1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumeBundleQueries.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/LazyValueInfo.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 
34 #include <cassert>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "attributor"
39 
40 static cl::opt<bool> ManifestInternal(
41     "attributor-manifest-internal", cl::Hidden,
42     cl::desc("Manifest Attributor internal string attributes."),
43     cl::init(false));
44 
45 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
46                                        cl::Hidden);
47 
48 STATISTIC(NumAAs, "Number of abstract attributes created");
49 
50 // Some helper macros to deal with statistics tracking.
51 //
52 // Usage:
53 // For simple IR attribute tracking overload trackStatistics in the abstract
54 // attribute and choose the right STATS_DECLTRACK_********* macro,
55 // e.g.,:
56 //  void trackStatistics() const override {
57 //    STATS_DECLTRACK_ARG_ATTR(returned)
58 //  }
59 // If there is a single "increment" side one can use the macro
60 // STATS_DECLTRACK with a custom message. If there are multiple increment
61 // sides, STATS_DECL and STATS_TRACK can also be used separately.
62 //
63 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
64   ("Number of " #TYPE " marked '" #NAME "'")
65 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
66 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
67 #define STATS_DECL(NAME, TYPE, MSG)                                            \
68   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
69 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
70 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
71   {                                                                            \
72     STATS_DECL(NAME, TYPE, MSG)                                                \
73     STATS_TRACK(NAME, TYPE)                                                    \
74   }
75 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
76   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
77 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
78   STATS_DECLTRACK(NAME, CSArguments,                                           \
79                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
80 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
81   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
82 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
83   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
84 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
85   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
86                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
87 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
88   STATS_DECLTRACK(NAME, CSReturn,                                              \
89                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
90 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
91   STATS_DECLTRACK(NAME, Floating,                                              \
92                   ("Number of floating values known to be '" #NAME "'"))
93 
94 // Specialization of the operator<< for abstract attributes subclasses. This
95 // disambiguates situations where multiple operators are applicable.
96 namespace llvm {
97 #define PIPE_OPERATOR(CLASS)                                                   \
98   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
99     return OS << static_cast<const AbstractAttribute &>(AA);                   \
100   }
101 
102 PIPE_OPERATOR(AAIsDead)
103 PIPE_OPERATOR(AANoUnwind)
104 PIPE_OPERATOR(AANoSync)
105 PIPE_OPERATOR(AANoRecurse)
106 PIPE_OPERATOR(AAWillReturn)
107 PIPE_OPERATOR(AANoReturn)
108 PIPE_OPERATOR(AAReturnedValues)
109 PIPE_OPERATOR(AANonNull)
110 PIPE_OPERATOR(AANoAlias)
111 PIPE_OPERATOR(AADereferenceable)
112 PIPE_OPERATOR(AAAlign)
113 PIPE_OPERATOR(AANoCapture)
114 PIPE_OPERATOR(AAValueSimplify)
115 PIPE_OPERATOR(AANoFree)
116 PIPE_OPERATOR(AAHeapToStack)
117 PIPE_OPERATOR(AAReachability)
118 PIPE_OPERATOR(AAMemoryBehavior)
119 PIPE_OPERATOR(AAMemoryLocation)
120 PIPE_OPERATOR(AAValueConstantRange)
121 PIPE_OPERATOR(AAPrivatizablePtr)
122 PIPE_OPERATOR(AAUndefinedBehavior)
123 
124 #undef PIPE_OPERATOR
125 } // namespace llvm
126 
127 namespace {
128 
129 static Optional<ConstantInt *>
130 getAssumedConstantInt(Attributor &A, const Value &V,
131                       const AbstractAttribute &AA,
132                       bool &UsedAssumedInformation) {
133   Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
134   if (C.hasValue())
135     return dyn_cast_or_null<ConstantInt>(C.getValue());
136   return llvm::None;
137 }
138 
139 /// Get pointer operand of memory accessing instruction. If \p I is
140 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
141 /// is set to false and the instruction is volatile, return nullptr.
142 static const Value *getPointerOperand(const Instruction *I,
143                                       bool AllowVolatile) {
144   if (auto *LI = dyn_cast<LoadInst>(I)) {
145     if (!AllowVolatile && LI->isVolatile())
146       return nullptr;
147     return LI->getPointerOperand();
148   }
149 
150   if (auto *SI = dyn_cast<StoreInst>(I)) {
151     if (!AllowVolatile && SI->isVolatile())
152       return nullptr;
153     return SI->getPointerOperand();
154   }
155 
156   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
157     if (!AllowVolatile && CXI->isVolatile())
158       return nullptr;
159     return CXI->getPointerOperand();
160   }
161 
162   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
163     if (!AllowVolatile && RMWI->isVolatile())
164       return nullptr;
165     return RMWI->getPointerOperand();
166   }
167 
168   return nullptr;
169 }
170 
171 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
172 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
173 /// getelement pointer instructions that traverse the natural type of \p Ptr if
174 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
175 /// through a cast to i8*.
176 ///
177 /// TODO: This could probably live somewhere more prominantly if it doesn't
178 ///       already exist.
179 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
180                                IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
181   assert(Offset >= 0 && "Negative offset not supported yet!");
182   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
183                     << "-bytes as " << *ResTy << "\n");
184 
185   // The initial type we are trying to traverse to get nice GEPs.
186   Type *Ty = Ptr->getType();
187 
188   SmallVector<Value *, 4> Indices;
189   std::string GEPName = Ptr->getName().str();
190   while (Offset) {
191     uint64_t Idx, Rem;
192 
193     if (auto *STy = dyn_cast<StructType>(Ty)) {
194       const StructLayout *SL = DL.getStructLayout(STy);
195       if (int64_t(SL->getSizeInBytes()) < Offset)
196         break;
197       Idx = SL->getElementContainingOffset(Offset);
198       assert(Idx < STy->getNumElements() && "Offset calculation error!");
199       Rem = Offset - SL->getElementOffset(Idx);
200       Ty = STy->getElementType(Idx);
201     } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
202       Ty = PTy->getElementType();
203       if (!Ty->isSized())
204         break;
205       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
206       assert(ElementSize && "Expected type with size!");
207       Idx = Offset / ElementSize;
208       Rem = Offset % ElementSize;
209     } else {
210       // Non-aggregate type, we cast and make byte-wise progress now.
211       break;
212     }
213 
214     LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
215                       << " Idx: " << Idx << " Rem: " << Rem << "\n");
216 
217     GEPName += "." + std::to_string(Idx);
218     Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
219     Offset = Rem;
220   }
221 
222   // Create a GEP if we collected indices above.
223   if (Indices.size())
224     Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
225 
226   // If an offset is left we use byte-wise adjustment.
227   if (Offset) {
228     Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
229     Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
230                         GEPName + ".b" + Twine(Offset));
231   }
232 
233   // Ensure the result has the requested type.
234   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
235 
236   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
237   return Ptr;
238 }
239 
240 /// Recursively visit all values that might become \p IRP at some point. This
241 /// will be done by looking through cast instructions, selects, phis, and calls
242 /// with the "returned" attribute. Once we cannot look through the value any
243 /// further, the callback \p VisitValueCB is invoked and passed the current
244 /// value, the \p State, and a flag to indicate if we stripped anything.
245 /// Stripped means that we unpacked the value associated with \p IRP at least
246 /// once. Note that the value used for the callback may still be the value
247 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
248 /// we will never visit more values than specified by \p MaxValues.
249 template <typename AAType, typename StateTy>
250 static bool genericValueTraversal(
251     Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
252     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
253         VisitValueCB,
254     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
255     function_ref<Value *(Value *)> StripCB = nullptr) {
256 
257   const AAIsDead *LivenessAA = nullptr;
258   if (IRP.getAnchorScope())
259     LivenessAA = &A.getAAFor<AAIsDead>(
260         QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
261         /* TrackDependence */ false);
262   bool AnyDead = false;
263 
264   using Item = std::pair<Value *, const Instruction *>;
265   SmallSet<Item, 16> Visited;
266   SmallVector<Item, 16> Worklist;
267   Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
268 
269   int Iteration = 0;
270   do {
271     Item I = Worklist.pop_back_val();
272     Value *V = I.first;
273     CtxI = I.second;
274     if (StripCB)
275       V = StripCB(V);
276 
277     // Check if we should process the current value. To prevent endless
278     // recursion keep a record of the values we followed!
279     if (!Visited.insert(I).second)
280       continue;
281 
282     // Make sure we limit the compile time for complex expressions.
283     if (Iteration++ >= MaxValues)
284       return false;
285 
286     // Explicitly look through calls with a "returned" attribute if we do
287     // not have a pointer as stripPointerCasts only works on them.
288     Value *NewV = nullptr;
289     if (V->getType()->isPointerTy()) {
290       NewV = V->stripPointerCasts();
291     } else {
292       auto *CB = dyn_cast<CallBase>(V);
293       if (CB && CB->getCalledFunction()) {
294         for (Argument &Arg : CB->getCalledFunction()->args())
295           if (Arg.hasReturnedAttr()) {
296             NewV = CB->getArgOperand(Arg.getArgNo());
297             break;
298           }
299       }
300     }
301     if (NewV && NewV != V) {
302       Worklist.push_back({NewV, CtxI});
303       continue;
304     }
305 
306     // Look through select instructions, visit both potential values.
307     if (auto *SI = dyn_cast<SelectInst>(V)) {
308       Worklist.push_back({SI->getTrueValue(), CtxI});
309       Worklist.push_back({SI->getFalseValue(), CtxI});
310       continue;
311     }
312 
313     // Look through phi nodes, visit all live operands.
314     if (auto *PHI = dyn_cast<PHINode>(V)) {
315       assert(LivenessAA &&
316              "Expected liveness in the presence of instructions!");
317       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
318         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
319         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
320                             LivenessAA,
321                             /* CheckBBLivenessOnly */ true)) {
322           AnyDead = true;
323           continue;
324         }
325         Worklist.push_back(
326             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
327       }
328       continue;
329     }
330 
331     if (UseValueSimplify && !isa<Constant>(V)) {
332       bool UsedAssumedInformation = false;
333       Optional<Constant *> C =
334           A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation);
335       if (!C.hasValue())
336         continue;
337       if (Value *NewV = C.getValue()) {
338         Worklist.push_back({NewV, CtxI});
339         continue;
340       }
341     }
342 
343     // Once a leaf is reached we inform the user through the callback.
344     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
345       return false;
346   } while (!Worklist.empty());
347 
348   // If we actually used liveness information so we have to record a dependence.
349   if (AnyDead)
350     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
351 
352   // All values have been visited.
353   return true;
354 }
355 
356 const Value *stripAndAccumulateMinimalOffsets(
357     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
358     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
359     bool UseAssumed = false) {
360 
361   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
362     const IRPosition &Pos = IRPosition::value(V);
363     // Only track dependence if we are going to use the assumed info.
364     const AAValueConstantRange &ValueConstantRangeAA =
365         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
366                                          /* TrackDependence */ UseAssumed);
367     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
368                                      : ValueConstantRangeAA.getKnown();
369     // We can only use the lower part of the range because the upper part can
370     // be higher than what the value can really be.
371     ROffset = Range.getSignedMin();
372     return true;
373   };
374 
375   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
376                                                 AttributorAnalysis);
377 }
378 
379 static const Value *getMinimalBaseOfAccsesPointerOperand(
380     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
381     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
382   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
383   if (!Ptr)
384     return nullptr;
385   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
386   const Value *Base = stripAndAccumulateMinimalOffsets(
387       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
388 
389   BytesOffset = OffsetAPInt.getSExtValue();
390   return Base;
391 }
392 
393 static const Value *
394 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
395                                      const DataLayout &DL,
396                                      bool AllowNonInbounds = false) {
397   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
398   if (!Ptr)
399     return nullptr;
400 
401   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
402                                           AllowNonInbounds);
403 }
404 
405 /// Helper function to clamp a state \p S of type \p StateType with the
406 /// information in \p R and indicate/return if \p S did change (as-in update is
407 /// required to be run again).
408 template <typename StateType>
409 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
410   auto Assumed = S.getAssumed();
411   S ^= R;
412   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
413                                    : ChangeStatus::CHANGED;
414 }
415 
416 /// Clamp the information known for all returned values of a function
417 /// (identified by \p QueryingAA) into \p S.
418 template <typename AAType, typename StateType = typename AAType::StateType>
419 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
420                                      StateType &S) {
421   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
422                     << QueryingAA << " into " << S << "\n");
423 
424   assert((QueryingAA.getIRPosition().getPositionKind() ==
425               IRPosition::IRP_RETURNED ||
426           QueryingAA.getIRPosition().getPositionKind() ==
427               IRPosition::IRP_CALL_SITE_RETURNED) &&
428          "Can only clamp returned value states for a function returned or call "
429          "site returned position!");
430 
431   // Use an optional state as there might not be any return values and we want
432   // to join (IntegerState::operator&) the state of all there are.
433   Optional<StateType> T;
434 
435   // Callback for each possibly returned value.
436   auto CheckReturnValue = [&](Value &RV) -> bool {
437     const IRPosition &RVPos = IRPosition::value(RV);
438     const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
439     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
440                       << " @ " << RVPos << "\n");
441     const StateType &AAS = static_cast<const StateType &>(AA.getState());
442     if (T.hasValue())
443       *T &= AAS;
444     else
445       T = AAS;
446     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
447                       << "\n");
448     return T->isValidState();
449   };
450 
451   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
452     S.indicatePessimisticFixpoint();
453   else if (T.hasValue())
454     S ^= *T;
455 }
456 
457 /// Helper class for generic deduction: return value -> returned position.
458 template <typename AAType, typename BaseType,
459           typename StateType = typename BaseType::StateType>
460 struct AAReturnedFromReturnedValues : public BaseType {
461   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
462       : BaseType(IRP, A) {}
463 
464   /// See AbstractAttribute::updateImpl(...).
465   ChangeStatus updateImpl(Attributor &A) override {
466     StateType S(StateType::getBestState(this->getState()));
467     clampReturnedValueStates<AAType, StateType>(A, *this, S);
468     // TODO: If we know we visited all returned values, thus no are assumed
469     // dead, we can take the known information from the state T.
470     return clampStateAndIndicateChange<StateType>(this->getState(), S);
471   }
472 };
473 
474 /// Clamp the information known at all call sites for a given argument
475 /// (identified by \p QueryingAA) into \p S.
476 template <typename AAType, typename StateType = typename AAType::StateType>
477 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
478                                         StateType &S) {
479   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
480                     << QueryingAA << " into " << S << "\n");
481 
482   assert(QueryingAA.getIRPosition().getPositionKind() ==
483              IRPosition::IRP_ARGUMENT &&
484          "Can only clamp call site argument states for an argument position!");
485 
486   // Use an optional state as there might not be any return values and we want
487   // to join (IntegerState::operator&) the state of all there are.
488   Optional<StateType> T;
489 
490   // The argument number which is also the call site argument number.
491   unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
492 
493   auto CallSiteCheck = [&](AbstractCallSite ACS) {
494     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
495     // Check if a coresponding argument was found or if it is on not associated
496     // (which can happen for callback calls).
497     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
498       return false;
499 
500     const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
501     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
502                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
503     const StateType &AAS = static_cast<const StateType &>(AA.getState());
504     if (T.hasValue())
505       *T &= AAS;
506     else
507       T = AAS;
508     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
509                       << "\n");
510     return T->isValidState();
511   };
512 
513   bool AllCallSitesKnown;
514   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
515                               AllCallSitesKnown))
516     S.indicatePessimisticFixpoint();
517   else if (T.hasValue())
518     S ^= *T;
519 }
520 
521 /// Helper class for generic deduction: call site argument -> argument position.
522 template <typename AAType, typename BaseType,
523           typename StateType = typename AAType::StateType>
524 struct AAArgumentFromCallSiteArguments : public BaseType {
525   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
526       : BaseType(IRP, A) {}
527 
528   /// See AbstractAttribute::updateImpl(...).
529   ChangeStatus updateImpl(Attributor &A) override {
530     StateType S(StateType::getBestState(this->getState()));
531     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
532     // TODO: If we know we visited all incoming values, thus no are assumed
533     // dead, we can take the known information from the state T.
534     return clampStateAndIndicateChange<StateType>(this->getState(), S);
535   }
536 };
537 
538 /// Helper class for generic replication: function returned -> cs returned.
539 template <typename AAType, typename BaseType,
540           typename StateType = typename BaseType::StateType>
541 struct AACallSiteReturnedFromReturned : public BaseType {
542   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
543       : BaseType(IRP, A) {}
544 
545   /// See AbstractAttribute::updateImpl(...).
546   ChangeStatus updateImpl(Attributor &A) override {
547     assert(this->getIRPosition().getPositionKind() ==
548                IRPosition::IRP_CALL_SITE_RETURNED &&
549            "Can only wrap function returned positions for call site returned "
550            "positions!");
551     auto &S = this->getState();
552 
553     const Function *AssociatedFunction =
554         this->getIRPosition().getAssociatedFunction();
555     if (!AssociatedFunction)
556       return S.indicatePessimisticFixpoint();
557 
558     IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
559     const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
560     return clampStateAndIndicateChange(
561         S, static_cast<const StateType &>(AA.getState()));
562   }
563 };
564 
565 /// Helper function to accumulate uses.
566 template <class AAType, typename StateType = typename AAType::StateType>
567 static void followUsesInContext(AAType &AA, Attributor &A,
568                                 MustBeExecutedContextExplorer &Explorer,
569                                 const Instruction *CtxI,
570                                 SetVector<const Use *> &Uses,
571                                 StateType &State) {
572   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
573   for (unsigned u = 0; u < Uses.size(); ++u) {
574     const Use *U = Uses[u];
575     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
576       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
577       if (Found && AA.followUseInMBEC(A, U, UserI, State))
578         for (const Use &Us : UserI->uses())
579           Uses.insert(&Us);
580     }
581   }
582 }
583 
584 /// Use the must-be-executed-context around \p I to add information into \p S.
585 /// The AAType class is required to have `followUseInMBEC` method with the
586 /// following signature and behaviour:
587 ///
588 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
589 /// U - Underlying use.
590 /// I - The user of the \p U.
591 /// Returns true if the value should be tracked transitively.
592 ///
593 template <class AAType, typename StateType = typename AAType::StateType>
594 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
595                              Instruction &CtxI) {
596 
597   // Container for (transitive) uses of the associated value.
598   SetVector<const Use *> Uses;
599   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
600     Uses.insert(&U);
601 
602   MustBeExecutedContextExplorer &Explorer =
603       A.getInfoCache().getMustBeExecutedContextExplorer();
604 
605   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
606 
607   if (S.isAtFixpoint())
608     return;
609 
610   SmallVector<const BranchInst *, 4> BrInsts;
611   auto Pred = [&](const Instruction *I) {
612     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
613       if (Br->isConditional())
614         BrInsts.push_back(Br);
615     return true;
616   };
617 
618   // Here, accumulate conditional branch instructions in the context. We
619   // explore the child paths and collect the known states. The disjunction of
620   // those states can be merged to its own state. Let ParentState_i be a state
621   // to indicate the known information for an i-th branch instruction in the
622   // context. ChildStates are created for its successors respectively.
623   //
624   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
625   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
626   //      ...
627   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
628   //
629   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
630   //
631   // FIXME: Currently, recursive branches are not handled. For example, we
632   // can't deduce that ptr must be dereferenced in below function.
633   //
634   // void f(int a, int c, int *ptr) {
635   //    if(a)
636   //      if (b) {
637   //        *ptr = 0;
638   //      } else {
639   //        *ptr = 1;
640   //      }
641   //    else {
642   //      if (b) {
643   //        *ptr = 0;
644   //      } else {
645   //        *ptr = 1;
646   //      }
647   //    }
648   // }
649 
650   Explorer.checkForAllContext(&CtxI, Pred);
651   for (const BranchInst *Br : BrInsts) {
652     StateType ParentState;
653 
654     // The known state of the parent state is a conjunction of children's
655     // known states so it is initialized with a best state.
656     ParentState.indicateOptimisticFixpoint();
657 
658     for (const BasicBlock *BB : Br->successors()) {
659       StateType ChildState;
660 
661       size_t BeforeSize = Uses.size();
662       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
663 
664       // Erase uses which only appear in the child.
665       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
666         It = Uses.erase(It);
667 
668       ParentState &= ChildState;
669     }
670 
671     // Use only known state.
672     S += ParentState;
673   }
674 }
675 
676 /// -----------------------NoUnwind Function Attribute--------------------------
677 
678 struct AANoUnwindImpl : AANoUnwind {
679   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
680 
681   const std::string getAsStr() const override {
682     return getAssumed() ? "nounwind" : "may-unwind";
683   }
684 
685   /// See AbstractAttribute::updateImpl(...).
686   ChangeStatus updateImpl(Attributor &A) override {
687     auto Opcodes = {
688         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
689         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
690         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
691 
692     auto CheckForNoUnwind = [&](Instruction &I) {
693       if (!I.mayThrow())
694         return true;
695 
696       if (const auto *CB = dyn_cast<CallBase>(&I)) {
697         const auto &NoUnwindAA =
698             A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB));
699         return NoUnwindAA.isAssumedNoUnwind();
700       }
701       return false;
702     };
703 
704     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
705       return indicatePessimisticFixpoint();
706 
707     return ChangeStatus::UNCHANGED;
708   }
709 };
710 
711 struct AANoUnwindFunction final : public AANoUnwindImpl {
712   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
713       : AANoUnwindImpl(IRP, A) {}
714 
715   /// See AbstractAttribute::trackStatistics()
716   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
717 };
718 
719 /// NoUnwind attribute deduction for a call sites.
720 struct AANoUnwindCallSite final : AANoUnwindImpl {
721   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
722       : AANoUnwindImpl(IRP, A) {}
723 
724   /// See AbstractAttribute::initialize(...).
