunction();
2301   bool NullPointerIsDefined =
2302       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2303   const DataLayout &DL = A.getInfoCache().getDL();
2304   if (const auto *CB = dyn_cast<CallBase>(I)) {
2305     if (CB->isBundleOperand(U)) {
2306       if (RetainedKnowledge RK = getKnowledgeFromUse(
2307               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2308         IsNonNull |=
2309             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2310         return RK.ArgValue;
2311       }
2312       return 0;
2313     }
2314 
2315     if (CB->isCallee(U)) {
2316       IsNonNull |= !NullPointerIsDefined;
2317       return 0;
2318     }
2319 
2320     unsigned ArgNo = CB->getArgOperandNo(U);
2321     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2322     // As long as we only use known information there is no need to track
2323     // dependences here.
2324     auto &DerefAA =
2325         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2326     IsNonNull |= DerefAA.isKnownNonNull();
2327     return DerefAA.getKnownDereferenceableBytes();
2328   }
2329 
2330   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2331   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2332     return 0;
2333 
2334   int64_t Offset;
2335   const Value *Base =
2336       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2337   if (Base && Base == &AssociatedValue) {
2338     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2339     IsNonNull |= !NullPointerIsDefined;
2340     return std::max(int64_t(0), DerefBytes);
2341   }
2342 
2343   /// Corner case when an offset is 0.
2344   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2345                                           /*AllowNonInbounds*/ true);
2346   if (Base && Base == &AssociatedValue && Offset == 0) {
2347     int64_t DerefBytes = Loc->Size.getValue();
2348     IsNonNull |= !NullPointerIsDefined;
2349     return std::max(int64_t(0), DerefBytes);
2350   }
2351 
2352   return 0;
2353 }
2354 
2355 struct AANonNullImpl : AANonNull {
2356   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2357       : AANonNull(IRP, A),
2358         NullIsDefined(NullPointerIsDefined(
2359             getAnchorScope(),
2360             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2361 
2362   /// See AbstractAttribute::initialize(...).
2363   void initialize(Attributor &A) override {
2364     Value &V = getAssociatedValue();
2365     if (!NullIsDefined &&
2366         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2367                 /* IgnoreSubsumingPositions */ false, &A)) {
2368       indicateOptimisticFixpoint();
2369       return;
2370     }
2371 
2372     if (isa<ConstantPointerNull>(V)) {
2373       indicatePessimisticFixpoint();
2374       return;
2375     }
2376 
2377     AANonNull::initialize(A);
2378 
2379     bool CanBeNull, CanBeFreed;
2380     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2381                                          CanBeFreed)) {
2382       if (!CanBeNull) {
2383         indicateOptimisticFixpoint();
2384         return;
2385       }
2386     }
2387 
2388     if (isa<GlobalValue>(&getAssociatedValue())) {
2389       indicatePessimisticFixpoint();
2390       return;
2391     }
2392 
2393     if (Instruction *CtxI = getCtxI())
2394       followUsesInMBEC(*this, A, getState(), *CtxI);
2395   }
2396 
2397   /// See followUsesInMBEC
2398   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2399                        AANonNull::StateType &State) {
2400     bool IsNonNull = false;
2401     bool TrackUse = false;
2402     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2403                                        IsNonNull, TrackUse);
2404     State.setKnown(IsNonNull);
2405     return TrackUse;
2406   }
2407 
2408   /// See AbstractAttribute::getAsStr().
2409   const std::string getAsStr() const override {
2410     return getAssumed() ? "nonnull" : "may-null";
2411   }
2412 
2413   /// Flag to determine if the underlying value can be null and still allow
2414   /// valid accesses.
2415   const bool NullIsDefined;
2416 };
2417 
2418 /// NonNull attribute for a floating value.
2419 struct AANonNullFloating : public AANonNullImpl {
2420   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2421       : AANonNullImpl(IRP, A) {}
2422 
2423   /// See AbstractAttribute::updateImpl(...).
2424   ChangeStatus updateImpl(Attributor &A) override {
2425     const DataLayout &DL = A.getDataLayout();
2426 
2427     DominatorTree *DT = nullptr;
2428     AssumptionCache *AC = nullptr;
2429     InformationCache &InfoCache = A.getInfoCache();
2430     if (const Function *Fn = getAnchorScope()) {
2431       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2432       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2433     }
2434 
2435     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2436                             AANonNull::StateType &T, bool Stripped) -> bool {
2437       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2438                                              DepClassTy::REQUIRED);
2439       if (!Stripped && this == &AA) {
2440         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2441           T.indicatePessimisticFixpoint();
2442       } else {
2443         // Use abstract attribute information.
2444         const AANonNull::StateType &NS = AA.getState();
2445         T ^= NS;
2446       }
2447       return T.isValidState();
2448     };
2449 
2450     StateType T;
2451     bool UsedAssumedInformation = false;
2452     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2453                                           VisitValueCB, getCtxI(),
2454                                           UsedAssumedInformation))
2455       return indicatePessimisticFixpoint();
2456 
2457     return clampStateAndIndicateChange(getState(), T);
2458   }
2459 
2460   /// See AbstractAttribute::trackStatistics()
2461   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2462 };
2463 
2464 /// NonNull attribute for function return value.
2465 struct AANonNullReturned final
2466     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2467   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2468       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2469 
2470   /// See AbstractAttribute::getAsStr().
2471   const std::string getAsStr() const override {
2472     return getAssumed() ? "nonnull" : "may-null";
2473   }
2474 
2475   /// See AbstractAttribute::trackStatistics()
2476   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2477 };
2478 
2479 /// NonNull attribute for function argument.
2480 struct AANonNullArgument final
2481     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2482   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2483       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2484 
2485   /// See AbstractAttribute::trackStatistics()
2486   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2487 };
2488 
2489 struct AANonNullCallSiteArgument final : AANonNullFloating {
2490   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2491       : AANonNullFloating(IRP, A) {}
2492 
2493   /// See AbstractAttribute::trackStatistics()
2494   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2495 };
2496 
2497 /// NonNull attribute for a call site return position.
2498 struct AANonNullCallSiteReturned final
2499     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2500   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2501       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2502 
2503   /// See AbstractAttribute::trackStatistics()
2504   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2505 };
2506 } // namespace
2507 
2508 /// ------------------------ No-Recurse Attributes ----------------------------
2509 
2510 namespace {
2511 struct AANoRecurseImpl : public AANoRecurse {
2512   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2513 
2514   /// See AbstractAttribute::getAsStr()
2515   const std::string getAsStr() const override {
2516     return getAssumed() ? "norecurse" : "may-recurse";
2517   }
2518 };
2519 
2520 struct AANoRecurseFunction final : AANoRecurseImpl {
2521   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2522       : AANoRecurseImpl(IRP, A) {}
2523 
2524   /// See AbstractAttribute::updateImpl(...).
2525   ChangeStatus updateImpl(Attributor &A) override {
2526 
2527     // If all live call sites are known to be no-recurse, we are as well.
2528     auto CallSitePred = [&](AbstractCallSite ACS) {
2529       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2530           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2531           DepClassTy::NONE);
2532       return NoRecurseAA.isKnownNoRecurse();
2533     };
2534     bool UsedAssumedInformation = false;
2535     if (A.checkForAllCallSites(CallSitePred, *this, true,
2536                                UsedAssumedInformation)) {
2537       // If we know all call sites and all are known no-recurse, we are done.
2538       // If all known call sites, which might not be all that exist, are known
2539       // to be no-recurse, we are not done but we can continue to assume
2540       // no-recurse. If one of the call sites we have not visited will become
2541       // live, another update is triggered.
2542       if (!UsedAssumedInformation)
2543         indicateOptimisticFixpoint();
2544       return ChangeStatus::UNCHANGED;
2545     }
2546 
2547     const AAFunctionReachability &EdgeReachability =
2548         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2549                                            DepClassTy::REQUIRED);
2550     if (EdgeReachability.canReach(A, *getAnchorScope()))
2551       return indicatePessimisticFixpoint();
2552     return ChangeStatus::UNCHANGED;
2553   }
2554 
2555   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2556 };
2557 
2558 /// NoRecurse attribute deduction for a call sites.
2559 struct AANoRecurseCallSite final : AANoRecurseImpl {
2560   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2561       : AANoRecurseImpl(IRP, A) {}
2562 
2563   /// See AbstractAttribute::initialize(...).
2564   void initialize(Attributor &A) override {
2565     AANoRecurseImpl::initialize(A);
2566     Function *F = getAssociatedFunction();
2567     if (!F || F->isDeclaration())
2568       indicatePessimisticFixpoint();
2569   }
2570 
2571   /// See AbstractAttribute::updateImpl(...).
2572   ChangeStatus updateImpl(Attributor &A) override {
2573     // TODO: Once we have call site specific value information we can provide
2574     //       call site specific liveness information and then it makes
2575     //       sense to specialize attributes for call sites arguments instead of
2576     //       redirecting requests to the callee argument.
2577     Function *F = getAssociatedFunction();
2578     const IRPosition &FnPos = IRPosition::function(*F);
2579     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2580     return clampStateAndIndicateChange(getState(), FnAA.getState());
2581   }
2582 
2583   /// See AbstractAttribute::trackStatistics()
2584   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2585 };
2586 } // namespace
2587 
2588 /// -------------------- Undefined-Behavior Attributes ------------------------
2589 
2590 namespace {
2591 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2592   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2593       : AAUndefinedBehavior(IRP, A) {}
2594 
2595   /// See AbstractAttribute::updateImpl(...).
2596   // through a pointer (i.e. also branches etc.)
2597   ChangeStatus updateImpl(Attributor &A) override {
2598     const size_t UBPrevSize = KnownUBInsts.size();
2599     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2600 
2601     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2602       // Lang ref now states volatile store is not UB, let's skip them.
2603       if (I.isVolatile() && I.mayWriteToMemory())
2604         return true;
2605 
2606       // Skip instructions that are already saved.
2607       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2608         return true;
2609 
2610       // If we reach here, we know we have an instruction
2611       // that accesses memory through a pointer operand,
2612       // for which getPointerOperand() should give it to us.
2613       Value *PtrOp =
2614           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2615       assert(PtrOp &&
2616              "Expected pointer operand of memory accessing instruction");
2617 
2618       // Either we stopped and the appropriate action was taken,
2619       // or we got back a simplified value to continue.
2620       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2621       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2622         return true;
2623       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2624 
2625       // A memory access through a pointer is considered UB
2626       // only if the pointer has constant null value.
2627       // TODO: Expand it to not only check constant values.
2628       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2629         AssumedNoUBInsts.insert(&I);
2630         return true;
2631       }
2632       const Type *PtrTy = PtrOpVal->getType();
2633 
2634       // Because we only consider instructions inside functions,
2635       // assume that a parent function exists.
2636       const Function *F = I.getFunction();
2637 
2638       // A memory access using constant null pointer is only considered UB
2639       // if null pointer is _not_ defined for the target platform.
2640       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2641         AssumedNoUBInsts.insert(&I);
2642       else
2643         KnownUBInsts.insert(&I);
2644       return true;
2645     };
2646 
2647     auto InspectBrInstForUB = [&](Instruction &I) {
2648       // A conditional branch instruction is considered UB if it has `undef`
2649       // condition.
2650 
2651       // Skip instructions that are already saved.
2652       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2653         return true;
2654 
2655       // We know we have a branch instruction.
2656       auto *BrInst = cast<BranchInst>(&I);
2657 
2658       // Unconditional branches are never considered UB.
2659       if (BrInst->isUnconditional())
2660         return true;
2661 
2662       // Either we stopped and the appropriate action was taken,
2663       // or we got back a simplified value to continue.
2664       Optional<Value *> SimplifiedCond =
2665           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2666       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2667         return true;
2668       AssumedNoUBInsts.insert(&I);
2669       return true;
2670     };
2671 
2672     auto InspectCallSiteForUB = [&](Instruction &I) {
2673       // Check whether a callsite always cause UB or not
2674 
2675       // Skip instructions that are already saved.
2676       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2677         return true;
2678 
2679       // Check nonnull and noundef argument attribute violation for each
2680       // callsite.
2681       CallBase &CB = cast<CallBase>(I);
2682       Function *Callee = CB.getCalledFunction();
2683       if (!Callee)
2684         return true;
2685       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2686         // If current argument is known to be simplified to null pointer and the
2687         // corresponding argument position is known to have nonnull attribute,
2688         // the argument is poison. Furthermore, if the argument is poison and
2689         // the position is known to have noundef attriubte, this callsite is
2690         // considered UB.
2691         if (idx >= Callee->arg_size())
2692           break;
2693         Value *ArgVal = CB.getArgOperand(idx);
2694         if (!ArgVal)
2695           continue;
2696         // Here, we handle three cases.
2697         //   (1) Not having a value means it is dead. (we can replace the value
2698         //       with undef)
2699         //   (2) Simplified to undef. The argument violate noundef attriubte.
2700         //   (3) Simplified to null pointer where known to be nonnull.
2701         //       The argument is a poison value and violate noundef attribute.
2702         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2703         auto &NoUndefAA =
2704             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2705         if (!NoUndefAA.isKnownNoUndef())
2706           continue;
2707         bool UsedAssumedInformation = false;
2708         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2709             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2710         if (UsedAssumedInformation)
2711           continue;
2712         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2713           return true;
2714         if (!SimplifiedVal.hasValue() ||
2715             isa<UndefValue>(*SimplifiedVal.getValue())) {
2716           KnownUBInsts.insert(&I);
2717           continue;
2718         }
2719         if (!ArgVal->getType()->isPointerTy() ||
2720             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2721           continue;
2722         auto &NonNullAA =
2723             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2724         if (NonNullAA.isKnownNonNull())
2725           KnownUBInsts.insert(&I);
2726       }
2727       return true;
2728     };
2729 
2730     auto InspectReturnInstForUB = [&](Instruction &I) {
2731       auto &RI = cast<ReturnInst>(I);
2732       // Either we stopped and the appropriate action was taken,
2733       // or we got back a simplified return value to continue.
2734       Optional<Value *> SimplifiedRetValue =
2735           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2736       if (!SimplifiedRetValue.hasValue() || !SimplifiedRetValue.getValue())
2737         return true;
2738 
2739       // Check if a return instruction always cause UB or not
2740       // Note: It is guaranteed that the returned position of the anchor
2741       //       scope has noundef attribute when this is called.
2742       //       We also ensure the return position is not "assumed dead"
2743       //       because the returned value was then potentially simplified to
2744       //       `undef` in AAReturnedValues without removing the `noundef`
2745       //       attribute yet.
2746 
2747       // When the returned position has noundef attriubte, UB occurs in the
2748       // following cases.
2749       //   (1) Returned value is known to be undef.
2750       //   (2) The value is known to be a null pointer and the returned
2751       //       position has nonnull attribute (because the returned value is
2752       //       poison).
2753       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2754         auto &NonNullAA = A.getAAFor<AANonNull>(
2755             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2756         if (NonNullAA.isKnownNonNull())
2757           KnownUBInsts.insert(&I);
2758       }
2759 
2760       return true;
2761     };
2762 
2763     bool UsedAssumedInformation = false;
2764     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2765                               {Instruction::Load, Instruction::Store,
2766                                Instruction::AtomicCmpXchg,
2767                                Instruction::AtomicRMW},
2768                               UsedAssumedInformation,
2769                               /* CheckBBLivenessOnly */ true);
2770     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2771                               UsedAssumedInformation,
2772                               /* CheckBBLivenessOnly */ true);
2773     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2774                                       UsedAssumedInformation);
2775 
2776     // If the returned position of the anchor scope has noundef attriubte, check
2777     // all returned instructions.
2778     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2779       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2780       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2781         auto &RetPosNoUndefAA =
2782             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2783         if (RetPosNoUndefAA.isKnownNoUndef())
2784           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2785                                     {Instruction::Ret}, UsedAssumedInformation,
2786                                     /* CheckBBLivenessOnly */ true);
2787       }
2788     }
2789 
2790     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2791         UBPrevSize != KnownUBInsts.size())
2792       return ChangeStatus::CHANGED;
2793     return ChangeStatus::UNCHANGED;
2794   }
2795 
2796   bool isKnownToCauseUB(Instruction *I) const override {
2797     return KnownUBInsts.count(I);
2798   }
2799 
2800   bool isAssumedToCauseUB(Instruction *I) const override {
2801     // In simple words, if an instruction is not in the assumed to _not_
2802     // cause UB, then it is assumed UB (that includes those
2803     // in the KnownUBInsts set). The rest is boilerplate
2804     // is to ensure that it is one of the instructions we test
2805     // for UB.
2806 
2807     switch (I->getOpcode()) {
2808     case Instruction::Load:
2809     case Instruction::Store:
2810     case Instruction::AtomicCmpXchg:
2811     case Instruction::AtomicRMW:
2812       return !AssumedNoUBInsts.count(I);
2813     case Instruction::Br: {
2814       auto *BrInst = cast<BranchInst>(I);
2815       if (BrInst->isUnconditional())
2816         return false;
2817       return !AssumedNoUBInsts.count(I);
2818     } break;
2819     default:
2820       return false;
2821     }
2822     return false;
2823   }
2824 
2825   ChangeStatus manifest(Attributor &A) override {
2826     if (KnownUBInsts.empty())
2827       return ChangeStatus::UNCHANGED;
2828     for (Instruction *I : KnownUBInsts)
2829       A.changeToUnreachableAfterManifest(I);
2830     return ChangeStatus::CHANGED;
2831   }
2832 
2833   /// See AbstractAttribute::getAsStr()
2834   const std::string getAsStr() const override {
2835     return getAssumed() ? "undefined-behavior" : "no-ub";
2836   }
2837 
2838   /// Note: The correctness of this analysis depends on the fact that the
2839   /// following 2 sets will stop changing after some point.
2840   /// "Change" here means that their size changes.
2841   /// The size of each set is monotonically increasing
2842   /// (we only add items to them) and it is upper bounded by the number of
2843   /// instructions in the processed function (we can never save more
2844   /// elements in either set than this number). Hence, at some point,
2845   /// they will stop increasing.
2846   /// Consequently, at some point, both sets will have stopped
2847   /// changing, effectively making the analysis reach a fixpoint.
2848 
2849   /// Note: These 2 sets are disjoint and an instruction can be considered
2850   /// one of 3 things:
2851   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2852   ///    the KnownUBInsts set.
2853   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2854   ///    has a reason to assume it).
2855   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2856   ///    could not find a reason to assume or prove that it can cause UB,
2857   ///    hence it assumes it doesn't. We have a set for these instructions
2858   ///    so that we don't reprocess them in every update.
2859   ///    Note however that instructions in this set may cause UB.
2860 
2861 protected:
2862   /// A set of all live instructions _known_ to cause UB.
2863   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2864 
2865 private:
2866   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2867   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2868 
2869   // Should be called on updates in which if we're processing an instruction
2870   // \p I that depends on a value \p V, one of the following has to happen:
2871   // - If the value is assumed, then stop.
2872   // - If the value is known but undef, then consider it UB.
2873   // - Otherwise, do specific processing with the simplified value.
2874   // We return None in the first 2 cases to signify that an appropriate
2875   // action was taken and the caller should stop.
2876   // Otherwise, we return the simplified value that the caller should
2877   // use for specific processing.
2878   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2879                                          Instruction *I) {
2880     bool UsedAssumedInformation = false;
2881     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2882         IRPosition::value(*V), *this, UsedAssumedInformation);
2883     if (!UsedAssumedInformation) {
2884       // Don't depend on assumed values.
2885       if (!SimplifiedV.hasValue()) {
2886         // If it is known (which we tested above) but it doesn't have a value,
2887         // then we can assume `undef` and hence the instruction is UB.
2888         KnownUBInsts.insert(I);
2889         return llvm::None;
2890       }
2891       if (!SimplifiedV.getValue())
2892         return nullptr;
2893       V = *SimplifiedV;
2894     }
2895     if (isa<UndefValue>(V)) {
2896       KnownUBInsts.insert(I);
2897       return llvm::None;
2898     }
2899     return V;
2900   }
2901 };
2902 
2903 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2904   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2905       : AAUndefinedBehaviorImpl(IRP, A) {}
2906 
2907   /// See AbstractAttribute::trackStatistics()
2908   void trackStatistics() const override {
2909     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2910                "Number of instructions known to have UB");
2911     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2912         KnownUBInsts.size();
2913   }
2914 };
2915 } // namespace
2916 
2917 /// ------------------------ Will-Return Attributes ----------------------------
2918 
2919 namespace {
2920 // Helper function that checks whether a function has any cycle which we don't
2921 // know if it is bounded or not.
2922 // Loops with maximum trip count are considered bounded, any other cycle not.
2923 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2924   ScalarEvolution *SE =
2925       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2926   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2927   // If either SCEV or LoopInfo is not available for the function then we assume
2928   // any cycle to be unbounded cycle.
2929   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2930   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2931   if (!SE || !LI) {
2932     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2933       if (SCCI.hasCycle())
2934         return true;
2935     return false;
2936   }
2937 
2938   // If there's irreducible control, the function may contain non-loop cycles.
2939   if (mayContainIrreducibleControl(F, LI))
2940     return true;
2941 
2942   // Any loop that does not have a max trip count is considered unbounded cycle.
2943   for (auto *L : LI->getLoopsInPreorder()) {
2944     if (!SE->getSmallConstantMaxTripCount(L))
2945       return true;
2946   }
2947   return false;
2948 }
2949 
2950 struct AAWillReturnImpl : public AAWillReturn {
2951   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2952       : AAWillReturn(IRP, A) {}
2953 
2954   /// See AbstractAttribute::initialize(...).
2955   void initialize(Attributor &A) override {
2956     AAWillReturn::initialize(A);
2957 
2958     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2959       indicateOptimisticFixpoint();
2960       return;
2961     }
2962   }
2963 
2964   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2965   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2966     // Check for `mustprogress` in the scope and the associated function which
2967     // might be different if this is a call site.
2968     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2969         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2970       return false;
2971 
2972     bool IsKnown;
2973     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2974       return IsKnown || !KnownOnly;
2975     return false;
2976   }
2977 
2978   /// See AbstractAttribute::updateImpl(...).
2979   ChangeStatus updateImpl(Attributor &A) override {
2980     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2981       return ChangeStatus::UNCHANGED;
2982 
2983     auto CheckForWillReturn = [&](Instruction &I) {
2984       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2985       const auto &WillReturnAA =
2986           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2987       if (WillReturnAA.isKnownWillReturn())
2988         return true;
2989       if (!WillReturnAA.isAssumedWillReturn())
2990         return false;
2991       const auto &NoRecurseAA =
2992           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2993       return NoRecurseAA.isAssumedNoRecurse();
2994     };
2995 
2996     bool UsedAssumedInformation = false;
2997     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2998                                            UsedAssumedInformation))
2999       return indicatePessimisticFixpoint();
3000 
3001     return ChangeStatus::UNCHANGED;
3002   }
3003 
3004   /// See AbstractAttribute::getAsStr()
3005   const std::string getAsStr() const override {
3006     return getAssumed() ? "willreturn" : "may-noreturn";
3007   }
3008 };
3009 
3010 struct AAWillReturnFunction final : AAWillReturnImpl {
3011   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
3012       : AAWillReturnImpl(IRP, A) {}
3013 
3014   /// See AbstractAttribute::initialize(...).
3015   void initialize(Attributor &A) override {
3016     AAWillReturnImpl::initialize(A);
3017 
3018     Function *F = getAnchorScope();
3019     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
3020       indicatePessimisticFixpoint();
3021   }
3022 
3023   /// See AbstractAttribute::trackStatistics()
3024   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
3025 };
3026 
3027 /// WillReturn attribute deduction for a call sites.
3028 struct AAWillReturnCallSite final : AAWillReturnImpl {
3029   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
3030       : AAWillReturnImpl(IRP, A) {}
3031 
3032   /// See AbstractAttribute::initialize(...).
3033   void initialize(Attributor &A) override {
3034     AAWillReturnImpl::initialize(A);
3035     Function *F = getAssociatedFunction();
3036     if (!F || !A.isFunctionIPOAmendable(*F))
3037       indicatePessimisticFixpoint();
3038   }
3039 
3040   /// See AbstractAttribute::updateImpl(...).
3041   ChangeStatus updateImpl(Attributor &A) override {
3042     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3043       return ChangeStatus::UNCHANGED;
3044 
3045     // TODO: Once we have call site specific value information we can provide
3046     //       call site specific liveness information and then it makes
3047     //       sense to specialize attributes for call sites arguments instead of
3048     //       redirecting requests to the callee argument.
3049     Function *F = getAssociatedFunction();
3050     const IRPosition &FnPos = IRPosition::function(*F);
3051     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
3052     return clampStateAndIndicateChange(getState(), FnAA.getState());
3053   }
3054 
3055   /// See AbstractAttribute::trackStatistics()
3056   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3057 };
3058 } // namespace
3059 
3060 /// -------------------AAReachability Attribute--------------------------
3061 
3062 namespace {
3063 struct AAReachabilityImpl : AAReachability {
3064   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
3065       : AAReachability(IRP, A) {}
3066 
3067   const std::string getAsStr() const override {
3068     // TODO: Return the number of reachable queries.
3069     return "reachable";
3070   }
3071 
3072   /// See AbstractAttribute::updateImpl(...).
3073   ChangeStatus updateImpl(Attributor &A) override {
3074     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
3075         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
3076     if (!NoRecurseAA.isAssumedNoRecurse())
3077       return indicatePessimisticFixpoint();
3078     return ChangeStatus::UNCHANGED;
3079   }
3080 };
3081 
3082 struct AAReachabilityFunction final : public AAReachabilityImpl {
3083   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
3084       : AAReachabilityImpl(IRP, A) {}
3085 
3086   /// See AbstractAttribute::trackStatistics()
3087   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3088 };
3089 } // namespace
3090 
3091 /// ------------------------ NoAlias Argument Attribute ------------------------
3092 
3093 namespace {
3094 struct AANoAliasImpl : AANoAlias {
3095   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3096     assert(getAssociatedType()->isPointerTy() &&
3097            "Noalias is a pointer attribute");
3098   }
3099 
3100   const std::string getAsStr() const override {
3101     return getAssumed() ? "noalias" : "may-alias";
3102   }
3103 };
3104 
3105 /// NoAlias attribute for a floating value.
3106 struct AANoAliasFloating final : AANoAliasImpl {
3107   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3108       : AANoAliasImpl(IRP, A) {}
3109 
3110   /// See AbstractAttribute::initialize(...).
3111   void initialize(Attributor &A) override {
3112     AANoAliasImpl::initialize(A);
3113     Value *Val = &getAssociatedValue();
3114     do {
3115       CastInst *CI = dyn_cast<CastInst>(Val);
3116       if (!CI)
3117         break;
3118       Value *Base = CI->getOperand(0);
3119       if (!Base->hasOneUse())
3120         break;
3121       Val = Base;
3122     } while (true);
3123 
3124     if (!Val->getType()->isPointerTy()) {
3125       indicatePessimisticFixpoint();
3126       return;
3127     }
3128 
3129     if (isa<AllocaInst>(Val))
3130       indicateOptimisticFixpoint();
3131     else if (isa<ConstantPointerNull>(Val) &&
3132              !NullPointerIsDefined(getAnchorScope(),
3133                                    Val->getType()->getPointerAddressSpace()))
3134       indicateOptimisticFixpoint();
3135     else if (Val != &getAssociatedValue()) {
3136       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3137           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3138       if (ValNoAliasAA.isKnownNoAlias())
3139         indicateOptimisticFixpoint();
3140     }
3141   }
3142 
3143   /// See AbstractAttribute::updateImpl(...).
3144   ChangeStatus updateImpl(Attributor &A) override {
3145     // TODO: Implement this.
3146     return indicatePessimisticFixpoint();
3147   }
3148 
3149   /// See AbstractAttribute::trackStatistics()
3150   void trackStatistics() const override {
3151     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3152   }
3153 };
3154 
3155 /// NoAlias attribute for an argument.
3156 struct AANoAliasArgument final
3157     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3158   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3159   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3160 
3161   /// See AbstractAttribute::initialize(...).
3162   void initialize(Attributor &A) override {
3163     Base::initialize(A);
3164     // See callsite argument attribute and callee argument attribute.
3165     if (hasAttr({Attribute::ByVal}))
3166       indicateOptimisticFixpoint();
3167   }
3168 
3169   /// See AbstractAttribute::update(...).
3170   ChangeStatus updateImpl(Attributor &A) override {
3171     // We have to make sure no-alias on the argument does not break
3172     // synchronization when this is a callback argument, see also [1] below.
3173     // If synchronization cannot be affected, we delegate to the base updateImpl
3174     // function, otherwise we give up for now.
3175 
3176     // If the function is no-sync, no-alias cannot break synchronization.
3177     const auto &NoSyncAA =
3178         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3179                              DepClassTy::OPTIONAL);
3180     if (NoSyncAA.isAssumedNoSync())
3181       return Base::updateImpl(A);
3182 
3183     // If the argument is read-only, no-alias cannot break synchronization.
3184     bool IsKnown;
3185     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3186       return Base::updateImpl(A);
3187 
3188     // If the argument is never passed through callbacks, no-alias cannot break
3189     // synchronization.
3190     bool UsedAssumedInformation = false;
3191     if (A.checkForAllCallSites(
3192             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3193             true, UsedAssumedInformation))
3194       return Base::updateImpl(A);
3195 
3196     // TODO: add no-alias but make sure it doesn't break synchronization by
3197     // introducing fake uses. See:
3198     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3199     //     International Workshop on OpenMP 2018,
3200     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3201 
3202     return indicatePessimisticFixpoint();
3203   }
3204 
3205   /// See AbstractAttribute::trackStatistics()
3206   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3207 };
3208 
3209 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3210   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3211       : AANoAliasImpl(IRP, A) {}
3212 
3213   /// See AbstractAttribute::initialize(...).
3214   void initialize(Attributor &A) override {
3215     // See callsite argument attribute and callee argument attribute.
3216     const auto &CB = cast<CallBase>(getAnchorValue());
3217     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3218       indicateOptimisticFixpoint();
3219     Value &Val = getAssociatedValue();
3220     if (isa<ConstantPointerNull>(Val) &&
3221         !NullPointerIsDefined(getAnchorScope(),
3222                               Val.getType()->getPointerAddressSpace()))
3223       indicateOptimisticFixpoint();
3224   }
3225 
3226   /// Determine if the underlying value may alias with the call site argument
3227   /// \p OtherArgNo of \p ICS (= the underlying call site).
3228   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3229                             const AAMemoryBehavior &MemBehaviorAA,
3230                             const CallBase &CB, unsigned OtherArgNo) {
3231     // We do not need to worry about aliasing with the underlying IRP.
3232     if (this->getCalleeArgNo() == (int)OtherArgNo)
3233       return false;
3234 
3235     // If it is not a pointer or pointer vector we do not alias.
3236     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3237     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3238       return false;
3239 
3240     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3241         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3242 
3243     // If the argument is readnone, there is no read-write aliasing.
3244     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3245       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3246       return false;
3247     }
3248 
3249     // If the argument is readonly and the underlying value is readonly, there
3250     // is no read-write aliasing.
3251     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3252     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3253       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3254       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3255       return false;
3256     }
3257 
3258     // We have to utilize actual alias analysis queries so we need the object.
3259     if (!AAR)
3260       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3261 
3262     // Try to rule it out at the call site.
