1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumeBundleQueries.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Assumptions.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include <cassert>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "attributor"
52 
53 static cl::opt<bool> ManifestInternal(
54     "attributor-manifest-internal", cl::Hidden,
55     cl::desc("Manifest Attributor internal string attributes."),
56     cl::init(false));
57 
58 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
59                                        cl::Hidden);
60 
61 template <>
62 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
63 
64 static cl::opt<unsigned, true> MaxPotentialValues(
65     "attributor-max-potential-values", cl::Hidden,
66     cl::desc("Maximum number of potential values to be "
67              "tracked for each position."),
68     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
69     cl::init(7));
70 
71 STATISTIC(NumAAs, "Number of abstract attributes created");
72 
73 // Some helper macros to deal with statistics tracking.
74 //
75 // Usage:
76 // For simple IR attribute tracking overload trackStatistics in the abstract
77 // attribute and choose the right STATS_DECLTRACK_********* macro,
78 // e.g.,:
79 //  void trackStatistics() const override {
80 //    STATS_DECLTRACK_ARG_ATTR(returned)
81 //  }
82 // If there is a single "increment" side one can use the macro
83 // STATS_DECLTRACK with a custom message. If there are multiple increment
84 // sides, STATS_DECL and STATS_TRACK can also be used separately.
85 //
86 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
87   ("Number of " #TYPE " marked '" #NAME "'")
88 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
89 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
90 #define STATS_DECL(NAME, TYPE, MSG)                                            \
91   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
92 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
93 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
94   {                                                                            \
95     STATS_DECL(NAME, TYPE, MSG)                                                \
96     STATS_TRACK(NAME, TYPE)                                                    \
97   }
98 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
99   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
100 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
101   STATS_DECLTRACK(NAME, CSArguments,                                           \
102                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
103 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
105 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
106   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
107 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
108   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
109                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
110 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
111   STATS_DECLTRACK(NAME, CSReturn,                                              \
112                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
113 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
114   STATS_DECLTRACK(NAME, Floating,                                              \
115                   ("Number of floating values known to be '" #NAME "'"))
116 
117 // Specialization of the operator<< for abstract attributes subclasses. This
118 // disambiguates situations where multiple operators are applicable.
119 namespace llvm {
120 #define PIPE_OPERATOR(CLASS)                                                   \
121   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
122     return OS << static_cast<const AbstractAttribute &>(AA);                   \
123   }
124 
125 PIPE_OPERATOR(AAIsDead)
126 PIPE_OPERATOR(AANoUnwind)
127 PIPE_OPERATOR(AANoSync)
128 PIPE_OPERATOR(AANoRecurse)
129 PIPE_OPERATOR(AAWillReturn)
130 PIPE_OPERATOR(AANoReturn)
131 PIPE_OPERATOR(AAReturnedValues)
132 PIPE_OPERATOR(AANonNull)
133 PIPE_OPERATOR(AANoAlias)
134 PIPE_OPERATOR(AADereferenceable)
135 PIPE_OPERATOR(AAAlign)
136 PIPE_OPERATOR(AANoCapture)
137 PIPE_OPERATOR(AAValueSimplify)
138 PIPE_OPERATOR(AANoFree)
139 PIPE_OPERATOR(AAHeapToStack)
140 PIPE_OPERATOR(AAReachability)
141 PIPE_OPERATOR(AAMemoryBehavior)
142 PIPE_OPERATOR(AAMemoryLocation)
143 PIPE_OPERATOR(AAValueConstantRange)
144 PIPE_OPERATOR(AAPrivatizablePtr)
145 PIPE_OPERATOR(AAUndefinedBehavior)
146 PIPE_OPERATOR(AAPotentialValues)
147 PIPE_OPERATOR(AANoUndef)
148 PIPE_OPERATOR(AACallEdges)
149 PIPE_OPERATOR(AAFunctionReachability)
150 PIPE_OPERATOR(AAPointerInfo)
151 PIPE_OPERATOR(AAAssumptionInfo)
152 
153 #undef PIPE_OPERATOR
154 
155 template <>
156 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
157                                                      const DerefState &R) {
158   ChangeStatus CS0 =
159       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
160   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
161   return CS0 | CS1;
162 }
163 
164 } // namespace llvm
165 
166 /// Get pointer operand of memory accessing instruction. If \p I is
167 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
168 /// is set to false and the instruction is volatile, return nullptr.
169 static const Value *getPointerOperand(const Instruction *I,
170                                       bool AllowVolatile) {
171   if (!AllowVolatile && I->isVolatile())
172     return nullptr;
173 
174   if (auto *LI = dyn_cast<LoadInst>(I)) {
175     return LI->getPointerOperand();
176   }
177 
178   if (auto *SI = dyn_cast<StoreInst>(I)) {
179     return SI->getPointerOperand();
180   }
181 
182   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
183     return CXI->getPointerOperand();
184   }
185 
186   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
187     return RMWI->getPointerOperand();
188   }
189 
190   return nullptr;
191 }
192 
193 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
194 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
195 /// getelement pointer instructions that traverse the natural type of \p Ptr if
196 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
197 /// through a cast to i8*.
198 ///
199 /// TODO: This could probably live somewhere more prominantly if it doesn't
200 ///       already exist.
201 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
202                                int64_t Offset, IRBuilder<NoFolder> &IRB,
203                                const DataLayout &DL) {
204   assert(Offset >= 0 && "Negative offset not supported yet!");
205   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
206                     << "-bytes as " << *ResTy << "\n");
207 
208   if (Offset) {
209     Type *Ty = PtrElemTy;
210     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
211     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
212 
213     SmallVector<Value *, 4> ValIndices;
214     std::string GEPName = Ptr->getName().str();
215     for (const APInt &Index : IntIndices) {
216       ValIndices.push_back(IRB.getInt(Index));
217       GEPName += "." + std::to_string(Index.getZExtValue());
218     }
219 
220     // Create a GEP for the indices collected above.
221     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
222 
223     // If an offset is left we use byte-wise adjustment.
224     if (IntOffset != 0) {
225       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
226       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
227                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
228     }
229   }
230 
231   // Ensure the result has the requested type.
232   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
233 
234   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
235   return Ptr;
236 }
237 
238 /// Recursively visit all values that might become \p IRP at some point. This
239 /// will be done by looking through cast instructions, selects, phis, and calls
240 /// with the "returned" attribute. Once we cannot look through the value any
241 /// further, the callback \p VisitValueCB is invoked and passed the current
242 /// value, the \p State, and a flag to indicate if we stripped anything.
243 /// Stripped means that we unpacked the value associated with \p IRP at least
244 /// once. Note that the value used for the callback may still be the value
245 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
246 /// we will never visit more values than specified by \p MaxValues.
247 template <typename StateTy>
248 static bool genericValueTraversal(
249     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
250     StateTy &State,
251     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
252         VisitValueCB,
253     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
254     function_ref<Value *(Value *)> StripCB = nullptr) {
255 
256   const AAIsDead *LivenessAA = nullptr;
257   if (IRP.getAnchorScope())
258     LivenessAA = &A.getAAFor<AAIsDead>(
259         QueryingAA,
260         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
261         DepClassTy::NONE);
262   bool AnyDead = false;
263 
264   Value *InitialV = &IRP.getAssociatedValue();
265   using Item = std::pair<Value *, const Instruction *>;
266   SmallSet<Item, 16> Visited;
267   SmallVector<Item, 16> Worklist;
268   Worklist.push_back({InitialV, CtxI});
269 
270   int Iteration = 0;
271   do {
272     Item I = Worklist.pop_back_val();
273     Value *V = I.first;
274     CtxI = I.second;
275     if (StripCB)
276       V = StripCB(V);
277 
278     // Check if we should process the current value. To prevent endless
279     // recursion keep a record of the values we followed!
280     if (!Visited.insert(I).second)
281       continue;
282 
283     // Make sure we limit the compile time for complex expressions.
284     if (Iteration++ >= MaxValues)
285       return false;
286 
287     // Explicitly look through calls with a "returned" attribute if we do
288     // not have a pointer as stripPointerCasts only works on them.
289     Value *NewV = nullptr;
290     if (V->getType()->isPointerTy()) {
291       NewV = V->stripPointerCasts();
292     } else {
293       auto *CB = dyn_cast<CallBase>(V);
294       if (CB && CB->getCalledFunction()) {
295         for (Argument &Arg : CB->getCalledFunction()->args())
296           if (Arg.hasReturnedAttr()) {
297             NewV = CB->getArgOperand(Arg.getArgNo());
298             break;
299           }
300       }
301     }
302     if (NewV && NewV != V) {
303       Worklist.push_back({NewV, CtxI});
304       continue;
305     }
306 
307     // Look through select instructions, visit assumed potential values.
308     if (auto *SI = dyn_cast<SelectInst>(V)) {
309       bool UsedAssumedInformation = false;
310       Optional<Constant *> C = A.getAssumedConstant(
311           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
312       bool NoValueYet = !C.hasValue();
313       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
314         continue;
315       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
316         if (CI->isZero())
317           Worklist.push_back({SI->getFalseValue(), CtxI});
318         else
319           Worklist.push_back({SI->getTrueValue(), CtxI});
320         continue;
321       }
322       // We could not simplify the condition, assume both values.(
323       Worklist.push_back({SI->getTrueValue(), CtxI});
324       Worklist.push_back({SI->getFalseValue(), CtxI});
325       continue;
326     }
327 
328     // Look through phi nodes, visit all live operands.
329     if (auto *PHI = dyn_cast<PHINode>(V)) {
330       assert(LivenessAA &&
331              "Expected liveness in the presence of instructions!");
332       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
333         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
334         bool UsedAssumedInformation = false;
335         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
336                             LivenessAA, UsedAssumedInformation,
337                             /* CheckBBLivenessOnly */ true)) {
338           AnyDead = true;
339           continue;
340         }
341         Worklist.push_back(
342             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
343       }
344       continue;
345     }
346 
347     if (UseValueSimplify && !isa<Constant>(V)) {
348       bool UsedAssumedInformation = false;
349       Optional<Value *> SimpleV =
350           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
351       if (!SimpleV.hasValue())
352         continue;
353       if (!SimpleV.getValue())
354         return false;
355       Value *NewV = SimpleV.getValue();
356       if (NewV != V) {
357         Worklist.push_back({NewV, CtxI});
358         continue;
359       }
360     }
361 
362     // Once a leaf is reached we inform the user through the callback.
363     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
364       return false;
365   } while (!Worklist.empty());
366 
367   // If we actually used liveness information so we have to record a dependence.
368   if (AnyDead)
369     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
370 
371   // All values have been visited.
372   return true;
373 }
374 
375 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
376                                      SmallVectorImpl<Value *> &Objects,
377                                      const AbstractAttribute &QueryingAA,
378                                      const Instruction *CtxI) {
379   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
380   SmallPtrSet<Value *, 8> SeenObjects;
381   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
382                                      SmallVectorImpl<Value *> &Objects,
383                                      bool) -> bool {
384     if (SeenObjects.insert(&Val).second)
385       Objects.push_back(&Val);
386     return true;
387   };
388   if (!genericValueTraversal<decltype(Objects)>(
389           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
390           true, 32, StripCB))
391     return false;
392   return true;
393 }
394 
395 const Value *stripAndAccumulateMinimalOffsets(
396     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
397     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
398     bool UseAssumed = false) {
399 
400   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
401     const IRPosition &Pos = IRPosition::value(V);
402     // Only track dependence if we are going to use the assumed info.
403     const AAValueConstantRange &ValueConstantRangeAA =
404         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
405                                          UseAssumed ? DepClassTy::OPTIONAL
406                                                     : DepClassTy::NONE);
407     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
408                                      : ValueConstantRangeAA.getKnown();
409     // We can only use the lower part of the range because the upper part can
410     // be higher than what the value can really be.
411     ROffset = Range.getSignedMin();
412     return true;
413   };
414 
415   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
416                                                 /* AllowInvariant */ false,
417                                                 AttributorAnalysis);
418 }
419 
420 static const Value *getMinimalBaseOfAccessPointerOperand(
421     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
422     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
423   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
424   if (!Ptr)
425     return nullptr;
426   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
427   const Value *Base = stripAndAccumulateMinimalOffsets(
428       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
429 
430   BytesOffset = OffsetAPInt.getSExtValue();
431   return Base;
432 }
433 
434 static const Value *
435 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
436                                      const DataLayout &DL,
437                                      bool AllowNonInbounds = false) {
438   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
439   if (!Ptr)
440     return nullptr;
441 
442   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
443                                           AllowNonInbounds);
444 }
445 
446 /// Clamp the information known for all returned values of a function
447 /// (identified by \p QueryingAA) into \p S.
448 template <typename AAType, typename StateType = typename AAType::StateType>
449 static void clampReturnedValueStates(
450     Attributor &A, const AAType &QueryingAA, StateType &S,
451     const IRPosition::CallBaseContext *CBContext = nullptr) {
452   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
453                     << QueryingAA << " into " << S << "\n");
454 
455   assert((QueryingAA.getIRPosition().getPositionKind() ==
456               IRPosition::IRP_RETURNED ||
457           QueryingAA.getIRPosition().getPositionKind() ==
458               IRPosition::IRP_CALL_SITE_RETURNED) &&
459          "Can only clamp returned value states for a function returned or call "
460          "site returned position!");
461 
462   // Use an optional state as there might not be any return values and we want
463   // to join (IntegerState::operator&) the state of all there are.
464   Optional<StateType> T;
465 
466   // Callback for each possibly returned value.
467   auto CheckReturnValue = [&](Value &RV) -> bool {
468     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
469     const AAType &AA =
470         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
471     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
472                       << " @ " << RVPos << "\n");
473     const StateType &AAS = AA.getState();
474     if (T.hasValue())
475       *T &= AAS;
476     else
477       T = AAS;
478     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
479                       << "\n");
480     return T->isValidState();
481   };
482 
483   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
484     S.indicatePessimisticFixpoint();
485   else if (T.hasValue())
486     S ^= *T;
487 }
488 
489 namespace {
490 /// Helper class for generic deduction: return value -> returned position.
491 template <typename AAType, typename BaseType,
492           typename StateType = typename BaseType::StateType,
493           bool PropagateCallBaseContext = false>
494 struct AAReturnedFromReturnedValues : public BaseType {
495   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
496       : BaseType(IRP, A) {}
497 
498   /// See AbstractAttribute::updateImpl(...).
499   ChangeStatus updateImpl(Attributor &A) override {
500     StateType S(StateType::getBestState(this->getState()));
501     clampReturnedValueStates<AAType, StateType>(
502         A, *this, S,
503         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
504     // TODO: If we know we visited all returned values, thus no are assumed
505     // dead, we can take the known information from the state T.
506     return clampStateAndIndicateChange<StateType>(this->getState(), S);
507   }
508 };
509 
510 /// Clamp the information known at all call sites for a given argument
511 /// (identified by \p QueryingAA) into \p S.
512 template <typename AAType, typename StateType = typename AAType::StateType>
513 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
514                                         StateType &S) {
515   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
516                     << QueryingAA << " into " << S << "\n");
517 
518   assert(QueryingAA.getIRPosition().getPositionKind() ==
519              IRPosition::IRP_ARGUMENT &&
520          "Can only clamp call site argument states for an argument position!");
521 
522   // Use an optional state as there might not be any return values and we want
523   // to join (IntegerState::operator&) the state of all there are.
524   Optional<StateType> T;
525 
526   // The argument number which is also the call site argument number.
527   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
528 
529   auto CallSiteCheck = [&](AbstractCallSite ACS) {
530     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
531     // Check if a coresponding argument was found or if it is on not associated
532     // (which can happen for callback calls).
533     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
534       return false;
535 
536     const AAType &AA =
537         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
538     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
539                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
540     const StateType &AAS = AA.getState();
541     if (T.hasValue())
542       *T &= AAS;
543     else
544       T = AAS;
545     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
546                       << "\n");
547     return T->isValidState();
548   };
549 
550   bool AllCallSitesKnown;
551   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
552                               AllCallSitesKnown))
553     S.indicatePessimisticFixpoint();
554   else if (T.hasValue())
555     S ^= *T;
556 }
557 
558 /// This function is the bridge between argument position and the call base
559 /// context.
560 template <typename AAType, typename BaseType,
561           typename StateType = typename AAType::StateType>
562 bool getArgumentStateFromCallBaseContext(Attributor &A,
563                                          BaseType &QueryingAttribute,
564                                          IRPosition &Pos, StateType &State) {
565   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
566          "Expected an 'argument' position !");
567   const CallBase *CBContext = Pos.getCallBaseContext();
568   if (!CBContext)
569     return false;
570 
571   int ArgNo = Pos.getCallSiteArgNo();
572   assert(ArgNo >= 0 && "Invalid Arg No!");
573 
574   const auto &AA = A.getAAFor<AAType>(
575       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
576       DepClassTy::REQUIRED);
577   const StateType &CBArgumentState =
578       static_cast<const StateType &>(AA.getState());
579 
580   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
581                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
582                     << "\n");
583 
584   // NOTE: If we want to do call site grouping it should happen here.
585   State ^= CBArgumentState;
586   return true;
587 }
588 
589 /// Helper class for generic deduction: call site argument -> argument position.
590 template <typename AAType, typename BaseType,
591           typename StateType = typename AAType::StateType,
592           bool BridgeCallBaseContext = false>
593 struct AAArgumentFromCallSiteArguments : public BaseType {
594   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
595       : BaseType(IRP, A) {}
596 
597   /// See AbstractAttribute::updateImpl(...).
598   ChangeStatus updateImpl(Attributor &A) override {
599     StateType S = StateType::getBestState(this->getState());
600 
601     if (BridgeCallBaseContext) {
602       bool Success =
603           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
604               A, *this, this->getIRPosition(), S);
605       if (Success)
606         return clampStateAndIndicateChange<StateType>(this->getState(), S);
607     }
608     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
609 
610     // TODO: If we know we visited all incoming values, thus no are assumed
611     // dead, we can take the known information from the state T.
612     return clampStateAndIndicateChange<StateType>(this->getState(), S);
613   }
614 };
615 
616 /// Helper class for generic replication: function returned -> cs returned.
617 template <typename AAType, typename BaseType,
618           typename StateType = typename BaseType::StateType,
619           bool IntroduceCallBaseContext = false>
620 struct AACallSiteReturnedFromReturned : public BaseType {
621   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
622       : BaseType(IRP, A) {}
623 
624   /// See AbstractAttribute::updateImpl(...).
625   ChangeStatus updateImpl(Attributor &A) override {
626     assert(this->getIRPosition().getPositionKind() ==
627                IRPosition::IRP_CALL_SITE_RETURNED &&
628            "Can only wrap function returned positions for call site returned "
629            "positions!");
630     auto &S = this->getState();
631 
632     const Function *AssociatedFunction =
633         this->getIRPosition().getAssociatedFunction();
634     if (!AssociatedFunction)
635       return S.indicatePessimisticFixpoint();
636 
637     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
638     if (IntroduceCallBaseContext)
639       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
640                         << CBContext << "\n");
641 
642     IRPosition FnPos = IRPosition::returned(
643         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
644     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
645     return clampStateAndIndicateChange(S, AA.getState());
646   }
647 };
648 } // namespace
649 
650 /// Helper function to accumulate uses.
651 template <class AAType, typename StateType = typename AAType::StateType>
652 static void followUsesInContext(AAType &AA, Attributor &A,
653                                 MustBeExecutedContextExplorer &Explorer,
654                                 const Instruction *CtxI,
655                                 SetVector<const Use *> &Uses,
656                                 StateType &State) {
657   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
658   for (unsigned u = 0; u < Uses.size(); ++u) {
659     const Use *U = Uses[u];
660     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
661       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
662       if (Found && AA.followUseInMBEC(A, U, UserI, State))
663         for (const Use &Us : UserI->uses())
664           Uses.insert(&Us);
665     }
666   }
667 }
668 
669 /// Use the must-be-executed-context around \p I to add information into \p S.
670 /// The AAType class is required to have `followUseInMBEC` method with the
671 /// following signature and behaviour:
672 ///
673 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
674 /// U - Underlying use.
675 /// I - The user of the \p U.
676 /// Returns true if the value should be tracked transitively.
677 ///
678 template <class AAType, typename StateType = typename AAType::StateType>
679 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
680                              Instruction &CtxI) {
681 
682   // Container for (transitive) uses of the associated value.
683   SetVector<const Use *> Uses;
684   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
685     Uses.insert(&U);
686 
687   MustBeExecutedContextExplorer &Explorer =
688       A.getInfoCache().getMustBeExecutedContextExplorer();
689 
690   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
691 
692   if (S.isAtFixpoint())
693     return;
694 
695   SmallVector<const BranchInst *, 4> BrInsts;
696   auto Pred = [&](const Instruction *I) {
697     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
698       if (Br->isConditional())
699         BrInsts.push_back(Br);
700     return true;
701   };
702 
703   // Here, accumulate conditional branch instructions in the context. We
704   // explore the child paths and collect the known states. The disjunction of
705   // those states can be merged to its own state. Let ParentState_i be a state
706   // to indicate the known information for an i-th branch instruction in the
707   // context. ChildStates are created for its successors respectively.
708   //
709   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
710   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
711   //      ...
712   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
713   //
714   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
715   //
716   // FIXME: Currently, recursive branches are not handled. For example, we
717   // can't deduce that ptr must be dereferenced in below function.
718   //
719   // void f(int a, int c, int *ptr) {
720   //    if(a)
721   //      if (b) {
722   //        *ptr = 0;
723   //      } else {
724   //        *ptr = 1;
725   //      }
726   //    else {
727   //      if (b) {
728   //        *ptr = 0;
729   //      } else {
730   //        *ptr = 1;
731   //      }
732   //    }
733   // }
734 
735   Explorer.checkForAllContext(&CtxI, Pred);
736   for (const BranchInst *Br : BrInsts) {
737     StateType ParentState;
738 
739     // The known state of the parent state is a conjunction of children's
740     // known states so it is initialized with a best state.
741     ParentState.indicateOptimisticFixpoint();
742 
743     for (const BasicBlock *BB : Br->successors()) {
744       StateType ChildState;
745 
746       size_t BeforeSize = Uses.size();
747       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
748 
749       // Erase uses which only appear in the child.
750       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
751         It = Uses.erase(It);
752 
753       ParentState &= ChildState;
754     }
755 
756     // Use only known state.
757     S += ParentState;
758   }
759 }
760 
761 /// ------------------------ PointerInfo ---------------------------------------
762 
763 namespace llvm {
764 namespace AA {
765 namespace PointerInfo {
766 
767 /// An access kind description as used by AAPointerInfo.
768 struct OffsetAndSize;
769 
770 struct State;
771 
772 } // namespace PointerInfo
773 } // namespace AA
774 
775 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
776 template <>
777 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
778   using Access = AAPointerInfo::Access;
779   static inline Access getEmptyKey();
780   static inline Access getTombstoneKey();
781   static unsigned getHashValue(const Access &A);
782   static bool isEqual(const Access &LHS, const Access &RHS);
783 };
784 
785 /// Helper that allows OffsetAndSize as a key in a DenseMap.
786 template <>
787 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
788     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
789 
790 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
791 /// but the instruction
792 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
793   using Base = DenseMapInfo<Instruction *>;
794   using Access = AAPointerInfo::Access;
795   static inline Access getEmptyKey();
796   static inline Access getTombstoneKey();
797   static unsigned getHashValue(const Access &A);
798   static bool isEqual(const Access &LHS, const Access &RHS);
799 };
800 
801 } // namespace llvm
802 
803 /// Helper to represent an access offset and size, with logic to deal with
804 /// uncertainty and check for overlapping accesses.
805 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
806   using BaseTy = std::pair<int64_t, int64_t>;
807   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
808   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
809   int64_t getOffset() const { return first; }
810   int64_t getSize() const { return second; }
811   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
812 
813   /// Return true if offset or size are unknown.
814   bool offsetOrSizeAreUnknown() const {
815     return getOffset() == OffsetAndSize::Unknown ||
816            getSize() == OffsetAndSize::Unknown;
817   }
818 
819   /// Return true if this offset and size pair might describe an address that
820   /// overlaps with \p OAS.
821   bool mayOverlap(const OffsetAndSize &OAS) const {
822     // Any unknown value and we are giving up -> overlap.
823     if (offsetOrSizeAreUnknown() || OAS.offsetOrSizeAreUnknown())
824       return true;
825 
826     // Check if one offset point is in the other interval [offset, offset+size].
827     return OAS.getOffset() + OAS.getSize() > getOffset() &&
828            OAS.getOffset() < getOffset() + getSize();
829   }
830 
831   /// Constant used to represent unknown offset or sizes.
832   static constexpr int64_t Unknown = 1 << 31;
833 };
834 
835 /// Implementation of the DenseMapInfo.
836 ///
837 ///{
838 inline llvm::AccessAsInstructionInfo::Access
839 llvm::AccessAsInstructionInfo::getEmptyKey() {
840   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
841 }
842 inline llvm::AccessAsInstructionInfo::Access
843 llvm::AccessAsInstructionInfo::getTombstoneKey() {
844   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
845                 nullptr);
846 }
847 unsigned llvm::AccessAsInstructionInfo::getHashValue(
848     const llvm::AccessAsInstructionInfo::Access &A) {
849   return Base::getHashValue(A.getRemoteInst());
850 }
851 bool llvm::AccessAsInstructionInfo::isEqual(
852     const llvm::AccessAsInstructionInfo::Access &LHS,
853     const llvm::AccessAsInstructionInfo::Access &RHS) {
854   return LHS.getRemoteInst() == RHS.getRemoteInst();
855 }
856 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
857 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
858   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
859                                nullptr);
860 }
861 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
862 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
863   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
864                                nullptr);
865 }
866 
867 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
868     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
869   return detail::combineHashValue(
870              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
871              (A.isWrittenValueYetUndetermined()
872                   ? ~0
873                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
874          A.getKind();
875 }
876 
877 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
878     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
879     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
880   return LHS == RHS;
881 }
882 ///}
883 
884 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
885 struct AA::PointerInfo::State : public AbstractState {
886 
887   /// Return the best possible representable state.
888   static State getBestState(const State &SIS) { return State(); }
889 
890   /// Return the worst possible representable state.
891   static State getWorstState(const State &SIS) {
892     State R;
893     R.indicatePessimisticFixpoint();
894     return R;
895   }
896 
897   State() {}
898   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
899   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
900 
901   const State &getAssumed() const { return *this; }
902 
903   /// See AbstractState::isValidState().
904   bool isValidState() const override { return BS.isValidState(); }
905 
906   /// See AbstractState::isAtFixpoint().
907   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
908 
909   /// See AbstractState::indicateOptimisticFixpoint().
910   ChangeStatus indicateOptimisticFixpoint() override {
911     BS.indicateOptimisticFixpoint();
912     return ChangeStatus::UNCHANGED;
913   }
914 
915   /// See AbstractState::indicatePessimisticFixpoint().
916   ChangeStatus indicatePessimisticFixpoint() override {
917     BS.indicatePessimisticFixpoint();
918     return ChangeStatus::CHANGED;
919   }
920 
921   State &operator=(const State &R) {
922     if (this == &R)
923       return *this;
924     BS = R.BS;
925     AccessBins = R.AccessBins;
926     return *this;
927   }
928 
929   State &operator=(State &&R) {
930     if (this == &R)
931       return *this;
932     std::swap(BS, R.BS);
933     std::swap(AccessBins, R.AccessBins);
934     return *this;
935   }
936 
937   bool operator==(const State &R) const {
938     if (BS != R.BS)
939       return false;
940     if (AccessBins.size() != R.AccessBins.size())
941       return false;
942     auto It = begin(), RIt = R.begin(), E = end();
943     while (It != E) {
944       if (It->getFirst() != RIt->getFirst())
945         return false;
946       auto &Accs = It->getSecond();
947       auto &RAccs = RIt->getSecond();
948       if (Accs.size() != RAccs.size())
949         return false;
950       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
951       while (AccIt != AccE) {
952         if (*AccIt != *RAccIt)
953           return false;
954         ++AccIt;
955         ++RAccIt;
956       }
957       ++It;
958       ++RIt;
959     }
960     return true;
961   }
962   bool operator!=(const State &R) const { return !(*this == R); }
963 
964   /// We store accesses in a set with the instruction as key.
965   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
966 
967   /// We store all accesses in bins denoted by their offset and size.
968   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
969 
970   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
971   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
972 
973 protected:
974   /// The bins with all the accesses for the associated pointer.
975   DenseMap<OffsetAndSize, Accesses> AccessBins;
976 
977   /// Add a new access to the state at offset \p Offset and with size \p Size.
978   /// The access is associated with \p I, writes \p Content (if anything), and
979   /// is of kind \p Kind.
980   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
981   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
982                          Optional<Value *> Content,
983                          AAPointerInfo::AccessKind Kind, Type *Ty,
984                          Instruction *RemoteI = nullptr,
985                          Accesses *BinPtr = nullptr) {
986     OffsetAndSize Key{Offset, Size};
987     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
988     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
989     // Check if we have an access for this instruction in this bin, if not,
990     // simply add it.
991     auto It = Bin.find(Acc);
992     if (It == Bin.end()) {
993       Bin.insert(Acc);
994       return ChangeStatus::CHANGED;
995     }
996     // If the existing access is the same as then new one, nothing changed.
997     AAPointerInfo::Access Before = *It;
998     // The new one will be combined with the existing one.
999     *It &= Acc;
1000     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1001   }
1002 
1003   /// See AAPointerInfo::forallInterferingAccesses.
1004   bool forallInterferingAccesses(
1005       Instruction &I,
1006       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1007     if (!isValidState())
1008       return false;
1009     // First find the offset and size of I.
1010     OffsetAndSize OAS(-1, -1);
1011     for (auto &It : AccessBins) {
1012       for (auto &Access : It.getSecond()) {
1013         if (Access.getRemoteInst() == &I) {
1014           OAS = It.getFirst();
1015           break;
1016         }
1017       }
1018       if (OAS.getSize() != -1)
1019         break;
1020     }
1021     if (OAS.getSize() == -1)
1022       return true;
1023 
1024     // Now that we have an offset and size, find all overlapping ones and use
1025     // the callback on the accesses.
1026     for (auto &It : AccessBins) {
1027       OffsetAndSize ItOAS = It.getFirst();
1028       if (!OAS.mayOverlap(ItOAS))
1029         continue;
1030       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1031       for (auto &Access : It.getSecond())
1032         if (!CB(Access, IsExact))
1033           return false;
1034     }
1035     return true;
1036   }
1037 
1038 private:
1039   /// State to track fixpoint and validity.
1040   BooleanState BS;
1041 };
1042 
1043 namespace {
1044 struct AAPointerInfoImpl
1045     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1046   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1047   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1048 
1049   /// See AbstractAttribute::initialize(...).
1050   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1051 
1052   /// See AbstractAttribute::getAsStr().
1053   const std::string getAsStr() const override {
1054     return std::string("PointerInfo ") +
1055            (isValidState() ? (std::string("#") +
1056                               std::to_string(AccessBins.size()) + " bins")
1057                            : "<invalid>");
1058   }
1059 
1060   /// See AbstractAttribute::manifest(...).
1061   ChangeStatus manifest(Attributor &A) override {
1062     return AAPointerInfo::manifest(A);
1063   }
1064 
1065   bool forallInterferingAccesses(
1066       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1067       const override {
1068     return State::forallInterferingAccesses(LI, CB);
1069   }
1070   bool forallInterferingAccesses(
1071       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1072       const override {
1073     return State::forallInterferingAccesses(SI, CB);
1074   }
1075 
1076   ChangeStatus translateAndAddCalleeState(Attributor &A,
1077                                           const AAPointerInfo &CalleeAA,
1078                                           int64_t CallArgOffset, CallBase &CB) {
1079     using namespace AA::PointerInfo;
1080     if (!CalleeAA.getState().isValidState() || !isValidState())
1081       return indicatePessimisticFixpoint();
1082 
1083     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1084     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1085 
1086     // Combine the accesses bin by bin.
1087     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1088     for (auto &It : CalleeImplAA.getState()) {
1089       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1090       if (CallArgOffset != OffsetAndSize::Unknown)
1091         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1092                             It.first.getSize());
1093       Accesses &Bin = AccessBins[OAS];
1094       for (const AAPointerInfo::Access &RAcc : It.second) {
1095         if (IsByval && !RAcc.isRead())
1096           continue;
1097         bool UsedAssumedInformation = false;
1098         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1099             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1100         AccessKind AK =
1101             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1102                                                  : AccessKind::AK_READ_WRITE));
1103         Changed =
1104             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1105                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1106       }
1107     }
1108     return Changed;
1109   }
1110 
1111   /// Statistic tracking for all AAPointerInfo implementations.
1112   /// See AbstractAttribute::trackStatistics().
1113   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1114 };
1115 
1116 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1117   using AccessKind = AAPointerInfo::AccessKind;
1118   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1119       : AAPointerInfoImpl(IRP, A) {}
1120 
1121   /// See AbstractAttribute::initialize(...).
1122   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1123 
1124   /// Deal with an access and signal if it was handled successfully.
1125   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1126                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1127                     ChangeStatus &Changed, Type *Ty,
1128                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1129     using namespace AA::PointerInfo;
1130     // No need to find a size if one is given or the offset is unknown.
1131     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1132         Ty) {
1133       const DataLayout &DL = A.getDataLayout();
1134       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1135       if (!AccessSize.isScalable())
1136         Size = AccessSize.getFixedSize();
1137     }
1138     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1139     return true;
1140   };
1141 
1142   /// Helper struct, will support ranges eventually.
1143   struct OffsetInfo {
1144     int64_t Offset = AA::PointerInfo::OffsetAndSize::Unknown;
1145 
1146     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1147   };
1148 
1149   /// See AbstractAttribute::updateImpl(...).
1150   ChangeStatus updateImpl(Attributor &A) override {
1151     using namespace AA::PointerInfo;
1152     State S = getState();
1153     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1154     Value &AssociatedValue = getAssociatedValue();
1155 
1156     const DataLayout &DL = A.getDataLayout();
1157     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1158     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1159 
1160     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1161                                      bool &Follow) {
1162       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1163       UsrOI = PtrOI;
1164       Follow = true;
1165       return true;
1166     };
1167 
1168     const auto *TLI = getAnchorScope()
1169                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1170                                 *getAnchorScope())
1171                           : nullptr;
1172     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1173       Value *CurPtr = U.get();
1174       User *Usr = U.getUser();
1175       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1176                         << *Usr << "\n");
1177       assert(OffsetInfoMap.count(CurPtr) &&
1178              "The current pointer offset should have been seeded!");
1179 
1180       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1181         if (CE->isCast())
1182           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1183         if (CE->isCompare())
1184           return true;
1185         if (!isa<GEPOperator>(CE)) {
1186           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1187                             << "\n");
1188           return false;
1189         }
1190       }
1191       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1192         // Note the order here, the Usr access might change the map, CurPtr is
1193         // already in it though.
1194         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1195         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1196         UsrOI = PtrOI;
1197 
1198         // TODO: Use range information.
1199         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1200             !GEP->hasAllConstantIndices()) {
1201           UsrOI.Offset = OffsetAndSize::Unknown;
1202           Follow = true;
1203           return true;
1204         }
1205 
1206         SmallVector<Value *, 8> Indices;
1207         for (Use &Idx : GEP->indices()) {
1208           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1209             Indices.push_back(CIdx);
1210             continue;
1211           }
1212 
1213           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1214                             << " : " << *Idx << "\n");
1215           return false;
1216         }
1217         UsrOI.Offset = PtrOI.Offset +
1218                        DL.getIndexedOffsetInType(
1219                            CurPtr->getType()->getPointerElementType(), Indices);
1220         Follow = true;
1221         return true;
1222       }
1223       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1224         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1225 
1226       // For PHIs we need to take care of the recurrence explicitly as the value
1227       // might change while we iterate through a loop. For now, we give up if
1228       // the PHI is not invariant.
1229       if (isa<PHINode>(Usr)) {
1230         // Note the order here, the Usr access might change the map, CurPtr is
1231         // already in it though.
1232         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1233         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1234         // Check if the PHI is invariant (so far).
1235         if (UsrOI == PtrOI)
1236           return true;
1237 
1238         // Check if the PHI operand has already an unknown offset as we can't
1239         // improve on that anymore.
1240         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1241           UsrOI = PtrOI;
1242           Follow = true;
1243           return true;
1244         }
1245 
1246         // Check if the PHI operand is not dependent on the PHI itself.
1247         // TODO: This is not great as we look at the pointer type. However, it
1248         // is unclear where the Offset size comes from with typeless pointers.
1249         APInt Offset(
1250             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1251             0);
1252         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1253                                     DL, Offset, /* AllowNonInbounds */ true)) {
1254           if (Offset != PtrOI.Offset) {
1255             LLVM_DEBUG(dbgs()
1256                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1257                        << *CurPtr << " in " << *Usr << "\n");
1258             return false;
1259           }
1260           return HandlePassthroughUser(Usr, PtrOI, Follow);
1261         }
1262 
1263         // TODO: Approximate in case we know the direction of the recurrence.
1264         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1265                           << *CurPtr << " in " << *Usr << "\n");
1266         UsrOI = PtrOI;
1267         UsrOI.Offset = OffsetAndSize::Unknown;
1268         Follow = true;
1269         return true;
1270       }
1271 
1272       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1273         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1274                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1275                             Changed, LoadI->getType());
1276       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1277         if (StoreI->getValueOperand() == CurPtr) {
1278           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1279                             << *StoreI << "\n");
1280           return false;
1281         }
1282         bool UsedAssumedInformation = false;
1283         Optional<Value *> Content = A.getAssumedSimplified(
1284             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1285         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1286                             OffsetInfoMap[CurPtr].Offset, Changed,
1287                             StoreI->getValueOperand()->getType());
1288       }
1289       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1290         if (CB->isLifetimeStartOrEnd())
1291           return true;
1292         if (TLI && isFreeCall(CB, TLI))
1293           return true;
1294         if (CB->isArgOperand(&U)) {
1295           unsigned ArgNo = CB->getArgOperandNo(&U);
1296           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1297               *this, IRPosition::callsite_argument(*CB, ArgNo),
1298               DepClassTy::REQUIRED);
1299           Changed = translateAndAddCalleeState(
1300                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1301                     Changed;
1302           return true;
1303         }
1304         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1305                           << "\n");
1306         // TODO: Allow some call uses
1307         return false;
1308       }
1309 
1310       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1311       return false;
1312     };
1313     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1314       if (OffsetInfoMap.count(NewU))
1315         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1316       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1317       return true;
1318     };
1319     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1320                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1321                            EquivalentUseCB))
1322       return indicatePessimisticFixpoint();
1323 
1324     LLVM_DEBUG({
1325       dbgs() << "Accesses by bin after update:\n";
1326       for (auto &It : AccessBins) {
1327         dbgs() << "[" << It.first.getOffset() << "-"
1328                << It.first.getOffset() + It.first.getSize()
1329                << "] : " << It.getSecond().size() << "\n";
1330         for (auto &Acc : It.getSecond()) {
1331           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1332                  << "\n";
1333           if (Acc.getLocalInst() != Acc.getRemoteInst())
1334             dbgs() << "     -->                         "
1335                    << *Acc.getRemoteInst() << "\n";
1336           if (!Acc.isWrittenValueYetUndetermined())
1337             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1338         }
1339       }
1340     });
1341 
1342     return Changed;
1343   }
1344 
1345   /// See AbstractAttribute::trackStatistics()
1346   void trackStatistics() const override {
1347     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1348   }
1349 };
1350 
1351 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1352   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1353       : AAPointerInfoImpl(IRP, A) {}
1354 
1355   /// See AbstractAttribute::updateImpl(...).