725   void initialize(Attributor &A) override {
726     AANoUnwindImpl::initialize(A);
727     Function *F = getAssociatedFunction();
728     if (!F)
729       indicatePessimisticFixpoint();
730   }
731 
732   /// See AbstractAttribute::updateImpl(...).
733   ChangeStatus updateImpl(Attributor &A) override {
734     // TODO: Once we have call site specific value information we can provide
735     //       call site specific liveness information and then it makes
736     //       sense to specialize attributes for call sites arguments instead of
737     //       redirecting requests to the callee argument.
738     Function *F = getAssociatedFunction();
739     const IRPosition &FnPos = IRPosition::function(*F);
740     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
741     return clampStateAndIndicateChange(
742         getState(),
743         static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
744   }
745 
746   /// See AbstractAttribute::trackStatistics()
747   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
748 };
749 
750 /// --------------------- Function Return Values -------------------------------
751 
752 /// "Attribute" that collects all potential returned values and the return
753 /// instructions that they arise from.
754 ///
755 /// If there is a unique returned value R, the manifest method will:
756 ///   - mark R with the "returned" attribute, if R is an argument.
757 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
758 
759   /// Mapping of values potentially returned by the associated function to the
760   /// return instructions that might return them.
761   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
762 
763   /// Mapping to remember the number of returned values for a call site such
764   /// that we can avoid updates if nothing changed.
765   DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
766 
767   /// Set of unresolved calls returned by the associated function.
768   SmallSetVector<CallBase *, 4> UnresolvedCalls;
769 
770   /// State flags
771   ///
772   ///{
773   bool IsFixed = false;
774   bool IsValidState = true;
775   ///}
776 
777 public:
778   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
779       : AAReturnedValues(IRP, A) {}
780 
781   /// See AbstractAttribute::initialize(...).
782   void initialize(Attributor &A) override {
783     // Reset the state.
784     IsFixed = false;
785     IsValidState = true;
786     ReturnedValues.clear();
787 
788     Function *F = getAssociatedFunction();
789     if (!F) {
790       indicatePessimisticFixpoint();
791       return;
792     }
793     assert(!F->getReturnType()->isVoidTy() &&
794            "Did not expect a void return type!");
795 
796     // The map from instruction opcodes to those instructions in the function.
797     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
798 
799     // Look through all arguments, if one is marked as returned we are done.
800     for (Argument &Arg : F->args()) {
801       if (Arg.hasReturnedAttr()) {
802         auto &ReturnInstSet = ReturnedValues[&Arg];
803         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
804           for (Instruction *RI : *Insts)
805             ReturnInstSet.insert(cast<ReturnInst>(RI));
806 
807         indicateOptimisticFixpoint();
808         return;
809       }
810     }
811 
812     if (!A.isFunctionIPOAmendable(*F))
813       indicatePessimisticFixpoint();
814   }
815 
816   /// See AbstractAttribute::manifest(...).
817   ChangeStatus manifest(Attributor &A) override;
818 
819   /// See AbstractAttribute::getState(...).
820   AbstractState &getState() override { return *this; }
821 
822   /// See AbstractAttribute::getState(...).
823   const AbstractState &getState() const override { return *this; }
824 
825   /// See AbstractAttribute::updateImpl(Attributor &A).
826   ChangeStatus updateImpl(Attributor &A) override;
827 
828   llvm::iterator_range<iterator> returned_values() override {
829     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
830   }
831 
832   llvm::iterator_range<const_iterator> returned_values() const override {
833     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
834   }
835 
836   const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
837     return UnresolvedCalls;
838   }
839 
840   /// Return the number of potential return values, -1 if unknown.
841   size_t getNumReturnValues() const override {
842     return isValidState() ? ReturnedValues.size() : -1;
843   }
844 
845   /// Return an assumed unique return value if a single candidate is found. If
846   /// there cannot be one, return a nullptr. If it is not clear yet, return the
847   /// Optional::NoneType.
848   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
849 
850   /// See AbstractState::checkForAllReturnedValues(...).
851   bool checkForAllReturnedValuesAndReturnInsts(
852       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
853       const override;
854 
855   /// Pretty print the attribute similar to the IR representation.
856   const std::string getAsStr() const override;
857 
858   /// See AbstractState::isAtFixpoint().
859   bool isAtFixpoint() const override { return IsFixed; }
860 
861   /// See AbstractState::isValidState().
862   bool isValidState() const override { return IsValidState; }
863 
864   /// See AbstractState::indicateOptimisticFixpoint(...).
865   ChangeStatus indicateOptimisticFixpoint() override {
866     IsFixed = true;
867     return ChangeStatus::UNCHANGED;
868   }
869 
870   ChangeStatus indicatePessimisticFixpoint() override {
871     IsFixed = true;
872     IsValidState = false;
873     return ChangeStatus::CHANGED;
874   }
875 };
876 
877 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
878   ChangeStatus Changed = ChangeStatus::UNCHANGED;
879 
880   // Bookkeeping.
881   assert(isValidState());
882   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
883                   "Number of function with known return values");
884 
885   // Check if we have an assumed unique return value that we could manifest.
886   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
887 
888   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
889     return Changed;
890 
891   // Bookkeeping.
892   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
893                   "Number of function with unique return");
894 
895   // Callback to replace the uses of CB with the constant C.
896   auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
897     if (CB.use_empty())
898       return ChangeStatus::UNCHANGED;
899     if (A.changeValueAfterManifest(CB, C))
900       return ChangeStatus::CHANGED;
901     return ChangeStatus::UNCHANGED;
902   };
903 
904   // If the assumed unique return value is an argument, annotate it.
905   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
906     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
907             getAssociatedFunction()->getReturnType())) {
908       getIRPosition() = IRPosition::argument(*UniqueRVArg);
909       Changed = IRAttribute::manifest(A);
910     }
911   } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
912     // We can replace the returned value with the unique returned constant.
913     Value &AnchorValue = getAnchorValue();
914     if (Function *F = dyn_cast<Function>(&AnchorValue)) {
915       for (const Use &U : F->uses())
916         if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
917           if (CB->isCallee(&U)) {
918             Constant *RVCCast =
919                 CB->getType() == RVC->getType()
920                     ? RVC
921                     : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
922             Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
923           }
924     } else {
925       assert(isa<CallBase>(AnchorValue) &&
926              "Expcected a function or call base anchor!");
927       Constant *RVCCast =
928           AnchorValue.getType() == RVC->getType()
929               ? RVC
930               : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
931       Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
932     }
933     if (Changed == ChangeStatus::CHANGED)
934       STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
935                       "Number of function returns replaced by constant return");
936   }
937 
938   return Changed;
939 }
940 
941 const std::string AAReturnedValuesImpl::getAsStr() const {
942   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
943          (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
944          ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
945 }
946 
947 Optional<Value *>
948 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
949   // If checkForAllReturnedValues provides a unique value, ignoring potential
950   // undef values that can also be present, it is assumed to be the actual
951   // return value and forwarded to the caller of this method. If there are
952   // multiple, a nullptr is returned indicating there cannot be a unique
953   // returned value.
954   Optional<Value *> UniqueRV;
955 
956   auto Pred = [&](Value &RV) -> bool {
957     // If we found a second returned value and neither the current nor the saved
958     // one is an undef, there is no unique returned value. Undefs are special
959     // since we can pretend they have any value.
960     if (UniqueRV.hasValue() && UniqueRV != &RV &&
961         !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
962       UniqueRV = nullptr;
963       return false;
964     }
965 
966     // Do not overwrite a value with an undef.
967     if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
968       UniqueRV = &RV;
969 
970     return true;
971   };
972 
973   if (!A.checkForAllReturnedValues(Pred, *this))
974     UniqueRV = nullptr;
975 
976   return UniqueRV;
977 }
978 
979 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
980     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
981     const {
982   if (!isValidState())
983     return false;
984 
985   // Check all returned values but ignore call sites as long as we have not
986   // encountered an overdefined one during an update.
987   for (auto &It : ReturnedValues) {
988     Value *RV = It.first;
989 
990     CallBase *CB = dyn_cast<CallBase>(RV);
991     if (CB && !UnresolvedCalls.count(CB))
992       continue;
993 
994     if (!Pred(*RV, It.second))
995       return false;
996   }
997 
998   return true;
999 }
1000 
1001 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1002   size_t NumUnresolvedCalls = UnresolvedCalls.size();
1003   bool Changed = false;
1004 
1005   // State used in the value traversals starting in returned values.
1006   struct RVState {
1007     // The map in which we collect return values -> return instrs.
1008     decltype(ReturnedValues) &RetValsMap;
1009     // The flag to indicate a change.
1010     bool &Changed;
1011     // The return instrs we come from.
1012     SmallSetVector<ReturnInst *, 4> RetInsts;
1013   };
1014 
1015   // Callback for a leaf value returned by the associated function.
1016   auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
1017                          bool) -> bool {
1018     auto Size = RVS.RetValsMap[&Val].size();
1019     RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1020     bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1021     RVS.Changed |= Inserted;
1022     LLVM_DEBUG({
1023       if (Inserted)
1024         dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1025                << " => " << RVS.RetInsts.size() << "\n";
1026     });
1027     return true;
1028   };
1029 
1030   // Helper method to invoke the generic value traversal.
1031   auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
1032                                 const Instruction *CtxI) {
1033     IRPosition RetValPos = IRPosition::value(RV);
1034     return genericValueTraversal<AAReturnedValues, RVState>(
1035         A, RetValPos, *this, RVS, VisitValueCB, CtxI,
1036         /* UseValueSimplify */ false);
1037   };
1038 
1039   // Callback for all "return intructions" live in the associated function.
1040   auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1041     ReturnInst &Ret = cast<ReturnInst>(I);
1042     RVState RVS({ReturnedValues, Changed, {}});
1043     RVS.RetInsts.insert(&Ret);
1044     return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
1045   };
1046 
1047   // Start by discovering returned values from all live returned instructions in
1048   // the associated function.
1049   if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1050     return indicatePessimisticFixpoint();
1051 
1052   // Once returned values "directly" present in the code are handled we try to
1053   // resolve returned calls. To avoid modifications to the ReturnedValues map
1054   // while we iterate over it we kept record of potential new entries in a copy
1055   // map, NewRVsMap.
1056   decltype(ReturnedValues) NewRVsMap;
1057 
1058   auto HandleReturnValue = [&](Value *RV,
1059                                SmallSetVector<ReturnInst *, 4> &RIs) {
1060     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #"
1061                       << RIs.size() << " RIs\n");
1062     CallBase *CB = dyn_cast<CallBase>(RV);
1063     if (!CB || UnresolvedCalls.count(CB))
1064       return;
1065 
1066     if (!CB->getCalledFunction()) {
1067       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1068                         << "\n");
1069       UnresolvedCalls.insert(CB);
1070       return;
1071     }
1072 
1073     // TODO: use the function scope once we have call site AAReturnedValues.
1074     const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1075         *this, IRPosition::function(*CB->getCalledFunction()));
1076     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1077                       << RetValAA << "\n");
1078 
1079     // Skip dead ends, thus if we do not know anything about the returned
1080     // call we mark it as unresolved and it will stay that way.
1081     if (!RetValAA.getState().isValidState()) {
1082       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1083                         << "\n");
1084       UnresolvedCalls.insert(CB);
1085       return;
1086     }
1087 
1088     // Do not try to learn partial information. If the callee has unresolved
1089     // return values we will treat the call as unresolved/opaque.
1090     auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1091     if (!RetValAAUnresolvedCalls.empty()) {
1092       UnresolvedCalls.insert(CB);
1093       return;
1094     }
1095 
1096     // Now check if we can track transitively returned values. If possible, thus
1097     // if all return value can be represented in the current scope, do so.
1098     bool Unresolved = false;
1099     for (auto &RetValAAIt : RetValAA.returned_values()) {
1100       Value *RetVal = RetValAAIt.first;
1101       if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1102           isa<Constant>(RetVal))
1103         continue;
1104       // Anything that did not fit in the above categories cannot be resolved,
1105       // mark the call as unresolved.
1106       LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1107                            "cannot be translated: "
1108                         << *RetVal << "\n");
1109       UnresolvedCalls.insert(CB);
1110       Unresolved = true;
1111       break;
1112     }
1113 
1114     if (Unresolved)
1115       return;
1116 
1117     // Now track transitively returned values.
1118     unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1119     if (NumRetAA == RetValAA.getNumReturnValues()) {
1120       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1121                            "changed since it was seen last\n");
1122       return;
1123     }
1124     NumRetAA = RetValAA.getNumReturnValues();
1125 
1126     for (auto &RetValAAIt : RetValAA.returned_values()) {
1127       Value *RetVal = RetValAAIt.first;
1128       if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1129         // Arguments are mapped to call site operands and we begin the traversal
1130         // again.
1131         bool Unused = false;
1132         RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1133         VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
1134         continue;
1135       } else if (isa<CallBase>(RetVal)) {
1136         // Call sites are resolved by the callee attribute over time, no need to
1137         // do anything for us.
1138         continue;
1139       } else if (isa<Constant>(RetVal)) {
1140         // Constants are valid everywhere, we can simply take them.
1141         NewRVsMap[RetVal].insert(RIs.begin(), RIs.end());
1142         continue;
1143       }
1144     }
1145   };
1146 
1147   for (auto &It : ReturnedValues)
1148     HandleReturnValue(It.first, It.second);
1149 
1150   // Because processing the new information can again lead to new return values
1151   // we have to be careful and iterate until this iteration is complete. The
1152   // idea is that we are in a stable state at the end of an update. All return
1153   // values have been handled and properly categorized. We might not update
1154   // again if we have not requested a non-fix attribute so we cannot "wait" for
1155   // the next update to analyze a new return value.
1156   while (!NewRVsMap.empty()) {
1157     auto It = std::move(NewRVsMap.back());
1158     NewRVsMap.pop_back();
1159 
1160     assert(!It.second.empty() && "Entry does not add anything.");
1161     auto &ReturnInsts = ReturnedValues[It.first];
1162     for (ReturnInst *RI : It.second)
1163       if (ReturnInsts.insert(RI)) {
1164         LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1165                           << *It.first << " => " << *RI << "\n");
1166         HandleReturnValue(It.first, ReturnInsts);
1167         Changed = true;
1168       }
1169   }
1170 
1171   Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1172   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1173 }
1174 
1175 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1176   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1177       : AAReturnedValuesImpl(IRP, A) {}
1178 
1179   /// See AbstractAttribute::trackStatistics()
1180   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1181 };
1182 
1183 /// Returned values information for a call sites.
1184 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1185   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1186       : AAReturnedValuesImpl(IRP, A) {}
1187 
1188   /// See AbstractAttribute::initialize(...).
1189   void initialize(Attributor &A) override {
1190     // TODO: Once we have call site specific value information we can provide
1191     //       call site specific liveness information and then it makes
1192     //       sense to specialize attributes for call sites instead of
1193     //       redirecting requests to the callee.
1194     llvm_unreachable("Abstract attributes for returned values are not "
1195                      "supported for call sites yet!");
1196   }
1197 
1198   /// See AbstractAttribute::updateImpl(...).
1199   ChangeStatus updateImpl(Attributor &A) override {
1200     return indicatePessimisticFixpoint();
1201   }
1202 
1203   /// See AbstractAttribute::trackStatistics()
1204   void trackStatistics() const override {}
1205 };
1206 
1207 /// ------------------------ NoSync Function Attribute -------------------------
1208 
1209 struct AANoSyncImpl : AANoSync {
1210   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1211 
1212   const std::string getAsStr() const override {
1213     return getAssumed() ? "nosync" : "may-sync";
1214   }
1215 
1216   /// See AbstractAttribute::updateImpl(...).
1217   ChangeStatus updateImpl(Attributor &A) override;
1218 
1219   /// Helper function used to determine whether an instruction is non-relaxed
1220   /// atomic. In other words, if an atomic instruction does not have unordered
1221   /// or monotonic ordering
1222   static bool isNonRelaxedAtomic(Instruction *I);
1223 
1224   /// Helper function used to determine whether an instruction is volatile.
1225   static bool isVolatile(Instruction *I);
1226 
1227   /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1228   /// memset).
1229   static bool isNoSyncIntrinsic(Instruction *I);
1230 };
1231 
1232 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1233   if (!I->isAtomic())
1234     return false;
1235 
1236   AtomicOrdering Ordering;
1237   switch (I->getOpcode()) {
1238   case Instruction::AtomicRMW:
1239     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1240     break;
1241   case Instruction::Store:
1242     Ordering = cast<StoreInst>(I)->getOrdering();
1243     break;
1244   case Instruction::Load:
1245     Ordering = cast<LoadInst>(I)->getOrdering();
1246     break;
1247   case Instruction::Fence: {
1248     auto *FI = cast<FenceInst>(I);
1249     if (FI->getSyncScopeID() == SyncScope::SingleThread)
1250       return false;
1251     Ordering = FI->getOrdering();
1252     break;
1253   }
1254   case Instruction::AtomicCmpXchg: {
1255     AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1256     AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1257     // Only if both are relaxed, than it can be treated as relaxed.
1258     // Otherwise it is non-relaxed.
1259     if (Success != AtomicOrdering::Unordered &&
1260         Success != AtomicOrdering::Monotonic)
1261       return true;
1262     if (Failure != AtomicOrdering::Unordered &&
1263         Failure != AtomicOrdering::Monotonic)
1264       return true;
1265     return false;
1266   }
1267   default:
1268     llvm_unreachable(
1269         "New atomic operations need to be known in the attributor.");
1270   }
1271 
1272   // Relaxed.
1273   if (Ordering == AtomicOrdering::Unordered ||
1274       Ordering == AtomicOrdering::Monotonic)
1275     return false;
1276   return true;
1277 }
1278 
1279 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1280 /// FIXME: We should ipmrove the handling of intrinsics.
1281 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1282   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1283     switch (II->getIntrinsicID()) {
1284     /// Element wise atomic memory intrinsics are can only be unordered,
1285     /// therefore nosync.
1286     case Intrinsic::memset_element_unordered_atomic:
1287     case Intrinsic::memmove_element_unordered_atomic:
1288     case Intrinsic::memcpy_element_unordered_atomic:
1289       return true;
1290     case Intrinsic::memset:
1291     case Intrinsic::memmove:
1292     case Intrinsic::memcpy:
1293       if (!cast<MemIntrinsic>(II)->isVolatile())
1294         return true;
1295       return false;
1296     default:
1297       return false;
1298     }
1299   }
1300   return false;
1301 }
1302 
1303 bool AANoSyncImpl::isVolatile(Instruction *I) {
1304   assert(!isa<CallBase>(I) && "Calls should not be checked here");
1305 
1306   switch (I->getOpcode()) {
1307   case Instruction::AtomicRMW:
1308     return cast<AtomicRMWInst>(I)->isVolatile();
1309   case Instruction::Store:
1310     return cast<StoreInst>(I)->isVolatile();
1311   case Instruction::Load:
1312     return cast<LoadInst>(I)->isVolatile();
1313   case Instruction::AtomicCmpXchg:
1314     return cast<AtomicCmpXchgInst>(I)->isVolatile();
1315   default:
1316     return false;
1317   }
1318 }
1319 
1320 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1321 
1322   auto CheckRWInstForNoSync = [&](Instruction &I) {
1323     /// We are looking for volatile instructions or Non-Relaxed atomics.
1324     /// FIXME: We should improve the handling of intrinsics.
1325 
1326     if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1327       return true;
1328 
1329     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1330       if (CB->hasFnAttr(Attribute::NoSync))
1331         return true;
1332 
1333       const auto &NoSyncAA =
1334           A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB));
1335       if (NoSyncAA.isAssumedNoSync())
1336         return true;
1337       return false;
1338     }
1339 
1340     if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1341       return true;
1342 
1343     return false;
1344   };
1345 
1346   auto CheckForNoSync = [&](Instruction &I) {
1347     // At this point we handled all read/write effects and they are all
1348     // nosync, so they can be skipped.
1349     if (I.mayReadOrWriteMemory())
1350       return true;
1351 
1352     // non-convergent and readnone imply nosync.
1353     return !cast<CallBase>(I).isConvergent();
1354   };
1355 
1356   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1357       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1358     return indicatePessimisticFixpoint();
1359 
1360   return ChangeStatus::UNCHANGED;
1361 }
1362 
1363 struct AANoSyncFunction final : public AANoSyncImpl {
1364   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1365       : AANoSyncImpl(IRP, A) {}
1366 
1367   /// See AbstractAttribute::trackStatistics()
1368   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1369 };
1370 
1371 /// NoSync attribute deduction for a call sites.
1372 struct AANoSyncCallSite final : AANoSyncImpl {
1373   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1374       : AANoSyncImpl(IRP, A) {}
1375 
1376   /// See AbstractAttribute::initialize(...).
1377   void initialize(Attributor &A) override {
1378     AANoSyncImpl::initialize(A);
1379     Function *F = getAssociatedFunction();
1380     if (!F)
1381       indicatePessimisticFixpoint();
1382   }
1383 
1384   /// See AbstractAttribute::updateImpl(...).
1385   ChangeStatus updateImpl(Attributor &A) override {
1386     // TODO: Once we have call site specific value information we can provide
1387     //       call site specific liveness information and then it makes
1388     //       sense to specialize attributes for call sites arguments instead of
1389     //       redirecting requests to the callee argument.
1390     Function *F = getAssociatedFunction();
1391     const IRPosition &FnPos = IRPosition::function(*F);
1392     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1393     return clampStateAndIndicateChange(
1394         getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
1395   }
1396 
1397   /// See AbstractAttribute::trackStatistics()
1398   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1399 };
1400 
1401 /// ------------------------ No-Free Attributes ----------------------------
1402 
1403 struct AANoFreeImpl : public AANoFree {
1404   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1405 
1406   /// See AbstractAttribute::updateImpl(...).