3263     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3264     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3265                          "callsite arguments: "
3266                       << getAssociatedValue() << " " << *ArgOp << " => "
3267                       << (IsAliasing ? "" : "no-") << "alias \n");
3268 
3269     return IsAliasing;
3270   }
3271 
3272   bool
3273   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3274                                          const AAMemoryBehavior &MemBehaviorAA,
3275                                          const AANoAlias &NoAliasAA) {
3276     // We can deduce "noalias" if the following conditions hold.
3277     // (i)   Associated value is assumed to be noalias in the definition.
3278     // (ii)  Associated value is assumed to be no-capture in all the uses
3279     //       possibly executed before this callsite.
3280     // (iii) There is no other pointer argument which could alias with the
3281     //       value.
3282 
3283     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3284     if (!AssociatedValueIsNoAliasAtDef) {
3285       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3286                         << " is not no-alias at the definition\n");
3287       return false;
3288     }
3289 
3290     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3291 
3292     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3293     const Function *ScopeFn = VIRP.getAnchorScope();
3294     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3295     // Check whether the value is captured in the scope using AANoCapture.
3296     //      Look at CFG and check only uses possibly executed before this
3297     //      callsite.
3298     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3299       Instruction *UserI = cast<Instruction>(U.getUser());
3300 
3301       // If UserI is the curr instruction and there is a single potential use of
3302       // the value in UserI we allow the use.
3303       // TODO: We should inspect the operands and allow those that cannot alias
3304       //       with the value.
3305       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3306         return true;
3307 
3308       if (ScopeFn) {
3309         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3310             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3311 
3312         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3313           return true;
3314 
3315         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3316           if (CB->isArgOperand(&U)) {
3317 
3318             unsigned ArgNo = CB->getArgOperandNo(&U);
3319 
3320             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3321                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3322                 DepClassTy::OPTIONAL);
3323 
3324             if (NoCaptureAA.isAssumedNoCapture())
3325               return true;
3326           }
3327         }
3328       }
3329 
3330       // For cases which can potentially have more users
3331       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3332           isa<SelectInst>(U)) {
3333         Follow = true;
3334         return true;
3335       }
3336 
3337       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3338       return false;
3339     };
3340 
3341     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3342       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3343         LLVM_DEBUG(
3344             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3345                    << " cannot be noalias as it is potentially captured\n");
3346         return false;
3347       }
3348     }
3349     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3350 
3351     // Check there is no other pointer argument which could alias with the
3352     // value passed at this call site.
3353     // TODO: AbstractCallSite
3354     const auto &CB = cast<CallBase>(getAnchorValue());
3355     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3356       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3357         return false;
3358 
3359     return true;
3360   }
3361 
3362   /// See AbstractAttribute::updateImpl(...).
3363   ChangeStatus updateImpl(Attributor &A) override {
3364     // If the argument is readnone we are done as there are no accesses via the
3365     // argument.
3366     auto &MemBehaviorAA =
3367         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3368     if (MemBehaviorAA.isAssumedReadNone()) {
3369       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3370       return ChangeStatus::UNCHANGED;
3371     }
3372 
3373     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3374     const auto &NoAliasAA =
3375         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3376 
3377     AAResults *AAR = nullptr;
3378     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3379                                                NoAliasAA)) {
3380       LLVM_DEBUG(
3381           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3382       return ChangeStatus::UNCHANGED;
3383     }
3384 
3385     return indicatePessimisticFixpoint();
3386   }
3387 
3388   /// See AbstractAttribute::trackStatistics()
3389   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3390 };
3391 
3392 /// NoAlias attribute for function return value.
3393 struct AANoAliasReturned final : AANoAliasImpl {
3394   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3395       : AANoAliasImpl(IRP, A) {}
3396 
3397   /// See AbstractAttribute::initialize(...).
3398   void initialize(Attributor &A) override {
3399     AANoAliasImpl::initialize(A);
3400     Function *F = getAssociatedFunction();
3401     if (!F || F->isDeclaration())
3402       indicatePessimisticFixpoint();
3403   }
3404 
3405   /// See AbstractAttribute::updateImpl(...).
3406   virtual ChangeStatus updateImpl(Attributor &A) override {
3407 
3408     auto CheckReturnValue = [&](Value &RV) -> bool {
3409       if (Constant *C = dyn_cast<Constant>(&RV))
3410         if (C->isNullValue() || isa<UndefValue>(C))
3411           return true;
3412 
3413       /// For now, we can only deduce noalias if we have call sites.
3414       /// FIXME: add more support.
3415       if (!isa<CallBase>(&RV))
3416         return false;
3417 
3418       const IRPosition &RVPos = IRPosition::value(RV);
3419       const auto &NoAliasAA =
3420           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3421       if (!NoAliasAA.isAssumedNoAlias())
3422         return false;
3423 
3424       const auto &NoCaptureAA =
3425           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3426       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3427     };
3428 
3429     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3430       return indicatePessimisticFixpoint();
3431 
3432     return ChangeStatus::UNCHANGED;
3433   }
3434 
3435   /// See AbstractAttribute::trackStatistics()
3436   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3437 };
3438 
3439 /// NoAlias attribute deduction for a call site return value.
3440 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3441   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3442       : AANoAliasImpl(IRP, A) {}
3443 
3444   /// See AbstractAttribute::initialize(...).
3445   void initialize(Attributor &A) override {
3446     AANoAliasImpl::initialize(A);
3447     Function *F = getAssociatedFunction();
3448     if (!F || F->isDeclaration())
3449       indicatePessimisticFixpoint();
3450   }
3451 
3452   /// See AbstractAttribute::updateImpl(...).
3453   ChangeStatus updateImpl(Attributor &A) override {
3454     // TODO: Once we have call site specific value information we can provide
3455     //       call site specific liveness information and then it makes
3456     //       sense to specialize attributes for call sites arguments instead of
3457     //       redirecting requests to the callee argument.
3458     Function *F = getAssociatedFunction();
3459     const IRPosition &FnPos = IRPosition::returned(*F);
3460     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3461     return clampStateAndIndicateChange(getState(), FnAA.getState());
3462   }
3463 
3464   /// See AbstractAttribute::trackStatistics()
3465   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3466 };
3467 } // namespace
3468 
3469 /// -------------------AAIsDead Function Attribute-----------------------
3470 
3471 namespace {
3472 struct AAIsDeadValueImpl : public AAIsDead {
3473   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3474 
3475   /// See AbstractAttribute::initialize(...).
3476   void initialize(Attributor &A) override {
3477     if (auto *Scope = getAnchorScope())
3478       if (!A.isRunOn(*Scope))
3479         indicatePessimisticFixpoint();
3480   }
3481 
3482   /// See AAIsDead::isAssumedDead().
3483   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3484 
3485   /// See AAIsDead::isKnownDead().
3486   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3487 
3488   /// See AAIsDead::isAssumedDead(BasicBlock *).
3489   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3490 
3491   /// See AAIsDead::isKnownDead(BasicBlock *).
3492   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3493 
3494   /// See AAIsDead::isAssumedDead(Instruction *I).
3495   bool isAssumedDead(const Instruction *I) const override {
3496     return I == getCtxI() && isAssumedDead();
3497   }
3498 
3499   /// See AAIsDead::isKnownDead(Instruction *I).
3500   bool isKnownDead(const Instruction *I) const override {
3501     return isAssumedDead(I) && isKnownDead();
3502   }
3503 
3504   /// See AbstractAttribute::getAsStr().
3505   virtual const std::string getAsStr() const override {
3506     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3507   }
3508 
3509   /// Check if all uses are assumed dead.
3510   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3511     // Callers might not check the type, void has no uses.
3512     if (V.getType()->isVoidTy() || V.use_empty())
3513       return true;
3514 
3515     // If we replace a value with a constant there are no uses left afterwards.
3516     if (!isa<Constant>(V)) {
3517       if (auto *I = dyn_cast<Instruction>(&V))
3518         if (!A.isRunOn(*I->getFunction()))
3519           return false;
3520       bool UsedAssumedInformation = false;
3521       Optional<Constant *> C =
3522           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3523       if (!C.hasValue() || *C)
3524         return true;
3525     }
3526 
3527     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3528     // Explicitly set the dependence class to required because we want a long
3529     // chain of N dependent instructions to be considered live as soon as one is
3530     // without going through N update cycles. This is not required for
3531     // correctness.
3532     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3533                              DepClassTy::REQUIRED);
3534   }
3535 
3536   /// Determine if \p I is assumed to be side-effect free.
3537   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3538     if (!I || wouldInstructionBeTriviallyDead(I))
3539       return true;
3540 
3541     auto *CB = dyn_cast<CallBase>(I);
3542     if (!CB || isa<IntrinsicInst>(CB))
3543       return false;
3544 
3545     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3546     const auto &NoUnwindAA =
3547         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3548     if (!NoUnwindAA.isAssumedNoUnwind())
3549       return false;
3550     if (!NoUnwindAA.isKnownNoUnwind())
3551       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3552 
3553     bool IsKnown;
3554     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3555   }
3556 };
3557 
3558 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3559   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3560       : AAIsDeadValueImpl(IRP, A) {}
3561 
3562   /// See AbstractAttribute::initialize(...).
3563   void initialize(Attributor &A) override {
3564     AAIsDeadValueImpl::initialize(A);
3565 
3566     if (isa<UndefValue>(getAssociatedValue())) {
3567       indicatePessimisticFixpoint();
3568       return;
3569     }
3570 
3571     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3572     if (!isAssumedSideEffectFree(A, I)) {
3573       if (!isa_and_nonnull<StoreInst>(I))
3574         indicatePessimisticFixpoint();
3575       else
3576         removeAssumedBits(HAS_NO_EFFECT);
3577     }
3578   }
3579 
3580   bool isDeadStore(Attributor &A, StoreInst &SI) {
3581     // Lang ref now states volatile store is not UB/dead, let's skip them.
3582     if (SI.isVolatile())
3583       return false;
3584 
3585     bool UsedAssumedInformation = false;
3586     SmallSetVector<Value *, 4> PotentialCopies;
3587     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3588                                              UsedAssumedInformation))
3589       return false;
3590     return llvm::all_of(PotentialCopies, [&](Value *V) {
3591       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3592                              UsedAssumedInformation);
3593     });
3594   }
3595 
3596   /// See AbstractAttribute::getAsStr().
3597   const std::string getAsStr() const override {
3598     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3599     if (isa_and_nonnull<StoreInst>(I))
3600       if (isValidState())
3601         return "assumed-dead-store";
3602     return AAIsDeadValueImpl::getAsStr();
3603   }
3604 
3605   /// See AbstractAttribute::updateImpl(...).
3606   ChangeStatus updateImpl(Attributor &A) override {
3607     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3608     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3609       if (!isDeadStore(A, *SI))
3610         return indicatePessimisticFixpoint();
3611     } else {
3612       if (!isAssumedSideEffectFree(A, I))
3613         return indicatePessimisticFixpoint();
3614       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3615         return indicatePessimisticFixpoint();
3616     }
3617     return ChangeStatus::UNCHANGED;
3618   }
3619 
3620   /// See AbstractAttribute::manifest(...).
3621   ChangeStatus manifest(Attributor &A) override {
3622     Value &V = getAssociatedValue();
3623     if (auto *I = dyn_cast<Instruction>(&V)) {
3624       // If we get here we basically know the users are all dead. We check if
3625       // isAssumedSideEffectFree returns true here again because it might not be
3626       // the case and only the users are dead but the instruction (=call) is
3627       // still needed.
3628       if (isa<StoreInst>(I) ||
3629           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3630         A.deleteAfterManifest(*I);
3631         return ChangeStatus::CHANGED;
3632       }
3633     }
3634     return ChangeStatus::UNCHANGED;
3635   }
3636 
3637   /// See AbstractAttribute::trackStatistics()
3638   void trackStatistics() const override {
3639     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3640   }
3641 };
3642 
3643 struct AAIsDeadArgument : public AAIsDeadFloating {
3644   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3645       : AAIsDeadFloating(IRP, A) {}
3646 
3647   /// See AbstractAttribute::initialize(...).
3648   void initialize(Attributor &A) override {
3649     AAIsDeadFloating::initialize(A);
3650     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3651       indicatePessimisticFixpoint();
3652   }
3653 
3654   /// See AbstractAttribute::manifest(...).
3655   ChangeStatus manifest(Attributor &A) override {
3656     Argument &Arg = *getAssociatedArgument();
3657     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3658       if (A.registerFunctionSignatureRewrite(
3659               Arg, /* ReplacementTypes */ {},
3660               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3661               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3662         return ChangeStatus::CHANGED;
3663       }
3664     return ChangeStatus::UNCHANGED;
3665   }
3666 
3667   /// See AbstractAttribute::trackStatistics()
3668   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3669 };
3670 
3671 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3672   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3673       : AAIsDeadValueImpl(IRP, A) {}
3674 
3675   /// See AbstractAttribute::initialize(...).
3676   void initialize(Attributor &A) override {
3677     AAIsDeadValueImpl::initialize(A);
3678     if (isa<UndefValue>(getAssociatedValue()))
3679       indicatePessimisticFixpoint();
3680   }
3681 
3682   /// See AbstractAttribute::updateImpl(...).
3683   ChangeStatus updateImpl(Attributor &A) override {
3684     // TODO: Once we have call site specific value information we can provide
3685     //       call site specific liveness information and then it makes
3686     //       sense to specialize attributes for call sites arguments instead of
3687     //       redirecting requests to the callee argument.
3688     Argument *Arg = getAssociatedArgument();
3689     if (!Arg)
3690       return indicatePessimisticFixpoint();
3691     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3692     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3693     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3694   }
3695 
3696   /// See AbstractAttribute::manifest(...).
3697   ChangeStatus manifest(Attributor &A) override {
3698     CallBase &CB = cast<CallBase>(getAnchorValue());
3699     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3700     assert(!isa<UndefValue>(U.get()) &&
3701            "Expected undef values to be filtered out!");
3702     UndefValue &UV = *UndefValue::get(U->getType());
3703     if (A.changeUseAfterManifest(U, UV))
3704       return ChangeStatus::CHANGED;
3705     return ChangeStatus::UNCHANGED;
3706   }
3707 
3708   /// See AbstractAttribute::trackStatistics()
3709   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3710 };
3711 
3712 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3713   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3714       : AAIsDeadFloating(IRP, A) {}
3715 
3716   /// See AAIsDead::isAssumedDead().
3717   bool isAssumedDead() const override {
3718     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3719   }
3720 
3721   /// See AbstractAttribute::initialize(...).
3722   void initialize(Attributor &A) override {
3723     AAIsDeadFloating::initialize(A);
3724     if (isa<UndefValue>(getAssociatedValue())) {
3725       indicatePessimisticFixpoint();
3726       return;
3727     }
3728 
3729     // We track this separately as a secondary state.
3730     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3731   }
3732 
3733   /// See AbstractAttribute::updateImpl(...).
3734   ChangeStatus updateImpl(Attributor &A) override {
3735     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3736     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3737       IsAssumedSideEffectFree = false;
3738       Changed = ChangeStatus::CHANGED;
3739     }
3740     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3741       return indicatePessimisticFixpoint();
3742     return Changed;
3743   }
3744 
3745   /// See AbstractAttribute::trackStatistics()
3746   void trackStatistics() const override {
3747     if (IsAssumedSideEffectFree)
3748       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3749     else
3750       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3751   }
3752 
3753   /// See AbstractAttribute::getAsStr().
3754   const std::string getAsStr() const override {
3755     return isAssumedDead()
3756                ? "assumed-dead"
3757                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3758   }
3759 
3760 private:
3761   bool IsAssumedSideEffectFree = true;
3762 };
3763 
3764 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3765   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3766       : AAIsDeadValueImpl(IRP, A) {}
3767 
3768   /// See AbstractAttribute::updateImpl(...).
3769   ChangeStatus updateImpl(Attributor &A) override {
3770 
3771     bool UsedAssumedInformation = false;
3772     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3773                               {Instruction::Ret}, UsedAssumedInformation);
3774 
3775     auto PredForCallSite = [&](AbstractCallSite ACS) {
3776       if (ACS.isCallbackCall() || !ACS.getInstruction())
3777         return false;
3778       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3779     };
3780 
3781     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3782                                 UsedAssumedInformation))
3783       return indicatePessimisticFixpoint();
3784 
3785     return ChangeStatus::UNCHANGED;
3786   }
3787 
3788   /// See AbstractAttribute::manifest(...).
3789   ChangeStatus manifest(Attributor &A) override {
3790     // TODO: Rewrite the signature to return void?
3791     bool AnyChange = false;
3792     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3793     auto RetInstPred = [&](Instruction &I) {
3794       ReturnInst &RI = cast<ReturnInst>(I);
3795       if (!isa<UndefValue>(RI.getReturnValue()))
3796         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3797       return true;
3798     };
3799     bool UsedAssumedInformation = false;
3800     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3801                               UsedAssumedInformation);
3802     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3803   }
3804 
3805   /// See AbstractAttribute::trackStatistics()
3806   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3807 };
3808 
3809 struct AAIsDeadFunction : public AAIsDead {
3810   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3811 
3812   /// See AbstractAttribute::initialize(...).
3813   void initialize(Attributor &A) override {
3814     Function *F = getAnchorScope();
3815     if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
3816       indicatePessimisticFixpoint();
3817       return;
3818     }
3819     ToBeExploredFrom.insert(&F->getEntryBlock().front());
3820     assumeLive(A, F->getEntryBlock());
3821   }
3822 
3823   /// See AbstractAttribute::getAsStr().
3824   const std::string getAsStr() const override {
3825     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3826            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3827            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3828            std::to_string(KnownDeadEnds.size()) + "]";
3829   }
3830 
3831   /// See AbstractAttribute::manifest(...).
3832   ChangeStatus manifest(Attributor &A) override {
3833     assert(getState().isValidState() &&
3834            "Attempted to manifest an invalid state!");
3835 
3836     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3837     Function &F = *getAnchorScope();
3838 
3839     if (AssumedLiveBlocks.empty()) {
3840       A.deleteAfterManifest(F);
3841       return ChangeStatus::CHANGED;
3842     }
3843 
3844     // Flag to determine if we can change an invoke to a call assuming the
3845     // callee is nounwind. This is not possible if the personality of the
3846     // function allows to catch asynchronous exceptions.
3847     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3848 
3849     KnownDeadEnds.set_union(ToBeExploredFrom);
3850     for (const Instruction *DeadEndI : KnownDeadEnds) {
3851       auto *CB = dyn_cast<CallBase>(DeadEndI);
3852       if (!CB)
3853         continue;
3854       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3855           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3856       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3857       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3858         continue;
3859 
3860       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3861         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3862       else
3863         A.changeToUnreachableAfterManifest(
3864             const_cast<Instruction *>(DeadEndI->getNextNode()));
3865       HasChanged = ChangeStatus::CHANGED;
3866     }
3867 
3868     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3869     for (BasicBlock &BB : F)
3870       if (!AssumedLiveBlocks.count(&BB)) {
3871         A.deleteAfterManifest(BB);
3872         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3873         HasChanged = ChangeStatus::CHANGED;
3874       }
3875 
3876     return HasChanged;
3877   }
3878 
3879   /// See AbstractAttribute::updateImpl(...).
3880   ChangeStatus updateImpl(Attributor &A) override;
3881 
3882   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3883     assert(From->getParent() == getAnchorScope() &&
3884            To->getParent() == getAnchorScope() &&
3885            "Used AAIsDead of the wrong function");
3886     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3887   }
3888 
3889   /// See AbstractAttribute::trackStatistics()
3890   void trackStatistics() const override {}
3891 
3892   /// Returns true if the function is assumed dead.
3893   bool isAssumedDead() const override { return false; }
3894 
3895   /// See AAIsDead::isKnownDead().
3896   bool isKnownDead() const override { return false; }
3897 
3898   /// See AAIsDead::isAssumedDead(BasicBlock *).
3899   bool isAssumedDead(const BasicBlock *BB) const override {
3900     assert(BB->getParent() == getAnchorScope() &&
3901            "BB must be in the same anchor scope function.");
3902 
3903     if (!getAssumed())
3904       return false;
3905     return !AssumedLiveBlocks.count(BB);
3906   }
3907 
3908   /// See AAIsDead::isKnownDead(BasicBlock *).
3909   bool isKnownDead(const BasicBlock *BB) const override {
3910     return getKnown() && isAssumedDead(BB);
3911   }
3912 
3913   /// See AAIsDead::isAssumed(Instruction *I).
3914   bool isAssumedDead(const Instruction *I) const override {
3915     assert(I->getParent()->getParent() == getAnchorScope() &&
3916            "Instruction must be in the same anchor scope function.");
3917 
3918     if (!getAssumed())
3919       return false;
3920 
3921     // If it is not in AssumedLiveBlocks then it for sure dead.
3922     // Otherwise, it can still be after noreturn call in a live block.
3923     if (!AssumedLiveBlocks.count(I->getParent()))
3924       return true;
3925 
3926     // If it is not after a liveness barrier it is live.
3927     const Instruction *PrevI = I->getPrevNode();
3928     while (PrevI) {
3929       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3930         return true;
3931       PrevI = PrevI->getPrevNode();
3932     }
3933     return false;
3934   }
3935 
3936   /// See AAIsDead::isKnownDead(Instruction *I).
3937   bool isKnownDead(const Instruction *I) const override {
3938     return getKnown() && isAssumedDead(I);
3939   }
3940 
3941   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3942   /// that internal function called from \p BB should now be looked at.
3943   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3944     if (!AssumedLiveBlocks.insert(&BB).second)
3945       return false;
3946 
3947     // We assume that all of BB is (probably) live now and if there are calls to
3948     // internal functions we will assume that those are now live as well. This
3949     // is a performance optimization for blocks with calls to a lot of internal
3950     // functions. It can however cause dead functions to be treated as live.
3951     for (const Instruction &I : BB)
3952       if (const auto *CB = dyn_cast<CallBase>(&I))
3953         if (const Function *F = CB->getCalledFunction())
3954           if (F->hasLocalLinkage())
3955             A.markLiveInternalFunction(*F);
3956     return true;
3957   }
3958 
3959   /// Collection of instructions that need to be explored again, e.g., we
3960   /// did assume they do not transfer control to (one of their) successors.
3961   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3962 
3963   /// Collection of instructions that are known to not transfer control.
3964   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3965 
3966   /// Collection of all assumed live edges
3967   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3968 
3969   /// Collection of all assumed live BasicBlocks.
3970   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3971 };
3972 
3973 static bool
3974 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3975                         AbstractAttribute &AA,
3976                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3977   const IRPosition &IPos = IRPosition::callsite_function(CB);
3978 
3979   const auto &NoReturnAA =
3980       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3981   if (NoReturnAA.isAssumedNoReturn())
3982     return !NoReturnAA.isKnownNoReturn();
3983   if (CB.isTerminator())
3984     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3985   else
3986     AliveSuccessors.push_back(CB.getNextNode());
3987   return false;
3988 }
3989 
3990 static bool
3991 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3992                         AbstractAttribute &AA,
3993                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3994   bool UsedAssumedInformation =
3995       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3996 
3997   // First, determine if we can change an invoke to a call assuming the
3998   // callee is nounwind. This is not possible if the personality of the
3999   // function allows to catch asynchronous exceptions.
4000   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
4001     AliveSuccessors.push_back(&II.getUnwindDest()->front());
4002   } else {
4003     const IRPosition &IPos = IRPosition::callsite_function(II);
4004     const auto &AANoUnw =
4005         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
4006     if (AANoUnw.isAssumedNoUnwind()) {
4007       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
4008     } else {
4009       AliveSuccessors.push_back(&II.getUnwindDest()->front());
4010     }
4011   }
4012   return UsedAssumedInformation;
4013 }
4014 
4015 static bool
4016 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
4017                         AbstractAttribute &AA,
4018                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4019   bool UsedAssumedInformation = false;
4020   if (BI.getNumSuccessors() == 1) {
4021     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4022   } else {
4023     Optional<Constant *> C =
4024         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
4025     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4026       // No value yet, assume both edges are dead.
4027     } else if (isa_and_nonnull<ConstantInt>(*C)) {
4028       const BasicBlock *SuccBB =
4029           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
4030       AliveSuccessors.push_back(&SuccBB->front());
4031     } else {
4032       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4033       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
4034       UsedAssumedInformation = false;
4035     }
4036   }
4037   return UsedAssumedInformation;
4038 }
4039 
4040 static bool
4041 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
4042                         AbstractAttribute &AA,
4043                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4044   bool UsedAssumedInformation = false;
4045   Optional<Constant *> C =
4046       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
4047   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
4048     // No value yet, assume all edges are dead.
4049   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
4050     for (auto &CaseIt : SI.cases()) {
4051       if (CaseIt.getCaseValue() == C.getValue()) {
4052         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
4053         return UsedAssumedInformation;
4054       }
4055     }
4056     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
4057     return UsedAssumedInformation;
4058   } else {
4059     for (const BasicBlock *SuccBB : successors(SI.getParent()))
4060       AliveSuccessors.push_back(&SuccBB->front());
4061   }
4062   return UsedAssumedInformation;
4063 }
4064 
4065 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4066   ChangeStatus Change = ChangeStatus::UNCHANGED;
4067 
4068   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4069                     << getAnchorScope()->size() << "] BBs and "
4070                     << ToBeExploredFrom.size() << " exploration points and "
4071                     << KnownDeadEnds.size() << " known dead ends\n");
4072 
4073   // Copy and clear the list of instructions we need to explore from. It is
4074   // refilled with instructions the next update has to look at.
4075   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4076                                                ToBeExploredFrom.end());
4077   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4078 
4079   SmallVector<const Instruction *, 8> AliveSuccessors;
4080   while (!Worklist.empty()) {
4081     const Instruction *I = Worklist.pop_back_val();
4082     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4083 
4084     // Fast forward for uninteresting instructions. We could look for UB here
4085     // though.
4086     while (!I->isTerminator() && !isa<CallBase>(I))
4087       I = I->getNextNode();
4088 
4089     AliveSuccessors.clear();
4090 
4091     bool UsedAssumedInformation = false;
4092     switch (I->getOpcode()) {
4093     // TODO: look for (assumed) UB to backwards propagate "deadness".
4094     default:
4095       assert(I->isTerminator() &&
4096              "Expected non-terminators to be handled already!");
4097       for (const BasicBlock *SuccBB : successors(I->getParent()))
4098         AliveSuccessors.push_back(&SuccBB->front());
4099       break;
4100     case Instruction::Call:
4101       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4102                                                        *this, AliveSuccessors);
4103       break;
4104     case Instruction::Invoke:
4105       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4106                                                        *this, AliveSuccessors);
4107       break;
4108     case Instruction::Br:
4109       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4110                                                        *this, AliveSuccessors);
4111       break;
4112     case Instruction::Switch:
4113       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4114                                                        *this, AliveSuccessors);
4115       break;
4116     }
4117 
4118     if (UsedAssumedInformation) {
4119       NewToBeExploredFrom.insert(I);
4120     } else if (AliveSuccessors.empty() ||
4121                (I->isTerminator() &&
4122                 AliveSuccessors.size() < I->getNumSuccessors())) {
4123       if (KnownDeadEnds.insert(I))
4124         Change = ChangeStatus::CHANGED;
4125     }
4126 
4127     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4128                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4129                       << UsedAssumedInformation << "\n");
4130 
4131     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4132       if (!I->isTerminator()) {
4133         assert(AliveSuccessors.size() == 1 &&
4134                "Non-terminator expected to have a single successor!");
4135         Worklist.push_back(AliveSuccessor);
4136       } else {
4137         // record the assumed live edge
4138         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4139         if (AssumedLiveEdges.insert(Edge).second)
4140           Change = ChangeStatus::CHANGED;
4141         if (assumeLive(A, *AliveSuccessor->getParent()))
4142           Worklist.push_back(AliveSuccessor);
4143       }
4144     }
4145   }
4146 
4147   // Check if the content of ToBeExploredFrom changed, ignore the order.
4148   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4149       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4150         return !ToBeExploredFrom.count(I);
4151       })) {
4152     Change = ChangeStatus::CHANGED;
4153     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4154   }
4155 
4156   // If we know everything is live there is no need to query for liveness.
4157   // Instead, indicating a pessimistic fixpoint will cause the state to be
4158   // "invalid" and all queries to be answered conservatively without lookups.
4159   // To be in this state we have to (1) finished the exploration and (3) not
4160   // discovered any non-trivial dead end and (2) not ruled unreachable code
4161   // dead.
4162   if (ToBeExploredFrom.empty() &&
4163       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4164       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4165         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4166       }))
4167     return indicatePessimisticFixpoint();
4168   return Change;
4169 }
4170 
4171 /// Liveness information for a call sites.
4172 struct AAIsDeadCallSite final : AAIsDeadFunction {
4173   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4174       : AAIsDeadFunction(IRP, A) {}
4175 
4176   /// See AbstractAttribute::initialize(...).
4177   void initialize(Attributor &A) override {
4178     // TODO: Once we have call site specific value information we can provide
4179     //       call site specific liveness information and then it makes
4180     //       sense to specialize attributes for call sites instead of
4181     //       redirecting requests to the callee.
4182     llvm_unreachable("Abstract attributes for liveness are not "
4183                      "supported for call sites yet!");
4184   }
4185 
4186   /// See AbstractAttribute::updateImpl(...).
4187   ChangeStatus updateImpl(Attributor &A) override {
4188     return indicatePessimisticFixpoint();
4189   }
4190 
4191   /// See AbstractAttribute::trackStatistics()
4192   void trackStatistics() const override {}
4193 };
4194 } // namespace
4195 
4196 /// -------------------- Dereferenceable Argument Attribute --------------------
4197 
4198 namespace {
4199 struct AADereferenceableImpl : AADereferenceable {
4200   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4201       : AADereferenceable(IRP, A) {}
4202   using StateType = DerefState;
4203 
4204   /// See AbstractAttribute::initialize(...).
4205   void initialize(Attributor &A) override {
4206     SmallVector<Attribute, 4> Attrs;
4207     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4208              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4209     for (const Attribute &Attr : Attrs)
4210       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4211 
4212     const IRPosition &IRP = this->getIRPosition();
4213     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4214 
4215     bool CanBeNull, CanBeFreed;
4216     takeKnownDerefBytesMaximum(
4217         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4218             A.getDataLayout(), CanBeNull, CanBeFreed));
4219 
4220     bool IsFnInterface = IRP.isFnInterfaceKind();
4221     Function *FnScope = IRP.getAnchorScope();
4222     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4223       indicatePessimisticFixpoint();
4224       return;
4225     }
4226 
4227     if (Instruction *CtxI = getCtxI())
4228       followUsesInMBEC(*this, A, getState(), *CtxI);
4229   }
4230 
4231   /// See AbstractAttribute::getState()
4232   /// {
4233   StateType &getState() override { return *this; }
4234   const StateType &getState() const override { return *this; }
4235   /// }
4236 
4237   /// Helper function for collecting accessed bytes in must-be-executed-context
4238   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4239                               DerefState &State) {
4240     const Value *UseV = U->get();
4241     if (!UseV->getType()->isPointerTy())
4242       return;
4243 
4244     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4245     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4246       return;
4247 
4248     int64_t Offset;
4249     const Value *Base = GetPointerBaseWithConstantOffset(
4250         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4251     if (Base && Base == &getAssociatedValue())
4252       State.addAccessedBytes(Offset, Loc->Size.getValue());
4253   }
4254 
4255   /// See followUsesInMBEC
4256   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4257                        AADereferenceable::StateType &State) {
4258     bool IsNonNull = false;
4259     bool TrackUse = false;
4260     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4261         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4262     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4263                       << " for instruction " << *I << "\n");
4264 
4265     addAccessedBytesForUse(A, U, I, State);
4266     State.takeKnownDerefBytesMaximum(DerefBytes);
4267     return TrackUse;
4268   }
4269 
4270   /// See AbstractAttribute::manifest(...).