1356   ChangeStatus updateImpl(Attributor &A) override {
1357     return indicatePessimisticFixpoint();
1358   }
1359 
1360   /// See AbstractAttribute::trackStatistics()
1361   void trackStatistics() const override {
1362     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1363   }
1364 };
1365 
1366 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1367   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1368       : AAPointerInfoFloating(IRP, A) {}
1369 
1370   /// See AbstractAttribute::initialize(...).
1371   void initialize(Attributor &A) override {
1372     AAPointerInfoFloating::initialize(A);
1373     if (getAnchorScope()->isDeclaration())
1374       indicatePessimisticFixpoint();
1375   }
1376 
1377   /// See AbstractAttribute::trackStatistics()
1378   void trackStatistics() const override {
1379     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1380   }
1381 };
1382 
1383 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1384   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1385       : AAPointerInfoFloating(IRP, A) {}
1386 
1387   /// See AbstractAttribute::updateImpl(...).
1388   ChangeStatus updateImpl(Attributor &A) override {
1389     using namespace AA::PointerInfo;
1390     // We handle memory intrinsics explicitly, at least the first (=
1391     // destination) and second (=source) arguments as we know how they are
1392     // accessed.
1393     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1394       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1395       int64_t LengthVal = OffsetAndSize::Unknown;
1396       if (Length)
1397         LengthVal = Length->getSExtValue();
1398       Value &Ptr = getAssociatedValue();
1399       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1400       ChangeStatus Changed;
1401       if (ArgNo == 0) {
1402         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1403                      nullptr, LengthVal);
1404       } else if (ArgNo == 1) {
1405         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1406                      nullptr, LengthVal);
1407       } else {
1408         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1409                           << *MI << "\n");
1410         return indicatePessimisticFixpoint();
1411       }
1412       return Changed;
1413     }
1414 
1415     // TODO: Once we have call site specific value information we can provide
1416     //       call site specific liveness information and then it makes
1417     //       sense to specialize attributes for call sites arguments instead of
1418     //       redirecting requests to the callee argument.
1419     Argument *Arg = getAssociatedArgument();
1420     if (!Arg)
1421       return indicatePessimisticFixpoint();
1422     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1423     auto &ArgAA =
1424         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1425     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1426   }
1427 
1428   /// See AbstractAttribute::trackStatistics()
1429   void trackStatistics() const override {
1430     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1431   }
1432 };
1433 
1434 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1435   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1436       : AAPointerInfoFloating(IRP, A) {}
1437 
1438   /// See AbstractAttribute::trackStatistics()
1439   void trackStatistics() const override {
1440     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1441   }
1442 };
1443 
1444 /// -----------------------NoUnwind Function Attribute--------------------------
1445 
1446 struct AANoUnwindImpl : AANoUnwind {
1447   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1448 
1449   const std::string getAsStr() const override {
1450     return getAssumed() ? "nounwind" : "may-unwind";
1451   }
1452 
1453   /// See AbstractAttribute::updateImpl(...).
1454   ChangeStatus updateImpl(Attributor &A) override {
1455     auto Opcodes = {
1456         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1457         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1458         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1459 
1460     auto CheckForNoUnwind = [&](Instruction &I) {
1461       if (!I.mayThrow())
1462         return true;
1463 
1464       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1465         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1466             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1467         return NoUnwindAA.isAssumedNoUnwind();
1468       }
1469       return false;
1470     };
1471 
1472     bool UsedAssumedInformation = false;
1473     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1474                                    UsedAssumedInformation))
1475       return indicatePessimisticFixpoint();
1476 
1477     return ChangeStatus::UNCHANGED;
1478   }
1479 };
1480 
1481 struct AANoUnwindFunction final : public AANoUnwindImpl {
1482   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1483       : AANoUnwindImpl(IRP, A) {}
1484 
1485   /// See AbstractAttribute::trackStatistics()
1486   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1487 };
1488 
1489 /// NoUnwind attribute deduction for a call sites.
1490 struct AANoUnwindCallSite final : AANoUnwindImpl {
1491   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1492       : AANoUnwindImpl(IRP, A) {}
1493 
1494   /// See AbstractAttribute::initialize(...).
1495   void initialize(Attributor &A) override {
1496     AANoUnwindImpl::initialize(A);
1497     Function *F = getAssociatedFunction();
1498     if (!F || F->isDeclaration())
1499       indicatePessimisticFixpoint();
1500   }
1501 
1502   /// See AbstractAttribute::updateImpl(...).
1503   ChangeStatus updateImpl(Attributor &A) override {
1504     // TODO: Once we have call site specific value information we can provide
1505     //       call site specific liveness information and then it makes
1506     //       sense to specialize attributes for call sites arguments instead of
1507     //       redirecting requests to the callee argument.
1508     Function *F = getAssociatedFunction();
1509     const IRPosition &FnPos = IRPosition::function(*F);
1510     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1511     return clampStateAndIndicateChange(getState(), FnAA.getState());
1512   }
1513 
1514   /// See AbstractAttribute::trackStatistics()
1515   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1516 };
1517 
1518 /// --------------------- Function Return Values -------------------------------
1519 
1520 /// "Attribute" that collects all potential returned values and the return
1521 /// instructions that they arise from.
1522 ///
1523 /// If there is a unique returned value R, the manifest method will:
1524 ///   - mark R with the "returned" attribute, if R is an argument.
1525 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1526 
1527   /// Mapping of values potentially returned by the associated function to the
1528   /// return instructions that might return them.
1529   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1530 
1531   /// State flags
1532   ///
1533   ///{
1534   bool IsFixed = false;
1535   bool IsValidState = true;
1536   ///}
1537 
1538 public:
1539   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1540       : AAReturnedValues(IRP, A) {}
1541 
1542   /// See AbstractAttribute::initialize(...).
1543   void initialize(Attributor &A) override {
1544     // Reset the state.
1545     IsFixed = false;
1546     IsValidState = true;
1547     ReturnedValues.clear();
1548 
1549     Function *F = getAssociatedFunction();
1550     if (!F || F->isDeclaration()) {
1551       indicatePessimisticFixpoint();
1552       return;
1553     }
1554     assert(!F->getReturnType()->isVoidTy() &&
1555            "Did not expect a void return type!");
1556 
1557     // The map from instruction opcodes to those instructions in the function.
1558     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1559 
1560     // Look through all arguments, if one is marked as returned we are done.
1561     for (Argument &Arg : F->args()) {
1562       if (Arg.hasReturnedAttr()) {
1563         auto &ReturnInstSet = ReturnedValues[&Arg];
1564         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1565           for (Instruction *RI : *Insts)
1566             ReturnInstSet.insert(cast<ReturnInst>(RI));
1567 
1568         indicateOptimisticFixpoint();
1569         return;
1570       }
1571     }
1572 
1573     if (!A.isFunctionIPOAmendable(*F))
1574       indicatePessimisticFixpoint();
1575   }
1576 
1577   /// See AbstractAttribute::manifest(...).
1578   ChangeStatus manifest(Attributor &A) override;
1579 
1580   /// See AbstractAttribute::getState(...).
1581   AbstractState &getState() override { return *this; }
1582 
1583   /// See AbstractAttribute::getState(...).
1584   const AbstractState &getState() const override { return *this; }
1585 
1586   /// See AbstractAttribute::updateImpl(Attributor &A).
1587   ChangeStatus updateImpl(Attributor &A) override;
1588 
1589   llvm::iterator_range<iterator> returned_values() override {
1590     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1591   }
1592 
1593   llvm::iterator_range<const_iterator> returned_values() const override {
1594     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1595   }
1596 
1597   /// Return the number of potential return values, -1 if unknown.
1598   size_t getNumReturnValues() const override {
1599     return isValidState() ? ReturnedValues.size() : -1;
1600   }
1601 
1602   /// Return an assumed unique return value if a single candidate is found. If
1603   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1604   /// Optional::NoneType.
1605   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1606 
1607   /// See AbstractState::checkForAllReturnedValues(...).
1608   bool checkForAllReturnedValuesAndReturnInsts(
1609       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1610       const override;
1611 
1612   /// Pretty print the attribute similar to the IR representation.
1613   const std::string getAsStr() const override;
1614 
1615   /// See AbstractState::isAtFixpoint().
1616   bool isAtFixpoint() const override { return IsFixed; }
1617 
1618   /// See AbstractState::isValidState().
1619   bool isValidState() const override { return IsValidState; }
1620 
1621   /// See AbstractState::indicateOptimisticFixpoint(...).
1622   ChangeStatus indicateOptimisticFixpoint() override {
1623     IsFixed = true;
1624     return ChangeStatus::UNCHANGED;
1625   }
1626 
1627   ChangeStatus indicatePessimisticFixpoint() override {
1628     IsFixed = true;
1629     IsValidState = false;
1630     return ChangeStatus::CHANGED;
1631   }
1632 };
1633 
1634 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1635   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1636 
1637   // Bookkeeping.
1638   assert(isValidState());
1639   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1640                   "Number of function with known return values");
1641 
1642   // Check if we have an assumed unique return value that we could manifest.
1643   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1644 
1645   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1646     return Changed;
1647 
1648   // Bookkeeping.
1649   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1650                   "Number of function with unique return");
1651   // If the assumed unique return value is an argument, annotate it.
1652   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1653     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1654             getAssociatedFunction()->getReturnType())) {
1655       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1656       Changed = IRAttribute::manifest(A);
1657     }
1658   }
1659   return Changed;
1660 }
1661 
1662 const std::string AAReturnedValuesImpl::getAsStr() const {
1663   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1664          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1665 }
1666 
1667 Optional<Value *>
1668 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1669   // If checkForAllReturnedValues provides a unique value, ignoring potential
1670   // undef values that can also be present, it is assumed to be the actual
1671   // return value and forwarded to the caller of this method. If there are
1672   // multiple, a nullptr is returned indicating there cannot be a unique
1673   // returned value.
1674   Optional<Value *> UniqueRV;
1675   Type *Ty = getAssociatedFunction()->getReturnType();
1676 
1677   auto Pred = [&](Value &RV) -> bool {
1678     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1679     return UniqueRV != Optional<Value *>(nullptr);
1680   };
1681 
1682   if (!A.checkForAllReturnedValues(Pred, *this))
1683     UniqueRV = nullptr;
1684 
1685   return UniqueRV;
1686 }
1687 
1688 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1689     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1690     const {
1691   if (!isValidState())
1692     return false;
1693 
1694   // Check all returned values but ignore call sites as long as we have not
1695   // encountered an overdefined one during an update.
1696   for (auto &It : ReturnedValues) {
1697     Value *RV = It.first;
1698     if (!Pred(*RV, It.second))
1699       return false;
1700   }
1701 
1702   return true;
1703 }
1704 
1705 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1706   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1707 
1708   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1709                            bool) -> bool {
1710     bool UsedAssumedInformation = false;
1711     Optional<Value *> SimpleRetVal =
1712         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1713     if (!SimpleRetVal.hasValue())
1714       return true;
1715     if (!SimpleRetVal.getValue())
1716       return false;
1717     Value *RetVal = *SimpleRetVal;
1718     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1719            "Assumed returned value should be valid in function scope!");
1720     if (ReturnedValues[RetVal].insert(&Ret))
1721       Changed = ChangeStatus::CHANGED;
1722     return true;
1723   };
1724 
1725   auto ReturnInstCB = [&](Instruction &I) {
1726     ReturnInst &Ret = cast<ReturnInst>(I);
1727     return genericValueTraversal<ReturnInst>(
1728         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1729         &I);
1730   };
1731 
1732   // Discover returned values from all live returned instructions in the
1733   // associated function.
1734   bool UsedAssumedInformation = false;
1735   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1736                                  UsedAssumedInformation))
1737     return indicatePessimisticFixpoint();
1738   return Changed;
1739 }
1740 
1741 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1742   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1743       : AAReturnedValuesImpl(IRP, A) {}
1744 
1745   /// See AbstractAttribute::trackStatistics()
1746   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1747 };
1748 
1749 /// Returned values information for a call sites.
1750 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1751   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1752       : AAReturnedValuesImpl(IRP, A) {}
1753 
1754   /// See AbstractAttribute::initialize(...).
1755   void initialize(Attributor &A) override {
1756     // TODO: Once we have call site specific value information we can provide
1757     //       call site specific liveness information and then it makes
1758     //       sense to specialize attributes for call sites instead of
1759     //       redirecting requests to the callee.
1760     llvm_unreachable("Abstract attributes for returned values are not "
1761                      "supported for call sites yet!");
1762   }
1763 
1764   /// See AbstractAttribute::updateImpl(...).
1765   ChangeStatus updateImpl(Attributor &A) override {
1766     return indicatePessimisticFixpoint();
1767   }
1768 
1769   /// See AbstractAttribute::trackStatistics()
1770   void trackStatistics() const override {}
1771 };
1772 
1773 /// ------------------------ NoSync Function Attribute -------------------------
1774 
1775 struct AANoSyncImpl : AANoSync {
1776   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1777 
1778   const std::string getAsStr() const override {
1779     return getAssumed() ? "nosync" : "may-sync";
1780   }
1781 
1782   /// See AbstractAttribute::updateImpl(...).
1783   ChangeStatus updateImpl(Attributor &A) override;
1784 
1785   /// Helper function used to determine whether an instruction is non-relaxed
1786   /// atomic. In other words, if an atomic instruction does not have unordered
1787   /// or monotonic ordering
1788   static bool isNonRelaxedAtomic(Instruction *I);
1789 
1790   /// Helper function specific for intrinsics which are potentially volatile
1791   static bool isNoSyncIntrinsic(Instruction *I);
1792 };
1793 
1794 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1795   if (!I->isAtomic())
1796     return false;
1797 
1798   if (auto *FI = dyn_cast<FenceInst>(I))
1799     // All legal orderings for fence are stronger than monotonic.
1800     return FI->getSyncScopeID() != SyncScope::SingleThread;
1801   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1802     // Unordered is not a legal ordering for cmpxchg.
1803     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1804             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1805   }
1806 
1807   AtomicOrdering Ordering;
1808   switch (I->getOpcode()) {
1809   case Instruction::AtomicRMW:
1810     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1811     break;
1812   case Instruction::Store:
1813     Ordering = cast<StoreInst>(I)->getOrdering();
1814     break;
1815   case Instruction::Load:
1816     Ordering = cast<LoadInst>(I)->getOrdering();
1817     break;
1818   default:
1819     llvm_unreachable(
1820         "New atomic operations need to be known in the attributor.");
1821   }
1822 
1823   return (Ordering != AtomicOrdering::Unordered &&
1824           Ordering != AtomicOrdering::Monotonic);
1825 }
1826 
1827 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1828 /// which would be nosync except that they have a volatile flag.  All other
1829 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1830 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1831   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1832     return !MI->isVolatile();
1833   return false;
1834 }
1835 
1836 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1837 
1838   auto CheckRWInstForNoSync = [&](Instruction &I) {
1839     /// We are looking for volatile instructions or Non-Relaxed atomics.
1840 
1841     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1842       if (CB->hasFnAttr(Attribute::NoSync))
1843         return true;
1844 
1845       if (isNoSyncIntrinsic(&I))
1846         return true;
1847 
1848       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1849           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1850       return NoSyncAA.isAssumedNoSync();
1851     }
1852 
1853     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1854       return true;
1855 
1856     return false;
1857   };
1858 
1859   auto CheckForNoSync = [&](Instruction &I) {
1860     // At this point we handled all read/write effects and they are all
1861     // nosync, so they can be skipped.
1862     if (I.mayReadOrWriteMemory())
1863       return true;
1864 
1865     // non-convergent and readnone imply nosync.
1866     return !cast<CallBase>(I).isConvergent();
1867   };
1868 
1869   bool UsedAssumedInformation = false;
1870   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1871                                           UsedAssumedInformation) ||
1872       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1873                                          UsedAssumedInformation))
1874     return indicatePessimisticFixpoint();
1875 
1876   return ChangeStatus::UNCHANGED;
1877 }
1878 
1879 struct AANoSyncFunction final : public AANoSyncImpl {
1880   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1881       : AANoSyncImpl(IRP, A) {}
1882 
1883   /// See AbstractAttribute::trackStatistics()
1884   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1885 };
1886 
1887 /// NoSync attribute deduction for a call sites.
1888 struct AANoSyncCallSite final : AANoSyncImpl {
1889   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1890       : AANoSyncImpl(IRP, A) {}
1891 
1892   /// See AbstractAttribute::initialize(...).
1893   void initialize(Attributor &A) override {
1894     AANoSyncImpl::initialize(A);
1895     Function *F = getAssociatedFunction();
1896     if (!F || F->isDeclaration())
1897       indicatePessimisticFixpoint();
1898   }
1899 
1900   /// See AbstractAttribute::updateImpl(...).
1901   ChangeStatus updateImpl(Attributor &A) override {
1902     // TODO: Once we have call site specific value information we can provide
1903     //       call site specific liveness information and then it makes
1904     //       sense to specialize attributes for call sites arguments instead of
1905     //       redirecting requests to the callee argument.
1906     Function *F = getAssociatedFunction();
1907     const IRPosition &FnPos = IRPosition::function(*F);
1908     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1909     return clampStateAndIndicateChange(getState(), FnAA.getState());
1910   }
1911 
1912   /// See AbstractAttribute::trackStatistics()
1913   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1914 };
1915 
1916 /// ------------------------ No-Free Attributes ----------------------------
1917 
1918 struct AANoFreeImpl : public AANoFree {
1919   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1920 
1921   /// See AbstractAttribute::updateImpl(...).
1922   ChangeStatus updateImpl(Attributor &A) override {
1923     auto CheckForNoFree = [&](Instruction &I) {
1924       const auto &CB = cast<CallBase>(I);
1925       if (CB.hasFnAttr(Attribute::NoFree))
1926         return true;
1927 
1928       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1929           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1930       return NoFreeAA.isAssumedNoFree();
1931     };
1932 
1933     bool UsedAssumedInformation = false;
1934     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1935                                            UsedAssumedInformation))
1936       return indicatePessimisticFixpoint();
1937     return ChangeStatus::UNCHANGED;
1938   }
1939 
1940   /// See AbstractAttribute::getAsStr().
1941   const std::string getAsStr() const override {
1942     return getAssumed() ? "nofree" : "may-free";
1943   }
1944 };
1945 
1946 struct AANoFreeFunction final : public AANoFreeImpl {
1947   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1948       : AANoFreeImpl(IRP, A) {}
1949 
1950   /// See AbstractAttribute::trackStatistics()
1951   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1952 };
1953 
1954 /// NoFree attribute deduction for a call sites.
1955 struct AANoFreeCallSite final : AANoFreeImpl {
1956   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1957       : AANoFreeImpl(IRP, A) {}
1958 
1959   /// See AbstractAttribute::initialize(...).
1960   void initialize(Attributor &A) override {
1961     AANoFreeImpl::initialize(A);
1962     Function *F = getAssociatedFunction();
1963     if (!F || F->isDeclaration())
1964       indicatePessimisticFixpoint();
1965   }
1966 
1967   /// See AbstractAttribute::updateImpl(...).
1968   ChangeStatus updateImpl(Attributor &A) override {
1969     // TODO: Once we have call site specific value information we can provide
1970     //       call site specific liveness information and then it makes
1971     //       sense to specialize attributes for call sites arguments instead of
1972     //       redirecting requests to the callee argument.
1973     Function *F = getAssociatedFunction();
1974     const IRPosition &FnPos = IRPosition::function(*F);
1975     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1976     return clampStateAndIndicateChange(getState(), FnAA.getState());
1977   }
1978 
1979   /// See AbstractAttribute::trackStatistics()
1980   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1981 };
1982 
1983 /// NoFree attribute for floating values.
1984 struct AANoFreeFloating : AANoFreeImpl {
1985   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1986       : AANoFreeImpl(IRP, A) {}
1987 
1988   /// See AbstractAttribute::trackStatistics()
1989   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1990 
1991   /// See Abstract Attribute::updateImpl(...).
1992   ChangeStatus updateImpl(Attributor &A) override {
1993     const IRPosition &IRP = getIRPosition();
1994 
1995     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1996         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1997     if (NoFreeAA.isAssumedNoFree())
1998       return ChangeStatus::UNCHANGED;
1999 
2000     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2001     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2002       Instruction *UserI = cast<Instruction>(U.getUser());
2003       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2004         if (CB->isBundleOperand(&U))
2005           return false;
2006         if (!CB->isArgOperand(&U))
2007           return true;
2008         unsigned ArgNo = CB->getArgOperandNo(&U);
2009 
2010         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2011             *this, IRPosition::callsite_argument(*CB, ArgNo),
2012             DepClassTy::REQUIRED);
2013         return NoFreeArg.isAssumedNoFree();
2014       }
2015 
2016       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2017           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2018         Follow = true;
2019         return true;
2020       }
2021       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2022           isa<ReturnInst>(UserI))
2023         return true;
2024 
2025       // Unknown user.
2026       return false;
2027     };
2028     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2029       return indicatePessimisticFixpoint();
2030 
2031     return ChangeStatus::UNCHANGED;
2032   }
2033 };
2034 
2035 /// NoFree attribute for a call site argument.
2036 struct AANoFreeArgument final : AANoFreeFloating {
2037   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2038       : AANoFreeFloating(IRP, A) {}
2039 
2040   /// See AbstractAttribute::trackStatistics()
2041   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2042 };
2043 
2044 /// NoFree attribute for call site arguments.
2045 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2046   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2047       : AANoFreeFloating(IRP, A) {}
2048 
2049   /// See AbstractAttribute::updateImpl(...).
2050   ChangeStatus updateImpl(Attributor &A) override {
2051     // TODO: Once we have call site specific value information we can provide
2052     //       call site specific liveness information and then it makes
2053     //       sense to specialize attributes for call sites arguments instead of
2054     //       redirecting requests to the callee argument.
2055     Argument *Arg = getAssociatedArgument();
2056     if (!Arg)
2057       return indicatePessimisticFixpoint();
2058     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2059     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2060     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2061   }
2062 
2063   /// See AbstractAttribute::trackStatistics()
2064   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2065 };
2066 
2067 /// NoFree attribute for function return value.
2068 struct AANoFreeReturned final : AANoFreeFloating {
2069   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2070       : AANoFreeFloating(IRP, A) {
2071     llvm_unreachable("NoFree is not applicable to function returns!");
2072   }
2073 
2074   /// See AbstractAttribute::initialize(...).
2075   void initialize(Attributor &A) override {
2076     llvm_unreachable("NoFree is not applicable to function returns!");
2077   }
2078 
2079   /// See AbstractAttribute::updateImpl(...).
2080   ChangeStatus updateImpl(Attributor &A) override {
2081     llvm_unreachable("NoFree is not applicable to function returns!");
2082   }
2083 
2084   /// See AbstractAttribute::trackStatistics()
2085   void trackStatistics() const override {}
2086 };
2087 
2088 /// NoFree attribute deduction for a call site return value.
2089 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2090   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2091       : AANoFreeFloating(IRP, A) {}
2092 
2093   ChangeStatus manifest(Attributor &A) override {
2094     return ChangeStatus::UNCHANGED;
2095   }
2096   /// See AbstractAttribute::trackStatistics()
2097   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2098 };
2099 
2100 /// ------------------------ NonNull Argument Attribute ------------------------
2101 static int64_t getKnownNonNullAndDerefBytesForUse(
2102     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2103     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2104   TrackUse = false;
2105 
2106   const Value *UseV = U->get();
2107   if (!UseV->getType()->isPointerTy())
2108     return 0;
2109 
2110   // We need to follow common pointer manipulation uses to the accesses they
2111   // feed into. We can try to be smart to avoid looking through things we do not
2112   // like for now, e.g., non-inbounds GEPs.
2113   if (isa<CastInst>(I)) {
2114     TrackUse = true;
2115     return 0;
2116   }
2117 
2118   if (isa<GetElementPtrInst>(I)) {
2119     TrackUse = true;
2120     return 0;
2121   }
2122 
2123   Type *PtrTy = UseV->getType();
2124   const Function *F = I->getFunction();
2125   bool NullPointerIsDefined =
2126       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2127   const DataLayout &DL = A.getInfoCache().getDL();
2128   if (const auto *CB = dyn_cast<CallBase>(I)) {
2129     if (CB->isBundleOperand(U)) {
2130       if (RetainedKnowledge RK = getKnowledgeFromUse(
2131               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2132         IsNonNull |=
2133             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2134         return RK.ArgValue;
2135       }
2136       return 0;
2137     }
2138 
2139     if (CB->isCallee(U)) {
2140       IsNonNull |= !NullPointerIsDefined;
2141       return 0;
2142     }
2143 
2144     unsigned ArgNo = CB->getArgOperandNo(U);
2145     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2146     // As long as we only use known information there is no need to track
2147     // dependences here.
2148     auto &DerefAA =
2149         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2150     IsNonNull |= DerefAA.isKnownNonNull();
2151     return DerefAA.getKnownDereferenceableBytes();
2152   }
2153 
2154   int64_t Offset;
2155   const Value *Base =
2156       getMinimalBaseOfAccessPointerOperand(A, QueryingAA, I, Offset, DL);
2157   if (Base) {
2158     if (Base == &AssociatedValue &&
2159         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2160       int64_t DerefBytes =
2161           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2162 
2163       IsNonNull |= !NullPointerIsDefined;
2164       return std::max(int64_t(0), DerefBytes);
2165     }
2166   }
2167 
2168   /// Corner case when an offset is 0.
2169   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2170                                               /*AllowNonInbounds*/ true);
2171   if (Base) {
2172     if (Offset == 0 && Base == &AssociatedValue &&
2173         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2174       int64_t DerefBytes =
2175           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2176       IsNonNull |= !NullPointerIsDefined;
2177       return std::max(int64_t(0), DerefBytes);
2178     }
2179   }
2180 
2181   return 0;
2182 }
2183 
2184 struct AANonNullImpl : AANonNull {
2185   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2186       : AANonNull(IRP, A),
2187         NullIsDefined(NullPointerIsDefined(
2188             getAnchorScope(),
2189             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2190 
2191   /// See AbstractAttribute::initialize(...).
2192   void initialize(Attributor &A) override {
2193     Value &V = getAssociatedValue();
2194     if (!NullIsDefined &&
2195         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2196                 /* IgnoreSubsumingPositions */ false, &A)) {
2197       indicateOptimisticFixpoint();
2198       return;
2199     }
2200 
2201     if (isa<ConstantPointerNull>(V)) {
2202       indicatePessimisticFixpoint();
2203       return;
2204     }
2205 
2206     AANonNull::initialize(A);
2207 
2208     bool CanBeNull, CanBeFreed;
2209     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2210                                          CanBeFreed)) {
2211       if (!CanBeNull) {
2212         indicateOptimisticFixpoint();
2213         return;
2214       }
2215     }
2216 
2217     if (isa<GlobalValue>(&getAssociatedValue())) {
2218       indicatePessimisticFixpoint();
2219       return;
2220     }
2221 
2222     if (Instruction *CtxI = getCtxI())
2223       followUsesInMBEC(*this, A, getState(), *CtxI);
2224   }
2225 
2226   /// See followUsesInMBEC
2227   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2228                        AANonNull::StateType &State) {
2229     bool IsNonNull = false;
2230     bool TrackUse = false;
2231     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2232                                        IsNonNull, TrackUse);
2233     State.setKnown(IsNonNull);
2234     return TrackUse;
2235   }
2236 
2237   /// See AbstractAttribute::getAsStr().
2238   const std::string getAsStr() const override {
2239     return getAssumed() ? "nonnull" : "may-null";
2240   }
2241 
2242   /// Flag to determine if the underlying value can be null and still allow
2243   /// valid accesses.
2244   const bool NullIsDefined;
2245 };
2246 
2247 /// NonNull attribute for a floating value.
2248 struct AANonNullFloating : public AANonNullImpl {
2249   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2250       : AANonNullImpl(IRP, A) {}
2251 
2252   /// See AbstractAttribute::updateImpl(...).
2253   ChangeStatus updateImpl(Attributor &A) override {
2254     const DataLayout &DL = A.getDataLayout();
2255 
2256     DominatorTree *DT = nullptr;
2257     AssumptionCache *AC = nullptr;
2258     InformationCache &InfoCache = A.getInfoCache();
2259     if (const Function *Fn = getAnchorScope()) {
2260       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2261       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2262     }
2263 
2264     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2265                             AANonNull::StateType &T, bool Stripped) -> bool {
2266       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2267                                              DepClassTy::REQUIRED);
2268       if (!Stripped && this == &AA) {
2269         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2270           T.indicatePessimisticFixpoint();
2271       } else {
2272         // Use abstract attribute information.
2273         const AANonNull::StateType &NS = AA.getState();
2274         T ^= NS;
2275       }
2276       return T.isValidState();
2277     };
2278 
2279     StateType T;
2280     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2281                                           VisitValueCB, getCtxI()))
2282       return indicatePessimisticFixpoint();
2283 
2284     return clampStateAndIndicateChange(getState(), T);
2285   }
2286 
2287   /// See AbstractAttribute::trackStatistics()
2288   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2289 };
2290 
2291 /// NonNull attribute for function return value.
2292 struct AANonNullReturned final
2293     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2294   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2295       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2296 
2297   /// See AbstractAttribute::getAsStr().
2298   const std::string getAsStr() const override {
2299     return getAssumed() ? "nonnull" : "may-null";
2300   }
2301 
2302   /// See AbstractAttribute::trackStatistics()
2303   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2304 };
2305 
2306 /// NonNull attribute for function argument.
2307 struct AANonNullArgument final
2308     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2309   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2310       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2311 
2312   /// See AbstractAttribute::trackStatistics()
2313   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2314 };
2315 
2316 struct AANonNullCallSiteArgument final : AANonNullFloating {
2317   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2318       : AANonNullFloating(IRP, A) {}
2319 
2320   /// See AbstractAttribute::trackStatistics()
2321   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2322 };
2323 
2324 /// NonNull attribute for a call site return position.
2325 struct AANonNullCallSiteReturned final
2326     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2327   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2328       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2329 
2330   /// See AbstractAttribute::trackStatistics()
2331   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2332 };
2333 
2334 /// ------------------------ No-Recurse Attributes ----------------------------
2335 
2336 struct AANoRecurseImpl : public AANoRecurse {
2337   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2338 
2339   /// See AbstractAttribute::getAsStr()
2340   const std::string getAsStr() const override {
2341     return getAssumed() ? "norecurse" : "may-recurse";
2342   }
2343 };
2344 
2345 struct AANoRecurseFunction final : AANoRecurseImpl {
2346   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2347       : AANoRecurseImpl(IRP, A) {}
2348 
2349   /// See AbstractAttribute::initialize(...).
2350   void initialize(Attributor &A) override {
2351     AANoRecurseImpl::initialize(A);
2352     // TODO: We should build a call graph ourselves to enable this in the module
2353     // pass as well.
2354     if (const Function *F = getAnchorScope())
2355       if (A.getInfoCache().getSccSize(*F) != 1)
2356         indicatePessimisticFixpoint();
2357   }
2358 
2359   /// See AbstractAttribute::updateImpl(...).
2360   ChangeStatus updateImpl(Attributor &A) override {
2361 
2362     // If all live call sites are known to be no-recurse, we are as well.
2363     auto CallSitePred = [&](AbstractCallSite ACS) {
2364       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2365           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2366           DepClassTy::NONE);
2367       return NoRecurseAA.isKnownNoRecurse();
2368     };
2369     bool AllCallSitesKnown;
2370     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2371       // If we know all call sites and all are known no-recurse, we are done.
2372       // If all known call sites, which might not be all that exist, are known
2373       // to be no-recurse, we are not done but we can continue to assume
2374       // no-recurse. If one of the call sites we have not visited will become
2375       // live, another update is triggered.
2376       if (AllCallSitesKnown)
2377         indicateOptimisticFixpoint();
2378       return ChangeStatus::UNCHANGED;
2379     }
2380 
2381     // If the above check does not hold anymore we look at the calls.
2382     auto CheckForNoRecurse = [&](Instruction &I) {
2383       const auto &CB = cast<CallBase>(I);
2384       if (CB.hasFnAttr(Attribute::NoRecurse))
2385         return true;
2386 
2387       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2388           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2389       if (!NoRecurseAA.isAssumedNoRecurse())
2390         return false;
2391 
2392       // Recursion to the same function
2393       if (CB.getCalledFunction() == getAnchorScope())
2394         return false;
2395 
2396       return true;
2397     };
2398 
2399     bool UsedAssumedInformation = false;
2400     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2401                                            UsedAssumedInformation))
2402       return indicatePessimisticFixpoint();
2403     return ChangeStatus::UNCHANGED;
2404   }
2405 
2406   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2407 };
2408 
2409 /// NoRecurse attribute deduction for a call sites.
2410 struct AANoRecurseCallSite final : AANoRecurseImpl {
2411   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2412       : AANoRecurseImpl(IRP, A) {}
2413 
2414   /// See AbstractAttribute::initialize(...).
2415   void initialize(Attributor &A) override {
2416     AANoRecurseImpl::initialize(A);
2417     Function *F = getAssociatedFunction();
2418     if (!F || F->isDeclaration())
2419       indicatePessimisticFixpoint();
2420   }
2421 
2422   /// See AbstractAttribute::updateImpl(...).
2423   ChangeStatus updateImpl(Attributor &A) override {
2424     // TODO: Once we have call site specific value information we can provide
2425     //       call site specific liveness information and then it makes
2426     //       sense to specialize attributes for call sites arguments instead of
2427     //       redirecting requests to the callee argument.
2428     Function *F = getAssociatedFunction();
2429     const IRPosition &FnPos = IRPosition::function(*F);
2430     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2431     return clampStateAndIndicateChange(getState(), FnAA.getState());
2432   }
2433 
2434   /// See AbstractAttribute::trackStatistics()
2435   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2436 };
2437 
2438 /// -------------------- Undefined-Behavior Attributes ------------------------
2439 
2440 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2441   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2442       : AAUndefinedBehavior(IRP, A) {}
2443 
2444   /// See AbstractAttribute::updateImpl(...).
2445   // through a pointer (i.e. also branches etc.)
2446   ChangeStatus updateImpl(Attributor &A) override {
2447     const size_t UBPrevSize = KnownUBInsts.size();
2448     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2449 
2450     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2451       // Lang ref now states volatile store is not UB, let's skip them.
2452       if (I.isVolatile() && I.mayWriteToMemory())
2453         return true;
2454 
2455       // Skip instructions that are already saved.
2456       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2457         return true;
2458 
2459       // If we reach here, we know we have an instruction
2460       // that accesses memory through a pointer operand,
2461       // for which getPointerOperand() should give it to us.
2462       Value *PtrOp =
2463           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2464       assert(PtrOp &&
2465              "Expected pointer operand of memory accessing instruction");
2466 
2467       // Either we stopped and the appropriate action was taken,
2468       // or we got back a simplified value to continue.
2469       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2470       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2471         return true;
2472       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2473 
2474       // A memory access through a pointer is considered UB
2475       // only if the pointer has constant null value.
2476       // TODO: Expand it to not only check constant values.
2477       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2478         AssumedNoUBInsts.insert(&I);
2479         return true;
2480       }
2481       const Type *PtrTy = PtrOpVal->getType();
2482 
2483       // Because we only consider instructions inside functions,
2484       // assume that a parent function exists.
2485       const Function *F = I.getFunction();
2486 
2487       // A memory access using constant null pointer is only considered UB
2488       // if null pointer is _not_ defined for the target platform.
2489       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2490         AssumedNoUBInsts.insert(&I);
2491       else
2492         KnownUBInsts.insert(&I);
2493       return true;
2494     };
2495 
2496     auto InspectBrInstForUB = [&](Instruction &I) {
2497       // A conditional branch instruction is considered UB if it has `undef`
2498       // condition.
2499 
2500       // Skip instructions that are already saved.
2501       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2502         return true;
2503 
2504       // We know we have a branch instruction.
2505       auto *BrInst = cast<BranchInst>(&I);
2506 
2507       // Unconditional branches are never considered UB.
2508       if (BrInst->isUnconditional())
2509         return true;
2510 
2511       // Either we stopped and the appropriate action was taken,
2512       // or we got back a simplified value to continue.
2513       Optional<Value *> SimplifiedCond =
2514           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2515       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2516         return true;
2517       AssumedNoUBInsts.insert(&I);
2518       return true;
2519     };
2520 
2521     auto InspectCallSiteForUB = [&](Instruction &I) {
2522       // Check whether a callsite always cause UB or not
2523 
2524       // Skip instructions that are already saved.
2525       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2526         return true;
2527 
2528       // Check nonnull and noundef argument attribute violation for each
2529       // callsite.
2530       CallBase &CB = cast<CallBase>(I);
2531       Function *Callee = CB.getCalledFunction();
2532       if (!Callee)
2533         return true;
2534       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2535         // If current argument is known to be simplified to null pointer and the
2536         // corresponding argument position is known to have nonnull attribute,
2537         // the argument is poison. Furthermore, if the argument is poison and
2538         // the position is known to have noundef attriubte, this callsite is
2539         // considered UB.
2540         if (idx >= Callee->arg_size())
2541           break;
2542         Value *ArgVal = CB.getArgOperand(idx);
2543         if (!ArgVal)
2544           continue;
2545         // Here, we handle three cases.
2546         //   (1) Not having a value means it is dead. (we can replace the value
2547         //       with undef)
2548         //   (2) Simplified to undef. The argument violate noundef attriubte.
2549         //   (3) Simplified to null pointer where known to be nonnull.
2550         //       The argument is a poison value and violate noundef attribute.