1407   ChangeStatus updateImpl(Attributor &A) override {
1408     auto CheckForNoFree = [&](Instruction &I) {
1409       const auto &CB = cast<CallBase>(I);
1410       if (CB.hasFnAttr(Attribute::NoFree))
1411         return true;
1412 
1413       const auto &NoFreeAA =
1414           A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB));
1415       return NoFreeAA.isAssumedNoFree();
1416     };
1417 
1418     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1419       return indicatePessimisticFixpoint();
1420     return ChangeStatus::UNCHANGED;
1421   }
1422 
1423   /// See AbstractAttribute::getAsStr().
1424   const std::string getAsStr() const override {
1425     return getAssumed() ? "nofree" : "may-free";
1426   }
1427 };
1428 
1429 struct AANoFreeFunction final : public AANoFreeImpl {
1430   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1431       : AANoFreeImpl(IRP, A) {}
1432 
1433   /// See AbstractAttribute::trackStatistics()
1434   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1435 };
1436 
1437 /// NoFree attribute deduction for a call sites.
1438 struct AANoFreeCallSite final : AANoFreeImpl {
1439   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1440       : AANoFreeImpl(IRP, A) {}
1441 
1442   /// See AbstractAttribute::initialize(...).
1443   void initialize(Attributor &A) override {
1444     AANoFreeImpl::initialize(A);
1445     Function *F = getAssociatedFunction();
1446     if (!F)
1447       indicatePessimisticFixpoint();
1448   }
1449 
1450   /// See AbstractAttribute::updateImpl(...).
1451   ChangeStatus updateImpl(Attributor &A) override {
1452     // TODO: Once we have call site specific value information we can provide
1453     //       call site specific liveness information and then it makes
1454     //       sense to specialize attributes for call sites arguments instead of
1455     //       redirecting requests to the callee argument.
1456     Function *F = getAssociatedFunction();
1457     const IRPosition &FnPos = IRPosition::function(*F);
1458     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1459     return clampStateAndIndicateChange(
1460         getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
1461   }
1462 
1463   /// See AbstractAttribute::trackStatistics()
1464   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1465 };
1466 
1467 /// NoFree attribute for floating values.
1468 struct AANoFreeFloating : AANoFreeImpl {
1469   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1470       : AANoFreeImpl(IRP, A) {}
1471 
1472   /// See AbstractAttribute::trackStatistics()
1473   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1474 
1475   /// See Abstract Attribute::updateImpl(...).
1476   ChangeStatus updateImpl(Attributor &A) override {
1477     const IRPosition &IRP = getIRPosition();
1478 
1479     const auto &NoFreeAA =
1480         A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
1481     if (NoFreeAA.isAssumedNoFree())
1482       return ChangeStatus::UNCHANGED;
1483 
1484     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1485     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1486       Instruction *UserI = cast<Instruction>(U.getUser());
1487       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1488         if (CB->isBundleOperand(&U))
1489           return false;
1490         if (!CB->isArgOperand(&U))
1491           return true;
1492         unsigned ArgNo = CB->getArgOperandNo(&U);
1493 
1494         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1495             *this, IRPosition::callsite_argument(*CB, ArgNo));
1496         return NoFreeArg.isAssumedNoFree();
1497       }
1498 
1499       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1500           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1501         Follow = true;
1502         return true;
1503       }
1504       if (isa<ReturnInst>(UserI))
1505         return true;
1506 
1507       // Unknown user.
1508       return false;
1509     };
1510     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1511       return indicatePessimisticFixpoint();
1512 
1513     return ChangeStatus::UNCHANGED;
1514   }
1515 };
1516 
1517 /// NoFree attribute for a call site argument.
1518 struct AANoFreeArgument final : AANoFreeFloating {
1519   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1520       : AANoFreeFloating(IRP, A) {}
1521 
1522   /// See AbstractAttribute::trackStatistics()
1523   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1524 };
1525 
1526 /// NoFree attribute for call site arguments.
1527 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1528   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1529       : AANoFreeFloating(IRP, A) {}
1530 
1531   /// See AbstractAttribute::updateImpl(...).
1532   ChangeStatus updateImpl(Attributor &A) override {
1533     // TODO: Once we have call site specific value information we can provide
1534     //       call site specific liveness information and then it makes
1535     //       sense to specialize attributes for call sites arguments instead of
1536     //       redirecting requests to the callee argument.
1537     Argument *Arg = getAssociatedArgument();
1538     if (!Arg)
1539       return indicatePessimisticFixpoint();
1540     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1541     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
1542     return clampStateAndIndicateChange(
1543         getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState()));
1544   }
1545 
1546   /// See AbstractAttribute::trackStatistics()
1547   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1548 };
1549 
1550 /// NoFree attribute for function return value.
1551 struct AANoFreeReturned final : AANoFreeFloating {
1552   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
1553       : AANoFreeFloating(IRP, A) {
1554     llvm_unreachable("NoFree is not applicable to function returns!");
1555   }
1556 
1557   /// See AbstractAttribute::initialize(...).
1558   void initialize(Attributor &A) override {
1559     llvm_unreachable("NoFree is not applicable to function returns!");
1560   }
1561 
1562   /// See AbstractAttribute::updateImpl(...).
1563   ChangeStatus updateImpl(Attributor &A) override {
1564     llvm_unreachable("NoFree is not applicable to function returns!");
1565   }
1566 
1567   /// See AbstractAttribute::trackStatistics()
1568   void trackStatistics() const override {}
1569 };
1570 
1571 /// NoFree attribute deduction for a call site return value.
1572 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
1573   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
1574       : AANoFreeFloating(IRP, A) {}
1575 
1576   ChangeStatus manifest(Attributor &A) override {
1577     return ChangeStatus::UNCHANGED;
1578   }
1579   /// See AbstractAttribute::trackStatistics()
1580   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1581 };
1582 
1583 /// ------------------------ NonNull Argument Attribute ------------------------
1584 static int64_t getKnownNonNullAndDerefBytesForUse(
1585     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
1586     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1587   TrackUse = false;
1588 
1589   const Value *UseV = U->get();
1590   if (!UseV->getType()->isPointerTy())
1591     return 0;
1592 
1593   Type *PtrTy = UseV->getType();
1594   const Function *F = I->getFunction();
1595   bool NullPointerIsDefined =
1596       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1597   const DataLayout &DL = A.getInfoCache().getDL();
1598   if (const auto *CB = dyn_cast<CallBase>(I)) {
1599     if (CB->isBundleOperand(U)) {
1600       if (RetainedKnowledge RK = getKnowledgeFromUse(
1601               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
1602         IsNonNull |=
1603             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
1604         return RK.ArgValue;
1605       }
1606       return 0;
1607     }
1608 
1609     if (CB->isCallee(U)) {
1610       IsNonNull |= !NullPointerIsDefined;
1611       return 0;
1612     }
1613 
1614     unsigned ArgNo = CB->getArgOperandNo(U);
1615     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
1616     // As long as we only use known information there is no need to track
1617     // dependences here.
1618     auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
1619                                                   /* TrackDependence */ false);
1620     IsNonNull |= DerefAA.isKnownNonNull();
1621     return DerefAA.getKnownDereferenceableBytes();
1622   }
1623 
1624   // We need to follow common pointer manipulation uses to the accesses they
1625   // feed into. We can try to be smart to avoid looking through things we do not
1626   // like for now, e.g., non-inbounds GEPs.
1627   if (isa<CastInst>(I)) {
1628     TrackUse = true;
1629     return 0;
1630   }
1631 
1632   if (isa<GetElementPtrInst>(I)) {
1633     TrackUse = true;
1634     return 0;
1635   }
1636 
1637   int64_t Offset;
1638   const Value *Base =
1639       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
1640   if (Base) {
1641     if (Base == &AssociatedValue &&
1642         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1643       int64_t DerefBytes =
1644           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1645 
1646       IsNonNull |= !NullPointerIsDefined;
1647       return std::max(int64_t(0), DerefBytes);
1648     }
1649   }
1650 
1651   /// Corner case when an offset is 0.
1652   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
1653                                               /*AllowNonInbounds*/ true);
1654   if (Base) {
1655     if (Offset == 0 && Base == &AssociatedValue &&
1656         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1657       int64_t DerefBytes =
1658           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1659       IsNonNull |= !NullPointerIsDefined;
1660       return std::max(int64_t(0), DerefBytes);
1661     }
1662   }
1663 
1664   return 0;
1665 }
1666 
1667 struct AANonNullImpl : AANonNull {
1668   AANonNullImpl(const IRPosition &IRP, Attributor &A)
1669       : AANonNull(IRP, A),
1670         NullIsDefined(NullPointerIsDefined(
1671             getAnchorScope(),
1672             getAssociatedValue().getType()->getPointerAddressSpace())) {}
1673 
1674   /// See AbstractAttribute::initialize(...).
1675   void initialize(Attributor &A) override {
1676     Value &V = getAssociatedValue();
1677     if (!NullIsDefined &&
1678         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
1679                 /* IgnoreSubsumingPositions */ false, &A))
1680       indicateOptimisticFixpoint();
1681     else if (isa<ConstantPointerNull>(V))
1682       indicatePessimisticFixpoint();
1683     else
1684       AANonNull::initialize(A);
1685 
1686     bool CanBeNull = true;
1687     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull))
1688       if (!CanBeNull)
1689         indicateOptimisticFixpoint();
1690 
1691     if (!getState().isAtFixpoint())
1692       if (Instruction *CtxI = getCtxI())
1693         followUsesInMBEC(*this, A, getState(), *CtxI);
1694   }
1695 
1696   /// See followUsesInMBEC
1697   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
1698                        AANonNull::StateType &State) {
1699     bool IsNonNull = false;
1700     bool TrackUse = false;
1701     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1702                                        IsNonNull, TrackUse);
1703     State.setKnown(IsNonNull);
1704     return TrackUse;
1705   }
1706 
1707   /// See AbstractAttribute::getAsStr().
1708   const std::string getAsStr() const override {
1709     return getAssumed() ? "nonnull" : "may-null";
1710   }
1711 
1712   /// Flag to determine if the underlying value can be null and still allow
1713   /// valid accesses.
1714   const bool NullIsDefined;
1715 };
1716 
1717 /// NonNull attribute for a floating value.
1718 struct AANonNullFloating : public AANonNullImpl {
1719   AANonNullFloating(const IRPosition &IRP, Attributor &A)
1720       : AANonNullImpl(IRP, A) {}
1721 
1722   /// See AbstractAttribute::updateImpl(...).
1723   ChangeStatus updateImpl(Attributor &A) override {
1724     if (!NullIsDefined) {
1725       const auto &DerefAA =
1726           A.getAAFor<AADereferenceable>(*this, getIRPosition());
1727       if (DerefAA.getAssumedDereferenceableBytes())
1728         return ChangeStatus::UNCHANGED;
1729     }
1730 
1731     const DataLayout &DL = A.getDataLayout();
1732 
1733     DominatorTree *DT = nullptr;
1734     AssumptionCache *AC = nullptr;
1735     InformationCache &InfoCache = A.getInfoCache();
1736     if (const Function *Fn = getAnchorScope()) {
1737       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
1738       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
1739     }
1740 
1741     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
1742                             AANonNull::StateType &T, bool Stripped) -> bool {
1743       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
1744       if (!Stripped && this == &AA) {
1745         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
1746           T.indicatePessimisticFixpoint();
1747       } else {
1748         // Use abstract attribute information.
1749         const AANonNull::StateType &NS =
1750             static_cast<const AANonNull::StateType &>(AA.getState());
1751         T ^= NS;
1752       }
1753       return T.isValidState();
1754     };
1755 
1756     StateType T;
1757     if (!genericValueTraversal<AANonNull, StateType>(
1758             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
1759       return indicatePessimisticFixpoint();
1760 
1761     return clampStateAndIndicateChange(getState(), T);
1762   }
1763 
1764   /// See AbstractAttribute::trackStatistics()
1765   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1766 };
1767 
1768 /// NonNull attribute for function return value.
1769 struct AANonNullReturned final
1770     : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
1771   AANonNullReturned(const IRPosition &IRP, Attributor &A)
1772       : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP, A) {}
1773 
1774   /// See AbstractAttribute::trackStatistics()
1775   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1776 };
1777 
1778 /// NonNull attribute for function argument.
1779 struct AANonNullArgument final
1780     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
1781   AANonNullArgument(const IRPosition &IRP, Attributor &A)
1782       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
1783 
1784   /// See AbstractAttribute::trackStatistics()
1785   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1786 };
1787 
1788 struct AANonNullCallSiteArgument final : AANonNullFloating {
1789   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
1790       : AANonNullFloating(IRP, A) {}
1791 
1792   /// See AbstractAttribute::trackStatistics()
1793   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1794 };
1795 
1796 /// NonNull attribute for a call site return position.
1797 struct AANonNullCallSiteReturned final
1798     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
1799   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
1800       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
1801 
1802   /// See AbstractAttribute::trackStatistics()
1803   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1804 };
1805 
1806 /// ------------------------ No-Recurse Attributes ----------------------------
1807 
1808 struct AANoRecurseImpl : public AANoRecurse {
1809   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
1810 
1811   /// See AbstractAttribute::getAsStr()
1812   const std::string getAsStr() const override {
1813     return getAssumed() ? "norecurse" : "may-recurse";
1814   }
1815 };
1816 
1817 struct AANoRecurseFunction final : AANoRecurseImpl {
1818   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
1819       : AANoRecurseImpl(IRP, A) {}
1820 
1821   /// See AbstractAttribute::initialize(...).
1822   void initialize(Attributor &A) override {
1823     AANoRecurseImpl::initialize(A);
1824     if (const Function *F = getAnchorScope())
1825       if (A.getInfoCache().getSccSize(*F) != 1)
1826         indicatePessimisticFixpoint();
1827   }
1828 
1829   /// See AbstractAttribute::updateImpl(...).
1830   ChangeStatus updateImpl(Attributor &A) override {
1831 
1832     // If all live call sites are known to be no-recurse, we are as well.
1833     auto CallSitePred = [&](AbstractCallSite ACS) {
1834       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1835           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
1836           /* TrackDependence */ false, DepClassTy::OPTIONAL);
1837       return NoRecurseAA.isKnownNoRecurse();
1838     };
1839     bool AllCallSitesKnown;
1840     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
1841       // If we know all call sites and all are known no-recurse, we are done.
1842       // If all known call sites, which might not be all that exist, are known
1843       // to be no-recurse, we are not done but we can continue to assume
1844       // no-recurse. If one of the call sites we have not visited will become
1845       // live, another update is triggered.
1846       if (AllCallSitesKnown)
1847         indicateOptimisticFixpoint();
1848       return ChangeStatus::UNCHANGED;
1849     }
1850 
1851     // If the above check does not hold anymore we look at the calls.
1852     auto CheckForNoRecurse = [&](Instruction &I) {
1853       const auto &CB = cast<CallBase>(I);
1854       if (CB.hasFnAttr(Attribute::NoRecurse))
1855         return true;
1856 
1857       const auto &NoRecurseAA =
1858           A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB));
1859       if (!NoRecurseAA.isAssumedNoRecurse())
1860         return false;
1861 
1862       // Recursion to the same function
1863       if (CB.getCalledFunction() == getAnchorScope())
1864         return false;
1865 
1866       return true;
1867     };
1868 
1869     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
1870       return indicatePessimisticFixpoint();
1871     return ChangeStatus::UNCHANGED;
1872   }
1873 
1874   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1875 };
1876 
1877 /// NoRecurse attribute deduction for a call sites.
1878 struct AANoRecurseCallSite final : AANoRecurseImpl {
1879   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
1880       : AANoRecurseImpl(IRP, A) {}
1881 
1882   /// See AbstractAttribute::initialize(...).
1883   void initialize(Attributor &A) override {
1884     AANoRecurseImpl::initialize(A);
1885     Function *F = getAssociatedFunction();
1886     if (!F)
1887       indicatePessimisticFixpoint();
1888   }
1889 
1890   /// See AbstractAttribute::updateImpl(...).
1891   ChangeStatus updateImpl(Attributor &A) override {
1892     // TODO: Once we have call site specific value information we can provide
1893     //       call site specific liveness information and then it makes
1894     //       sense to specialize attributes for call sites arguments instead of
1895     //       redirecting requests to the callee argument.
1896     Function *F = getAssociatedFunction();
1897     const IRPosition &FnPos = IRPosition::function(*F);
1898     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
1899     return clampStateAndIndicateChange(
1900         getState(),
1901         static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
1902   }
1903 
1904   /// See AbstractAttribute::trackStatistics()
1905   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1906 };
1907 
1908 /// -------------------- Undefined-Behavior Attributes ------------------------
1909 
1910 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
1911   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
1912       : AAUndefinedBehavior(IRP, A) {}
1913 
1914   /// See AbstractAttribute::updateImpl(...).
1915   // through a pointer (i.e. also branches etc.)
1916   ChangeStatus updateImpl(Attributor &A) override {
1917     const size_t UBPrevSize = KnownUBInsts.size();
1918     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
1919 
1920     auto InspectMemAccessInstForUB = [&](Instruction &I) {
1921       // Skip instructions that are already saved.
1922       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1923         return true;
1924 
1925       // If we reach here, we know we have an instruction
1926       // that accesses memory through a pointer operand,
1927       // for which getPointerOperand() should give it to us.
1928       const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
1929       assert(PtrOp &&
1930              "Expected pointer operand of memory accessing instruction");
1931 
1932       // Either we stopped and the appropriate action was taken,
1933       // or we got back a simplified value to continue.
1934       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
1935       if (!SimplifiedPtrOp.hasValue())
1936         return true;
1937       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
1938 
1939       // A memory access through a pointer is considered UB
1940       // only if the pointer has constant null value.
1941       // TODO: Expand it to not only check constant values.
1942       if (!isa<ConstantPointerNull>(PtrOpVal)) {
1943         AssumedNoUBInsts.insert(&I);
1944         return true;
1945       }
1946       const Type *PtrTy = PtrOpVal->getType();
1947 
1948       // Because we only consider instructions inside functions,
1949       // assume that a parent function exists.
1950       const Function *F = I.getFunction();
1951 
1952       // A memory access using constant null pointer is only considered UB
1953       // if null pointer is _not_ defined for the target platform.
1954       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
1955         AssumedNoUBInsts.insert(&I);
1956       else
1957         KnownUBInsts.insert(&I);
1958       return true;
1959     };
1960 
1961     auto InspectBrInstForUB = [&](Instruction &I) {
1962       // A conditional branch instruction is considered UB if it has `undef`
1963       // condition.
1964 
1965       // Skip instructions that are already saved.
1966       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1967         return true;
1968 
1969       // We know we have a branch instruction.
1970       auto BrInst = cast<BranchInst>(&I);
1971 
1972       // Unconditional branches are never considered UB.
1973       if (BrInst->isUnconditional())
1974         return true;
1975 
1976       // Either we stopped and the appropriate action was taken,
1977       // or we got back a simplified value to continue.
1978       Optional<Value *> SimplifiedCond =
1979           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
1980       if (!SimplifiedCond.hasValue())
1981         return true;
1982       AssumedNoUBInsts.insert(&I);
1983       return true;
1984     };
1985 
1986     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
1987                               {Instruction::Load, Instruction::Store,
1988                                Instruction::AtomicCmpXchg,
1989                                Instruction::AtomicRMW},
1990                               /* CheckBBLivenessOnly */ true);
1991     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
1992                               /* CheckBBLivenessOnly */ true);
1993     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
1994         UBPrevSize != KnownUBInsts.size())
1995       return ChangeStatus::CHANGED;
1996     return ChangeStatus::UNCHANGED;
1997   }
1998 
1999   bool isKnownToCauseUB(Instruction *I) const override {
2000     return KnownUBInsts.count(I);
2001   }
2002 
2003   bool isAssumedToCauseUB(Instruction *I) const override {
2004     // In simple words, if an instruction is not in the assumed to _not_
2005     // cause UB, then it is assumed UB (that includes those
2006     // in the KnownUBInsts set). The rest is boilerplate
2007     // is to ensure that it is one of the instructions we test
2008     // for UB.
2009 
2010     switch (I->getOpcode()) {
2011     case Instruction::Load:
2012     case Instruction::Store:
2013     case Instruction::AtomicCmpXchg:
2014     case Instruction::AtomicRMW:
2015       return !AssumedNoUBInsts.count(I);
2016     case Instruction::Br: {
2017       auto BrInst = cast<BranchInst>(I);
2018       if (BrInst->isUnconditional())
2019         return false;
2020       return !AssumedNoUBInsts.count(I);
2021     } break;
2022     default:
2023       return false;
2024     }
2025     return false;
2026   }
2027 
2028   ChangeStatus manifest(Attributor &A) override {
2029     if (KnownUBInsts.empty())
2030       return ChangeStatus::UNCHANGED;
2031     for (Instruction *I : KnownUBInsts)
2032       A.changeToUnreachableAfterManifest(I);
2033     return ChangeStatus::CHANGED;
2034   }
2035 
2036   /// See AbstractAttribute::getAsStr()
2037   const std::string getAsStr() const override {
2038     return getAssumed() ? "undefined-behavior" : "no-ub";
2039   }
2040 
2041   /// Note: The correctness of this analysis depends on the fact that the
2042   /// following 2 sets will stop changing after some point.
2043   /// "Change" here means that their size changes.
2044   /// The size of each set is monotonically increasing
2045   /// (we only add items to them) and it is upper bounded by the number of
2046   /// instructions in the processed function (we can never save more
2047   /// elements in either set than this number). Hence, at some point,
2048   /// they will stop increasing.
2049   /// Consequently, at some point, both sets will have stopped
2050   /// changing, effectively making the analysis reach a fixpoint.
2051 
2052   /// Note: These 2 sets are disjoint and an instruction can be considered
2053   /// one of 3 things:
2054   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2055   ///    the KnownUBInsts set.
2056   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2057   ///    has a reason to assume it).
2058   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2059   ///    could not find a reason to assume or prove that it can cause UB,
2060   ///    hence it assumes it doesn't. We have a set for these instructions
2061   ///    so that we don't reprocess them in every update.