4271   ChangeStatus manifest(Attributor &A) override {
4272     ChangeStatus Change = AADereferenceable::manifest(A);
4273     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4274       removeAttrs({Attribute::DereferenceableOrNull});
4275       return ChangeStatus::CHANGED;
4276     }
4277     return Change;
4278   }
4279 
4280   void getDeducedAttributes(LLVMContext &Ctx,
4281                             SmallVectorImpl<Attribute> &Attrs) const override {
4282     // TODO: Add *_globally support
4283     if (isAssumedNonNull())
4284       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4285           Ctx, getAssumedDereferenceableBytes()));
4286     else
4287       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4288           Ctx, getAssumedDereferenceableBytes()));
4289   }
4290 
4291   /// See AbstractAttribute::getAsStr().
4292   const std::string getAsStr() const override {
4293     if (!getAssumedDereferenceableBytes())
4294       return "unknown-dereferenceable";
4295     return std::string("dereferenceable") +
4296            (isAssumedNonNull() ? "" : "_or_null") +
4297            (isAssumedGlobal() ? "_globally" : "") + "<" +
4298            std::to_string(getKnownDereferenceableBytes()) + "-" +
4299            std::to_string(getAssumedDereferenceableBytes()) + ">";
4300   }
4301 };
4302 
4303 /// Dereferenceable attribute for a floating value.
4304 struct AADereferenceableFloating : AADereferenceableImpl {
4305   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4306       : AADereferenceableImpl(IRP, A) {}
4307 
4308   /// See AbstractAttribute::updateImpl(...).
4309   ChangeStatus updateImpl(Attributor &A) override {
4310     const DataLayout &DL = A.getDataLayout();
4311 
4312     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4313                             bool Stripped) -> bool {
4314       unsigned IdxWidth =
4315           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4316       APInt Offset(IdxWidth, 0);
4317       const Value *Base = stripAndAccumulateOffsets(
4318           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4319           /* AllowNonInbounds */ true);
4320 
4321       const auto &AA = A.getAAFor<AADereferenceable>(
4322           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4323       int64_t DerefBytes = 0;
4324       if (!Stripped && this == &AA) {
4325         // Use IR information if we did not strip anything.
4326         // TODO: track globally.
4327         bool CanBeNull, CanBeFreed;
4328         DerefBytes =
4329             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4330         T.GlobalState.indicatePessimisticFixpoint();
4331       } else {
4332         const DerefState &DS = AA.getState();
4333         DerefBytes = DS.DerefBytesState.getAssumed();
4334         T.GlobalState &= DS.GlobalState;
4335       }
4336 
4337       // For now we do not try to "increase" dereferenceability due to negative
4338       // indices as we first have to come up with code to deal with loops and
4339       // for overflows of the dereferenceable bytes.
4340       int64_t OffsetSExt = Offset.getSExtValue();
4341       if (OffsetSExt < 0)
4342         OffsetSExt = 0;
4343 
4344       T.takeAssumedDerefBytesMinimum(
4345           std::max(int64_t(0), DerefBytes - OffsetSExt));
4346 
4347       if (this == &AA) {
4348         if (!Stripped) {
4349           // If nothing was stripped IR information is all we got.
4350           T.takeKnownDerefBytesMaximum(
4351               std::max(int64_t(0), DerefBytes - OffsetSExt));
4352           T.indicatePessimisticFixpoint();
4353         } else if (OffsetSExt > 0) {
4354           // If something was stripped but there is circular reasoning we look
4355           // for the offset. If it is positive we basically decrease the
4356           // dereferenceable bytes in a circluar loop now, which will simply
4357           // drive them down to the known value in a very slow way which we
4358           // can accelerate.
4359           T.indicatePessimisticFixpoint();
4360         }
4361       }
4362 
4363       return T.isValidState();
4364     };
4365 
4366     DerefState T;
4367     bool UsedAssumedInformation = false;
4368     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4369                                            VisitValueCB, getCtxI(),
4370                                            UsedAssumedInformation))
4371       return indicatePessimisticFixpoint();
4372 
4373     return clampStateAndIndicateChange(getState(), T);
4374   }
4375 
4376   /// See AbstractAttribute::trackStatistics()
4377   void trackStatistics() const override {
4378     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4379   }
4380 };
4381 
4382 /// Dereferenceable attribute for a return value.
4383 struct AADereferenceableReturned final
4384     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4385   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4386       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4387             IRP, A) {}
4388 
4389   /// See AbstractAttribute::trackStatistics()
4390   void trackStatistics() const override {
4391     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4392   }
4393 };
4394 
4395 /// Dereferenceable attribute for an argument
4396 struct AADereferenceableArgument final
4397     : AAArgumentFromCallSiteArguments<AADereferenceable,
4398                                       AADereferenceableImpl> {
4399   using Base =
4400       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4401   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4402       : Base(IRP, A) {}
4403 
4404   /// See AbstractAttribute::trackStatistics()
4405   void trackStatistics() const override {
4406     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4407   }
4408 };
4409 
4410 /// Dereferenceable attribute for a call site argument.
4411 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4412   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4413       : AADereferenceableFloating(IRP, A) {}
4414 
4415   /// See AbstractAttribute::trackStatistics()
4416   void trackStatistics() const override {
4417     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4418   }
4419 };
4420 
4421 /// Dereferenceable attribute deduction for a call site return value.
4422 struct AADereferenceableCallSiteReturned final
4423     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4424   using Base =
4425       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4426   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4427       : Base(IRP, A) {}
4428 
4429   /// See AbstractAttribute::trackStatistics()
4430   void trackStatistics() const override {
4431     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4432   }
4433 };
4434 } // namespace
4435 
4436 // ------------------------ Align Argument Attribute ------------------------
4437 
4438 namespace {
4439 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4440                                     Value &AssociatedValue, const Use *U,
4441                                     const Instruction *I, bool &TrackUse) {
4442   // We need to follow common pointer manipulation uses to the accesses they
4443   // feed into.
4444   if (isa<CastInst>(I)) {
4445     // Follow all but ptr2int casts.
4446     TrackUse = !isa<PtrToIntInst>(I);
4447     return 0;
4448   }
4449   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4450     if (GEP->hasAllConstantIndices())
4451       TrackUse = true;
4452     return 0;
4453   }
4454 
4455   MaybeAlign MA;
4456   if (const auto *CB = dyn_cast<CallBase>(I)) {
4457     if (CB->isBundleOperand(U) || CB->isCallee(U))
4458       return 0;
4459 
4460     unsigned ArgNo = CB->getArgOperandNo(U);
4461     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4462     // As long as we only use known information there is no need to track
4463     // dependences here.
4464     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4465     MA = MaybeAlign(AlignAA.getKnownAlign());
4466   }
4467 
4468   const DataLayout &DL = A.getDataLayout();
4469   const Value *UseV = U->get();
4470   if (auto *SI = dyn_cast<StoreInst>(I)) {
4471     if (SI->getPointerOperand() == UseV)
4472       MA = SI->getAlign();
4473   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4474     if (LI->getPointerOperand() == UseV)
4475       MA = LI->getAlign();
4476   }
4477 
4478   if (!MA || *MA <= QueryingAA.getKnownAlign())
4479     return 0;
4480 
4481   unsigned Alignment = MA->value();
4482   int64_t Offset;
4483 
4484   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4485     if (Base == &AssociatedValue) {
4486       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4487       // So we can say that the maximum power of two which is a divisor of
4488       // gcd(Offset, Alignment) is an alignment.
4489 
4490       uint32_t gcd =
4491           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4492       Alignment = llvm::PowerOf2Floor(gcd);
4493     }
4494   }
4495 
4496   return Alignment;
4497 }
4498 
4499 struct AAAlignImpl : AAAlign {
4500   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4501 
4502   /// See AbstractAttribute::initialize(...).
4503   void initialize(Attributor &A) override {
4504     SmallVector<Attribute, 4> Attrs;
4505     getAttrs({Attribute::Alignment}, Attrs);
4506     for (const Attribute &Attr : Attrs)
4507       takeKnownMaximum(Attr.getValueAsInt());
4508 
4509     Value &V = getAssociatedValue();
4510     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4511 
4512     if (getIRPosition().isFnInterfaceKind() &&
4513         (!getAnchorScope() ||
4514          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4515       indicatePessimisticFixpoint();
4516       return;
4517     }
4518 
4519     if (Instruction *CtxI = getCtxI())
4520       followUsesInMBEC(*this, A, getState(), *CtxI);
4521   }
4522 
4523   /// See AbstractAttribute::manifest(...).
4524   ChangeStatus manifest(Attributor &A) override {
4525     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4526 
4527     // Check for users that allow alignment annotations.
4528     Value &AssociatedValue = getAssociatedValue();
4529     for (const Use &U : AssociatedValue.uses()) {
4530       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4531         if (SI->getPointerOperand() == &AssociatedValue)
4532           if (SI->getAlignment() < getAssumedAlign()) {
4533             STATS_DECLTRACK(AAAlign, Store,
4534                             "Number of times alignment added to a store");
4535             SI->setAlignment(Align(getAssumedAlign()));
4536             LoadStoreChanged = ChangeStatus::CHANGED;
4537           }
4538       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4539         if (LI->getPointerOperand() == &AssociatedValue)
4540           if (LI->getAlignment() < getAssumedAlign()) {
4541             LI->setAlignment(Align(getAssumedAlign()));
4542             STATS_DECLTRACK(AAAlign, Load,
4543                             "Number of times alignment added to a load");
4544             LoadStoreChanged = ChangeStatus::CHANGED;
4545           }
4546       }
4547     }
4548 
4549     ChangeStatus Changed = AAAlign::manifest(A);
4550 
4551     Align InheritAlign =
4552         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4553     if (InheritAlign >= getAssumedAlign())
4554       return LoadStoreChanged;
4555     return Changed | LoadStoreChanged;
4556   }
4557 
4558   // TODO: Provide a helper to determine the implied ABI alignment and check in
4559   //       the existing manifest method and a new one for AAAlignImpl that value
4560   //       to avoid making the alignment explicit if it did not improve.
4561 
4562   /// See AbstractAttribute::getDeducedAttributes
4563   virtual void
4564   getDeducedAttributes(LLVMContext &Ctx,
4565                        SmallVectorImpl<Attribute> &Attrs) const override {
4566     if (getAssumedAlign() > 1)
4567       Attrs.emplace_back(
4568           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4569   }
4570 
4571   /// See followUsesInMBEC
4572   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4573                        AAAlign::StateType &State) {
4574     bool TrackUse = false;
4575 
4576     unsigned int KnownAlign =
4577         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4578     State.takeKnownMaximum(KnownAlign);
4579 
4580     return TrackUse;
4581   }
4582 
4583   /// See AbstractAttribute::getAsStr().
4584   const std::string getAsStr() const override {
4585     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4586                                 "-" + std::to_string(getAssumedAlign()) + ">")
4587                              : "unknown-align";
4588   }
4589 };
4590 
4591 /// Align attribute for a floating value.
4592 struct AAAlignFloating : AAAlignImpl {
4593   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4594 
4595   /// See AbstractAttribute::updateImpl(...).
4596   ChangeStatus updateImpl(Attributor &A) override {
4597     const DataLayout &DL = A.getDataLayout();
4598 
4599     auto VisitValueCB = [&](Value &V, const Instruction *,
4600                             AAAlign::StateType &T, bool Stripped) -> bool {
4601       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4602         return true;
4603       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4604                                            DepClassTy::REQUIRED);
4605       if (!Stripped && this == &AA) {
4606         int64_t Offset;
4607         unsigned Alignment = 1;
4608         if (const Value *Base =
4609                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4610           // TODO: Use AAAlign for the base too.
4611           Align PA = Base->getPointerAlignment(DL);
4612           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4613           // So we can say that the maximum power of two which is a divisor of
4614           // gcd(Offset, Alignment) is an alignment.
4615 
4616           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4617                                                uint32_t(PA.value()));
4618           Alignment = llvm::PowerOf2Floor(gcd);
4619         } else {
4620           Alignment = V.getPointerAlignment(DL).value();
4621         }
4622         // Use only IR information if we did not strip anything.
4623         T.takeKnownMaximum(Alignment);
4624         T.indicatePessimisticFixpoint();
4625       } else {
4626         // Use abstract attribute information.
4627         const AAAlign::StateType &DS = AA.getState();
4628         T ^= DS;
4629       }
4630       return T.isValidState();
4631     };
4632 
4633     StateType T;
4634     bool UsedAssumedInformation = false;
4635     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4636                                           VisitValueCB, getCtxI(),
4637                                           UsedAssumedInformation))
4638       return indicatePessimisticFixpoint();
4639 
4640     // TODO: If we know we visited all incoming values, thus no are assumed
4641     // dead, we can take the known information from the state T.
4642     return clampStateAndIndicateChange(getState(), T);
4643   }
4644 
4645   /// See AbstractAttribute::trackStatistics()
4646   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4647 };
4648 
4649 /// Align attribute for function return value.
4650 struct AAAlignReturned final
4651     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4652   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4653   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4654 
4655   /// See AbstractAttribute::initialize(...).
4656   void initialize(Attributor &A) override {
4657     Base::initialize(A);
4658     Function *F = getAssociatedFunction();
4659     if (!F || F->isDeclaration())
4660       indicatePessimisticFixpoint();
4661   }
4662 
4663   /// See AbstractAttribute::trackStatistics()
4664   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4665 };
4666 
4667 /// Align attribute for function argument.
4668 struct AAAlignArgument final
4669     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4670   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4671   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4672 
4673   /// See AbstractAttribute::manifest(...).
4674   ChangeStatus manifest(Attributor &A) override {
4675     // If the associated argument is involved in a must-tail call we give up
4676     // because we would need to keep the argument alignments of caller and
4677     // callee in-sync. Just does not seem worth the trouble right now.
4678     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4679       return ChangeStatus::UNCHANGED;
4680     return Base::manifest(A);
4681   }
4682 
4683   /// See AbstractAttribute::trackStatistics()
4684   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4685 };
4686 
4687 struct AAAlignCallSiteArgument final : AAAlignFloating {
4688   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4689       : AAAlignFloating(IRP, A) {}
4690 
4691   /// See AbstractAttribute::manifest(...).
4692   ChangeStatus manifest(Attributor &A) override {
4693     // If the associated argument is involved in a must-tail call we give up
4694     // because we would need to keep the argument alignments of caller and
4695     // callee in-sync. Just does not seem worth the trouble right now.
4696     if (Argument *Arg = getAssociatedArgument())
4697       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4698         return ChangeStatus::UNCHANGED;
4699     ChangeStatus Changed = AAAlignImpl::manifest(A);
4700     Align InheritAlign =
4701         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4702     if (InheritAlign >= getAssumedAlign())
4703       Changed = ChangeStatus::UNCHANGED;
4704     return Changed;
4705   }
4706 
4707   /// See AbstractAttribute::updateImpl(Attributor &A).
4708   ChangeStatus updateImpl(Attributor &A) override {
4709     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4710     if (Argument *Arg = getAssociatedArgument()) {
4711       // We only take known information from the argument
4712       // so we do not need to track a dependence.
4713       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4714           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4715       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4716     }
4717     return Changed;
4718   }
4719 
4720   /// See AbstractAttribute::trackStatistics()
4721   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4722 };
4723 
4724 /// Align attribute deduction for a call site return value.
4725 struct AAAlignCallSiteReturned final
4726     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4727   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4728   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4729       : Base(IRP, A) {}
4730 
4731   /// See AbstractAttribute::initialize(...).
4732   void initialize(Attributor &A) override {
4733     Base::initialize(A);
4734     Function *F = getAssociatedFunction();
4735     if (!F || F->isDeclaration())
4736       indicatePessimisticFixpoint();
4737   }
4738 
4739   /// See AbstractAttribute::trackStatistics()
4740   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4741 };
4742 } // namespace
4743 
4744 /// ------------------ Function No-Return Attribute ----------------------------
4745 namespace {
4746 struct AANoReturnImpl : public AANoReturn {
4747   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4748 
4749   /// See AbstractAttribute::initialize(...).
4750   void initialize(Attributor &A) override {
4751     AANoReturn::initialize(A);
4752     Function *F = getAssociatedFunction();
4753     if (!F || F->isDeclaration())
4754       indicatePessimisticFixpoint();
4755   }
4756 
4757   /// See AbstractAttribute::getAsStr().
4758   const std::string getAsStr() const override {
4759     return getAssumed() ? "noreturn" : "may-return";
4760   }
4761 
4762   /// See AbstractAttribute::updateImpl(Attributor &A).
4763   virtual ChangeStatus updateImpl(Attributor &A) override {
4764     auto CheckForNoReturn = [](Instruction &) { return false; };
4765     bool UsedAssumedInformation = false;
4766     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4767                                    {(unsigned)Instruction::Ret},
4768                                    UsedAssumedInformation))
4769       return indicatePessimisticFixpoint();
4770     return ChangeStatus::UNCHANGED;
4771   }
4772 };
4773 
4774 struct AANoReturnFunction final : AANoReturnImpl {
4775   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4776       : AANoReturnImpl(IRP, A) {}
4777 
4778   /// See AbstractAttribute::trackStatistics()
4779   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4780 };
4781 
4782 /// NoReturn attribute deduction for a call sites.
4783 struct AANoReturnCallSite final : AANoReturnImpl {
4784   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4785       : AANoReturnImpl(IRP, A) {}
4786 
4787   /// See AbstractAttribute::initialize(...).
4788   void initialize(Attributor &A) override {
4789     AANoReturnImpl::initialize(A);
4790     if (Function *F = getAssociatedFunction()) {
4791       const IRPosition &FnPos = IRPosition::function(*F);
4792       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4793       if (!FnAA.isAssumedNoReturn())
4794         indicatePessimisticFixpoint();
4795     }
4796   }
4797 
4798   /// See AbstractAttribute::updateImpl(...).
4799   ChangeStatus updateImpl(Attributor &A) override {
4800     // TODO: Once we have call site specific value information we can provide
4801     //       call site specific liveness information and then it makes
4802     //       sense to specialize attributes for call sites arguments instead of
4803     //       redirecting requests to the callee argument.
4804     Function *F = getAssociatedFunction();
4805     const IRPosition &FnPos = IRPosition::function(*F);
4806     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4807     return clampStateAndIndicateChange(getState(), FnAA.getState());
4808   }
4809 
4810   /// See AbstractAttribute::trackStatistics()
4811   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4812 };
4813 } // namespace
4814 
4815 /// ----------------------- Variable Capturing ---------------------------------
4816 
4817 namespace {
4818 /// A class to hold the state of for no-capture attributes.
4819 struct AANoCaptureImpl : public AANoCapture {
4820   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4821 
4822   /// See AbstractAttribute::initialize(...).
4823   void initialize(Attributor &A) override {
4824     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4825       indicateOptimisticFixpoint();
4826       return;
4827     }
4828     Function *AnchorScope = getAnchorScope();
4829     if (isFnInterfaceKind() &&
4830         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4831       indicatePessimisticFixpoint();
4832       return;
4833     }
4834 
4835     // You cannot "capture" null in the default address space.
4836     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4837         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4838       indicateOptimisticFixpoint();
4839       return;
4840     }
4841 
4842     const Function *F =
4843         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4844 
4845     // Check what state the associated function can actually capture.
4846     if (F)
4847       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4848     else
4849       indicatePessimisticFixpoint();
4850   }
4851 
4852   /// See AbstractAttribute::updateImpl(...).
4853   ChangeStatus updateImpl(Attributor &A) override;
4854 
4855   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4856   virtual void
4857   getDeducedAttributes(LLVMContext &Ctx,
4858                        SmallVectorImpl<Attribute> &Attrs) const override {
4859     if (!isAssumedNoCaptureMaybeReturned())
4860       return;
4861 
4862     if (isArgumentPosition()) {
4863       if (isAssumedNoCapture())
4864         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4865       else if (ManifestInternal)
4866         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4867     }
4868   }
4869 
4870   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4871   /// depending on the ability of the function associated with \p IRP to capture
4872   /// state in memory and through "returning/throwing", respectively.
4873   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4874                                                    const Function &F,
4875                                                    BitIntegerState &State) {
4876     // TODO: Once we have memory behavior attributes we should use them here.
4877 
4878     // If we know we cannot communicate or write to memory, we do not care about
4879     // ptr2int anymore.
4880     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4881         F.getReturnType()->isVoidTy()) {
4882       State.addKnownBits(NO_CAPTURE);
4883       return;
4884     }
4885 
4886     // A function cannot capture state in memory if it only reads memory, it can
4887     // however return/throw state and the state might be influenced by the
4888     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4889     if (F.onlyReadsMemory())
4890       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4891 
4892     // A function cannot communicate state back if it does not through
4893     // exceptions and doesn not return values.
4894     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4895       State.addKnownBits(NOT_CAPTURED_IN_RET);
4896 
4897     // Check existing "returned" attributes.
4898     int ArgNo = IRP.getCalleeArgNo();
4899     if (F.doesNotThrow() && ArgNo >= 0) {
4900       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4901         if (F.hasParamAttribute(u, Attribute::Returned)) {
4902           if (u == unsigned(ArgNo))
4903             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4904           else if (F.onlyReadsMemory())
4905             State.addKnownBits(NO_CAPTURE);
4906           else
4907             State.addKnownBits(NOT_CAPTURED_IN_RET);
4908           break;
4909         }
4910     }
4911   }
4912 
4913   /// See AbstractState::getAsStr().
4914   const std::string getAsStr() const override {
4915     if (isKnownNoCapture())
4916       return "known not-captured";
4917     if (isAssumedNoCapture())
4918       return "assumed not-captured";
4919     if (isKnownNoCaptureMaybeReturned())
4920       return "known not-captured-maybe-returned";
4921     if (isAssumedNoCaptureMaybeReturned())
4922       return "assumed not-captured-maybe-returned";
4923     return "assumed-captured";
4924   }
4925 
4926   /// Check the use \p U and update \p State accordingly. Return true if we
4927   /// should continue to update the state.
4928   bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
4929                 bool &Follow) {
4930     Instruction *UInst = cast<Instruction>(U.getUser());
4931     LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
4932                       << *UInst << "\n");
4933 
4934     // Deal with ptr2int by following uses.
4935     if (isa<PtrToIntInst>(UInst)) {
4936       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4937       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
4938                           /* Return */ true);
4939     }
4940 
4941     // For stores we already checked if we can follow them, if they make it
4942     // here we give up.
4943     if (isa<StoreInst>(UInst))
4944       return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
4945                           /* Return */ false);
4946 
4947     // Explicitly catch return instructions.
4948     if (isa<ReturnInst>(UInst)) {
4949       if (UInst->getFunction() == getAnchorScope())
4950         return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
4951                             /* Return */ true);
4952       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
4953                           /* Return */ true);
4954     }
4955 
4956     // For now we only use special logic for call sites. However, the tracker
4957     // itself knows about a lot of other non-capturing cases already.
4958     auto *CB = dyn_cast<CallBase>(UInst);
4959     if (!CB || !CB->isArgOperand(&U))
4960       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
4961                           /* Return */ true);
4962 
4963     unsigned ArgNo = CB->getArgOperandNo(&U);
4964     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4965     // If we have a abstract no-capture attribute for the argument we can use
4966     // it to justify a non-capture attribute here. This allows recursion!
4967     auto &ArgNoCaptureAA =
4968         A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
4969     if (ArgNoCaptureAA.isAssumedNoCapture())
4970       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
4971                           /* Return */ false);
4972     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4973       Follow = true;
4974       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
4975                           /* Return */ false);
4976     }
4977 
4978     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4979     return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
4980                         /* Return */ true);
4981   }
4982 
4983   /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
4984   /// \p CapturedInRet, then return true if we should continue updating the
4985   /// state.
4986   static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
4987                            bool CapturedInInt, bool CapturedInRet) {
4988     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4989                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4990     if (CapturedInMem)
4991       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4992     if (CapturedInInt)
4993       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4994     if (CapturedInRet)
4995       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4996     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4997   }
4998 };
4999 
5000 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5001   const IRPosition &IRP = getIRPosition();
5002   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5003                                   : &IRP.getAssociatedValue();
5004   if (!V)
5005     return indicatePessimisticFixpoint();
5006 
5007   const Function *F =
5008       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5009   assert(F && "Expected a function!");
5010   const IRPosition &FnPos = IRPosition::function(*F);
5011 
5012   AANoCapture::StateType T;
5013 
5014   // Readonly means we cannot capture through memory.
5015   bool IsKnown;
5016   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5017     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5018     if (IsKnown)
5019       addKnownBits(NOT_CAPTURED_IN_MEM);
5020   }
5021 
5022   // Make sure all returned values are different than the underlying value.
5023   // TODO: we could do this in a more sophisticated way inside
5024   //       AAReturnedValues, e.g., track all values that escape through returns
5025   //       directly somehow.
5026   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5027     bool SeenConstant = false;
5028     for (auto &It : RVAA.returned_values()) {
5029       if (isa<Constant>(It.first)) {
5030         if (SeenConstant)
5031           return false;
5032         SeenConstant = true;
5033       } else if (!isa<Argument>(It.first) ||
5034                  It.first == getAssociatedArgument())
5035         return false;
5036     }
5037     return true;
5038   };
5039 
5040   const auto &NoUnwindAA =
5041       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5042   if (NoUnwindAA.isAssumedNoUnwind()) {
5043     bool IsVoidTy = F->getReturnType()->isVoidTy();
5044     const AAReturnedValues *RVAA =
5045         IsVoidTy ? nullptr
5046                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5047 
5048                                                  DepClassTy::OPTIONAL);
5049     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5050       T.addKnownBits(NOT_CAPTURED_IN_RET);
5051       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5052         return ChangeStatus::UNCHANGED;
5053       if (NoUnwindAA.isKnownNoUnwind() &&
5054           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5055         addKnownBits(NOT_CAPTURED_IN_RET);
5056         if (isKnown(NOT_CAPTURED_IN_MEM))
5057           return indicateOptimisticFixpoint();
5058       }
5059     }
5060   }
5061 
5062   auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5063     const auto &DerefAA = A.getAAFor<AADereferenceable>(
5064         *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5065     return DerefAA.getAssumedDereferenceableBytes();
5066   };
5067 
5068   auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5069     switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5070     case UseCaptureKind::NO_CAPTURE:
5071       return true;
5072     case UseCaptureKind::MAY_CAPTURE:
5073       return checkUse(A, T, U, Follow);
5074     case UseCaptureKind::PASSTHROUGH:
5075       Follow = true;
5076       return true;
5077     }
5078     llvm_unreachable("Unexpected use capture kind!");
5079   };
5080 
5081   if (!A.checkForAllUses(UseCheck, *this, *V))
5082     return indicatePessimisticFixpoint();
5083 
5084   AANoCapture::StateType &S = getState();
5085   auto Assumed = S.getAssumed();
5086   S.intersectAssumedBits(T.getAssumed());
5087   if (!isAssumedNoCaptureMaybeReturned())
5088     return indicatePessimisticFixpoint();
5089   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5090                                    : ChangeStatus::CHANGED;
5091 }
5092 
5093 /// NoCapture attribute for function arguments.
5094 struct AANoCaptureArgument final : AANoCaptureImpl {
5095   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5096       : AANoCaptureImpl(IRP, A) {}
5097 
5098   /// See AbstractAttribute::trackStatistics()
5099   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5100 };
5101 
5102 /// NoCapture attribute for call site arguments.
5103 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5104   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5105       : AANoCaptureImpl(IRP, A) {}
5106 
5107   /// See AbstractAttribute::initialize(...).
5108   void initialize(Attributor &A) override {
5109     if (Argument *Arg = getAssociatedArgument())
5110       if (Arg->hasByValAttr())
5111         indicateOptimisticFixpoint();
5112     AANoCaptureImpl::initialize(A);
5113   }
5114 
5115   /// See AbstractAttribute::updateImpl(...).
5116   ChangeStatus updateImpl(Attributor &A) override {
5117     // TODO: Once we have call site specific value information we can provide
5118     //       call site specific liveness information and then it makes
5119     //       sense to specialize attributes for call sites arguments instead of
5120     //       redirecting requests to the callee argument.
5121     Argument *Arg = getAssociatedArgument();
5122     if (!Arg)
5123       return indicatePessimisticFixpoint();
5124     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5125     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5126     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5127   }
5128 
5129   /// See AbstractAttribute::trackStatistics()
5130   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5131 };
5132 
5133 /// NoCapture attribute for floating values.
5134 struct AANoCaptureFloating final : AANoCaptureImpl {
5135   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5136       : AANoCaptureImpl(IRP, A) {}
5137 
5138   /// See AbstractAttribute::trackStatistics()
5139   void trackStatistics() const override {
5140     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5141   }
5142 };
5143 
5144 /// NoCapture attribute for function return value.
5145 struct AANoCaptureReturned final : AANoCaptureImpl {
5146   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5147       : AANoCaptureImpl(IRP, A) {
5148     llvm_unreachable("NoCapture is not applicable to function returns!");
5149   }
5150 
5151   /// See AbstractAttribute::initialize(...).
5152   void initialize(Attributor &A) override {
5153     llvm_unreachable("NoCapture is not applicable to function returns!");
5154   }
5155 
5156   /// See AbstractAttribute::updateImpl(...).
5157   ChangeStatus updateImpl(Attributor &A) override {
5158     llvm_unreachable("NoCapture is not applicable to function returns!");
5159   }
5160 
5161   /// See AbstractAttribute::trackStatistics()
5162   void trackStatistics() const override {}
5163 };
5164 
5165 /// NoCapture attribute deduction for a call site return value.
5166 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5167   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5168       : AANoCaptureImpl(IRP, A) {}
5169 
5170   /// See AbstractAttribute::initialize(...).
5171   void initialize(Attributor &A) override {
5172     const Function *F = getAnchorScope();
5173     // Check what state the associated function can actually capture.
5174     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5175   }
5176 
5177   /// See AbstractAttribute::trackStatistics()
5178   void trackStatistics() const override {
5179     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5180   }
5181 };
5182 } // namespace
5183 
5184 /// ------------------ Value Simplify Attribute ----------------------------
5185 
5186 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5187   // FIXME: Add a typecast support.
5188   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5189       SimplifiedAssociatedValue, Other, Ty);
5190   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5191     return false;
5192 
5193   LLVM_DEBUG({
5194     if (SimplifiedAssociatedValue.hasValue())
5195       dbgs() << "[ValueSimplify] is assumed to be "
5196              << **SimplifiedAssociatedValue << "\n";
5197     else
5198       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5199   });
5200   return true;
5201 }
5202 
5203 namespace {
5204 struct AAValueSimplifyImpl : AAValueSimplify {
5205   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5206       : AAValueSimplify(IRP, A) {}
5207 
5208   /// See AbstractAttribute::initialize(...).
5209   void initialize(Attributor &A) override {
5210     if (getAssociatedValue().getType()->isVoidTy())
5211       indicatePessimisticFixpoint();
5212     if (A.hasSimplificationCallback(getIRPosition()))
5213       indicatePessimisticFixpoint();
5214   }
5215 
5216   /// See AbstractAttribute::getAsStr().