2551         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2552         auto &NoUndefAA =
2553             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2554         if (!NoUndefAA.isKnownNoUndef())
2555           continue;
2556         bool UsedAssumedInformation = false;
2557         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2558             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2559         if (UsedAssumedInformation)
2560           continue;
2561         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2562           return true;
2563         if (!SimplifiedVal.hasValue() ||
2564             isa<UndefValue>(*SimplifiedVal.getValue())) {
2565           KnownUBInsts.insert(&I);
2566           continue;
2567         }
2568         if (!ArgVal->getType()->isPointerTy() ||
2569             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2570           continue;
2571         auto &NonNullAA =
2572             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2573         if (NonNullAA.isKnownNonNull())
2574           KnownUBInsts.insert(&I);
2575       }
2576       return true;
2577     };
2578 
2579     auto InspectReturnInstForUB =
2580         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2581           // Check if a return instruction always cause UB or not
2582           // Note: It is guaranteed that the returned position of the anchor
2583           //       scope has noundef attribute when this is called.
2584           //       We also ensure the return position is not "assumed dead"
2585           //       because the returned value was then potentially simplified to
2586           //       `undef` in AAReturnedValues without removing the `noundef`
2587           //       attribute yet.
2588 
2589           // When the returned position has noundef attriubte, UB occur in the
2590           // following cases.
2591           //   (1) Returned value is known to be undef.
2592           //   (2) The value is known to be a null pointer and the returned
2593           //       position has nonnull attribute (because the returned value is
2594           //       poison).
2595           bool FoundUB = false;
2596           if (isa<UndefValue>(V)) {
2597             FoundUB = true;
2598           } else {
2599             if (isa<ConstantPointerNull>(V)) {
2600               auto &NonNullAA = A.getAAFor<AANonNull>(
2601                   *this, IRPosition::returned(*getAnchorScope()),
2602                   DepClassTy::NONE);
2603               if (NonNullAA.isKnownNonNull())
2604                 FoundUB = true;
2605             }
2606           }
2607 
2608           if (FoundUB)
2609             for (ReturnInst *RI : RetInsts)
2610               KnownUBInsts.insert(RI);
2611           return true;
2612         };
2613 
2614     bool UsedAssumedInformation = false;
2615     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2616                               {Instruction::Load, Instruction::Store,
2617                                Instruction::AtomicCmpXchg,
2618                                Instruction::AtomicRMW},
2619                               UsedAssumedInformation,
2620                               /* CheckBBLivenessOnly */ true);
2621     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2622                               UsedAssumedInformation,
2623                               /* CheckBBLivenessOnly */ true);
2624     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2625                                       UsedAssumedInformation);
2626 
2627     // If the returned position of the anchor scope has noundef attriubte, check
2628     // all returned instructions.
2629     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2630       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2631       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2632         auto &RetPosNoUndefAA =
2633             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2634         if (RetPosNoUndefAA.isKnownNoUndef())
2635           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2636                                                     *this);
2637       }
2638     }
2639 
2640     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2641         UBPrevSize != KnownUBInsts.size())
2642       return ChangeStatus::CHANGED;
2643     return ChangeStatus::UNCHANGED;
2644   }
2645 
2646   bool isKnownToCauseUB(Instruction *I) const override {
2647     return KnownUBInsts.count(I);
2648   }
2649 
2650   bool isAssumedToCauseUB(Instruction *I) const override {
2651     // In simple words, if an instruction is not in the assumed to _not_
2652     // cause UB, then it is assumed UB (that includes those
2653     // in the KnownUBInsts set). The rest is boilerplate
2654     // is to ensure that it is one of the instructions we test
2655     // for UB.
2656 
2657     switch (I->getOpcode()) {
2658     case Instruction::Load:
2659     case Instruction::Store:
2660     case Instruction::AtomicCmpXchg:
2661     case Instruction::AtomicRMW:
2662       return !AssumedNoUBInsts.count(I);
2663     case Instruction::Br: {
2664       auto BrInst = cast<BranchInst>(I);
2665       if (BrInst->isUnconditional())
2666         return false;
2667       return !AssumedNoUBInsts.count(I);
2668     } break;
2669     default:
2670       return false;
2671     }
2672     return false;
2673   }
2674 
2675   ChangeStatus manifest(Attributor &A) override {
2676     if (KnownUBInsts.empty())
2677       return ChangeStatus::UNCHANGED;
2678     for (Instruction *I : KnownUBInsts)
2679       A.changeToUnreachableAfterManifest(I);
2680     return ChangeStatus::CHANGED;
2681   }
2682 
2683   /// See AbstractAttribute::getAsStr()
2684   const std::string getAsStr() const override {
2685     return getAssumed() ? "undefined-behavior" : "no-ub";
2686   }
2687 
2688   /// Note: The correctness of this analysis depends on the fact that the
2689   /// following 2 sets will stop changing after some point.
2690   /// "Change" here means that their size changes.
2691   /// The size of each set is monotonically increasing
2692   /// (we only add items to them) and it is upper bounded by the number of
2693   /// instructions in the processed function (we can never save more
2694   /// elements in either set than this number). Hence, at some point,
2695   /// they will stop increasing.
2696   /// Consequently, at some point, both sets will have stopped
2697   /// changing, effectively making the analysis reach a fixpoint.
2698 
2699   /// Note: These 2 sets are disjoint and an instruction can be considered
2700   /// one of 3 things:
2701   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2702   ///    the KnownUBInsts set.
2703   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2704   ///    has a reason to assume it).
2705   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2706   ///    could not find a reason to assume or prove that it can cause UB,
2707   ///    hence it assumes it doesn't. We have a set for these instructions
2708   ///    so that we don't reprocess them in every update.
2709   ///    Note however that instructions in this set may cause UB.
2710 
2711 protected:
2712   /// A set of all live instructions _known_ to cause UB.
2713   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2714 
2715 private:
2716   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2717   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2718 
2719   // Should be called on updates in which if we're processing an instruction
2720   // \p I that depends on a value \p V, one of the following has to happen:
2721   // - If the value is assumed, then stop.
2722   // - If the value is known but undef, then consider it UB.
2723   // - Otherwise, do specific processing with the simplified value.
2724   // We return None in the first 2 cases to signify that an appropriate
2725   // action was taken and the caller should stop.
2726   // Otherwise, we return the simplified value that the caller should
2727   // use for specific processing.
2728   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2729                                          Instruction *I) {
2730     bool UsedAssumedInformation = false;
2731     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2732         IRPosition::value(*V), *this, UsedAssumedInformation);
2733     if (!UsedAssumedInformation) {
2734       // Don't depend on assumed values.
2735       if (!SimplifiedV.hasValue()) {
2736         // If it is known (which we tested above) but it doesn't have a value,
2737         // then we can assume `undef` and hence the instruction is UB.
2738         KnownUBInsts.insert(I);
2739         return llvm::None;
2740       }
2741       if (!SimplifiedV.getValue())
2742         return nullptr;
2743       V = *SimplifiedV;
2744     }
2745     if (isa<UndefValue>(V)) {
2746       KnownUBInsts.insert(I);
2747       return llvm::None;
2748     }
2749     return V;
2750   }
2751 };
2752 
2753 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2754   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2755       : AAUndefinedBehaviorImpl(IRP, A) {}
2756 
2757   /// See AbstractAttribute::trackStatistics()
2758   void trackStatistics() const override {
2759     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2760                "Number of instructions known to have UB");
2761     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2762         KnownUBInsts.size();
2763   }
2764 };
2765 
2766 /// ------------------------ Will-Return Attributes ----------------------------
2767 
2768 // Helper function that checks whether a function has any cycle which we don't
2769 // know if it is bounded or not.
2770 // Loops with maximum trip count are considered bounded, any other cycle not.
2771 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2772   ScalarEvolution *SE =
2773       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2774   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2775   // If either SCEV or LoopInfo is not available for the function then we assume
2776   // any cycle to be unbounded cycle.
2777   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2778   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2779   if (!SE || !LI) {
2780     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2781       if (SCCI.hasCycle())
2782         return true;
2783     return false;
2784   }
2785 
2786   // If there's irreducible control, the function may contain non-loop cycles.
2787   if (mayContainIrreducibleControl(F, LI))
2788     return true;
2789 
2790   // Any loop that does not have a max trip count is considered unbounded cycle.
2791   for (auto *L : LI->getLoopsInPreorder()) {
2792     if (!SE->getSmallConstantMaxTripCount(L))
2793       return true;
2794   }
2795   return false;
2796 }
2797 
2798 struct AAWillReturnImpl : public AAWillReturn {
2799   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2800       : AAWillReturn(IRP, A) {}
2801 
2802   /// See AbstractAttribute::initialize(...).
2803   void initialize(Attributor &A) override {
2804     AAWillReturn::initialize(A);
2805 
2806     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2807       indicateOptimisticFixpoint();
2808       return;
2809     }
2810   }
2811 
2812   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2813   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2814     // Check for `mustprogress` in the scope and the associated function which
2815     // might be different if this is a call site.
2816     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2817         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2818       return false;
2819 
2820     const auto &MemAA =
2821         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2822     if (!MemAA.isAssumedReadOnly())
2823       return false;
2824     if (KnownOnly && !MemAA.isKnownReadOnly())
2825       return false;
2826     if (!MemAA.isKnownReadOnly())
2827       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2828 
2829     return true;
2830   }
2831 
2832   /// See AbstractAttribute::updateImpl(...).
2833   ChangeStatus updateImpl(Attributor &A) override {
2834     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2835       return ChangeStatus::UNCHANGED;
2836 
2837     auto CheckForWillReturn = [&](Instruction &I) {
2838       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2839       const auto &WillReturnAA =
2840           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2841       if (WillReturnAA.isKnownWillReturn())
2842         return true;
2843       if (!WillReturnAA.isAssumedWillReturn())
2844         return false;
2845       const auto &NoRecurseAA =
2846           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2847       return NoRecurseAA.isAssumedNoRecurse();
2848     };
2849 
2850     bool UsedAssumedInformation = false;
2851     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2852                                            UsedAssumedInformation))
2853       return indicatePessimisticFixpoint();
2854 
2855     return ChangeStatus::UNCHANGED;
2856   }
2857 
2858   /// See AbstractAttribute::getAsStr()
2859   const std::string getAsStr() const override {
2860     return getAssumed() ? "willreturn" : "may-noreturn";
2861   }
2862 };
2863 
2864 struct AAWillReturnFunction final : AAWillReturnImpl {
2865   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2866       : AAWillReturnImpl(IRP, A) {}
2867 
2868   /// See AbstractAttribute::initialize(...).
2869   void initialize(Attributor &A) override {
2870     AAWillReturnImpl::initialize(A);
2871 
2872     Function *F = getAnchorScope();
2873     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2874       indicatePessimisticFixpoint();
2875   }
2876 
2877   /// See AbstractAttribute::trackStatistics()
2878   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2879 };
2880 
2881 /// WillReturn attribute deduction for a call sites.
2882 struct AAWillReturnCallSite final : AAWillReturnImpl {
2883   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2884       : AAWillReturnImpl(IRP, A) {}
2885 
2886   /// See AbstractAttribute::initialize(...).
2887   void initialize(Attributor &A) override {
2888     AAWillReturnImpl::initialize(A);
2889     Function *F = getAssociatedFunction();
2890     if (!F || !A.isFunctionIPOAmendable(*F))
2891       indicatePessimisticFixpoint();
2892   }
2893 
2894   /// See AbstractAttribute::updateImpl(...).
2895   ChangeStatus updateImpl(Attributor &A) override {
2896     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2897       return ChangeStatus::UNCHANGED;
2898 
2899     // TODO: Once we have call site specific value information we can provide
2900     //       call site specific liveness information and then it makes
2901     //       sense to specialize attributes for call sites arguments instead of
2902     //       redirecting requests to the callee argument.
2903     Function *F = getAssociatedFunction();
2904     const IRPosition &FnPos = IRPosition::function(*F);
2905     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2906     return clampStateAndIndicateChange(getState(), FnAA.getState());
2907   }
2908 
2909   /// See AbstractAttribute::trackStatistics()
2910   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2911 };
2912 
2913 /// -------------------AAReachability Attribute--------------------------
2914 
2915 struct AAReachabilityImpl : AAReachability {
2916   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2917       : AAReachability(IRP, A) {}
2918 
2919   const std::string getAsStr() const override {
2920     // TODO: Return the number of reachable queries.
2921     return "reachable";
2922   }
2923 
2924   /// See AbstractAttribute::updateImpl(...).
2925   ChangeStatus updateImpl(Attributor &A) override {
2926     return ChangeStatus::UNCHANGED;
2927   }
2928 };
2929 
2930 struct AAReachabilityFunction final : public AAReachabilityImpl {
2931   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2932       : AAReachabilityImpl(IRP, A) {}
2933 
2934   /// See AbstractAttribute::trackStatistics()
2935   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2936 };
2937 
2938 /// ------------------------ NoAlias Argument Attribute ------------------------
2939 
2940 struct AANoAliasImpl : AANoAlias {
2941   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2942     assert(getAssociatedType()->isPointerTy() &&
2943            "Noalias is a pointer attribute");
2944   }
2945 
2946   const std::string getAsStr() const override {
2947     return getAssumed() ? "noalias" : "may-alias";
2948   }
2949 };
2950 
2951 /// NoAlias attribute for a floating value.
2952 struct AANoAliasFloating final : AANoAliasImpl {
2953   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2954       : AANoAliasImpl(IRP, A) {}
2955 
2956   /// See AbstractAttribute::initialize(...).
2957   void initialize(Attributor &A) override {
2958     AANoAliasImpl::initialize(A);
2959     Value *Val = &getAssociatedValue();
2960     do {
2961       CastInst *CI = dyn_cast<CastInst>(Val);
2962       if (!CI)
2963         break;
2964       Value *Base = CI->getOperand(0);
2965       if (!Base->hasOneUse())
2966         break;
2967       Val = Base;
2968     } while (true);
2969 
2970     if (!Val->getType()->isPointerTy()) {
2971       indicatePessimisticFixpoint();
2972       return;
2973     }
2974 
2975     if (isa<AllocaInst>(Val))
2976       indicateOptimisticFixpoint();
2977     else if (isa<ConstantPointerNull>(Val) &&
2978              !NullPointerIsDefined(getAnchorScope(),
2979                                    Val->getType()->getPointerAddressSpace()))
2980       indicateOptimisticFixpoint();
2981     else if (Val != &getAssociatedValue()) {
2982       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2983           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2984       if (ValNoAliasAA.isKnownNoAlias())
2985         indicateOptimisticFixpoint();
2986     }
2987   }
2988 
2989   /// See AbstractAttribute::updateImpl(...).
2990   ChangeStatus updateImpl(Attributor &A) override {
2991     // TODO: Implement this.
2992     return indicatePessimisticFixpoint();
2993   }
2994 
2995   /// See AbstractAttribute::trackStatistics()
2996   void trackStatistics() const override {
2997     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2998   }
2999 };
3000 
3001 /// NoAlias attribute for an argument.
3002 struct AANoAliasArgument final
3003     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3004   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3005   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3006 
3007   /// See AbstractAttribute::initialize(...).
3008   void initialize(Attributor &A) override {
3009     Base::initialize(A);
3010     // See callsite argument attribute and callee argument attribute.
3011     if (hasAttr({Attribute::ByVal}))
3012       indicateOptimisticFixpoint();
3013   }
3014 
3015   /// See AbstractAttribute::update(...).
3016   ChangeStatus updateImpl(Attributor &A) override {
3017     // We have to make sure no-alias on the argument does not break
3018     // synchronization when this is a callback argument, see also [1] below.
3019     // If synchronization cannot be affected, we delegate to the base updateImpl
3020     // function, otherwise we give up for now.
3021 
3022     // If the function is no-sync, no-alias cannot break synchronization.
3023     const auto &NoSyncAA =
3024         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3025                              DepClassTy::OPTIONAL);
3026     if (NoSyncAA.isAssumedNoSync())
3027       return Base::updateImpl(A);
3028 
3029     // If the argument is read-only, no-alias cannot break synchronization.
3030     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3031         *this, getIRPosition(), DepClassTy::OPTIONAL);
3032     if (MemBehaviorAA.isAssumedReadOnly())
3033       return Base::updateImpl(A);
3034 
3035     // If the argument is never passed through callbacks, no-alias cannot break
3036     // synchronization.
3037     bool AllCallSitesKnown;
3038     if (A.checkForAllCallSites(
3039             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3040             true, AllCallSitesKnown))
3041       return Base::updateImpl(A);
3042 
3043     // TODO: add no-alias but make sure it doesn't break synchronization by
3044     // introducing fake uses. See:
3045     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3046     //     International Workshop on OpenMP 2018,
3047     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3048 
3049     return indicatePessimisticFixpoint();
3050   }
3051 
3052   /// See AbstractAttribute::trackStatistics()
3053   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3054 };
3055 
3056 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3057   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3058       : AANoAliasImpl(IRP, A) {}
3059 
3060   /// See AbstractAttribute::initialize(...).
3061   void initialize(Attributor &A) override {
3062     // See callsite argument attribute and callee argument attribute.
3063     const auto &CB = cast<CallBase>(getAnchorValue());
3064     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3065       indicateOptimisticFixpoint();
3066     Value &Val = getAssociatedValue();
3067     if (isa<ConstantPointerNull>(Val) &&
3068         !NullPointerIsDefined(getAnchorScope(),
3069                               Val.getType()->getPointerAddressSpace()))
3070       indicateOptimisticFixpoint();
3071   }
3072 
3073   /// Determine if the underlying value may alias with the call site argument
3074   /// \p OtherArgNo of \p ICS (= the underlying call site).
3075   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3076                             const AAMemoryBehavior &MemBehaviorAA,
3077                             const CallBase &CB, unsigned OtherArgNo) {
3078     // We do not need to worry about aliasing with the underlying IRP.
3079     if (this->getCalleeArgNo() == (int)OtherArgNo)
3080       return false;
3081 
3082     // If it is not a pointer or pointer vector we do not alias.
3083     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3084     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3085       return false;
3086 
3087     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3088         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3089 
3090     // If the argument is readnone, there is no read-write aliasing.
3091     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3092       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3093       return false;
3094     }
3095 
3096     // If the argument is readonly and the underlying value is readonly, there
3097     // is no read-write aliasing.
3098     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3099     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3100       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3101       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3102       return false;
3103     }
3104 
3105     // We have to utilize actual alias analysis queries so we need the object.
3106     if (!AAR)
3107       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3108 
3109     // Try to rule it out at the call site.
3110     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3111     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3112                          "callsite arguments: "
3113                       << getAssociatedValue() << " " << *ArgOp << " => "
3114                       << (IsAliasing ? "" : "no-") << "alias \n");
3115 
3116     return IsAliasing;
3117   }
3118 
3119   bool
3120   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3121                                          const AAMemoryBehavior &MemBehaviorAA,
3122                                          const AANoAlias &NoAliasAA) {
3123     // We can deduce "noalias" if the following conditions hold.
3124     // (i)   Associated value is assumed to be noalias in the definition.
3125     // (ii)  Associated value is assumed to be no-capture in all the uses
3126     //       possibly executed before this callsite.
3127     // (iii) There is no other pointer argument which could alias with the
3128     //       value.
3129 
3130     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3131     if (!AssociatedValueIsNoAliasAtDef) {
3132       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3133                         << " is not no-alias at the definition\n");
3134       return false;
3135     }
3136 
3137     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3138 
3139     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3140     const Function *ScopeFn = VIRP.getAnchorScope();
3141     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3142     // Check whether the value is captured in the scope using AANoCapture.
3143     //      Look at CFG and check only uses possibly executed before this
3144     //      callsite.
3145     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3146       Instruction *UserI = cast<Instruction>(U.getUser());
3147 
3148       // If UserI is the curr instruction and there is a single potential use of
3149       // the value in UserI we allow the use.
3150       // TODO: We should inspect the operands and allow those that cannot alias
3151       //       with the value.
3152       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3153         return true;
3154 
3155       if (ScopeFn) {
3156         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3157             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3158 
3159         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3160           return true;
3161 
3162         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3163           if (CB->isArgOperand(&U)) {
3164 
3165             unsigned ArgNo = CB->getArgOperandNo(&U);
3166 
3167             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3168                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3169                 DepClassTy::OPTIONAL);
3170 
3171             if (NoCaptureAA.isAssumedNoCapture())
3172               return true;
3173           }
3174         }
3175       }
3176 
3177       // For cases which can potentially have more users
3178       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3179           isa<SelectInst>(U)) {
3180         Follow = true;
3181         return true;
3182       }
3183 
3184       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3185       return false;
3186     };
3187 
3188     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3189       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3190         LLVM_DEBUG(
3191             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3192                    << " cannot be noalias as it is potentially captured\n");
3193         return false;
3194       }
3195     }
3196     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3197 
3198     // Check there is no other pointer argument which could alias with the
3199     // value passed at this call site.
3200     // TODO: AbstractCallSite
3201     const auto &CB = cast<CallBase>(getAnchorValue());
3202     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3203       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3204         return false;
3205 
3206     return true;
3207   }
3208 
3209   /// See AbstractAttribute::updateImpl(...).
3210   ChangeStatus updateImpl(Attributor &A) override {
3211     // If the argument is readnone we are done as there are no accesses via the
3212     // argument.
3213     auto &MemBehaviorAA =
3214         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3215     if (MemBehaviorAA.isAssumedReadNone()) {
3216       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3217       return ChangeStatus::UNCHANGED;
3218     }
3219 
3220     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3221     const auto &NoAliasAA =
3222         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3223 
3224     AAResults *AAR = nullptr;
3225     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3226                                                NoAliasAA)) {
3227       LLVM_DEBUG(
3228           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3229       return ChangeStatus::UNCHANGED;
3230     }
3231 
3232     return indicatePessimisticFixpoint();
3233   }
3234 
3235   /// See AbstractAttribute::trackStatistics()
3236   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3237 };
3238 
3239 /// NoAlias attribute for function return value.
3240 struct AANoAliasReturned final : AANoAliasImpl {
3241   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3242       : AANoAliasImpl(IRP, A) {}
3243 
3244   /// See AbstractAttribute::initialize(...).
3245   void initialize(Attributor &A) override {
3246     AANoAliasImpl::initialize(A);
3247     Function *F = getAssociatedFunction();
3248     if (!F || F->isDeclaration())
3249       indicatePessimisticFixpoint();
3250   }
3251 
3252   /// See AbstractAttribute::updateImpl(...).
3253   virtual ChangeStatus updateImpl(Attributor &A) override {
3254 
3255     auto CheckReturnValue = [&](Value &RV) -> bool {
3256       if (Constant *C = dyn_cast<Constant>(&RV))
3257         if (C->isNullValue() || isa<UndefValue>(C))
3258           return true;
3259 
3260       /// For now, we can only deduce noalias if we have call sites.
3261       /// FIXME: add more support.
3262       if (!isa<CallBase>(&RV))
3263         return false;
3264 
3265       const IRPosition &RVPos = IRPosition::value(RV);
3266       const auto &NoAliasAA =
3267           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3268       if (!NoAliasAA.isAssumedNoAlias())
3269         return false;
3270 
3271       const auto &NoCaptureAA =
3272           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3273       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3274     };
3275 
3276     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3277       return indicatePessimisticFixpoint();
3278 
3279     return ChangeStatus::UNCHANGED;
3280   }
3281 
3282   /// See AbstractAttribute::trackStatistics()
3283   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3284 };
3285 
3286 /// NoAlias attribute deduction for a call site return value.
3287 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3288   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3289       : AANoAliasImpl(IRP, A) {}
3290 
3291   /// See AbstractAttribute::initialize(...).
3292   void initialize(Attributor &A) override {
3293     AANoAliasImpl::initialize(A);
3294     Function *F = getAssociatedFunction();
3295     if (!F || F->isDeclaration())
3296       indicatePessimisticFixpoint();
3297   }
3298 
3299   /// See AbstractAttribute::updateImpl(...).
3300   ChangeStatus updateImpl(Attributor &A) override {
3301     // TODO: Once we have call site specific value information we can provide
3302     //       call site specific liveness information and then it makes
3303     //       sense to specialize attributes for call sites arguments instead of
3304     //       redirecting requests to the callee argument.
3305     Function *F = getAssociatedFunction();
3306     const IRPosition &FnPos = IRPosition::returned(*F);
3307     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3308     return clampStateAndIndicateChange(getState(), FnAA.getState());
3309   }
3310 
3311   /// See AbstractAttribute::trackStatistics()
3312   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3313 };
3314 
3315 /// -------------------AAIsDead Function Attribute-----------------------
3316 
3317 struct AAIsDeadValueImpl : public AAIsDead {
3318   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3319 
3320   /// See AAIsDead::isAssumedDead().
3321   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3322 
3323   /// See AAIsDead::isKnownDead().
3324   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3325 
3326   /// See AAIsDead::isAssumedDead(BasicBlock *).
3327   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3328 
3329   /// See AAIsDead::isKnownDead(BasicBlock *).
3330   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3331 
3332   /// See AAIsDead::isAssumedDead(Instruction *I).
3333   bool isAssumedDead(const Instruction *I) const override {
3334     return I == getCtxI() && isAssumedDead();
3335   }
3336 
3337   /// See AAIsDead::isKnownDead(Instruction *I).
3338   bool isKnownDead(const Instruction *I) const override {
3339     return isAssumedDead(I) && isKnownDead();
3340   }
3341 
3342   /// See AbstractAttribute::getAsStr().
3343   const std::string getAsStr() const override {
3344     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3345   }
3346 
3347   /// Check if all uses are assumed dead.
3348   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3349     // Callers might not check the type, void has no uses.
3350     if (V.getType()->isVoidTy())
3351       return true;
3352 
3353     // If we replace a value with a constant there are no uses left afterwards.
3354     if (!isa<Constant>(V)) {
3355       bool UsedAssumedInformation = false;
3356       Optional<Constant *> C =
3357           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3358       if (!C.hasValue() || *C)
3359         return true;
3360     }
3361 
3362     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3363     // Explicitly set the dependence class to required because we want a long
3364     // chain of N dependent instructions to be considered live as soon as one is
3365     // without going through N update cycles. This is not required for
3366     // correctness.
3367     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3368                              DepClassTy::REQUIRED);
3369   }
3370 
3371   /// Determine if \p I is assumed to be side-effect free.
3372   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3373     if (!I || wouldInstructionBeTriviallyDead(I))
3374       return true;
3375 
3376     auto *CB = dyn_cast<CallBase>(I);
3377     if (!CB || isa<IntrinsicInst>(CB))
3378       return false;
3379 
3380     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3381     const auto &NoUnwindAA =
3382         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3383     if (!NoUnwindAA.isAssumedNoUnwind())
3384       return false;
3385     if (!NoUnwindAA.isKnownNoUnwind())
3386       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3387 
3388     const auto &MemBehaviorAA =
3389         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3390     if (MemBehaviorAA.isAssumedReadOnly()) {
3391       if (!MemBehaviorAA.isKnownReadOnly())
3392         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3393       return true;
3394     }
3395     return false;
3396   }
3397 };
3398 
3399 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3400   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3401       : AAIsDeadValueImpl(IRP, A) {}
3402 
3403   /// See AbstractAttribute::initialize(...).
3404   void initialize(Attributor &A) override {
3405     if (isa<UndefValue>(getAssociatedValue())) {
3406       indicatePessimisticFixpoint();
3407       return;
3408     }
3409 
3410     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3411     if (!isAssumedSideEffectFree(A, I)) {
3412       if (!isa_and_nonnull<StoreInst>(I))
3413         indicatePessimisticFixpoint();
3414       else
3415         removeAssumedBits(HAS_NO_EFFECT);
3416     }
3417   }
3418 
3419   bool isDeadStore(Attributor &A, StoreInst &SI) {
3420     // Lang ref now states volatile store is not UB/dead, let's skip them.
3421     if (SI.isVolatile())
3422       return false;
3423 
3424     bool UsedAssumedInformation = false;
3425     SmallSetVector<Value *, 4> PotentialCopies;
3426     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3427                                              UsedAssumedInformation))
3428       return false;
3429     return llvm::all_of(PotentialCopies, [&](Value *V) {
3430       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3431                              UsedAssumedInformation);
3432     });
3433   }
3434 
3435   /// See AbstractAttribute::updateImpl(...).
3436   ChangeStatus updateImpl(Attributor &A) override {
3437     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3438     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3439       if (!isDeadStore(A, *SI))
3440         return indicatePessimisticFixpoint();
3441     } else {
3442       if (!isAssumedSideEffectFree(A, I))
3443         return indicatePessimisticFixpoint();
3444       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3445         return indicatePessimisticFixpoint();
3446     }
3447     return ChangeStatus::UNCHANGED;
3448   }
3449 
3450   /// See AbstractAttribute::manifest(...).
3451   ChangeStatus manifest(Attributor &A) override {
3452     Value &V = getAssociatedValue();
3453     if (auto *I = dyn_cast<Instruction>(&V)) {
3454       // If we get here we basically know the users are all dead. We check if
3455       // isAssumedSideEffectFree returns true here again because it might not be
3456       // the case and only the users are dead but the instruction (=call) is
3457       // still needed.
3458       if (isa<StoreInst>(I) ||
3459           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3460         A.deleteAfterManifest(*I);
3461         return ChangeStatus::CHANGED;
3462       }
3463     }
3464     if (V.use_empty())
3465       return ChangeStatus::UNCHANGED;
3466 
3467     bool UsedAssumedInformation = false;
3468     Optional<Constant *> C =
3469         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3470     if (C.hasValue() && C.getValue())
3471       return ChangeStatus::UNCHANGED;
3472 
3473     // Replace the value with undef as it is dead but keep droppable uses around
3474     // as they provide information we don't want to give up on just yet.
3475     UndefValue &UV = *UndefValue::get(V.getType());
3476     bool AnyChange =
3477         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3478     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3479   }
3480 
3481   /// See AbstractAttribute::trackStatistics()
3482   void trackStatistics() const override {
3483     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3484   }
3485 };
3486 
3487 struct AAIsDeadArgument : public AAIsDeadFloating {
3488   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3489       : AAIsDeadFloating(IRP, A) {}
3490 
3491   /// See AbstractAttribute::initialize(...).
3492   void initialize(Attributor &A) override {
3493     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3494       indicatePessimisticFixpoint();
3495   }
3496 
3497   /// See AbstractAttribute::manifest(...).
3498   ChangeStatus manifest(Attributor &A) override {
3499     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3500     Argument &Arg = *getAssociatedArgument();
3501     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3502       if (A.registerFunctionSignatureRewrite(
3503               Arg, /* ReplacementTypes */ {},
3504               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3505               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3506         Arg.dropDroppableUses();
3507         return ChangeStatus::CHANGED;
3508       }
3509     return Changed;
3510   }
3511 
3512   /// See AbstractAttribute::trackStatistics()
3513   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3514 };
3515 
3516 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3517   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3518       : AAIsDeadValueImpl(IRP, A) {}
3519 
3520   /// See AbstractAttribute::initialize(...).
3521   void initialize(Attributor &A) override {
3522     if (isa<UndefValue>(getAssociatedValue()))
3523       indicatePessimisticFixpoint();
3524   }
3525 
3526   /// See AbstractAttribute::updateImpl(...).
3527   ChangeStatus updateImpl(Attributor &A) override {
3528     // TODO: Once we have call site specific value information we can provide
3529     //       call site specific liveness information and then it makes
3530     //       sense to specialize attributes for call sites arguments instead of
3531     //       redirecting requests to the callee argument.
3532     Argument *Arg = getAssociatedArgument();
3533     if (!Arg)
3534       return indicatePessimisticFixpoint();
3535     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3536     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3537     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3538   }
3539 
3540   /// See AbstractAttribute::manifest(...).
3541   ChangeStatus manifest(Attributor &A) override {
3542     CallBase &CB = cast<CallBase>(getAnchorValue());
3543     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3544     assert(!isa<UndefValue>(U.get()) &&
3545            "Expected undef values to be filtered out!");
3546     UndefValue &UV = *UndefValue::get(U->getType());
3547     if (A.changeUseAfterManifest(U, UV))
3548       return ChangeStatus::CHANGED;
3549     return ChangeStatus::UNCHANGED;
3550   }
3551 
3552   /// See AbstractAttribute::trackStatistics()
3553   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3554 };
3555 
3556 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3557   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3558       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3559 
3560   /// See AAIsDead::isAssumedDead().
3561   bool isAssumedDead() const override {
3562     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3563   }
3564 
3565   /// See AbstractAttribute::initialize(...).
3566   void initialize(Attributor &A) override {
3567     if (isa<UndefValue>(getAssociatedValue())) {
3568       indicatePessimisticFixpoint();
3569       return;
3570     }
3571 
3572     // We track this separately as a secondary state.
3573     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3574   }
3575 
3576   /// See AbstractAttribute::updateImpl(...).
3577   ChangeStatus updateImpl(Attributor &A) override {
3578     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3579     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3580       IsAssumedSideEffectFree = false;
3581       Changed = ChangeStatus::CHANGED;
3582     }
3583     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3584       return indicatePessimisticFixpoint();
3585     return Changed;
3586   }
3587 
3588   /// See AbstractAttribute::trackStatistics()
3589   void trackStatistics() const override {
3590     if (IsAssumedSideEffectFree)
3591       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3592     else
3593       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3594   }
3595 
3596   /// See AbstractAttribute::getAsStr().
3597   const std::string getAsStr() const override {
3598     return isAssumedDead()
3599                ? "assumed-dead"
3600                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3601   }
3602 
3603 private:
3604   bool IsAssumedSideEffectFree;
3605 };
3606 
3607 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3608   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3609       : AAIsDeadValueImpl(IRP, A) {}
3610 
3611   /// See AbstractAttribute::updateImpl(...).
3612   ChangeStatus updateImpl(Attributor &A) override {
3613 
3614     bool UsedAssumedInformation = false;
3615     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3616                               {Instruction::Ret}, UsedAssumedInformation);
3617 
3618     auto PredForCallSite = [&](AbstractCallSite ACS) {
3619       if (ACS.isCallbackCall() || !ACS.getInstruction())
3620         return false;
3621       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3622     };
3623 
3624     bool AllCallSitesKnown;
3625     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3626                                 AllCallSitesKnown))
3627       return indicatePessimisticFixpoint();
3628 
3629     return ChangeStatus::UNCHANGED;
3630   }
3631 
3632   /// See AbstractAttribute::manifest(...).
3633   ChangeStatus manifest(Attributor &A) override {
3634     // TODO: Rewrite the signature to return void?
3635     bool AnyChange = false;
3636     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3637     auto RetInstPred = [&](Instruction &I) {
3638       ReturnInst &RI = cast<ReturnInst>(I);
3639       if (!isa<UndefValue>(RI.getReturnValue()))
3640         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3641       return true;
3642     };
3643     bool UsedAssumedInformation = false;
3644     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3645                               UsedAssumedInformation);
3646     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3647   }
3648 
3649   /// See AbstractAttribute::trackStatistics()
3650   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3651 };
3652 
3653 struct AAIsDeadFunction : public AAIsDead {
3654   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3655 
3656   /// See AbstractAttribute::initialize(...).
3657   void initialize(Attributor &A) override {
3658     const Function *F = getAnchorScope();
3659     if (F && !F->isDeclaration()) {
3660       // We only want to compute liveness once. If the function is not part of
3661       // the SCC, skip it.
3662       if (A.isRunOn(*const_cast<Function *>(F))) {
3663         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3664         assumeLive(A, F->getEntryBlock());
3665       } else {
3666         indicatePessimisticFixpoint();
3667       }
3668     }
3669   }
3670 
3671   /// See AbstractAttribute::getAsStr().
3672   const std::string getAsStr() const override {
3673     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3674            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3675            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3676            std::to_string(KnownDeadEnds.size()) + "]";
3677   }
3678 
3679   /// See AbstractAttribute::manifest(...).
3680   ChangeStatus manifest(Attributor &A) override {
3681     assert(getState().isValidState() &&
3682            "Attempted to manifest an invalid state!");
3683 
3684     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3685     Function &F = *getAnchorScope();
3686 
3687     if (AssumedLiveBlocks.empty()) {
3688       A.deleteAfterManifest(F);
3689       return ChangeStatus::CHANGED;
3690     }
3691 
3692     // Flag to determine if we can change an invoke to a call assuming the
3693     // callee is nounwind. This is not possible if the personality of the
3694     // function allows to catch asynchronous exceptions.
3695     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3696 
3697     KnownDeadEnds.set_union(ToBeExploredFrom);
3698     for (const Instruction *DeadEndI : KnownDeadEnds) {
3699       auto *CB = dyn_cast<CallBase>(DeadEndI);
3700       if (!CB)
3701         continue;
3702       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3703           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3704       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3705       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3706         continue;
3707 
3708       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3709         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3710       else
3711         A.changeToUnreachableAfterManifest(
3712             const_cast<Instruction *>(DeadEndI->getNextNode()));
3713       HasChanged = ChangeStatus::CHANGED;
3714     }
3715 
3716     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3717     for (BasicBlock &BB : F)
3718       if (!AssumedLiveBlocks.count(&BB)) {
3719         A.deleteAfterManifest(BB);
3720         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3721       }
3722 
3723     return HasChanged;
3724   }
3725 
3726   /// See AbstractAttribute::updateImpl(...).
3727   ChangeStatus updateImpl(Attributor &A) override;
3728 
3729   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3730     return !AssumedLiveEdges.count(std::make_pair(From, To));
3731   }
3732 
3733   /// See AbstractAttribute::trackStatistics()
3734   void trackStatistics() const override {}
3735 
3736   /// Returns true if the function is assumed dead.
3737   bool isAssumedDead() const override { return false; }
3738 
3739   /// See AAIsDead::isKnownDead().
3740   bool isKnownDead() const override { return false; }
3741 
3742   /// See AAIsDead::isAssumedDead(BasicBlock *).
3743   bool isAssumedDead(const BasicBlock *BB) const override {
3744     assert(BB->getParent() == getAnchorScope() &&
3745            "BB must be in the same anchor scope function.");
3746 
3747     if (!getAssumed())
3748       return false;
3749     return !AssumedLiveBlocks.count(BB);
3750   }
3751 
3752   /// See AAIsDead::isKnownDead(BasicBlock *).
3753   bool isKnownDead(const BasicBlock *BB) const override {
3754     return getKnown() && isAssumedDead(BB);
3755   }
3756 
3757   /// See AAIsDead::isAssumed(Instruction *I).
3758   bool isAssumedDead(const Instruction *I) const override {
3759     assert(I->getParent()->getParent() == getAnchorScope() &&
3760            "Instruction must be in the same anchor scope function.");
3761 
3762     if (!getAssumed())
3763       return false;
3764 
3765     // If it is not in AssumedLiveBlocks then it for sure dead.