2062   ///    Note however that instructions in this set may cause UB.
2063 
2064 protected:
2065   /// A set of all live instructions _known_ to cause UB.
2066   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2067 
2068 private:
2069   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2070   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2071 
2072   // Should be called on updates in which if we're processing an instruction
2073   // \p I that depends on a value \p V, one of the following has to happen:
2074   // - If the value is assumed, then stop.
2075   // - If the value is known but undef, then consider it UB.
2076   // - Otherwise, do specific processing with the simplified value.
2077   // We return None in the first 2 cases to signify that an appropriate
2078   // action was taken and the caller should stop.
2079   // Otherwise, we return the simplified value that the caller should
2080   // use for specific processing.
2081   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2082                                          Instruction *I) {
2083     const auto &ValueSimplifyAA =
2084         A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
2085     Optional<Value *> SimplifiedV =
2086         ValueSimplifyAA.getAssumedSimplifiedValue(A);
2087     if (!ValueSimplifyAA.isKnown()) {
2088       // Don't depend on assumed values.
2089       return llvm::None;
2090     }
2091     if (!SimplifiedV.hasValue()) {
2092       // If it is known (which we tested above) but it doesn't have a value,
2093       // then we can assume `undef` and hence the instruction is UB.
2094       KnownUBInsts.insert(I);
2095       return llvm::None;
2096     }
2097     Value *Val = SimplifiedV.getValue();
2098     if (isa<UndefValue>(Val)) {
2099       KnownUBInsts.insert(I);
2100       return llvm::None;
2101     }
2102     return Val;
2103   }
2104 };
2105 
2106 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2107   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2108       : AAUndefinedBehaviorImpl(IRP, A) {}
2109 
2110   /// See AbstractAttribute::trackStatistics()
2111   void trackStatistics() const override {
2112     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2113                "Number of instructions known to have UB");
2114     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2115         KnownUBInsts.size();
2116   }
2117 };
2118 
2119 /// ------------------------ Will-Return Attributes ----------------------------
2120 
2121 // Helper function that checks whether a function has any cycle which we don't
2122 // know if it is bounded or not.
2123 // Loops with maximum trip count are considered bounded, any other cycle not.
2124 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2125   ScalarEvolution *SE =
2126       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2127   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2128   // If either SCEV or LoopInfo is not available for the function then we assume
2129   // any cycle to be unbounded cycle.
2130   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2131   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2132   if (!SE || !LI) {
2133     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2134       if (SCCI.hasCycle())
2135         return true;
2136     return false;
2137   }
2138 
2139   // If there's irreducible control, the function may contain non-loop cycles.
2140   if (mayContainIrreducibleControl(F, LI))
2141     return true;
2142 
2143   // Any loop that does not have a max trip count is considered unbounded cycle.
2144   for (auto *L : LI->getLoopsInPreorder()) {
2145     if (!SE->getSmallConstantMaxTripCount(L))
2146       return true;
2147   }
2148   return false;
2149 }
2150 
2151 struct AAWillReturnImpl : public AAWillReturn {
2152   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2153       : AAWillReturn(IRP, A) {}
2154 
2155   /// See AbstractAttribute::initialize(...).
2156   void initialize(Attributor &A) override {
2157     AAWillReturn::initialize(A);
2158 
2159     Function *F = getAnchorScope();
2160     if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A))
2161       indicatePessimisticFixpoint();
2162   }
2163 
2164   /// See AbstractAttribute::updateImpl(...).
2165   ChangeStatus updateImpl(Attributor &A) override {
2166     auto CheckForWillReturn = [&](Instruction &I) {
2167       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2168       const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
2169       if (WillReturnAA.isKnownWillReturn())
2170         return true;
2171       if (!WillReturnAA.isAssumedWillReturn())
2172         return false;
2173       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
2174       return NoRecurseAA.isAssumedNoRecurse();
2175     };
2176 
2177     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2178       return indicatePessimisticFixpoint();
2179 
2180     return ChangeStatus::UNCHANGED;
2181   }
2182 
2183   /// See AbstractAttribute::getAsStr()
2184   const std::string getAsStr() const override {
2185     return getAssumed() ? "willreturn" : "may-noreturn";
2186   }
2187 };
2188 
2189 struct AAWillReturnFunction final : AAWillReturnImpl {
2190   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2191       : AAWillReturnImpl(IRP, A) {}
2192 
2193   /// See AbstractAttribute::trackStatistics()
2194   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2195 };
2196 
2197 /// WillReturn attribute deduction for a call sites.
2198 struct AAWillReturnCallSite final : AAWillReturnImpl {
2199   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2200       : AAWillReturnImpl(IRP, A) {}
2201 
2202   /// See AbstractAttribute::initialize(...).
2203   void initialize(Attributor &A) override {
2204     AAWillReturnImpl::initialize(A);
2205     Function *F = getAssociatedFunction();
2206     if (!F)
2207       indicatePessimisticFixpoint();
2208   }
2209 
2210   /// See AbstractAttribute::updateImpl(...).
2211   ChangeStatus updateImpl(Attributor &A) override {
2212     // TODO: Once we have call site specific value information we can provide
2213     //       call site specific liveness information and then it makes
2214     //       sense to specialize attributes for call sites arguments instead of
2215     //       redirecting requests to the callee argument.
2216     Function *F = getAssociatedFunction();
2217     const IRPosition &FnPos = IRPosition::function(*F);
2218     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
2219     return clampStateAndIndicateChange(
2220         getState(),
2221         static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
2222   }
2223 
2224   /// See AbstractAttribute::trackStatistics()
2225   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2226 };
2227 
2228 /// -------------------AAReachability Attribute--------------------------
2229 
2230 struct AAReachabilityImpl : AAReachability {
2231   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2232       : AAReachability(IRP, A) {}
2233 
2234   const std::string getAsStr() const override {
2235     // TODO: Return the number of reachable queries.
2236     return "reachable";
2237   }
2238 
2239   /// See AbstractAttribute::initialize(...).
2240   void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2241 
2242   /// See AbstractAttribute::updateImpl(...).
2243   ChangeStatus updateImpl(Attributor &A) override {
2244     return indicatePessimisticFixpoint();
2245   }
2246 };
2247 
2248 struct AAReachabilityFunction final : public AAReachabilityImpl {
2249   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2250       : AAReachabilityImpl(IRP, A) {}
2251 
2252   /// See AbstractAttribute::trackStatistics()
2253   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2254 };
2255 
2256 /// ------------------------ NoAlias Argument Attribute ------------------------
2257 
2258 struct AANoAliasImpl : AANoAlias {
2259   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2260     assert(getAssociatedType()->isPointerTy() &&
2261            "Noalias is a pointer attribute");
2262   }
2263 
2264   const std::string getAsStr() const override {
2265     return getAssumed() ? "noalias" : "may-alias";
2266   }
2267 };
2268 
2269 /// NoAlias attribute for a floating value.
2270 struct AANoAliasFloating final : AANoAliasImpl {
2271   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2272       : AANoAliasImpl(IRP, A) {}
2273 
2274   /// See AbstractAttribute::initialize(...).
2275   void initialize(Attributor &A) override {
2276     AANoAliasImpl::initialize(A);
2277     Value *Val = &getAssociatedValue();
2278     do {
2279       CastInst *CI = dyn_cast<CastInst>(Val);
2280       if (!CI)
2281         break;
2282       Value *Base = CI->getOperand(0);
2283       if (!Base->hasOneUse())
2284         break;
2285       Val = Base;
2286     } while (true);
2287 
2288     if (!Val->getType()->isPointerTy()) {
2289       indicatePessimisticFixpoint();
2290       return;
2291     }
2292 
2293     if (isa<AllocaInst>(Val))
2294       indicateOptimisticFixpoint();
2295     else if (isa<ConstantPointerNull>(Val) &&
2296              !NullPointerIsDefined(getAnchorScope(),
2297                                    Val->getType()->getPointerAddressSpace()))
2298       indicateOptimisticFixpoint();
2299     else if (Val != &getAssociatedValue()) {
2300       const auto &ValNoAliasAA =
2301           A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
2302       if (ValNoAliasAA.isKnownNoAlias())
2303         indicateOptimisticFixpoint();
2304     }
2305   }
2306 
2307   /// See AbstractAttribute::updateImpl(...).
2308   ChangeStatus updateImpl(Attributor &A) override {
2309     // TODO: Implement this.
2310     return indicatePessimisticFixpoint();
2311   }
2312 
2313   /// See AbstractAttribute::trackStatistics()
2314   void trackStatistics() const override {
2315     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2316   }
2317 };
2318 
2319 /// NoAlias attribute for an argument.
2320 struct AANoAliasArgument final
2321     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2322   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2323   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2324 
2325   /// See AbstractAttribute::initialize(...).
2326   void initialize(Attributor &A) override {
2327     Base::initialize(A);
2328     // See callsite argument attribute and callee argument attribute.
2329     if (hasAttr({Attribute::ByVal}))
2330       indicateOptimisticFixpoint();
2331   }
2332 
2333   /// See AbstractAttribute::update(...).
2334   ChangeStatus updateImpl(Attributor &A) override {
2335     // We have to make sure no-alias on the argument does not break
2336     // synchronization when this is a callback argument, see also [1] below.
2337     // If synchronization cannot be affected, we delegate to the base updateImpl
2338     // function, otherwise we give up for now.
2339 
2340     // If the function is no-sync, no-alias cannot break synchronization.
2341     const auto &NoSyncAA = A.getAAFor<AANoSync>(
2342         *this, IRPosition::function_scope(getIRPosition()));
2343     if (NoSyncAA.isAssumedNoSync())
2344       return Base::updateImpl(A);
2345 
2346     // If the argument is read-only, no-alias cannot break synchronization.
2347     const auto &MemBehaviorAA =
2348         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
2349     if (MemBehaviorAA.isAssumedReadOnly())
2350       return Base::updateImpl(A);
2351 
2352     // If the argument is never passed through callbacks, no-alias cannot break
2353     // synchronization.
2354     bool AllCallSitesKnown;
2355     if (A.checkForAllCallSites(
2356             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2357             true, AllCallSitesKnown))
2358       return Base::updateImpl(A);
2359 
2360     // TODO: add no-alias but make sure it doesn't break synchronization by
2361     // introducing fake uses. See:
2362     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2363     //     International Workshop on OpenMP 2018,
2364     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2365 
2366     return indicatePessimisticFixpoint();
2367   }
2368 
2369   /// See AbstractAttribute::trackStatistics()
2370   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2371 };
2372 
2373 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2374   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2375       : AANoAliasImpl(IRP, A) {}
2376 
2377   /// See AbstractAttribute::initialize(...).
2378   void initialize(Attributor &A) override {
2379     // See callsite argument attribute and callee argument attribute.
2380     const auto &CB = cast<CallBase>(getAnchorValue());
2381     if (CB.paramHasAttr(getArgNo(), Attribute::NoAlias))
2382       indicateOptimisticFixpoint();
2383     Value &Val = getAssociatedValue();
2384     if (isa<ConstantPointerNull>(Val) &&
2385         !NullPointerIsDefined(getAnchorScope(),
2386                               Val.getType()->getPointerAddressSpace()))
2387       indicateOptimisticFixpoint();
2388   }
2389 
2390   /// Determine if the underlying value may alias with the call site argument
2391   /// \p OtherArgNo of \p ICS (= the underlying call site).
2392   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2393                             const AAMemoryBehavior &MemBehaviorAA,
2394                             const CallBase &CB, unsigned OtherArgNo) {
2395     // We do not need to worry about aliasing with the underlying IRP.
2396     if (this->getArgNo() == (int)OtherArgNo)
2397       return false;
2398 
2399     // If it is not a pointer or pointer vector we do not alias.
2400     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
2401     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2402       return false;
2403 
2404     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2405         *this, IRPosition::callsite_argument(CB, OtherArgNo),
2406         /* TrackDependence */ false);
2407 
2408     // If the argument is readnone, there is no read-write aliasing.
2409     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
2410       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2411       return false;
2412     }
2413 
2414     // If the argument is readonly and the underlying value is readonly, there
2415     // is no read-write aliasing.
2416     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2417     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2418       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2419       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2420       return false;
2421     }
2422 
2423     // We have to utilize actual alias analysis queries so we need the object.
2424     if (!AAR)
2425       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2426 
2427     // Try to rule it out at the call site.
2428     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2429     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2430                          "callsite arguments: "
2431                       << getAssociatedValue() << " " << *ArgOp << " => "
2432                       << (IsAliasing ? "" : "no-") << "alias \n");
2433 
2434     return IsAliasing;
2435   }
2436 
2437   bool
2438   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2439                                          const AAMemoryBehavior &MemBehaviorAA,
2440                                          const AANoAlias &NoAliasAA) {
2441     // We can deduce "noalias" if the following conditions hold.
2442     // (i)   Associated value is assumed to be noalias in the definition.
2443     // (ii)  Associated value is assumed to be no-capture in all the uses
2444     //       possibly executed before this callsite.
2445     // (iii) There is no other pointer argument which could alias with the
2446     //       value.
2447 
2448     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2449     if (!AssociatedValueIsNoAliasAtDef) {
2450       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2451                         << " is not no-alias at the definition\n");
2452       return false;
2453     }
2454 
2455     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
2456 
2457     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2458     auto &NoCaptureAA =
2459         A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
2460     // Check whether the value is captured in the scope using AANoCapture.
2461     //      Look at CFG and check only uses possibly executed before this
2462     //      callsite.
2463     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
2464       Instruction *UserI = cast<Instruction>(U.getUser());
2465 
2466       // If user if curr instr and only use.
2467       if (UserI == getCtxI() && UserI->hasOneUse())
2468         return true;
2469 
2470       const Function *ScopeFn = VIRP.getAnchorScope();
2471       if (ScopeFn) {
2472         const auto &ReachabilityAA =
2473             A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
2474 
2475         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
2476           return true;
2477 
2478         if (auto *CB = dyn_cast<CallBase>(UserI)) {
2479           if (CB->isArgOperand(&U)) {
2480 
2481             unsigned ArgNo = CB->getArgOperandNo(&U);
2482 
2483             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
2484                 *this, IRPosition::callsite_argument(*CB, ArgNo));
2485 
2486             if (NoCaptureAA.isAssumedNoCapture())
2487               return true;
2488           }
2489         }
2490       }
2491 
2492       // For cases which can potentially have more users
2493       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
2494           isa<SelectInst>(U)) {
2495         Follow = true;
2496         return true;
2497       }
2498 
2499       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
2500       return false;
2501     };
2502 
2503     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2504       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
2505         LLVM_DEBUG(
2506             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2507                    << " cannot be noalias as it is potentially captured\n");
2508         return false;
2509       }
2510     }
2511     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2512 
2513     // Check there is no other pointer argument which could alias with the
2514     // value passed at this call site.
2515     // TODO: AbstractCallSite
2516     const auto &CB = cast<CallBase>(getAnchorValue());
2517     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
2518          OtherArgNo++)
2519       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
2520         return false;
2521 
2522     return true;
2523   }
2524 
2525   /// See AbstractAttribute::updateImpl(...).
2526   ChangeStatus updateImpl(Attributor &A) override {
2527     // If the argument is readnone we are done as there are no accesses via the
2528     // argument.
2529     auto &MemBehaviorAA =
2530         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2531                                      /* TrackDependence */ false);
2532     if (MemBehaviorAA.isAssumedReadNone()) {
2533       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2534       return ChangeStatus::UNCHANGED;
2535     }
2536 
2537     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2538     const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
2539                                                   /* TrackDependence */ false);
2540 
2541     AAResults *AAR = nullptr;
2542     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2543                                                NoAliasAA)) {
2544       LLVM_DEBUG(
2545           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2546       return ChangeStatus::UNCHANGED;
2547     }
2548 
2549     return indicatePessimisticFixpoint();
2550   }
2551 
2552   /// See AbstractAttribute::trackStatistics()
2553   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2554 };
2555 
2556 /// NoAlias attribute for function return value.
2557 struct AANoAliasReturned final : AANoAliasImpl {
2558   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
2559       : AANoAliasImpl(IRP, A) {}
2560 
2561   /// See AbstractAttribute::updateImpl(...).
2562   virtual ChangeStatus updateImpl(Attributor &A) override {
2563 
2564     auto CheckReturnValue = [&](Value &RV) -> bool {
2565       if (Constant *C = dyn_cast<Constant>(&RV))
2566         if (C->isNullValue() || isa<UndefValue>(C))
2567           return true;
2568 
2569       /// For now, we can only deduce noalias if we have call sites.
2570       /// FIXME: add more support.
2571       if (!isa<CallBase>(&RV))
2572         return false;
2573 
2574       const IRPosition &RVPos = IRPosition::value(RV);
2575       const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
2576       if (!NoAliasAA.isAssumedNoAlias())
2577         return false;
2578 
2579       const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
2580       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2581     };
2582 
2583     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2584       return indicatePessimisticFixpoint();
2585 
2586     return ChangeStatus::UNCHANGED;
2587   }
2588 
2589   /// See AbstractAttribute::trackStatistics()
2590   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2591 };
2592 
2593 /// NoAlias attribute deduction for a call site return value.
2594 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
2595   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
2596       : AANoAliasImpl(IRP, A) {}
2597 
2598   /// See AbstractAttribute::initialize(...).
2599   void initialize(Attributor &A) override {
2600     AANoAliasImpl::initialize(A);
2601     Function *F = getAssociatedFunction();
2602     if (!F)
2603       indicatePessimisticFixpoint();
2604   }
2605 
2606   /// See AbstractAttribute::updateImpl(...).
2607   ChangeStatus updateImpl(Attributor &A) override {
2608     // TODO: Once we have call site specific value information we can provide
2609     //       call site specific liveness information and then it makes
2610     //       sense to specialize attributes for call sites arguments instead of
2611     //       redirecting requests to the callee argument.
2612     Function *F = getAssociatedFunction();
2613     const IRPosition &FnPos = IRPosition::returned(*F);
2614     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
2615     return clampStateAndIndicateChange(
2616         getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
2617   }
2618 
2619   /// See AbstractAttribute::trackStatistics()
2620   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2621 };
2622 
2623 /// -------------------AAIsDead Function Attribute-----------------------
2624 
2625 struct AAIsDeadValueImpl : public AAIsDead {
2626   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2627 
2628   /// See AAIsDead::isAssumedDead().
2629   bool isAssumedDead() const override { return getAssumed(); }
2630 
2631   /// See AAIsDead::isKnownDead().
2632   bool isKnownDead() const override { return getKnown(); }
2633 
2634   /// See AAIsDead::isAssumedDead(BasicBlock *).
2635   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2636 
2637   /// See AAIsDead::isKnownDead(BasicBlock *).
2638   bool isKnownDead(const BasicBlock *BB) const override { return false; }
2639 
2640   /// See AAIsDead::isAssumedDead(Instruction *I).
2641   bool isAssumedDead(const Instruction *I) const override {
2642     return I == getCtxI() && isAssumedDead();
2643   }
2644 
2645   /// See AAIsDead::isKnownDead(Instruction *I).
2646   bool isKnownDead(const Instruction *I) const override {
2647     return isAssumedDead(I) && getKnown();
2648   }
2649 
2650   /// See AbstractAttribute::getAsStr().
2651   const std::string getAsStr() const override {
2652     return isAssumedDead() ? "assumed-dead" : "assumed-live";
2653   }
2654 
2655   /// Check if all uses are assumed dead.
2656   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2657     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2658     // Explicitly set the dependence class to required because we want a long
2659     // chain of N dependent instructions to be considered live as soon as one is
2660     // without going through N update cycles. This is not required for
2661     // correctness.
2662     return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2663   }
2664 
2665   /// Determine if \p I is assumed to be side-effect free.
2666   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2667     if (!I || wouldInstructionBeTriviallyDead(I))
2668       return true;
2669 
2670     auto *CB = dyn_cast<CallBase>(I);
2671     if (!CB || isa<IntrinsicInst>(CB))
2672       return false;
2673 
2674     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2675     const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>(
2676         *this, CallIRP, /* TrackDependence */ false);
2677     if (!NoUnwindAA.isAssumedNoUnwind())
2678       return false;
2679     if (!NoUnwindAA.isKnownNoUnwind())
2680       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
2681 
2682     const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>(
2683         *this, CallIRP, /* TrackDependence */ false);
2684     if (MemBehaviorAA.isAssumedReadOnly()) {
2685       if (!MemBehaviorAA.isKnownReadOnly())
2686         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2687       return true;
2688     }
2689     return false;
2690   }
2691 };
2692 
2693 struct AAIsDeadFloating : public AAIsDeadValueImpl {
2694   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
2695       : AAIsDeadValueImpl(IRP, A) {}
2696 
2697   /// See AbstractAttribute::initialize(...).
2698   void initialize(Attributor &A) override {
2699     if (isa<UndefValue>(getAssociatedValue())) {
2700       indicatePessimisticFixpoint();
2701       return;
2702     }
2703 
2704     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2705     if (!isAssumedSideEffectFree(A, I))
2706       indicatePessimisticFixpoint();
2707   }
2708 
2709   /// See AbstractAttribute::updateImpl(...).
2710   ChangeStatus updateImpl(Attributor &A) override {
2711     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2712     if (!isAssumedSideEffectFree(A, I))
2713       return indicatePessimisticFixpoint();
2714 
2715     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2716       return indicatePessimisticFixpoint();
2717     return ChangeStatus::UNCHANGED;
2718   }
2719 
2720   /// See AbstractAttribute::manifest(...).
2721   ChangeStatus manifest(Attributor &A) override {
2722     Value &V = getAssociatedValue();
2723     if (auto *I = dyn_cast<Instruction>(&V)) {
2724       // If we get here we basically know the users are all dead. We check if
2725       // isAssumedSideEffectFree returns true here again because it might not be
2726       // the case and only the users are dead but the instruction (=call) is
2727       // still needed.