5217   const std::string getAsStr() const override {
5218     LLVM_DEBUG({
5219       errs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
5220       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5221         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5222     });
5223     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5224                           : "not-simple";
5225   }
5226 
5227   /// See AbstractAttribute::trackStatistics()
5228   void trackStatistics() const override {}
5229 
5230   /// See AAValueSimplify::getAssumedSimplifiedValue()
5231   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5232     return SimplifiedAssociatedValue;
5233   }
5234 
5235   /// Ensure the return value is \p V with type \p Ty, if not possible return
5236   /// nullptr. If \p Check is true we will only verify such an operation would
5237   /// suceed and return a non-nullptr value if that is the case. No IR is
5238   /// generated or modified.
5239   static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
5240                            bool Check) {
5241     if (auto *TypedV = AA::getWithType(V, Ty))
5242       return TypedV;
5243     if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
5244       return Check ? &V
5245                    : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
5246                                                                       "", CtxI);
5247     return nullptr;
5248   }
5249 
5250   /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
5251   /// If \p Check is true we will only verify such an operation would suceed and
5252   /// return a non-nullptr value if that is the case. No IR is generated or
5253   /// modified.
5254   static Value *reproduceInst(Attributor &A,
5255                               const AbstractAttribute &QueryingAA,
5256                               Instruction &I, Type &Ty, Instruction *CtxI,
5257                               bool Check, ValueToValueMapTy &VMap) {
5258     assert(CtxI && "Cannot reproduce an instruction without context!");
5259     if (Check && (I.mayReadFromMemory() ||
5260                   !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
5261                                                 /* TLI */ nullptr)))
5262       return nullptr;
5263     for (Value *Op : I.operands()) {
5264       Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
5265       if (!NewOp) {
5266         assert(Check && "Manifest of new value unexpectedly failed!");
5267         return nullptr;
5268       }
5269       if (!Check)
5270         VMap[Op] = NewOp;
5271     }
5272     if (Check)
5273       return &I;
5274 
5275     Instruction *CloneI = I.clone();
5276     VMap[&I] = CloneI;
5277     CloneI->insertBefore(CtxI);
5278     RemapInstruction(CloneI, VMap);
5279     return CloneI;
5280   }
5281 
5282   /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
5283   /// If \p Check is true we will only verify such an operation would suceed and
5284   /// return a non-nullptr value if that is the case. No IR is generated or
5285   /// modified.
5286   static Value *reproduceValue(Attributor &A,
5287                                const AbstractAttribute &QueryingAA, Value &V,
5288                                Type &Ty, Instruction *CtxI, bool Check,
5289                                ValueToValueMapTy &VMap) {
5290     if (const auto &NewV = VMap.lookup(&V))
5291       return NewV;
5292     bool UsedAssumedInformation = false;
5293     Optional<Value *> SimpleV =
5294         A.getAssumedSimplified(V, QueryingAA, UsedAssumedInformation);
5295     if (!SimpleV.hasValue())
5296       return PoisonValue::get(&Ty);
5297     Value *EffectiveV = &V;
5298     if (SimpleV.getValue())
5299       EffectiveV = SimpleV.getValue();
5300     if (auto *C = dyn_cast<Constant>(EffectiveV))
5301       if (!C->canTrap())
5302         return C;
5303     if (CtxI && AA::isValidAtPosition(*EffectiveV, *CtxI, A.getInfoCache()))
5304       return ensureType(A, *EffectiveV, Ty, CtxI, Check);
5305     if (auto *I = dyn_cast<Instruction>(EffectiveV))
5306       if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
5307         return ensureType(A, *NewV, Ty, CtxI, Check);
5308     return nullptr;
5309   }
5310 
5311   /// Return a value we can use as replacement for the associated one, or
5312   /// nullptr if we don't have one that makes sense.
5313   Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
5314     Value *NewV = SimplifiedAssociatedValue.hasValue()
5315                       ? SimplifiedAssociatedValue.getValue()
5316                       : UndefValue::get(getAssociatedType());
5317     if (NewV && NewV != &getAssociatedValue()) {
5318       ValueToValueMapTy VMap;
5319       // First verify we can reprduce the value with the required type at the
5320       // context location before we actually start modifying the IR.
5321       if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5322                          /* CheckOnly */ true, VMap))
5323         return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5324                               /* CheckOnly */ false, VMap);
5325     }
5326     return nullptr;
5327   }
5328 
5329   /// Helper function for querying AAValueSimplify and updating candicate.
5330   /// \param IRP The value position we are trying to unify with SimplifiedValue
5331   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5332                       const IRPosition &IRP, bool Simplify = true) {
5333     bool UsedAssumedInformation = false;
5334     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5335     if (Simplify)
5336       QueryingValueSimplified =
5337           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5338     return unionAssumed(QueryingValueSimplified);
5339   }
5340 
5341   /// Returns a candidate is found or not
5342   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5343     if (!getAssociatedValue().getType()->isIntegerTy())
5344       return false;
5345 
5346     // This will also pass the call base context.
5347     const auto &AA =
5348         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5349 
5350     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5351 
5352     if (!COpt.hasValue()) {
5353       SimplifiedAssociatedValue = llvm::None;
5354       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5355       return true;
5356     }
5357     if (auto *C = COpt.getValue()) {
5358       SimplifiedAssociatedValue = C;
5359       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5360       return true;
5361     }
5362     return false;
5363   }
5364 
5365   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5366     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5367       return true;
5368     if (askSimplifiedValueFor<AAPotentialValues>(A))
5369       return true;
5370     return false;
5371   }
5372 
5373   /// See AbstractAttribute::manifest(...).
5374   ChangeStatus manifest(Attributor &A) override {
5375     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5376     for (auto &U : getAssociatedValue().uses()) {
5377       // Check if we need to adjust the insertion point to make sure the IR is
5378       // valid.
5379       Instruction *IP = dyn_cast<Instruction>(U.getUser());
5380       if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
5381         IP = PHI->getIncomingBlock(U)->getTerminator();
5382       if (auto *NewV = manifestReplacementValue(A, IP)) {
5383         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
5384                           << " -> " << *NewV << " :: " << *this << "\n");
5385         if (A.changeUseAfterManifest(U, *NewV))
5386           Changed = ChangeStatus::CHANGED;
5387       }
5388     }
5389 
5390     return Changed | AAValueSimplify::manifest(A);
5391   }
5392 
5393   /// See AbstractState::indicatePessimisticFixpoint(...).
5394   ChangeStatus indicatePessimisticFixpoint() override {
5395     SimplifiedAssociatedValue = &getAssociatedValue();
5396     return AAValueSimplify::indicatePessimisticFixpoint();
5397   }
5398 
5399   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5400                          LoadInst &L, function_ref<bool(Value &)> Union) {
5401     auto UnionWrapper = [&](Value &V, Value &Obj) {
5402       if (isa<AllocaInst>(Obj))
5403         return Union(V);
5404       if (!AA::isDynamicallyUnique(A, AA, V))
5405         return false;
5406       ValueToValueMapTy VMap;
5407       if (!reproduceValue(A, AA, V, *L.getType(), &L, /* CheckOnly */ true,
5408                           VMap))
5409         return false;
5410       return Union(V);
5411     };
5412 
5413     Value &Ptr = *L.getPointerOperand();
5414     SmallVector<Value *, 8> Objects;
5415     bool UsedAssumedInformation = false;
5416     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L,
5417                                          UsedAssumedInformation))
5418       return false;
5419 
5420     const auto *TLI =
5421         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5422     for (Value *Obj : Objects) {
5423       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5424       if (isa<UndefValue>(Obj))
5425         continue;
5426       if (isa<ConstantPointerNull>(Obj)) {
5427         // A null pointer access can be undefined but any offset from null may
5428         // be OK. We do not try to optimize the latter.
5429         if (!NullPointerIsDefined(L.getFunction(),
5430                                   Ptr.getType()->getPointerAddressSpace()) &&
5431             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5432           continue;
5433         return false;
5434       }
5435       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5436       if (!InitialVal || !Union(*InitialVal))
5437         return false;
5438 
5439       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5440                            "propagation, checking accesses next.\n");
5441 
5442       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5443         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5444         if (Acc.isWrittenValueYetUndetermined())
5445           return true;
5446         Value *Content = Acc.getWrittenValue();
5447         if (!Content)
5448           return false;
5449         Value *CastedContent =
5450             AA::getWithType(*Content, *AA.getAssociatedType());
5451         if (!CastedContent)
5452           return false;
5453         if (IsExact)
5454           return UnionWrapper(*CastedContent, *Obj);
5455         if (auto *C = dyn_cast<Constant>(CastedContent))
5456           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5457             return UnionWrapper(*CastedContent, *Obj);
5458         return false;
5459       };
5460 
5461       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5462                                            DepClassTy::REQUIRED);
5463       if (!PI.forallInterferingAccesses(A, AA, L, CheckAccess))
5464         return false;
5465     }
5466     return true;
5467   }
5468 };
5469 
5470 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5471   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5472       : AAValueSimplifyImpl(IRP, A) {}
5473 
5474   void initialize(Attributor &A) override {
5475     AAValueSimplifyImpl::initialize(A);
5476     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5477       indicatePessimisticFixpoint();
5478     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5479                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5480                 /* IgnoreSubsumingPositions */ true))
5481       indicatePessimisticFixpoint();
5482   }
5483 
5484   /// See AbstractAttribute::updateImpl(...).
5485   ChangeStatus updateImpl(Attributor &A) override {
5486     // Byval is only replacable if it is readonly otherwise we would write into
5487     // the replaced value and not the copy that byval creates implicitly.
5488     Argument *Arg = getAssociatedArgument();
5489     if (Arg->hasByValAttr()) {
5490       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5491       //       there is no race by not copying a constant byval.
5492       bool IsKnown;
5493       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5494         return indicatePessimisticFixpoint();
5495     }
5496 
5497     auto Before = SimplifiedAssociatedValue;
5498 
5499     auto PredForCallSite = [&](AbstractCallSite ACS) {
5500       const IRPosition &ACSArgPos =
5501           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5502       // Check if a coresponding argument was found or if it is on not
5503       // associated (which can happen for callback calls).
5504       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5505         return false;
5506 
5507       // Simplify the argument operand explicitly and check if the result is
5508       // valid in the current scope. This avoids refering to simplified values
5509       // in other functions, e.g., we don't want to say a an argument in a
5510       // static function is actually an argument in a different function.
5511       bool UsedAssumedInformation = false;
5512       Optional<Constant *> SimpleArgOp =
5513           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5514       if (!SimpleArgOp.hasValue())
5515         return true;
5516       if (!SimpleArgOp.getValue())
5517         return false;
5518       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5519         return false;
5520       return unionAssumed(*SimpleArgOp);
5521     };
5522 
5523     // Generate a answer specific to a call site context.
5524     bool Success;
5525     bool UsedAssumedInformation = false;
5526     if (hasCallBaseContext() &&
5527         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5528       Success = PredForCallSite(
5529           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5530     else
5531       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5532                                        UsedAssumedInformation);
5533 
5534     if (!Success)
5535       if (!askSimplifiedValueForOtherAAs(A))
5536         return indicatePessimisticFixpoint();
5537 
5538     // If a candicate was found in this update, return CHANGED.
5539     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5540                                                : ChangeStatus ::CHANGED;
5541   }
5542 
5543   /// See AbstractAttribute::trackStatistics()
5544   void trackStatistics() const override {
5545     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5546   }
5547 };
5548 
5549 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5550   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5551       : AAValueSimplifyImpl(IRP, A) {}
5552 
5553   /// See AAValueSimplify::getAssumedSimplifiedValue()
5554   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5555     if (!isValidState())
5556       return nullptr;
5557     return SimplifiedAssociatedValue;
5558   }
5559 
5560   /// See AbstractAttribute::updateImpl(...).
5561   ChangeStatus updateImpl(Attributor &A) override {
5562     auto Before = SimplifiedAssociatedValue;
5563 
5564     auto ReturnInstCB = [&](Instruction &I) {
5565       auto &RI = cast<ReturnInst>(I);
5566       return checkAndUpdate(
5567           A, *this,
5568           IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
5569     };
5570 
5571     bool UsedAssumedInformation = false;
5572     if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
5573                                    UsedAssumedInformation))
5574       if (!askSimplifiedValueForOtherAAs(A))
5575         return indicatePessimisticFixpoint();
5576 
5577     // If a candicate was found in this update, return CHANGED.
5578     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5579                                                : ChangeStatus ::CHANGED;
5580   }
5581 
5582   ChangeStatus manifest(Attributor &A) override {
5583     // We queried AAValueSimplify for the returned values so they will be
5584     // replaced if a simplified form was found. Nothing to do here.
5585     return ChangeStatus::UNCHANGED;
5586   }
5587 
5588   /// See AbstractAttribute::trackStatistics()
5589   void trackStatistics() const override {
5590     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5591   }
5592 };
5593 
5594 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5595   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5596       : AAValueSimplifyImpl(IRP, A) {}
5597 
5598   /// See AbstractAttribute::initialize(...).
5599   void initialize(Attributor &A) override {
5600     AAValueSimplifyImpl::initialize(A);
5601     Value &V = getAnchorValue();
5602 
5603     // TODO: add other stuffs
5604     if (isa<Constant>(V))
5605       indicatePessimisticFixpoint();
5606   }
5607 
5608   /// Check if \p Cmp is a comparison we can simplify.
5609   ///
5610   /// We handle multiple cases, one in which at least one operand is an
5611   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5612   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5613   /// will be updated.
5614   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5615     auto Union = [&](Value &V) {
5616       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5617           SimplifiedAssociatedValue, &V, V.getType());
5618       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5619     };
5620 
5621     Value *LHS = Cmp.getOperand(0);
5622     Value *RHS = Cmp.getOperand(1);
5623 
5624     // Simplify the operands first.
5625     bool UsedAssumedInformation = false;
5626     const auto &SimplifiedLHS =
5627         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5628                                *this, UsedAssumedInformation);
5629     if (!SimplifiedLHS.hasValue())
5630       return true;
5631     if (!SimplifiedLHS.getValue())
5632       return false;
5633     LHS = *SimplifiedLHS;
5634 
5635     const auto &SimplifiedRHS =
5636         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5637                                *this, UsedAssumedInformation);
5638     if (!SimplifiedRHS.hasValue())
5639       return true;
5640     if (!SimplifiedRHS.getValue())
5641       return false;
5642     RHS = *SimplifiedRHS;
5643 
5644     LLVMContext &Ctx = Cmp.getContext();
5645     // Handle the trivial case first in which we don't even need to think about
5646     // null or non-null.
5647     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5648       Constant *NewVal =
5649           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5650       if (!Union(*NewVal))
5651         return false;
5652       if (!UsedAssumedInformation)
5653         indicateOptimisticFixpoint();
5654       return true;
5655     }
5656 
5657     // From now on we only handle equalities (==, !=).
5658     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5659     if (!ICmp || !ICmp->isEquality())
5660       return false;
5661 
5662     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5663     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5664     if (!LHSIsNull && !RHSIsNull)
5665       return false;
5666 
5667     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5668     // non-nullptr operand and if we assume it's non-null we can conclude the
5669     // result of the comparison.
5670     assert((LHSIsNull || RHSIsNull) &&
5671            "Expected nullptr versus non-nullptr comparison at this point");
5672 
5673     // The index is the operand that we assume is not null.
5674     unsigned PtrIdx = LHSIsNull;
5675     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5676         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5677         DepClassTy::REQUIRED);
5678     if (!PtrNonNullAA.isAssumedNonNull())
5679       return false;
5680     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5681 
5682     // The new value depends on the predicate, true for != and false for ==.
5683     Constant *NewVal = ConstantInt::get(
5684         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5685     if (!Union(*NewVal))
5686       return false;
5687 
5688     if (!UsedAssumedInformation)
5689       indicateOptimisticFixpoint();
5690 
5691     return true;
5692   }
5693 
5694   bool updateWithLoad(Attributor &A, LoadInst &L) {
5695     auto Union = [&](Value &V) {
5696       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5697           SimplifiedAssociatedValue, &V, L.getType());
5698       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5699     };
5700     return handleLoad(A, *this, L, Union);
5701   }
5702 
5703   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5704   /// simplify any operand of the instruction \p I. Return true if successful,
5705   /// in that case SimplifiedAssociatedValue will be updated.
5706   bool handleGenericInst(Attributor &A, Instruction &I) {
5707     bool SomeSimplified = false;
5708     bool UsedAssumedInformation = false;
5709 
5710     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5711     int Idx = 0;
5712     for (Value *Op : I.operands()) {
5713       const auto &SimplifiedOp =
5714           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5715                                  *this, UsedAssumedInformation);
5716       // If we are not sure about any operand we are not sure about the entire
5717       // instruction, we'll wait.
5718       if (!SimplifiedOp.hasValue())
5719         return true;
5720 
5721       if (SimplifiedOp.getValue())
5722         NewOps[Idx] = SimplifiedOp.getValue();
5723       else
5724         NewOps[Idx] = Op;
5725 
5726       SomeSimplified |= (NewOps[Idx] != Op);
5727       ++Idx;
5728     }
5729 
5730     // We won't bother with the InstSimplify interface if we didn't simplify any
5731     // operand ourselves.
5732     if (!SomeSimplified)
5733       return false;
5734 
5735     InformationCache &InfoCache = A.getInfoCache();
5736     Function *F = I.getFunction();
5737     const auto *DT =
5738         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5739     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5740     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5741     OptimizationRemarkEmitter *ORE = nullptr;
5742 
5743     const DataLayout &DL = I.getModule()->getDataLayout();
5744     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5745     if (Value *SimplifiedI =
5746             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5747       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5748           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5749       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5750     }
5751     return false;
5752   }
5753 
5754   /// See AbstractAttribute::updateImpl(...).
5755   ChangeStatus updateImpl(Attributor &A) override {
5756     auto Before = SimplifiedAssociatedValue;
5757 
5758     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5759                             bool Stripped) -> bool {
5760       auto &AA = A.getAAFor<AAValueSimplify>(
5761           *this, IRPosition::value(V, getCallBaseContext()),
5762           DepClassTy::REQUIRED);
5763       if (!Stripped && this == &AA) {
5764 
5765         if (auto *I = dyn_cast<Instruction>(&V)) {
5766           if (auto *LI = dyn_cast<LoadInst>(&V))
5767             if (updateWithLoad(A, *LI))
5768               return true;
5769           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5770             if (handleCmp(A, *Cmp))
5771               return true;
5772           if (handleGenericInst(A, *I))
5773             return true;
5774         }
5775         // TODO: Look the instruction and check recursively.
5776 
5777         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5778                           << "\n");
5779         return false;
5780       }
5781       return checkAndUpdate(A, *this,
5782                             IRPosition::value(V, getCallBaseContext()));
5783     };
5784 
5785     bool Dummy = false;
5786     bool UsedAssumedInformation = false;
5787     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5788                                      VisitValueCB, getCtxI(),
5789                                      UsedAssumedInformation,
5790                                      /* UseValueSimplify */ false))
5791       if (!askSimplifiedValueForOtherAAs(A))
5792         return indicatePessimisticFixpoint();
5793 
5794     // If a candicate was found in this update, return CHANGED.
5795     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5796                                                : ChangeStatus ::CHANGED;
5797   }
5798 
5799   /// See AbstractAttribute::trackStatistics()
5800   void trackStatistics() const override {
5801     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5802   }
5803 };
5804 
5805 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5806   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5807       : AAValueSimplifyImpl(IRP, A) {}
5808 
5809   /// See AbstractAttribute::initialize(...).
5810   void initialize(Attributor &A) override {
5811     SimplifiedAssociatedValue = nullptr;
5812     indicateOptimisticFixpoint();
5813   }
5814   /// See AbstractAttribute::initialize(...).
5815   ChangeStatus updateImpl(Attributor &A) override {
5816     llvm_unreachable(
5817         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5818   }
5819   /// See AbstractAttribute::trackStatistics()
5820   void trackStatistics() const override {
5821     STATS_DECLTRACK_FN_ATTR(value_simplify)
5822   }
5823 };
5824 
5825 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5826   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5827       : AAValueSimplifyFunction(IRP, A) {}
5828   /// See AbstractAttribute::trackStatistics()
5829   void trackStatistics() const override {
5830     STATS_DECLTRACK_CS_ATTR(value_simplify)
5831   }
5832 };
5833 
5834 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5835   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5836       : AAValueSimplifyImpl(IRP, A) {}
5837 
5838   void initialize(Attributor &A) override {
5839     AAValueSimplifyImpl::initialize(A);
5840     Function *Fn = getAssociatedFunction();
5841     if (!Fn) {
5842       indicatePessimisticFixpoint();
5843       return;
5844     }
5845     for (Argument &Arg : Fn->args()) {
5846       if (Arg.hasReturnedAttr()) {
5847         auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
5848                                                  Arg.getArgNo());
5849         if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
5850             checkAndUpdate(A, *this, IRP))
5851           indicateOptimisticFixpoint();
5852         else
5853           indicatePessimisticFixpoint();
5854         return;
5855       }
5856     }
5857   }
5858 
5859   /// See AbstractAttribute::updateImpl(...).
5860   ChangeStatus updateImpl(Attributor &A) override {
5861     auto Before = SimplifiedAssociatedValue;
5862     auto &RetAA = A.getAAFor<AAReturnedValues>(
5863         *this, IRPosition::function(*getAssociatedFunction()),
5864         DepClassTy::REQUIRED);
5865     auto PredForReturned =
5866         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5867           bool UsedAssumedInformation = false;
5868           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5869               &RetVal, *cast<CallBase>(getCtxI()), *this,
5870               UsedAssumedInformation);
5871           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5872               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5873           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5874         };
5875     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5876       if (!askSimplifiedValueForOtherAAs(A))
5877         return indicatePessimisticFixpoint();
5878     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5879                                                : ChangeStatus ::CHANGED;
5880   }
5881 
5882   void trackStatistics() const override {
5883     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5884   }
5885 };
5886 
5887 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5888   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5889       : AAValueSimplifyFloating(IRP, A) {}
5890 
5891   /// See AbstractAttribute::manifest(...).
5892   ChangeStatus manifest(Attributor &A) override {
5893     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5894 
5895     if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
5896       Use &U = cast<CallBase>(&getAnchorValue())
5897                    ->getArgOperandUse(getCallSiteArgNo());
5898       if (A.changeUseAfterManifest(U, *NewV))
5899         Changed = ChangeStatus::CHANGED;
5900     }
5901 
5902     return Changed | AAValueSimplify::manifest(A);
5903   }
5904 
5905   void trackStatistics() const override {
5906     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5907   }
5908 };
5909 } // namespace
5910 
5911 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5912 namespace {
5913 struct AAHeapToStackFunction final : public AAHeapToStack {
5914 
5915   struct AllocationInfo {
5916     /// The call that allocates the memory.
5917     CallBase *const CB;
5918 
5919     /// The library function id for the allocation.
5920     LibFunc LibraryFunctionId = NotLibFunc;
5921 
5922     /// The status wrt. a rewrite.
5923     enum {
5924       STACK_DUE_TO_USE,
5925       STACK_DUE_TO_FREE,
5926       INVALID,
5927     } Status = STACK_DUE_TO_USE;
5928 
5929     /// Flag to indicate if we encountered a use that might free this allocation
5930     /// but which is not in the deallocation infos.
5931     bool HasPotentiallyFreeingUnknownUses = false;
5932 
5933     /// The set of free calls that use this allocation.
5934     SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
5935   };
5936 
5937   struct DeallocationInfo {
5938     /// The call that deallocates the memory.
5939     CallBase *const CB;
5940 
5941     /// Flag to indicate if we don't know all objects this deallocation might
5942     /// free.
5943     bool MightFreeUnknownObjects = false;
5944 
5945     /// The set of allocation calls that are potentially freed.
5946     SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
5947   };
5948 
5949   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5950       : AAHeapToStack(IRP, A) {}
5951 
5952   ~AAHeapToStackFunction() {
5953     // Ensure we call the destructor so we release any memory allocated in the
5954     // sets.
5955     for (auto &It : AllocationInfos)
5956       It.second->~AllocationInfo();
5957     for (auto &It : DeallocationInfos)
5958       It.second->~DeallocationInfo();
5959   }
5960 
5961   void initialize(Attributor &A) override {
5962     AAHeapToStack::initialize(A);
5963 
5964     const Function *F = getAnchorScope();
5965     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5966 
5967     auto AllocationIdentifierCB = [&](Instruction &I) {
5968       CallBase *CB = dyn_cast<CallBase>(&I);
5969       if (!CB)
5970         return true;
5971       if (isFreeCall(CB, TLI)) {
5972         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5973         return true;
5974       }
5975       // To do heap to stack, we need to know that the allocation itself is
5976       // removable once uses are rewritten, and that we can initialize the
5977       // alloca to the same pattern as the original allocation result.
5978       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5979         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5980         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5981           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5982           AllocationInfos[CB] = AI;
5983           if (TLI)
5984             TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5985         }
5986       }
5987       return true;
5988     };
5989 
5990     bool UsedAssumedInformation = false;
5991     bool Success = A.checkForAllCallLikeInstructions(
5992         AllocationIdentifierCB, *this, UsedAssumedInformation,
5993         /* CheckBBLivenessOnly */ false,
5994         /* CheckPotentiallyDead */ true);
5995     (void)Success;
5996     assert(Success && "Did not expect the call base visit callback to fail!");
5997 
5998     Attributor::SimplifictionCallbackTy SCB =
5999         [](const IRPosition &, const AbstractAttribute *,
6000            bool &) -> Optional<Value *> { return nullptr; };
6001     for (const auto &It : AllocationInfos)
6002       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6003                                        SCB);
6004     for (const auto &It : DeallocationInfos)
6005       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6006                                        SCB);
6007   }
6008 
6009   const std::string getAsStr() const override {
6010     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
6011     for (const auto &It : AllocationInfos) {
6012       if (It.second->Status == AllocationInfo::INVALID)
6013         ++NumInvalidMallocs;
6014       else
6015         ++NumH2SMallocs;
6016     }
6017     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
6018            std::to_string(NumInvalidMallocs);
6019   }
6020 
6021   /// See AbstractAttribute::trackStatistics().
6022   void trackStatistics() const override {
6023     STATS_DECL(
6024         MallocCalls, Function,
6025         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
6026     for (auto &It : AllocationInfos)
6027       if (It.second->Status != AllocationInfo::INVALID)
6028         ++BUILD_STAT_NAME(MallocCalls, Function);
6029   }
6030 
6031   bool isAssumedHeapToStack(const CallBase &CB) const override {
6032     if (isValidState())
6033       if (AllocationInfo *AI =
6034               AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
6035         return AI->Status != AllocationInfo::INVALID;
6036     return false;
6037   }
6038 
6039   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
6040     if (!isValidState())
6041       return false;
6042 
6043     for (auto &It : AllocationInfos) {
6044       AllocationInfo &AI = *It.second;
6045       if (AI.Status == AllocationInfo::INVALID)
6046         continue;
6047 
6048       if (AI.PotentialFreeCalls.count(&CB))
6049         return true;
6050     }
6051 
6052     return false;
6053   }
6054 
6055   ChangeStatus manifest(Attributor &A) override {
6056     assert(getState().isValidState() &&
6057            "Attempted to manifest an invalid state!");
6058 
6059     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
6060     Function *F = getAnchorScope();
6061     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6062 
6063     for (auto &It : AllocationInfos) {
6064       AllocationInfo &AI = *It.second;
6065       if (AI.Status == AllocationInfo::INVALID)
6066         continue;
6067 
6068       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
6069         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
6070         A.deleteAfterManifest(*FreeCall);
6071         HasChanged = ChangeStatus::CHANGED;
6072       }
6073 
6074       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
6075                         << "\n");
6076 
6077       auto Remark = [&](OptimizationRemark OR) {
6078         LibFunc IsAllocShared;
6079         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6080           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6081             return OR << "Moving globalized variable to the stack.";
6082         return OR << "Moving memory allocation from the heap to the stack.";
6083       };
6084       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6085         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6086       else
6087         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6088 
6089       const DataLayout &DL = A.getInfoCache().getDL();
6090       Value *Size;
6091       Optional<APInt> SizeAPI = getSize(A, *this, AI);
6092       if (SizeAPI.hasValue()) {
6093         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6094       } else {
6095         LLVMContext &Ctx = AI.CB->getContext();
6096         ObjectSizeOpts Opts;
6097         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6098         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6099         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6100                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6101         Size = SizeOffsetPair.first;
6102       }
6103 
6104       Align Alignment(1);
6105       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6106         Alignment = max(Alignment, RetAlign);
6107       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6108         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6109         assert(AlignmentAPI.hasValue() &&
6110                "Expected an alignment during manifest!");
6111         Alignment =
6112             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
6113       }
6114 
6115       // TODO: Hoist the alloca towards the function entry.
6116       unsigned AS = DL.getAllocaAddrSpace();
6117       Instruction *Alloca = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
6118                                            Size, Alignment, "", AI.CB);
6119 
6120       if (Alloca->getType() != AI.CB->getType())
6121         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6122             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6123 
6124       auto *I8Ty = Type::getInt8Ty(F->getContext());
6125       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6126       assert(InitVal &&
6127              "Must be able to materialize initial memory state of allocation");
6128 
6129       A.changeValueAfterManifest(*AI.CB, *Alloca);
6130 
6131       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6132         auto *NBB = II->getNormalDest();
6133         BranchInst::Create(NBB, AI.CB->getParent());
6134         A.deleteAfterManifest(*AI.CB);
6135       } else {
6136         A.deleteAfterManifest(*AI.CB);
6137       }
6138 
6139       // Initialize the alloca with the same value as used by the allocation
6140       // function.  We can skip undef as the initial value of an alloc is
6141       // undef, and the memset would simply end up being DSEd.
6142       if (!isa<UndefValue>(InitVal)) {
6143         IRBuilder<> Builder(Alloca->getNextNode());
6144         // TODO: Use alignment above if align!=1
6145         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6146       }
6147       HasChanged = ChangeStatus::CHANGED;
6148     }
6149 
6150     return HasChanged;
6151   }
6152 
6153   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6154                            Value &V) {
6155     bool UsedAssumedInformation = false;
6156     Optional<Constant *> SimpleV =
6157         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6158     if (!SimpleV.hasValue())
6159       return APInt(64, 0);
6160     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6161       return CI->getValue();
6162     return llvm::None;
6163   }
6164 
6165   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6166                           AllocationInfo &AI) {
6167     auto Mapper = [&](const Value *V) -> const Value * {
6168       bool UsedAssumedInformation = false;
6169       if (Optional<Constant *> SimpleV =
6170               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6171         if (*SimpleV)
6172           return *SimpleV;
6173       return V;
6174     };
6175 
6176     const Function *F = getAnchorScope();
6177     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6178     return getAllocSize(AI.CB, TLI, Mapper);
6179   }
6180 
6181   /// Collection of all malloc-like calls in a function with associated
6182   /// information.
6183   MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6184 
6185   /// Collection of all free-like calls in a function with associated
6186   /// information.
6187   MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6188 
6189   ChangeStatus updateImpl(Attributor &A) override;
6190 };
6191 
6192 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6193   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6194   const Function *F = getAnchorScope();
6195   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6196 
6197   const auto &LivenessAA =
6198       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6199 
6200   MustBeExecutedContextExplorer &Explorer =
6201       A.getInfoCache().getMustBeExecutedContextExplorer();
6202 
6203   bool StackIsAccessibleByOtherThreads =
6204       A.getInfoCache().stackIsAccessibleByOtherThreads();
6205 
6206   // Flag to ensure we update our deallocation information at most once per
6207   // updateImpl call and only if we use the free check reasoning.