3766     // Otherwise, it can still be after noreturn call in a live block.
3767     if (!AssumedLiveBlocks.count(I->getParent()))
3768       return true;
3769 
3770     // If it is not after a liveness barrier it is live.
3771     const Instruction *PrevI = I->getPrevNode();
3772     while (PrevI) {
3773       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3774         return true;
3775       PrevI = PrevI->getPrevNode();
3776     }
3777     return false;
3778   }
3779 
3780   /// See AAIsDead::isKnownDead(Instruction *I).
3781   bool isKnownDead(const Instruction *I) const override {
3782     return getKnown() && isAssumedDead(I);
3783   }
3784 
3785   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3786   /// that internal function called from \p BB should now be looked at.
3787   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3788     if (!AssumedLiveBlocks.insert(&BB).second)
3789       return false;
3790 
3791     // We assume that all of BB is (probably) live now and if there are calls to
3792     // internal functions we will assume that those are now live as well. This
3793     // is a performance optimization for blocks with calls to a lot of internal
3794     // functions. It can however cause dead functions to be treated as live.
3795     for (const Instruction &I : BB)
3796       if (const auto *CB = dyn_cast<CallBase>(&I))
3797         if (const Function *F = CB->getCalledFunction())
3798           if (F->hasLocalLinkage())
3799             A.markLiveInternalFunction(*F);
3800     return true;
3801   }
3802 
3803   /// Collection of instructions that need to be explored again, e.g., we
3804   /// did assume they do not transfer control to (one of their) successors.
3805   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3806 
3807   /// Collection of instructions that are known to not transfer control.
3808   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3809 
3810   /// Collection of all assumed live edges
3811   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3812 
3813   /// Collection of all assumed live BasicBlocks.
3814   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3815 };
3816 
3817 static bool
3818 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3819                         AbstractAttribute &AA,
3820                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3821   const IRPosition &IPos = IRPosition::callsite_function(CB);
3822 
3823   const auto &NoReturnAA =
3824       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3825   if (NoReturnAA.isAssumedNoReturn())
3826     return !NoReturnAA.isKnownNoReturn();
3827   if (CB.isTerminator())
3828     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3829   else
3830     AliveSuccessors.push_back(CB.getNextNode());
3831   return false;
3832 }
3833 
3834 static bool
3835 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3836                         AbstractAttribute &AA,
3837                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3838   bool UsedAssumedInformation =
3839       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3840 
3841   // First, determine if we can change an invoke to a call assuming the
3842   // callee is nounwind. This is not possible if the personality of the
3843   // function allows to catch asynchronous exceptions.
3844   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3845     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3846   } else {
3847     const IRPosition &IPos = IRPosition::callsite_function(II);
3848     const auto &AANoUnw =
3849         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3850     if (AANoUnw.isAssumedNoUnwind()) {
3851       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3852     } else {
3853       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3854     }
3855   }
3856   return UsedAssumedInformation;
3857 }
3858 
3859 static bool
3860 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3861                         AbstractAttribute &AA,
3862                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3863   bool UsedAssumedInformation = false;
3864   if (BI.getNumSuccessors() == 1) {
3865     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3866   } else {
3867     Optional<Constant *> C =
3868         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3869     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3870       // No value yet, assume both edges are dead.
3871     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3872       const BasicBlock *SuccBB =
3873           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3874       AliveSuccessors.push_back(&SuccBB->front());
3875     } else {
3876       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3877       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3878       UsedAssumedInformation = false;
3879     }
3880   }
3881   return UsedAssumedInformation;
3882 }
3883 
3884 static bool
3885 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3886                         AbstractAttribute &AA,
3887                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3888   bool UsedAssumedInformation = false;
3889   Optional<Constant *> C =
3890       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3891   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3892     // No value yet, assume all edges are dead.
3893   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3894     for (auto &CaseIt : SI.cases()) {
3895       if (CaseIt.getCaseValue() == C.getValue()) {
3896         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3897         return UsedAssumedInformation;
3898       }
3899     }
3900     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3901     return UsedAssumedInformation;
3902   } else {
3903     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3904       AliveSuccessors.push_back(&SuccBB->front());
3905   }
3906   return UsedAssumedInformation;
3907 }
3908 
3909 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3910   ChangeStatus Change = ChangeStatus::UNCHANGED;
3911 
3912   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3913                     << getAnchorScope()->size() << "] BBs and "
3914                     << ToBeExploredFrom.size() << " exploration points and "
3915                     << KnownDeadEnds.size() << " known dead ends\n");
3916 
3917   // Copy and clear the list of instructions we need to explore from. It is
3918   // refilled with instructions the next update has to look at.
3919   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3920                                                ToBeExploredFrom.end());
3921   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3922 
3923   SmallVector<const Instruction *, 8> AliveSuccessors;
3924   while (!Worklist.empty()) {
3925     const Instruction *I = Worklist.pop_back_val();
3926     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3927 
3928     // Fast forward for uninteresting instructions. We could look for UB here
3929     // though.
3930     while (!I->isTerminator() && !isa<CallBase>(I))
3931       I = I->getNextNode();
3932 
3933     AliveSuccessors.clear();
3934 
3935     bool UsedAssumedInformation = false;
3936     switch (I->getOpcode()) {
3937     // TODO: look for (assumed) UB to backwards propagate "deadness".
3938     default:
3939       assert(I->isTerminator() &&
3940              "Expected non-terminators to be handled already!");
3941       for (const BasicBlock *SuccBB : successors(I->getParent()))
3942         AliveSuccessors.push_back(&SuccBB->front());
3943       break;
3944     case Instruction::Call:
3945       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3946                                                        *this, AliveSuccessors);
3947       break;
3948     case Instruction::Invoke:
3949       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3950                                                        *this, AliveSuccessors);
3951       break;
3952     case Instruction::Br:
3953       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3954                                                        *this, AliveSuccessors);
3955       break;
3956     case Instruction::Switch:
3957       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3958                                                        *this, AliveSuccessors);
3959       break;
3960     }
3961 
3962     if (UsedAssumedInformation) {
3963       NewToBeExploredFrom.insert(I);
3964     } else if (AliveSuccessors.empty() ||
3965                (I->isTerminator() &&
3966                 AliveSuccessors.size() < I->getNumSuccessors())) {
3967       if (KnownDeadEnds.insert(I))
3968         Change = ChangeStatus::CHANGED;
3969     }
3970 
3971     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3972                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3973                       << UsedAssumedInformation << "\n");
3974 
3975     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3976       if (!I->isTerminator()) {
3977         assert(AliveSuccessors.size() == 1 &&
3978                "Non-terminator expected to have a single successor!");
3979         Worklist.push_back(AliveSuccessor);
3980       } else {
3981         // record the assumed live edge
3982         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3983         if (AssumedLiveEdges.insert(Edge).second)
3984           Change = ChangeStatus::CHANGED;
3985         if (assumeLive(A, *AliveSuccessor->getParent()))
3986           Worklist.push_back(AliveSuccessor);
3987       }
3988     }
3989   }
3990 
3991   // Check if the content of ToBeExploredFrom changed, ignore the order.
3992   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3993       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3994         return !ToBeExploredFrom.count(I);
3995       })) {
3996     Change = ChangeStatus::CHANGED;
3997     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3998   }
3999 
4000   // If we know everything is live there is no need to query for liveness.
4001   // Instead, indicating a pessimistic fixpoint will cause the state to be
4002   // "invalid" and all queries to be answered conservatively without lookups.
4003   // To be in this state we have to (1) finished the exploration and (3) not
4004   // discovered any non-trivial dead end and (2) not ruled unreachable code
4005   // dead.
4006   if (ToBeExploredFrom.empty() &&
4007       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4008       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4009         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4010       }))
4011     return indicatePessimisticFixpoint();
4012   return Change;
4013 }
4014 
4015 /// Liveness information for a call sites.
4016 struct AAIsDeadCallSite final : AAIsDeadFunction {
4017   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4018       : AAIsDeadFunction(IRP, A) {}
4019 
4020   /// See AbstractAttribute::initialize(...).
4021   void initialize(Attributor &A) override {
4022     // TODO: Once we have call site specific value information we can provide
4023     //       call site specific liveness information and then it makes
4024     //       sense to specialize attributes for call sites instead of
4025     //       redirecting requests to the callee.
4026     llvm_unreachable("Abstract attributes for liveness are not "
4027                      "supported for call sites yet!");
4028   }
4029 
4030   /// See AbstractAttribute::updateImpl(...).
4031   ChangeStatus updateImpl(Attributor &A) override {
4032     return indicatePessimisticFixpoint();
4033   }
4034 
4035   /// See AbstractAttribute::trackStatistics()
4036   void trackStatistics() const override {}
4037 };
4038 
4039 /// -------------------- Dereferenceable Argument Attribute --------------------
4040 
4041 struct AADereferenceableImpl : AADereferenceable {
4042   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4043       : AADereferenceable(IRP, A) {}
4044   using StateType = DerefState;
4045 
4046   /// See AbstractAttribute::initialize(...).
4047   void initialize(Attributor &A) override {
4048     SmallVector<Attribute, 4> Attrs;
4049     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4050              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4051     for (const Attribute &Attr : Attrs)
4052       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4053 
4054     const IRPosition &IRP = this->getIRPosition();
4055     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4056 
4057     bool CanBeNull, CanBeFreed;
4058     takeKnownDerefBytesMaximum(
4059         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4060             A.getDataLayout(), CanBeNull, CanBeFreed));
4061 
4062     bool IsFnInterface = IRP.isFnInterfaceKind();
4063     Function *FnScope = IRP.getAnchorScope();
4064     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4065       indicatePessimisticFixpoint();
4066       return;
4067     }
4068 
4069     if (Instruction *CtxI = getCtxI())
4070       followUsesInMBEC(*this, A, getState(), *CtxI);
4071   }
4072 
4073   /// See AbstractAttribute::getState()
4074   /// {
4075   StateType &getState() override { return *this; }
4076   const StateType &getState() const override { return *this; }
4077   /// }
4078 
4079   /// Helper function for collecting accessed bytes in must-be-executed-context
4080   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4081                               DerefState &State) {
4082     const Value *UseV = U->get();
4083     if (!UseV->getType()->isPointerTy())
4084       return;
4085 
4086     Type *PtrTy = UseV->getType();
4087     const DataLayout &DL = A.getDataLayout();
4088     int64_t Offset;
4089     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4090             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4091       if (Base == &getAssociatedValue() &&
4092           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4093         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4094         State.addAccessedBytes(Offset, Size);
4095       }
4096     }
4097   }
4098 
4099   /// See followUsesInMBEC
4100   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4101                        AADereferenceable::StateType &State) {
4102     bool IsNonNull = false;
4103     bool TrackUse = false;
4104     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4105         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4106     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4107                       << " for instruction " << *I << "\n");
4108 
4109     addAccessedBytesForUse(A, U, I, State);
4110     State.takeKnownDerefBytesMaximum(DerefBytes);
4111     return TrackUse;
4112   }
4113 
4114   /// See AbstractAttribute::manifest(...).
4115   ChangeStatus manifest(Attributor &A) override {
4116     ChangeStatus Change = AADereferenceable::manifest(A);
4117     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4118       removeAttrs({Attribute::DereferenceableOrNull});
4119       return ChangeStatus::CHANGED;
4120     }
4121     return Change;
4122   }
4123 
4124   void getDeducedAttributes(LLVMContext &Ctx,
4125                             SmallVectorImpl<Attribute> &Attrs) const override {
4126     // TODO: Add *_globally support
4127     if (isAssumedNonNull())
4128       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4129           Ctx, getAssumedDereferenceableBytes()));
4130     else
4131       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4132           Ctx, getAssumedDereferenceableBytes()));
4133   }
4134 
4135   /// See AbstractAttribute::getAsStr().
4136   const std::string getAsStr() const override {
4137     if (!getAssumedDereferenceableBytes())
4138       return "unknown-dereferenceable";
4139     return std::string("dereferenceable") +
4140            (isAssumedNonNull() ? "" : "_or_null") +
4141            (isAssumedGlobal() ? "_globally" : "") + "<" +
4142            std::to_string(getKnownDereferenceableBytes()) + "-" +
4143            std::to_string(getAssumedDereferenceableBytes()) + ">";
4144   }
4145 };
4146 
4147 /// Dereferenceable attribute for a floating value.
4148 struct AADereferenceableFloating : AADereferenceableImpl {
4149   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4150       : AADereferenceableImpl(IRP, A) {}
4151 
4152   /// See AbstractAttribute::updateImpl(...).
4153   ChangeStatus updateImpl(Attributor &A) override {
4154     const DataLayout &DL = A.getDataLayout();
4155 
4156     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4157                             bool Stripped) -> bool {
4158       unsigned IdxWidth =
4159           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4160       APInt Offset(IdxWidth, 0);
4161       const Value *Base =
4162           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4163 
4164       const auto &AA = A.getAAFor<AADereferenceable>(
4165           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4166       int64_t DerefBytes = 0;
4167       if (!Stripped && this == &AA) {
4168         // Use IR information if we did not strip anything.
4169         // TODO: track globally.
4170         bool CanBeNull, CanBeFreed;
4171         DerefBytes =
4172             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4173         T.GlobalState.indicatePessimisticFixpoint();
4174       } else {
4175         const DerefState &DS = AA.getState();
4176         DerefBytes = DS.DerefBytesState.getAssumed();
4177         T.GlobalState &= DS.GlobalState;
4178       }
4179 
4180       // For now we do not try to "increase" dereferenceability due to negative
4181       // indices as we first have to come up with code to deal with loops and
4182       // for overflows of the dereferenceable bytes.
4183       int64_t OffsetSExt = Offset.getSExtValue();
4184       if (OffsetSExt < 0)
4185         OffsetSExt = 0;
4186 
4187       T.takeAssumedDerefBytesMinimum(
4188           std::max(int64_t(0), DerefBytes - OffsetSExt));
4189 
4190       if (this == &AA) {
4191         if (!Stripped) {
4192           // If nothing was stripped IR information is all we got.
4193           T.takeKnownDerefBytesMaximum(
4194               std::max(int64_t(0), DerefBytes - OffsetSExt));
4195           T.indicatePessimisticFixpoint();
4196         } else if (OffsetSExt > 0) {
4197           // If something was stripped but there is circular reasoning we look
4198           // for the offset. If it is positive we basically decrease the
4199           // dereferenceable bytes in a circluar loop now, which will simply
4200           // drive them down to the known value in a very slow way which we
4201           // can accelerate.
4202           T.indicatePessimisticFixpoint();
4203         }
4204       }
4205 
4206       return T.isValidState();
4207     };
4208 
4209     DerefState T;
4210     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4211                                            VisitValueCB, getCtxI()))
4212       return indicatePessimisticFixpoint();
4213 
4214     return clampStateAndIndicateChange(getState(), T);
4215   }
4216 
4217   /// See AbstractAttribute::trackStatistics()
4218   void trackStatistics() const override {
4219     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4220   }
4221 };
4222 
4223 /// Dereferenceable attribute for a return value.
4224 struct AADereferenceableReturned final
4225     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4226   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4227       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4228             IRP, A) {}
4229 
4230   /// See AbstractAttribute::trackStatistics()
4231   void trackStatistics() const override {
4232     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4233   }
4234 };
4235 
4236 /// Dereferenceable attribute for an argument
4237 struct AADereferenceableArgument final
4238     : AAArgumentFromCallSiteArguments<AADereferenceable,
4239                                       AADereferenceableImpl> {
4240   using Base =
4241       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4242   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4243       : Base(IRP, A) {}
4244 
4245   /// See AbstractAttribute::trackStatistics()
4246   void trackStatistics() const override {
4247     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4248   }
4249 };
4250 
4251 /// Dereferenceable attribute for a call site argument.
4252 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4253   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4254       : AADereferenceableFloating(IRP, A) {}
4255 
4256   /// See AbstractAttribute::trackStatistics()
4257   void trackStatistics() const override {
4258     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4259   }
4260 };
4261 
4262 /// Dereferenceable attribute deduction for a call site return value.
4263 struct AADereferenceableCallSiteReturned final
4264     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4265   using Base =
4266       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4267   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4268       : Base(IRP, A) {}
4269 
4270   /// See AbstractAttribute::trackStatistics()
4271   void trackStatistics() const override {
4272     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4273   }
4274 };
4275 
4276 // ------------------------ Align Argument Attribute ------------------------
4277 
4278 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4279                                     Value &AssociatedValue, const Use *U,
4280                                     const Instruction *I, bool &TrackUse) {
4281   // We need to follow common pointer manipulation uses to the accesses they
4282   // feed into.
4283   if (isa<CastInst>(I)) {
4284     // Follow all but ptr2int casts.
4285     TrackUse = !isa<PtrToIntInst>(I);
4286     return 0;
4287   }
4288   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4289     if (GEP->hasAllConstantIndices())
4290       TrackUse = true;
4291     return 0;
4292   }
4293 
4294   MaybeAlign MA;
4295   if (const auto *CB = dyn_cast<CallBase>(I)) {
4296     if (CB->isBundleOperand(U) || CB->isCallee(U))
4297       return 0;
4298 
4299     unsigned ArgNo = CB->getArgOperandNo(U);
4300     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4301     // As long as we only use known information there is no need to track
4302     // dependences here.
4303     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4304     MA = MaybeAlign(AlignAA.getKnownAlign());
4305   }
4306 
4307   const DataLayout &DL = A.getDataLayout();
4308   const Value *UseV = U->get();
4309   if (auto *SI = dyn_cast<StoreInst>(I)) {
4310     if (SI->getPointerOperand() == UseV)
4311       MA = SI->getAlign();
4312   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4313     if (LI->getPointerOperand() == UseV)
4314       MA = LI->getAlign();
4315   }
4316 
4317   if (!MA || *MA <= QueryingAA.getKnownAlign())
4318     return 0;
4319 
4320   unsigned Alignment = MA->value();
4321   int64_t Offset;
4322 
4323   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4324     if (Base == &AssociatedValue) {
4325       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4326       // So we can say that the maximum power of two which is a divisor of
4327       // gcd(Offset, Alignment) is an alignment.
4328 
4329       uint32_t gcd =
4330           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4331       Alignment = llvm::PowerOf2Floor(gcd);
4332     }
4333   }
4334 
4335   return Alignment;
4336 }
4337 
4338 struct AAAlignImpl : AAAlign {
4339   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4340 
4341   /// See AbstractAttribute::initialize(...).
4342   void initialize(Attributor &A) override {
4343     SmallVector<Attribute, 4> Attrs;
4344     getAttrs({Attribute::Alignment}, Attrs);
4345     for (const Attribute &Attr : Attrs)
4346       takeKnownMaximum(Attr.getValueAsInt());
4347 
4348     Value &V = getAssociatedValue();
4349     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4350     //       use of the function pointer. This was caused by D73131. We want to
4351     //       avoid this for function pointers especially because we iterate
4352     //       their uses and int2ptr is not handled. It is not a correctness
4353     //       problem though!
4354     if (!V.getType()->getPointerElementType()->isFunctionTy())
4355       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4356 
4357     if (getIRPosition().isFnInterfaceKind() &&
4358         (!getAnchorScope() ||
4359          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4360       indicatePessimisticFixpoint();
4361       return;
4362     }
4363 
4364     if (Instruction *CtxI = getCtxI())
4365       followUsesInMBEC(*this, A, getState(), *CtxI);
4366   }
4367 
4368   /// See AbstractAttribute::manifest(...).
4369   ChangeStatus manifest(Attributor &A) override {
4370     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4371 
4372     // Check for users that allow alignment annotations.
4373     Value &AssociatedValue = getAssociatedValue();
4374     for (const Use &U : AssociatedValue.uses()) {
4375       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4376         if (SI->getPointerOperand() == &AssociatedValue)
4377           if (SI->getAlignment() < getAssumedAlign()) {
4378             STATS_DECLTRACK(AAAlign, Store,
4379                             "Number of times alignment added to a store");
4380             SI->setAlignment(Align(getAssumedAlign()));
4381             LoadStoreChanged = ChangeStatus::CHANGED;
4382           }
4383       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4384         if (LI->getPointerOperand() == &AssociatedValue)
4385           if (LI->getAlignment() < getAssumedAlign()) {
4386             LI->setAlignment(Align(getAssumedAlign()));
4387             STATS_DECLTRACK(AAAlign, Load,
4388                             "Number of times alignment added to a load");
4389             LoadStoreChanged = ChangeStatus::CHANGED;
4390           }
4391       }
4392     }
4393 
4394     ChangeStatus Changed = AAAlign::manifest(A);
4395 
4396     Align InheritAlign =
4397         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4398     if (InheritAlign >= getAssumedAlign())
4399       return LoadStoreChanged;
4400     return Changed | LoadStoreChanged;
4401   }
4402 
4403   // TODO: Provide a helper to determine the implied ABI alignment and check in
4404   //       the existing manifest method and a new one for AAAlignImpl that value
4405   //       to avoid making the alignment explicit if it did not improve.
4406 
4407   /// See AbstractAttribute::getDeducedAttributes
4408   virtual void
4409   getDeducedAttributes(LLVMContext &Ctx,
4410                        SmallVectorImpl<Attribute> &Attrs) const override {
4411     if (getAssumedAlign() > 1)
4412       Attrs.emplace_back(
4413           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4414   }
4415 
4416   /// See followUsesInMBEC
4417   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4418                        AAAlign::StateType &State) {
4419     bool TrackUse = false;
4420 
4421     unsigned int KnownAlign =
4422         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4423     State.takeKnownMaximum(KnownAlign);
4424 
4425     return TrackUse;
4426   }
4427 
4428   /// See AbstractAttribute::getAsStr().
4429   const std::string getAsStr() const override {
4430     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4431                                 "-" + std::to_string(getAssumedAlign()) + ">")
4432                              : "unknown-align";
4433   }
4434 };
4435 
4436 /// Align attribute for a floating value.
4437 struct AAAlignFloating : AAAlignImpl {
4438   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4439 
4440   /// See AbstractAttribute::updateImpl(...).
4441   ChangeStatus updateImpl(Attributor &A) override {
4442     const DataLayout &DL = A.getDataLayout();
4443 
4444     auto VisitValueCB = [&](Value &V, const Instruction *,
4445                             AAAlign::StateType &T, bool Stripped) -> bool {
4446       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4447                                            DepClassTy::REQUIRED);
4448       if (!Stripped && this == &AA) {
4449         int64_t Offset;
4450         unsigned Alignment = 1;
4451         if (const Value *Base =
4452                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4453           Align PA = Base->getPointerAlignment(DL);
4454           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4455           // So we can say that the maximum power of two which is a divisor of
4456           // gcd(Offset, Alignment) is an alignment.
4457 
4458           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4459                                                uint32_t(PA.value()));
4460           Alignment = llvm::PowerOf2Floor(gcd);
4461         } else {
4462           Alignment = V.getPointerAlignment(DL).value();
4463         }
4464         // Use only IR information if we did not strip anything.
4465         T.takeKnownMaximum(Alignment);
4466         T.indicatePessimisticFixpoint();
4467       } else {
4468         // Use abstract attribute information.
4469         const AAAlign::StateType &DS = AA.getState();
4470         T ^= DS;
4471       }
4472       return T.isValidState();
4473     };
4474 
4475     StateType T;
4476     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4477                                           VisitValueCB, getCtxI()))
4478       return indicatePessimisticFixpoint();
4479 
4480     // TODO: If we know we visited all incoming values, thus no are assumed
4481     // dead, we can take the known information from the state T.
4482     return clampStateAndIndicateChange(getState(), T);
4483   }
4484 
4485   /// See AbstractAttribute::trackStatistics()
4486   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4487 };
4488 
4489 /// Align attribute for function return value.
4490 struct AAAlignReturned final
4491     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4492   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4493   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4494 
4495   /// See AbstractAttribute::initialize(...).
4496   void initialize(Attributor &A) override {
4497     Base::initialize(A);
4498     Function *F = getAssociatedFunction();
4499     if (!F || F->isDeclaration())
4500       indicatePessimisticFixpoint();
4501   }
4502 
4503   /// See AbstractAttribute::trackStatistics()
4504   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4505 };
4506 
4507 /// Align attribute for function argument.
4508 struct AAAlignArgument final
4509     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4510   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4511   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4512 
4513   /// See AbstractAttribute::manifest(...).
4514   ChangeStatus manifest(Attributor &A) override {
4515     // If the associated argument is involved in a must-tail call we give up
4516     // because we would need to keep the argument alignments of caller and
4517     // callee in-sync. Just does not seem worth the trouble right now.
4518     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4519       return ChangeStatus::UNCHANGED;
4520     return Base::manifest(A);
4521   }
4522 
4523   /// See AbstractAttribute::trackStatistics()
4524   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4525 };
4526 
4527 struct AAAlignCallSiteArgument final : AAAlignFloating {
4528   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4529       : AAAlignFloating(IRP, A) {}
4530 
4531   /// See AbstractAttribute::manifest(...).
4532   ChangeStatus manifest(Attributor &A) override {
4533     // If the associated argument is involved in a must-tail call we give up
4534     // because we would need to keep the argument alignments of caller and
4535     // callee in-sync. Just does not seem worth the trouble right now.
4536     if (Argument *Arg = getAssociatedArgument())
4537       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4538         return ChangeStatus::UNCHANGED;
4539     ChangeStatus Changed = AAAlignImpl::manifest(A);
4540     Align InheritAlign =
4541         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4542     if (InheritAlign >= getAssumedAlign())
4543       Changed = ChangeStatus::UNCHANGED;
4544     return Changed;
4545   }
4546 
4547   /// See AbstractAttribute::updateImpl(Attributor &A).
4548   ChangeStatus updateImpl(Attributor &A) override {
4549     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4550     if (Argument *Arg = getAssociatedArgument()) {
4551       // We only take known information from the argument
4552       // so we do not need to track a dependence.
4553       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4554           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4555       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4556     }
4557     return Changed;
4558   }
4559 
4560   /// See AbstractAttribute::trackStatistics()
4561   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4562 };
4563 
4564 /// Align attribute deduction for a call site return value.
4565 struct AAAlignCallSiteReturned final
4566     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4567   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4568   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4569       : Base(IRP, A) {}
4570 
4571   /// See AbstractAttribute::initialize(...).
4572   void initialize(Attributor &A) override {
4573     Base::initialize(A);
4574     Function *F = getAssociatedFunction();
4575     if (!F || F->isDeclaration())
4576       indicatePessimisticFixpoint();
4577   }
4578 
4579   /// See AbstractAttribute::trackStatistics()
4580   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4581 };
4582 
4583 /// ------------------ Function No-Return Attribute ----------------------------
4584 struct AANoReturnImpl : public AANoReturn {
4585   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4586 
4587   /// See AbstractAttribute::initialize(...).
4588   void initialize(Attributor &A) override {
4589     AANoReturn::initialize(A);
4590     Function *F = getAssociatedFunction();
4591     if (!F || F->isDeclaration())
4592       indicatePessimisticFixpoint();
4593   }
4594 
4595   /// See AbstractAttribute::getAsStr().
4596   const std::string getAsStr() const override {
4597     return getAssumed() ? "noreturn" : "may-return";
4598   }
4599 
4600   /// See AbstractAttribute::updateImpl(Attributor &A).
4601   virtual ChangeStatus updateImpl(Attributor &A) override {
4602     auto CheckForNoReturn = [](Instruction &) { return false; };
4603     bool UsedAssumedInformation = false;
4604     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4605                                    {(unsigned)Instruction::Ret},
4606                                    UsedAssumedInformation))
4607       return indicatePessimisticFixpoint();
4608     return ChangeStatus::UNCHANGED;
4609   }
4610 };
4611 
4612 struct AANoReturnFunction final : AANoReturnImpl {
4613   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4614       : AANoReturnImpl(IRP, A) {}
4615 
4616   /// See AbstractAttribute::trackStatistics()
4617   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4618 };
4619 
4620 /// NoReturn attribute deduction for a call sites.
4621 struct AANoReturnCallSite final : AANoReturnImpl {
4622   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4623       : AANoReturnImpl(IRP, A) {}
4624 
4625   /// See AbstractAttribute::initialize(...).
4626   void initialize(Attributor &A) override {
4627     AANoReturnImpl::initialize(A);
4628     if (Function *F = getAssociatedFunction()) {
4629       const IRPosition &FnPos = IRPosition::function(*F);
4630       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4631       if (!FnAA.isAssumedNoReturn())
4632         indicatePessimisticFixpoint();
4633     }
4634   }
4635 
4636   /// See AbstractAttribute::updateImpl(...).
4637   ChangeStatus updateImpl(Attributor &A) override {
4638     // TODO: Once we have call site specific value information we can provide
4639     //       call site specific liveness information and then it makes
4640     //       sense to specialize attributes for call sites arguments instead of
4641     //       redirecting requests to the callee argument.
4642     Function *F = getAssociatedFunction();
4643     const IRPosition &FnPos = IRPosition::function(*F);
4644     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4645     return clampStateAndIndicateChange(getState(), FnAA.getState());
4646   }
4647 
4648   /// See AbstractAttribute::trackStatistics()
4649   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4650 };
4651 
4652 /// ----------------------- Variable Capturing ---------------------------------
4653 
4654 /// A class to hold the state of for no-capture attributes.
4655 struct AANoCaptureImpl : public AANoCapture {
4656   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4657 
4658   /// See AbstractAttribute::initialize(...).
4659   void initialize(Attributor &A) override {
4660     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4661       indicateOptimisticFixpoint();
4662       return;
4663     }
4664     Function *AnchorScope = getAnchorScope();
4665     if (isFnInterfaceKind() &&
4666         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4667       indicatePessimisticFixpoint();
4668       return;
4669     }
4670 
4671     // You cannot "capture" null in the default address space.
4672     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4673         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4674       indicateOptimisticFixpoint();
4675       return;
4676     }
4677 
4678     const Function *F =
4679         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4680 
4681     // Check what state the associated function can actually capture.
4682     if (F)
4683       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4684     else
4685       indicatePessimisticFixpoint();
4686   }
4687 
4688   /// See AbstractAttribute::updateImpl(...).
4689   ChangeStatus updateImpl(Attributor &A) override;
4690 
4691   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4692   virtual void
4693   getDeducedAttributes(LLVMContext &Ctx,
4694                        SmallVectorImpl<Attribute> &Attrs) const override {
4695     if (!isAssumedNoCaptureMaybeReturned())
4696       return;
4697 
4698     if (isArgumentPosition()) {
4699       if (isAssumedNoCapture())
4700         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4701       else if (ManifestInternal)
4702         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4703     }
4704   }
4705 
4706   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4707   /// depending on the ability of the function associated with \p IRP to capture
4708   /// state in memory and through "returning/throwing", respectively.
4709   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4710                                                    const Function &F,
4711                                                    BitIntegerState &State) {
4712     // TODO: Once we have memory behavior attributes we should use them here.
4713 
4714     // If we know we cannot communicate or write to memory, we do not care about
4715     // ptr2int anymore.
4716     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4717         F.getReturnType()->isVoidTy()) {
4718       State.addKnownBits(NO_CAPTURE);
4719       return;
4720     }
4721 
4722     // A function cannot capture state in memory if it only reads memory, it can
4723     // however return/throw state and the state might be influenced by the
4724     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4725     if (F.onlyReadsMemory())
4726       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4727 
4728     // A function cannot communicate state back if it does not through
4729     // exceptions and doesn not return values.
4730     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4731       State.addKnownBits(NOT_CAPTURED_IN_RET);
4732 
4733     // Check existing "returned" attributes.
4734     int ArgNo = IRP.getCalleeArgNo();
4735     if (F.doesNotThrow() && ArgNo >= 0) {
4736       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4737         if (F.hasParamAttribute(u, Attribute::Returned)) {
4738           if (u == unsigned(ArgNo))
4739             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4740           else if (F.onlyReadsMemory())
4741             State.addKnownBits(NO_CAPTURE);
4742           else
4743             State.addKnownBits(NOT_CAPTURED_IN_RET);
4744           break;
4745         }
4746     }
4747   }
4748 
4749   /// See AbstractState::getAsStr().
4750   const std::string getAsStr() const override {
4751     if (isKnownNoCapture())
4752       return "known not-captured";
4753     if (isAssumedNoCapture())
4754       return "assumed not-captured";
4755     if (isKnownNoCaptureMaybeReturned())
4756       return "known not-captured-maybe-returned";
4757     if (isAssumedNoCaptureMaybeReturned())
4758       return "assumed not-captured-maybe-returned";
4759     return "assumed-captured";
4760   }
4761 };
4762 
4763 /// Attributor-aware capture tracker.
4764 struct AACaptureUseTracker final : public CaptureTracker {
4765 
4766   /// Create a capture tracker that can lookup in-flight abstract attributes
4767   /// through the Attributor \p A.
4768   ///
4769   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4770   /// search is stopped. If a use leads to a return instruction,
4771   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4772   /// If a use leads to a ptr2int which may capture the value,
4773   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4774   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4775   /// set. All values in \p PotentialCopies are later tracked as well. For every
4776   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4777   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4778   /// conservatively set to true.
4779   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4780                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4781                       SmallSetVector<Value *, 4> &PotentialCopies,
4782                       unsigned &RemainingUsesToExplore)
4783       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4784         PotentialCopies(PotentialCopies),
4785         RemainingUsesToExplore(RemainingUsesToExplore) {}
4786 
4787   /// Determine if \p V maybe captured. *Also updates the state!*
4788   bool valueMayBeCaptured(const Value *V) {
4789     if (V->getType()->isPointerTy()) {
4790       PointerMayBeCaptured(V, this);
4791     } else {
4792       State.indicatePessimisticFixpoint();
4793     }
4794     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4795   }
4796 
4797   /// See CaptureTracker::tooManyUses().
4798   void tooManyUses() override {
4799     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4800   }
4801 
4802   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4803     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4804       return true;
4805     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4806         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4807     return DerefAA.getAssumedDereferenceableBytes();
4808   }
4809 
4810   /// See CaptureTracker::captured(...).
4811   bool captured(const Use *U) override {
4812     Instruction *UInst = cast<Instruction>(U->getUser());
4813     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4814                       << "\n");
4815 
4816     // Because we may reuse the tracker multiple times we keep track of the
4817     // number of explored uses ourselves as well.
4818     if (RemainingUsesToExplore-- == 0) {
4819       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4820       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4821                           /* Return */ true);
4822     }
4823 
4824     // Deal with ptr2int by following uses.
4825     if (isa<PtrToIntInst>(UInst)) {
4826       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4827       return valueMayBeCaptured(UInst);
4828     }
4829 
4830     // For stores we check if we can follow the value through memory or not.
4831     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4832       if (SI->isVolatile())
4833         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4834                             /* Return */ false);
4835       bool UsedAssumedInformation = false;
4836       if (!AA::getPotentialCopiesOfStoredValue(
4837               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4838         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4839                             /* Return */ false);
4840       // Not captured directly, potential copies will be checked.
4841       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4842                           /* Return */ false);
4843     }
4844 
4845     // Explicitly catch return instructions.
4846     if (isa<ReturnInst>(UInst)) {
4847       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4848         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4849                             /* Return */ true);
4850       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4851                           /* Return */ true);
4852     }
4853 
4854     // For now we only use special logic for call sites. However, the tracker
4855     // itself knows about a lot of other non-capturing cases already.
4856     auto *CB = dyn_cast<CallBase>(UInst);
4857     if (!CB || !CB->isArgOperand(U))
4858       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4859                           /* Return */ true);
4860 
4861     unsigned ArgNo = CB->getArgOperandNo(U);
4862     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4863     // If we have a abstract no-capture attribute for the argument we can use
4864     // it to justify a non-capture attribute here. This allows recursion!
4865     auto &ArgNoCaptureAA =
4866         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4867     if (ArgNoCaptureAA.isAssumedNoCapture())
4868       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4869                           /* Return */ false);
4870     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4871       addPotentialCopy(*CB);
4872       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4873                           /* Return */ false);
4874     }
4875 
4876     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4877     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4878                         /* Return */ true);
4879   }
4880 
4881   /// Register \p CS as potential copy of the value we are checking.
4882   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4883 
4884   /// See CaptureTracker::shouldExplore(...).
4885   bool shouldExplore(const Use *U) override {
4886     // Check liveness and ignore droppable users.
4887     bool UsedAssumedInformation = false;
4888     return !U->getUser()->isDroppable() &&
4889            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4890                             UsedAssumedInformation);
4891   }
4892 
4893   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4894   /// \p CapturedInRet, then return the appropriate value for use in the
4895   /// CaptureTracker::captured() interface.
4896   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4897                     bool CapturedInRet) {
4898     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4899                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4900     if (CapturedInMem)
4901       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4902     if (CapturedInInt)
4903       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4904     if (CapturedInRet)
4905       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4906     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4907   }
4908 
4909 private:
4910   /// The attributor providing in-flight abstract attributes.
4911   Attributor &A;
4912 
4913   /// The abstract attribute currently updated.
4914   AANoCapture &NoCaptureAA;
4915 
4916   /// The abstract liveness state.
4917   const AAIsDead &IsDeadAA;
4918 
4919   /// The state currently updated.
4920   AANoCapture::StateType &State;
4921 
4922   /// Set of potential copies of the tracked value.
4923   SmallSetVector<Value *, 4> &PotentialCopies;
4924 
4925   /// Global counter to limit the number of explored uses.
4926   unsigned &RemainingUsesToExplore;
4927 };
4928 
4929 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4930   const IRPosition &IRP = getIRPosition();
4931   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4932                                   : &IRP.getAssociatedValue();
4933   if (!V)
4934     return indicatePessimisticFixpoint();
4935 
4936   const Function *F =
4937       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4938   assert(F && "Expected a function!");
4939   const IRPosition &FnPos = IRPosition::function(*F);
4940   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4941 
4942   AANoCapture::StateType T;
4943 
4944   // Readonly means we cannot capture through memory.
4945   const auto &FnMemAA =
4946       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4947   if (FnMemAA.isAssumedReadOnly()) {
4948     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4949     if (FnMemAA.isKnownReadOnly())
4950       addKnownBits(NOT_CAPTURED_IN_MEM);
4951     else
4952       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4953   }
4954 
4955   // Make sure all returned values are different than the underlying value.
4956   // TODO: we could do this in a more sophisticated way inside
4957   //       AAReturnedValues, e.g., track all values that escape through returns
4958   //       directly somehow.