2728       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2729         A.deleteAfterManifest(*I);
2730         return ChangeStatus::CHANGED;
2731       }
2732     }
2733     if (V.use_empty())
2734       return ChangeStatus::UNCHANGED;
2735 
2736     bool UsedAssumedInformation = false;
2737     Optional<Constant *> C =
2738         A.getAssumedConstant(V, *this, UsedAssumedInformation);
2739     if (C.hasValue() && C.getValue())
2740       return ChangeStatus::UNCHANGED;
2741 
2742     // Replace the value with undef as it is dead but keep droppable uses around
2743     // as they provide information we don't want to give up on just yet.
2744     UndefValue &UV = *UndefValue::get(V.getType());
2745     bool AnyChange =
2746         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
2747     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2748   }
2749 
2750   /// See AbstractAttribute::trackStatistics()
2751   void trackStatistics() const override {
2752     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2753   }
2754 };
2755 
2756 struct AAIsDeadArgument : public AAIsDeadFloating {
2757   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
2758       : AAIsDeadFloating(IRP, A) {}
2759 
2760   /// See AbstractAttribute::initialize(...).
2761   void initialize(Attributor &A) override {
2762     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
2763       indicatePessimisticFixpoint();
2764   }
2765 
2766   /// See AbstractAttribute::manifest(...).
2767   ChangeStatus manifest(Attributor &A) override {
2768     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2769     Argument &Arg = *getAssociatedArgument();
2770     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2771       if (A.registerFunctionSignatureRewrite(
2772               Arg, /* ReplacementTypes */ {},
2773               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2774               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
2775         Arg.dropDroppableUses();
2776         return ChangeStatus::CHANGED;
2777       }
2778     return Changed;
2779   }
2780 
2781   /// See AbstractAttribute::trackStatistics()
2782   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
2783 };
2784 
2785 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
2786   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
2787       : AAIsDeadValueImpl(IRP, A) {}
2788 
2789   /// See AbstractAttribute::initialize(...).
2790   void initialize(Attributor &A) override {
2791     if (isa<UndefValue>(getAssociatedValue()))
2792       indicatePessimisticFixpoint();
2793   }
2794 
2795   /// See AbstractAttribute::updateImpl(...).
2796   ChangeStatus updateImpl(Attributor &A) override {
2797     // TODO: Once we have call site specific value information we can provide
2798     //       call site specific liveness information and then it makes
2799     //       sense to specialize attributes for call sites arguments instead of
2800     //       redirecting requests to the callee argument.
2801     Argument *Arg = getAssociatedArgument();
2802     if (!Arg)
2803       return indicatePessimisticFixpoint();
2804     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2805     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
2806     return clampStateAndIndicateChange(
2807         getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState()));
2808   }
2809 
2810   /// See AbstractAttribute::manifest(...).
2811   ChangeStatus manifest(Attributor &A) override {
2812     CallBase &CB = cast<CallBase>(getAnchorValue());
2813     Use &U = CB.getArgOperandUse(getArgNo());
2814     assert(!isa<UndefValue>(U.get()) &&
2815            "Expected undef values to be filtered out!");
2816     UndefValue &UV = *UndefValue::get(U->getType());
2817     if (A.changeUseAfterManifest(U, UV))
2818       return ChangeStatus::CHANGED;
2819     return ChangeStatus::UNCHANGED;
2820   }
2821 
2822   /// See AbstractAttribute::trackStatistics()
2823   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
2824 };
2825 
2826 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
2827   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
2828       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
2829 
2830   /// See AAIsDead::isAssumedDead().
2831   bool isAssumedDead() const override {
2832     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
2833   }
2834 
2835   /// See AbstractAttribute::initialize(...).
2836   void initialize(Attributor &A) override {
2837     if (isa<UndefValue>(getAssociatedValue())) {
2838       indicatePessimisticFixpoint();
2839       return;
2840     }
2841 
2842     // We track this separately as a secondary state.
2843     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
2844   }
2845 
2846   /// See AbstractAttribute::updateImpl(...).
2847   ChangeStatus updateImpl(Attributor &A) override {
2848     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2849     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
2850       IsAssumedSideEffectFree = false;
2851       Changed = ChangeStatus::CHANGED;
2852     }
2853 
2854     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2855       return indicatePessimisticFixpoint();
2856     return Changed;
2857   }
2858 
2859   /// See AbstractAttribute::trackStatistics()
2860   void trackStatistics() const override {
2861     if (IsAssumedSideEffectFree)
2862       STATS_DECLTRACK_CSRET_ATTR(IsDead)
2863     else
2864       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
2865   }
2866 
2867   /// See AbstractAttribute::getAsStr().
2868   const std::string getAsStr() const override {
2869     return isAssumedDead()
2870                ? "assumed-dead"
2871                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
2872   }
2873 
2874 private:
2875   bool IsAssumedSideEffectFree;
2876 };
2877 
2878 struct AAIsDeadReturned : public AAIsDeadValueImpl {
2879   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
2880       : AAIsDeadValueImpl(IRP, A) {}
2881 
2882   /// See AbstractAttribute::updateImpl(...).
2883   ChangeStatus updateImpl(Attributor &A) override {
2884 
2885     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
2886                               {Instruction::Ret});
2887 
2888     auto PredForCallSite = [&](AbstractCallSite ACS) {
2889       if (ACS.isCallbackCall() || !ACS.getInstruction())
2890         return false;
2891       return areAllUsesAssumedDead(A, *ACS.getInstruction());
2892     };
2893 
2894     bool AllCallSitesKnown;
2895     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
2896                                 AllCallSitesKnown))
2897       return indicatePessimisticFixpoint();
2898 
2899     return ChangeStatus::UNCHANGED;
2900   }
2901 
2902   /// See AbstractAttribute::manifest(...).
2903   ChangeStatus manifest(Attributor &A) override {
2904     // TODO: Rewrite the signature to return void?
2905     bool AnyChange = false;
2906     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
2907     auto RetInstPred = [&](Instruction &I) {
2908       ReturnInst &RI = cast<ReturnInst>(I);
2909       if (!isa<UndefValue>(RI.getReturnValue()))
2910         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
2911       return true;
2912     };
2913     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
2914     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2915   }
2916 
2917   /// See AbstractAttribute::trackStatistics()
2918   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
2919 };
2920 
2921 struct AAIsDeadFunction : public AAIsDead {
2922   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2923 
2924   /// See AbstractAttribute::initialize(...).
2925   void initialize(Attributor &A) override {
2926     const Function *F = getAnchorScope();
2927     if (F && !F->isDeclaration()) {
2928       ToBeExploredFrom.insert(&F->getEntryBlock().front());
2929       assumeLive(A, F->getEntryBlock());
2930     }
2931   }
2932 
2933   /// See AbstractAttribute::getAsStr().
2934   const std::string getAsStr() const override {
2935     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
2936            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
2937            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
2938            std::to_string(KnownDeadEnds.size()) + "]";
2939   }
2940 
2941   /// See AbstractAttribute::manifest(...).
2942   ChangeStatus manifest(Attributor &A) override {
2943     assert(getState().isValidState() &&
2944            "Attempted to manifest an invalid state!");
2945 
2946     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2947     Function &F = *getAnchorScope();
2948 
2949     if (AssumedLiveBlocks.empty()) {
2950       A.deleteAfterManifest(F);
2951       return ChangeStatus::CHANGED;
2952     }
2953 
2954     // Flag to determine if we can change an invoke to a call assuming the
2955     // callee is nounwind. This is not possible if the personality of the
2956     // function allows to catch asynchronous exceptions.
2957     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
2958 
2959     KnownDeadEnds.set_union(ToBeExploredFrom);
2960     for (const Instruction *DeadEndI : KnownDeadEnds) {
2961       auto *CB = dyn_cast<CallBase>(DeadEndI);
2962       if (!CB)
2963         continue;
2964       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
2965           *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true,
2966           DepClassTy::OPTIONAL);
2967       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
2968       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
2969         continue;
2970 
2971       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
2972         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
2973       else
2974         A.changeToUnreachableAfterManifest(
2975             const_cast<Instruction *>(DeadEndI->getNextNode()));
2976       HasChanged = ChangeStatus::CHANGED;
2977     }
2978 
2979     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
2980     for (BasicBlock &BB : F)
2981       if (!AssumedLiveBlocks.count(&BB)) {
2982         A.deleteAfterManifest(BB);
2983         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
2984       }
2985 
2986     return HasChanged;
2987   }
2988 
2989   /// See AbstractAttribute::updateImpl(...).
2990   ChangeStatus updateImpl(Attributor &A) override;
2991 
2992   /// See AbstractAttribute::trackStatistics()
2993   void trackStatistics() const override {}
2994 
2995   /// Returns true if the function is assumed dead.
2996   bool isAssumedDead() const override { return false; }
2997 
2998   /// See AAIsDead::isKnownDead().
2999   bool isKnownDead() const override { return false; }
3000 
3001   /// See AAIsDead::isAssumedDead(BasicBlock *).
3002   bool isAssumedDead(const BasicBlock *BB) const override {
3003     assert(BB->getParent() == getAnchorScope() &&
3004            "BB must be in the same anchor scope function.");
3005 
3006     if (!getAssumed())
3007       return false;
3008     return !AssumedLiveBlocks.count(BB);
3009   }
3010 
3011   /// See AAIsDead::isKnownDead(BasicBlock *).
3012   bool isKnownDead(const BasicBlock *BB) const override {
3013     return getKnown() && isAssumedDead(BB);
3014   }
3015 
3016   /// See AAIsDead::isAssumed(Instruction *I).
3017   bool isAssumedDead(const Instruction *I) const override {
3018     assert(I->getParent()->getParent() == getAnchorScope() &&
3019            "Instruction must be in the same anchor scope function.");
3020 
3021     if (!getAssumed())
3022       return false;
3023 
3024     // If it is not in AssumedLiveBlocks then it for sure dead.
3025     // Otherwise, it can still be after noreturn call in a live block.
3026     if (!AssumedLiveBlocks.count(I->getParent()))
3027       return true;
3028 
3029     // If it is not after a liveness barrier it is live.
3030     const Instruction *PrevI = I->getPrevNode();
3031     while (PrevI) {
3032       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3033         return true;
3034       PrevI = PrevI->getPrevNode();
3035     }
3036     return false;
3037   }
3038 
3039   /// See AAIsDead::isKnownDead(Instruction *I).
3040   bool isKnownDead(const Instruction *I) const override {
3041     return getKnown() && isAssumedDead(I);
3042   }
3043 
3044   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3045   /// that internal function called from \p BB should now be looked at.
3046   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3047     if (!AssumedLiveBlocks.insert(&BB).second)
3048       return false;
3049 
3050     // We assume that all of BB is (probably) live now and if there are calls to
3051     // internal functions we will assume that those are now live as well. This
3052     // is a performance optimization for blocks with calls to a lot of internal
3053     // functions. It can however cause dead functions to be treated as live.
3054     for (const Instruction &I : BB)
3055       if (const auto *CB = dyn_cast<CallBase>(&I))
3056         if (const Function *F = CB->getCalledFunction())
3057           if (F->hasLocalLinkage())
3058             A.markLiveInternalFunction(*F);
3059     return true;
3060   }
3061 
3062   /// Collection of instructions that need to be explored again, e.g., we
3063   /// did assume they do not transfer control to (one of their) successors.
3064   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3065 
3066   /// Collection of instructions that are known to not transfer control.
3067   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3068 
3069   /// Collection of all assumed live BasicBlocks.
3070   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3071 };
3072 
3073 static bool
3074 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3075                         AbstractAttribute &AA,
3076                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3077   const IRPosition &IPos = IRPosition::callsite_function(CB);
3078 
3079   const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3080       AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3081   if (NoReturnAA.isAssumedNoReturn())
3082     return !NoReturnAA.isKnownNoReturn();
3083   if (CB.isTerminator())
3084     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3085   else
3086     AliveSuccessors.push_back(CB.getNextNode());
3087   return false;
3088 }
3089 
3090 static bool
3091 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3092                         AbstractAttribute &AA,
3093                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3094   bool UsedAssumedInformation =
3095       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3096 
3097   // First, determine if we can change an invoke to a call assuming the
3098   // callee is nounwind. This is not possible if the personality of the
3099   // function allows to catch asynchronous exceptions.
3100   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3101     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3102   } else {
3103     const IRPosition &IPos = IRPosition::callsite_function(II);
3104     const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>(
3105         AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3106     if (AANoUnw.isAssumedNoUnwind()) {
3107       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3108     } else {
3109       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3110     }
3111   }
3112   return UsedAssumedInformation;
3113 }
3114 
3115 static bool
3116 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3117                         AbstractAttribute &AA,
3118                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3119   bool UsedAssumedInformation = false;
3120   if (BI.getNumSuccessors() == 1) {
3121     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3122   } else {
3123     Optional<ConstantInt *> CI = getAssumedConstantInt(
3124         A, *BI.getCondition(), AA, UsedAssumedInformation);
3125     if (!CI.hasValue()) {
3126       // No value yet, assume both edges are dead.
3127     } else if (CI.getValue()) {
3128       const BasicBlock *SuccBB =
3129           BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3130       AliveSuccessors.push_back(&SuccBB->front());
3131     } else {
3132       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3133       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3134       UsedAssumedInformation = false;
3135     }
3136   }
3137   return UsedAssumedInformation;
3138 }
3139 
3140 static bool
3141 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3142                         AbstractAttribute &AA,
3143                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3144   bool UsedAssumedInformation = false;
3145   Optional<ConstantInt *> CI =
3146       getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3147   if (!CI.hasValue()) {
3148     // No value yet, assume all edges are dead.
3149   } else if (CI.getValue()) {
3150     for (auto &CaseIt : SI.cases()) {
3151       if (CaseIt.getCaseValue() == CI.getValue()) {
3152         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3153         return UsedAssumedInformation;
3154       }
3155     }
3156     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3157     return UsedAssumedInformation;
3158   } else {
3159     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3160       AliveSuccessors.push_back(&SuccBB->front());
3161   }
3162   return UsedAssumedInformation;
3163 }
3164 
3165 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3166   ChangeStatus Change = ChangeStatus::UNCHANGED;
3167 
3168   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3169                     << getAnchorScope()->size() << "] BBs and "
3170                     << ToBeExploredFrom.size() << " exploration points and "
3171                     << KnownDeadEnds.size() << " known dead ends\n");
3172 
3173   // Copy and clear the list of instructions we need to explore from. It is
3174   // refilled with instructions the next update has to look at.
3175   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3176                                                ToBeExploredFrom.end());
3177   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3178 
3179   SmallVector<const Instruction *, 8> AliveSuccessors;
3180   while (!Worklist.empty()) {
3181     const Instruction *I = Worklist.pop_back_val();
3182     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3183 
3184     AliveSuccessors.clear();
3185 
3186     bool UsedAssumedInformation = false;
3187     switch (I->getOpcode()) {
3188     // TODO: look for (assumed) UB to backwards propagate "deadness".
3189     default:
3190       if (I->isTerminator()) {
3191         for (const BasicBlock *SuccBB : successors(I->getParent()))
3192           AliveSuccessors.push_back(&SuccBB->front());
3193       } else {
3194         AliveSuccessors.push_back(I->getNextNode());
3195       }
3196       break;
3197     case Instruction::Call:
3198       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3199                                                        *this, AliveSuccessors);
3200       break;
3201     case Instruction::Invoke:
3202       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3203                                                        *this, AliveSuccessors);
3204       break;
3205     case Instruction::Br:
3206       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3207                                                        *this, AliveSuccessors);
3208       break;
3209     case Instruction::Switch:
3210       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3211                                                        *this, AliveSuccessors);
3212       break;
3213     }
3214 
3215     if (UsedAssumedInformation) {
3216       NewToBeExploredFrom.insert(I);
3217     } else {
3218       Change = ChangeStatus::CHANGED;
3219       if (AliveSuccessors.empty() ||
3220           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3221         KnownDeadEnds.insert(I);
3222     }
3223 
3224     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3225                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3226                       << UsedAssumedInformation << "\n");
3227 
3228     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3229       if (!I->isTerminator()) {
3230         assert(AliveSuccessors.size() == 1 &&
3231                "Non-terminator expected to have a single successor!");
3232         Worklist.push_back(AliveSuccessor);
3233       } else {
3234         if (assumeLive(A, *AliveSuccessor->getParent()))
3235           Worklist.push_back(AliveSuccessor);
3236       }
3237     }
3238   }
3239 
3240   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3241 
3242   // If we know everything is live there is no need to query for liveness.
3243   // Instead, indicating a pessimistic fixpoint will cause the state to be
3244   // "invalid" and all queries to be answered conservatively without lookups.
3245   // To be in this state we have to (1) finished the exploration and (3) not
3246   // discovered any non-trivial dead end and (2) not ruled unreachable code
3247   // dead.
3248   if (ToBeExploredFrom.empty() &&
3249       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3250       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3251         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3252       }))
3253     return indicatePessimisticFixpoint();
3254   return Change;
3255 }
3256 
3257 /// Liveness information for a call sites.
3258 struct AAIsDeadCallSite final : AAIsDeadFunction {
3259   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3260       : AAIsDeadFunction(IRP, A) {}
3261 
3262   /// See AbstractAttribute::initialize(...).
3263   void initialize(Attributor &A) override {
3264     // TODO: Once we have call site specific value information we can provide
3265     //       call site specific liveness information and then it makes
3266     //       sense to specialize attributes for call sites instead of
3267     //       redirecting requests to the callee.
3268     llvm_unreachable("Abstract attributes for liveness are not "
3269                      "supported for call sites yet!");
3270   }
3271 
3272   /// See AbstractAttribute::updateImpl(...).
3273   ChangeStatus updateImpl(Attributor &A) override {
3274     return indicatePessimisticFixpoint();
3275   }
3276 
3277   /// See AbstractAttribute::trackStatistics()
3278   void trackStatistics() const override {}
3279 };
3280 
3281 /// -------------------- Dereferenceable Argument Attribute --------------------
3282 
3283 template <>
3284 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3285                                                      const DerefState &R) {
3286   ChangeStatus CS0 =
3287       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3288   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3289   return CS0 | CS1;
3290 }
3291 
3292 struct AADereferenceableImpl : AADereferenceable {
3293   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3294       : AADereferenceable(IRP, A) {}
3295   using StateType = DerefState;
3296 
3297   /// See AbstractAttribute::initialize(...).
3298   void initialize(Attributor &A) override {
3299     SmallVector<Attribute, 4> Attrs;
3300     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3301              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3302     for (const Attribute &Attr : Attrs)
3303       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3304 
3305     const IRPosition &IRP = this->getIRPosition();
3306     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP,
3307                                        /* TrackDependence */ false);
3308 
3309     bool CanBeNull;
3310     takeKnownDerefBytesMaximum(
3311         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3312             A.getDataLayout(), CanBeNull));
3313 
3314     bool IsFnInterface = IRP.isFnInterfaceKind();
3315     Function *FnScope = IRP.getAnchorScope();
3316     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3317       indicatePessimisticFixpoint();
3318       return;
3319     }
3320 
3321     if (Instruction *CtxI = getCtxI())
3322       followUsesInMBEC(*this, A, getState(), *CtxI);
3323   }
3324 
3325   /// See AbstractAttribute::getState()
3326   /// {
3327   StateType &getState() override { return *this; }
3328   const StateType &getState() const override { return *this; }
3329   /// }
3330 
3331   /// Helper function for collecting accessed bytes in must-be-executed-context
3332   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3333                               DerefState &State) {
3334     const Value *UseV = U->get();
3335     if (!UseV->getType()->isPointerTy())
3336       return;
3337 
3338     Type *PtrTy = UseV->getType();
3339     const DataLayout &DL = A.getDataLayout();
3340     int64_t Offset;
3341     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3342             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3343       if (Base == &getAssociatedValue() &&
3344           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3345         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3346         State.addAccessedBytes(Offset, Size);
3347       }
3348     }
3349     return;
3350   }
3351 
3352   /// See followUsesInMBEC
3353   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3354                        AADereferenceable::StateType &State) {
3355     bool IsNonNull = false;
3356     bool TrackUse = false;
3357     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3358         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3359     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
3360                       << " for instruction " << *I << "\n");
3361 
3362     addAccessedBytesForUse(A, U, I, State);
3363     State.takeKnownDerefBytesMaximum(DerefBytes);
3364     return TrackUse;
3365   }
3366 
3367   /// See AbstractAttribute::manifest(...).
3368   ChangeStatus manifest(Attributor &A) override {
3369     ChangeStatus Change = AADereferenceable::manifest(A);
3370     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3371       removeAttrs({Attribute::DereferenceableOrNull});
3372       return ChangeStatus::CHANGED;
3373     }
3374     return Change;
3375   }
3376 
3377   void getDeducedAttributes(LLVMContext &Ctx,
3378                             SmallVectorImpl<Attribute> &Attrs) const override {
3379     // TODO: Add *_globally support
3380     if (isAssumedNonNull())
3381       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3382           Ctx, getAssumedDereferenceableBytes()));
3383     else
3384       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3385           Ctx, getAssumedDereferenceableBytes()));
3386   }
3387 
3388   /// See AbstractAttribute::getAsStr().
3389   const std::string getAsStr() const override {
3390     if (!getAssumedDereferenceableBytes())
3391       return "unknown-dereferenceable";
3392     return std::string("dereferenceable") +
3393            (isAssumedNonNull() ? "" : "_or_null") +
3394            (isAssumedGlobal() ? "_globally" : "") + "<" +
3395            std::to_string(getKnownDereferenceableBytes()) + "-" +
3396            std::to_string(getAssumedDereferenceableBytes()) + ">";
3397   }
3398 };
3399 
3400 /// Dereferenceable attribute for a floating value.
3401 struct AADereferenceableFloating : AADereferenceableImpl {
3402   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
3403       : AADereferenceableImpl(IRP, A) {}
3404 
3405   /// See AbstractAttribute::updateImpl(...).