6208   bool HasUpdatedFrees = false;
6209 
6210   auto UpdateFrees = [&]() {
6211     HasUpdatedFrees = true;
6212 
6213     for (auto &It : DeallocationInfos) {
6214       DeallocationInfo &DI = *It.second;
6215       // For now we cannot use deallocations that have unknown inputs, skip
6216       // them.
6217       if (DI.MightFreeUnknownObjects)
6218         continue;
6219 
6220       // No need to analyze dead calls, ignore them instead.
6221       bool UsedAssumedInformation = false;
6222       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6223                           /* CheckBBLivenessOnly */ true))
6224         continue;
6225 
6226       // Use the optimistic version to get the freed objects, ignoring dead
6227       // branches etc.
6228       SmallVector<Value *, 8> Objects;
6229       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6230                                            *this, DI.CB,
6231                                            UsedAssumedInformation)) {
6232         LLVM_DEBUG(
6233             dbgs()
6234             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6235         DI.MightFreeUnknownObjects = true;
6236         continue;
6237       }
6238 
6239       // Check each object explicitly.
6240       for (auto *Obj : Objects) {
6241         // Free of null and undef can be ignored as no-ops (or UB in the latter
6242         // case).
6243         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6244           continue;
6245 
6246         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6247         if (!ObjCB) {
6248           LLVM_DEBUG(dbgs()
6249                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6250           DI.MightFreeUnknownObjects = true;
6251           continue;
6252         }
6253 
6254         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6255         if (!AI) {
6256           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6257                             << "\n");
6258           DI.MightFreeUnknownObjects = true;
6259           continue;
6260         }
6261 
6262         DI.PotentialAllocationCalls.insert(ObjCB);
6263       }
6264     }
6265   };
6266 
6267   auto FreeCheck = [&](AllocationInfo &AI) {
6268     // If the stack is not accessible by other threads, the "must-free" logic
6269     // doesn't apply as the pointer could be shared and needs to be places in
6270     // "shareable" memory.
6271     if (!StackIsAccessibleByOtherThreads) {
6272       auto &NoSyncAA =
6273           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6274       if (!NoSyncAA.isAssumedNoSync()) {
6275         LLVM_DEBUG(
6276             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6277                       "other threads and function is not nosync:\n");
6278         return false;
6279       }
6280     }
6281     if (!HasUpdatedFrees)
6282       UpdateFrees();
6283 
6284     // TODO: Allow multi exit functions that have different free calls.
6285     if (AI.PotentialFreeCalls.size() != 1) {
6286       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6287                         << AI.PotentialFreeCalls.size() << "\n");
6288       return false;
6289     }
6290     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6291     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6292     if (!DI) {
6293       LLVM_DEBUG(
6294           dbgs() << "[H2S] unique free call was not known as deallocation call "
6295                  << *UniqueFree << "\n");
6296       return false;
6297     }
6298     if (DI->MightFreeUnknownObjects) {
6299       LLVM_DEBUG(
6300           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6301       return false;
6302     }
6303     if (DI->PotentialAllocationCalls.size() > 1) {
6304       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6305                         << DI->PotentialAllocationCalls.size()
6306                         << " different allocations\n");
6307       return false;
6308     }
6309     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6310       LLVM_DEBUG(
6311           dbgs()
6312           << "[H2S] unique free call not known to free this allocation but "
6313           << **DI->PotentialAllocationCalls.begin() << "\n");
6314       return false;
6315     }
6316     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6317     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6318       LLVM_DEBUG(
6319           dbgs()
6320           << "[H2S] unique free call might not be executed with the allocation "
6321           << *UniqueFree << "\n");
6322       return false;
6323     }
6324     return true;
6325   };
6326 
6327   auto UsesCheck = [&](AllocationInfo &AI) {
6328     bool ValidUsesOnly = true;
6329 
6330     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6331       Instruction *UserI = cast<Instruction>(U.getUser());
6332       if (isa<LoadInst>(UserI))
6333         return true;
6334       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6335         if (SI->getValueOperand() == U.get()) {
6336           LLVM_DEBUG(dbgs()
6337                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6338           ValidUsesOnly = false;
6339         } else {
6340           // A store into the malloc'ed memory is fine.
6341         }
6342         return true;
6343       }
6344       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6345         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6346           return true;
6347         if (DeallocationInfos.count(CB)) {
6348           AI.PotentialFreeCalls.insert(CB);
6349           return true;
6350         }
6351 
6352         unsigned ArgNo = CB->getArgOperandNo(&U);
6353 
6354         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6355             *this, IRPosition::callsite_argument(*CB, ArgNo),
6356             DepClassTy::OPTIONAL);
6357 
6358         // If a call site argument use is nofree, we are fine.
6359         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6360             *this, IRPosition::callsite_argument(*CB, ArgNo),
6361             DepClassTy::OPTIONAL);
6362 
6363         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6364         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6365         if (MaybeCaptured ||
6366             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6367              MaybeFreed)) {
6368           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6369 
6370           // Emit a missed remark if this is missed OpenMP globalization.
6371           auto Remark = [&](OptimizationRemarkMissed ORM) {
6372             return ORM
6373                    << "Could not move globalized variable to the stack. "
6374                       "Variable is potentially captured in call. Mark "
6375                       "parameter as `__attribute__((noescape))` to override.";
6376           };
6377 
6378           if (ValidUsesOnly &&
6379               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6380             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6381 
6382           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6383           ValidUsesOnly = false;
6384         }
6385         return true;
6386       }
6387 
6388       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6389           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6390         Follow = true;
6391         return true;
6392       }
6393       // Unknown user for which we can not track uses further (in a way that
6394       // makes sense).
6395       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6396       ValidUsesOnly = false;
6397       return true;
6398     };
6399     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6400       return false;
6401     return ValidUsesOnly;
6402   };
6403 
6404   // The actual update starts here. We look at all allocations and depending on
6405   // their status perform the appropriate check(s).
6406   for (auto &It : AllocationInfos) {
6407     AllocationInfo &AI = *It.second;
6408     if (AI.Status == AllocationInfo::INVALID)
6409       continue;
6410 
6411     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6412       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6413       if (!APAlign) {
6414         // Can't generate an alloca which respects the required alignment
6415         // on the allocation.
6416         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6417                           << "\n");
6418         AI.Status = AllocationInfo::INVALID;
6419         Changed = ChangeStatus::CHANGED;
6420         continue;
6421       } else {
6422         if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
6423             !APAlign->isPowerOf2()) {
6424           LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
6425                             << "\n");
6426           AI.Status = AllocationInfo::INVALID;
6427           Changed = ChangeStatus::CHANGED;
6428           continue;
6429         }
6430       }
6431     }
6432 
6433     if (MaxHeapToStackSize != -1) {
6434       Optional<APInt> Size = getSize(A, *this, AI);
6435       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6436         LLVM_DEBUG({
6437           if (!Size.hasValue())
6438             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6439           else
6440             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6441                    << MaxHeapToStackSize << "\n";
6442         });
6443 
6444         AI.Status = AllocationInfo::INVALID;
6445         Changed = ChangeStatus::CHANGED;
6446         continue;
6447       }
6448     }
6449 
6450     switch (AI.Status) {
6451     case AllocationInfo::STACK_DUE_TO_USE:
6452       if (UsesCheck(AI))
6453         continue;
6454       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6455       LLVM_FALLTHROUGH;
6456     case AllocationInfo::STACK_DUE_TO_FREE:
6457       if (FreeCheck(AI))
6458         continue;
6459       AI.Status = AllocationInfo::INVALID;
6460       Changed = ChangeStatus::CHANGED;
6461       continue;
6462     case AllocationInfo::INVALID:
6463       llvm_unreachable("Invalid allocations should never reach this point!");
6464     };
6465   }
6466 
6467   return Changed;
6468 }
6469 } // namespace
6470 
6471 /// ----------------------- Privatizable Pointers ------------------------------
6472 namespace {
6473 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6474   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6475       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6476 
6477   ChangeStatus indicatePessimisticFixpoint() override {
6478     AAPrivatizablePtr::indicatePessimisticFixpoint();
6479     PrivatizableType = nullptr;
6480     return ChangeStatus::CHANGED;
6481   }
6482 
6483   /// Identify the type we can chose for a private copy of the underlying
6484   /// argument. None means it is not clear yet, nullptr means there is none.
6485   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6486 
6487   /// Return a privatizable type that encloses both T0 and T1.
6488   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6489   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6490     if (!T0.hasValue())
6491       return T1;
6492     if (!T1.hasValue())
6493       return T0;
6494     if (T0 == T1)
6495       return T0;
6496     return nullptr;
6497   }
6498 
6499   Optional<Type *> getPrivatizableType() const override {
6500     return PrivatizableType;
6501   }
6502 
6503   const std::string getAsStr() const override {
6504     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6505   }
6506 
6507 protected:
6508   Optional<Type *> PrivatizableType;
6509 };
6510 
6511 // TODO: Do this for call site arguments (probably also other values) as well.
6512 
6513 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6514   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6515       : AAPrivatizablePtrImpl(IRP, A) {}
6516 
6517   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6518   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6519     // If this is a byval argument and we know all the call sites (so we can
6520     // rewrite them), there is no need to check them explicitly.
6521     bool UsedAssumedInformation = false;
6522     SmallVector<Attribute, 1> Attrs;
6523     getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
6524     if (!Attrs.empty() &&
6525         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6526                                true, UsedAssumedInformation))
6527       return Attrs[0].getValueAsType();
6528 
6529     Optional<Type *> Ty;
6530     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6531 
6532     // Make sure the associated call site argument has the same type at all call
6533     // sites and it is an allocation we know is safe to privatize, for now that
6534     // means we only allow alloca instructions.
6535     // TODO: We can additionally analyze the accesses in the callee to  create
6536     //       the type from that information instead. That is a little more
6537     //       involved and will be done in a follow up patch.
6538     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6539       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6540       // Check if a coresponding argument was found or if it is one not
6541       // associated (which can happen for callback calls).
6542       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6543         return false;
6544 
6545       // Check that all call sites agree on a type.
6546       auto &PrivCSArgAA =
6547           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6548       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6549 
6550       LLVM_DEBUG({
6551         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6552         if (CSTy.hasValue() && CSTy.getValue())
6553           CSTy.getValue()->print(dbgs());
6554         else if (CSTy.hasValue())
6555           dbgs() << "<nullptr>";
6556         else
6557           dbgs() << "<none>";
6558       });
6559 
6560       Ty = combineTypes(Ty, CSTy);
6561 
6562       LLVM_DEBUG({
6563         dbgs() << " : New Type: ";
6564         if (Ty.hasValue() && Ty.getValue())
6565           Ty.getValue()->print(dbgs());
6566         else if (Ty.hasValue())
6567           dbgs() << "<nullptr>";
6568         else
6569           dbgs() << "<none>";
6570         dbgs() << "\n";
6571       });
6572 
6573       return !Ty.hasValue() || Ty.getValue();
6574     };
6575 
6576     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6577                                 UsedAssumedInformation))
6578       return nullptr;
6579     return Ty;
6580   }
6581 
6582   /// See AbstractAttribute::updateImpl(...).
6583   ChangeStatus updateImpl(Attributor &A) override {
6584     PrivatizableType = identifyPrivatizableType(A);
6585     if (!PrivatizableType.hasValue())
6586       return ChangeStatus::UNCHANGED;
6587     if (!PrivatizableType.getValue())
6588       return indicatePessimisticFixpoint();
6589 
6590     // The dependence is optional so we don't give up once we give up on the
6591     // alignment.
6592     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6593                         DepClassTy::OPTIONAL);
6594 
6595     // Avoid arguments with padding for now.
6596     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6597         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6598                                                 A.getInfoCache().getDL())) {
6599       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6600       return indicatePessimisticFixpoint();
6601     }
6602 
6603     // Collect the types that will replace the privatizable type in the function
6604     // signature.
6605     SmallVector<Type *, 16> ReplacementTypes;
6606     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6607 
6608     // Verify callee and caller agree on how the promoted argument would be
6609     // passed.
6610     Function &Fn = *getIRPosition().getAnchorScope();
6611     const auto *TTI =
6612         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6613     if (!TTI) {
6614       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6615                         << Fn.getName() << "\n");
6616       return indicatePessimisticFixpoint();
6617     }
6618 
6619     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6620       CallBase *CB = ACS.getInstruction();
6621       return TTI->areTypesABICompatible(
6622           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6623     };
6624     bool UsedAssumedInformation = false;
6625     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6626                                 UsedAssumedInformation)) {
6627       LLVM_DEBUG(
6628           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6629                  << Fn.getName() << "\n");
6630       return indicatePessimisticFixpoint();
6631     }
6632 
6633     // Register a rewrite of the argument.
6634     Argument *Arg = getAssociatedArgument();
6635     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6636       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6637       return indicatePessimisticFixpoint();
6638     }
6639 
6640     unsigned ArgNo = Arg->getArgNo();
6641 
6642     // Helper to check if for the given call site the associated argument is
6643     // passed to a callback where the privatization would be different.
6644     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6645       SmallVector<const Use *, 4> CallbackUses;
6646       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6647       for (const Use *U : CallbackUses) {
6648         AbstractCallSite CBACS(U);
6649         assert(CBACS && CBACS.isCallbackCall());
6650         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6651           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6652 
6653           LLVM_DEBUG({
6654             dbgs()
6655                 << "[AAPrivatizablePtr] Argument " << *Arg
6656                 << "check if can be privatized in the context of its parent ("
6657                 << Arg->getParent()->getName()
6658                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6659                    "callback ("
6660                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6661                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6662                 << CBACS.getCallArgOperand(CBArg) << " vs "
6663                 << CB.getArgOperand(ArgNo) << "\n"
6664                 << "[AAPrivatizablePtr] " << CBArg << " : "
6665                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6666           });
6667 
6668           if (CBArgNo != int(ArgNo))
6669             continue;
6670           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6671               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6672           if (CBArgPrivAA.isValidState()) {
6673             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6674             if (!CBArgPrivTy.hasValue())
6675               continue;
6676             if (CBArgPrivTy.getValue() == PrivatizableType)
6677               continue;
6678           }
6679 
6680           LLVM_DEBUG({
6681             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6682                    << " cannot be privatized in the context of its parent ("
6683                    << Arg->getParent()->getName()
6684                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6685                       "callback ("
6686                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6687                    << ").\n[AAPrivatizablePtr] for which the argument "
6688                       "privatization is not compatible.\n";
6689           });
6690           return false;
6691         }
6692       }
6693       return true;
6694     };
6695 
6696     // Helper to check if for the given call site the associated argument is
6697     // passed to a direct call where the privatization would be different.
6698     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6699       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6700       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6701       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6702              "Expected a direct call operand for callback call operand");
6703 
6704       LLVM_DEBUG({
6705         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6706                << " check if be privatized in the context of its parent ("
6707                << Arg->getParent()->getName()
6708                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6709                   "direct call of ("
6710                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6711                << ").\n";
6712       });
6713 
6714       Function *DCCallee = DC->getCalledFunction();
6715       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6716         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6717             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6718             DepClassTy::REQUIRED);
6719         if (DCArgPrivAA.isValidState()) {
6720           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6721           if (!DCArgPrivTy.hasValue())
6722             return true;
6723           if (DCArgPrivTy.getValue() == PrivatizableType)
6724             return true;
6725         }
6726       }
6727 
6728       LLVM_DEBUG({
6729         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6730                << " cannot be privatized in the context of its parent ("
6731                << Arg->getParent()->getName()
6732                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6733                   "direct call of ("
6734                << ACS.getInstruction()->getCalledFunction()->getName()
6735                << ").\n[AAPrivatizablePtr] for which the argument "
6736                   "privatization is not compatible.\n";
6737       });
6738       return false;
6739     };
6740 
6741     // Helper to check if the associated argument is used at the given abstract
6742     // call site in a way that is incompatible with the privatization assumed
6743     // here.
6744     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6745       if (ACS.isDirectCall())
6746         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6747       if (ACS.isCallbackCall())
6748         return IsCompatiblePrivArgOfDirectCS(ACS);
6749       return false;
6750     };
6751 
6752     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6753                                 UsedAssumedInformation))
6754       return indicatePessimisticFixpoint();
6755 
6756     return ChangeStatus::UNCHANGED;
6757   }
6758 
6759   /// Given a type to private \p PrivType, collect the constituates (which are
6760   /// used) in \p ReplacementTypes.
6761   static void
6762   identifyReplacementTypes(Type *PrivType,
6763                            SmallVectorImpl<Type *> &ReplacementTypes) {
6764     // TODO: For now we expand the privatization type to the fullest which can
6765     //       lead to dead arguments that need to be removed later.
6766     assert(PrivType && "Expected privatizable type!");
6767 
6768     // Traverse the type, extract constituate types on the outermost level.
6769     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6770       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6771         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6772     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6773       ReplacementTypes.append(PrivArrayType->getNumElements(),
6774                               PrivArrayType->getElementType());
6775     } else {
6776       ReplacementTypes.push_back(PrivType);
6777     }
6778   }
6779 
6780   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6781   /// The values needed are taken from the arguments of \p F starting at
6782   /// position \p ArgNo.
6783   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6784                                    unsigned ArgNo, Instruction &IP) {
6785     assert(PrivType && "Expected privatizable type!");
6786 
6787     IRBuilder<NoFolder> IRB(&IP);
6788     const DataLayout &DL = F.getParent()->getDataLayout();
6789 
6790     // Traverse the type, build GEPs and stores.
6791     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6792       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6793       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6794         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6795         Value *Ptr =
6796             constructPointer(PointeeTy, PrivType, &Base,
6797                              PrivStructLayout->getElementOffset(u), IRB, DL);
6798         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6799       }
6800     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6801       Type *PointeeTy = PrivArrayType->getElementType();
6802       Type *PointeePtrTy = PointeeTy->getPointerTo();
6803       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6804       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6805         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6806                                       u * PointeeTySize, IRB, DL);
6807         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6808       }
6809     } else {
6810       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6811     }
6812   }
6813 
6814   /// Extract values from \p Base according to the type \p PrivType at the
6815   /// call position \p ACS. The values are appended to \p ReplacementValues.
6816   void createReplacementValues(Align Alignment, Type *PrivType,
6817                                AbstractCallSite ACS, Value *Base,
6818                                SmallVectorImpl<Value *> &ReplacementValues) {
6819     assert(Base && "Expected base value!");
6820     assert(PrivType && "Expected privatizable type!");
6821     Instruction *IP = ACS.getInstruction();
6822 
6823     IRBuilder<NoFolder> IRB(IP);
6824     const DataLayout &DL = IP->getModule()->getDataLayout();
6825 
6826     Type *PrivPtrType = PrivType->getPointerTo();
6827     if (Base->getType() != PrivPtrType)
6828       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6829           Base, PrivPtrType, "", ACS.getInstruction());
6830 
6831     // Traverse the type, build GEPs and loads.
6832     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6833       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6834       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6835         Type *PointeeTy = PrivStructType->getElementType(u);
6836         Value *Ptr =
6837             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6838                              PrivStructLayout->getElementOffset(u), IRB, DL);
6839         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6840         L->setAlignment(Alignment);
6841         ReplacementValues.push_back(L);
6842       }
6843     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6844       Type *PointeeTy = PrivArrayType->getElementType();
6845       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6846       Type *PointeePtrTy = PointeeTy->getPointerTo();
6847       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6848         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6849                                       u * PointeeTySize, IRB, DL);
6850         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6851         L->setAlignment(Alignment);
6852         ReplacementValues.push_back(L);
6853       }
6854     } else {
6855       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6856       L->setAlignment(Alignment);
6857       ReplacementValues.push_back(L);
6858     }
6859   }
6860 
6861   /// See AbstractAttribute::manifest(...)
6862   ChangeStatus manifest(Attributor &A) override {
6863     if (!PrivatizableType.hasValue())
6864       return ChangeStatus::UNCHANGED;
6865     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6866 
6867     // Collect all tail calls in the function as we cannot allow new allocas to
6868     // escape into tail recursion.
6869     // TODO: Be smarter about new allocas escaping into tail calls.
6870     SmallVector<CallInst *, 16> TailCalls;
6871     bool UsedAssumedInformation = false;
6872     if (!A.checkForAllInstructions(
6873             [&](Instruction &I) {
6874               CallInst &CI = cast<CallInst>(I);
6875               if (CI.isTailCall())
6876                 TailCalls.push_back(&CI);
6877               return true;
6878             },
6879             *this, {Instruction::Call}, UsedAssumedInformation))
6880       return ChangeStatus::UNCHANGED;
6881 
6882     Argument *Arg = getAssociatedArgument();
6883     // Query AAAlign attribute for alignment of associated argument to
6884     // determine the best alignment of loads.
6885     const auto &AlignAA =
6886         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6887 
6888     // Callback to repair the associated function. A new alloca is placed at the
6889     // beginning and initialized with the values passed through arguments. The
6890     // new alloca replaces the use of the old pointer argument.
6891     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6892         [=](const Attributor::ArgumentReplacementInfo &ARI,
6893             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6894           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6895           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6896           const DataLayout &DL = IP->getModule()->getDataLayout();
6897           unsigned AS = DL.getAllocaAddrSpace();
6898           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), AS,
6899                                            Arg->getName() + ".priv", IP);
6900           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6901                                ArgIt->getArgNo(), *IP);
6902 
6903           if (AI->getType() != Arg->getType())
6904             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6905                 AI, Arg->getType(), "", IP);
6906           Arg->replaceAllUsesWith(AI);
6907 
6908           for (CallInst *CI : TailCalls)
6909             CI->setTailCall(false);
6910         };
6911 
6912     // Callback to repair a call site of the associated function. The elements
6913     // of the privatizable type are loaded prior to the call and passed to the
6914     // new function version.
6915     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6916         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6917                       AbstractCallSite ACS,
6918                       SmallVectorImpl<Value *> &NewArgOperands) {
6919           // When no alignment is specified for the load instruction,
6920           // natural alignment is assumed.
6921           createReplacementValues(
6922               assumeAligned(AlignAA.getAssumedAlign()),
6923               PrivatizableType.getValue(), ACS,
6924               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6925               NewArgOperands);
6926         };
6927 
6928     // Collect the types that will replace the privatizable type in the function
6929     // signature.
6930     SmallVector<Type *, 16> ReplacementTypes;
6931     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6932 
6933     // Register a rewrite of the argument.
6934     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6935                                            std::move(FnRepairCB),
6936                                            std::move(ACSRepairCB)))
6937       return ChangeStatus::CHANGED;
6938     return ChangeStatus::UNCHANGED;
6939   }
6940 
6941   /// See AbstractAttribute::trackStatistics()
6942   void trackStatistics() const override {
6943     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6944   }
6945 };
6946 
6947 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6948   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6949       : AAPrivatizablePtrImpl(IRP, A) {}
6950 
6951   /// See AbstractAttribute::initialize(...).
6952   virtual void initialize(Attributor &A) override {
6953     // TODO: We can privatize more than arguments.
6954     indicatePessimisticFixpoint();
6955   }
6956 
6957   ChangeStatus updateImpl(Attributor &A) override {
6958     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6959                      "updateImpl will not be called");
6960   }
6961 
6962   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6963   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6964     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6965     if (!Obj) {
6966       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6967       return nullptr;
6968     }
6969 
6970     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6971       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6972         if (CI->isOne())
6973           return AI->getAllocatedType();
6974     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6975       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6976           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6977       if (PrivArgAA.isAssumedPrivatizablePtr())
6978         return PrivArgAA.getPrivatizableType();
6979     }
6980 
6981     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6982                          "alloca nor privatizable argument: "
6983                       << *Obj << "!\n");
6984     return nullptr;
6985   }
6986 
6987   /// See AbstractAttribute::trackStatistics()
6988   void trackStatistics() const override {
6989     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6990   }
6991 };
6992 
6993 struct AAPrivatizablePtrCallSiteArgument final
6994     : public AAPrivatizablePtrFloating {
6995   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6996       : AAPrivatizablePtrFloating(IRP, A) {}
6997 
6998   /// See AbstractAttribute::initialize(...).
6999   void initialize(Attributor &A) override {
7000     if (getIRPosition().hasAttr(Attribute::ByVal))
7001       indicateOptimisticFixpoint();
7002   }
7003 
7004   /// See AbstractAttribute::updateImpl(...).
7005   ChangeStatus updateImpl(Attributor &A) override {
7006     PrivatizableType = identifyPrivatizableType(A);
7007     if (!PrivatizableType.hasValue())
7008       return ChangeStatus::UNCHANGED;
7009     if (!PrivatizableType.getValue())
7010       return indicatePessimisticFixpoint();
7011 
7012     const IRPosition &IRP = getIRPosition();
7013     auto &NoCaptureAA =
7014         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
7015     if (!NoCaptureAA.isAssumedNoCapture()) {
7016       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
7017       return indicatePessimisticFixpoint();
7018     }
7019 
7020     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
7021     if (!NoAliasAA.isAssumedNoAlias()) {
7022       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
7023       return indicatePessimisticFixpoint();
7024     }
7025 
7026     bool IsKnown;
7027     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
7028       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
7029       return indicatePessimisticFixpoint();
7030     }
7031 
7032     return ChangeStatus::UNCHANGED;
7033   }
7034 
7035   /// See AbstractAttribute::trackStatistics()
7036   void trackStatistics() const override {
7037     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
7038   }
7039 };
7040 
7041 struct AAPrivatizablePtrCallSiteReturned final
7042     : public AAPrivatizablePtrFloating {
7043   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
7044       : AAPrivatizablePtrFloating(IRP, A) {}
7045 
7046   /// See AbstractAttribute::initialize(...).
7047   void initialize(Attributor &A) override {
7048     // TODO: We can privatize more than arguments.
7049     indicatePessimisticFixpoint();
7050   }
7051 
7052   /// See AbstractAttribute::trackStatistics()
7053   void trackStatistics() const override {
7054     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
7055   }
7056 };
7057 
7058 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
7059   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
7060       : AAPrivatizablePtrFloating(IRP, A) {}
7061 
7062   /// See AbstractAttribute::initialize(...).
7063   void initialize(Attributor &A) override {
7064     // TODO: We can privatize more than arguments.
7065     indicatePessimisticFixpoint();
7066   }
7067 
7068   /// See AbstractAttribute::trackStatistics()
7069   void trackStatistics() const override {
7070     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
7071   }
7072 };
7073 } // namespace
7074 
7075 /// -------------------- Memory Behavior Attributes ----------------------------
7076 /// Includes read-none, read-only, and write-only.
7077 /// ----------------------------------------------------------------------------
7078 namespace {
7079 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
7080   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
7081       : AAMemoryBehavior(IRP, A) {}
7082 
7083   /// See AbstractAttribute::initialize(...).
7084   void initialize(Attributor &A) override {
7085     intersectAssumedBits(BEST_STATE);
7086     getKnownStateFromValue(getIRPosition(), getState());
7087     AAMemoryBehavior::initialize(A);
7088   }
7089 
7090   /// Return the memory behavior information encoded in the IR for \p IRP.
7091   static void getKnownStateFromValue(const IRPosition &IRP,
7092                                      BitIntegerState &State,
7093                                      bool IgnoreSubsumingPositions = false) {
7094     SmallVector<Attribute, 2> Attrs;
7095     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7096     for (const Attribute &Attr : Attrs) {
7097       switch (Attr.getKindAsEnum()) {
7098       case Attribute::ReadNone:
7099         State.addKnownBits(NO_ACCESSES);
7100         break;
7101       case Attribute::ReadOnly:
7102         State.addKnownBits(NO_WRITES);
7103         break;
7104       case Attribute::WriteOnly:
7105         State.addKnownBits(NO_READS);
7106         break;
7107       default:
7108         llvm_unreachable("Unexpected attribute!");
7109       }
7110     }
7111 
7112     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7113       if (!I->mayReadFromMemory())
7114         State.addKnownBits(NO_READS);
7115       if (!I->mayWriteToMemory())
7116         State.addKnownBits(NO_WRITES);
7117     }
7118   }
7119 
7120   /// See AbstractAttribute::getDeducedAttributes(...).
7121   void getDeducedAttributes(LLVMContext &Ctx,
7122                             SmallVectorImpl<Attribute> &Attrs) const override {
7123     assert(Attrs.size() == 0);
7124     if (isAssumedReadNone())
7125       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7126     else if (isAssumedReadOnly())
7127       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7128     else if (isAssumedWriteOnly())
7129       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7130     assert(Attrs.size() <= 1);
7131   }
7132 
7133   /// See AbstractAttribute::manifest(...).
7134   ChangeStatus manifest(Attributor &A) override {
7135     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7136       return ChangeStatus::UNCHANGED;
7137 
7138     const IRPosition &IRP = getIRPosition();
7139 
7140     // Check if we would improve the existing attributes first.
7141     SmallVector<Attribute, 4> DeducedAttrs;
7142     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7143     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7144           return IRP.hasAttr(Attr.getKindAsEnum(),
7145                              /* IgnoreSubsumingPositions */ true);
7146         }))
7147       return ChangeStatus::UNCHANGED;
7148 
7149     // Clear existing attributes.
7150     IRP.removeAttrs(AttrKinds);
7151 
7152     // Use the generic manifest method.
7153     return IRAttribute::manifest(A);
7154   }
7155 
7156   /// See AbstractState::getAsStr().
7157   const std::string getAsStr() const override {
7158     if (isAssumedReadNone())
7159       return "readnone";
7160     if (isAssumedReadOnly())
7161       return "readonly";
7162     if (isAssumedWriteOnly())
7163       return "writeonly";
7164     return "may-read/write";
7165   }
7166 
7167   /// The set of IR attributes AAMemoryBehavior deals with.
7168   static const Attribute::AttrKind AttrKinds[3];
7169 };
7170 
7171 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7172     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7173 
7174 /// Memory behavior attribute for a floating value.
7175 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7176   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7177       : AAMemoryBehaviorImpl(IRP, A) {}
7178 
7179   /// See AbstractAttribute::updateImpl(...).
7180   ChangeStatus updateImpl(Attributor &A) override;
7181 
7182   /// See AbstractAttribute::trackStatistics()
7183   void trackStatistics() const override {
7184     if (isAssumedReadNone())
7185       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7186     else if (isAssumedReadOnly())
7187       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7188     else if (isAssumedWriteOnly())
7189       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7190   }
7191 
7192 private:
7193   /// Return true if users of \p UserI might access the underlying
7194   /// variable/location described by \p U and should therefore be analyzed.
7195   bool followUsersOfUseIn(Attributor &A, const Use &U,
7196                           const Instruction *UserI);
7197 
7198   /// Update the state according to the effect of use \p U in \p UserI.
7199   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7200 };
7201 
7202 /// Memory behavior attribute for function argument.
7203 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7204   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7205       : AAMemoryBehaviorFloating(IRP, A) {}
7206 
7207   /// See AbstractAttribute::initialize(...).
7208   void initialize(Attributor &A) override {
7209     intersectAssumedBits(BEST_STATE);
7210     const IRPosition &IRP = getIRPosition();
7211     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7212     // can query it when we use has/getAttr. That would allow us to reuse the
7213     // initialize of the base class here.
7214     bool HasByVal =
7215         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7216     getKnownStateFromValue(IRP, getState(),
7217                            /* IgnoreSubsumingPositions */ HasByVal);
7218 
7219     // Initialize the use vector with all direct uses of the associated value.