4959   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4960     bool SeenConstant = false;
4961     for (auto &It : RVAA.returned_values()) {
4962       if (isa<Constant>(It.first)) {
4963         if (SeenConstant)
4964           return false;
4965         SeenConstant = true;
4966       } else if (!isa<Argument>(It.first) ||
4967                  It.first == getAssociatedArgument())
4968         return false;
4969     }
4970     return true;
4971   };
4972 
4973   const auto &NoUnwindAA =
4974       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4975   if (NoUnwindAA.isAssumedNoUnwind()) {
4976     bool IsVoidTy = F->getReturnType()->isVoidTy();
4977     const AAReturnedValues *RVAA =
4978         IsVoidTy ? nullptr
4979                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4980 
4981                                                  DepClassTy::OPTIONAL);
4982     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4983       T.addKnownBits(NOT_CAPTURED_IN_RET);
4984       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4985         return ChangeStatus::UNCHANGED;
4986       if (NoUnwindAA.isKnownNoUnwind() &&
4987           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4988         addKnownBits(NOT_CAPTURED_IN_RET);
4989         if (isKnown(NOT_CAPTURED_IN_MEM))
4990           return indicateOptimisticFixpoint();
4991       }
4992     }
4993   }
4994 
4995   // Use the CaptureTracker interface and logic with the specialized tracker,
4996   // defined in AACaptureUseTracker, that can look at in-flight abstract
4997   // attributes and directly updates the assumed state.
4998   SmallSetVector<Value *, 4> PotentialCopies;
4999   unsigned RemainingUsesToExplore =
5000       getDefaultMaxUsesToExploreForCaptureTracking();
5001   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
5002                               RemainingUsesToExplore);
5003 
5004   // Check all potential copies of the associated value until we can assume
5005   // none will be captured or we have to assume at least one might be.
5006   unsigned Idx = 0;
5007   PotentialCopies.insert(V);
5008   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
5009     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
5010 
5011   AANoCapture::StateType &S = getState();
5012   auto Assumed = S.getAssumed();
5013   S.intersectAssumedBits(T.getAssumed());
5014   if (!isAssumedNoCaptureMaybeReturned())
5015     return indicatePessimisticFixpoint();
5016   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5017                                    : ChangeStatus::CHANGED;
5018 }
5019 
5020 /// NoCapture attribute for function arguments.
5021 struct AANoCaptureArgument final : AANoCaptureImpl {
5022   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5023       : AANoCaptureImpl(IRP, A) {}
5024 
5025   /// See AbstractAttribute::trackStatistics()
5026   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5027 };
5028 
5029 /// NoCapture attribute for call site arguments.
5030 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5031   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5032       : AANoCaptureImpl(IRP, A) {}
5033 
5034   /// See AbstractAttribute::initialize(...).
5035   void initialize(Attributor &A) override {
5036     if (Argument *Arg = getAssociatedArgument())
5037       if (Arg->hasByValAttr())
5038         indicateOptimisticFixpoint();
5039     AANoCaptureImpl::initialize(A);
5040   }
5041 
5042   /// See AbstractAttribute::updateImpl(...).
5043   ChangeStatus updateImpl(Attributor &A) override {
5044     // TODO: Once we have call site specific value information we can provide
5045     //       call site specific liveness information and then it makes
5046     //       sense to specialize attributes for call sites arguments instead of
5047     //       redirecting requests to the callee argument.
5048     Argument *Arg = getAssociatedArgument();
5049     if (!Arg)
5050       return indicatePessimisticFixpoint();
5051     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5052     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5053     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5054   }
5055 
5056   /// See AbstractAttribute::trackStatistics()
5057   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5058 };
5059 
5060 /// NoCapture attribute for floating values.
5061 struct AANoCaptureFloating final : AANoCaptureImpl {
5062   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5063       : AANoCaptureImpl(IRP, A) {}
5064 
5065   /// See AbstractAttribute::trackStatistics()
5066   void trackStatistics() const override {
5067     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5068   }
5069 };
5070 
5071 /// NoCapture attribute for function return value.
5072 struct AANoCaptureReturned final : AANoCaptureImpl {
5073   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5074       : AANoCaptureImpl(IRP, A) {
5075     llvm_unreachable("NoCapture is not applicable to function returns!");
5076   }
5077 
5078   /// See AbstractAttribute::initialize(...).
5079   void initialize(Attributor &A) override {
5080     llvm_unreachable("NoCapture is not applicable to function returns!");
5081   }
5082 
5083   /// See AbstractAttribute::updateImpl(...).
5084   ChangeStatus updateImpl(Attributor &A) override {
5085     llvm_unreachable("NoCapture is not applicable to function returns!");
5086   }
5087 
5088   /// See AbstractAttribute::trackStatistics()
5089   void trackStatistics() const override {}
5090 };
5091 
5092 /// NoCapture attribute deduction for a call site return value.
5093 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5094   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5095       : AANoCaptureImpl(IRP, A) {}
5096 
5097   /// See AbstractAttribute::initialize(...).
5098   void initialize(Attributor &A) override {
5099     const Function *F = getAnchorScope();
5100     // Check what state the associated function can actually capture.
5101     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5102   }
5103 
5104   /// See AbstractAttribute::trackStatistics()
5105   void trackStatistics() const override {
5106     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5107   }
5108 };
5109 } // namespace
5110 
5111 /// ------------------ Value Simplify Attribute ----------------------------
5112 
5113 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5114   // FIXME: Add a typecast support.
5115   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5116       SimplifiedAssociatedValue, Other, Ty);
5117   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5118     return false;
5119 
5120   LLVM_DEBUG({
5121     if (SimplifiedAssociatedValue.hasValue())
5122       dbgs() << "[ValueSimplify] is assumed to be "
5123              << **SimplifiedAssociatedValue << "\n";
5124     else
5125       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5126   });
5127   return true;
5128 }
5129 
5130 namespace {
5131 struct AAValueSimplifyImpl : AAValueSimplify {
5132   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5133       : AAValueSimplify(IRP, A) {}
5134 
5135   /// See AbstractAttribute::initialize(...).
5136   void initialize(Attributor &A) override {
5137     if (getAssociatedValue().getType()->isVoidTy())
5138       indicatePessimisticFixpoint();
5139     if (A.hasSimplificationCallback(getIRPosition()))
5140       indicatePessimisticFixpoint();
5141   }
5142 
5143   /// See AbstractAttribute::getAsStr().
5144   const std::string getAsStr() const override {
5145     LLVM_DEBUG({
5146       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5147       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5148         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5149     });
5150     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5151                           : "not-simple";
5152   }
5153 
5154   /// See AbstractAttribute::trackStatistics()
5155   void trackStatistics() const override {}
5156 
5157   /// See AAValueSimplify::getAssumedSimplifiedValue()
5158   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5159     return SimplifiedAssociatedValue;
5160   }
5161 
5162   /// Return a value we can use as replacement for the associated one, or
5163   /// nullptr if we don't have one that makes sense.
5164   Value *getReplacementValue(Attributor &A) const {
5165     Value *NewV;
5166     NewV = SimplifiedAssociatedValue.hasValue()
5167                ? SimplifiedAssociatedValue.getValue()
5168                : UndefValue::get(getAssociatedType());
5169     if (!NewV)
5170       return nullptr;
5171     NewV = AA::getWithType(*NewV, *getAssociatedType());
5172     if (!NewV || NewV == &getAssociatedValue())
5173       return nullptr;
5174     const Instruction *CtxI = getCtxI();
5175     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5176       return nullptr;
5177     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5178       return nullptr;
5179     return NewV;
5180   }
5181 
5182   /// Helper function for querying AAValueSimplify and updating candicate.
5183   /// \param IRP The value position we are trying to unify with SimplifiedValue
5184   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5185                       const IRPosition &IRP, bool Simplify = true) {
5186     bool UsedAssumedInformation = false;
5187     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5188     if (Simplify)
5189       QueryingValueSimplified =
5190           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5191     return unionAssumed(QueryingValueSimplified);
5192   }
5193 
5194   /// Returns a candidate is found or not
5195   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5196     if (!getAssociatedValue().getType()->isIntegerTy())
5197       return false;
5198 
5199     // This will also pass the call base context.
5200     const auto &AA =
5201         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5202 
5203     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5204 
5205     if (!COpt.hasValue()) {
5206       SimplifiedAssociatedValue = llvm::None;
5207       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5208       return true;
5209     }
5210     if (auto *C = COpt.getValue()) {
5211       SimplifiedAssociatedValue = C;
5212       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5213       return true;
5214     }
5215     return false;
5216   }
5217 
5218   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5219     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5220       return true;
5221     if (askSimplifiedValueFor<AAPotentialValues>(A))
5222       return true;
5223     return false;
5224   }
5225 
5226   /// See AbstractAttribute::manifest(...).
5227   ChangeStatus manifest(Attributor &A) override {
5228     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5229     if (getAssociatedValue().user_empty())
5230       return Changed;
5231 
5232     if (auto *NewV = getReplacementValue(A)) {
5233       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5234                         << *NewV << " :: " << *this << "\n");
5235       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5236         Changed = ChangeStatus::CHANGED;
5237     }
5238 
5239     return Changed | AAValueSimplify::manifest(A);
5240   }
5241 
5242   /// See AbstractState::indicatePessimisticFixpoint(...).
5243   ChangeStatus indicatePessimisticFixpoint() override {
5244     SimplifiedAssociatedValue = &getAssociatedValue();
5245     return AAValueSimplify::indicatePessimisticFixpoint();
5246   }
5247 
5248   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5249                          LoadInst &L, function_ref<bool(Value &)> Union) {
5250     auto UnionWrapper = [&](Value &V, Value &Obj) {
5251       if (isa<AllocaInst>(Obj))
5252         return Union(V);
5253       if (!AA::isDynamicallyUnique(A, AA, V))
5254         return false;
5255       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5256         return false;
5257       return Union(V);
5258     };
5259 
5260     Value &Ptr = *L.getPointerOperand();
5261     SmallVector<Value *, 8> Objects;
5262     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5263       return false;
5264 
5265     const auto *TLI =
5266         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5267     for (Value *Obj : Objects) {
5268       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5269       if (isa<UndefValue>(Obj))
5270         continue;
5271       if (isa<ConstantPointerNull>(Obj)) {
5272         // A null pointer access can be undefined but any offset from null may
5273         // be OK. We do not try to optimize the latter.
5274         bool UsedAssumedInformation = false;
5275         if (!NullPointerIsDefined(L.getFunction(),
5276                                   Ptr.getType()->getPointerAddressSpace()) &&
5277             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5278           continue;
5279         return false;
5280       }
5281       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5282       if (!InitialVal || !Union(*InitialVal))
5283         return false;
5284 
5285       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5286                            "propagation, checking accesses next.\n");
5287 
5288       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5289         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5290         if (!Acc.isWrite())
5291           return true;
5292         if (Acc.isWrittenValueYetUndetermined())
5293           return true;
5294         Value *Content = Acc.getWrittenValue();
5295         if (!Content)
5296           return false;
5297         Value *CastedContent =
5298             AA::getWithType(*Content, *AA.getAssociatedType());
5299         if (!CastedContent)
5300           return false;
5301         if (IsExact)
5302           return UnionWrapper(*CastedContent, *Obj);
5303         if (auto *C = dyn_cast<Constant>(CastedContent))
5304           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5305             return UnionWrapper(*CastedContent, *Obj);
5306         return false;
5307       };
5308 
5309       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5310                                            DepClassTy::REQUIRED);
5311       if (!PI.forallInterferingAccesses(L, CheckAccess))
5312         return false;
5313     }
5314     return true;
5315   }
5316 };
5317 
5318 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5319   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5320       : AAValueSimplifyImpl(IRP, A) {}
5321 
5322   void initialize(Attributor &A) override {
5323     AAValueSimplifyImpl::initialize(A);
5324     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5325       indicatePessimisticFixpoint();
5326     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5327                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5328                 /* IgnoreSubsumingPositions */ true))
5329       indicatePessimisticFixpoint();
5330 
5331     // FIXME: This is a hack to prevent us from propagating function poiner in
5332     // the new pass manager CGSCC pass as it creates call edges the
5333     // CallGraphUpdater cannot handle yet.
5334     Value &V = getAssociatedValue();
5335     if (V.getType()->isPointerTy() &&
5336         V.getType()->getPointerElementType()->isFunctionTy() &&
5337         !A.isModulePass())
5338       indicatePessimisticFixpoint();
5339   }
5340 
5341   /// See AbstractAttribute::updateImpl(...).
5342   ChangeStatus updateImpl(Attributor &A) override {
5343     // Byval is only replacable if it is readonly otherwise we would write into
5344     // the replaced value and not the copy that byval creates implicitly.
5345     Argument *Arg = getAssociatedArgument();
5346     if (Arg->hasByValAttr()) {
5347       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5348       //       there is no race by not copying a constant byval.
5349       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5350                                                        DepClassTy::REQUIRED);
5351       if (!MemAA.isAssumedReadOnly())
5352         return indicatePessimisticFixpoint();
5353     }
5354 
5355     auto Before = SimplifiedAssociatedValue;
5356 
5357     auto PredForCallSite = [&](AbstractCallSite ACS) {
5358       const IRPosition &ACSArgPos =
5359           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5360       // Check if a coresponding argument was found or if it is on not
5361       // associated (which can happen for callback calls).
5362       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5363         return false;
5364 
5365       // Simplify the argument operand explicitly and check if the result is
5366       // valid in the current scope. This avoids refering to simplified values
5367       // in other functions, e.g., we don't want to say a an argument in a
5368       // static function is actually an argument in a different function.
5369       bool UsedAssumedInformation = false;
5370       Optional<Constant *> SimpleArgOp =
5371           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5372       if (!SimpleArgOp.hasValue())
5373         return true;
5374       if (!SimpleArgOp.getValue())
5375         return false;
5376       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5377         return false;
5378       return unionAssumed(*SimpleArgOp);
5379     };
5380 
5381     // Generate a answer specific to a call site context.
5382     bool Success;
5383     bool AllCallSitesKnown;
5384     if (hasCallBaseContext() &&
5385         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5386       Success = PredForCallSite(
5387           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5388     else
5389       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5390                                        AllCallSitesKnown);
5391 
5392     if (!Success)
5393       if (!askSimplifiedValueForOtherAAs(A))
5394         return indicatePessimisticFixpoint();
5395 
5396     // If a candicate was found in this update, return CHANGED.
5397     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5398                                                : ChangeStatus ::CHANGED;
5399   }
5400 
5401   /// See AbstractAttribute::trackStatistics()
5402   void trackStatistics() const override {
5403     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5404   }
5405 };
5406 
5407 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5408   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5409       : AAValueSimplifyImpl(IRP, A) {}
5410 
5411   /// See AAValueSimplify::getAssumedSimplifiedValue()
5412   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5413     if (!isValidState())
5414       return nullptr;
5415     return SimplifiedAssociatedValue;
5416   }
5417 
5418   /// See AbstractAttribute::updateImpl(...).
5419   ChangeStatus updateImpl(Attributor &A) override {
5420     auto Before = SimplifiedAssociatedValue;
5421 
5422     auto PredForReturned = [&](Value &V) {
5423       return checkAndUpdate(A, *this,
5424                             IRPosition::value(V, getCallBaseContext()));
5425     };
5426 
5427     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5428       if (!askSimplifiedValueForOtherAAs(A))
5429         return indicatePessimisticFixpoint();
5430 
5431     // If a candicate was found in this update, return CHANGED.
5432     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5433                                                : ChangeStatus ::CHANGED;
5434   }
5435 
5436   ChangeStatus manifest(Attributor &A) override {
5437     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5438 
5439     if (auto *NewV = getReplacementValue(A)) {
5440       auto PredForReturned =
5441           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5442             for (ReturnInst *RI : RetInsts) {
5443               Value *ReturnedVal = RI->getReturnValue();
5444               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5445                 return true;
5446               assert(RI->getFunction() == getAnchorScope() &&
5447                      "ReturnInst in wrong function!");
5448               LLVM_DEBUG(dbgs()
5449                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5450                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5451               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5452                 Changed = ChangeStatus::CHANGED;
5453             }
5454             return true;
5455           };
5456       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5457     }
5458 
5459     return Changed | AAValueSimplify::manifest(A);
5460   }
5461 
5462   /// See AbstractAttribute::trackStatistics()
5463   void trackStatistics() const override {
5464     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5465   }
5466 };
5467 
5468 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5469   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5470       : AAValueSimplifyImpl(IRP, A) {}
5471 
5472   /// See AbstractAttribute::initialize(...).
5473   void initialize(Attributor &A) override {
5474     AAValueSimplifyImpl::initialize(A);
5475     Value &V = getAnchorValue();
5476 
5477     // TODO: add other stuffs
5478     if (isa<Constant>(V))
5479       indicatePessimisticFixpoint();
5480   }
5481 
5482   /// Check if \p Cmp is a comparison we can simplify.
5483   ///
5484   /// We handle multiple cases, one in which at least one operand is an
5485   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5486   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5487   /// will be updated.
5488   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5489     auto Union = [&](Value &V) {
5490       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5491           SimplifiedAssociatedValue, &V, V.getType());
5492       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5493     };
5494 
5495     Value *LHS = Cmp.getOperand(0);
5496     Value *RHS = Cmp.getOperand(1);
5497 
5498     // Simplify the operands first.
5499     bool UsedAssumedInformation = false;
5500     const auto &SimplifiedLHS =
5501         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5502                                *this, UsedAssumedInformation);
5503     if (!SimplifiedLHS.hasValue())
5504       return true;
5505     if (!SimplifiedLHS.getValue())
5506       return false;
5507     LHS = *SimplifiedLHS;
5508 
5509     const auto &SimplifiedRHS =
5510         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5511                                *this, UsedAssumedInformation);
5512     if (!SimplifiedRHS.hasValue())
5513       return true;
5514     if (!SimplifiedRHS.getValue())
5515       return false;
5516     RHS = *SimplifiedRHS;
5517 
5518     LLVMContext &Ctx = Cmp.getContext();
5519     // Handle the trivial case first in which we don't even need to think about
5520     // null or non-null.
5521     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5522       Constant *NewVal =
5523           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5524       if (!Union(*NewVal))
5525         return false;
5526       if (!UsedAssumedInformation)
5527         indicateOptimisticFixpoint();
5528       return true;
5529     }
5530 
5531     // From now on we only handle equalities (==, !=).
5532     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5533     if (!ICmp || !ICmp->isEquality())
5534       return false;
5535 
5536     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5537     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5538     if (!LHSIsNull && !RHSIsNull)
5539       return false;
5540 
5541     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5542     // non-nullptr operand and if we assume it's non-null we can conclude the
5543     // result of the comparison.
5544     assert((LHSIsNull || RHSIsNull) &&
5545            "Expected nullptr versus non-nullptr comparison at this point");
5546 
5547     // The index is the operand that we assume is not null.
5548     unsigned PtrIdx = LHSIsNull;
5549     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5550         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5551         DepClassTy::REQUIRED);
5552     if (!PtrNonNullAA.isAssumedNonNull())
5553       return false;
5554     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5555 
5556     // The new value depends on the predicate, true for != and false for ==.
5557     Constant *NewVal = ConstantInt::get(
5558         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5559     if (!Union(*NewVal))
5560       return false;
5561 
5562     if (!UsedAssumedInformation)
5563       indicateOptimisticFixpoint();
5564 
5565     return true;
5566   }
5567 
5568   bool updateWithLoad(Attributor &A, LoadInst &L) {
5569     auto Union = [&](Value &V) {
5570       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5571           SimplifiedAssociatedValue, &V, L.getType());
5572       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5573     };
5574     return handleLoad(A, *this, L, Union);
5575   }
5576 
5577   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5578   /// simplify any operand of the instruction \p I. Return true if successful,
5579   /// in that case SimplifiedAssociatedValue will be updated.
5580   bool handleGenericInst(Attributor &A, Instruction &I) {
5581     bool SomeSimplified = false;
5582     bool UsedAssumedInformation = false;
5583 
5584     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5585     int Idx = 0;
5586     for (Value *Op : I.operands()) {
5587       const auto &SimplifiedOp =
5588           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5589                                  *this, UsedAssumedInformation);
5590       // If we are not sure about any operand we are not sure about the entire
5591       // instruction, we'll wait.
5592       if (!SimplifiedOp.hasValue())
5593         return true;
5594 
5595       if (SimplifiedOp.getValue())
5596         NewOps[Idx] = SimplifiedOp.getValue();
5597       else
5598         NewOps[Idx] = Op;
5599 
5600       SomeSimplified |= (NewOps[Idx] != Op);
5601       ++Idx;
5602     }
5603 
5604     // We won't bother with the InstSimplify interface if we didn't simplify any
5605     // operand ourselves.
5606     if (!SomeSimplified)
5607       return false;
5608 
5609     InformationCache &InfoCache = A.getInfoCache();
5610     Function *F = I.getFunction();
5611     const auto *DT =
5612         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5613     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5614     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5615     OptimizationRemarkEmitter *ORE = nullptr;
5616 
5617     const DataLayout &DL = I.getModule()->getDataLayout();
5618     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5619     if (Value *SimplifiedI =
5620             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5621       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5622           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5623       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5624     }
5625     return false;
5626   }
5627 
5628   /// See AbstractAttribute::updateImpl(...).
5629   ChangeStatus updateImpl(Attributor &A) override {
5630     auto Before = SimplifiedAssociatedValue;
5631 
5632     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5633                             bool Stripped) -> bool {
5634       auto &AA = A.getAAFor<AAValueSimplify>(
5635           *this, IRPosition::value(V, getCallBaseContext()),
5636           DepClassTy::REQUIRED);
5637       if (!Stripped && this == &AA) {
5638 
5639         if (auto *I = dyn_cast<Instruction>(&V)) {
5640           if (auto *LI = dyn_cast<LoadInst>(&V))
5641             if (updateWithLoad(A, *LI))
5642               return true;
5643           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5644             if (handleCmp(A, *Cmp))
5645               return true;
5646           if (handleGenericInst(A, *I))
5647             return true;
5648         }
5649         // TODO: Look the instruction and check recursively.
5650 
5651         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5652                           << "\n");
5653         return false;
5654       }
5655       return checkAndUpdate(A, *this,
5656                             IRPosition::value(V, getCallBaseContext()));
5657     };
5658 
5659     bool Dummy = false;
5660     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5661                                      VisitValueCB, getCtxI(),
5662                                      /* UseValueSimplify */ false))
5663       if (!askSimplifiedValueForOtherAAs(A))
5664         return indicatePessimisticFixpoint();
5665 
5666     // If a candicate was found in this update, return CHANGED.
5667     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5668                                                : ChangeStatus ::CHANGED;
5669   }
5670 
5671   /// See AbstractAttribute::trackStatistics()
5672   void trackStatistics() const override {
5673     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5674   }
5675 };
5676 
5677 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5678   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5679       : AAValueSimplifyImpl(IRP, A) {}
5680 
5681   /// See AbstractAttribute::initialize(...).
5682   void initialize(Attributor &A) override {
5683     SimplifiedAssociatedValue = nullptr;
5684     indicateOptimisticFixpoint();
5685   }
5686   /// See AbstractAttribute::initialize(...).
5687   ChangeStatus updateImpl(Attributor &A) override {
5688     llvm_unreachable(
5689         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5690   }
5691   /// See AbstractAttribute::trackStatistics()
5692   void trackStatistics() const override {
5693     STATS_DECLTRACK_FN_ATTR(value_simplify)
5694   }
5695 };
5696 
5697 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5698   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5699       : AAValueSimplifyFunction(IRP, A) {}
5700   /// See AbstractAttribute::trackStatistics()
5701   void trackStatistics() const override {
5702     STATS_DECLTRACK_CS_ATTR(value_simplify)
5703   }
5704 };
5705 
5706 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5707   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5708       : AAValueSimplifyImpl(IRP, A) {}
5709 
5710   void initialize(Attributor &A) override {
5711     AAValueSimplifyImpl::initialize(A);
5712     if (!getAssociatedFunction())
5713       indicatePessimisticFixpoint();
5714   }
5715 
5716   /// See AbstractAttribute::updateImpl(...).
5717   ChangeStatus updateImpl(Attributor &A) override {
5718     auto Before = SimplifiedAssociatedValue;
5719     auto &RetAA = A.getAAFor<AAReturnedValues>(
5720         *this, IRPosition::function(*getAssociatedFunction()),
5721         DepClassTy::REQUIRED);
5722     auto PredForReturned =
5723         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5724           bool UsedAssumedInformation = false;
5725           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5726               &RetVal, *cast<CallBase>(getCtxI()), *this,
5727               UsedAssumedInformation);
5728           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5729               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5730           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5731         };
5732     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5733       if (!askSimplifiedValueForOtherAAs(A))
5734         return indicatePessimisticFixpoint();
5735     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5736                                                : ChangeStatus ::CHANGED;
5737   }
5738 
5739   void trackStatistics() const override {
5740     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5741   }
5742 };
5743 
5744 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5745   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5746       : AAValueSimplifyFloating(IRP, A) {}
5747 
5748   /// See AbstractAttribute::manifest(...).
5749   ChangeStatus manifest(Attributor &A) override {
5750     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5751 
5752     if (auto *NewV = getReplacementValue(A)) {
5753       Use &U = cast<CallBase>(&getAnchorValue())
5754                    ->getArgOperandUse(getCallSiteArgNo());
5755       if (A.changeUseAfterManifest(U, *NewV))
5756         Changed = ChangeStatus::CHANGED;
5757     }
5758 
5759     return Changed | AAValueSimplify::manifest(A);
5760   }
5761 
5762   void trackStatistics() const override {
5763     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5764   }
5765 };
5766 
5767 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5768 struct AAHeapToStackFunction final : public AAHeapToStack {
5769 
5770   struct AllocationInfo {
5771     /// The call that allocates the memory.
5772     CallBase *const CB;
5773 
5774     /// The library function id for the allocation.
5775     LibFunc LibraryFunctionId = NotLibFunc;
5776 
5777     /// The status wrt. a rewrite.
5778     enum {
5779       STACK_DUE_TO_USE,
5780       STACK_DUE_TO_FREE,
5781       INVALID,
5782     } Status = STACK_DUE_TO_USE;
5783 
5784     /// Flag to indicate if we encountered a use that might free this allocation
5785     /// but which is not in the deallocation infos.
5786     bool HasPotentiallyFreeingUnknownUses = false;
5787 
5788     /// The set of free calls that use this allocation.
5789     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5790   };
5791 
5792   struct DeallocationInfo {
5793     /// The call that deallocates the memory.
5794     CallBase *const CB;
5795 
5796     /// Flag to indicate if we don't know all objects this deallocation might
5797     /// free.
5798     bool MightFreeUnknownObjects = false;
5799 
5800     /// The set of allocation calls that are potentially freed.
5801     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5802   };
5803 
5804   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5805       : AAHeapToStack(IRP, A) {}
5806 
5807   ~AAHeapToStackFunction() {
5808     // Ensure we call the destructor so we release any memory allocated in the
5809     // sets.
5810     for (auto &It : AllocationInfos)
5811       It.getSecond()->~AllocationInfo();
5812     for (auto &It : DeallocationInfos)
5813       It.getSecond()->~DeallocationInfo();
5814   }
5815 
5816   void initialize(Attributor &A) override {
5817     AAHeapToStack::initialize(A);
5818 
5819     const Function *F = getAnchorScope();
5820     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5821 
5822     auto AllocationIdentifierCB = [&](Instruction &I) {
5823       CallBase *CB = dyn_cast<CallBase>(&I);
5824       if (!CB)
5825         return true;
5826       if (isFreeCall(CB, TLI)) {
5827         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5828         return true;
5829       }
5830       // To do heap to stack, we need to know that the allocation itself is
5831       // removable once uses are rewritten, and that we can initialize the
5832       // alloca to the same pattern as the original allocation result.
5833       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5834         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5835         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5836           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5837           AllocationInfos[CB] = AI;
5838           TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5839         }
5840       }
5841       return true;
5842     };
5843 
5844     bool UsedAssumedInformation = false;
5845     bool Success = A.checkForAllCallLikeInstructions(
5846         AllocationIdentifierCB, *this, UsedAssumedInformation,
5847         /* CheckBBLivenessOnly */ false,
5848         /* CheckPotentiallyDead */ true);
5849     (void)Success;
5850     assert(Success && "Did not expect the call base visit callback to fail!");
5851   }
5852 
5853   const std::string getAsStr() const override {
5854     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5855     for (const auto &It : AllocationInfos) {
5856       if (It.second->Status == AllocationInfo::INVALID)
5857         ++NumInvalidMallocs;
5858       else
5859         ++NumH2SMallocs;
5860     }
5861     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5862            std::to_string(NumInvalidMallocs);
5863   }
5864 
5865   /// See AbstractAttribute::trackStatistics().
5866   void trackStatistics() const override {
5867     STATS_DECL(
5868         MallocCalls, Function,
5869         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5870     for (auto &It : AllocationInfos)
5871       if (It.second->Status != AllocationInfo::INVALID)
5872         ++BUILD_STAT_NAME(MallocCalls, Function);
5873   }
5874 
5875   bool isAssumedHeapToStack(const CallBase &CB) const override {
5876     if (isValidState())
5877       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5878         return AI->Status != AllocationInfo::INVALID;
5879     return false;
5880   }
5881 
5882   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5883     if (!isValidState())
5884       return false;
5885 
5886     for (auto &It : AllocationInfos) {
5887       AllocationInfo &AI = *It.second;
5888       if (AI.Status == AllocationInfo::INVALID)
5889         continue;
5890 
5891       if (AI.PotentialFreeCalls.count(&CB))
5892         return true;
5893     }
5894 
5895     return false;
5896   }
5897 
5898   ChangeStatus manifest(Attributor &A) override {
5899     assert(getState().isValidState() &&
5900            "Attempted to manifest an invalid state!");
5901 
5902     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5903     Function *F = getAnchorScope();
5904     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5905 
5906     for (auto &It : AllocationInfos) {
5907       AllocationInfo &AI = *It.second;
5908       if (AI.Status == AllocationInfo::INVALID)
5909         continue;
5910 
5911       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5912         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5913         A.deleteAfterManifest(*FreeCall);
5914         HasChanged = ChangeStatus::CHANGED;
5915       }
5916 
5917       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5918                         << "\n");
5919 
5920       auto Remark = [&](OptimizationRemark OR) {
5921         LibFunc IsAllocShared;
5922         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5923           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5924             return OR << "Moving globalized variable to the stack.";
5925         return OR << "Moving memory allocation from the heap to the stack.";
5926       };
5927       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5928         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5929       else
5930         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5931 
5932       Value *Size;
5933       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5934       if (SizeAPI.hasValue()) {
5935         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5936       } else {
5937         LLVMContext &Ctx = AI.CB->getContext();
5938         auto &DL = A.getInfoCache().getDL();
5939         ObjectSizeOpts Opts;
5940         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
5941         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
5942         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
5943                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
5944         Size = SizeOffsetPair.first;
5945       }
5946 
5947       Align Alignment(1);
5948       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5949         Alignment = max(Alignment, RetAlign);
5950       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
5951         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
5952         assert(AlignmentAPI.hasValue() &&
5953                "Expected an alignment during manifest!");
5954         Alignment =
5955             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5956       }
5957 
5958       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5959       Instruction *Alloca =
5960           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5961                          "", AI.CB->getNextNode());
5962 
5963       if (Alloca->getType() != AI.CB->getType())
5964         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5965                                  Alloca->getNextNode());
5966 
5967       auto *I8Ty = Type::getInt8Ty(F->getContext());
5968       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
5969       assert(InitVal &&
5970              "Must be able to materialize initial memory state of allocation");
5971 
5972       A.changeValueAfterManifest(*AI.CB, *Alloca);
5973 
5974       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5975         auto *NBB = II->getNormalDest();
5976         BranchInst::Create(NBB, AI.CB->getParent());
5977         A.deleteAfterManifest(*AI.CB);
5978       } else {
5979         A.deleteAfterManifest(*AI.CB);
5980       }
5981 
5982       // Initialize the alloca with the same value as used by the allocation
5983       // function.  We can skip undef as the initial value of an alloc is
5984       // undef, and the memset would simply end up being DSEd.
5985       if (!isa<UndefValue>(InitVal)) {
5986         IRBuilder<> Builder(Alloca->getNextNode());
5987         // TODO: Use alignment above if align!=1
5988         Builder.CreateMemSet(Alloca, InitVal, Size, None);
5989       }
5990       HasChanged = ChangeStatus::CHANGED;
5991     }
5992 
5993     return HasChanged;
5994   }
5995 
5996   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5997                            Value &V) {
5998     bool UsedAssumedInformation = false;
5999     Optional<Constant *> SimpleV =
6000         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6001     if (!SimpleV.hasValue())
6002       return APInt(64, 0);
6003     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6004       return CI->getValue();
6005     return llvm::None;
6006   }
6007 
6008   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6009                           AllocationInfo &AI) {
6010     auto Mapper = [&](const Value *V) -> const Value* {
6011       bool UsedAssumedInformation = false;
6012       if (Optional<Constant *> SimpleV = A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6013         if (*SimpleV)
6014           return *SimpleV;
6015       return V;
6016     };
6017 
6018     const Function *F = getAnchorScope();
6019     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6020     return getAllocSize(AI.CB, TLI, Mapper);
6021   }
6022 
6023   /// Collection of all malloc-like calls in a function with associated
6024   /// information.
6025   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6026 
6027   /// Collection of all free-like calls in a function with associated
6028   /// information.
6029   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6030 
6031   ChangeStatus updateImpl(Attributor &A) override;
6032 };
6033 
6034 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6035   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6036   const Function *F = getAnchorScope();
6037   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6038 
6039   const auto &LivenessAA =
6040       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6041 
6042   MustBeExecutedContextExplorer &Explorer =
6043       A.getInfoCache().getMustBeExecutedContextExplorer();
6044 
6045   bool StackIsAccessibleByOtherThreads =
6046       A.getInfoCache().stackIsAccessibleByOtherThreads();
6047 
6048   // Flag to ensure we update our deallocation information at most once per
6049   // updateImpl call and only if we use the free check reasoning.
6050   bool HasUpdatedFrees = false;
6051 
6052   auto UpdateFrees = [&]() {
6053     HasUpdatedFrees = true;
6054 
6055     for (auto &It : DeallocationInfos) {
6056       DeallocationInfo &DI = *It.second;
6057       // For now we cannot use deallocations that have unknown inputs, skip
6058       // them.
6059       if (DI.MightFreeUnknownObjects)
6060         continue;
6061 
6062       // No need to analyze dead calls, ignore them instead.
6063       bool UsedAssumedInformation = false;
6064       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6065                           /* CheckBBLivenessOnly */ true))
6066         continue;
6067 
6068       // Use the optimistic version to get the freed objects, ignoring dead
6069       // branches etc.
6070       SmallVector<Value *, 8> Objects;
6071       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6072                                            *this, DI.CB)) {
6073         LLVM_DEBUG(
6074             dbgs()
6075             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6076         DI.MightFreeUnknownObjects = true;
6077         continue;
6078       }
6079 
6080       // Check each object explicitly.
6081       for (auto *Obj : Objects) {
6082         // Free of null and undef can be ignored as no-ops (or UB in the latter
6083         // case).
6084         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6085           continue;
6086 
6087         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6088         if (!ObjCB) {
6089           LLVM_DEBUG(dbgs()
6090                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6091           DI.MightFreeUnknownObjects = true;
6092           continue;
6093         }
6094 
6095         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6096         if (!AI) {
6097           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6098                             << "\n");
6099           DI.MightFreeUnknownObjects = true;
6100           continue;
6101         }
6102 
6103         DI.PotentialAllocationCalls.insert(ObjCB);
6104       }
6105     }
6106   };
6107 
6108   auto FreeCheck = [&](AllocationInfo &AI) {
6109     // If the stack is not accessible by other threads, the "must-free" logic
6110     // doesn't apply as the pointer could be shared and needs to be places in
6111     // "shareable" memory.
6112     if (!StackIsAccessibleByOtherThreads) {
6113       auto &NoSyncAA =
6114           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6115       if (!NoSyncAA.isAssumedNoSync()) {
6116         LLVM_DEBUG(
6117             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6118                       "other threads and function is not nosync:\n");
6119         return false;
6120       }
6121     }
6122     if (!HasUpdatedFrees)
6123       UpdateFrees();
6124 
6125     // TODO: Allow multi exit functions that have different free calls.
6126     if (AI.PotentialFreeCalls.size() != 1) {
6127       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6128                         << AI.PotentialFreeCalls.size() << "\n");
6129       return false;
6130     }
6131     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6132     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6133     if (!DI) {
6134       LLVM_DEBUG(
6135           dbgs() << "[H2S] unique free call was not known as deallocation call "
6136                  << *UniqueFree << "\n");
6137       return false;
6138     }
6139     if (DI->MightFreeUnknownObjects) {
6140       LLVM_DEBUG(
6141           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6142       return false;
6143     }
6144     if (DI->PotentialAllocationCalls.size() > 1) {
6145       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6146                         << DI->PotentialAllocationCalls.size()
6147                         << " different allocations\n");
6148       return false;
6149     }
6150     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6151       LLVM_DEBUG(
6152           dbgs()
6153           << "[H2S] unique free call not known to free this allocation but "
6154           << **DI->PotentialAllocationCalls.begin() << "\n");
6155       return false;
6156     }
6157     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6158     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6159       LLVM_DEBUG(
6160           dbgs()
6161           << "[H2S] unique free call might not be executed with the allocation "
6162           << *UniqueFree << "\n");
6163       return false;
6164     }
6165     return true;
6166   };
6167 
6168   auto UsesCheck = [&](AllocationInfo &AI) {
6169     bool ValidUsesOnly = true;
6170 
6171     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6172       Instruction *UserI = cast<Instruction>(U.getUser());
6173       if (isa<LoadInst>(UserI))
6174         return true;
6175       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6176         if (SI->getValueOperand() == U.get()) {
6177           LLVM_DEBUG(dbgs()
6178                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6179           ValidUsesOnly = false;
6180         } else {
6181           // A store into the malloc'ed memory is fine.
6182         }
6183         return true;
6184       }
6185       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6186         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6187           return true;
6188         if (DeallocationInfos.count(CB)) {
6189           AI.PotentialFreeCalls.insert(CB);
6190           return true;
6191         }
6192 
6193         unsigned ArgNo = CB->getArgOperandNo(&U);
6194 
6195         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6196             *this, IRPosition::callsite_argument(*CB, ArgNo),
6197             DepClassTy::OPTIONAL);
6198 
6199         // If a call site argument use is nofree, we are fine.
6200         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6201             *this, IRPosition::callsite_argument(*CB, ArgNo),
6202             DepClassTy::OPTIONAL);
6203 
6204         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6205         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6206         if (MaybeCaptured ||
6207             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6208              MaybeFreed)) {
6209           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6210 
6211           // Emit a missed remark if this is missed OpenMP globalization.