3406   ChangeStatus updateImpl(Attributor &A) override {
3407     const DataLayout &DL = A.getDataLayout();
3408 
3409     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
3410                             bool Stripped) -> bool {
3411       unsigned IdxWidth =
3412           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3413       APInt Offset(IdxWidth, 0);
3414       const Value *Base =
3415           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
3416 
3417       const auto &AA =
3418           A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
3419       int64_t DerefBytes = 0;
3420       if (!Stripped && this == &AA) {
3421         // Use IR information if we did not strip anything.
3422         // TODO: track globally.
3423         bool CanBeNull;
3424         DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3425         T.GlobalState.indicatePessimisticFixpoint();
3426       } else {
3427         const DerefState &DS = static_cast<const DerefState &>(AA.getState());
3428         DerefBytes = DS.DerefBytesState.getAssumed();
3429         T.GlobalState &= DS.GlobalState;
3430       }
3431 
3432       // For now we do not try to "increase" dereferenceability due to negative
3433       // indices as we first have to come up with code to deal with loops and
3434       // for overflows of the dereferenceable bytes.
3435       int64_t OffsetSExt = Offset.getSExtValue();
3436       if (OffsetSExt < 0)
3437         OffsetSExt = 0;
3438 
3439       T.takeAssumedDerefBytesMinimum(
3440           std::max(int64_t(0), DerefBytes - OffsetSExt));
3441 
3442       if (this == &AA) {
3443         if (!Stripped) {
3444           // If nothing was stripped IR information is all we got.
3445           T.takeKnownDerefBytesMaximum(
3446               std::max(int64_t(0), DerefBytes - OffsetSExt));
3447           T.indicatePessimisticFixpoint();
3448         } else if (OffsetSExt > 0) {
3449           // If something was stripped but there is circular reasoning we look
3450           // for the offset. If it is positive we basically decrease the
3451           // dereferenceable bytes in a circluar loop now, which will simply
3452           // drive them down to the known value in a very slow way which we
3453           // can accelerate.
3454           T.indicatePessimisticFixpoint();
3455         }
3456       }
3457 
3458       return T.isValidState();
3459     };
3460 
3461     DerefState T;
3462     if (!genericValueTraversal<AADereferenceable, DerefState>(
3463             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
3464       return indicatePessimisticFixpoint();
3465 
3466     return clampStateAndIndicateChange(getState(), T);
3467   }
3468 
3469   /// See AbstractAttribute::trackStatistics()
3470   void trackStatistics() const override {
3471     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3472   }
3473 };
3474 
3475 /// Dereferenceable attribute for a return value.
3476 struct AADereferenceableReturned final
3477     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
3478   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
3479       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3480             IRP, A) {}
3481 
3482   /// See AbstractAttribute::trackStatistics()
3483   void trackStatistics() const override {
3484     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3485   }
3486 };
3487 
3488 /// Dereferenceable attribute for an argument
3489 struct AADereferenceableArgument final
3490     : AAArgumentFromCallSiteArguments<AADereferenceable,
3491                                       AADereferenceableImpl> {
3492   using Base =
3493       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
3494   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
3495       : Base(IRP, A) {}
3496 
3497   /// See AbstractAttribute::trackStatistics()
3498   void trackStatistics() const override {
3499     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3500   }
3501 };
3502 
3503 /// Dereferenceable attribute for a call site argument.
3504 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
3505   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
3506       : AADereferenceableFloating(IRP, A) {}
3507 
3508   /// See AbstractAttribute::trackStatistics()
3509   void trackStatistics() const override {
3510     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3511   }
3512 };
3513 
3514 /// Dereferenceable attribute deduction for a call site return value.
3515 struct AADereferenceableCallSiteReturned final
3516     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
3517   using Base =
3518       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
3519   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
3520       : Base(IRP, A) {}
3521 
3522   /// See AbstractAttribute::trackStatistics()
3523   void trackStatistics() const override {
3524     STATS_DECLTRACK_CS_ATTR(dereferenceable);
3525   }
3526 };
3527 
3528 // ------------------------ Align Argument Attribute ------------------------
3529 
3530 static unsigned getKnownAlignForUse(Attributor &A,
3531                                     AbstractAttribute &QueryingAA,
3532                                     Value &AssociatedValue, const Use *U,
3533                                     const Instruction *I, bool &TrackUse) {
3534   // We need to follow common pointer manipulation uses to the accesses they
3535   // feed into.
3536   if (isa<CastInst>(I)) {
3537     // Follow all but ptr2int casts.
3538     TrackUse = !isa<PtrToIntInst>(I);
3539     return 0;
3540   }
3541   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3542     if (GEP->hasAllConstantIndices()) {
3543       TrackUse = true;
3544       return 0;
3545     }
3546   }
3547 
3548   MaybeAlign MA;
3549   if (const auto *CB = dyn_cast<CallBase>(I)) {
3550     if (CB->isBundleOperand(U) || CB->isCallee(U))
3551       return 0;
3552 
3553     unsigned ArgNo = CB->getArgOperandNo(U);
3554     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
3555     // As long as we only use known information there is no need to track
3556     // dependences here.
3557     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
3558                                         /* TrackDependence */ false);
3559     MA = MaybeAlign(AlignAA.getKnownAlign());
3560   }
3561 
3562   const DataLayout &DL = A.getDataLayout();
3563   const Value *UseV = U->get();
3564   if (auto *SI = dyn_cast<StoreInst>(I)) {
3565     if (SI->getPointerOperand() == UseV)
3566       MA = SI->getAlign();
3567   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
3568     if (LI->getPointerOperand() == UseV)
3569       MA = LI->getAlign();
3570   }
3571 
3572   if (!MA || *MA <= 1)
3573     return 0;
3574 
3575   unsigned Alignment = MA->value();
3576   int64_t Offset;
3577 
3578   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3579     if (Base == &AssociatedValue) {
3580       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3581       // So we can say that the maximum power of two which is a divisor of
3582       // gcd(Offset, Alignment) is an alignment.
3583 
3584       uint32_t gcd =
3585           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3586       Alignment = llvm::PowerOf2Floor(gcd);
3587     }
3588   }
3589 
3590   return Alignment;
3591 }
3592 
3593 struct AAAlignImpl : AAAlign {
3594   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
3595 
3596   /// See AbstractAttribute::initialize(...).
3597   void initialize(Attributor &A) override {
3598     SmallVector<Attribute, 4> Attrs;
3599     getAttrs({Attribute::Alignment}, Attrs);
3600     for (const Attribute &Attr : Attrs)
3601       takeKnownMaximum(Attr.getValueAsInt());
3602 
3603     Value &V = getAssociatedValue();
3604     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
3605     //       use of the function pointer. This was caused by D73131. We want to
3606     //       avoid this for function pointers especially because we iterate
3607     //       their uses and int2ptr is not handled. It is not a correctness
3608     //       problem though!
3609     if (!V.getType()->getPointerElementType()->isFunctionTy())
3610       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
3611 
3612     if (getIRPosition().isFnInterfaceKind() &&
3613         (!getAnchorScope() ||
3614          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
3615       indicatePessimisticFixpoint();
3616       return;
3617     }
3618 
3619     if (Instruction *CtxI = getCtxI())
3620       followUsesInMBEC(*this, A, getState(), *CtxI);
3621   }
3622 
3623   /// See AbstractAttribute::manifest(...).
3624   ChangeStatus manifest(Attributor &A) override {
3625     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3626 
3627     // Check for users that allow alignment annotations.
3628     Value &AssociatedValue = getAssociatedValue();
3629     for (const Use &U : AssociatedValue.uses()) {
3630       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3631         if (SI->getPointerOperand() == &AssociatedValue)
3632           if (SI->getAlignment() < getAssumedAlign()) {
3633             STATS_DECLTRACK(AAAlign, Store,
3634                             "Number of times alignment added to a store");
3635             SI->setAlignment(Align(getAssumedAlign()));
3636             LoadStoreChanged = ChangeStatus::CHANGED;
3637           }
3638       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3639         if (LI->getPointerOperand() == &AssociatedValue)
3640           if (LI->getAlignment() < getAssumedAlign()) {
3641             LI->setAlignment(Align(getAssumedAlign()));
3642             STATS_DECLTRACK(AAAlign, Load,
3643                             "Number of times alignment added to a load");
3644             LoadStoreChanged = ChangeStatus::CHANGED;
3645           }
3646       }
3647     }
3648 
3649     ChangeStatus Changed = AAAlign::manifest(A);
3650 
3651     Align InheritAlign =
3652         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3653     if (InheritAlign >= getAssumedAlign())
3654       return LoadStoreChanged;
3655     return Changed | LoadStoreChanged;
3656   }
3657 
3658   // TODO: Provide a helper to determine the implied ABI alignment and check in
3659   //       the existing manifest method and a new one for AAAlignImpl that value
3660   //       to avoid making the alignment explicit if it did not improve.
3661 
3662   /// See AbstractAttribute::getDeducedAttributes
3663   virtual void
3664   getDeducedAttributes(LLVMContext &Ctx,
3665                        SmallVectorImpl<Attribute> &Attrs) const override {
3666     if (getAssumedAlign() > 1)
3667       Attrs.emplace_back(
3668           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3669   }
3670 
3671   /// See followUsesInMBEC
3672   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3673                        AAAlign::StateType &State) {
3674     bool TrackUse = false;
3675 
3676     unsigned int KnownAlign =
3677         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3678     State.takeKnownMaximum(KnownAlign);
3679 
3680     return TrackUse;
3681   }
3682 
3683   /// See AbstractAttribute::getAsStr().
3684   const std::string getAsStr() const override {
3685     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3686                                 "-" + std::to_string(getAssumedAlign()) + ">")
3687                              : "unknown-align";
3688   }
3689 };
3690 
3691 /// Align attribute for a floating value.
3692 struct AAAlignFloating : AAAlignImpl {
3693   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
3694 
3695   /// See AbstractAttribute::updateImpl(...).
3696   ChangeStatus updateImpl(Attributor &A) override {
3697     const DataLayout &DL = A.getDataLayout();
3698 
3699     auto VisitValueCB = [&](Value &V, const Instruction *,
3700                             AAAlign::StateType &T, bool Stripped) -> bool {
3701       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
3702       if (!Stripped && this == &AA) {
3703         // Use only IR information if we did not strip anything.
3704         Align PA = V.getPointerAlignment(DL);
3705         T.takeKnownMaximum(PA.value());
3706         T.indicatePessimisticFixpoint();
3707       } else {
3708         // Use abstract attribute information.
3709         const AAAlign::StateType &DS =
3710             static_cast<const AAAlign::StateType &>(AA.getState());
3711         T ^= DS;
3712       }
3713       return T.isValidState();
3714     };
3715 
3716     StateType T;
3717     if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3718                                                    VisitValueCB, getCtxI()))
3719       return indicatePessimisticFixpoint();
3720 
3721     // TODO: If we know we visited all incoming values, thus no are assumed
3722     // dead, we can take the known information from the state T.
3723     return clampStateAndIndicateChange(getState(), T);
3724   }
3725 
3726   /// See AbstractAttribute::trackStatistics()
3727   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3728 };
3729 
3730 /// Align attribute for function return value.
3731 struct AAAlignReturned final
3732     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3733   AAAlignReturned(const IRPosition &IRP, Attributor &A)
3734       : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP, A) {}
3735 
3736   /// See AbstractAttribute::trackStatistics()
3737   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3738 };
3739 
3740 /// Align attribute for function argument.
3741 struct AAAlignArgument final
3742     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
3743   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
3744   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3745 
3746   /// See AbstractAttribute::manifest(...).
3747   ChangeStatus manifest(Attributor &A) override {
3748     // If the associated argument is involved in a must-tail call we give up
3749     // because we would need to keep the argument alignments of caller and
3750     // callee in-sync. Just does not seem worth the trouble right now.
3751     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
3752       return ChangeStatus::UNCHANGED;
3753     return Base::manifest(A);
3754   }
3755 
3756   /// See AbstractAttribute::trackStatistics()
3757   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
3758 };
3759 
3760 struct AAAlignCallSiteArgument final : AAAlignFloating {
3761   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
3762       : AAAlignFloating(IRP, A) {}
3763 
3764   /// See AbstractAttribute::manifest(...).
3765   ChangeStatus manifest(Attributor &A) override {
3766     // If the associated argument is involved in a must-tail call we give up
3767     // because we would need to keep the argument alignments of caller and
3768     // callee in-sync. Just does not seem worth the trouble right now.
3769     if (Argument *Arg = getAssociatedArgument())
3770       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
3771         return ChangeStatus::UNCHANGED;
3772     ChangeStatus Changed = AAAlignImpl::manifest(A);
3773     Align InheritAlign =
3774         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3775     if (InheritAlign >= getAssumedAlign())
3776       Changed = ChangeStatus::UNCHANGED;
3777     return Changed;
3778   }
3779 
3780   /// See AbstractAttribute::updateImpl(Attributor &A).
3781   ChangeStatus updateImpl(Attributor &A) override {
3782     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
3783     if (Argument *Arg = getAssociatedArgument()) {
3784       // We only take known information from the argument
3785       // so we do not need to track a dependence.
3786       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
3787           *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
3788       takeKnownMaximum(ArgAlignAA.getKnownAlign());
3789     }
3790     return Changed;
3791   }
3792 
3793   /// See AbstractAttribute::trackStatistics()
3794   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
3795 };
3796 
3797 /// Align attribute deduction for a call site return value.
3798 struct AAAlignCallSiteReturned final
3799     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
3800   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
3801   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
3802       : Base(IRP, A) {}
3803 
3804   /// See AbstractAttribute::initialize(...).
3805   void initialize(Attributor &A) override {
3806     Base::initialize(A);
3807     Function *F = getAssociatedFunction();
3808     if (!F)
3809       indicatePessimisticFixpoint();
3810   }
3811 
3812   /// See AbstractAttribute::trackStatistics()
3813   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
3814 };
3815 
3816 /// ------------------ Function No-Return Attribute ----------------------------
3817 struct AANoReturnImpl : public AANoReturn {
3818   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
3819 
3820   /// See AbstractAttribute::initialize(...).
3821   void initialize(Attributor &A) override {
3822     AANoReturn::initialize(A);
3823     Function *F = getAssociatedFunction();
3824     if (!F)
3825       indicatePessimisticFixpoint();
3826   }
3827 
3828   /// See AbstractAttribute::getAsStr().
3829   const std::string getAsStr() const override {
3830     return getAssumed() ? "noreturn" : "may-return";
3831   }
3832 
3833   /// See AbstractAttribute::updateImpl(Attributor &A).
3834   virtual ChangeStatus updateImpl(Attributor &A) override {
3835     auto CheckForNoReturn = [](Instruction &) { return false; };
3836     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
3837                                    {(unsigned)Instruction::Ret}))
3838       return indicatePessimisticFixpoint();
3839     return ChangeStatus::UNCHANGED;
3840   }
3841 };
3842 
3843 struct AANoReturnFunction final : AANoReturnImpl {
3844   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
3845       : AANoReturnImpl(IRP, A) {}
3846 
3847   /// See AbstractAttribute::trackStatistics()
3848   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
3849 };
3850 
3851 /// NoReturn attribute deduction for a call sites.
3852 struct AANoReturnCallSite final : AANoReturnImpl {
3853   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
3854       : AANoReturnImpl(IRP, A) {}
3855 
3856   /// See AbstractAttribute::updateImpl(...).
3857   ChangeStatus updateImpl(Attributor &A) override {
3858     // TODO: Once we have call site specific value information we can provide
3859     //       call site specific liveness information and then it makes
3860     //       sense to specialize attributes for call sites arguments instead of
3861     //       redirecting requests to the callee argument.
3862     Function *F = getAssociatedFunction();
3863     const IRPosition &FnPos = IRPosition::function(*F);
3864     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
3865     return clampStateAndIndicateChange(
3866         getState(),
3867         static_cast<const AANoReturn::StateType &>(FnAA.getState()));
3868   }
3869 
3870   /// See AbstractAttribute::trackStatistics()
3871   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
3872 };
3873 
3874 /// ----------------------- Variable Capturing ---------------------------------
3875 
3876 /// A class to hold the state of for no-capture attributes.
3877 struct AANoCaptureImpl : public AANoCapture {
3878   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
3879 
3880   /// See AbstractAttribute::initialize(...).
3881   void initialize(Attributor &A) override {
3882     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
3883       indicateOptimisticFixpoint();
3884       return;
3885     }
3886     Function *AnchorScope = getAnchorScope();
3887     if (isFnInterfaceKind() &&
3888         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
3889       indicatePessimisticFixpoint();
3890       return;
3891     }
3892 
3893     // You cannot "capture" null in the default address space.
3894     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
3895         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
3896       indicateOptimisticFixpoint();
3897       return;
3898     }
3899 
3900     const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope;
3901 
3902     // Check what state the associated function can actually capture.
3903     if (F)
3904       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
3905     else
3906       indicatePessimisticFixpoint();
3907   }
3908 
3909   /// See AbstractAttribute::updateImpl(...).
3910   ChangeStatus updateImpl(Attributor &A) override;
3911 
3912   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
3913   virtual void
3914   getDeducedAttributes(LLVMContext &Ctx,
3915                        SmallVectorImpl<Attribute> &Attrs) const override {
3916     if (!isAssumedNoCaptureMaybeReturned())
3917       return;
3918 
3919     if (getArgNo() >= 0) {
3920       if (isAssumedNoCapture())
3921         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
3922       else if (ManifestInternal)
3923         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
3924     }
3925   }
3926 
3927   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
3928   /// depending on the ability of the function associated with \p IRP to capture
3929   /// state in memory and through "returning/throwing", respectively.
3930   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
3931                                                    const Function &F,
3932                                                    BitIntegerState &State) {
3933     // TODO: Once we have memory behavior attributes we should use them here.
3934 
3935     // If we know we cannot communicate or write to memory, we do not care about
3936     // ptr2int anymore.
3937     if (F.onlyReadsMemory() && F.doesNotThrow() &&
3938         F.getReturnType()->isVoidTy()) {
3939       State.addKnownBits(NO_CAPTURE);
3940       return;
3941     }
3942 
3943     // A function cannot capture state in memory if it only reads memory, it can
3944     // however return/throw state and the state might be influenced by the
3945     // pointer value, e.g., loading from a returned pointer might reveal a bit.
3946     if (F.onlyReadsMemory())
3947       State.addKnownBits(NOT_CAPTURED_IN_MEM);
3948 
3949     // A function cannot communicate state back if it does not through
3950     // exceptions and doesn not return values.
3951     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
3952       State.addKnownBits(NOT_CAPTURED_IN_RET);
3953 
3954     // Check existing "returned" attributes.
3955     int ArgNo = IRP.getArgNo();
3956     if (F.doesNotThrow() && ArgNo >= 0) {
3957       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
3958         if (F.hasParamAttribute(u, Attribute::Returned)) {
3959           if (u == unsigned(ArgNo))
3960             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
3961           else if (F.onlyReadsMemory())
3962             State.addKnownBits(NO_CAPTURE);
3963           else
3964             State.addKnownBits(NOT_CAPTURED_IN_RET);
3965           break;
3966         }
3967     }
3968   }
3969 
3970   /// See AbstractState::getAsStr().
3971   const std::string getAsStr() const override {
3972     if (isKnownNoCapture())
3973       return "known not-captured";
3974     if (isAssumedNoCapture())
3975       return "assumed not-captured";
3976     if (isKnownNoCaptureMaybeReturned())
3977       return "known not-captured-maybe-returned";
3978     if (isAssumedNoCaptureMaybeReturned())
3979       return "assumed not-captured-maybe-returned";
3980     return "assumed-captured";
3981   }
3982 };
3983 
3984 /// Attributor-aware capture tracker.
3985 struct AACaptureUseTracker final : public CaptureTracker {
3986 
3987   /// Create a capture tracker that can lookup in-flight abstract attributes
3988   /// through the Attributor \p A.
3989   ///
3990   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
3991   /// search is stopped. If a use leads to a return instruction,
3992   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
3993   /// If a use leads to a ptr2int which may capture the value,
3994   /// \p CapturedInInteger is set. If a use is found that is currently assumed
3995   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
3996   /// set. All values in \p PotentialCopies are later tracked as well. For every
3997   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
3998   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
3999   /// conservatively set to true.
4000   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4001                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4002                       SmallVectorImpl<const Value *> &PotentialCopies,
4003                       unsigned &RemainingUsesToExplore)
4004       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4005         PotentialCopies(PotentialCopies),
4006         RemainingUsesToExplore(RemainingUsesToExplore) {}
4007 
4008   /// Determine if \p V maybe captured. *Also updates the state!*
4009   bool valueMayBeCaptured(const Value *V) {
4010     if (V->getType()->isPointerTy()) {
4011       PointerMayBeCaptured(V, this);
4012     } else {
4013       State.indicatePessimisticFixpoint();
4014     }
4015     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4016   }
4017 
4018   /// See CaptureTracker::tooManyUses().
4019   void tooManyUses() override {
4020     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4021   }
4022 
4023   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4024     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4025       return true;
4026     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4027         NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
4028         DepClassTy::OPTIONAL);
4029     return DerefAA.getAssumedDereferenceableBytes();
4030   }
4031 
4032   /// See CaptureTracker::captured(...).
4033   bool captured(const Use *U) override {
4034     Instruction *UInst = cast<Instruction>(U->getUser());
4035     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4036                       << "\n");
4037 
4038     // Because we may reuse the tracker multiple times we keep track of the
4039     // number of explored uses ourselves as well.
4040     if (RemainingUsesToExplore-- == 0) {
4041       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4042       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4043                           /* Return */ true);
4044     }
4045 
4046     // Deal with ptr2int by following uses.
4047     if (isa<PtrToIntInst>(UInst)) {
4048       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4049       return valueMayBeCaptured(UInst);
4050     }
4051 
4052     // Explicitly catch return instructions.