7220     Argument *Arg = getAssociatedArgument();
7221     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7222       indicatePessimisticFixpoint();
7223   }
7224 
7225   ChangeStatus manifest(Attributor &A) override {
7226     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7227     if (!getAssociatedValue().getType()->isPointerTy())
7228       return ChangeStatus::UNCHANGED;
7229 
7230     // TODO: From readattrs.ll: "inalloca parameters are always
7231     //                           considered written"
7232     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7233       removeKnownBits(NO_WRITES);
7234       removeAssumedBits(NO_WRITES);
7235     }
7236     return AAMemoryBehaviorFloating::manifest(A);
7237   }
7238 
7239   /// See AbstractAttribute::trackStatistics()
7240   void trackStatistics() const override {
7241     if (isAssumedReadNone())
7242       STATS_DECLTRACK_ARG_ATTR(readnone)
7243     else if (isAssumedReadOnly())
7244       STATS_DECLTRACK_ARG_ATTR(readonly)
7245     else if (isAssumedWriteOnly())
7246       STATS_DECLTRACK_ARG_ATTR(writeonly)
7247   }
7248 };
7249 
7250 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7251   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7252       : AAMemoryBehaviorArgument(IRP, A) {}
7253 
7254   /// See AbstractAttribute::initialize(...).
7255   void initialize(Attributor &A) override {
7256     // If we don't have an associated attribute this is either a variadic call
7257     // or an indirect call, either way, nothing to do here.
7258     Argument *Arg = getAssociatedArgument();
7259     if (!Arg) {
7260       indicatePessimisticFixpoint();
7261       return;
7262     }
7263     if (Arg->hasByValAttr()) {
7264       addKnownBits(NO_WRITES);
7265       removeKnownBits(NO_READS);
7266       removeAssumedBits(NO_READS);
7267     }
7268     AAMemoryBehaviorArgument::initialize(A);
7269     if (getAssociatedFunction()->isDeclaration())
7270       indicatePessimisticFixpoint();
7271   }
7272 
7273   /// See AbstractAttribute::updateImpl(...).
7274   ChangeStatus updateImpl(Attributor &A) override {
7275     // TODO: Once we have call site specific value information we can provide
7276     //       call site specific liveness liveness information and then it makes
7277     //       sense to specialize attributes for call sites arguments instead of
7278     //       redirecting requests to the callee argument.
7279     Argument *Arg = getAssociatedArgument();
7280     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7281     auto &ArgAA =
7282         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7283     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7284   }
7285 
7286   /// See AbstractAttribute::trackStatistics()
7287   void trackStatistics() const override {
7288     if (isAssumedReadNone())
7289       STATS_DECLTRACK_CSARG_ATTR(readnone)
7290     else if (isAssumedReadOnly())
7291       STATS_DECLTRACK_CSARG_ATTR(readonly)
7292     else if (isAssumedWriteOnly())
7293       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7294   }
7295 };
7296 
7297 /// Memory behavior attribute for a call site return position.
7298 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7299   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7300       : AAMemoryBehaviorFloating(IRP, A) {}
7301 
7302   /// See AbstractAttribute::initialize(...).
7303   void initialize(Attributor &A) override {
7304     AAMemoryBehaviorImpl::initialize(A);
7305     Function *F = getAssociatedFunction();
7306     if (!F || F->isDeclaration())
7307       indicatePessimisticFixpoint();
7308   }
7309 
7310   /// See AbstractAttribute::manifest(...).
7311   ChangeStatus manifest(Attributor &A) override {
7312     // We do not annotate returned values.
7313     return ChangeStatus::UNCHANGED;
7314   }
7315 
7316   /// See AbstractAttribute::trackStatistics()
7317   void trackStatistics() const override {}
7318 };
7319 
7320 /// An AA to represent the memory behavior function attributes.
7321 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7322   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7323       : AAMemoryBehaviorImpl(IRP, A) {}
7324 
7325   /// See AbstractAttribute::updateImpl(Attributor &A).
7326   virtual ChangeStatus updateImpl(Attributor &A) override;
7327 
7328   /// See AbstractAttribute::manifest(...).
7329   ChangeStatus manifest(Attributor &A) override {
7330     Function &F = cast<Function>(getAnchorValue());
7331     if (isAssumedReadNone()) {
7332       F.removeFnAttr(Attribute::ArgMemOnly);
7333       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7334       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7335     }
7336     return AAMemoryBehaviorImpl::manifest(A);
7337   }
7338 
7339   /// See AbstractAttribute::trackStatistics()
7340   void trackStatistics() const override {
7341     if (isAssumedReadNone())
7342       STATS_DECLTRACK_FN_ATTR(readnone)
7343     else if (isAssumedReadOnly())
7344       STATS_DECLTRACK_FN_ATTR(readonly)
7345     else if (isAssumedWriteOnly())
7346       STATS_DECLTRACK_FN_ATTR(writeonly)
7347   }
7348 };
7349 
7350 /// AAMemoryBehavior attribute for call sites.
7351 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7352   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7353       : AAMemoryBehaviorImpl(IRP, A) {}
7354 
7355   /// See AbstractAttribute::initialize(...).
7356   void initialize(Attributor &A) override {
7357     AAMemoryBehaviorImpl::initialize(A);
7358     Function *F = getAssociatedFunction();
7359     if (!F || F->isDeclaration())
7360       indicatePessimisticFixpoint();
7361   }
7362 
7363   /// See AbstractAttribute::updateImpl(...).
7364   ChangeStatus updateImpl(Attributor &A) override {
7365     // TODO: Once we have call site specific value information we can provide
7366     //       call site specific liveness liveness information and then it makes
7367     //       sense to specialize attributes for call sites arguments instead of
7368     //       redirecting requests to the callee argument.
7369     Function *F = getAssociatedFunction();
7370     const IRPosition &FnPos = IRPosition::function(*F);
7371     auto &FnAA =
7372         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7373     return clampStateAndIndicateChange(getState(), FnAA.getState());
7374   }
7375 
7376   /// See AbstractAttribute::trackStatistics()
7377   void trackStatistics() const override {
7378     if (isAssumedReadNone())
7379       STATS_DECLTRACK_CS_ATTR(readnone)
7380     else if (isAssumedReadOnly())
7381       STATS_DECLTRACK_CS_ATTR(readonly)
7382     else if (isAssumedWriteOnly())
7383       STATS_DECLTRACK_CS_ATTR(writeonly)
7384   }
7385 };
7386 
7387 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7388 
7389   // The current assumed state used to determine a change.
7390   auto AssumedState = getAssumed();
7391 
7392   auto CheckRWInst = [&](Instruction &I) {
7393     // If the instruction has an own memory behavior state, use it to restrict
7394     // the local state. No further analysis is required as the other memory
7395     // state is as optimistic as it gets.
7396     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7397       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7398           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7399       intersectAssumedBits(MemBehaviorAA.getAssumed());
7400       return !isAtFixpoint();
7401     }
7402 
7403     // Remove access kind modifiers if necessary.
7404     if (I.mayReadFromMemory())
7405       removeAssumedBits(NO_READS);
7406     if (I.mayWriteToMemory())
7407       removeAssumedBits(NO_WRITES);
7408     return !isAtFixpoint();
7409   };
7410 
7411   bool UsedAssumedInformation = false;
7412   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7413                                           UsedAssumedInformation))
7414     return indicatePessimisticFixpoint();
7415 
7416   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7417                                         : ChangeStatus::UNCHANGED;
7418 }
7419 
7420 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7421 
7422   const IRPosition &IRP = getIRPosition();
7423   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7424   AAMemoryBehavior::StateType &S = getState();
7425 
7426   // First, check the function scope. We take the known information and we avoid
7427   // work if the assumed information implies the current assumed information for
7428   // this attribute. This is a valid for all but byval arguments.
7429   Argument *Arg = IRP.getAssociatedArgument();
7430   AAMemoryBehavior::base_t FnMemAssumedState =
7431       AAMemoryBehavior::StateType::getWorstState();
7432   if (!Arg || !Arg->hasByValAttr()) {
7433     const auto &FnMemAA =
7434         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7435     FnMemAssumedState = FnMemAA.getAssumed();
7436     S.addKnownBits(FnMemAA.getKnown());
7437     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7438       return ChangeStatus::UNCHANGED;
7439   }
7440 
7441   // The current assumed state used to determine a change.
7442   auto AssumedState = S.getAssumed();
7443 
7444   // Make sure the value is not captured (except through "return"), if
7445   // it is, any information derived would be irrelevant anyway as we cannot
7446   // check the potential aliases introduced by the capture. However, no need
7447   // to fall back to anythign less optimistic than the function state.
7448   const auto &ArgNoCaptureAA =
7449       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7450   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7451     S.intersectAssumedBits(FnMemAssumedState);
7452     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7453                                           : ChangeStatus::UNCHANGED;
7454   }
7455 
7456   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7457   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7458     Instruction *UserI = cast<Instruction>(U.getUser());
7459     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7460                       << " \n");
7461 
7462     // Droppable users, e.g., llvm::assume does not actually perform any action.
7463     if (UserI->isDroppable())
7464       return true;
7465 
7466     // Check if the users of UserI should also be visited.
7467     Follow = followUsersOfUseIn(A, U, UserI);
7468 
7469     // If UserI might touch memory we analyze the use in detail.
7470     if (UserI->mayReadOrWriteMemory())
7471       analyzeUseIn(A, U, UserI);
7472 
7473     return !isAtFixpoint();
7474   };
7475 
7476   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7477     return indicatePessimisticFixpoint();
7478 
7479   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7480                                         : ChangeStatus::UNCHANGED;
7481 }
7482 
7483 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7484                                                   const Instruction *UserI) {
7485   // The loaded value is unrelated to the pointer argument, no need to
7486   // follow the users of the load.
7487   if (isa<LoadInst>(UserI))
7488     return false;
7489 
7490   // By default we follow all uses assuming UserI might leak information on U,
7491   // we have special handling for call sites operands though.
7492   const auto *CB = dyn_cast<CallBase>(UserI);
7493   if (!CB || !CB->isArgOperand(&U))
7494     return true;
7495 
7496   // If the use is a call argument known not to be captured, the users of
7497   // the call do not need to be visited because they have to be unrelated to
7498   // the input. Note that this check is not trivial even though we disallow
7499   // general capturing of the underlying argument. The reason is that the
7500   // call might the argument "through return", which we allow and for which we
7501   // need to check call users.
7502   if (U.get()->getType()->isPointerTy()) {
7503     unsigned ArgNo = CB->getArgOperandNo(&U);
7504     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7505         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7506     return !ArgNoCaptureAA.isAssumedNoCapture();
7507   }
7508 
7509   return true;
7510 }
7511 
7512 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7513                                             const Instruction *UserI) {
7514   assert(UserI->mayReadOrWriteMemory());
7515 
7516   switch (UserI->getOpcode()) {
7517   default:
7518     // TODO: Handle all atomics and other side-effect operations we know of.
7519     break;
7520   case Instruction::Load:
7521     // Loads cause the NO_READS property to disappear.
7522     removeAssumedBits(NO_READS);
7523     return;
7524 
7525   case Instruction::Store:
7526     // Stores cause the NO_WRITES property to disappear if the use is the
7527     // pointer operand. Note that while capturing was taken care of somewhere
7528     // else we need to deal with stores of the value that is not looked through.
7529     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7530       removeAssumedBits(NO_WRITES);
7531     else
7532       indicatePessimisticFixpoint();
7533     return;
7534 
7535   case Instruction::Call:
7536   case Instruction::CallBr:
7537   case Instruction::Invoke: {
7538     // For call sites we look at the argument memory behavior attribute (this
7539     // could be recursive!) in order to restrict our own state.
7540     const auto *CB = cast<CallBase>(UserI);
7541 
7542     // Give up on operand bundles.
7543     if (CB->isBundleOperand(&U)) {
7544       indicatePessimisticFixpoint();
7545       return;
7546     }
7547 
7548     // Calling a function does read the function pointer, maybe write it if the
7549     // function is self-modifying.
7550     if (CB->isCallee(&U)) {
7551       removeAssumedBits(NO_READS);
7552       break;
7553     }
7554 
7555     // Adjust the possible access behavior based on the information on the
7556     // argument.
7557     IRPosition Pos;
7558     if (U.get()->getType()->isPointerTy())
7559       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7560     else
7561       Pos = IRPosition::callsite_function(*CB);
7562     const auto &MemBehaviorAA =
7563         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7564     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7565     // and at least "known".
7566     intersectAssumedBits(MemBehaviorAA.getAssumed());
7567     return;
7568   }
7569   };
7570 
7571   // Generally, look at the "may-properties" and adjust the assumed state if we
7572   // did not trigger special handling before.
7573   if (UserI->mayReadFromMemory())
7574     removeAssumedBits(NO_READS);
7575   if (UserI->mayWriteToMemory())
7576     removeAssumedBits(NO_WRITES);
7577 }
7578 } // namespace
7579 
7580 /// -------------------- Memory Locations Attributes ---------------------------
7581 /// Includes read-none, argmemonly, inaccessiblememonly,
7582 /// inaccessiblememorargmemonly
7583 /// ----------------------------------------------------------------------------
7584 
7585 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7586     AAMemoryLocation::MemoryLocationsKind MLK) {
7587   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7588     return "all memory";
7589   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7590     return "no memory";
7591   std::string S = "memory:";
7592   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7593     S += "stack,";
7594   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7595     S += "constant,";
7596   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7597     S += "internal global,";
7598   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7599     S += "external global,";
7600   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7601     S += "argument,";
7602   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7603     S += "inaccessible,";
7604   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7605     S += "malloced,";
7606   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7607     S += "unknown,";
7608   S.pop_back();
7609   return S;
7610 }
7611 
7612 namespace {
7613 struct AAMemoryLocationImpl : public AAMemoryLocation {
7614 
7615   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7616       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7617     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7618       AccessKind2Accesses[u] = nullptr;
7619   }
7620 
7621   ~AAMemoryLocationImpl() {
7622     // The AccessSets are allocated via a BumpPtrAllocator, we call
7623     // the destructor manually.
7624     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7625       if (AccessKind2Accesses[u])
7626         AccessKind2Accesses[u]->~AccessSet();
7627   }
7628 
7629   /// See AbstractAttribute::initialize(...).
7630   void initialize(Attributor &A) override {
7631     intersectAssumedBits(BEST_STATE);
7632     getKnownStateFromValue(A, getIRPosition(), getState());
7633     AAMemoryLocation::initialize(A);
7634   }
7635 
7636   /// Return the memory behavior information encoded in the IR for \p IRP.
7637   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7638                                      BitIntegerState &State,
7639                                      bool IgnoreSubsumingPositions = false) {
7640     // For internal functions we ignore `argmemonly` and
7641     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7642     // constant propagation. It is unclear if this is the best way but it is
7643     // unlikely this will cause real performance problems. If we are deriving
7644     // attributes for the anchor function we even remove the attribute in
7645     // addition to ignoring it.
7646     bool UseArgMemOnly = true;
7647     Function *AnchorFn = IRP.getAnchorScope();
7648     if (AnchorFn && A.isRunOn(*AnchorFn))
7649       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7650 
7651     SmallVector<Attribute, 2> Attrs;
7652     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7653     for (const Attribute &Attr : Attrs) {
7654       switch (Attr.getKindAsEnum()) {
7655       case Attribute::ReadNone:
7656         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7657         break;
7658       case Attribute::InaccessibleMemOnly:
7659         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7660         break;
7661       case Attribute::ArgMemOnly:
7662         if (UseArgMemOnly)
7663           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7664         else
7665           IRP.removeAttrs({Attribute::ArgMemOnly});
7666         break;
7667       case Attribute::InaccessibleMemOrArgMemOnly:
7668         if (UseArgMemOnly)
7669           State.addKnownBits(inverseLocation(
7670               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7671         else
7672           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7673         break;
7674       default:
7675         llvm_unreachable("Unexpected attribute!");
7676       }
7677     }
7678   }
7679 
7680   /// See AbstractAttribute::getDeducedAttributes(...).
7681   void getDeducedAttributes(LLVMContext &Ctx,
7682                             SmallVectorImpl<Attribute> &Attrs) const override {
7683     assert(Attrs.size() == 0);
7684     if (isAssumedReadNone()) {
7685       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7686     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7687       if (isAssumedInaccessibleMemOnly())
7688         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7689       else if (isAssumedArgMemOnly())
7690         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7691       else if (isAssumedInaccessibleOrArgMemOnly())
7692         Attrs.push_back(
7693             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7694     }
7695     assert(Attrs.size() <= 1);
7696   }
7697 
7698   /// See AbstractAttribute::manifest(...).
7699   ChangeStatus manifest(Attributor &A) override {
7700     const IRPosition &IRP = getIRPosition();
7701 
7702     // Check if we would improve the existing attributes first.
7703     SmallVector<Attribute, 4> DeducedAttrs;
7704     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7705     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7706           return IRP.hasAttr(Attr.getKindAsEnum(),
7707                              /* IgnoreSubsumingPositions */ true);
7708         }))
7709       return ChangeStatus::UNCHANGED;
7710 
7711     // Clear existing attributes.
7712     IRP.removeAttrs(AttrKinds);
7713     if (isAssumedReadNone())
7714       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7715 
7716     // Use the generic manifest method.
7717     return IRAttribute::manifest(A);
7718   }
7719 
7720   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7721   bool checkForAllAccessesToMemoryKind(
7722       function_ref<bool(const Instruction *, const Value *, AccessKind,
7723                         MemoryLocationsKind)>
7724           Pred,
7725       MemoryLocationsKind RequestedMLK) const override {
7726     if (!isValidState())
7727       return false;
7728 
7729     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7730     if (AssumedMLK == NO_LOCATIONS)
7731       return true;
7732 
7733     unsigned Idx = 0;
7734     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7735          CurMLK *= 2, ++Idx) {
7736       if (CurMLK & RequestedMLK)
7737         continue;
7738 
7739       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7740         for (const AccessInfo &AI : *Accesses)
7741           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7742             return false;
7743     }
7744 
7745     return true;
7746   }
7747 
7748   ChangeStatus indicatePessimisticFixpoint() override {
7749     // If we give up and indicate a pessimistic fixpoint this instruction will
7750     // become an access for all potential access kinds:
7751     // TODO: Add pointers for argmemonly and globals to improve the results of
7752     //       checkForAllAccessesToMemoryKind.
7753     bool Changed = false;
7754     MemoryLocationsKind KnownMLK = getKnown();
7755     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7756     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7757       if (!(CurMLK & KnownMLK))
7758         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7759                                   getAccessKindFromInst(I));
7760     return AAMemoryLocation::indicatePessimisticFixpoint();
7761   }
7762 
7763 protected:
7764   /// Helper struct to tie together an instruction that has a read or write
7765   /// effect with the pointer it accesses (if any).
7766   struct AccessInfo {
7767 
7768     /// The instruction that caused the access.
7769     const Instruction *I;
7770 
7771     /// The base pointer that is accessed, or null if unknown.
7772     const Value *Ptr;
7773 
7774     /// The kind of access (read/write/read+write).
7775     AccessKind Kind;
7776 
7777     bool operator==(const AccessInfo &RHS) const {
7778       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7779     }
7780     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7781       if (LHS.I != RHS.I)
7782         return LHS.I < RHS.I;
7783       if (LHS.Ptr != RHS.Ptr)
7784         return LHS.Ptr < RHS.Ptr;
7785       if (LHS.Kind != RHS.Kind)
7786         return LHS.Kind < RHS.Kind;
7787       return false;
7788     }
7789   };
7790 
7791   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7792   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7793   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7794   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7795 
7796   /// Categorize the pointer arguments of CB that might access memory in
7797   /// AccessedLoc and update the state and access map accordingly.
7798   void
7799   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7800                                      AAMemoryLocation::StateType &AccessedLocs,
7801                                      bool &Changed);
7802 
7803   /// Return the kind(s) of location that may be accessed by \p V.
7804   AAMemoryLocation::MemoryLocationsKind
7805   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7806 
7807   /// Return the access kind as determined by \p I.
7808   AccessKind getAccessKindFromInst(const Instruction *I) {
7809     AccessKind AK = READ_WRITE;
7810     if (I) {
7811       AK = I->mayReadFromMemory() ? READ : NONE;
7812       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7813     }
7814     return AK;
7815   }
7816 
7817   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7818   /// an access of kind \p AK to a \p MLK memory location with the access
7819   /// pointer \p Ptr.
7820   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7821                                  MemoryLocationsKind MLK, const Instruction *I,
7822                                  const Value *Ptr, bool &Changed,
7823                                  AccessKind AK = READ_WRITE) {
7824 
7825     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7826     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7827     if (!Accesses)
7828       Accesses = new (Allocator) AccessSet();
7829     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7830     State.removeAssumedBits(MLK);
7831   }
7832 
7833   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7834   /// arguments, and update the state and access map accordingly.
7835   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7836                           AAMemoryLocation::StateType &State, bool &Changed);
7837 
7838   /// Used to allocate access sets.
7839   BumpPtrAllocator &Allocator;
7840 
7841   /// The set of IR attributes AAMemoryLocation deals with.
7842   static const Attribute::AttrKind AttrKinds[4];
7843 };
7844 
7845 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7846     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7847     Attribute::InaccessibleMemOrArgMemOnly};
7848 
7849 void AAMemoryLocationImpl::categorizePtrValue(
7850     Attributor &A, const Instruction &I, const Value &Ptr,
7851     AAMemoryLocation::StateType &State, bool &Changed) {
7852   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7853                     << Ptr << " ["
7854                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7855 
7856   SmallVector<Value *, 8> Objects;
7857   bool UsedAssumedInformation = false;
7858   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7859                                        UsedAssumedInformation,
7860                                        /* Intraprocedural */ true)) {
7861     LLVM_DEBUG(
7862         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7863     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7864                               getAccessKindFromInst(&I));
7865     return;
7866   }
7867 
7868   for (Value *Obj : Objects) {
7869     // TODO: recognize the TBAA used for constant accesses.
7870     MemoryLocationsKind MLK = NO_LOCATIONS;
7871     if (isa<UndefValue>(Obj))
7872       continue;
7873     if (isa<Argument>(Obj)) {
7874       // TODO: For now we do not treat byval arguments as local copies performed
7875       // on the call edge, though, we should. To make that happen we need to
7876       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7877       // would also allow us to mark functions only accessing byval arguments as
7878       // readnone again, atguably their acceses have no effect outside of the
7879       // function, like accesses to allocas.
7880       MLK = NO_ARGUMENT_MEM;
7881     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7882       // Reading constant memory is not treated as a read "effect" by the
7883       // function attr pass so we won't neither. Constants defined by TBAA are
7884       // similar. (We know we do not write it because it is constant.)
7885       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7886         if (GVar->isConstant())
7887           continue;
7888 
7889       if (GV->hasLocalLinkage())
7890         MLK = NO_GLOBAL_INTERNAL_MEM;
7891       else
7892         MLK = NO_GLOBAL_EXTERNAL_MEM;
7893     } else if (isa<ConstantPointerNull>(Obj) &&
7894                !NullPointerIsDefined(getAssociatedFunction(),
7895                                      Ptr.getType()->getPointerAddressSpace())) {
7896       continue;
7897     } else if (isa<AllocaInst>(Obj)) {
7898       MLK = NO_LOCAL_MEM;
7899     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7900       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7901           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7902       if (NoAliasAA.isAssumedNoAlias())
7903         MLK = NO_MALLOCED_MEM;
7904       else
7905         MLK = NO_UNKOWN_MEM;
7906     } else {
7907       MLK = NO_UNKOWN_MEM;
7908     }
7909 
7910     assert(MLK != NO_LOCATIONS && "No location specified!");
7911     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7912                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7913                       << "\n");
7914     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7915                               getAccessKindFromInst(&I));
7916   }
7917 
7918   LLVM_DEBUG(
7919       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7920              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7921 }
7922 
7923 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7924     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7925     bool &Changed) {
7926   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7927 
7928     // Skip non-pointer arguments.
7929     const Value *ArgOp = CB.getArgOperand(ArgNo);
7930     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7931       continue;
7932 
7933     // Skip readnone arguments.
7934     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7935     const auto &ArgOpMemLocationAA =
7936         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7937 
7938     if (ArgOpMemLocationAA.isAssumedReadNone())
7939       continue;
7940 
7941     // Categorize potentially accessed pointer arguments as if there was an
7942     // access instruction with them as pointer.
7943     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7944   }
7945 }
7946 
7947 AAMemoryLocation::MemoryLocationsKind
7948 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7949                                                   bool &Changed) {
7950   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7951                     << I << "\n");
7952 
7953   AAMemoryLocation::StateType AccessedLocs;
7954   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7955 
7956   if (auto *CB = dyn_cast<CallBase>(&I)) {
7957 
7958     // First check if we assume any memory is access is visible.
7959     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7960         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7961     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7962                       << " [" << CBMemLocationAA << "]\n");
7963 
7964     if (CBMemLocationAA.isAssumedReadNone())
7965       return NO_LOCATIONS;
7966 
7967     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7968       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7969                                 Changed, getAccessKindFromInst(&I));
7970       return AccessedLocs.getAssumed();
7971     }
7972 
7973     uint32_t CBAssumedNotAccessedLocs =
7974         CBMemLocationAA.getAssumedNotAccessedLocation();
7975 
7976     // Set the argmemonly and global bit as we handle them separately below.
7977     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7978         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7979 
7980     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7981       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7982         continue;
7983       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7984                                 getAccessKindFromInst(&I));
7985     }
7986 
7987     // Now handle global memory if it might be accessed. This is slightly tricky
7988     // as NO_GLOBAL_MEM has multiple bits set.
7989     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7990     if (HasGlobalAccesses) {
7991       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7992                             AccessKind Kind, MemoryLocationsKind MLK) {
7993         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7994                                   getAccessKindFromInst(&I));
7995         return true;
7996       };
7997       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7998               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7999         return AccessedLocs.getWorstState();
8000     }
8001 
8002     LLVM_DEBUG(
8003         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
8004                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8005 
8006     // Now handle argument memory if it might be accessed.
8007     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
8008     if (HasArgAccesses)
8009       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
8010 
8011     LLVM_DEBUG(
8012         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
8013                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8014 
8015     return AccessedLocs.getAssumed();
8016   }
8017 
8018   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
8019     LLVM_DEBUG(
8020         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
8021                << I << " [" << *Ptr << "]\n");
8022     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
8023     return AccessedLocs.getAssumed();
8024   }
8025 
8026   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
8027                     << I << "\n");
8028   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
8029                             getAccessKindFromInst(&I));
8030   return AccessedLocs.getAssumed();
8031 }
8032 
8033 /// An AA to represent the memory behavior function attributes.
8034 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
8035   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
8036       : AAMemoryLocationImpl(IRP, A) {}
8037 
8038   /// See AbstractAttribute::updateImpl(Attributor &A).
8039   virtual ChangeStatus updateImpl(Attributor &A) override {
8040 
8041     const auto &MemBehaviorAA =
8042         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
8043     if (MemBehaviorAA.isAssumedReadNone()) {
8044       if (MemBehaviorAA.isKnownReadNone())
8045         return indicateOptimisticFixpoint();
8046       assert(isAssumedReadNone() &&
8047              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
8048       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
8049       return ChangeStatus::UNCHANGED;
8050     }
8051 
8052     // The current assumed state used to determine a change.
8053     auto AssumedState = getAssumed();
8054     bool Changed = false;
8055 
8056     auto CheckRWInst = [&](Instruction &I) {
8057       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
8058       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
8059                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
8060       removeAssumedBits(inverseLocation(MLK, false, false));
8061       // Stop once only the valid bit set in the *not assumed location*, thus
8062       // once we don't actually exclude any memory locations in the state.
8063       return getAssumedNotAccessedLocation() != VALID_STATE;
8064     };
8065 
8066     bool UsedAssumedInformation = false;
8067     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8068                                             UsedAssumedInformation))
8069       return indicatePessimisticFixpoint();
8070 
8071     Changed |= AssumedState != getAssumed();
8072     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8073   }
8074 
8075   /// See AbstractAttribute::trackStatistics()
8076   void trackStatistics() const override {
8077     if (isAssumedReadNone())
8078       STATS_DECLTRACK_FN_ATTR(readnone)
8079     else if (isAssumedArgMemOnly())
8080       STATS_DECLTRACK_FN_ATTR(argmemonly)
8081     else if (isAssumedInaccessibleMemOnly())
8082       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
8083     else if (isAssumedInaccessibleOrArgMemOnly())
8084       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
8085   }
8086 };
8087 
8088 /// AAMemoryLocation attribute for call sites.
8089 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
8090   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
8091       : AAMemoryLocationImpl(IRP, A) {}
8092 
8093   /// See AbstractAttribute::initialize(...).
8094   void initialize(Attributor &A) override {
8095     AAMemoryLocationImpl::initialize(A);
8096     Function *F = getAssociatedFunction();
8097     if (!F || F->isDeclaration())
8098       indicatePessimisticFixpoint();
8099   }
8100 
8101   /// See AbstractAttribute::updateImpl(...).
8102   ChangeStatus updateImpl(Attributor &A) override {
8103     // TODO: Once we have call site specific value information we can provide
8104     //       call site specific liveness liveness information and then it makes
8105     //       sense to specialize attributes for call sites arguments instead of
8106     //       redirecting requests to the callee argument.
8107     Function *F = getAssociatedFunction();
8108     const IRPosition &FnPos = IRPosition::function(*F);
8109     auto &FnAA =
8110         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8111     bool Changed = false;
8112     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8113                           AccessKind Kind, MemoryLocationsKind MLK) {
8114       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8115                                 getAccessKindFromInst(I));
8116       return true;
8117     };
8118     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8119       return indicatePessimisticFixpoint();
8120     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8121   }
8122 
8123   /// See AbstractAttribute::trackStatistics()
8124   void trackStatistics() const override {
8125     if (isAssumedReadNone())
8126       STATS_DECLTRACK_CS_ATTR(readnone)
8127   }
8128 };
8129 } // namespace
8130 
8131 /// ------------------ Value Constant Range Attribute -------------------------
8132 
8133 namespace {
8134 struct AAValueConstantRangeImpl : AAValueConstantRange {
8135   using StateType = IntegerRangeState;
8136   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8137       : AAValueConstantRange(IRP, A) {}
8138 
8139   /// See AbstractAttribute::initialize(..).
8140   void initialize(Attributor &A) override {
8141     if (A.hasSimplificationCallback(getIRPosition())) {
8142       indicatePessimisticFixpoint();
8143       return;
8144     }
8145 
8146     // Intersect a range given by SCEV.
8147     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8148 
8149     // Intersect a range given by LVI.
8150     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8151   }
8152 
8153   /// See AbstractAttribute::getAsStr().
8154   const std::string getAsStr() const override {
8155     std::string Str;
8156     llvm::raw_string_ostream OS(Str);
8157     OS << "range(" << getBitWidth() << ")<";
8158     getKnown().print(OS);
8159     OS << " / ";
8160     getAssumed().print(OS);
8161     OS << ">";
8162     return OS.str();
8163   }
8164 
8165   /// Helper function to get a SCEV expr for the associated value at program
8166   /// point \p I.
8167   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8168     if (!getAnchorScope())
8169       return nullptr;
8170 
8171     ScalarEvolution *SE =
8172         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8173             *getAnchorScope());
8174 
8175     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8176         *getAnchorScope());
8177 
8178     if (!SE || !LI)
8179       return nullptr;
8180 
8181     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8182     if (!I)
8183       return S;
8184 
8185     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8186   }
8187 
8188   /// Helper function to get a range from SCEV for the associated value at
8189   /// program point \p I.