6212           auto Remark = [&](OptimizationRemarkMissed ORM) {
6213             return ORM
6214                    << "Could not move globalized variable to the stack. "
6215                       "Variable is potentially captured in call. Mark "
6216                       "parameter as `__attribute__((noescape))` to override.";
6217           };
6218 
6219           if (ValidUsesOnly &&
6220               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6221             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6222 
6223           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6224           ValidUsesOnly = false;
6225         }
6226         return true;
6227       }
6228 
6229       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6230           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6231         Follow = true;
6232         return true;
6233       }
6234       // Unknown user for which we can not track uses further (in a way that
6235       // makes sense).
6236       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6237       ValidUsesOnly = false;
6238       return true;
6239     };
6240     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6241       return false;
6242     return ValidUsesOnly;
6243   };
6244 
6245   // The actual update starts here. We look at all allocations and depending on
6246   // their status perform the appropriate check(s).
6247   for (auto &It : AllocationInfos) {
6248     AllocationInfo &AI = *It.second;
6249     if (AI.Status == AllocationInfo::INVALID)
6250       continue;
6251 
6252     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6253       if (!getAPInt(A, *this, *Align)) {
6254         // Can't generate an alloca which respects the required alignment
6255         // on the allocation.
6256         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6257                           << "\n");
6258         AI.Status = AllocationInfo::INVALID;
6259         Changed = ChangeStatus::CHANGED;
6260         continue;
6261       }
6262     }
6263 
6264     if (MaxHeapToStackSize != -1) {
6265       Optional<APInt> Size = getSize(A, *this, AI);
6266       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6267         LLVM_DEBUG({
6268           if (!Size.hasValue())
6269             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB
6270                    << "\n";
6271           else
6272             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6273                    << MaxHeapToStackSize << "\n";
6274         });
6275 
6276         AI.Status = AllocationInfo::INVALID;
6277         Changed = ChangeStatus::CHANGED;
6278         continue;
6279       }
6280     }
6281 
6282     switch (AI.Status) {
6283     case AllocationInfo::STACK_DUE_TO_USE:
6284       if (UsesCheck(AI))
6285         continue;
6286       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6287       LLVM_FALLTHROUGH;
6288     case AllocationInfo::STACK_DUE_TO_FREE:
6289       if (FreeCheck(AI))
6290         continue;
6291       AI.Status = AllocationInfo::INVALID;
6292       Changed = ChangeStatus::CHANGED;
6293       continue;
6294     case AllocationInfo::INVALID:
6295       llvm_unreachable("Invalid allocations should never reach this point!");
6296     };
6297   }
6298 
6299   return Changed;
6300 }
6301 
6302 /// ----------------------- Privatizable Pointers ------------------------------
6303 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6304   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6305       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6306 
6307   ChangeStatus indicatePessimisticFixpoint() override {
6308     AAPrivatizablePtr::indicatePessimisticFixpoint();
6309     PrivatizableType = nullptr;
6310     return ChangeStatus::CHANGED;
6311   }
6312 
6313   /// Identify the type we can chose for a private copy of the underlying
6314   /// argument. None means it is not clear yet, nullptr means there is none.
6315   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6316 
6317   /// Return a privatizable type that encloses both T0 and T1.
6318   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6319   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6320     if (!T0.hasValue())
6321       return T1;
6322     if (!T1.hasValue())
6323       return T0;
6324     if (T0 == T1)
6325       return T0;
6326     return nullptr;
6327   }
6328 
6329   Optional<Type *> getPrivatizableType() const override {
6330     return PrivatizableType;
6331   }
6332 
6333   const std::string getAsStr() const override {
6334     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6335   }
6336 
6337 protected:
6338   Optional<Type *> PrivatizableType;
6339 };
6340 
6341 // TODO: Do this for call site arguments (probably also other values) as well.
6342 
6343 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6344   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6345       : AAPrivatizablePtrImpl(IRP, A) {}
6346 
6347   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6348   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6349     // If this is a byval argument and we know all the call sites (so we can
6350     // rewrite them), there is no need to check them explicitly.
6351     bool AllCallSitesKnown;
6352     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6353         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6354                                true, AllCallSitesKnown))
6355       return getAssociatedValue().getType()->getPointerElementType();
6356 
6357     Optional<Type *> Ty;
6358     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6359 
6360     // Make sure the associated call site argument has the same type at all call
6361     // sites and it is an allocation we know is safe to privatize, for now that
6362     // means we only allow alloca instructions.
6363     // TODO: We can additionally analyze the accesses in the callee to  create
6364     //       the type from that information instead. That is a little more
6365     //       involved and will be done in a follow up patch.
6366     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6367       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6368       // Check if a coresponding argument was found or if it is one not
6369       // associated (which can happen for callback calls).
6370       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6371         return false;
6372 
6373       // Check that all call sites agree on a type.
6374       auto &PrivCSArgAA =
6375           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6376       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6377 
6378       LLVM_DEBUG({
6379         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6380         if (CSTy.hasValue() && CSTy.getValue())
6381           CSTy.getValue()->print(dbgs());
6382         else if (CSTy.hasValue())
6383           dbgs() << "<nullptr>";
6384         else
6385           dbgs() << "<none>";
6386       });
6387 
6388       Ty = combineTypes(Ty, CSTy);
6389 
6390       LLVM_DEBUG({
6391         dbgs() << " : New Type: ";
6392         if (Ty.hasValue() && Ty.getValue())
6393           Ty.getValue()->print(dbgs());
6394         else if (Ty.hasValue())
6395           dbgs() << "<nullptr>";
6396         else
6397           dbgs() << "<none>";
6398         dbgs() << "\n";
6399       });
6400 
6401       return !Ty.hasValue() || Ty.getValue();
6402     };
6403 
6404     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6405       return nullptr;
6406     return Ty;
6407   }
6408 
6409   /// See AbstractAttribute::updateImpl(...).
6410   ChangeStatus updateImpl(Attributor &A) override {
6411     PrivatizableType = identifyPrivatizableType(A);
6412     if (!PrivatizableType.hasValue())
6413       return ChangeStatus::UNCHANGED;
6414     if (!PrivatizableType.getValue())
6415       return indicatePessimisticFixpoint();
6416 
6417     // The dependence is optional so we don't give up once we give up on the
6418     // alignment.
6419     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6420                         DepClassTy::OPTIONAL);
6421 
6422     // Avoid arguments with padding for now.
6423     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6424         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6425                                                 A.getInfoCache().getDL())) {
6426       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6427       return indicatePessimisticFixpoint();
6428     }
6429 
6430     // Collect the types that will replace the privatizable type in the function
6431     // signature.
6432     SmallVector<Type *, 16> ReplacementTypes;
6433     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6434 
6435     // Verify callee and caller agree on how the promoted argument would be
6436     // passed.
6437     Function &Fn = *getIRPosition().getAnchorScope();
6438     const auto *TTI =
6439         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6440     if (!TTI) {
6441       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6442                         << Fn.getName() << "\n");
6443       return indicatePessimisticFixpoint();
6444     }
6445 
6446     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6447       CallBase *CB = ACS.getInstruction();
6448       return TTI->areTypesABICompatible(
6449           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6450     };
6451     bool AllCallSitesKnown;
6452     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6453                                 AllCallSitesKnown)) {
6454       LLVM_DEBUG(
6455           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6456                  << Fn.getName() << "\n");
6457       return indicatePessimisticFixpoint();
6458     }
6459 
6460     // Register a rewrite of the argument.
6461     Argument *Arg = getAssociatedArgument();
6462     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6463       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6464       return indicatePessimisticFixpoint();
6465     }
6466 
6467     unsigned ArgNo = Arg->getArgNo();
6468 
6469     // Helper to check if for the given call site the associated argument is
6470     // passed to a callback where the privatization would be different.
6471     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6472       SmallVector<const Use *, 4> CallbackUses;
6473       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6474       for (const Use *U : CallbackUses) {
6475         AbstractCallSite CBACS(U);
6476         assert(CBACS && CBACS.isCallbackCall());
6477         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6478           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6479 
6480           LLVM_DEBUG({
6481             dbgs()
6482                 << "[AAPrivatizablePtr] Argument " << *Arg
6483                 << "check if can be privatized in the context of its parent ("
6484                 << Arg->getParent()->getName()
6485                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6486                    "callback ("
6487                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6488                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6489                 << CBACS.getCallArgOperand(CBArg) << " vs "
6490                 << CB.getArgOperand(ArgNo) << "\n"
6491                 << "[AAPrivatizablePtr] " << CBArg << " : "
6492                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6493           });
6494 
6495           if (CBArgNo != int(ArgNo))
6496             continue;
6497           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6498               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6499           if (CBArgPrivAA.isValidState()) {
6500             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6501             if (!CBArgPrivTy.hasValue())
6502               continue;
6503             if (CBArgPrivTy.getValue() == PrivatizableType)
6504               continue;
6505           }
6506 
6507           LLVM_DEBUG({
6508             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6509                    << " cannot be privatized in the context of its parent ("
6510                    << Arg->getParent()->getName()
6511                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6512                       "callback ("
6513                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6514                    << ").\n[AAPrivatizablePtr] for which the argument "
6515                       "privatization is not compatible.\n";
6516           });
6517           return false;
6518         }
6519       }
6520       return true;
6521     };
6522 
6523     // Helper to check if for the given call site the associated argument is
6524     // passed to a direct call where the privatization would be different.
6525     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6526       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6527       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6528       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6529              "Expected a direct call operand for callback call operand");
6530 
6531       LLVM_DEBUG({
6532         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6533                << " check if be privatized in the context of its parent ("
6534                << Arg->getParent()->getName()
6535                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6536                   "direct call of ("
6537                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6538                << ").\n";
6539       });
6540 
6541       Function *DCCallee = DC->getCalledFunction();
6542       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6543         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6544             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6545             DepClassTy::REQUIRED);
6546         if (DCArgPrivAA.isValidState()) {
6547           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6548           if (!DCArgPrivTy.hasValue())
6549             return true;
6550           if (DCArgPrivTy.getValue() == PrivatizableType)
6551             return true;
6552         }
6553       }
6554 
6555       LLVM_DEBUG({
6556         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6557                << " cannot be privatized in the context of its parent ("
6558                << Arg->getParent()->getName()
6559                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6560                   "direct call of ("
6561                << ACS.getInstruction()->getCalledFunction()->getName()
6562                << ").\n[AAPrivatizablePtr] for which the argument "
6563                   "privatization is not compatible.\n";
6564       });
6565       return false;
6566     };
6567 
6568     // Helper to check if the associated argument is used at the given abstract
6569     // call site in a way that is incompatible with the privatization assumed
6570     // here.
6571     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6572       if (ACS.isDirectCall())
6573         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6574       if (ACS.isCallbackCall())
6575         return IsCompatiblePrivArgOfDirectCS(ACS);
6576       return false;
6577     };
6578 
6579     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6580                                 AllCallSitesKnown))
6581       return indicatePessimisticFixpoint();
6582 
6583     return ChangeStatus::UNCHANGED;
6584   }
6585 
6586   /// Given a type to private \p PrivType, collect the constituates (which are
6587   /// used) in \p ReplacementTypes.
6588   static void
6589   identifyReplacementTypes(Type *PrivType,
6590                            SmallVectorImpl<Type *> &ReplacementTypes) {
6591     // TODO: For now we expand the privatization type to the fullest which can
6592     //       lead to dead arguments that need to be removed later.
6593     assert(PrivType && "Expected privatizable type!");
6594 
6595     // Traverse the type, extract constituate types on the outermost level.
6596     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6597       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6598         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6599     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6600       ReplacementTypes.append(PrivArrayType->getNumElements(),
6601                               PrivArrayType->getElementType());
6602     } else {
6603       ReplacementTypes.push_back(PrivType);
6604     }
6605   }
6606 
6607   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6608   /// The values needed are taken from the arguments of \p F starting at
6609   /// position \p ArgNo.
6610   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6611                                    unsigned ArgNo, Instruction &IP) {
6612     assert(PrivType && "Expected privatizable type!");
6613 
6614     IRBuilder<NoFolder> IRB(&IP);
6615     const DataLayout &DL = F.getParent()->getDataLayout();
6616 
6617     // Traverse the type, build GEPs and stores.
6618     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6619       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6620       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6621         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6622         Value *Ptr =
6623             constructPointer(PointeeTy, PrivType, &Base,
6624                              PrivStructLayout->getElementOffset(u), IRB, DL);
6625         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6626       }
6627     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6628       Type *PointeeTy = PrivArrayType->getElementType();
6629       Type *PointeePtrTy = PointeeTy->getPointerTo();
6630       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6631       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6632         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6633                                       u * PointeeTySize, IRB, DL);
6634         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6635       }
6636     } else {
6637       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6638     }
6639   }
6640 
6641   /// Extract values from \p Base according to the type \p PrivType at the
6642   /// call position \p ACS. The values are appended to \p ReplacementValues.
6643   void createReplacementValues(Align Alignment, Type *PrivType,
6644                                AbstractCallSite ACS, Value *Base,
6645                                SmallVectorImpl<Value *> &ReplacementValues) {
6646     assert(Base && "Expected base value!");
6647     assert(PrivType && "Expected privatizable type!");
6648     Instruction *IP = ACS.getInstruction();
6649 
6650     IRBuilder<NoFolder> IRB(IP);
6651     const DataLayout &DL = IP->getModule()->getDataLayout();
6652 
6653     if (Base->getType()->getPointerElementType() != PrivType)
6654       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6655                                                  "", ACS.getInstruction());
6656 
6657     // Traverse the type, build GEPs and loads.
6658     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6659       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6660       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6661         Type *PointeeTy = PrivStructType->getElementType(u);
6662         Value *Ptr =
6663             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6664                              PrivStructLayout->getElementOffset(u), IRB, DL);
6665         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6666         L->setAlignment(Alignment);
6667         ReplacementValues.push_back(L);
6668       }
6669     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6670       Type *PointeeTy = PrivArrayType->getElementType();
6671       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6672       Type *PointeePtrTy = PointeeTy->getPointerTo();
6673       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6674         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6675                                       u * PointeeTySize, IRB, DL);
6676         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6677         L->setAlignment(Alignment);
6678         ReplacementValues.push_back(L);
6679       }
6680     } else {
6681       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6682       L->setAlignment(Alignment);
6683       ReplacementValues.push_back(L);
6684     }
6685   }
6686 
6687   /// See AbstractAttribute::manifest(...)
6688   ChangeStatus manifest(Attributor &A) override {
6689     if (!PrivatizableType.hasValue())
6690       return ChangeStatus::UNCHANGED;
6691     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6692 
6693     // Collect all tail calls in the function as we cannot allow new allocas to
6694     // escape into tail recursion.
6695     // TODO: Be smarter about new allocas escaping into tail calls.
6696     SmallVector<CallInst *, 16> TailCalls;
6697     bool UsedAssumedInformation = false;
6698     if (!A.checkForAllInstructions(
6699             [&](Instruction &I) {
6700               CallInst &CI = cast<CallInst>(I);
6701               if (CI.isTailCall())
6702                 TailCalls.push_back(&CI);
6703               return true;
6704             },
6705             *this, {Instruction::Call}, UsedAssumedInformation))
6706       return ChangeStatus::UNCHANGED;
6707 
6708     Argument *Arg = getAssociatedArgument();
6709     // Query AAAlign attribute for alignment of associated argument to
6710     // determine the best alignment of loads.
6711     const auto &AlignAA =
6712         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6713 
6714     // Callback to repair the associated function. A new alloca is placed at the
6715     // beginning and initialized with the values passed through arguments. The
6716     // new alloca replaces the use of the old pointer argument.
6717     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6718         [=](const Attributor::ArgumentReplacementInfo &ARI,
6719             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6720           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6721           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6722           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6723                                            Arg->getName() + ".priv", IP);
6724           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6725                                ArgIt->getArgNo(), *IP);
6726 
6727           if (AI->getType() != Arg->getType())
6728             AI =
6729                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6730           Arg->replaceAllUsesWith(AI);
6731 
6732           for (CallInst *CI : TailCalls)
6733             CI->setTailCall(false);
6734         };
6735 
6736     // Callback to repair a call site of the associated function. The elements
6737     // of the privatizable type are loaded prior to the call and passed to the
6738     // new function version.
6739     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6740         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6741                       AbstractCallSite ACS,
6742                       SmallVectorImpl<Value *> &NewArgOperands) {
6743           // When no alignment is specified for the load instruction,
6744           // natural alignment is assumed.
6745           createReplacementValues(
6746               assumeAligned(AlignAA.getAssumedAlign()),
6747               PrivatizableType.getValue(), ACS,
6748               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6749               NewArgOperands);
6750         };
6751 
6752     // Collect the types that will replace the privatizable type in the function
6753     // signature.
6754     SmallVector<Type *, 16> ReplacementTypes;
6755     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6756 
6757     // Register a rewrite of the argument.
6758     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6759                                            std::move(FnRepairCB),
6760                                            std::move(ACSRepairCB)))
6761       return ChangeStatus::CHANGED;
6762     return ChangeStatus::UNCHANGED;
6763   }
6764 
6765   /// See AbstractAttribute::trackStatistics()
6766   void trackStatistics() const override {
6767     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6768   }
6769 };
6770 
6771 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6772   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6773       : AAPrivatizablePtrImpl(IRP, A) {}
6774 
6775   /// See AbstractAttribute::initialize(...).
6776   virtual void initialize(Attributor &A) override {
6777     // TODO: We can privatize more than arguments.
6778     indicatePessimisticFixpoint();
6779   }
6780 
6781   ChangeStatus updateImpl(Attributor &A) override {
6782     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6783                      "updateImpl will not be called");
6784   }
6785 
6786   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6787   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6788     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6789     if (!Obj) {
6790       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6791       return nullptr;
6792     }
6793 
6794     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6795       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6796         if (CI->isOne())
6797           return Obj->getType()->getPointerElementType();
6798     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6799       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6800           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6801       if (PrivArgAA.isAssumedPrivatizablePtr())
6802         return Obj->getType()->getPointerElementType();
6803     }
6804 
6805     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6806                          "alloca nor privatizable argument: "
6807                       << *Obj << "!\n");
6808     return nullptr;
6809   }
6810 
6811   /// See AbstractAttribute::trackStatistics()
6812   void trackStatistics() const override {
6813     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6814   }
6815 };
6816 
6817 struct AAPrivatizablePtrCallSiteArgument final
6818     : public AAPrivatizablePtrFloating {
6819   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6820       : AAPrivatizablePtrFloating(IRP, A) {}
6821 
6822   /// See AbstractAttribute::initialize(...).
6823   void initialize(Attributor &A) override {
6824     if (getIRPosition().hasAttr(Attribute::ByVal))
6825       indicateOptimisticFixpoint();
6826   }
6827 
6828   /// See AbstractAttribute::updateImpl(...).
6829   ChangeStatus updateImpl(Attributor &A) override {
6830     PrivatizableType = identifyPrivatizableType(A);
6831     if (!PrivatizableType.hasValue())
6832       return ChangeStatus::UNCHANGED;
6833     if (!PrivatizableType.getValue())
6834       return indicatePessimisticFixpoint();
6835 
6836     const IRPosition &IRP = getIRPosition();
6837     auto &NoCaptureAA =
6838         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6839     if (!NoCaptureAA.isAssumedNoCapture()) {
6840       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6841       return indicatePessimisticFixpoint();
6842     }
6843 
6844     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6845     if (!NoAliasAA.isAssumedNoAlias()) {
6846       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6847       return indicatePessimisticFixpoint();
6848     }
6849 
6850     const auto &MemBehaviorAA =
6851         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6852     if (!MemBehaviorAA.isAssumedReadOnly()) {
6853       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6854       return indicatePessimisticFixpoint();
6855     }
6856 
6857     return ChangeStatus::UNCHANGED;
6858   }
6859 
6860   /// See AbstractAttribute::trackStatistics()
6861   void trackStatistics() const override {
6862     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6863   }
6864 };
6865 
6866 struct AAPrivatizablePtrCallSiteReturned final
6867     : public AAPrivatizablePtrFloating {
6868   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6869       : AAPrivatizablePtrFloating(IRP, A) {}
6870 
6871   /// See AbstractAttribute::initialize(...).
6872   void initialize(Attributor &A) override {
6873     // TODO: We can privatize more than arguments.
6874     indicatePessimisticFixpoint();
6875   }
6876 
6877   /// See AbstractAttribute::trackStatistics()
6878   void trackStatistics() const override {
6879     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6880   }
6881 };
6882 
6883 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6884   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6885       : AAPrivatizablePtrFloating(IRP, A) {}
6886 
6887   /// See AbstractAttribute::initialize(...).
6888   void initialize(Attributor &A) override {
6889     // TODO: We can privatize more than arguments.
6890     indicatePessimisticFixpoint();
6891   }
6892 
6893   /// See AbstractAttribute::trackStatistics()
6894   void trackStatistics() const override {
6895     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6896   }
6897 };
6898 
6899 /// -------------------- Memory Behavior Attributes ----------------------------
6900 /// Includes read-none, read-only, and write-only.
6901 /// ----------------------------------------------------------------------------
6902 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6903   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6904       : AAMemoryBehavior(IRP, A) {}
6905 
6906   /// See AbstractAttribute::initialize(...).
6907   void initialize(Attributor &A) override {
6908     intersectAssumedBits(BEST_STATE);
6909     getKnownStateFromValue(getIRPosition(), getState());
6910     AAMemoryBehavior::initialize(A);
6911   }
6912 
6913   /// Return the memory behavior information encoded in the IR for \p IRP.
6914   static void getKnownStateFromValue(const IRPosition &IRP,
6915                                      BitIntegerState &State,
6916                                      bool IgnoreSubsumingPositions = false) {
6917     SmallVector<Attribute, 2> Attrs;
6918     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6919     for (const Attribute &Attr : Attrs) {
6920       switch (Attr.getKindAsEnum()) {
6921       case Attribute::ReadNone:
6922         State.addKnownBits(NO_ACCESSES);
6923         break;
6924       case Attribute::ReadOnly:
6925         State.addKnownBits(NO_WRITES);
6926         break;
6927       case Attribute::WriteOnly:
6928         State.addKnownBits(NO_READS);
6929         break;
6930       default:
6931         llvm_unreachable("Unexpected attribute!");
6932       }
6933     }
6934 
6935     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6936       if (!I->mayReadFromMemory())
6937         State.addKnownBits(NO_READS);
6938       if (!I->mayWriteToMemory())
6939         State.addKnownBits(NO_WRITES);
6940     }
6941   }
6942 
6943   /// See AbstractAttribute::getDeducedAttributes(...).
6944   void getDeducedAttributes(LLVMContext &Ctx,
6945                             SmallVectorImpl<Attribute> &Attrs) const override {
6946     assert(Attrs.size() == 0);
6947     if (isAssumedReadNone())
6948       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6949     else if (isAssumedReadOnly())
6950       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6951     else if (isAssumedWriteOnly())
6952       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6953     assert(Attrs.size() <= 1);
6954   }
6955 
6956   /// See AbstractAttribute::manifest(...).
6957   ChangeStatus manifest(Attributor &A) override {
6958     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6959       return ChangeStatus::UNCHANGED;
6960 
6961     const IRPosition &IRP = getIRPosition();
6962 
6963     // Check if we would improve the existing attributes first.
6964     SmallVector<Attribute, 4> DeducedAttrs;
6965     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6966     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6967           return IRP.hasAttr(Attr.getKindAsEnum(),
6968                              /* IgnoreSubsumingPositions */ true);
6969         }))
6970       return ChangeStatus::UNCHANGED;
6971 
6972     // Clear existing attributes.
6973     IRP.removeAttrs(AttrKinds);
6974 
6975     // Use the generic manifest method.
6976     return IRAttribute::manifest(A);
6977   }
6978 
6979   /// See AbstractState::getAsStr().
6980   const std::string getAsStr() const override {
6981     if (isAssumedReadNone())
6982       return "readnone";
6983     if (isAssumedReadOnly())
6984       return "readonly";
6985     if (isAssumedWriteOnly())
6986       return "writeonly";
6987     return "may-read/write";
6988   }
6989 
6990   /// The set of IR attributes AAMemoryBehavior deals with.
6991   static const Attribute::AttrKind AttrKinds[3];
6992 };
6993 
6994 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6995     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6996 
6997 /// Memory behavior attribute for a floating value.
6998 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6999   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7000       : AAMemoryBehaviorImpl(IRP, A) {}
7001 
7002   /// See AbstractAttribute::updateImpl(...).
7003   ChangeStatus updateImpl(Attributor &A) override;
7004 
7005   /// See AbstractAttribute::trackStatistics()
7006   void trackStatistics() const override {
7007     if (isAssumedReadNone())
7008       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7009     else if (isAssumedReadOnly())
7010       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7011     else if (isAssumedWriteOnly())
7012       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7013   }
7014 
7015 private:
7016   /// Return true if users of \p UserI might access the underlying
7017   /// variable/location described by \p U and should therefore be analyzed.
7018   bool followUsersOfUseIn(Attributor &A, const Use &U,
7019                           const Instruction *UserI);
7020 
7021   /// Update the state according to the effect of use \p U in \p UserI.
7022   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7023 };
7024 
7025 /// Memory behavior attribute for function argument.
7026 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7027   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7028       : AAMemoryBehaviorFloating(IRP, A) {}
7029 
7030   /// See AbstractAttribute::initialize(...).
7031   void initialize(Attributor &A) override {
7032     intersectAssumedBits(BEST_STATE);
7033     const IRPosition &IRP = getIRPosition();
7034     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7035     // can query it when we use has/getAttr. That would allow us to reuse the
7036     // initialize of the base class here.
7037     bool HasByVal =
7038         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7039     getKnownStateFromValue(IRP, getState(),
7040                            /* IgnoreSubsumingPositions */ HasByVal);
7041 
7042     // Initialize the use vector with all direct uses of the associated value.
7043     Argument *Arg = getAssociatedArgument();
7044     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7045       indicatePessimisticFixpoint();
7046   }
7047 
7048   ChangeStatus manifest(Attributor &A) override {
7049     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7050     if (!getAssociatedValue().getType()->isPointerTy())
7051       return ChangeStatus::UNCHANGED;
7052 
7053     // TODO: From readattrs.ll: "inalloca parameters are always
7054     //                           considered written"
7055     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7056       removeKnownBits(NO_WRITES);
7057       removeAssumedBits(NO_WRITES);
7058     }
7059     return AAMemoryBehaviorFloating::manifest(A);
7060   }
7061 
7062   /// See AbstractAttribute::trackStatistics()
7063   void trackStatistics() const override {
7064     if (isAssumedReadNone())
7065       STATS_DECLTRACK_ARG_ATTR(readnone)
7066     else if (isAssumedReadOnly())
7067       STATS_DECLTRACK_ARG_ATTR(readonly)
7068     else if (isAssumedWriteOnly())
7069       STATS_DECLTRACK_ARG_ATTR(writeonly)
7070   }
7071 };
7072 
7073 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7074   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7075       : AAMemoryBehaviorArgument(IRP, A) {}
7076 
7077   /// See AbstractAttribute::initialize(...).
7078   void initialize(Attributor &A) override {
7079     // If we don't have an associated attribute this is either a variadic call
7080     // or an indirect call, either way, nothing to do here.
7081     Argument *Arg = getAssociatedArgument();
7082     if (!Arg) {
7083       indicatePessimisticFixpoint();
7084       return;
7085     }
7086     if (Arg->hasByValAttr()) {
7087       addKnownBits(NO_WRITES);
7088       removeKnownBits(NO_READS);
7089       removeAssumedBits(NO_READS);
7090     }
7091     AAMemoryBehaviorArgument::initialize(A);
7092     if (getAssociatedFunction()->isDeclaration())
7093       indicatePessimisticFixpoint();
7094   }
7095 
7096   /// See AbstractAttribute::updateImpl(...).
7097   ChangeStatus updateImpl(Attributor &A) override {
7098     // TODO: Once we have call site specific value information we can provide
7099     //       call site specific liveness liveness information and then it makes
7100     //       sense to specialize attributes for call sites arguments instead of
7101     //       redirecting requests to the callee argument.
7102     Argument *Arg = getAssociatedArgument();
7103     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7104     auto &ArgAA =
7105         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7106     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7107   }
7108 
7109   /// See AbstractAttribute::trackStatistics()
7110   void trackStatistics() const override {
7111     if (isAssumedReadNone())
7112       STATS_DECLTRACK_CSARG_ATTR(readnone)
7113     else if (isAssumedReadOnly())
7114       STATS_DECLTRACK_CSARG_ATTR(readonly)
7115     else if (isAssumedWriteOnly())
7116       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7117   }
7118 };
7119 
7120 /// Memory behavior attribute for a call site return position.
7121 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7122   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7123       : AAMemoryBehaviorFloating(IRP, A) {}
7124 
7125   /// See AbstractAttribute::initialize(...).
7126   void initialize(Attributor &A) override {
7127     AAMemoryBehaviorImpl::initialize(A);
7128     Function *F = getAssociatedFunction();
7129     if (!F || F->isDeclaration())
7130       indicatePessimisticFixpoint();
7131   }
7132 
7133   /// See AbstractAttribute::manifest(...).
7134   ChangeStatus manifest(Attributor &A) override {
7135     // We do not annotate returned values.
7136     return ChangeStatus::UNCHANGED;
7137   }
7138 
7139   /// See AbstractAttribute::trackStatistics()
7140   void trackStatistics() const override {}
7141 };
7142 
7143 /// An AA to represent the memory behavior function attributes.
7144 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7145   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7146       : AAMemoryBehaviorImpl(IRP, A) {}
7147 
7148   /// See AbstractAttribute::updateImpl(Attributor &A).
7149   virtual ChangeStatus updateImpl(Attributor &A) override;
7150 
7151   /// See AbstractAttribute::manifest(...).
7152   ChangeStatus manifest(Attributor &A) override {
7153     Function &F = cast<Function>(getAnchorValue());
7154     if (isAssumedReadNone()) {
7155       F.removeFnAttr(Attribute::ArgMemOnly);
7156       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7157       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7158     }
7159     return AAMemoryBehaviorImpl::manifest(A);
7160   }
7161 
7162   /// See AbstractAttribute::trackStatistics()
7163   void trackStatistics() const override {
7164     if (isAssumedReadNone())
7165       STATS_DECLTRACK_FN_ATTR(readnone)
7166     else if (isAssumedReadOnly())
7167       STATS_DECLTRACK_FN_ATTR(readonly)
7168     else if (isAssumedWriteOnly())
7169       STATS_DECLTRACK_FN_ATTR(writeonly)
7170   }
7171 };
7172 
7173 /// AAMemoryBehavior attribute for call sites.
7174 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7175   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7176       : AAMemoryBehaviorImpl(IRP, A) {}
7177 
7178   /// See AbstractAttribute::initialize(...).
7179   void initialize(Attributor &A) override {
7180     AAMemoryBehaviorImpl::initialize(A);
7181     Function *F = getAssociatedFunction();
7182     if (!F || F->isDeclaration())
7183       indicatePessimisticFixpoint();
7184   }
7185 
7186   /// See AbstractAttribute::updateImpl(...).
7187   ChangeStatus updateImpl(Attributor &A) override {
7188     // TODO: Once we have call site specific value information we can provide
7189     //       call site specific liveness liveness information and then it makes
7190     //       sense to specialize attributes for call sites arguments instead of
7191     //       redirecting requests to the callee argument.
7192     Function *F = getAssociatedFunction();
7193     const IRPosition &FnPos = IRPosition::function(*F);
7194     auto &FnAA =
7195         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7196     return clampStateAndIndicateChange(getState(), FnAA.getState());
7197   }
7198 
7199   /// See AbstractAttribute::trackStatistics()
7200   void trackStatistics() const override {
7201     if (isAssumedReadNone())
7202       STATS_DECLTRACK_CS_ATTR(readnone)
7203     else if (isAssumedReadOnly())
7204       STATS_DECLTRACK_CS_ATTR(readonly)
7205     else if (isAssumedWriteOnly())
7206       STATS_DECLTRACK_CS_ATTR(writeonly)
7207   }
7208 };
7209 
7210 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7211 
7212   // The current assumed state used to determine a change.
7213   auto AssumedState = getAssumed();
7214 
7215   auto CheckRWInst = [&](Instruction &I) {
7216     // If the instruction has an own memory behavior state, use it to restrict
7217     // the local state. No further analysis is required as the other memory
7218     // state is as optimistic as it gets.
7219     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7220       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7221           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7222       intersectAssumedBits(MemBehaviorAA.getAssumed());
7223       return !isAtFixpoint();
7224     }
7225 
7226     // Remove access kind modifiers if necessary.
7227     if (I.mayReadFromMemory())
7228       removeAssumedBits(NO_READS);
7229     if (I.mayWriteToMemory())
7230       removeAssumedBits(NO_WRITES);
7231     return !isAtFixpoint();
7232   };
7233 
7234   bool UsedAssumedInformation = false;
7235   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7236                                           UsedAssumedInformation))
7237     return indicatePessimisticFixpoint();
7238 
7239   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7240                                         : ChangeStatus::UNCHANGED;
7241 }
7242 
7243 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7244 
7245   const IRPosition &IRP = getIRPosition();
7246   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7247   AAMemoryBehavior::StateType &S = getState();
7248 
7249   // First, check the function scope. We take the known information and we avoid
7250   // work if the assumed information implies the current assumed information for
7251   // this attribute. This is a valid for all but byval arguments.
7252   Argument *Arg = IRP.getAssociatedArgument();
7253   AAMemoryBehavior::base_t FnMemAssumedState =
7254       AAMemoryBehavior::StateType::getWorstState();
7255   if (!Arg || !Arg->hasByValAttr()) {
7256     const auto &FnMemAA =
7257         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7258     FnMemAssumedState = FnMemAA.getAssumed();
7259     S.addKnownBits(FnMemAA.getKnown());
7260     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7261       return ChangeStatus::UNCHANGED;
7262   }
7263 
7264   // The current assumed state used to determine a change.
7265   auto AssumedState = S.getAssumed();
7266 
7267   // Make sure the value is not captured (except through "return"), if
7268   // it is, any information derived would be irrelevant anyway as we cannot
7269   // check the potential aliases introduced by the capture. However, no need
7270   // to fall back to anythign less optimistic than the function state.
7271   const auto &ArgNoCaptureAA =
7272       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7273   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7274     S.intersectAssumedBits(FnMemAssumedState);
7275     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7276                                           : ChangeStatus::UNCHANGED;
7277   }
7278 
7279   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7280   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7281     Instruction *UserI = cast<Instruction>(U.getUser());
7282     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7283                       << " \n");
7284 
7285     // Droppable users, e.g., llvm::assume does not actually perform any action.
7286     if (UserI->isDroppable())
7287       return true;
7288 
7289     // Check if the users of UserI should also be visited.
7290     Follow = followUsersOfUseIn(A, U, UserI);
7291 
7292     // If UserI might touch memory we analyze the use in detail.
7293     if (UserI->mayReadOrWriteMemory())
7294       analyzeUseIn(A, U, UserI);
7295 
7296     return !isAtFixpoint();
7297   };
7298 
7299   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7300     return indicatePessimisticFixpoint();
7301 
7302   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7303                                         : ChangeStatus::UNCHANGED;
7304 }
7305 
7306 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7307                                                   const Instruction *UserI) {
7308   // The loaded value is unrelated to the pointer argument, no need to
7309   // follow the users of the load.
7310   if (isa<LoadInst>(UserI))
7311     return false;
7312 
7313   // By default we follow all uses assuming UserI might leak information on U,
7314   // we have special handling for call sites operands though.
7315   const auto *CB = dyn_cast<CallBase>(UserI);
7316   if (!CB || !CB->isArgOperand(&U))
7317     return true;
7318 
7319   // If the use is a call argument known not to be captured, the users of
7320   // the call do not need to be visited because they have to be unrelated to
7321   // the input. Note that this check is not trivial even though we disallow
7322   // general capturing of the underlying argument. The reason is that the
7323   // call might the argument "through return", which we allow and for which we
7324   // need to check call users.
7325   if (U.get()->getType()->isPointerTy()) {
7326     unsigned ArgNo = CB->getArgOperandNo(&U);
7327     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7328         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7329     return !ArgNoCaptureAA.isAssumedNoCapture();
7330   }
7331 
7332   return true;
7333 }
7334 
7335 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7336                                             const Instruction *UserI) {
7337   assert(UserI->mayReadOrWriteMemory());
7338 
7339   switch (UserI->getOpcode()) {
7340   default:
7341     // TODO: Handle all atomics and other side-effect operations we know of.
7342     break;
7343   case Instruction::Load:
7344     // Loads cause the NO_READS property to disappear.
7345     removeAssumedBits(NO_READS);
7346     return;
7347 
7348   case Instruction::Store:
7349     // Stores cause the NO_WRITES property to disappear if the use is the
7350     // pointer operand. Note that while capturing was taken care of somewhere
7351     // else we need to deal with stores of the value that is not looked through.
7352     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7353       removeAssumedBits(NO_WRITES);
7354     else
7355       indicatePessimisticFixpoint();
7356     return;
7357 
7358   case Instruction::Call:
7359   case Instruction::CallBr:
7360   case Instruction::Invoke: {
7361     // For call sites we look at the argument memory behavior attribute (this
7362     // could be recursive!) in order to restrict our own state.
7363     const auto *CB = cast<CallBase>(UserI);
7364 
7365     // Give up on operand bundles.
7366     if (CB->isBundleOperand(&U)) {
7367       indicatePessimisticFixpoint();
7368       return;
7369     }
7370 
7371     // Calling a function does read the function pointer, maybe write it if the
7372     // function is self-modifying.
7373     if (CB->isCallee(&U)) {
7374       removeAssumedBits(NO_READS);
7375       break;
7376     }
7377 
7378     // Adjust the possible access behavior based on the information on the
7379     // argument.
7380     IRPosition Pos;
7381     if (U.get()->getType()->isPointerTy())
7382       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7383     else
7384       Pos = IRPosition::callsite_function(*CB);
7385     const auto &MemBehaviorAA =
7386         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7387     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7388     // and at least "known".
7389     intersectAssumedBits(MemBehaviorAA.getAssumed());
7390     return;
7391   }
7392   };
7393 
7394   // Generally, look at the "may-properties" and adjust the assumed state if we
7395   // did not trigger special handling before.