4053     if (isa<ReturnInst>(UInst))
4054       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4055                           /* Return */ true);
4056 
4057     // For now we only use special logic for call sites. However, the tracker
4058     // itself knows about a lot of other non-capturing cases already.
4059     auto *CB = dyn_cast<CallBase>(UInst);
4060     if (!CB || !CB->isArgOperand(U))
4061       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4062                           /* Return */ true);
4063 
4064     unsigned ArgNo = CB->getArgOperandNo(U);
4065     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4066     // If we have a abstract no-capture attribute for the argument we can use
4067     // it to justify a non-capture attribute here. This allows recursion!
4068     auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
4069     if (ArgNoCaptureAA.isAssumedNoCapture())
4070       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4071                           /* Return */ false);
4072     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4073       addPotentialCopy(*CB);
4074       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4075                           /* Return */ false);
4076     }
4077 
4078     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4079     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4080                         /* Return */ true);
4081   }
4082 
4083   /// Register \p CS as potential copy of the value we are checking.
4084   void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); }
4085 
4086   /// See CaptureTracker::shouldExplore(...).
4087   bool shouldExplore(const Use *U) override {
4088     // Check liveness and ignore droppable users.
4089     return !U->getUser()->isDroppable() &&
4090            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4091   }
4092 
4093   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4094   /// \p CapturedInRet, then return the appropriate value for use in the
4095   /// CaptureTracker::captured() interface.
4096   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4097                     bool CapturedInRet) {
4098     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4099                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4100     if (CapturedInMem)
4101       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4102     if (CapturedInInt)
4103       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4104     if (CapturedInRet)
4105       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4106     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4107   }
4108 
4109 private:
4110   /// The attributor providing in-flight abstract attributes.
4111   Attributor &A;
4112 
4113   /// The abstract attribute currently updated.
4114   AANoCapture &NoCaptureAA;
4115 
4116   /// The abstract liveness state.
4117   const AAIsDead &IsDeadAA;
4118 
4119   /// The state currently updated.
4120   AANoCapture::StateType &State;
4121 
4122   /// Set of potential copies of the tracked value.
4123   SmallVectorImpl<const Value *> &PotentialCopies;
4124 
4125   /// Global counter to limit the number of explored uses.
4126   unsigned &RemainingUsesToExplore;
4127 };
4128 
4129 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4130   const IRPosition &IRP = getIRPosition();
4131   const Value *V =
4132       getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
4133   if (!V)
4134     return indicatePessimisticFixpoint();
4135 
4136   const Function *F =
4137       getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4138   assert(F && "Expected a function!");
4139   const IRPosition &FnPos = IRPosition::function(*F);
4140   const auto &IsDeadAA =
4141       A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
4142 
4143   AANoCapture::StateType T;
4144 
4145   // Readonly means we cannot capture through memory.
4146   const auto &FnMemAA =
4147       A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false);
4148   if (FnMemAA.isAssumedReadOnly()) {
4149     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4150     if (FnMemAA.isKnownReadOnly())
4151       addKnownBits(NOT_CAPTURED_IN_MEM);
4152     else
4153       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4154   }
4155 
4156   // Make sure all returned values are different than the underlying value.
4157   // TODO: we could do this in a more sophisticated way inside
4158   //       AAReturnedValues, e.g., track all values that escape through returns
4159   //       directly somehow.
4160   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4161     bool SeenConstant = false;
4162     for (auto &It : RVAA.returned_values()) {
4163       if (isa<Constant>(It.first)) {
4164         if (SeenConstant)
4165           return false;
4166         SeenConstant = true;
4167       } else if (!isa<Argument>(It.first) ||
4168                  It.first == getAssociatedArgument())
4169         return false;
4170     }
4171     return true;
4172   };
4173 
4174   const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
4175       *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4176   if (NoUnwindAA.isAssumedNoUnwind()) {
4177     bool IsVoidTy = F->getReturnType()->isVoidTy();
4178     const AAReturnedValues *RVAA =
4179         IsVoidTy ? nullptr
4180                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4181                                                  /* TrackDependence */ true,
4182                                                  DepClassTy::OPTIONAL);
4183     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4184       T.addKnownBits(NOT_CAPTURED_IN_RET);
4185       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4186         return ChangeStatus::UNCHANGED;
4187       if (NoUnwindAA.isKnownNoUnwind() &&
4188           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4189         addKnownBits(NOT_CAPTURED_IN_RET);
4190         if (isKnown(NOT_CAPTURED_IN_MEM))
4191           return indicateOptimisticFixpoint();
4192       }
4193     }
4194   }
4195 
4196   // Use the CaptureTracker interface and logic with the specialized tracker,
4197   // defined in AACaptureUseTracker, that can look at in-flight abstract
4198   // attributes and directly updates the assumed state.
4199   SmallVector<const Value *, 4> PotentialCopies;
4200   unsigned RemainingUsesToExplore =
4201       getDefaultMaxUsesToExploreForCaptureTracking();
4202   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4203                               RemainingUsesToExplore);
4204 
4205   // Check all potential copies of the associated value until we can assume
4206   // none will be captured or we have to assume at least one might be.
4207   unsigned Idx = 0;
4208   PotentialCopies.push_back(V);
4209   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4210     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4211 
4212   AANoCapture::StateType &S = getState();
4213   auto Assumed = S.getAssumed();
4214   S.intersectAssumedBits(T.getAssumed());
4215   if (!isAssumedNoCaptureMaybeReturned())
4216     return indicatePessimisticFixpoint();
4217   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4218                                    : ChangeStatus::CHANGED;
4219 }
4220 
4221 /// NoCapture attribute for function arguments.
4222 struct AANoCaptureArgument final : AANoCaptureImpl {
4223   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4224       : AANoCaptureImpl(IRP, A) {}
4225 
4226   /// See AbstractAttribute::trackStatistics()
4227   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4228 };
4229 
4230 /// NoCapture attribute for call site arguments.
4231 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4232   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4233       : AANoCaptureImpl(IRP, A) {}
4234 
4235   /// See AbstractAttribute::initialize(...).
4236   void initialize(Attributor &A) override {
4237     if (Argument *Arg = getAssociatedArgument())
4238       if (Arg->hasByValAttr())
4239         indicateOptimisticFixpoint();
4240     AANoCaptureImpl::initialize(A);
4241   }
4242 
4243   /// See AbstractAttribute::updateImpl(...).
4244   ChangeStatus updateImpl(Attributor &A) override {
4245     // TODO: Once we have call site specific value information we can provide
4246     //       call site specific liveness information and then it makes
4247     //       sense to specialize attributes for call sites arguments instead of
4248     //       redirecting requests to the callee argument.
4249     Argument *Arg = getAssociatedArgument();
4250     if (!Arg)
4251       return indicatePessimisticFixpoint();
4252     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4253     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
4254     return clampStateAndIndicateChange(
4255         getState(),
4256         static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
4257   }
4258 
4259   /// See AbstractAttribute::trackStatistics()
4260   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4261 };
4262 
4263 /// NoCapture attribute for floating values.
4264 struct AANoCaptureFloating final : AANoCaptureImpl {
4265   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4266       : AANoCaptureImpl(IRP, A) {}
4267 
4268   /// See AbstractAttribute::trackStatistics()
4269   void trackStatistics() const override {
4270     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4271   }
4272 };
4273 
4274 /// NoCapture attribute for function return value.
4275 struct AANoCaptureReturned final : AANoCaptureImpl {
4276   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4277       : AANoCaptureImpl(IRP, A) {
4278     llvm_unreachable("NoCapture is not applicable to function returns!");
4279   }
4280 
4281   /// See AbstractAttribute::initialize(...).
4282   void initialize(Attributor &A) override {
4283     llvm_unreachable("NoCapture is not applicable to function returns!");
4284   }
4285 
4286   /// See AbstractAttribute::updateImpl(...).
4287   ChangeStatus updateImpl(Attributor &A) override {
4288     llvm_unreachable("NoCapture is not applicable to function returns!");
4289   }
4290 
4291   /// See AbstractAttribute::trackStatistics()
4292   void trackStatistics() const override {}
4293 };
4294 
4295 /// NoCapture attribute deduction for a call site return value.
4296 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4297   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4298       : AANoCaptureImpl(IRP, A) {}
4299 
4300   /// See AbstractAttribute::trackStatistics()
4301   void trackStatistics() const override {
4302     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4303   }
4304 };
4305 
4306 /// ------------------ Value Simplify Attribute ----------------------------
4307 struct AAValueSimplifyImpl : AAValueSimplify {
4308   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
4309       : AAValueSimplify(IRP, A) {}
4310 
4311   /// See AbstractAttribute::initialize(...).
4312   void initialize(Attributor &A) override {
4313     if (getAssociatedValue().getType()->isVoidTy())
4314       indicatePessimisticFixpoint();
4315   }
4316 
4317   /// See AbstractAttribute::getAsStr().
4318   const std::string getAsStr() const override {
4319     return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4320                         : "not-simple";
4321   }
4322 
4323   /// See AbstractAttribute::trackStatistics()
4324   void trackStatistics() const override {}
4325 
4326   /// See AAValueSimplify::getAssumedSimplifiedValue()
4327   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4328     if (!getAssumed())
4329       return const_cast<Value *>(&getAssociatedValue());
4330     return SimplifiedAssociatedValue;
4331   }
4332 
4333   /// Helper function for querying AAValueSimplify and updating candicate.
4334   /// \param QueryingValue Value trying to unify with SimplifiedValue
4335   /// \param AccumulatedSimplifiedValue Current simplification result.
4336   static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4337                              Value &QueryingValue,
4338                              Optional<Value *> &AccumulatedSimplifiedValue) {
4339     // FIXME: Add a typecast support.
4340 
4341     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4342         QueryingAA, IRPosition::value(QueryingValue));
4343 
4344     Optional<Value *> QueryingValueSimplified =
4345         ValueSimplifyAA.getAssumedSimplifiedValue(A);
4346 
4347     if (!QueryingValueSimplified.hasValue())
4348       return true;
4349 
4350     if (!QueryingValueSimplified.getValue())
4351       return false;
4352 
4353     Value &QueryingValueSimplifiedUnwrapped =
4354         *QueryingValueSimplified.getValue();
4355 
4356     if (AccumulatedSimplifiedValue.hasValue() &&
4357         !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4358         !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4359       return AccumulatedSimplifiedValue == QueryingValueSimplified;
4360     if (AccumulatedSimplifiedValue.hasValue() &&
4361         isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4362       return true;
4363 
4364     LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4365                       << " is assumed to be "
4366                       << QueryingValueSimplifiedUnwrapped << "\n");
4367 
4368     AccumulatedSimplifiedValue = QueryingValueSimplified;
4369     return true;
4370   }
4371 
4372   bool askSimplifiedValueForAAValueConstantRange(Attributor &A) {
4373     if (!getAssociatedValue().getType()->isIntegerTy())
4374       return false;
4375 
4376     const auto &ValueConstantRangeAA =
4377         A.getAAFor<AAValueConstantRange>(*this, getIRPosition());
4378 
4379     Optional<ConstantInt *> COpt =
4380         ValueConstantRangeAA.getAssumedConstantInt(A);
4381     if (COpt.hasValue()) {
4382       if (auto *C = COpt.getValue())
4383         SimplifiedAssociatedValue = C;
4384       else
4385         return false;
4386     } else {
4387       SimplifiedAssociatedValue = llvm::None;
4388     }
4389     return true;
4390   }
4391 
4392   /// See AbstractAttribute::manifest(...).
4393   ChangeStatus manifest(Attributor &A) override {
4394     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4395 
4396     if (SimplifiedAssociatedValue.hasValue() &&
4397         !SimplifiedAssociatedValue.getValue())
4398       return Changed;
4399 
4400     Value &V = getAssociatedValue();
4401     auto *C = SimplifiedAssociatedValue.hasValue()
4402                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4403                   : UndefValue::get(V.getType());
4404     if (C) {
4405       // We can replace the AssociatedValue with the constant.
4406       if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4407         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4408                           << " :: " << *this << "\n");
4409         if (A.changeValueAfterManifest(V, *C))
4410           Changed = ChangeStatus::CHANGED;
4411       }
4412     }
4413 
4414     return Changed | AAValueSimplify::manifest(A);
4415   }
4416 
4417   /// See AbstractState::indicatePessimisticFixpoint(...).
4418   ChangeStatus indicatePessimisticFixpoint() override {
4419     // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4420     // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4421     SimplifiedAssociatedValue = &getAssociatedValue();
4422     indicateOptimisticFixpoint();
4423     return ChangeStatus::CHANGED;
4424   }
4425 
4426 protected:
4427   // An assumed simplified value. Initially, it is set to Optional::None, which
4428   // means that the value is not clear under current assumption. If in the
4429   // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4430   // returns orignal associated value.
4431   Optional<Value *> SimplifiedAssociatedValue;
4432 };
4433 
4434 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
4435   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
4436       : AAValueSimplifyImpl(IRP, A) {}
4437 
4438   void initialize(Attributor &A) override {
4439     AAValueSimplifyImpl::initialize(A);
4440     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
4441       indicatePessimisticFixpoint();
4442     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
4443                  Attribute::StructRet, Attribute::Nest},
4444                 /* IgnoreSubsumingPositions */ true))
4445       indicatePessimisticFixpoint();
4446 
4447     // FIXME: This is a hack to prevent us from propagating function poiner in
4448     // the new pass manager CGSCC pass as it creates call edges the
4449     // CallGraphUpdater cannot handle yet.
4450     Value &V = getAssociatedValue();
4451     if (V.getType()->isPointerTy() &&
4452         V.getType()->getPointerElementType()->isFunctionTy() &&
4453         !A.isModulePass())
4454       indicatePessimisticFixpoint();
4455   }
4456 
4457   /// See AbstractAttribute::updateImpl(...).
4458   ChangeStatus updateImpl(Attributor &A) override {
4459     // Byval is only replacable if it is readonly otherwise we would write into
4460     // the replaced value and not the copy that byval creates implicitly.
4461     Argument *Arg = getAssociatedArgument();
4462     if (Arg->hasByValAttr()) {
4463       // TODO: We probably need to verify synchronization is not an issue, e.g.,
4464       //       there is no race by not copying a constant byval.
4465       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
4466       if (!MemAA.isAssumedReadOnly())
4467         return indicatePessimisticFixpoint();
4468     }
4469 
4470     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4471 
4472     auto PredForCallSite = [&](AbstractCallSite ACS) {
4473       const IRPosition &ACSArgPos =
4474           IRPosition::callsite_argument(ACS, getArgNo());
4475       // Check if a coresponding argument was found or if it is on not
4476       // associated (which can happen for callback calls).
4477       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4478         return false;
4479 
4480       // We can only propagate thread independent values through callbacks.
4481       // This is different to direct/indirect call sites because for them we
4482       // know the thread executing the caller and callee is the same. For
4483       // callbacks this is not guaranteed, thus a thread dependent value could
4484       // be different for the caller and callee, making it invalid to propagate.
4485       Value &ArgOp = ACSArgPos.getAssociatedValue();
4486       if (ACS.isCallbackCall())
4487         if (auto *C = dyn_cast<Constant>(&ArgOp))
4488           if (C->isThreadDependent())
4489             return false;
4490       return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4491     };
4492 
4493     bool AllCallSitesKnown;
4494     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4495                                 AllCallSitesKnown))
4496       if (!askSimplifiedValueForAAValueConstantRange(A))
4497         return indicatePessimisticFixpoint();
4498 
4499     // If a candicate was found in this update, return CHANGED.
4500     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4501                ? ChangeStatus::UNCHANGED
4502                : ChangeStatus ::CHANGED;
4503   }
4504 
4505   /// See AbstractAttribute::trackStatistics()
4506   void trackStatistics() const override {
4507     STATS_DECLTRACK_ARG_ATTR(value_simplify)
4508   }
4509 };
4510 
4511 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
4512   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
4513       : AAValueSimplifyImpl(IRP, A) {}
4514 
4515   /// See AbstractAttribute::updateImpl(...).
4516   ChangeStatus updateImpl(Attributor &A) override {
4517     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4518 
4519     auto PredForReturned = [&](Value &V) {
4520       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4521     };
4522 
4523     if (!A.checkForAllReturnedValues(PredForReturned, *this))
4524       if (!askSimplifiedValueForAAValueConstantRange(A))
4525         return indicatePessimisticFixpoint();
4526 
4527     // If a candicate was found in this update, return CHANGED.
4528     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4529                ? ChangeStatus::UNCHANGED
4530                : ChangeStatus ::CHANGED;
4531   }
4532 
4533   ChangeStatus manifest(Attributor &A) override {
4534     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4535 
4536     if (SimplifiedAssociatedValue.hasValue() &&
4537         !SimplifiedAssociatedValue.getValue())
4538       return Changed;
4539 
4540     Value &V = getAssociatedValue();
4541     auto *C = SimplifiedAssociatedValue.hasValue()
4542                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4543                   : UndefValue::get(V.getType());
4544     if (C) {
4545       auto PredForReturned =
4546           [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4547             // We can replace the AssociatedValue with the constant.
4548             if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4549               return true;
4550 
4551             for (ReturnInst *RI : RetInsts) {
4552               if (RI->getFunction() != getAnchorScope())
4553                 continue;
4554               auto *RC = C;
4555               if (RC->getType() != RI->getReturnValue()->getType())
4556                 RC = ConstantExpr::getBitCast(RC,
4557                                               RI->getReturnValue()->getType());
4558               LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC
4559                                 << " in " << *RI << " :: " << *this << "\n");
4560               if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC))
4561                 Changed = ChangeStatus::CHANGED;
4562             }
4563             return true;
4564           };
4565       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4566     }
4567 
4568     return Changed | AAValueSimplify::manifest(A);
4569   }
4570 
4571   /// See AbstractAttribute::trackStatistics()
4572   void trackStatistics() const override {
4573     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4574   }
4575 };
4576 
4577 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
4578   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
4579       : AAValueSimplifyImpl(IRP, A) {}
4580 
4581   /// See AbstractAttribute::initialize(...).
4582   void initialize(Attributor &A) override {
4583     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
4584     //        Needs investigation.
4585     // AAValueSimplifyImpl::initialize(A);
4586     Value &V = getAnchorValue();
4587 
4588     // TODO: add other stuffs
4589     if (isa<Constant>(V))
4590       indicatePessimisticFixpoint();
4591   }
4592 
4593   /// See AbstractAttribute::updateImpl(...).
4594   ChangeStatus updateImpl(Attributor &A) override {
4595     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4596 
4597     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
4598                             bool Stripped) -> bool {
4599       auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
4600       if (!Stripped && this == &AA) {
4601         // TODO: Look the instruction and check recursively.
4602 
4603         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4604                           << "\n");
4605         return false;
4606       }
4607       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4608     };
4609 
4610     bool Dummy = false;
4611     if (!genericValueTraversal<AAValueSimplify, bool>(
4612             A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(),
4613             /* UseValueSimplify */ false))
4614       if (!askSimplifiedValueForAAValueConstantRange(A))
4615         return indicatePessimisticFixpoint();
4616 
4617     // If a candicate was found in this update, return CHANGED.
4618 
4619     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4620                ? ChangeStatus::UNCHANGED
4621                : ChangeStatus ::CHANGED;
4622   }
4623 
4624   /// See AbstractAttribute::trackStatistics()
4625   void trackStatistics() const override {
4626     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4627   }
4628 };
4629 
4630 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
4631   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
4632       : AAValueSimplifyImpl(IRP, A) {}
4633 
4634   /// See AbstractAttribute::initialize(...).
4635   void initialize(Attributor &A) override {
4636     SimplifiedAssociatedValue = &getAnchorValue();
4637     indicateOptimisticFixpoint();
4638   }
4639   /// See AbstractAttribute::initialize(...).
4640   ChangeStatus updateImpl(Attributor &A) override {
4641     llvm_unreachable(
4642         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4643   }
4644   /// See AbstractAttribute::trackStatistics()
4645   void trackStatistics() const override {
4646     STATS_DECLTRACK_FN_ATTR(value_simplify)
4647   }
4648 };
4649 
4650 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
4651   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
4652       : AAValueSimplifyFunction(IRP, A) {}
4653   /// See AbstractAttribute::trackStatistics()
4654   void trackStatistics() const override {
4655     STATS_DECLTRACK_CS_ATTR(value_simplify)
4656   }
4657 };
4658 
4659 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
4660   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
4661       : AAValueSimplifyReturned(IRP, A) {}
4662 
4663   /// See AbstractAttribute::manifest(...).
4664   ChangeStatus manifest(Attributor &A) override {
4665     return AAValueSimplifyImpl::manifest(A);
4666   }
4667 
4668   void trackStatistics() const override {
4669     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
4670   }
4671 };
4672 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
4673   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
4674       : AAValueSimplifyFloating(IRP, A) {}
4675 
4676   /// See AbstractAttribute::manifest(...).
4677   ChangeStatus manifest(Attributor &A) override {
4678     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4679 
4680     if (SimplifiedAssociatedValue.hasValue() &&
4681         !SimplifiedAssociatedValue.getValue())
4682       return Changed;
4683 
4684     Value &V = getAssociatedValue();
4685     auto *C = SimplifiedAssociatedValue.hasValue()
4686                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4687                   : UndefValue::get(V.getType());
4688     if (C) {
4689       Use &U = cast<CallBase>(&getAnchorValue())->getArgOperandUse(getArgNo());
4690       // We can replace the AssociatedValue with the constant.