8190   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8191                                          const Instruction *I = nullptr) const {
8192     if (!getAnchorScope())
8193       return getWorstState(getBitWidth());
8194 
8195     ScalarEvolution *SE =
8196         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8197             *getAnchorScope());
8198 
8199     const SCEV *S = getSCEV(A, I);
8200     if (!SE || !S)
8201       return getWorstState(getBitWidth());
8202 
8203     return SE->getUnsignedRange(S);
8204   }
8205 
8206   /// Helper function to get a range from LVI for the associated value at
8207   /// program point \p I.
8208   ConstantRange
8209   getConstantRangeFromLVI(Attributor &A,
8210                           const Instruction *CtxI = nullptr) const {
8211     if (!getAnchorScope())
8212       return getWorstState(getBitWidth());
8213 
8214     LazyValueInfo *LVI =
8215         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8216             *getAnchorScope());
8217 
8218     if (!LVI || !CtxI)
8219       return getWorstState(getBitWidth());
8220     return LVI->getConstantRange(&getAssociatedValue(),
8221                                  const_cast<Instruction *>(CtxI));
8222   }
8223 
8224   /// Return true if \p CtxI is valid for querying outside analyses.
8225   /// This basically makes sure we do not ask intra-procedural analysis
8226   /// about a context in the wrong function or a context that violates
8227   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8228   /// if the original context of this AA is OK or should be considered invalid.
8229   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8230                                                const Instruction *CtxI,
8231                                                bool AllowAACtxI) const {
8232     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8233       return false;
8234 
8235     // Our context might be in a different function, neither intra-procedural
8236     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8237     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8238       return false;
8239 
8240     // If the context is not dominated by the value there are paths to the
8241     // context that do not define the value. This cannot be handled by
8242     // LazyValueInfo so we need to bail.
8243     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8244       InformationCache &InfoCache = A.getInfoCache();
8245       const DominatorTree *DT =
8246           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8247               *I->getFunction());
8248       return DT && DT->dominates(I, CtxI);
8249     }
8250 
8251     return true;
8252   }
8253 
8254   /// See AAValueConstantRange::getKnownConstantRange(..).
8255   ConstantRange
8256   getKnownConstantRange(Attributor &A,
8257                         const Instruction *CtxI = nullptr) const override {
8258     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8259                                                  /* AllowAACtxI */ false))
8260       return getKnown();
8261 
8262     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8263     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8264     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8265   }
8266 
8267   /// See AAValueConstantRange::getAssumedConstantRange(..).
8268   ConstantRange
8269   getAssumedConstantRange(Attributor &A,
8270                           const Instruction *CtxI = nullptr) const override {
8271     // TODO: Make SCEV use Attributor assumption.
8272     //       We may be able to bound a variable range via assumptions in
8273     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8274     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8275     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8276                                                  /* AllowAACtxI */ false))
8277       return getAssumed();
8278 
8279     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8280     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8281     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8282   }
8283 
8284   /// Helper function to create MDNode for range metadata.
8285   static MDNode *
8286   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8287                             const ConstantRange &AssumedConstantRange) {
8288     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8289                                   Ty, AssumedConstantRange.getLower())),
8290                               ConstantAsMetadata::get(ConstantInt::get(
8291                                   Ty, AssumedConstantRange.getUpper()))};
8292     return MDNode::get(Ctx, LowAndHigh);
8293   }
8294 
8295   /// Return true if \p Assumed is included in \p KnownRanges.
8296   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8297 
8298     if (Assumed.isFullSet())
8299       return false;
8300 
8301     if (!KnownRanges)
8302       return true;
8303 
8304     // If multiple ranges are annotated in IR, we give up to annotate assumed
8305     // range for now.
8306 
8307     // TODO:  If there exists a known range which containts assumed range, we
8308     // can say assumed range is better.
8309     if (KnownRanges->getNumOperands() > 2)
8310       return false;
8311 
8312     ConstantInt *Lower =
8313         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8314     ConstantInt *Upper =
8315         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8316 
8317     ConstantRange Known(Lower->getValue(), Upper->getValue());
8318     return Known.contains(Assumed) && Known != Assumed;
8319   }
8320 
8321   /// Helper function to set range metadata.
8322   static bool
8323   setRangeMetadataIfisBetterRange(Instruction *I,
8324                                   const ConstantRange &AssumedConstantRange) {
8325     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8326     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8327       if (!AssumedConstantRange.isEmptySet()) {
8328         I->setMetadata(LLVMContext::MD_range,
8329                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8330                                                  AssumedConstantRange));
8331         return true;
8332       }
8333     }
8334     return false;
8335   }
8336 
8337   /// See AbstractAttribute::manifest()
8338   ChangeStatus manifest(Attributor &A) override {
8339     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8340     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8341     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8342 
8343     auto &V = getAssociatedValue();
8344     if (!AssumedConstantRange.isEmptySet() &&
8345         !AssumedConstantRange.isSingleElement()) {
8346       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8347         assert(I == getCtxI() && "Should not annotate an instruction which is "
8348                                  "not the context instruction");
8349         if (isa<CallInst>(I) || isa<LoadInst>(I))
8350           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8351             Changed = ChangeStatus::CHANGED;
8352       }
8353     }
8354 
8355     return Changed;
8356   }
8357 };
8358 
8359 struct AAValueConstantRangeArgument final
8360     : AAArgumentFromCallSiteArguments<
8361           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8362           true /* BridgeCallBaseContext */> {
8363   using Base = AAArgumentFromCallSiteArguments<
8364       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8365       true /* BridgeCallBaseContext */>;
8366   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8367       : Base(IRP, A) {}
8368 
8369   /// See AbstractAttribute::initialize(..).
8370   void initialize(Attributor &A) override {
8371     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8372       indicatePessimisticFixpoint();
8373     } else {
8374       Base::initialize(A);
8375     }
8376   }
8377 
8378   /// See AbstractAttribute::trackStatistics()
8379   void trackStatistics() const override {
8380     STATS_DECLTRACK_ARG_ATTR(value_range)
8381   }
8382 };
8383 
8384 struct AAValueConstantRangeReturned
8385     : AAReturnedFromReturnedValues<AAValueConstantRange,
8386                                    AAValueConstantRangeImpl,
8387                                    AAValueConstantRangeImpl::StateType,
8388                                    /* PropogateCallBaseContext */ true> {
8389   using Base =
8390       AAReturnedFromReturnedValues<AAValueConstantRange,
8391                                    AAValueConstantRangeImpl,
8392                                    AAValueConstantRangeImpl::StateType,
8393                                    /* PropogateCallBaseContext */ true>;
8394   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8395       : Base(IRP, A) {}
8396 
8397   /// See AbstractAttribute::initialize(...).
8398   void initialize(Attributor &A) override {}
8399 
8400   /// See AbstractAttribute::trackStatistics()
8401   void trackStatistics() const override {
8402     STATS_DECLTRACK_FNRET_ATTR(value_range)
8403   }
8404 };
8405 
8406 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8407   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8408       : AAValueConstantRangeImpl(IRP, A) {}
8409 
8410   /// See AbstractAttribute::initialize(...).
8411   void initialize(Attributor &A) override {
8412     AAValueConstantRangeImpl::initialize(A);
8413     if (isAtFixpoint())
8414       return;
8415 
8416     Value &V = getAssociatedValue();
8417 
8418     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8419       unionAssumed(ConstantRange(C->getValue()));
8420       indicateOptimisticFixpoint();
8421       return;
8422     }
8423 
8424     if (isa<UndefValue>(&V)) {
8425       // Collapse the undef state to 0.
8426       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8427       indicateOptimisticFixpoint();
8428       return;
8429     }
8430 
8431     if (isa<CallBase>(&V))
8432       return;
8433 
8434     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8435       return;
8436 
8437     // If it is a load instruction with range metadata, use it.
8438     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8439       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8440         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8441         return;
8442       }
8443 
8444     // We can work with PHI and select instruction as we traverse their operands
8445     // during update.
8446     if (isa<SelectInst>(V) || isa<PHINode>(V))
8447       return;
8448 
8449     // Otherwise we give up.
8450     indicatePessimisticFixpoint();
8451 
8452     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8453                       << getAssociatedValue() << "\n");
8454   }
8455 
8456   bool calculateBinaryOperator(
8457       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8458       const Instruction *CtxI,
8459       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8460     Value *LHS = BinOp->getOperand(0);
8461     Value *RHS = BinOp->getOperand(1);
8462 
8463     // Simplify the operands first.
8464     bool UsedAssumedInformation = false;
8465     const auto &SimplifiedLHS =
8466         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8467                                *this, UsedAssumedInformation);
8468     if (!SimplifiedLHS.hasValue())
8469       return true;
8470     if (!SimplifiedLHS.getValue())
8471       return false;
8472     LHS = *SimplifiedLHS;
8473 
8474     const auto &SimplifiedRHS =
8475         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8476                                *this, UsedAssumedInformation);
8477     if (!SimplifiedRHS.hasValue())
8478       return true;
8479     if (!SimplifiedRHS.getValue())
8480       return false;
8481     RHS = *SimplifiedRHS;
8482 
8483     // TODO: Allow non integers as well.
8484     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8485       return false;
8486 
8487     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8488         *this, IRPosition::value(*LHS, getCallBaseContext()),
8489         DepClassTy::REQUIRED);
8490     QuerriedAAs.push_back(&LHSAA);
8491     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8492 
8493     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8494         *this, IRPosition::value(*RHS, getCallBaseContext()),
8495         DepClassTy::REQUIRED);
8496     QuerriedAAs.push_back(&RHSAA);
8497     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8498 
8499     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8500 
8501     T.unionAssumed(AssumedRange);
8502 
8503     // TODO: Track a known state too.
8504 
8505     return T.isValidState();
8506   }
8507 
8508   bool calculateCastInst(
8509       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8510       const Instruction *CtxI,
8511       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8512     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8513     // TODO: Allow non integers as well.
8514     Value *OpV = CastI->getOperand(0);
8515 
8516     // Simplify the operand first.
8517     bool UsedAssumedInformation = false;
8518     const auto &SimplifiedOpV =
8519         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8520                                *this, UsedAssumedInformation);
8521     if (!SimplifiedOpV.hasValue())
8522       return true;
8523     if (!SimplifiedOpV.getValue())
8524       return false;
8525     OpV = *SimplifiedOpV;
8526 
8527     if (!OpV->getType()->isIntegerTy())
8528       return false;
8529 
8530     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8531         *this, IRPosition::value(*OpV, getCallBaseContext()),
8532         DepClassTy::REQUIRED);
8533     QuerriedAAs.push_back(&OpAA);
8534     T.unionAssumed(
8535         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8536     return T.isValidState();
8537   }
8538 
8539   bool
8540   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8541                    const Instruction *CtxI,
8542                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8543     Value *LHS = CmpI->getOperand(0);
8544     Value *RHS = CmpI->getOperand(1);
8545 
8546     // Simplify the operands first.
8547     bool UsedAssumedInformation = false;
8548     const auto &SimplifiedLHS =
8549         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8550                                *this, UsedAssumedInformation);
8551     if (!SimplifiedLHS.hasValue())
8552       return true;
8553     if (!SimplifiedLHS.getValue())
8554       return false;
8555     LHS = *SimplifiedLHS;
8556 
8557     const auto &SimplifiedRHS =
8558         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8559                                *this, UsedAssumedInformation);
8560     if (!SimplifiedRHS.hasValue())
8561       return true;
8562     if (!SimplifiedRHS.getValue())
8563       return false;
8564     RHS = *SimplifiedRHS;
8565 
8566     // TODO: Allow non integers as well.
8567     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8568       return false;
8569 
8570     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8571         *this, IRPosition::value(*LHS, getCallBaseContext()),
8572         DepClassTy::REQUIRED);
8573     QuerriedAAs.push_back(&LHSAA);
8574     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8575         *this, IRPosition::value(*RHS, getCallBaseContext()),
8576         DepClassTy::REQUIRED);
8577     QuerriedAAs.push_back(&RHSAA);
8578     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8579     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8580 
8581     // If one of them is empty set, we can't decide.
8582     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8583       return true;
8584 
8585     bool MustTrue = false, MustFalse = false;
8586 
8587     auto AllowedRegion =
8588         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8589 
8590     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8591       MustFalse = true;
8592 
8593     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8594       MustTrue = true;
8595 
8596     assert((!MustTrue || !MustFalse) &&
8597            "Either MustTrue or MustFalse should be false!");
8598 
8599     if (MustTrue)
8600       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8601     else if (MustFalse)
8602       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8603     else
8604       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8605 
8606     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8607                       << " " << RHSAA << "\n");
8608 
8609     // TODO: Track a known state too.
8610     return T.isValidState();
8611   }
8612 
8613   /// See AbstractAttribute::updateImpl(...).
8614   ChangeStatus updateImpl(Attributor &A) override {
8615     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8616                             IntegerRangeState &T, bool Stripped) -> bool {
8617       Instruction *I = dyn_cast<Instruction>(&V);
8618       if (!I || isa<CallBase>(I)) {
8619 
8620         // Simplify the operand first.
8621         bool UsedAssumedInformation = false;
8622         const auto &SimplifiedOpV =
8623             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8624                                    *this, UsedAssumedInformation);
8625         if (!SimplifiedOpV.hasValue())
8626           return true;
8627         if (!SimplifiedOpV.getValue())
8628           return false;
8629         Value *VPtr = *SimplifiedOpV;
8630 
8631         // If the value is not instruction, we query AA to Attributor.
8632         const auto &AA = A.getAAFor<AAValueConstantRange>(
8633             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8634             DepClassTy::REQUIRED);
8635 
8636         // Clamp operator is not used to utilize a program point CtxI.
8637         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8638 
8639         return T.isValidState();
8640       }
8641 
8642       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8643       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8644         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8645           return false;
8646       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8647         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8648           return false;
8649       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8650         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8651           return false;
8652       } else {
8653         // Give up with other instructions.
8654         // TODO: Add other instructions
8655 
8656         T.indicatePessimisticFixpoint();
8657         return false;
8658       }
8659 
8660       // Catch circular reasoning in a pessimistic way for now.
8661       // TODO: Check how the range evolves and if we stripped anything, see also
8662       //       AADereferenceable or AAAlign for similar situations.
8663       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8664         if (QueriedAA != this)
8665           continue;
8666         // If we are in a stady state we do not need to worry.
8667         if (T.getAssumed() == getState().getAssumed())
8668           continue;
8669         T.indicatePessimisticFixpoint();
8670       }
8671 
8672       return T.isValidState();
8673     };
8674 
8675     IntegerRangeState T(getBitWidth());
8676 
8677     bool UsedAssumedInformation = false;
8678     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8679                                                   VisitValueCB, getCtxI(),
8680                                                   UsedAssumedInformation,
8681                                                   /* UseValueSimplify */ false))
8682       return indicatePessimisticFixpoint();
8683 
8684     // Ensure that long def-use chains can't cause circular reasoning either by
8685     // introducing a cutoff below.
8686     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8687       return ChangeStatus::UNCHANGED;
8688     if (++NumChanges > MaxNumChanges) {
8689       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8690                         << " but only " << MaxNumChanges
8691                         << " are allowed to avoid cyclic reasoning.");
8692       return indicatePessimisticFixpoint();
8693     }
8694     return ChangeStatus::CHANGED;
8695   }
8696 
8697   /// See AbstractAttribute::trackStatistics()
8698   void trackStatistics() const override {
8699     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8700   }
8701 
8702   /// Tracker to bail after too many widening steps of the constant range.
8703   int NumChanges = 0;
8704 
8705   /// Upper bound for the number of allowed changes (=widening steps) for the
8706   /// constant range before we give up.
8707   static constexpr int MaxNumChanges = 5;
8708 };
8709 
8710 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8711   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8712       : AAValueConstantRangeImpl(IRP, A) {}
8713 
8714   /// See AbstractAttribute::initialize(...).
8715   ChangeStatus updateImpl(Attributor &A) override {
8716     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8717                      "not be called");
8718   }
8719 
8720   /// See AbstractAttribute::trackStatistics()
8721   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8722 };
8723 
8724 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8725   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8726       : AAValueConstantRangeFunction(IRP, A) {}
8727 
8728   /// See AbstractAttribute::trackStatistics()
8729   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8730 };
8731 
8732 struct AAValueConstantRangeCallSiteReturned
8733     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8734                                      AAValueConstantRangeImpl,
8735                                      AAValueConstantRangeImpl::StateType,
8736                                      /* IntroduceCallBaseContext */ true> {
8737   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8738       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8739                                        AAValueConstantRangeImpl,
8740                                        AAValueConstantRangeImpl::StateType,
8741                                        /* IntroduceCallBaseContext */ true>(IRP,
8742                                                                             A) {
8743   }
8744 
8745   /// See AbstractAttribute::initialize(...).
8746   void initialize(Attributor &A) override {
8747     // If it is a load instruction with range metadata, use the metadata.
8748     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8749       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8750         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8751 
8752     AAValueConstantRangeImpl::initialize(A);
8753   }
8754 
8755   /// See AbstractAttribute::trackStatistics()
8756   void trackStatistics() const override {
8757     STATS_DECLTRACK_CSRET_ATTR(value_range)
8758   }
8759 };
8760 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8761   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8762       : AAValueConstantRangeFloating(IRP, A) {}
8763 
8764   /// See AbstractAttribute::manifest()
8765   ChangeStatus manifest(Attributor &A) override {
8766     return ChangeStatus::UNCHANGED;
8767   }
8768 
8769   /// See AbstractAttribute::trackStatistics()
8770   void trackStatistics() const override {
8771     STATS_DECLTRACK_CSARG_ATTR(value_range)
8772   }
8773 };
8774 } // namespace
8775 
8776 /// ------------------ Potential Values Attribute -------------------------
8777 
8778 namespace {
8779 struct AAPotentialValuesImpl : AAPotentialValues {
8780   using StateType = PotentialConstantIntValuesState;
8781 
8782   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8783       : AAPotentialValues(IRP, A) {}
8784 
8785   /// See AbstractAttribute::initialize(..).
8786   void initialize(Attributor &A) override {
8787     if (A.hasSimplificationCallback(getIRPosition()))
8788       indicatePessimisticFixpoint();
8789     else
8790       AAPotentialValues::initialize(A);
8791   }
8792 
8793   /// See AbstractAttribute::getAsStr().
8794   const std::string getAsStr() const override {
8795     std::string Str;
8796     llvm::raw_string_ostream OS(Str);
8797     OS << getState();
8798     return OS.str();
8799   }
8800 
8801   /// See AbstractAttribute::updateImpl(...).
8802   ChangeStatus updateImpl(Attributor &A) override {
8803     return indicatePessimisticFixpoint();
8804   }
8805 };
8806 
8807 struct AAPotentialValuesArgument final
8808     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8809                                       PotentialConstantIntValuesState> {
8810   using Base =
8811       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8812                                       PotentialConstantIntValuesState>;
8813   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8814       : Base(IRP, A) {}
8815 
8816   /// See AbstractAttribute::initialize(..).
8817   void initialize(Attributor &A) override {
8818     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8819       indicatePessimisticFixpoint();
8820     } else {
8821       Base::initialize(A);
8822     }
8823   }
8824 
8825   /// See AbstractAttribute::trackStatistics()
8826   void trackStatistics() const override {
8827     STATS_DECLTRACK_ARG_ATTR(potential_values)
8828   }
8829 };
8830 
8831 struct AAPotentialValuesReturned
8832     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8833   using Base =
8834       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8835   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8836       : Base(IRP, A) {}
8837 
8838   /// See AbstractAttribute::trackStatistics()
8839   void trackStatistics() const override {
8840     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8841   }
8842 };
8843 
8844 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8845   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8846       : AAPotentialValuesImpl(IRP, A) {}
8847 
8848   /// See AbstractAttribute::initialize(..).
8849   void initialize(Attributor &A) override {
8850     AAPotentialValuesImpl::initialize(A);
8851     if (isAtFixpoint())
8852       return;
8853 
8854     Value &V = getAssociatedValue();
8855 
8856     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8857       unionAssumed(C->getValue());
8858       indicateOptimisticFixpoint();
8859       return;
8860     }
8861 
8862     if (isa<UndefValue>(&V)) {
8863       unionAssumedWithUndef();
8864       indicateOptimisticFixpoint();
8865       return;
8866     }
8867 
8868     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8869       return;
8870 
8871     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8872       return;
8873 
8874     indicatePessimisticFixpoint();
8875 
8876     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8877                       << getAssociatedValue() << "\n");
8878   }
8879 
8880   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8881                                 const APInt &RHS) {
8882     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8883   }
8884 
8885   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8886                                  uint32_t ResultBitWidth) {
8887     Instruction::CastOps CastOp = CI->getOpcode();
8888     switch (CastOp) {
8889     default:
8890       llvm_unreachable("unsupported or not integer cast");
8891     case Instruction::Trunc:
8892       return Src.trunc(ResultBitWidth);
8893     case Instruction::SExt:
8894       return Src.sext(ResultBitWidth);
8895     case Instruction::ZExt:
8896       return Src.zext(ResultBitWidth);
8897     case Instruction::BitCast:
8898       return Src;
8899     }
8900   }
8901 
8902   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8903                                        const APInt &LHS, const APInt &RHS,
8904                                        bool &SkipOperation, bool &Unsupported) {
8905     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8906     // Unsupported is set to true when the binary operator is not supported.
8907     // SkipOperation is set to true when UB occur with the given operand pair
8908     // (LHS, RHS).
8909     // TODO: we should look at nsw and nuw keywords to handle operations
8910     //       that create poison or undef value.
8911     switch (BinOpcode) {
8912     default:
8913       Unsupported = true;
8914       return LHS;
8915     case Instruction::Add:
8916       return LHS + RHS;
8917     case Instruction::Sub:
8918       return LHS - RHS;
8919     case Instruction::Mul:
8920       return LHS * RHS;
8921     case Instruction::UDiv:
8922       if (RHS.isZero()) {
8923         SkipOperation = true;
8924         return LHS;
8925       }
8926       return LHS.udiv(RHS);
8927     case Instruction::SDiv:
8928       if (RHS.isZero()) {
8929         SkipOperation = true;
8930         return LHS;
8931       }
8932       return LHS.sdiv(RHS);
8933     case Instruction::URem:
8934       if (RHS.isZero()) {
8935         SkipOperation = true;
8936         return LHS;
8937       }
8938       return LHS.urem(RHS);
8939     case Instruction::SRem:
8940       if (RHS.isZero()) {
8941         SkipOperation = true;
8942         return LHS;
8943       }
8944       return LHS.srem(RHS);
8945     case Instruction::Shl:
8946       return LHS.shl(RHS);
8947     case Instruction::LShr:
8948       return LHS.lshr(RHS);
8949     case Instruction::AShr:
8950       return LHS.ashr(RHS);
8951     case Instruction::And:
8952       return LHS & RHS;
8953     case Instruction::Or:
8954       return LHS | RHS;
8955     case Instruction::Xor:
8956       return LHS ^ RHS;
8957     }
8958   }
8959 
8960   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8961                                            const APInt &LHS, const APInt &RHS) {
8962     bool SkipOperation = false;
8963     bool Unsupported = false;
8964     APInt Result =
8965         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8966     if (Unsupported)
8967       return false;
8968     // If SkipOperation is true, we can ignore this operand pair (L, R).
8969     if (!SkipOperation)
8970       unionAssumed(Result);
8971     return isValidState();
8972   }
8973 
8974   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8975     auto AssumedBefore = getAssumed();
8976     Value *LHS = ICI->getOperand(0);
8977     Value *RHS = ICI->getOperand(1);
8978 
8979     // Simplify the operands first.
8980     bool UsedAssumedInformation = false;
8981     const auto &SimplifiedLHS =
8982         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8983                                *this, UsedAssumedInformation);
8984     if (!SimplifiedLHS.hasValue())
8985       return ChangeStatus::UNCHANGED;
8986     if (!SimplifiedLHS.getValue())
8987       return indicatePessimisticFixpoint();
8988     LHS = *SimplifiedLHS;
8989 
8990     const auto &SimplifiedRHS =
8991         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8992                                *this, UsedAssumedInformation);
8993     if (!SimplifiedRHS.hasValue())
8994       return ChangeStatus::UNCHANGED;
8995     if (!SimplifiedRHS.getValue())
8996       return indicatePessimisticFixpoint();
8997     RHS = *SimplifiedRHS;
8998 
8999     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9000       return indicatePessimisticFixpoint();
9001 
9002     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9003                                                 DepClassTy::REQUIRED);
9004     if (!LHSAA.isValidState())
9005       return indicatePessimisticFixpoint();
9006 
9007     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9008                                                 DepClassTy::REQUIRED);
9009     if (!RHSAA.isValidState())
9010       return indicatePessimisticFixpoint();
9011 
9012     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9013     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9014 
9015     // TODO: make use of undef flag to limit potential values aggressively.
9016     bool MaybeTrue = false, MaybeFalse = false;
9017     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
9018     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9019       // The result of any comparison between undefs can be soundly replaced
9020       // with undef.
9021       unionAssumedWithUndef();
9022     } else if (LHSAA.undefIsContained()) {
9023       for (const APInt &R : RHSAAPVS) {
9024         bool CmpResult = calculateICmpInst(ICI, Zero, R);
9025         MaybeTrue |= CmpResult;
9026         MaybeFalse |= !CmpResult;
9027         if (MaybeTrue & MaybeFalse)
9028           return indicatePessimisticFixpoint();
9029       }
9030     } else if (RHSAA.undefIsContained()) {
9031       for (const APInt &L : LHSAAPVS) {
9032         bool CmpResult = calculateICmpInst(ICI, L, Zero);
9033         MaybeTrue |= CmpResult;
9034         MaybeFalse |= !CmpResult;
9035         if (MaybeTrue & MaybeFalse)
9036           return indicatePessimisticFixpoint();
9037       }
9038     } else {
9039       for (const APInt &L : LHSAAPVS) {
9040         for (const APInt &R : RHSAAPVS) {
9041           bool CmpResult = calculateICmpInst(ICI, L, R);
9042           MaybeTrue |= CmpResult;
9043           MaybeFalse |= !CmpResult;
9044           if (MaybeTrue & MaybeFalse)
9045             return indicatePessimisticFixpoint();
9046         }
9047       }
9048     }
9049     if (MaybeTrue)
9050       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
9051     if (MaybeFalse)
9052       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
9053     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9054                                          : ChangeStatus::CHANGED;
9055   }
9056 
9057   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
9058     auto AssumedBefore = getAssumed();
9059     Value *LHS = SI->getTrueValue();
9060     Value *RHS = SI->getFalseValue();
9061 
9062     // Simplify the operands first.
9063     bool UsedAssumedInformation = false;
9064     const auto &SimplifiedLHS =
9065         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9066                                *this, UsedAssumedInformation);
9067     if (!SimplifiedLHS.hasValue())
9068       return ChangeStatus::UNCHANGED;
9069     if (!SimplifiedLHS.getValue())
9070       return indicatePessimisticFixpoint();
9071     LHS = *SimplifiedLHS;
9072 
9073     const auto &SimplifiedRHS =
9074         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9075                                *this, UsedAssumedInformation);
9076     if (!SimplifiedRHS.hasValue())
9077       return ChangeStatus::UNCHANGED;
9078     if (!SimplifiedRHS.getValue())
9079       return indicatePessimisticFixpoint();
9080     RHS = *SimplifiedRHS;
9081 
9082     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9083       return indicatePessimisticFixpoint();
9084 
9085     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
9086                                                   UsedAssumedInformation);
9087 
9088     // Check if we only need one operand.
9089     bool OnlyLeft = false, OnlyRight = false;
9090     if (C.hasValue() && *C && (*C)->isOneValue())
9091       OnlyLeft = true;
9092     else if (C.hasValue() && *C && (*C)->isZeroValue())
9093       OnlyRight = true;
9094 
9095     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
9096     if (!OnlyRight) {
9097       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9098                                              DepClassTy::REQUIRED);
9099       if (!LHSAA->isValidState())
9100         return indicatePessimisticFixpoint();
9101     }
9102     if (!OnlyLeft) {
9103       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9104                                              DepClassTy::REQUIRED);
9105       if (!RHSAA->isValidState())
9106         return indicatePessimisticFixpoint();
9107     }
9108 
9109     if (!LHSAA || !RHSAA) {
9110       // select (true/false), lhs, rhs
9111       auto *OpAA = LHSAA ? LHSAA : RHSAA;
9112 
9113       if (OpAA->undefIsContained())
9114         unionAssumedWithUndef();
9115       else
9116         unionAssumed(*OpAA);
9117 
9118     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
9119       // select i1 *, undef , undef => undef
9120       unionAssumedWithUndef();
9121     } else {
9122       unionAssumed(*LHSAA);
9123       unionAssumed(*RHSAA);
9124     }
9125     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9126                                          : ChangeStatus::CHANGED;
9127   }
9128 
9129   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9130     auto AssumedBefore = getAssumed();
9131     if (!CI->isIntegerCast())
9132       return indicatePessimisticFixpoint();
9133     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9134     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9135     Value *Src = CI->getOperand(0);
9136 
9137     // Simplify the operand first.
9138     bool UsedAssumedInformation = false;
9139     const auto &SimplifiedSrc =
9140         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
9141                                *this, UsedAssumedInformation);
9142     if (!SimplifiedSrc.hasValue())
9143       return ChangeStatus::UNCHANGED;
9144     if (!SimplifiedSrc.getValue())
9145       return indicatePessimisticFixpoint();
9146     Src = *SimplifiedSrc;
9147 
9148     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
9149                                                 DepClassTy::REQUIRED);
9150     if (!SrcAA.isValidState())
9151       return indicatePessimisticFixpoint();
9152     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
9153     if (SrcAA.undefIsContained())
9154       unionAssumedWithUndef();
9155     else {
9156       for (const APInt &S : SrcAAPVS) {
9157         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9158         unionAssumed(T);
9159       }
9160     }
9161     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9162                                          : ChangeStatus::CHANGED;
9163   }
9164 
9165   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9166     auto AssumedBefore = getAssumed();
9167     Value *LHS = BinOp->getOperand(0);
9168     Value *RHS = BinOp->getOperand(1);
9169 
9170     // Simplify the operands first.
9171     bool UsedAssumedInformation = false;
9172     const auto &SimplifiedLHS =
9173         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9174                                *this, UsedAssumedInformation);
9175     if (!SimplifiedLHS.hasValue())
9176       return ChangeStatus::UNCHANGED;
9177     if (!SimplifiedLHS.getValue())
9178       return indicatePessimisticFixpoint();
9179     LHS = *SimplifiedLHS;
9180 
9181     const auto &SimplifiedRHS =
9182         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9183                                *this, UsedAssumedInformation);
9184     if (!SimplifiedRHS.hasValue())
9185       return ChangeStatus::UNCHANGED;
9186     if (!SimplifiedRHS.getValue())
9187       return indicatePessimisticFixpoint();
9188     RHS = *SimplifiedRHS;
9189 
9190     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9191       return indicatePessimisticFixpoint();
9192 
9193     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9194                                                 DepClassTy::REQUIRED);
9195     if (!LHSAA.isValidState())
9196       return indicatePessimisticFixpoint();
9197 
9198     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9199                                                 DepClassTy::REQUIRED);
9200     if (!RHSAA.isValidState())
9201       return indicatePessimisticFixpoint();
9202 
9203     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9204     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9205     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9206 
9207     // TODO: make use of undef flag to limit potential values aggressively.