7396   if (UserI->mayReadFromMemory())
7397     removeAssumedBits(NO_READS);
7398   if (UserI->mayWriteToMemory())
7399     removeAssumedBits(NO_WRITES);
7400 }
7401 } // namespace
7402 
7403 /// -------------------- Memory Locations Attributes ---------------------------
7404 /// Includes read-none, argmemonly, inaccessiblememonly,
7405 /// inaccessiblememorargmemonly
7406 /// ----------------------------------------------------------------------------
7407 
7408 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7409     AAMemoryLocation::MemoryLocationsKind MLK) {
7410   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7411     return "all memory";
7412   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7413     return "no memory";
7414   std::string S = "memory:";
7415   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7416     S += "stack,";
7417   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7418     S += "constant,";
7419   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7420     S += "internal global,";
7421   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7422     S += "external global,";
7423   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7424     S += "argument,";
7425   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7426     S += "inaccessible,";
7427   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7428     S += "malloced,";
7429   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7430     S += "unknown,";
7431   S.pop_back();
7432   return S;
7433 }
7434 
7435 namespace {
7436 struct AAMemoryLocationImpl : public AAMemoryLocation {
7437 
7438   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7439       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7440     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7441       AccessKind2Accesses[u] = nullptr;
7442   }
7443 
7444   ~AAMemoryLocationImpl() {
7445     // The AccessSets are allocated via a BumpPtrAllocator, we call
7446     // the destructor manually.
7447     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7448       if (AccessKind2Accesses[u])
7449         AccessKind2Accesses[u]->~AccessSet();
7450   }
7451 
7452   /// See AbstractAttribute::initialize(...).
7453   void initialize(Attributor &A) override {
7454     intersectAssumedBits(BEST_STATE);
7455     getKnownStateFromValue(A, getIRPosition(), getState());
7456     AAMemoryLocation::initialize(A);
7457   }
7458 
7459   /// Return the memory behavior information encoded in the IR for \p IRP.
7460   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7461                                      BitIntegerState &State,
7462                                      bool IgnoreSubsumingPositions = false) {
7463     // For internal functions we ignore `argmemonly` and
7464     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7465     // constant propagation. It is unclear if this is the best way but it is
7466     // unlikely this will cause real performance problems. If we are deriving
7467     // attributes for the anchor function we even remove the attribute in
7468     // addition to ignoring it.
7469     bool UseArgMemOnly = true;
7470     Function *AnchorFn = IRP.getAnchorScope();
7471     if (AnchorFn && A.isRunOn(*AnchorFn))
7472       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7473 
7474     SmallVector<Attribute, 2> Attrs;
7475     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7476     for (const Attribute &Attr : Attrs) {
7477       switch (Attr.getKindAsEnum()) {
7478       case Attribute::ReadNone:
7479         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7480         break;
7481       case Attribute::InaccessibleMemOnly:
7482         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7483         break;
7484       case Attribute::ArgMemOnly:
7485         if (UseArgMemOnly)
7486           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7487         else
7488           IRP.removeAttrs({Attribute::ArgMemOnly});
7489         break;
7490       case Attribute::InaccessibleMemOrArgMemOnly:
7491         if (UseArgMemOnly)
7492           State.addKnownBits(inverseLocation(
7493               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7494         else
7495           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7496         break;
7497       default:
7498         llvm_unreachable("Unexpected attribute!");
7499       }
7500     }
7501   }
7502 
7503   /// See AbstractAttribute::getDeducedAttributes(...).
7504   void getDeducedAttributes(LLVMContext &Ctx,
7505                             SmallVectorImpl<Attribute> &Attrs) const override {
7506     assert(Attrs.size() == 0);
7507     if (isAssumedReadNone()) {
7508       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7509     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7510       if (isAssumedInaccessibleMemOnly())
7511         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7512       else if (isAssumedArgMemOnly())
7513         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7514       else if (isAssumedInaccessibleOrArgMemOnly())
7515         Attrs.push_back(
7516             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7517     }
7518     assert(Attrs.size() <= 1);
7519   }
7520 
7521   /// See AbstractAttribute::manifest(...).
7522   ChangeStatus manifest(Attributor &A) override {
7523     const IRPosition &IRP = getIRPosition();
7524 
7525     // Check if we would improve the existing attributes first.
7526     SmallVector<Attribute, 4> DeducedAttrs;
7527     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7528     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7529           return IRP.hasAttr(Attr.getKindAsEnum(),
7530                              /* IgnoreSubsumingPositions */ true);
7531         }))
7532       return ChangeStatus::UNCHANGED;
7533 
7534     // Clear existing attributes.
7535     IRP.removeAttrs(AttrKinds);
7536     if (isAssumedReadNone())
7537       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7538 
7539     // Use the generic manifest method.
7540     return IRAttribute::manifest(A);
7541   }
7542 
7543   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7544   bool checkForAllAccessesToMemoryKind(
7545       function_ref<bool(const Instruction *, const Value *, AccessKind,
7546                         MemoryLocationsKind)>
7547           Pred,
7548       MemoryLocationsKind RequestedMLK) const override {
7549     if (!isValidState())
7550       return false;
7551 
7552     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7553     if (AssumedMLK == NO_LOCATIONS)
7554       return true;
7555 
7556     unsigned Idx = 0;
7557     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7558          CurMLK *= 2, ++Idx) {
7559       if (CurMLK & RequestedMLK)
7560         continue;
7561 
7562       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7563         for (const AccessInfo &AI : *Accesses)
7564           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7565             return false;
7566     }
7567 
7568     return true;
7569   }
7570 
7571   ChangeStatus indicatePessimisticFixpoint() override {
7572     // If we give up and indicate a pessimistic fixpoint this instruction will
7573     // become an access for all potential access kinds:
7574     // TODO: Add pointers for argmemonly and globals to improve the results of
7575     //       checkForAllAccessesToMemoryKind.
7576     bool Changed = false;
7577     MemoryLocationsKind KnownMLK = getKnown();
7578     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7579     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7580       if (!(CurMLK & KnownMLK))
7581         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7582                                   getAccessKindFromInst(I));
7583     return AAMemoryLocation::indicatePessimisticFixpoint();
7584   }
7585 
7586 protected:
7587   /// Helper struct to tie together an instruction that has a read or write
7588   /// effect with the pointer it accesses (if any).
7589   struct AccessInfo {
7590 
7591     /// The instruction that caused the access.
7592     const Instruction *I;
7593 
7594     /// The base pointer that is accessed, or null if unknown.
7595     const Value *Ptr;
7596 
7597     /// The kind of access (read/write/read+write).
7598     AccessKind Kind;
7599 
7600     bool operator==(const AccessInfo &RHS) const {
7601       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7602     }
7603     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7604       if (LHS.I != RHS.I)
7605         return LHS.I < RHS.I;
7606       if (LHS.Ptr != RHS.Ptr)
7607         return LHS.Ptr < RHS.Ptr;
7608       if (LHS.Kind != RHS.Kind)
7609         return LHS.Kind < RHS.Kind;
7610       return false;
7611     }
7612   };
7613 
7614   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7615   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7616   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7617   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7618 
7619   /// Categorize the pointer arguments of CB that might access memory in
7620   /// AccessedLoc and update the state and access map accordingly.
7621   void
7622   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7623                                      AAMemoryLocation::StateType &AccessedLocs,
7624                                      bool &Changed);
7625 
7626   /// Return the kind(s) of location that may be accessed by \p V.
7627   AAMemoryLocation::MemoryLocationsKind
7628   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7629 
7630   /// Return the access kind as determined by \p I.
7631   AccessKind getAccessKindFromInst(const Instruction *I) {
7632     AccessKind AK = READ_WRITE;
7633     if (I) {
7634       AK = I->mayReadFromMemory() ? READ : NONE;
7635       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7636     }
7637     return AK;
7638   }
7639 
7640   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7641   /// an access of kind \p AK to a \p MLK memory location with the access
7642   /// pointer \p Ptr.
7643   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7644                                  MemoryLocationsKind MLK, const Instruction *I,
7645                                  const Value *Ptr, bool &Changed,
7646                                  AccessKind AK = READ_WRITE) {
7647 
7648     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7649     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7650     if (!Accesses)
7651       Accesses = new (Allocator) AccessSet();
7652     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7653     State.removeAssumedBits(MLK);
7654   }
7655 
7656   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7657   /// arguments, and update the state and access map accordingly.
7658   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7659                           AAMemoryLocation::StateType &State, bool &Changed);
7660 
7661   /// Used to allocate access sets.
7662   BumpPtrAllocator &Allocator;
7663 
7664   /// The set of IR attributes AAMemoryLocation deals with.
7665   static const Attribute::AttrKind AttrKinds[4];
7666 };
7667 
7668 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7669     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7670     Attribute::InaccessibleMemOrArgMemOnly};
7671 
7672 void AAMemoryLocationImpl::categorizePtrValue(
7673     Attributor &A, const Instruction &I, const Value &Ptr,
7674     AAMemoryLocation::StateType &State, bool &Changed) {
7675   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7676                     << Ptr << " ["
7677                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7678 
7679   SmallVector<Value *, 8> Objects;
7680   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7681     LLVM_DEBUG(
7682         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7683     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7684                               getAccessKindFromInst(&I));
7685     return;
7686   }
7687 
7688   for (Value *Obj : Objects) {
7689     // TODO: recognize the TBAA used for constant accesses.
7690     MemoryLocationsKind MLK = NO_LOCATIONS;
7691     if (isa<UndefValue>(Obj))
7692       continue;
7693     if (isa<Argument>(Obj)) {
7694       // TODO: For now we do not treat byval arguments as local copies performed
7695       // on the call edge, though, we should. To make that happen we need to
7696       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7697       // would also allow us to mark functions only accessing byval arguments as
7698       // readnone again, atguably their acceses have no effect outside of the
7699       // function, like accesses to allocas.
7700       MLK = NO_ARGUMENT_MEM;
7701     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7702       // Reading constant memory is not treated as a read "effect" by the
7703       // function attr pass so we won't neither. Constants defined by TBAA are
7704       // similar. (We know we do not write it because it is constant.)
7705       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7706         if (GVar->isConstant())
7707           continue;
7708 
7709       if (GV->hasLocalLinkage())
7710         MLK = NO_GLOBAL_INTERNAL_MEM;
7711       else
7712         MLK = NO_GLOBAL_EXTERNAL_MEM;
7713     } else if (isa<ConstantPointerNull>(Obj) &&
7714                !NullPointerIsDefined(getAssociatedFunction(),
7715                                      Ptr.getType()->getPointerAddressSpace())) {
7716       continue;
7717     } else if (isa<AllocaInst>(Obj)) {
7718       MLK = NO_LOCAL_MEM;
7719     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7720       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7721           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7722       if (NoAliasAA.isAssumedNoAlias())
7723         MLK = NO_MALLOCED_MEM;
7724       else
7725         MLK = NO_UNKOWN_MEM;
7726     } else {
7727       MLK = NO_UNKOWN_MEM;
7728     }
7729 
7730     assert(MLK != NO_LOCATIONS && "No location specified!");
7731     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7732                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7733                       << "\n");
7734     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7735                               getAccessKindFromInst(&I));
7736   }
7737 
7738   LLVM_DEBUG(
7739       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7740              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7741 }
7742 
7743 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7744     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7745     bool &Changed) {
7746   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7747 
7748     // Skip non-pointer arguments.
7749     const Value *ArgOp = CB.getArgOperand(ArgNo);
7750     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7751       continue;
7752 
7753     // Skip readnone arguments.
7754     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7755     const auto &ArgOpMemLocationAA =
7756         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7757 
7758     if (ArgOpMemLocationAA.isAssumedReadNone())
7759       continue;
7760 
7761     // Categorize potentially accessed pointer arguments as if there was an
7762     // access instruction with them as pointer.
7763     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7764   }
7765 }
7766 
7767 AAMemoryLocation::MemoryLocationsKind
7768 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7769                                                   bool &Changed) {
7770   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7771                     << I << "\n");
7772 
7773   AAMemoryLocation::StateType AccessedLocs;
7774   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7775 
7776   if (auto *CB = dyn_cast<CallBase>(&I)) {
7777 
7778     // First check if we assume any memory is access is visible.
7779     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7780         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7781     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7782                       << " [" << CBMemLocationAA << "]\n");
7783 
7784     if (CBMemLocationAA.isAssumedReadNone())
7785       return NO_LOCATIONS;
7786 
7787     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7788       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7789                                 Changed, getAccessKindFromInst(&I));
7790       return AccessedLocs.getAssumed();
7791     }
7792 
7793     uint32_t CBAssumedNotAccessedLocs =
7794         CBMemLocationAA.getAssumedNotAccessedLocation();
7795 
7796     // Set the argmemonly and global bit as we handle them separately below.
7797     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7798         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7799 
7800     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7801       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7802         continue;
7803       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7804                                 getAccessKindFromInst(&I));
7805     }
7806 
7807     // Now handle global memory if it might be accessed. This is slightly tricky
7808     // as NO_GLOBAL_MEM has multiple bits set.
7809     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7810     if (HasGlobalAccesses) {
7811       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7812                             AccessKind Kind, MemoryLocationsKind MLK) {
7813         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7814                                   getAccessKindFromInst(&I));
7815         return true;
7816       };
7817       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7818               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7819         return AccessedLocs.getWorstState();
7820     }
7821 
7822     LLVM_DEBUG(
7823         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7824                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7825 
7826     // Now handle argument memory if it might be accessed.
7827     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7828     if (HasArgAccesses)
7829       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7830 
7831     LLVM_DEBUG(
7832         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7833                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7834 
7835     return AccessedLocs.getAssumed();
7836   }
7837 
7838   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7839     LLVM_DEBUG(
7840         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7841                << I << " [" << *Ptr << "]\n");
7842     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7843     return AccessedLocs.getAssumed();
7844   }
7845 
7846   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7847                     << I << "\n");
7848   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7849                             getAccessKindFromInst(&I));
7850   return AccessedLocs.getAssumed();
7851 }
7852 
7853 /// An AA to represent the memory behavior function attributes.
7854 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7855   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7856       : AAMemoryLocationImpl(IRP, A) {}
7857 
7858   /// See AbstractAttribute::updateImpl(Attributor &A).
7859   virtual ChangeStatus updateImpl(Attributor &A) override {
7860 
7861     const auto &MemBehaviorAA =
7862         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7863     if (MemBehaviorAA.isAssumedReadNone()) {
7864       if (MemBehaviorAA.isKnownReadNone())
7865         return indicateOptimisticFixpoint();
7866       assert(isAssumedReadNone() &&
7867              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7868       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7869       return ChangeStatus::UNCHANGED;
7870     }
7871 
7872     // The current assumed state used to determine a change.
7873     auto AssumedState = getAssumed();
7874     bool Changed = false;
7875 
7876     auto CheckRWInst = [&](Instruction &I) {
7877       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7878       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7879                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7880       removeAssumedBits(inverseLocation(MLK, false, false));
7881       // Stop once only the valid bit set in the *not assumed location*, thus
7882       // once we don't actually exclude any memory locations in the state.
7883       return getAssumedNotAccessedLocation() != VALID_STATE;
7884     };
7885 
7886     bool UsedAssumedInformation = false;
7887     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7888                                             UsedAssumedInformation))
7889       return indicatePessimisticFixpoint();
7890 
7891     Changed |= AssumedState != getAssumed();
7892     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7893   }
7894 
7895   /// See AbstractAttribute::trackStatistics()
7896   void trackStatistics() const override {
7897     if (isAssumedReadNone())
7898       STATS_DECLTRACK_FN_ATTR(readnone)
7899     else if (isAssumedArgMemOnly())
7900       STATS_DECLTRACK_FN_ATTR(argmemonly)
7901     else if (isAssumedInaccessibleMemOnly())
7902       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7903     else if (isAssumedInaccessibleOrArgMemOnly())
7904       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7905   }
7906 };
7907 
7908 /// AAMemoryLocation attribute for call sites.
7909 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7910   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7911       : AAMemoryLocationImpl(IRP, A) {}
7912 
7913   /// See AbstractAttribute::initialize(...).
7914   void initialize(Attributor &A) override {
7915     AAMemoryLocationImpl::initialize(A);
7916     Function *F = getAssociatedFunction();
7917     if (!F || F->isDeclaration())
7918       indicatePessimisticFixpoint();
7919   }
7920 
7921   /// See AbstractAttribute::updateImpl(...).
7922   ChangeStatus updateImpl(Attributor &A) override {
7923     // TODO: Once we have call site specific value information we can provide
7924     //       call site specific liveness liveness information and then it makes
7925     //       sense to specialize attributes for call sites arguments instead of
7926     //       redirecting requests to the callee argument.
7927     Function *F = getAssociatedFunction();
7928     const IRPosition &FnPos = IRPosition::function(*F);
7929     auto &FnAA =
7930         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7931     bool Changed = false;
7932     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7933                           AccessKind Kind, MemoryLocationsKind MLK) {
7934       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7935                                 getAccessKindFromInst(I));
7936       return true;
7937     };
7938     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7939       return indicatePessimisticFixpoint();
7940     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7941   }
7942 
7943   /// See AbstractAttribute::trackStatistics()
7944   void trackStatistics() const override {
7945     if (isAssumedReadNone())
7946       STATS_DECLTRACK_CS_ATTR(readnone)
7947   }
7948 };
7949 
7950 /// ------------------ Value Constant Range Attribute -------------------------
7951 
7952 struct AAValueConstantRangeImpl : AAValueConstantRange {
7953   using StateType = IntegerRangeState;
7954   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7955       : AAValueConstantRange(IRP, A) {}
7956 
7957   /// See AbstractAttribute::initialize(..).
7958   void initialize(Attributor &A) override {
7959     if (A.hasSimplificationCallback(getIRPosition())) {
7960       indicatePessimisticFixpoint();
7961       return;
7962     }
7963 
7964     // Intersect a range given by SCEV.
7965     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7966 
7967     // Intersect a range given by LVI.
7968     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7969   }
7970 
7971   /// See AbstractAttribute::getAsStr().
7972   const std::string getAsStr() const override {
7973     std::string Str;
7974     llvm::raw_string_ostream OS(Str);
7975     OS << "range(" << getBitWidth() << ")<";
7976     getKnown().print(OS);
7977     OS << " / ";
7978     getAssumed().print(OS);
7979     OS << ">";
7980     return OS.str();
7981   }
7982 
7983   /// Helper function to get a SCEV expr for the associated value at program
7984   /// point \p I.
7985   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7986     if (!getAnchorScope())
7987       return nullptr;
7988 
7989     ScalarEvolution *SE =
7990         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7991             *getAnchorScope());
7992 
7993     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7994         *getAnchorScope());
7995 
7996     if (!SE || !LI)
7997       return nullptr;
7998 
7999     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8000     if (!I)
8001       return S;
8002 
8003     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8004   }
8005 
8006   /// Helper function to get a range from SCEV for the associated value at
8007   /// program point \p I.
8008   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8009                                          const Instruction *I = nullptr) const {
8010     if (!getAnchorScope())
8011       return getWorstState(getBitWidth());
8012 
8013     ScalarEvolution *SE =
8014         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8015             *getAnchorScope());
8016 
8017     const SCEV *S = getSCEV(A, I);
8018     if (!SE || !S)
8019       return getWorstState(getBitWidth());
8020 
8021     return SE->getUnsignedRange(S);
8022   }
8023 
8024   /// Helper function to get a range from LVI for the associated value at
8025   /// program point \p I.
8026   ConstantRange
8027   getConstantRangeFromLVI(Attributor &A,
8028                           const Instruction *CtxI = nullptr) const {
8029     if (!getAnchorScope())
8030       return getWorstState(getBitWidth());
8031 
8032     LazyValueInfo *LVI =
8033         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8034             *getAnchorScope());
8035 
8036     if (!LVI || !CtxI)
8037       return getWorstState(getBitWidth());
8038     return LVI->getConstantRange(&getAssociatedValue(),
8039                                  const_cast<Instruction *>(CtxI));
8040   }
8041 
8042   /// Return true if \p CtxI is valid for querying outside analyses.
8043   /// This basically makes sure we do not ask intra-procedural analysis
8044   /// about a context in the wrong function or a context that violates
8045   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8046   /// if the original context of this AA is OK or should be considered invalid.
8047   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8048                                                const Instruction *CtxI,
8049                                                bool AllowAACtxI) const {
8050     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8051       return false;
8052 
8053     // Our context might be in a different function, neither intra-procedural
8054     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8055     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8056       return false;
8057 
8058     // If the context is not dominated by the value there are paths to the
8059     // context that do not define the value. This cannot be handled by
8060     // LazyValueInfo so we need to bail.
8061     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8062       InformationCache &InfoCache = A.getInfoCache();
8063       const DominatorTree *DT =
8064           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8065               *I->getFunction());
8066       return DT && DT->dominates(I, CtxI);
8067     }
8068 
8069     return true;
8070   }
8071 
8072   /// See AAValueConstantRange::getKnownConstantRange(..).
8073   ConstantRange
8074   getKnownConstantRange(Attributor &A,
8075                         const Instruction *CtxI = nullptr) const override {
8076     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8077                                                  /* AllowAACtxI */ false))
8078       return getKnown();
8079 
8080     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8081     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8082     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8083   }
8084 
8085   /// See AAValueConstantRange::getAssumedConstantRange(..).
8086   ConstantRange
8087   getAssumedConstantRange(Attributor &A,
8088                           const Instruction *CtxI = nullptr) const override {
8089     // TODO: Make SCEV use Attributor assumption.
8090     //       We may be able to bound a variable range via assumptions in
8091     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8092     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8093     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8094                                                  /* AllowAACtxI */ false))
8095       return getAssumed();
8096 
8097     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8098     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8099     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8100   }
8101 
8102   /// Helper function to create MDNode for range metadata.
8103   static MDNode *
8104   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8105                             const ConstantRange &AssumedConstantRange) {
8106     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8107                                   Ty, AssumedConstantRange.getLower())),
8108                               ConstantAsMetadata::get(ConstantInt::get(
8109                                   Ty, AssumedConstantRange.getUpper()))};
8110     return MDNode::get(Ctx, LowAndHigh);
8111   }
8112 
8113   /// Return true if \p Assumed is included in \p KnownRanges.
8114   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8115 
8116     if (Assumed.isFullSet())
8117       return false;
8118 
8119     if (!KnownRanges)
8120       return true;
8121 
8122     // If multiple ranges are annotated in IR, we give up to annotate assumed
8123     // range for now.
8124 
8125     // TODO:  If there exists a known range which containts assumed range, we
8126     // can say assumed range is better.
8127     if (KnownRanges->getNumOperands() > 2)
8128       return false;
8129 
8130     ConstantInt *Lower =
8131         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8132     ConstantInt *Upper =
8133         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8134 
8135     ConstantRange Known(Lower->getValue(), Upper->getValue());
8136     return Known.contains(Assumed) && Known != Assumed;
8137   }
8138 
8139   /// Helper function to set range metadata.
8140   static bool
8141   setRangeMetadataIfisBetterRange(Instruction *I,
8142                                   const ConstantRange &AssumedConstantRange) {
8143     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8144     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8145       if (!AssumedConstantRange.isEmptySet()) {
8146         I->setMetadata(LLVMContext::MD_range,
8147                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8148                                                  AssumedConstantRange));
8149         return true;
8150       }
8151     }
8152     return false;
8153   }
8154 
8155   /// See AbstractAttribute::manifest()
8156   ChangeStatus manifest(Attributor &A) override {
8157     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8158     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8159     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8160 
8161     auto &V = getAssociatedValue();
8162     if (!AssumedConstantRange.isEmptySet() &&
8163         !AssumedConstantRange.isSingleElement()) {
8164       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8165         assert(I == getCtxI() && "Should not annotate an instruction which is "
8166                                  "not the context instruction");
8167         if (isa<CallInst>(I) || isa<LoadInst>(I))
8168           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8169             Changed = ChangeStatus::CHANGED;
8170       }
8171     }
8172 
8173     return Changed;
8174   }
8175 };
8176 
8177 struct AAValueConstantRangeArgument final
8178     : AAArgumentFromCallSiteArguments<
8179           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8180           true /* BridgeCallBaseContext */> {
8181   using Base = AAArgumentFromCallSiteArguments<
8182       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8183       true /* BridgeCallBaseContext */>;
8184   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8185       : Base(IRP, A) {}
8186 
8187   /// See AbstractAttribute::initialize(..).
8188   void initialize(Attributor &A) override {
8189     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8190       indicatePessimisticFixpoint();
8191     } else {
8192       Base::initialize(A);
8193     }
8194   }
8195 
8196   /// See AbstractAttribute::trackStatistics()
8197   void trackStatistics() const override {
8198     STATS_DECLTRACK_ARG_ATTR(value_range)
8199   }
8200 };
8201 
8202 struct AAValueConstantRangeReturned
8203     : AAReturnedFromReturnedValues<AAValueConstantRange,
8204                                    AAValueConstantRangeImpl,
8205                                    AAValueConstantRangeImpl::StateType,
8206                                    /* PropogateCallBaseContext */ true> {
8207   using Base =
8208       AAReturnedFromReturnedValues<AAValueConstantRange,
8209                                    AAValueConstantRangeImpl,
8210                                    AAValueConstantRangeImpl::StateType,
8211                                    /* PropogateCallBaseContext */ true>;
8212   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8213       : Base(IRP, A) {}
8214 
8215   /// See AbstractAttribute::initialize(...).
8216   void initialize(Attributor &A) override {}
8217 
8218   /// See AbstractAttribute::trackStatistics()
8219   void trackStatistics() const override {
8220     STATS_DECLTRACK_FNRET_ATTR(value_range)
8221   }
8222 };
8223 
8224 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8225   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8226       : AAValueConstantRangeImpl(IRP, A) {}
8227 
8228   /// See AbstractAttribute::initialize(...).
8229   void initialize(Attributor &A) override {
8230     AAValueConstantRangeImpl::initialize(A);
8231     if (isAtFixpoint())
8232       return;
8233 
8234     Value &V = getAssociatedValue();
8235 
8236     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8237       unionAssumed(ConstantRange(C->getValue()));
8238       indicateOptimisticFixpoint();
8239       return;
8240     }
8241 
8242     if (isa<UndefValue>(&V)) {
8243       // Collapse the undef state to 0.
8244       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8245       indicateOptimisticFixpoint();
8246       return;
8247     }
8248 
8249     if (isa<CallBase>(&V))
8250       return;
8251 
8252     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8253       return;
8254 
8255     // If it is a load instruction with range metadata, use it.
8256     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8257       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8258         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8259         return;
8260       }
8261 
8262     // We can work with PHI and select instruction as we traverse their operands
8263     // during update.
8264     if (isa<SelectInst>(V) || isa<PHINode>(V))
8265       return;
8266 
8267     // Otherwise we give up.
8268     indicatePessimisticFixpoint();
8269 
8270     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8271                       << getAssociatedValue() << "\n");
8272   }
8273 
8274   bool calculateBinaryOperator(
8275       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8276       const Instruction *CtxI,
8277       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8278     Value *LHS = BinOp->getOperand(0);
8279     Value *RHS = BinOp->getOperand(1);
8280 
8281     // Simplify the operands first.
8282     bool UsedAssumedInformation = false;
8283     const auto &SimplifiedLHS =
8284         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8285                                *this, UsedAssumedInformation);
8286     if (!SimplifiedLHS.hasValue())
8287       return true;
8288     if (!SimplifiedLHS.getValue())
8289       return false;
8290     LHS = *SimplifiedLHS;
8291 
8292     const auto &SimplifiedRHS =
8293         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8294                                *this, UsedAssumedInformation);
8295     if (!SimplifiedRHS.hasValue())
8296       return true;
8297     if (!SimplifiedRHS.getValue())
8298       return false;
8299     RHS = *SimplifiedRHS;
8300 
8301     // TODO: Allow non integers as well.
8302     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8303       return false;
8304 
8305     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8306         *this, IRPosition::value(*LHS, getCallBaseContext()),
8307         DepClassTy::REQUIRED);
8308     QuerriedAAs.push_back(&LHSAA);
8309     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8310 
8311     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8312         *this, IRPosition::value(*RHS, getCallBaseContext()),
8313         DepClassTy::REQUIRED);
8314     QuerriedAAs.push_back(&RHSAA);
8315     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8316 
8317     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8318 
8319     T.unionAssumed(AssumedRange);
8320 
8321     // TODO: Track a known state too.
8322 
8323     return T.isValidState();
8324   }
8325 
8326   bool calculateCastInst(
8327       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8328       const Instruction *CtxI,
8329       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8330     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8331     // TODO: Allow non integers as well.
8332     Value *OpV = CastI->getOperand(0);
8333 
8334     // Simplify the operand first.
8335     bool UsedAssumedInformation = false;
8336     const auto &SimplifiedOpV =
8337         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8338                                *this, UsedAssumedInformation);
8339     if (!SimplifiedOpV.hasValue())
8340       return true;
8341     if (!SimplifiedOpV.getValue())
8342       return false;
8343     OpV = *SimplifiedOpV;
8344 
8345     if (!OpV->getType()->isIntegerTy())
8346       return false;
8347 
8348     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8349         *this, IRPosition::value(*OpV, getCallBaseContext()),
8350         DepClassTy::REQUIRED);
8351     QuerriedAAs.push_back(&OpAA);
8352     T.unionAssumed(
8353         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8354     return T.isValidState();
8355   }
8356 
8357   bool
8358   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8359                    const Instruction *CtxI,
8360                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8361     Value *LHS = CmpI->getOperand(0);
8362     Value *RHS = CmpI->getOperand(1);
8363 
8364     // Simplify the operands first.
8365     bool UsedAssumedInformation = false;
8366     const auto &SimplifiedLHS =
8367         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8368                                *this, UsedAssumedInformation);
8369     if (!SimplifiedLHS.hasValue())
8370       return true;
8371     if (!SimplifiedLHS.getValue())
8372       return false;
8373     LHS = *SimplifiedLHS;
8374 
8375     const auto &SimplifiedRHS =
8376         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8377                                *this, UsedAssumedInformation);
8378     if (!SimplifiedRHS.hasValue())
8379       return true;
8380     if (!SimplifiedRHS.getValue())
8381       return false;
8382     RHS = *SimplifiedRHS;
8383 
8384     // TODO: Allow non integers as well.
8385     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8386       return false;
8387 
8388     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8389         *this, IRPosition::value(*LHS, getCallBaseContext()),
8390         DepClassTy::REQUIRED);
8391     QuerriedAAs.push_back(&LHSAA);
8392     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8393         *this, IRPosition::value(*RHS, getCallBaseContext()),
8394         DepClassTy::REQUIRED);
8395     QuerriedAAs.push_back(&RHSAA);
8396     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8397     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8398 
8399     // If one of them is empty set, we can't decide.
8400     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8401       return true;
8402 
8403     bool MustTrue = false, MustFalse = false;
8404 
8405     auto AllowedRegion =
8406         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8407 
8408     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8409       MustFalse = true;
8410 
8411     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8412       MustTrue = true;
8413 
8414     assert((!MustTrue || !MustFalse) &&
8415            "Either MustTrue or MustFalse should be false!");
8416 
8417     if (MustTrue)
8418       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8419     else if (MustFalse)
8420       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8421     else
8422       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8423 
8424     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8425                       << " " << RHSAA << "\n");
8426 
8427     // TODO: Track a known state too.
8428     return T.isValidState();
8429   }
8430 
8431   /// See AbstractAttribute::updateImpl(...).
8432   ChangeStatus updateImpl(Attributor &A) override {
8433     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8434                             IntegerRangeState &T, bool Stripped) -> bool {
8435       Instruction *I = dyn_cast<Instruction>(&V);
8436       if (!I || isa<CallBase>(I)) {
8437 
8438         // Simplify the operand first.
8439         bool UsedAssumedInformation = false;
8440         const auto &SimplifiedOpV =
8441             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8442                                    *this, UsedAssumedInformation);
8443         if (!SimplifiedOpV.hasValue())
8444           return true;
8445         if (!SimplifiedOpV.getValue())
8446           return false;
8447         Value *VPtr = *SimplifiedOpV;
8448 
8449         // If the value is not instruction, we query AA to Attributor.
8450         const auto &AA = A.getAAFor<AAValueConstantRange>(
8451             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8452             DepClassTy::REQUIRED);
8453 
8454         // Clamp operator is not used to utilize a program point CtxI.
8455         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8456 
8457         return T.isValidState();
8458       }
8459 
8460       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8461       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8462         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8463           return false;
8464       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8465         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8466           return false;
8467       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8468         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8469           return false;
8470       } else {
8471         // Give up with other instructions.
8472         // TODO: Add other instructions
8473 
8474         T.indicatePessimisticFixpoint();
8475         return false;
8476       }
8477 
8478       // Catch circular reasoning in a pessimistic way for now.
8479       // TODO: Check how the range evolves and if we stripped anything, see also
8480       //       AADereferenceable or AAAlign for similar situations.
8481       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8482         if (QueriedAA != this)
8483           continue;
8484         // If we are in a stady state we do not need to worry.
8485         if (T.getAssumed() == getState().getAssumed())
8486           continue;
8487         T.indicatePessimisticFixpoint();
8488       }
8489 
8490       return T.isValidState();
8491     };
8492 
8493     IntegerRangeState T(getBitWidth());
8494 
8495     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8496                                                   VisitValueCB, getCtxI(),
8497                                                   /* UseValueSimplify */ false))
8498       return indicatePessimisticFixpoint();
8499 
8500     return clampStateAndIndicateChange(getState(), T);
8501   }
8502 
8503   /// See AbstractAttribute::trackStatistics()
8504   void trackStatistics() const override {
8505     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8506   }
8507 };
8508 
8509 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8510   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8511       : AAValueConstantRangeImpl(IRP, A) {}
8512 
8513   /// See AbstractAttribute::initialize(...).
8514   ChangeStatus updateImpl(Attributor &A) override {
8515     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8516                      "not be called");
8517   }
8518 
8519   /// See AbstractAttribute::trackStatistics()
8520   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8521 };
8522 
8523 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8524   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8525       : AAValueConstantRangeFunction(IRP, A) {}
8526 
8527   /// See AbstractAttribute::trackStatistics()
8528   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8529 };
8530 
8531 struct AAValueConstantRangeCallSiteReturned
8532     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8533                                      AAValueConstantRangeImpl,
8534                                      AAValueConstantRangeImpl::StateType,
8535                                      /* IntroduceCallBaseContext */ true> {
8536   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8537       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8538                                        AAValueConstantRangeImpl,
8539                                        AAValueConstantRangeImpl::StateType,
8540                                        /* IntroduceCallBaseContext */ true>(IRP,
8541                                                                             A) {
8542   }
8543 
8544   /// See AbstractAttribute::initialize(...).
8545   void initialize(Attributor &A) override {
8546     // If it is a load instruction with range metadata, use the metadata.
8547     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8548       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8549         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8550 
8551     AAValueConstantRangeImpl::initialize(A);
8552   }
8553 
8554   /// See AbstractAttribute::trackStatistics()
8555   void trackStatistics() const override {
8556     STATS_DECLTRACK_CSRET_ATTR(value_range)
8557   }
8558 };
8559 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8560   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8561       : AAValueConstantRangeFloating(IRP, A) {}
8562 
8563   /// See AbstractAttribute::manifest()
8564   ChangeStatus manifest(Attributor &A) override {
8565     return ChangeStatus::UNCHANGED;
8566   }
8567 
8568   /// See AbstractAttribute::trackStatistics()
8569   void trackStatistics() const override {
8570     STATS_DECLTRACK_CSARG_ATTR(value_range)
8571   }
8572 };
8573 
8574 /// ------------------ Potential Values Attribute -------------------------
8575 
8576 struct AAPotentialValuesImpl : AAPotentialValues {
8577   using StateType = PotentialConstantIntValuesState;
8578 
8579   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8580       : AAPotentialValues(IRP, A) {}
8581 
8582   /// See AbstractAttribute::initialize(..).
8583   void initialize(Attributor &A) override {
8584     if (A.hasSimplificationCallback(getIRPosition()))
8585       indicatePessimisticFixpoint();
8586     else
8587       AAPotentialValues::initialize(A);
8588   }
8589 
8590   /// See AbstractAttribute::getAsStr().
8591   const std::string getAsStr() const override {
8592     std::string Str;
8593     llvm::raw_string_ostream OS(Str);
8594     OS << getState();
8595     return OS.str();
8596   }
8597 
8598   /// See AbstractAttribute::updateImpl(...).
8599   ChangeStatus updateImpl(Attributor &A) override {
8600     return indicatePessimisticFixpoint();
8601   }
8602 };
8603 
8604 struct AAPotentialValuesArgument final
8605     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8606                                       PotentialConstantIntValuesState> {
8607   using Base =
8608       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8609                                       PotentialConstantIntValuesState>;
8610   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8611       : Base(IRP, A) {}
8612 
8613   /// See AbstractAttribute::initialize(..).
8614   void initialize(Attributor &A) override {
8615     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8616       indicatePessimisticFixpoint();
8617     } else {
8618       Base::initialize(A);
8619     }
8620   }
8621 
8622   /// See AbstractAttribute::trackStatistics()
8623   void trackStatistics() const override {
8624     STATS_DECLTRACK_ARG_ATTR(potential_values)
8625   }
8626 };
8627 
8628 struct AAPotentialValuesReturned
8629     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8630   using Base =
8631       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8632   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8633       : Base(IRP, A) {}
8634 
8635   /// See AbstractAttribute::trackStatistics()
8636   void trackStatistics() const override {
8637     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8638   }
8639 };
8640 
8641 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8642   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8643       : AAPotentialValuesImpl(IRP, A) {}
8644 
8645   /// See AbstractAttribute::initialize(..).
8646   void initialize(Attributor &A) override {
8647     AAPotentialValuesImpl::initialize(A);
8648     if (isAtFixpoint())
8649       return;
8650 
8651     Value &V = getAssociatedValue();
8652 
8653     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8654       unionAssumed(C->getValue());
8655       indicateOptimisticFixpoint();
8656       return;
8657     }
8658 
8659     if (isa<UndefValue>(&V)) {
8660       unionAssumedWithUndef();
8661       indicateOptimisticFixpoint();
8662       return;
8663     }
8664 
8665     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8666       return;
8667 
8668     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8669       return;
8670 
8671     indicatePessimisticFixpoint();
8672 
8673     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8674                       << getAssociatedValue() << "\n");
8675   }
8676 
8677   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8678                                 const APInt &RHS) {
8679     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8680   }
8681 
8682   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8683                                  uint32_t ResultBitWidth) {
8684     Instruction::CastOps CastOp = CI->getOpcode();
8685     switch (CastOp) {
8686     default:
8687       llvm_unreachable("unsupported or not integer cast");
8688     case Instruction::Trunc:
8689       return Src.trunc(ResultBitWidth);
8690     case Instruction::SExt:
8691       return Src.sext(ResultBitWidth);
8692     case Instruction::ZExt:
8693       return Src.zext(ResultBitWidth);
8694     case Instruction::BitCast:
8695       return Src;
8696     }
8697   }
8698 
8699   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8700                                        const APInt &LHS, const APInt &RHS,
8701                                        bool &SkipOperation, bool &Unsupported) {
8702     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8703     // Unsupported is set to true when the binary operator is not supported.
8704     // SkipOperation is set to true when UB occur with the given operand pair
8705     // (LHS, RHS).
8706     // TODO: we should look at nsw and nuw keywords to handle operations
8707     //       that create poison or undef value.
8708     switch (BinOpcode) {
8709     default:
8710       Unsupported = true;
8711       return LHS;
8712     case Instruction::Add:
8713       return LHS + RHS;
8714     case Instruction::Sub:
8715       return LHS - RHS;
8716     case Instruction::Mul:
8717       return LHS * RHS;
8718     case Instruction::UDiv:
8719       if (RHS.isZero()) {
8720         SkipOperation = true;
8721         return LHS;
8722       }
8723       return LHS.udiv(RHS);
8724     case Instruction::SDiv:
8725       if (RHS.isZero()) {
8726         SkipOperation = true;
8727         return LHS;
8728       }
8729       return LHS.sdiv(RHS);
8730     case Instruction::URem:
8731       if (RHS.isZero()) {
8732         SkipOperation = true;
8733         return LHS;
8734       }
8735       return LHS.urem(RHS);
8736     case Instruction::SRem:
8737       if (RHS.isZero()) {
8738         SkipOperation = true;
8739         return LHS;
8740       }
8741       return LHS.srem(RHS);
8742     case Instruction::Shl:
8743       return LHS.shl(RHS);
8744     case Instruction::LShr:
8745       return LHS.lshr(RHS);
8746     case Instruction::AShr:
8747       return LHS.ashr(RHS);
8748     case Instruction::And:
8749       return LHS & RHS;
8750     case Instruction::Or:
8751       return LHS | RHS;
8752     case Instruction::Xor:
8753       return LHS ^ RHS;
8754     }
8755   }
8756 
8757   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8758                                            const APInt &LHS, const APInt &RHS) {
8759     bool SkipOperation = false;
8760     bool Unsupported = false;
8761     APInt Result =
8762         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8763     if (Unsupported)
8764       return false;
8765     // If SkipOperation is true, we can ignore this operand pair (L, R).
8766     if (!SkipOperation)
8767       unionAssumed(Result);
8768     return isValidState();
8769   }
8770 
8771   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8772     auto AssumedBefore = getAssumed();
8773     Value *LHS = ICI->getOperand(0);
8774     Value *RHS = ICI->getOperand(1);
8775 
8776     // Simplify the operands first.
8777     bool UsedAssumedInformation = false;
8778     const auto &SimplifiedLHS =
8779         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8780                                *this, UsedAssumedInformation);
8781     if (!SimplifiedLHS.hasValue())
8782       return ChangeStatus::UNCHANGED;
8783     if (!SimplifiedLHS.getValue())
8784       return indicatePessimisticFixpoint();
8785     LHS = *SimplifiedLHS;
8786 
8787     const auto &SimplifiedRHS =
8788         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8789                                *this, UsedAssumedInformation);
8790     if (!SimplifiedRHS.hasValue())
8791       return ChangeStatus::UNCHANGED;
8792     if (!SimplifiedRHS.getValue())
8793       return indicatePessimisticFixpoint();
8794     RHS = *SimplifiedRHS;
8795 
8796     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8797       return indicatePessimisticFixpoint();
8798 
8799     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8800                                                 DepClassTy::REQUIRED);
8801     if (!LHSAA.isValidState())
8802       return indicatePessimisticFixpoint();
8803 
8804     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8805                                                 DepClassTy::REQUIRED);
8806     if (!RHSAA.isValidState())
8807       return indicatePessimisticFixpoint();
8808 
8809     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8810     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8811 
8812     // TODO: make use of undef flag to limit potential values aggressively.
8813     bool MaybeTrue = false, MaybeFalse = false;
8814     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8815     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8816       // The result of any comparison between undefs can be soundly replaced
8817       // with undef.
8818       unionAssumedWithUndef();
8819     } else if (LHSAA.undefIsContained()) {
8820       for (const APInt &R : RHSAAPVS) {
8821         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8822         MaybeTrue |= CmpResult;
8823         MaybeFalse |= !CmpResult;
8824         if (MaybeTrue & MaybeFalse)
8825           return indicatePessimisticFixpoint();
8826       }
8827     } else if (RHSAA.undefIsContained()) {
8828       for (const APInt &L : LHSAAPVS) {
8829         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8830         MaybeTrue |= CmpResult;
8831         MaybeFalse |= !CmpResult;
8832         if (MaybeTrue & MaybeFalse)
8833           return indicatePessimisticFixpoint();
8834       }
8835     } else {
8836       for (const APInt &L : LHSAAPVS) {
8837         for (const APInt &R : RHSAAPVS) {
8838           bool CmpResult = calculateICmpInst(ICI, L, R);
8839           MaybeTrue |= CmpResult;
8840           MaybeFalse |= !CmpResult;
8841           if (MaybeTrue & MaybeFalse)
8842             return indicatePessimisticFixpoint();
8843         }
8844       }
8845     }
8846     if (MaybeTrue)
8847       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8848     if (MaybeFalse)
8849       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8850     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8851                                          : ChangeStatus::CHANGED;
8852   }
8853 
8854   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8855     auto AssumedBefore = getAssumed();
8856     Value *LHS = SI->getTrueValue();
8857     Value *RHS = SI->getFalseValue();
8858 
8859     // Simplify the operands first.
8860     bool UsedAssumedInformation = false;
8861     const auto &SimplifiedLHS =
8862         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8863                                *this, UsedAssumedInformation);
8864     if (!SimplifiedLHS.hasValue())
8865       return ChangeStatus::UNCHANGED;
8866     if (!SimplifiedLHS.getValue())
8867       return indicatePessimisticFixpoint();
8868     LHS = *SimplifiedLHS;
8869 
8870     const auto &SimplifiedRHS =
8871         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8872                                *this, UsedAssumedInformation);
8873     if (!SimplifiedRHS.hasValue())
8874       return ChangeStatus::UNCHANGED;
8875     if (!SimplifiedRHS.getValue())
8876       return indicatePessimisticFixpoint();
8877     RHS = *SimplifiedRHS;
8878 
8879     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8880       return indicatePessimisticFixpoint();
8881 
8882     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8883                                                   UsedAssumedInformation);
8884 
8885     // Check if we only need one operand.
8886     bool OnlyLeft = false, OnlyRight = false;
8887     if (C.hasValue() && *C && (*C)->isOneValue())
8888       OnlyLeft = true;
8889     else if (C.hasValue() && *C && (*C)->isZeroValue())
8890       OnlyRight = true;
8891 
8892     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8893     if (!OnlyRight) {
8894       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8895                                              DepClassTy::REQUIRED);
8896       if (!LHSAA->isValidState())
8897         return indicatePessimisticFixpoint();
8898     }
8899     if (!OnlyLeft) {
8900       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8901                                              DepClassTy::REQUIRED);
8902       if (!RHSAA->isValidState())
8903         return indicatePessimisticFixpoint();
8904     }
8905 
8906     if (!LHSAA || !RHSAA) {
8907       // select (true/false), lhs, rhs
8908       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8909 
8910       if (OpAA->undefIsContained())
8911         unionAssumedWithUndef();
8912       else
8913         unionAssumed(*OpAA);
8914 
8915     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8916       // select i1 *, undef , undef => undef
8917       unionAssumedWithUndef();
8918     } else {
8919       unionAssumed(*LHSAA);
8920       unionAssumed(*RHSAA);
8921     }
8922     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8923                                          : ChangeStatus::CHANGED;
8924   }
8925 
8926   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8927     auto AssumedBefore = getAssumed();
8928     if (!CI->isIntegerCast())
8929       return indicatePessimisticFixpoint();
8930     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8931     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8932     Value *Src = CI->getOperand(0);
8933 
8934     // Simplify the operand first.
8935     bool UsedAssumedInformation = false;
8936     const auto &SimplifiedSrc =
8937         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8938                                *this, UsedAssumedInformation);
8939     if (!SimplifiedSrc.hasValue())
8940       return ChangeStatus::UNCHANGED;
8941     if (!SimplifiedSrc.getValue())
8942       return indicatePessimisticFixpoint();
8943     Src = *SimplifiedSrc;
8944 
8945     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8946                                                 DepClassTy::REQUIRED);
8947     if (!SrcAA.isValidState())
8948       return indicatePessimisticFixpoint();
8949     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8950     if (SrcAA.undefIsContained())
8951       unionAssumedWithUndef();
8952     else {
8953       for (const APInt &S : SrcAAPVS) {
8954         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8955         unionAssumed(T);
8956       }
8957     }
8958     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8959                                          : ChangeStatus::CHANGED;
8960   }
8961 
8962   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8963     auto AssumedBefore = getAssumed();
8964     Value *LHS = BinOp->getOperand(0);
8965     Value *RHS = BinOp->getOperand(1);
8966 
8967     // Simplify the operands first.
8968     bool UsedAssumedInformation = false;
8969     const auto &SimplifiedLHS =
8970         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8971                                *this, UsedAssumedInformation);
8972     if (!SimplifiedLHS.hasValue())
8973       return ChangeStatus::UNCHANGED;
8974     if (!SimplifiedLHS.getValue())
8975       return indicatePessimisticFixpoint();
8976     LHS = *SimplifiedLHS;
8977 
8978     const auto &SimplifiedRHS =
8979         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8980                                *this, UsedAssumedInformation);
8981     if (!SimplifiedRHS.hasValue())
8982       return ChangeStatus::UNCHANGED;
8983     if (!SimplifiedRHS.getValue())
8984       return indicatePessimisticFixpoint();
8985     RHS = *SimplifiedRHS;
8986 
8987     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8988       return indicatePessimisticFixpoint();
8989 
8990     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8991                                                 DepClassTy::REQUIRED);
8992     if (!LHSAA.isValidState())
8993       return indicatePessimisticFixpoint();
8994 
8995     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8996                                                 DepClassTy::REQUIRED);
8997     if (!RHSAA.isValidState())
8998       return indicatePessimisticFixpoint();
8999 
9000     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9001     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9002     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9003 
9004     // TODO: make use of undef flag to limit potential values aggressively.
9005     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9006       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9007         return indicatePessimisticFixpoint();
9008     } else if (LHSAA.undefIsContained()) {
9009       for (const APInt &R : RHSAAPVS) {
9010         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9011           return indicatePessimisticFixpoint();
9012       }
9013     } else if (RHSAA.undefIsContained()) {
9014       for (const APInt &L : LHSAAPVS) {
9015         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9016           return indicatePessimisticFixpoint();
9017       }
9018     } else {
9019       for (const APInt &L : LHSAAPVS) {
9020         for (const APInt &R : RHSAAPVS) {
9021           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9022             return indicatePessimisticFixpoint();
9023         }
9024       }
9025     }
9026     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9027                                          : ChangeStatus::CHANGED;
9028   }
9029 
9030   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9031     auto AssumedBefore = getAssumed();
9032     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9033       Value *IncomingValue = PHI->getIncomingValue(u);
9034 
9035       // Simplify the operand first.
9036       bool UsedAssumedInformation = false;
9037       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9038           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9039           UsedAssumedInformation);
9040       if (!SimplifiedIncomingValue.hasValue())
9041         continue;
9042       if (!SimplifiedIncomingValue.getValue())
9043         return indicatePessimisticFixpoint();
9044       IncomingValue = *SimplifiedIncomingValue;
9045 
9046       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9047           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9048       if (!PotentialValuesAA.isValidState())
9049         return indicatePessimisticFixpoint();
9050       if (PotentialValuesAA.undefIsContained())
9051         unionAssumedWithUndef();
9052       else
9053         unionAssumed(PotentialValuesAA.getAssumed());
9054     }
9055     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9056                                          : ChangeStatus::CHANGED;
9057   }
9058 
9059   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9060     if (!L.getType()->isIntegerTy())
9061       return indicatePessimisticFixpoint();
9062 
9063     auto Union = [&](Value &V) {
9064       if (isa<UndefValue>(V)) {
9065         unionAssumedWithUndef();
9066         return true;
9067       }
9068       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9069         unionAssumed(CI->getValue());
9070         return true;
9071       }
9072       return false;
9073     };
9074     auto AssumedBefore = getAssumed();
9075 
9076     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9077       return indicatePessimisticFixpoint();
9078 
9079     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9080                                          : ChangeStatus::CHANGED;
9081   }
9082 
9083   /// See AbstractAttribute::updateImpl(...).
9084   ChangeStatus updateImpl(Attributor &A) override {
9085     Value &V = getAssociatedValue();
9086     Instruction *I = dyn_cast<Instruction>(&V);
9087 
9088     if (auto *ICI = dyn_cast<ICmpInst>(I))
9089       return updateWithICmpInst(A, ICI);
9090 
9091     if (auto *SI = dyn_cast<SelectInst>(I))
9092       return updateWithSelectInst(A, SI);
9093 
9094     if (auto *CI = dyn_cast<CastInst>(I))
9095       return updateWithCastInst(A, CI);
9096 
9097     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9098       return updateWithBinaryOperator(A, BinOp);
9099 
9100     if (auto *PHI = dyn_cast<PHINode>(I))
9101       return updateWithPHINode(A, PHI);
9102 
9103     if (auto *L = dyn_cast<LoadInst>(I))
9104       return updateWithLoad(A, *L);
9105 
9106     return indicatePessimisticFixpoint();
9107   }
9108 
9109   /// See AbstractAttribute::trackStatistics()
9110   void trackStatistics() const override {
9111     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9112   }
9113 };
9114 
9115 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9116   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9117       : AAPotentialValuesImpl(IRP, A) {}
9118 
9119   /// See AbstractAttribute::initialize(...).
9120   ChangeStatus updateImpl(Attributor &A) override {
9121     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9122                      "not be called");
9123   }
9124 
9125   /// See AbstractAttribute::trackStatistics()
9126   void trackStatistics() const override {
9127     STATS_DECLTRACK_FN_ATTR(potential_values)
9128   }
9129 };
9130 
9131 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9132   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9133       : AAPotentialValuesFunction(IRP, A) {}
9134 
9135   /// See AbstractAttribute::trackStatistics()
9136   void trackStatistics() const override {
9137     STATS_DECLTRACK_CS_ATTR(potential_values)
9138   }
9139 };
9140 
9141 struct AAPotentialValuesCallSiteReturned
9142     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9143   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9144       : AACallSiteReturnedFromReturned<AAPotentialValues,
9145                                        AAPotentialValuesImpl>(IRP, A) {}
9146 
9147   /// See AbstractAttribute::trackStatistics()
9148   void trackStatistics() const override {
9149     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9150   }
9151 };
9152 
9153 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9154   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9155       : AAPotentialValuesFloating(IRP, A) {}
9156 
9157   /// See AbstractAttribute::initialize(..).
9158   void initialize(Attributor &A) override {
9159     AAPotentialValuesImpl::initialize(A);
9160     if (isAtFixpoint())
9161       return;
9162 
9163     Value &V = getAssociatedValue();
9164 
9165     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9166       unionAssumed(C->getValue());
9167       indicateOptimisticFixpoint();
9168       return;
9169     }
9170 
9171     if (isa<UndefValue>(&V)) {
9172       unionAssumedWithUndef();
9173       indicateOptimisticFixpoint();
9174       return;
9175     }
9176   }
9177 
9178   /// See AbstractAttribute::updateImpl(...).
9179   ChangeStatus updateImpl(Attributor &A) override {
9180     Value &V = getAssociatedValue();
9181     auto AssumedBefore = getAssumed();
9182     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9183                                              DepClassTy::REQUIRED);
9184     const auto &S = AA.getAssumed();
9185     unionAssumed(S);
9186     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9187                                          : ChangeStatus::CHANGED;
9188   }
9189 
9190   /// See AbstractAttribute::trackStatistics()
9191   void trackStatistics() const override {
9192     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9193   }
9194 };
9195 
9196 /// ------------------------ NoUndef Attribute ---------------------------------
9197 struct AANoUndefImpl : AANoUndef {
9198   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9199 
9200   /// See AbstractAttribute::initialize(...).
9201   void initialize(Attributor &A) override {
9202     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9203       indicateOptimisticFixpoint();
9204       return;
9205     }
9206     Value &V = getAssociatedValue();
9207     if (isa<UndefValue>(V))
9208       indicatePessimisticFixpoint();
9209     else if (isa<FreezeInst>(V))
9210       indicateOptimisticFixpoint();
9211     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9212              isGuaranteedNotToBeUndefOrPoison(&V))
9213       indicateOptimisticFixpoint();
9214     else
9215       AANoUndef::initialize(A);
9216   }
9217 
9218   /// See followUsesInMBEC
9219   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9220                        AANoUndef::StateType &State) {
9221     const Value *UseV = U->get();
9222     const DominatorTree *DT = nullptr;
9223     AssumptionCache *AC = nullptr;
9224     InformationCache &InfoCache = A.getInfoCache();
9225     if (Function *F = getAnchorScope()) {
9226       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9227       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9228     }
9229     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9230     bool TrackUse = false;
9231     // Track use for instructions which must produce undef or poison bits when
9232     // at least one operand contains such bits.
9233     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9234       TrackUse = true;
9235     return TrackUse;
9236   }
9237 
9238   /// See AbstractAttribute::getAsStr().
9239   const std::string getAsStr() const override {
9240     return getAssumed() ? "noundef" : "may-undef-or-poison";
9241   }
9242 
9243   ChangeStatus manifest(Attributor &A) override {
9244     // We don't manifest noundef attribute for dead positions because the
9245     // associated values with dead positions would be replaced with undef
9246     // values.
9247     bool UsedAssumedInformation = false;
9248     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9249                         UsedAssumedInformation))
9250       return ChangeStatus::UNCHANGED;
9251     // A position whose simplified value does not have any value is
9252     // considered to be dead. We don't manifest noundef in such positions for
9253     // the same reason above.
9254     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9255              .hasValue())
9256       return ChangeStatus::UNCHANGED;
9257     return AANoUndef::manifest(A);
9258   }
9259 };
9260 
9261 struct AANoUndefFloating : public AANoUndefImpl {
9262   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9263       : AANoUndefImpl(IRP, A) {}
9264 
9265   /// See AbstractAttribute::initialize(...).
9266   void initialize(Attributor &A) override {
9267     AANoUndefImpl::initialize(A);
9268     if (!getState().isAtFixpoint())
9269       if (Instruction *CtxI = getCtxI())
9270         followUsesInMBEC(*this, A, getState(), *CtxI);
9271   }
9272 
9273   /// See AbstractAttribute::updateImpl(...).
9274   ChangeStatus updateImpl(Attributor &A) override {
9275     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9276                             AANoUndef::StateType &T, bool Stripped) -> bool {
9277       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9278                                              DepClassTy::REQUIRED);
9279       if (!Stripped && this == &AA) {
9280         T.indicatePessimisticFixpoint();
9281       } else {
9282         const AANoUndef::StateType &S =
9283             static_cast<const AANoUndef::StateType &>(AA.getState());
9284         T ^= S;
9285       }
9286       return T.isValidState();
9287     };
9288 
9289     StateType T;
9290     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9291                                           VisitValueCB, getCtxI()))
9292       return indicatePessimisticFixpoint();
9293 
9294     return clampStateAndIndicateChange(getState(), T);
9295   }
9296 
9297   /// See AbstractAttribute::trackStatistics()
9298   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9299 };
9300 
9301 struct AANoUndefReturned final
9302     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9303   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9304       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9305 
9306   /// See AbstractAttribute::trackStatistics()
9307   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9308 };
9309 
9310 struct AANoUndefArgument final
9311     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9312   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9313       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9314 
9315   /// See AbstractAttribute::trackStatistics()
9316   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9317 };
9318 
9319 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9320   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9321       : AANoUndefFloating(IRP, A) {}
9322 
9323   /// See AbstractAttribute::trackStatistics()
9324   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9325 };
9326 
9327 struct AANoUndefCallSiteReturned final
9328     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9329   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9330       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9331 
9332   /// See AbstractAttribute::trackStatistics()
9333   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9334 };
9335 
9336 struct AACallEdgesImpl : public AACallEdges {
9337   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9338 
9339   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9340     return CalledFunctions;
9341   }
9342 
9343   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9344 
9345   virtual bool hasNonAsmUnknownCallee() const override {
9346     return HasUnknownCalleeNonAsm;
9347   }
9348 
9349   const std::string getAsStr() const override {
9350     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9351            std::to_string(CalledFunctions.size()) + "]";
9352   }
9353 
9354   void trackStatistics() const override {}
9355 
9356 protected:
9357   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9358     if (CalledFunctions.insert(Fn)) {
9359       Change = ChangeStatus::CHANGED;
9360       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9361                         << "\n");
9362     }
9363   }
9364 
9365   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9366     if (!HasUnknownCallee)
9367       Change = ChangeStatus::CHANGED;
9368     if (NonAsm && !HasUnknownCalleeNonAsm)
9369       Change = ChangeStatus::CHANGED;
9370     HasUnknownCalleeNonAsm |= NonAsm;
9371     HasUnknownCallee = true;
9372   }
9373 
9374 private:
9375   /// Optimistic set of functions that might be called by this position.
9376   SetVector<Function *> CalledFunctions;
9377 
9378   /// Is there any call with a unknown callee.
9379   bool HasUnknownCallee = false;
9380 
9381   /// Is there any call with a unknown callee, excluding any inline asm.
9382   bool HasUnknownCalleeNonAsm = false;
9383 };
9384 
9385 struct AACallEdgesCallSite : public AACallEdgesImpl {
9386   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9387       : AACallEdgesImpl(IRP, A) {}
9388   /// See AbstractAttribute::updateImpl(...).
9389   ChangeStatus updateImpl(Attributor &A) override {
9390     ChangeStatus Change = ChangeStatus::UNCHANGED;
9391 
9392     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9393                           bool Stripped) -> bool {
9394       if (Function *Fn = dyn_cast<Function>(&V)) {
9395         addCalledFunction(Fn, Change);
9396       } else {
9397         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9398         setHasUnknownCallee(true, Change);
9399       }
9400 
9401       // Explore all values.
9402       return true;
9403     };
9404 
9405     // Process any value that we might call.
9406     auto ProcessCalledOperand = [&](Value *V) {
9407       bool DummyValue = false;
9408       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9409                                        DummyValue, VisitValue, nullptr,
9410                                        false)) {
9411         // If we haven't gone through all values, assume that there are unknown
9412         // callees.
9413         setHasUnknownCallee(true, Change);
9414       }
9415     };
9416 
9417     CallBase *CB = static_cast<CallBase *>(getCtxI());
9418 
9419     if (CB->isInlineAsm()) {
9420       setHasUnknownCallee(false, Change);
9421       return Change;
9422     }
9423 
9424     // Process callee metadata if available.
9425     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9426       for (auto &Op : MD->operands()) {
9427         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9428         if (Callee)
9429           addCalledFunction(Callee, Change);
9430       }
9431       return Change;
9432     }
9433 
9434     // The most simple case.
9435     ProcessCalledOperand(CB->getCalledOperand());
9436 
9437     // Process callback functions.
9438     SmallVector<const Use *, 4u> CallbackUses;
9439     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9440     for (const Use *U : CallbackUses)
9441       ProcessCalledOperand(U->get());
9442 
9443     return Change;
9444   }
9445 };
9446 
9447 struct AACallEdgesFunction : public AACallEdgesImpl {
9448   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9449       : AACallEdgesImpl(IRP, A) {}
9450 
9451   /// See AbstractAttribute::updateImpl(...).
9452   ChangeStatus updateImpl(Attributor &A) override {
9453     ChangeStatus Change = ChangeStatus::UNCHANGED;
9454 
9455     auto ProcessCallInst = [&](Instruction &Inst) {
9456       CallBase &CB = static_cast<CallBase &>(Inst);
9457 
9458       auto &CBEdges = A.getAAFor<AACallEdges>(
9459           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9460       if (CBEdges.hasNonAsmUnknownCallee())
9461         setHasUnknownCallee(true, Change);
9462       if (CBEdges.hasUnknownCallee())
9463         setHasUnknownCallee(false, Change);
9464 
9465       for (Function *F : CBEdges.getOptimisticEdges())
9466         addCalledFunction(F, Change);
9467 
9468       return true;
9469     };
9470 
9471     // Visit all callable instructions.
9472     bool UsedAssumedInformation = false;
9473     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9474                                            UsedAssumedInformation)) {
9475       // If we haven't looked at all call like instructions, assume that there
9476       // are unknown callees.
9477       setHasUnknownCallee(true, Change);
9478     }
9479 
9480     return Change;
9481   }
9482 };
9483 
9484 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9485 private:
9486   struct QuerySet {
9487     void markReachable(Function *Fn) {
9488       Reachable.insert(Fn);
9489       Unreachable.erase(Fn);
9490     }
9491 
9492     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9493                         ArrayRef<const AACallEdges *> AAEdgesList) {
9494       ChangeStatus Change = ChangeStatus::UNCHANGED;
9495 
9496       for (auto *AAEdges : AAEdgesList) {
9497         if (AAEdges->hasUnknownCallee()) {
9498           if (!CanReachUnknownCallee)
9499             Change = ChangeStatus::CHANGED;
9500           CanReachUnknownCallee = true;
9501           return Change;
9502         }
9503       }
9504 
9505       for (Function *Fn : make_early_inc_range(Unreachable)) {
9506         if (checkIfReachable(A, AA, AAEdgesList, Fn)) {
9507           Change = ChangeStatus::CHANGED;
9508           markReachable(Fn);
9509         }
9510       }
9511       return Change;
9512     }
9513 
9514     bool isReachable(Attributor &A, const AAFunctionReachability &AA,
9515                      ArrayRef<const AACallEdges *> AAEdgesList, Function *Fn) {
9516       // Assume that we can reach the function.
9517       // TODO: Be more specific with the unknown callee.
9518       if (CanReachUnknownCallee)
9519         return true;
9520 
9521       if (Reachable.count(Fn))
9522         return true;
9523 
9524       if (Unreachable.count(Fn))
9525         return false;
9526 
9527       // We need to assume that this function can't reach Fn to prevent
9528       // an infinite loop if this function is recursive.
9529       Unreachable.insert(Fn);
9530 
9531       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9532       if (Result)
9533         markReachable(Fn);
9534       return Result;
9535     }
9536 
9537     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9538                           ArrayRef<const AACallEdges *> AAEdgesList,
9539                           Function *Fn) const {
9540 
9541       // Handle the most trivial case first.
9542       for (auto *AAEdges : AAEdgesList) {
9543         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9544 
9545         if (Edges.count(Fn))
9546           return true;
9547       }
9548 
9549       SmallVector<const AAFunctionReachability *, 8> Deps;
9550       for (auto &AAEdges : AAEdgesList) {
9551         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9552 
9553         for (Function *Edge : Edges) {
9554           // We don't need a dependency if the result is reachable.
9555           const AAFunctionReachability &EdgeReachability =
9556               A.getAAFor<AAFunctionReachability>(
9557                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9558           Deps.push_back(&EdgeReachability);
9559 
9560           if (EdgeReachability.canReach(A, Fn))
9561             return true;
9562         }
9563       }
9564 
9565       // The result is false for now, set dependencies and leave.
9566       for (auto Dep : Deps)
9567         A.recordDependence(AA, *Dep, DepClassTy::REQUIRED);
9568 
9569       return false;
9570     }
9571 
9572     /// Set of functions that we know for sure is reachable.
9573     DenseSet<Function *> Reachable;
9574 
9575     /// Set of functions that are unreachable, but might become reachable.
9576     DenseSet<Function *> Unreachable;
9577 
9578     /// If we can reach a function with a call to a unknown function we assume
9579     /// that we can reach any function.
9580     bool CanReachUnknownCallee = false;
9581   };
9582 
9583 public:
9584   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9585       : AAFunctionReachability(IRP, A) {}
9586 
9587   bool canReach(Attributor &A, Function *Fn) const override {
9588     const AACallEdges &AAEdges =
9589         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9590 
9591     // Attributor returns attributes as const, so this function has to be
9592     // const for users of this attribute to use it without having to do
9593     // a const_cast.
9594     // This is a hack for us to be able to cache queries.
9595     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9596     bool Result =
9597         NonConstThis->WholeFunction.isReachable(A, *this, {&AAEdges}, Fn);
9598 
9599     return Result;
9600   }
9601 
9602   /// Can \p CB reach \p Fn
9603   bool canReach(Attributor &A, CallBase &CB, Function *Fn) const override {
9604     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9605         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9606 
9607     // Attributor returns attributes as const, so this function has to be
9608     // const for users of this attribute to use it without having to do
9609     // a const_cast.
9610     // This is a hack for us to be able to cache queries.
9611     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9612     QuerySet &CBQuery = NonConstThis->CBQueries[&CB];
9613 
9614     bool Result = CBQuery.isReachable(A, *this, {&AAEdges}, Fn);
9615 
9616     return Result;
9617   }
9618 
9619   /// See AbstractAttribute::updateImpl(...).
9620   ChangeStatus updateImpl(Attributor &A) override {
9621     const AACallEdges &AAEdges =
9622         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9623     ChangeStatus Change = ChangeStatus::UNCHANGED;
9624 
9625     Change |= WholeFunction.update(A, *this, {&AAEdges});
9626 
9627     for (auto CBPair : CBQueries) {
9628       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9629           *this, IRPosition::callsite_function(*CBPair.first),
9630           DepClassTy::REQUIRED);
9631 
9632       Change |= CBPair.second.update(A, *this, {&AAEdges});
9633     }
9634 
9635     return Change;
9636   }
9637 
9638   const std::string getAsStr() const override {
9639     size_t QueryCount =
9640         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9641 
9642     return "FunctionReachability [" +
9643            std::to_string(WholeFunction.Reachable.size()) + "," +
9644            std::to_string(QueryCount) + "]";
9645   }
9646 
9647   void trackStatistics() const override {}
9648 
9649 private:
9650   bool canReachUnknownCallee() const override {
9651     return WholeFunction.CanReachUnknownCallee;
9652   }
9653 
9654   /// Used to answer if a the whole function can reacha a specific function.
9655   QuerySet WholeFunction;
9656 
9657   /// Used to answer if a call base inside this function can reach a specific
9658   /// function.
9659   DenseMap<CallBase *, QuerySet> CBQueries;
9660 };
9661 
9662 /// ---------------------- Assumption Propagation ------------------------------
9663 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9664   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9665                        const DenseSet<StringRef> &Known)
9666       : AAAssumptionInfo(IRP, A, Known) {}
9667 
9668   bool hasAssumption(const StringRef Assumption) const override {
9669     return isValidState() && setContains(Assumption);
9670   }
9671 
9672   /// See AbstractAttribute::getAsStr()
9673   const std::string getAsStr() const override {
9674     const SetContents &Known = getKnown();
9675     const SetContents &Assumed = getAssumed();
9676 
9677     const std::string KnownStr =
9678         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9679     const std::string AssumedStr =
9680         (Assumed.isUniversal())
9681             ? "Universal"
9682             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9683 
9684     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9685   }
9686 };
9687 
9688 /// Propagates assumption information from parent functions to all of their
9689 /// successors. An assumption can be propagated if the containing function
9690 /// dominates the called function.
9691 ///
9692 /// We start with a "known" set of assumptions already valid for the associated
9693 /// function and an "assumed" set that initially contains all possible
9694 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
9695 /// contents as concrete values are known. The concrete values are seeded by the
9696 /// first nodes that are either entries into the call graph, or contains no
9697 /// assumptions. Each node is updated as the intersection of the assumed state
9698 /// with all of its predecessors.
9699 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
9700   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
9701       : AAAssumptionInfoImpl(IRP, A,
9702                              getAssumptions(*IRP.getAssociatedFunction())) {}
9703 
9704   /// See AbstractAttribute::manifest(...).
9705   ChangeStatus manifest(Attributor &A) override {
9706     const auto &Assumptions = getKnown();
9707 
9708     // Don't manifest a universal set if it somehow made it here.
9709     if (Assumptions.isUniversal())
9710       return ChangeStatus::UNCHANGED;
9711 
9712     Function *AssociatedFunction = getAssociatedFunction();
9713 
9714     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
9715 
9716     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9717   }
9718 
9719   /// See AbstractAttribute::updateImpl(...).
9720   ChangeStatus updateImpl(Attributor &A) override {
9721     bool Changed = false;
9722 
9723     auto CallSitePred = [&](AbstractCallSite ACS) {
9724       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
9725           *this, IRPosition::callsite_function(*ACS.getInstruction()),
9726           DepClassTy::REQUIRED);
9727       // Get the set of assumptions shared by all of this function's callers.
9728       Changed |= getIntersection(AssumptionAA.getAssumed());
9729       return !getAssumed().empty() || !getKnown().empty();
9730     };
9731 
9732     bool AllCallSitesKnown;
9733     // Get the intersection of all assumptions held by this node's predecessors.
9734     // If we don't know all the call sites then this is either an entry into the
9735     // call graph or an empty node. This node is known to only contain its own
9736     // assumptions and can be propagated to its successors.
9737     if (!A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown))
9738       return indicatePessimisticFixpoint();
9739 
9740     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9741   }
9742 
9743   void trackStatistics() const override {}
9744 };
9745 
9746 /// Assumption Info defined for call sites.
9747 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
9748 
9749   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
9750       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
9751 
9752   /// See AbstractAttribute::initialize(...).
9753   void initialize(Attributor &A) override {
9754     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9755     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9756   }
9757 
9758   /// See AbstractAttribute::manifest(...).
9759   ChangeStatus manifest(Attributor &A) override {
9760     // Don't manifest a universal set if it somehow made it here.
9761     if (getKnown().isUniversal())
9762       return ChangeStatus::UNCHANGED;
9763 
9764     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
9765     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
9766 
9767     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9768   }
9769 
9770   /// See AbstractAttribute::updateImpl(...).
9771   ChangeStatus updateImpl(Attributor &A) override {
9772     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9773     auto &AssumptionAA =
9774         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9775     bool Changed = getIntersection(AssumptionAA.getAssumed());
9776     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9777   }
9778 
9779   /// See AbstractAttribute::trackStatistics()
9780   void trackStatistics() const override {}
9781 
9782 private:
9783   /// Helper to initialized the known set as all the assumptions this call and
9784   /// the callee contain.
9785   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
9786     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
9787     auto Assumptions = getAssumptions(CB);
9788     if (Function *F = IRP.getAssociatedFunction())
9789       set_union(Assumptions, getAssumptions(*F));
9790     if (Function *F = IRP.getAssociatedFunction())
9791       set_union(Assumptions, getAssumptions(*F));
9792     return Assumptions;
9793   }
9794 };
9795 
9796 } // namespace
9797 
9798 AACallGraphNode *AACallEdgeIterator::operator*() const {
9799   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9800       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9801 }
9802 
9803 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9804 
9805 const char AAReturnedValues::ID = 0;
9806 const char AANoUnwind::ID = 0;
9807 const char AANoSync::ID = 0;
9808 const char AANoFree::ID = 0;
9809 const char AANonNull::ID = 0;
9810 const char AANoRecurse::ID = 0;
9811 const char AAWillReturn::ID = 0;
9812 const char AAUndefinedBehavior::ID = 0;
9813 const char AANoAlias::ID = 0;
9814 const char AAReachability::ID = 0;
9815 const char AANoReturn::ID = 0;
9816 const char AAIsDead::ID = 0;
9817 const char AADereferenceable::ID = 0;
9818 const char AAAlign::ID = 0;
9819 const char AANoCapture::ID = 0;
9820 const char AAValueSimplify::ID = 0;
9821 const char AAHeapToStack::ID = 0;
9822 const char AAPrivatizablePtr::ID = 0;
9823 const char AAMemoryBehavior::ID = 0;
9824 const char AAMemoryLocation::ID = 0;
9825 const char AAValueConstantRange::ID = 0;
9826 const char AAPotentialValues::ID = 0;
9827 const char AANoUndef::ID = 0;
9828 const char AACallEdges::ID = 0;
9829 const char AAFunctionReachability::ID = 0;
9830 const char AAPointerInfo::ID = 0;
9831 const char AAAssumptionInfo::ID = 0;
9832 
9833 // Macro magic to create the static generator function for attributes that
9834 // follow the naming scheme.
9835 
9836 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9837   case IRPosition::PK:                                                         \
9838     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9839 
9840 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9841   case IRPosition::PK:                                                         \
9842     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9843     ++NumAAs;                                                                  \
9844     break;
9845 
9846 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9847   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9848     CLASS *AA = nullptr;                                                       \
9849     switch (IRP.getPositionKind()) {                                           \
9850       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9851       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9852       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9853       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9854       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9855       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9856       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9857       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9858     }                                                                          \
9859     return *AA;                                                                \
9860   }
9861 
9862 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9863   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9864     CLASS *AA = nullptr;                                                       \
9865     switch (IRP.getPositionKind()) {                                           \
9866       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9867       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9868       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9869       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9870       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9871       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9872       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9873       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9874     }                                                                          \
9875     return *AA;                                                                \
9876   }
9877 
9878 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9879   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9880     CLASS *AA = nullptr;                                                       \
9881     switch (IRP.getPositionKind()) {                                           \
9882       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9883       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9884       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9885       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9886       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9887       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9888       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9889       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9890     }                                                                          \
9891     return *AA;                                                                \
9892   }
9893 
9894 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9895   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9896     CLASS *AA = nullptr;                                                       \
9897     switch (IRP.getPositionKind()) {                                           \
9898       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9899       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9900       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9901       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9902       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9903       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9904       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9905       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9906     }                                                                          \
9907     return *AA;                                                                \
9908   }
9909 
9910 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9911   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9912     CLASS *AA = nullptr;                                                       \
9913     switch (IRP.getPositionKind()) {                                           \
9914       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9915       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9916       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9917       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9918       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9919       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9920       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9921       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9922     }                                                                          \
9923     return *AA;                                                                \
9924   }
9925 
9926 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9927 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9928 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9929 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9930 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9931 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9932 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9933 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9934 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
9935 
9936 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9937 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9938 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9939 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9940 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9941 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9942 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9943 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9944 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9945 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9946 
9947 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9948 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9949 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9950 
9951 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9952 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9953 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9954 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9955 
9956 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9957 
9958 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9959 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9960 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9961 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9962 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9963 #undef SWITCH_PK_CREATE
9964 #undef SWITCH_PK_INV
9965