9208     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9209       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9210         return indicatePessimisticFixpoint();
9211     } else if (LHSAA.undefIsContained()) {
9212       for (const APInt &R : RHSAAPVS) {
9213         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9214           return indicatePessimisticFixpoint();
9215       }
9216     } else if (RHSAA.undefIsContained()) {
9217       for (const APInt &L : LHSAAPVS) {
9218         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9219           return indicatePessimisticFixpoint();
9220       }
9221     } else {
9222       for (const APInt &L : LHSAAPVS) {
9223         for (const APInt &R : RHSAAPVS) {
9224           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9225             return indicatePessimisticFixpoint();
9226         }
9227       }
9228     }
9229     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9230                                          : ChangeStatus::CHANGED;
9231   }
9232 
9233   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9234     auto AssumedBefore = getAssumed();
9235     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9236       Value *IncomingValue = PHI->getIncomingValue(u);
9237 
9238       // Simplify the operand first.
9239       bool UsedAssumedInformation = false;
9240       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9241           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9242           UsedAssumedInformation);
9243       if (!SimplifiedIncomingValue.hasValue())
9244         continue;
9245       if (!SimplifiedIncomingValue.getValue())
9246         return indicatePessimisticFixpoint();
9247       IncomingValue = *SimplifiedIncomingValue;
9248 
9249       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9250           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9251       if (!PotentialValuesAA.isValidState())
9252         return indicatePessimisticFixpoint();
9253       if (PotentialValuesAA.undefIsContained())
9254         unionAssumedWithUndef();
9255       else
9256         unionAssumed(PotentialValuesAA.getAssumed());
9257     }
9258     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9259                                          : ChangeStatus::CHANGED;
9260   }
9261 
9262   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9263     if (!L.getType()->isIntegerTy())
9264       return indicatePessimisticFixpoint();
9265 
9266     auto Union = [&](Value &V) {
9267       if (isa<UndefValue>(V)) {
9268         unionAssumedWithUndef();
9269         return true;
9270       }
9271       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9272         unionAssumed(CI->getValue());
9273         return true;
9274       }
9275       return false;
9276     };
9277     auto AssumedBefore = getAssumed();
9278 
9279     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9280       return indicatePessimisticFixpoint();
9281 
9282     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9283                                          : ChangeStatus::CHANGED;
9284   }
9285 
9286   /// See AbstractAttribute::updateImpl(...).
9287   ChangeStatus updateImpl(Attributor &A) override {
9288     Value &V = getAssociatedValue();
9289     Instruction *I = dyn_cast<Instruction>(&V);
9290 
9291     if (auto *ICI = dyn_cast<ICmpInst>(I))
9292       return updateWithICmpInst(A, ICI);
9293 
9294     if (auto *SI = dyn_cast<SelectInst>(I))
9295       return updateWithSelectInst(A, SI);
9296 
9297     if (auto *CI = dyn_cast<CastInst>(I))
9298       return updateWithCastInst(A, CI);
9299 
9300     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9301       return updateWithBinaryOperator(A, BinOp);
9302 
9303     if (auto *PHI = dyn_cast<PHINode>(I))
9304       return updateWithPHINode(A, PHI);
9305 
9306     if (auto *L = dyn_cast<LoadInst>(I))
9307       return updateWithLoad(A, *L);
9308 
9309     return indicatePessimisticFixpoint();
9310   }
9311 
9312   /// See AbstractAttribute::trackStatistics()
9313   void trackStatistics() const override {
9314     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9315   }
9316 };
9317 
9318 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9319   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9320       : AAPotentialValuesImpl(IRP, A) {}
9321 
9322   /// See AbstractAttribute::initialize(...).
9323   ChangeStatus updateImpl(Attributor &A) override {
9324     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9325                      "not be called");
9326   }
9327 
9328   /// See AbstractAttribute::trackStatistics()
9329   void trackStatistics() const override {
9330     STATS_DECLTRACK_FN_ATTR(potential_values)
9331   }
9332 };
9333 
9334 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9335   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9336       : AAPotentialValuesFunction(IRP, A) {}
9337 
9338   /// See AbstractAttribute::trackStatistics()
9339   void trackStatistics() const override {
9340     STATS_DECLTRACK_CS_ATTR(potential_values)
9341   }
9342 };
9343 
9344 struct AAPotentialValuesCallSiteReturned
9345     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9346   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9347       : AACallSiteReturnedFromReturned<AAPotentialValues,
9348                                        AAPotentialValuesImpl>(IRP, A) {}
9349 
9350   /// See AbstractAttribute::trackStatistics()
9351   void trackStatistics() const override {
9352     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9353   }
9354 };
9355 
9356 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9357   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9358       : AAPotentialValuesFloating(IRP, A) {}
9359 
9360   /// See AbstractAttribute::initialize(..).
9361   void initialize(Attributor &A) override {
9362     AAPotentialValuesImpl::initialize(A);
9363     if (isAtFixpoint())
9364       return;
9365 
9366     Value &V = getAssociatedValue();
9367 
9368     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9369       unionAssumed(C->getValue());
9370       indicateOptimisticFixpoint();
9371       return;
9372     }
9373 
9374     if (isa<UndefValue>(&V)) {
9375       unionAssumedWithUndef();
9376       indicateOptimisticFixpoint();
9377       return;
9378     }
9379   }
9380 
9381   /// See AbstractAttribute::updateImpl(...).
9382   ChangeStatus updateImpl(Attributor &A) override {
9383     Value &V = getAssociatedValue();
9384     auto AssumedBefore = getAssumed();
9385     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9386                                              DepClassTy::REQUIRED);
9387     const auto &S = AA.getAssumed();
9388     unionAssumed(S);
9389     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9390                                          : ChangeStatus::CHANGED;
9391   }
9392 
9393   /// See AbstractAttribute::trackStatistics()
9394   void trackStatistics() const override {
9395     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9396   }
9397 };
9398 
9399 /// ------------------------ NoUndef Attribute ---------------------------------
9400 struct AANoUndefImpl : AANoUndef {
9401   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9402 
9403   /// See AbstractAttribute::initialize(...).
9404   void initialize(Attributor &A) override {
9405     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9406       indicateOptimisticFixpoint();
9407       return;
9408     }
9409     Value &V = getAssociatedValue();
9410     if (isa<UndefValue>(V))
9411       indicatePessimisticFixpoint();
9412     else if (isa<FreezeInst>(V))
9413       indicateOptimisticFixpoint();
9414     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9415              isGuaranteedNotToBeUndefOrPoison(&V))
9416       indicateOptimisticFixpoint();
9417     else
9418       AANoUndef::initialize(A);
9419   }
9420 
9421   /// See followUsesInMBEC
9422   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9423                        AANoUndef::StateType &State) {
9424     const Value *UseV = U->get();
9425     const DominatorTree *DT = nullptr;
9426     AssumptionCache *AC = nullptr;
9427     InformationCache &InfoCache = A.getInfoCache();
9428     if (Function *F = getAnchorScope()) {
9429       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9430       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9431     }
9432     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9433     bool TrackUse = false;
9434     // Track use for instructions which must produce undef or poison bits when
9435     // at least one operand contains such bits.
9436     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9437       TrackUse = true;
9438     return TrackUse;
9439   }
9440 
9441   /// See AbstractAttribute::getAsStr().
9442   const std::string getAsStr() const override {
9443     return getAssumed() ? "noundef" : "may-undef-or-poison";
9444   }
9445 
9446   ChangeStatus manifest(Attributor &A) override {
9447     // We don't manifest noundef attribute for dead positions because the
9448     // associated values with dead positions would be replaced with undef
9449     // values.
9450     bool UsedAssumedInformation = false;
9451     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9452                         UsedAssumedInformation))
9453       return ChangeStatus::UNCHANGED;
9454     // A position whose simplified value does not have any value is
9455     // considered to be dead. We don't manifest noundef in such positions for
9456     // the same reason above.
9457     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9458              .hasValue())
9459       return ChangeStatus::UNCHANGED;
9460     return AANoUndef::manifest(A);
9461   }
9462 };
9463 
9464 struct AANoUndefFloating : public AANoUndefImpl {
9465   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9466       : AANoUndefImpl(IRP, A) {}
9467 
9468   /// See AbstractAttribute::initialize(...).
9469   void initialize(Attributor &A) override {
9470     AANoUndefImpl::initialize(A);
9471     if (!getState().isAtFixpoint())
9472       if (Instruction *CtxI = getCtxI())
9473         followUsesInMBEC(*this, A, getState(), *CtxI);
9474   }
9475 
9476   /// See AbstractAttribute::updateImpl(...).
9477   ChangeStatus updateImpl(Attributor &A) override {
9478     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9479                             AANoUndef::StateType &T, bool Stripped) -> bool {
9480       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9481                                              DepClassTy::REQUIRED);
9482       if (!Stripped && this == &AA) {
9483         T.indicatePessimisticFixpoint();
9484       } else {
9485         const AANoUndef::StateType &S =
9486             static_cast<const AANoUndef::StateType &>(AA.getState());
9487         T ^= S;
9488       }
9489       return T.isValidState();
9490     };
9491 
9492     StateType T;
9493     bool UsedAssumedInformation = false;
9494     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9495                                           VisitValueCB, getCtxI(),
9496                                           UsedAssumedInformation))
9497       return indicatePessimisticFixpoint();
9498 
9499     return clampStateAndIndicateChange(getState(), T);
9500   }
9501 
9502   /// See AbstractAttribute::trackStatistics()
9503   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9504 };
9505 
9506 struct AANoUndefReturned final
9507     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9508   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9509       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9510 
9511   /// See AbstractAttribute::trackStatistics()
9512   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9513 };
9514 
9515 struct AANoUndefArgument final
9516     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9517   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9518       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9519 
9520   /// See AbstractAttribute::trackStatistics()
9521   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9522 };
9523 
9524 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9525   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9526       : AANoUndefFloating(IRP, A) {}
9527 
9528   /// See AbstractAttribute::trackStatistics()
9529   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9530 };
9531 
9532 struct AANoUndefCallSiteReturned final
9533     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9534   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9535       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9536 
9537   /// See AbstractAttribute::trackStatistics()
9538   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9539 };
9540 
9541 struct AACallEdgesImpl : public AACallEdges {
9542   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9543 
9544   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9545     return CalledFunctions;
9546   }
9547 
9548   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9549 
9550   virtual bool hasNonAsmUnknownCallee() const override {
9551     return HasUnknownCalleeNonAsm;
9552   }
9553 
9554   const std::string getAsStr() const override {
9555     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9556            std::to_string(CalledFunctions.size()) + "]";
9557   }
9558 
9559   void trackStatistics() const override {}
9560 
9561 protected:
9562   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9563     if (CalledFunctions.insert(Fn)) {
9564       Change = ChangeStatus::CHANGED;
9565       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9566                         << "\n");
9567     }
9568   }
9569 
9570   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9571     if (!HasUnknownCallee)
9572       Change = ChangeStatus::CHANGED;
9573     if (NonAsm && !HasUnknownCalleeNonAsm)
9574       Change = ChangeStatus::CHANGED;
9575     HasUnknownCalleeNonAsm |= NonAsm;
9576     HasUnknownCallee = true;
9577   }
9578 
9579 private:
9580   /// Optimistic set of functions that might be called by this position.
9581   SetVector<Function *> CalledFunctions;
9582 
9583   /// Is there any call with a unknown callee.
9584   bool HasUnknownCallee = false;
9585 
9586   /// Is there any call with a unknown callee, excluding any inline asm.
9587   bool HasUnknownCalleeNonAsm = false;
9588 };
9589 
9590 struct AACallEdgesCallSite : public AACallEdgesImpl {
9591   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9592       : AACallEdgesImpl(IRP, A) {}
9593   /// See AbstractAttribute::updateImpl(...).
9594   ChangeStatus updateImpl(Attributor &A) override {
9595     ChangeStatus Change = ChangeStatus::UNCHANGED;
9596 
9597     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9598                           bool Stripped) -> bool {
9599       if (Function *Fn = dyn_cast<Function>(&V)) {
9600         addCalledFunction(Fn, Change);
9601       } else {
9602         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9603         setHasUnknownCallee(true, Change);
9604       }
9605 
9606       // Explore all values.
9607       return true;
9608     };
9609 
9610     // Process any value that we might call.
9611     auto ProcessCalledOperand = [&](Value *V) {
9612       bool DummyValue = false;
9613       bool UsedAssumedInformation = false;
9614       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9615                                        DummyValue, VisitValue, nullptr,
9616                                        UsedAssumedInformation, false)) {
9617         // If we haven't gone through all values, assume that there are unknown
9618         // callees.
9619         setHasUnknownCallee(true, Change);
9620       }
9621     };
9622 
9623     CallBase *CB = cast<CallBase>(getCtxI());
9624 
9625     if (CB->isInlineAsm()) {
9626       if (!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
9627           !hasAssumption(*CB, "ompx_no_call_asm"))
9628         setHasUnknownCallee(false, Change);
9629       return Change;
9630     }
9631 
9632     // Process callee metadata if available.
9633     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9634       for (auto &Op : MD->operands()) {
9635         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9636         if (Callee)
9637           addCalledFunction(Callee, Change);
9638       }
9639       return Change;
9640     }
9641 
9642     // The most simple case.
9643     ProcessCalledOperand(CB->getCalledOperand());
9644 
9645     // Process callback functions.
9646     SmallVector<const Use *, 4u> CallbackUses;
9647     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9648     for (const Use *U : CallbackUses)
9649       ProcessCalledOperand(U->get());
9650 
9651     return Change;
9652   }
9653 };
9654 
9655 struct AACallEdgesFunction : public AACallEdgesImpl {
9656   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9657       : AACallEdgesImpl(IRP, A) {}
9658 
9659   /// See AbstractAttribute::updateImpl(...).
9660   ChangeStatus updateImpl(Attributor &A) override {
9661     ChangeStatus Change = ChangeStatus::UNCHANGED;
9662 
9663     auto ProcessCallInst = [&](Instruction &Inst) {
9664       CallBase &CB = cast<CallBase>(Inst);
9665 
9666       auto &CBEdges = A.getAAFor<AACallEdges>(
9667           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9668       if (CBEdges.hasNonAsmUnknownCallee())
9669         setHasUnknownCallee(true, Change);
9670       if (CBEdges.hasUnknownCallee())
9671         setHasUnknownCallee(false, Change);
9672 
9673       for (Function *F : CBEdges.getOptimisticEdges())
9674         addCalledFunction(F, Change);
9675 
9676       return true;
9677     };
9678 
9679     // Visit all callable instructions.
9680     bool UsedAssumedInformation = false;
9681     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9682                                            UsedAssumedInformation,
9683                                            /* CheckBBLivenessOnly */ true)) {
9684       // If we haven't looked at all call like instructions, assume that there
9685       // are unknown callees.
9686       setHasUnknownCallee(true, Change);
9687     }
9688 
9689     return Change;
9690   }
9691 };
9692 
9693 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9694 private:
9695   struct QuerySet {
9696     void markReachable(const Function &Fn) {
9697       Reachable.insert(&Fn);
9698       Unreachable.erase(&Fn);
9699     }
9700 
9701     /// If there is no information about the function None is returned.
9702     Optional<bool> isCachedReachable(const Function &Fn) {
9703       // Assume that we can reach the function.
9704       // TODO: Be more specific with the unknown callee.
9705       if (CanReachUnknownCallee)
9706         return true;
9707 
9708       if (Reachable.count(&Fn))
9709         return true;
9710 
9711       if (Unreachable.count(&Fn))
9712         return false;
9713 
9714       return llvm::None;
9715     }
9716 
9717     /// Set of functions that we know for sure is reachable.
9718     DenseSet<const Function *> Reachable;
9719 
9720     /// Set of functions that are unreachable, but might become reachable.
9721     DenseSet<const Function *> Unreachable;
9722 
9723     /// If we can reach a function with a call to a unknown function we assume
9724     /// that we can reach any function.
9725     bool CanReachUnknownCallee = false;
9726   };
9727 
9728   struct QueryResolver : public QuerySet {
9729     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9730                         ArrayRef<const AACallEdges *> AAEdgesList) {
9731       ChangeStatus Change = ChangeStatus::UNCHANGED;
9732 
9733       for (auto *AAEdges : AAEdgesList) {
9734         if (AAEdges->hasUnknownCallee()) {
9735           if (!CanReachUnknownCallee)
9736             Change = ChangeStatus::CHANGED;
9737           CanReachUnknownCallee = true;
9738           return Change;
9739         }
9740       }
9741 
9742       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9743         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9744           Change = ChangeStatus::CHANGED;
9745           markReachable(*Fn);
9746         }
9747       }
9748       return Change;
9749     }
9750 
9751     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9752                      ArrayRef<const AACallEdges *> AAEdgesList,
9753                      const Function &Fn) {
9754       Optional<bool> Cached = isCachedReachable(Fn);
9755       if (Cached.hasValue())
9756         return Cached.getValue();
9757 
9758       // The query was not cached, thus it is new. We need to request an update
9759       // explicitly to make sure this the information is properly run to a
9760       // fixpoint.
9761       A.registerForUpdate(AA);
9762 
9763       // We need to assume that this function can't reach Fn to prevent
9764       // an infinite loop if this function is recursive.
9765       Unreachable.insert(&Fn);
9766 
9767       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9768       if (Result)
9769         markReachable(Fn);
9770       return Result;
9771     }
9772 
9773     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9774                           ArrayRef<const AACallEdges *> AAEdgesList,
9775                           const Function &Fn) const {
9776 
9777       // Handle the most trivial case first.
9778       for (auto *AAEdges : AAEdgesList) {
9779         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9780 
9781         if (Edges.count(const_cast<Function *>(&Fn)))
9782           return true;
9783       }
9784 
9785       SmallVector<const AAFunctionReachability *, 8> Deps;
9786       for (auto &AAEdges : AAEdgesList) {
9787         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9788 
9789         for (Function *Edge : Edges) {
9790           // Functions that do not call back into the module can be ignored.
9791           if (Edge->hasFnAttribute(Attribute::NoCallback))
9792             continue;
9793 
9794           // We don't need a dependency if the result is reachable.
9795           const AAFunctionReachability &EdgeReachability =
9796               A.getAAFor<AAFunctionReachability>(
9797                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9798           Deps.push_back(&EdgeReachability);
9799 
9800           if (EdgeReachability.canReach(A, Fn))
9801             return true;
9802         }
9803       }
9804 
9805       // The result is false for now, set dependencies and leave.
9806       for (auto *Dep : Deps)
9807         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9808 
9809       return false;
9810     }
9811   };
9812 
9813   /// Get call edges that can be reached by this instruction.
9814   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9815                              const Instruction &Inst,
9816                              SmallVector<const AACallEdges *> &Result) const {
9817     // Determine call like instructions that we can reach from the inst.
9818     auto CheckCallBase = [&](Instruction &CBInst) {
9819       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9820         return true;
9821 
9822       auto &CB = cast<CallBase>(CBInst);
9823       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9824           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9825 
9826       Result.push_back(&AAEdges);
9827       return true;
9828     };
9829 
9830     bool UsedAssumedInformation = false;
9831     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9832                                              UsedAssumedInformation,
9833                                              /* CheckBBLivenessOnly */ true);
9834   }
9835 
9836 public:
9837   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9838       : AAFunctionReachability(IRP, A) {}
9839 
9840   bool canReach(Attributor &A, const Function &Fn) const override {
9841     if (!isValidState())
9842       return true;
9843 
9844     const AACallEdges &AAEdges =
9845         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9846 
9847     // Attributor returns attributes as const, so this function has to be
9848     // const for users of this attribute to use it without having to do
9849     // a const_cast.
9850     // This is a hack for us to be able to cache queries.
9851     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9852     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9853                                                           {&AAEdges}, Fn);
9854 
9855     return Result;
9856   }
9857 
9858   /// Can \p CB reach \p Fn
9859   bool canReach(Attributor &A, CallBase &CB,
9860                 const Function &Fn) const override {
9861     if (!isValidState())
9862       return true;
9863 
9864     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9865         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9866 
9867     // Attributor returns attributes as const, so this function has to be
9868     // const for users of this attribute to use it without having to do
9869     // a const_cast.
9870     // This is a hack for us to be able to cache queries.
9871     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9872     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9873 
9874     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9875 
9876     return Result;
9877   }
9878 
9879   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9880                            const Function &Fn,
9881                            bool UseBackwards) const override {
9882     if (!isValidState())
9883       return true;
9884 
9885     if (UseBackwards)
9886       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9887 
9888     const auto &Reachability = A.getAAFor<AAReachability>(
9889         *this, IRPosition::function(*getAssociatedFunction()),
9890         DepClassTy::REQUIRED);
9891 
9892     SmallVector<const AACallEdges *> CallEdges;
9893     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9894     // Attributor returns attributes as const, so this function has to be
9895     // const for users of this attribute to use it without having to do
9896     // a const_cast.
9897     // This is a hack for us to be able to cache queries.
9898     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9899     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9900     if (!AllKnown)
9901       InstQSet.CanReachUnknownCallee = true;
9902 
9903     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9904   }
9905 
9906   /// See AbstractAttribute::updateImpl(...).
9907   ChangeStatus updateImpl(Attributor &A) override {
9908     const AACallEdges &AAEdges =
9909         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9910     ChangeStatus Change = ChangeStatus::UNCHANGED;
9911 
9912     Change |= WholeFunction.update(A, *this, {&AAEdges});
9913 
9914     for (auto &CBPair : CBQueries) {
9915       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9916           *this, IRPosition::callsite_function(*CBPair.first),
9917           DepClassTy::REQUIRED);
9918 
9919       Change |= CBPair.second.update(A, *this, {&AAEdges});
9920     }
9921 
9922     // Update the Instruction queries.
9923     if (!InstQueries.empty()) {
9924       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9925           *this, IRPosition::function(*getAssociatedFunction()),
9926           DepClassTy::REQUIRED);
9927 
9928       // Check for local callbases first.
9929       for (auto &InstPair : InstQueries) {
9930         SmallVector<const AACallEdges *> CallEdges;
9931         bool AllKnown =
9932             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9933         // Update will return change if we this effects any queries.
9934         if (!AllKnown)
9935           InstPair.second.CanReachUnknownCallee = true;
9936         Change |= InstPair.second.update(A, *this, CallEdges);
9937       }
9938     }
9939 
9940     return Change;
9941   }
9942 
9943   const std::string getAsStr() const override {
9944     size_t QueryCount =
9945         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9946 
9947     return "FunctionReachability [" +
9948            std::to_string(WholeFunction.Reachable.size()) + "," +
9949            std::to_string(QueryCount) + "]";
9950   }
9951 
9952   void trackStatistics() const override {}
9953 
9954 private:
9955   bool canReachUnknownCallee() const override {
9956     return WholeFunction.CanReachUnknownCallee;
9957   }
9958 
9959   /// Used to answer if a the whole function can reacha a specific function.
9960   QueryResolver WholeFunction;
9961 
9962   /// Used to answer if a call base inside this function can reach a specific
9963   /// function.
9964   MapVector<const CallBase *, QueryResolver> CBQueries;
9965 
9966   /// This is for instruction queries than scan "forward".
9967   MapVector<const Instruction *, QueryResolver> InstQueries;
9968 };
9969 } // namespace
9970 
9971 /// ---------------------- Assumption Propagation ------------------------------
9972 namespace {
9973 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9974   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9975                        const DenseSet<StringRef> &Known)
9976       : AAAssumptionInfo(IRP, A, Known) {}
9977 
9978   bool hasAssumption(const StringRef Assumption) const override {
9979     return isValidState() && setContains(Assumption);
9980   }
9981 
9982   /// See AbstractAttribute::getAsStr()
9983   const std::string getAsStr() const override {
9984     const SetContents &Known = getKnown();
9985     const SetContents &Assumed = getAssumed();
9986 
9987     const std::string KnownStr =
9988         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9989     const std::string AssumedStr =
9990         (Assumed.isUniversal())
9991             ? "Universal"
9992             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9993 
9994     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9995   }
9996 };
9997 
9998 /// Propagates assumption information from parent functions to all of their
9999 /// successors. An assumption can be propagated if the containing function
10000 /// dominates the called function.
10001 ///
10002 /// We start with a "known" set of assumptions already valid for the associated
10003 /// function and an "assumed" set that initially contains all possible
10004 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10005 /// contents as concrete values are known. The concrete values are seeded by the
10006 /// first nodes that are either entries into the call graph, or contains no
10007 /// assumptions. Each node is updated as the intersection of the assumed state
10008 /// with all of its predecessors.
10009 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
10010   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10011       : AAAssumptionInfoImpl(IRP, A,
10012                              getAssumptions(*IRP.getAssociatedFunction())) {}
10013 
10014   /// See AbstractAttribute::manifest(...).
10015   ChangeStatus manifest(Attributor &A) override {
10016     const auto &Assumptions = getKnown();
10017 
10018     // Don't manifest a universal set if it somehow made it here.
10019     if (Assumptions.isUniversal())
10020       return ChangeStatus::UNCHANGED;
10021 
10022     Function *AssociatedFunction = getAssociatedFunction();
10023 
10024     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10025 
10026     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10027   }
10028 
10029   /// See AbstractAttribute::updateImpl(...).
10030   ChangeStatus updateImpl(Attributor &A) override {
10031     bool Changed = false;
10032 
10033     auto CallSitePred = [&](AbstractCallSite ACS) {
10034       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10035           *this, IRPosition::callsite_function(*ACS.getInstruction()),
10036           DepClassTy::REQUIRED);
10037       // Get the set of assumptions shared by all of this function's callers.
10038       Changed |= getIntersection(AssumptionAA.getAssumed());
10039       return !getAssumed().empty() || !getKnown().empty();
10040     };
10041 
10042     bool UsedAssumedInformation = false;
10043     // Get the intersection of all assumptions held by this node's predecessors.
10044     // If we don't know all the call sites then this is either an entry into the
10045     // call graph or an empty node. This node is known to only contain its own
10046     // assumptions and can be propagated to its successors.
10047     if (!A.checkForAllCallSites(CallSitePred, *this, true,
10048                                 UsedAssumedInformation))
10049       return indicatePessimisticFixpoint();
10050 
10051     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10052   }
10053 
10054   void trackStatistics() const override {}
10055 };
10056 
10057 /// Assumption Info defined for call sites.
10058 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10059 
10060   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10061       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10062 
10063   /// See AbstractAttribute::initialize(...).
10064   void initialize(Attributor &A) override {
10065     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10066     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10067   }
10068 
10069   /// See AbstractAttribute::manifest(...).
10070   ChangeStatus manifest(Attributor &A) override {
10071     // Don't manifest a universal set if it somehow made it here.
10072     if (getKnown().isUniversal())
10073       return ChangeStatus::UNCHANGED;
10074 
10075     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10076     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10077 
10078     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10079   }
10080 
10081   /// See AbstractAttribute::updateImpl(...).
10082   ChangeStatus updateImpl(Attributor &A) override {
10083     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10084     auto &AssumptionAA =
10085         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10086     bool Changed = getIntersection(AssumptionAA.getAssumed());
10087     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10088   }
10089 
10090   /// See AbstractAttribute::trackStatistics()
10091   void trackStatistics() const override {}
10092 
10093 private:
10094   /// Helper to initialized the known set as all the assumptions this call and
10095   /// the callee contain.
10096   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10097     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10098     auto Assumptions = getAssumptions(CB);
10099     if (Function *F = IRP.getAssociatedFunction())
10100       set_union(Assumptions, getAssumptions(*F));
10101     if (Function *F = IRP.getAssociatedFunction())
10102       set_union(Assumptions, getAssumptions(*F));
10103     return Assumptions;
10104   }
10105 };
10106 } // namespace
10107 
10108 AACallGraphNode *AACallEdgeIterator::operator*() const {
10109   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10110       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10111 }
10112 
10113 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10114 
10115 const char AAReturnedValues::ID = 0;
10116 const char AANoUnwind::ID = 0;
10117 const char AANoSync::ID = 0;
10118 const char AANoFree::ID = 0;
10119 const char AANonNull::ID = 0;
10120 const char AANoRecurse::ID = 0;
10121 const char AAWillReturn::ID = 0;
10122 const char AAUndefinedBehavior::ID = 0;
10123 const char AANoAlias::ID = 0;
10124 const char AAReachability::ID = 0;
10125 const char AANoReturn::ID = 0;
10126 const char AAIsDead::ID = 0;
10127 const char AADereferenceable::ID = 0;
10128 const char AAAlign::ID = 0;
10129 const char AANoCapture::ID = 0;
10130 const char AAValueSimplify::ID = 0;
10131 const char AAHeapToStack::ID = 0;
10132 const char AAPrivatizablePtr::ID = 0;
10133 const char AAMemoryBehavior::ID = 0;
10134 const char AAMemoryLocation::ID = 0;
10135 const char AAValueConstantRange::ID = 0;
10136 const char AAPotentialValues::ID = 0;
10137 const char AANoUndef::ID = 0;
10138 const char AACallEdges::ID = 0;
10139 const char AAFunctionReachability::ID = 0;
10140 const char AAPointerInfo::ID = 0;
10141 const char AAAssumptionInfo::ID = 0;
10142 
10143 // Macro magic to create the static generator function for attributes that
10144 // follow the naming scheme.
10145 
10146 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10147   case IRPosition::PK:                                                         \
10148     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10149 
10150 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10151   case IRPosition::PK:                                                         \
10152     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10153     ++NumAAs;                                                                  \
10154     break;
10155 
10156 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10157   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10158     CLASS *AA = nullptr;                                                       \
10159     switch (IRP.getPositionKind()) {                                           \
10160       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10161       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10162       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10163       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10164       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10165       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10166       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10167       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10168     }                                                                          \
10169     return *AA;                                                                \
10170   }
10171 
10172 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10173   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10174     CLASS *AA = nullptr;                                                       \
10175     switch (IRP.getPositionKind()) {                                           \
10176       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10177       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10178       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10179       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10180       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10181       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10182       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10183       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10184     }                                                                          \
10185     return *AA;                                                                \
10186   }
10187 
10188 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10189   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10190     CLASS *AA = nullptr;                                                       \
10191     switch (IRP.getPositionKind()) {                                           \
10192       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10193       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10194       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10195       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10196       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10197       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10198       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10199       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10200     }                                                                          \
10201     return *AA;                                                                \
10202   }
10203 
10204 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10205   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10206     CLASS *AA = nullptr;                                                       \
10207     switch (IRP.getPositionKind()) {                                           \
10208       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10209       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10210       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10211       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10212       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10213       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10214       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10215       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10216     }                                                                          \
10217     return *AA;                                                                \
10218   }
10219 
10220 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10221   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10222     CLASS *AA = nullptr;                                                       \
10223     switch (IRP.getPositionKind()) {                                           \
10224       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10225       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10226       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10227       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10228       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10229       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10230       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10231       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10232     }                                                                          \
10233     return *AA;                                                                \
10234   }
10235 
10236 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10237 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10238 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10239 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10240 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10241 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10242 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10243 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10244 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10245 
10246 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10247 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10248 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10249 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10250 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10251 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10252 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10253 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10254 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10255 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10256 
10257 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10258 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10259 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10260 
10261 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10262 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10263 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10264 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10265 
10266 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10267 
10268 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10269 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10270 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10271 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10272 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10273 #undef SWITCH_PK_CREATE
10274 #undef SWITCH_PK_INV
10275