4691       if (&V != C && V.getType() == C->getType()) {
4692         if (A.changeUseAfterManifest(U, *C))
4693           Changed = ChangeStatus::CHANGED;
4694       }
4695     }
4696 
4697     return Changed | AAValueSimplify::manifest(A);
4698   }
4699 
4700   void trackStatistics() const override {
4701     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
4702   }
4703 };
4704 
4705 /// ----------------------- Heap-To-Stack Conversion ---------------------------
4706 struct AAHeapToStackImpl : public AAHeapToStack {
4707   AAHeapToStackImpl(const IRPosition &IRP, Attributor &A)
4708       : AAHeapToStack(IRP, A) {}
4709 
4710   const std::string getAsStr() const override {
4711     return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
4712   }
4713 
4714   ChangeStatus manifest(Attributor &A) override {
4715     assert(getState().isValidState() &&
4716            "Attempted to manifest an invalid state!");
4717 
4718     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4719     Function *F = getAnchorScope();
4720     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4721 
4722     for (Instruction *MallocCall : MallocCalls) {
4723       // This malloc cannot be replaced.
4724       if (BadMallocCalls.count(MallocCall))
4725         continue;
4726 
4727       for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
4728         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
4729         A.deleteAfterManifest(*FreeCall);
4730         HasChanged = ChangeStatus::CHANGED;
4731       }
4732 
4733       LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
4734                         << "\n");
4735 
4736       Align Alignment;
4737       Constant *Size;
4738       if (isCallocLikeFn(MallocCall, TLI)) {
4739         auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
4740         auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
4741         APInt TotalSize = SizeT->getValue() * Num->getValue();
4742         Size =
4743             ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
4744       } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
4745         Size = cast<ConstantInt>(MallocCall->getOperand(1));
4746         Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
4747                                    ->getValue()
4748                                    .getZExtValue())
4749                         .valueOrOne();
4750       } else {
4751         Size = cast<ConstantInt>(MallocCall->getOperand(0));
4752       }
4753 
4754       unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
4755       Instruction *AI =
4756           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
4757                          "", MallocCall->getNextNode());
4758 
4759       if (AI->getType() != MallocCall->getType())
4760         AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
4761                              AI->getNextNode());
4762 
4763       A.changeValueAfterManifest(*MallocCall, *AI);
4764 
4765       if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
4766         auto *NBB = II->getNormalDest();
4767         BranchInst::Create(NBB, MallocCall->getParent());
4768         A.deleteAfterManifest(*MallocCall);
4769       } else {
4770         A.deleteAfterManifest(*MallocCall);
4771       }
4772 
4773       // Zero out the allocated memory if it was a calloc.
4774       if (isCallocLikeFn(MallocCall, TLI)) {
4775         auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
4776                                    AI->getNextNode());
4777         Value *Ops[] = {
4778             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
4779             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
4780 
4781         Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
4782         Module *M = F->getParent();
4783         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
4784         CallInst::Create(Fn, Ops, "", BI->getNextNode());
4785       }
4786       HasChanged = ChangeStatus::CHANGED;
4787     }
4788 
4789     return HasChanged;
4790   }
4791 
4792   /// Collection of all malloc calls in a function.
4793   SmallSetVector<Instruction *, 4> MallocCalls;
4794 
4795   /// Collection of malloc calls that cannot be converted.
4796   DenseSet<const Instruction *> BadMallocCalls;
4797 
4798   /// A map for each malloc call to the set of associated free calls.
4799   DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
4800 
4801   ChangeStatus updateImpl(Attributor &A) override;
4802 };
4803 
4804 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
4805   const Function *F = getAnchorScope();
4806   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4807 
4808   MustBeExecutedContextExplorer &Explorer =
4809       A.getInfoCache().getMustBeExecutedContextExplorer();
4810 
4811   auto FreeCheck = [&](Instruction &I) {
4812     const auto &Frees = FreesForMalloc.lookup(&I);
4813     if (Frees.size() != 1)
4814       return false;
4815     Instruction *UniqueFree = *Frees.begin();
4816     return Explorer.findInContextOf(UniqueFree, I.getNextNode());
4817   };
4818 
4819   auto UsesCheck = [&](Instruction &I) {
4820     bool ValidUsesOnly = true;
4821     bool MustUse = true;
4822     auto Pred = [&](const Use &U, bool &Follow) -> bool {
4823       Instruction *UserI = cast<Instruction>(U.getUser());
4824       if (isa<LoadInst>(UserI))
4825         return true;
4826       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
4827         if (SI->getValueOperand() == U.get()) {
4828           LLVM_DEBUG(dbgs()
4829                      << "[H2S] escaping store to memory: " << *UserI << "\n");
4830           ValidUsesOnly = false;
4831         } else {
4832           // A store into the malloc'ed memory is fine.
4833         }
4834         return true;
4835       }
4836       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4837         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
4838           return true;
4839         // Record malloc.
4840         if (isFreeCall(UserI, TLI)) {
4841           if (MustUse) {
4842             FreesForMalloc[&I].insert(UserI);
4843           } else {
4844             LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
4845                               << *UserI << "\n");
4846             ValidUsesOnly = false;
4847           }
4848           return true;
4849         }
4850 
4851         unsigned ArgNo = CB->getArgOperandNo(&U);
4852 
4853         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
4854             *this, IRPosition::callsite_argument(*CB, ArgNo));
4855 
4856         // If a callsite argument use is nofree, we are fine.
4857         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
4858             *this, IRPosition::callsite_argument(*CB, ArgNo));
4859 
4860         if (!NoCaptureAA.isAssumedNoCapture() ||
4861             !ArgNoFreeAA.isAssumedNoFree()) {
4862           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
4863           ValidUsesOnly = false;
4864         }
4865         return true;
4866       }
4867 
4868       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
4869           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4870         MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
4871         Follow = true;
4872         return true;
4873       }
4874       // Unknown user for which we can not track uses further (in a way that
4875       // makes sense).
4876       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
4877       ValidUsesOnly = false;
4878       return true;
4879     };
4880     A.checkForAllUses(Pred, *this, I);
4881     return ValidUsesOnly;
4882   };
4883 
4884   auto MallocCallocCheck = [&](Instruction &I) {
4885     if (BadMallocCalls.count(&I))
4886       return true;
4887 
4888     bool IsMalloc = isMallocLikeFn(&I, TLI);
4889     bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
4890     bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
4891     if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
4892       BadMallocCalls.insert(&I);
4893       return true;
4894     }
4895 
4896     if (IsMalloc) {
4897       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
4898         if (Size->getValue().ule(MaxHeapToStackSize))
4899           if (UsesCheck(I) || FreeCheck(I)) {
4900             MallocCalls.insert(&I);
4901             return true;
4902           }
4903     } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
4904       // Only if the alignment and sizes are constant.
4905       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
4906         if (Size->getValue().ule(MaxHeapToStackSize))
4907           if (UsesCheck(I) || FreeCheck(I)) {
4908             MallocCalls.insert(&I);
4909             return true;
4910           }
4911     } else if (IsCalloc) {
4912       bool Overflow = false;
4913       if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
4914         if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
4915           if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
4916                   .ule(MaxHeapToStackSize))
4917             if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
4918               MallocCalls.insert(&I);
4919               return true;
4920             }
4921     }
4922 
4923     BadMallocCalls.insert(&I);
4924     return true;
4925   };
4926 
4927   size_t NumBadMallocs = BadMallocCalls.size();
4928 
4929   A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
4930 
4931   if (NumBadMallocs != BadMallocCalls.size())
4932     return ChangeStatus::CHANGED;
4933 
4934   return ChangeStatus::UNCHANGED;
4935 }
4936 
4937 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
4938   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
4939       : AAHeapToStackImpl(IRP, A) {}
4940 
4941   /// See AbstractAttribute::trackStatistics().
4942   void trackStatistics() const override {
4943     STATS_DECL(
4944         MallocCalls, Function,
4945         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
4946     for (auto *C : MallocCalls)
4947       if (!BadMallocCalls.count(C))
4948         ++BUILD_STAT_NAME(MallocCalls, Function);
4949   }
4950 };
4951 
4952 /// ----------------------- Privatizable Pointers ------------------------------
4953 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
4954   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
4955       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
4956 
4957   ChangeStatus indicatePessimisticFixpoint() override {
4958     AAPrivatizablePtr::indicatePessimisticFixpoint();
4959     PrivatizableType = nullptr;
4960     return ChangeStatus::CHANGED;
4961   }
4962 
4963   /// Identify the type we can chose for a private copy of the underlying
4964   /// argument. None means it is not clear yet, nullptr means there is none.
4965   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
4966 
4967   /// Return a privatizable type that encloses both T0 and T1.
4968   /// TODO: This is merely a stub for now as we should manage a mapping as well.
4969   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
4970     if (!T0.hasValue())
4971       return T1;
4972     if (!T1.hasValue())
4973       return T0;
4974     if (T0 == T1)
4975       return T0;
4976     return nullptr;
4977   }
4978 
4979   Optional<Type *> getPrivatizableType() const override {
4980     return PrivatizableType;
4981   }
4982 
4983   const std::string getAsStr() const override {
4984     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
4985   }
4986 
4987 protected:
4988   Optional<Type *> PrivatizableType;
4989 };
4990 
4991 // TODO: Do this for call site arguments (probably also other values) as well.
4992 
4993 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
4994   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
4995       : AAPrivatizablePtrImpl(IRP, A) {}
4996 
4997   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
4998   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
4999     // If this is a byval argument and we know all the call sites (so we can
5000     // rewrite them), there is no need to check them explicitly.
5001     bool AllCallSitesKnown;
5002     if (getIRPosition().hasAttr(Attribute::ByVal) &&
5003         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5004                                true, AllCallSitesKnown))
5005       return getAssociatedValue().getType()->getPointerElementType();
5006 
5007     Optional<Type *> Ty;
5008     unsigned ArgNo = getIRPosition().getArgNo();
5009 
5010     // Make sure the associated call site argument has the same type at all call
5011     // sites and it is an allocation we know is safe to privatize, for now that
5012     // means we only allow alloca instructions.
5013     // TODO: We can additionally analyze the accesses in the callee to  create
5014     //       the type from that information instead. That is a little more
5015     //       involved and will be done in a follow up patch.
5016     auto CallSiteCheck = [&](AbstractCallSite ACS) {
5017       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5018       // Check if a coresponding argument was found or if it is one not
5019       // associated (which can happen for callback calls).
5020       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5021         return false;
5022 
5023       // Check that all call sites agree on a type.
5024       auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
5025       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5026 
5027       LLVM_DEBUG({
5028         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5029         if (CSTy.hasValue() && CSTy.getValue())
5030           CSTy.getValue()->print(dbgs());
5031         else if (CSTy.hasValue())
5032           dbgs() << "<nullptr>";
5033         else
5034           dbgs() << "<none>";
5035       });
5036 
5037       Ty = combineTypes(Ty, CSTy);
5038 
5039       LLVM_DEBUG({
5040         dbgs() << " : New Type: ";
5041         if (Ty.hasValue() && Ty.getValue())
5042           Ty.getValue()->print(dbgs());
5043         else if (Ty.hasValue())
5044           dbgs() << "<nullptr>";
5045         else
5046           dbgs() << "<none>";
5047         dbgs() << "\n";
5048       });
5049 
5050       return !Ty.hasValue() || Ty.getValue();
5051     };
5052 
5053     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5054       return nullptr;
5055     return Ty;
5056   }
5057 
5058   /// See AbstractAttribute::updateImpl(...).
5059   ChangeStatus updateImpl(Attributor &A) override {
5060     PrivatizableType = identifyPrivatizableType(A);
5061     if (!PrivatizableType.hasValue())
5062       return ChangeStatus::UNCHANGED;
5063     if (!PrivatizableType.getValue())
5064       return indicatePessimisticFixpoint();
5065 
5066     // The dependence is optional so we don't give up once we give up on the
5067     // alignment.
5068     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
5069                         /* TrackDependence */ true, DepClassTy::OPTIONAL);
5070 
5071     // Avoid arguments with padding for now.
5072     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5073         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5074                                                 A.getInfoCache().getDL())) {
5075       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5076       return indicatePessimisticFixpoint();
5077     }
5078 
5079     // Verify callee and caller agree on how the promoted argument would be
5080     // passed.
5081     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5082     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5083     // which doesn't require the arguments ArgumentPromotion wanted to pass.
5084     Function &Fn = *getIRPosition().getAnchorScope();
5085     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5086     ArgsToPromote.insert(getAssociatedArgument());
5087     const auto *TTI =
5088         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5089     if (!TTI ||
5090         !ArgumentPromotionPass::areFunctionArgsABICompatible(
5091             Fn, *TTI, ArgsToPromote, Dummy) ||
5092         ArgsToPromote.empty()) {
5093       LLVM_DEBUG(
5094           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5095                  << Fn.getName() << "\n");
5096       return indicatePessimisticFixpoint();
5097     }
5098 
5099     // Collect the types that will replace the privatizable type in the function
5100     // signature.
5101     SmallVector<Type *, 16> ReplacementTypes;
5102     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5103 
5104     // Register a rewrite of the argument.
5105     Argument *Arg = getAssociatedArgument();
5106     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5107       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5108       return indicatePessimisticFixpoint();
5109     }
5110 
5111     unsigned ArgNo = Arg->getArgNo();
5112 
5113     // Helper to check if for the given call site the associated argument is
5114     // passed to a callback where the privatization would be different.
5115     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
5116       SmallVector<const Use *, 4> CallbackUses;
5117       AbstractCallSite::getCallbackUses(CB, CallbackUses);
5118       for (const Use *U : CallbackUses) {
5119         AbstractCallSite CBACS(U);
5120         assert(CBACS && CBACS.isCallbackCall());
5121         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5122           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5123 
5124           LLVM_DEBUG({
5125             dbgs()
5126                 << "[AAPrivatizablePtr] Argument " << *Arg
5127                 << "check if can be privatized in the context of its parent ("
5128                 << Arg->getParent()->getName()
5129                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5130                    "callback ("
5131                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5132                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5133                 << CBACS.getCallArgOperand(CBArg) << " vs "
5134                 << CB.getArgOperand(ArgNo) << "\n"
5135                 << "[AAPrivatizablePtr] " << CBArg << " : "
5136                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5137           });
5138 
5139           if (CBArgNo != int(ArgNo))
5140             continue;
5141           const auto &CBArgPrivAA =
5142               A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
5143           if (CBArgPrivAA.isValidState()) {
5144             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5145             if (!CBArgPrivTy.hasValue())
5146               continue;
5147             if (CBArgPrivTy.getValue() == PrivatizableType)
5148               continue;
5149           }
5150 
5151           LLVM_DEBUG({
5152             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5153                    << " cannot be privatized in the context of its parent ("
5154                    << Arg->getParent()->getName()
5155                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
5156                       "callback ("
5157                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5158                    << ").\n[AAPrivatizablePtr] for which the argument "
5159                       "privatization is not compatible.\n";
5160           });
5161           return false;
5162         }
5163       }
5164       return true;
5165     };
5166 
5167     // Helper to check if for the given call site the associated argument is
5168     // passed to a direct call where the privatization would be different.
5169     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5170       CallBase *DC = cast<CallBase>(ACS.getInstruction());
5171       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5172       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5173              "Expected a direct call operand for callback call operand");
5174 
5175       LLVM_DEBUG({
5176         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5177                << " check if be privatized in the context of its parent ("
5178                << Arg->getParent()->getName()
5179                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5180                   "direct call of ("
5181                << DCArgNo << "@" << DC->getCalledFunction()->getName()
5182                << ").\n";
5183       });
5184 
5185       Function *DCCallee = DC->getCalledFunction();
5186       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5187         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5188             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
5189         if (DCArgPrivAA.isValidState()) {
5190           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5191           if (!DCArgPrivTy.hasValue())
5192             return true;
5193           if (DCArgPrivTy.getValue() == PrivatizableType)
5194             return true;
5195         }
5196       }
5197 
5198       LLVM_DEBUG({
5199         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5200                << " cannot be privatized in the context of its parent ("
5201                << Arg->getParent()->getName()
5202                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5203                   "direct call of ("
5204                << ACS.getInstruction()->getCalledFunction()->getName()
5205                << ").\n[AAPrivatizablePtr] for which the argument "
5206                   "privatization is not compatible.\n";
5207       });
5208       return false;
5209     };
5210 
5211     // Helper to check if the associated argument is used at the given abstract
5212     // call site in a way that is incompatible with the privatization assumed
5213     // here.
5214     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5215       if (ACS.isDirectCall())
5216         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
5217       if (ACS.isCallbackCall())
5218         return IsCompatiblePrivArgOfDirectCS(ACS);
5219       return false;
5220     };
5221 
5222     bool AllCallSitesKnown;
5223     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5224                                 AllCallSitesKnown))
5225       return indicatePessimisticFixpoint();
5226 
5227     return ChangeStatus::UNCHANGED;
5228   }
5229 
5230   /// Given a type to private \p PrivType, collect the constituates (which are
5231   /// used) in \p ReplacementTypes.
5232   static void
5233   identifyReplacementTypes(Type *PrivType,
5234                            SmallVectorImpl<Type *> &ReplacementTypes) {
5235     // TODO: For now we expand the privatization type to the fullest which can
5236     //       lead to dead arguments that need to be removed later.
5237     assert(PrivType && "Expected privatizable type!");
5238 
5239     // Traverse the type, extract constituate types on the outermost level.
5240     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5241       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5242         ReplacementTypes.push_back(PrivStructType->getElementType(u));
5243     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5244       ReplacementTypes.append(PrivArrayType->getNumElements(),
5245                               PrivArrayType->getElementType());
5246     } else {
5247       ReplacementTypes.push_back(PrivType);
5248     }
5249   }
5250 
5251   /// Initialize \p Base according to the type \p PrivType at position \p IP.
5252   /// The values needed are taken from the arguments of \p F starting at
5253   /// position \p ArgNo.
5254   static void createInitialization(Type *PrivType, Value &Base, Function &F,
5255                                    unsigned ArgNo, Instruction &IP) {
5256     assert(PrivType && "Expected privatizable type!");
5257 
5258     IRBuilder<NoFolder> IRB(&IP);
5259     const DataLayout &DL = F.getParent()->getDataLayout();
5260 
5261     // Traverse the type, build GEPs and stores.
5262     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5263       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5264       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5265         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5266         Value *Ptr = constructPointer(
5267             PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
5268         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5269       }
5270     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5271       Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
5272       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
5273       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5274         Value *Ptr =
5275             constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
5276         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5277       }
5278     } else {
5279       new StoreInst(F.getArg(ArgNo), &Base, &IP);
5280     }
5281   }
5282 
5283   /// Extract values from \p Base according to the type \p PrivType at the
5284   /// call position \p ACS. The values are appended to \p ReplacementValues.
5285   void createReplacementValues(Align Alignment, Type *PrivType,
5286                                AbstractCallSite ACS, Value *Base,
5287                                SmallVectorImpl<Value *> &ReplacementValues) {
5288     assert(Base && "Expected base value!");
5289     assert(PrivType && "Expected privatizable type!");
5290     Instruction *IP = ACS.getInstruction();
5291 
5292     IRBuilder<NoFolder> IRB(IP);
5293     const DataLayout &DL = IP->getModule()->getDataLayout();
5294 
5295     if (Base->getType()->getPointerElementType() != PrivType)
5296       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5297                                                  "", ACS.getInstruction());
5298 
5299     // Traverse the type, build GEPs and loads.
5300     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5301       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5302       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5303         Type *PointeeTy = PrivStructType->getElementType(u);
5304         Value *Ptr =
5305             constructPointer(PointeeTy->getPointerTo(), Base,
5306                              PrivStructLayout->getElementOffset(u), IRB, DL);
5307         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5308         L->setAlignment(Alignment);
5309         ReplacementValues.push_back(L);
5310       }
5311     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5312       Type *PointeeTy = PrivArrayType->getElementType();
5313       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5314       Type *PointeePtrTy = PointeeTy->getPointerTo();
5315       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5316         Value *Ptr =
5317             constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
5318         LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
5319         L->setAlignment(Alignment);
5320         ReplacementValues.push_back(L);
5321       }
5322     } else {
5323       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5324       L->setAlignment(Alignment);
5325       ReplacementValues.push_back(L);
5326     }
5327   }
5328 
5329   /// See AbstractAttribute::manifest(...)
5330   ChangeStatus manifest(Attributor &A) override {
5331     if (!PrivatizableType.hasValue())
5332       return ChangeStatus::UNCHANGED;
5333     assert(PrivatizableType.getValue() && "Expected privatizable type!");
5334 
5335     // Collect all tail calls in the function as we cannot allow new allocas to
5336     // escape into tail recursion.
5337     // TODO: Be smarter about new allocas escaping into tail calls.
5338     SmallVector<CallInst *, 16> TailCalls;
5339     if (!A.checkForAllInstructions(
5340             [&](Instruction &I) {
5341               CallInst &CI = cast<CallInst>(I);
5342               if (CI.isTailCall())
5343                 TailCalls.push_back(&CI);
5344               return true;
5345             },
5346             *this, {Instruction::Call}))
5347       return ChangeStatus::UNCHANGED;
5348 
5349     Argument *Arg = getAssociatedArgument();
5350     // Query AAAlign attribute for alignment of associated argument to
5351     // determine the best alignment of loads.
5352     const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg));
5353 
5354     // Callback to repair the associated function. A new alloca is placed at the
5355     // beginning and initialized with the values passed through arguments. The
5356     // new alloca replaces the use of the old pointer argument.
5357     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5358         [=](const Attributor::ArgumentReplacementInfo &ARI,
5359             Function &ReplacementFn, Function::arg_iterator ArgIt) {
5360           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5361           Instruction *IP = &*EntryBB.getFirstInsertionPt();
5362           auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5363                                     Arg->getName() + ".priv", IP);
5364           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5365                                ArgIt->getArgNo(), *IP);
5366           Arg->replaceAllUsesWith(AI);
5367 
5368           for (CallInst *CI : TailCalls)
5369             CI->setTailCall(false);
5370         };
5371 
5372     // Callback to repair a call site of the associated function. The elements
5373     // of the privatizable type are loaded prior to the call and passed to the
5374     // new function version.
5375     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5376         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
5377                       AbstractCallSite ACS,
5378                       SmallVectorImpl<Value *> &NewArgOperands) {
5379           // When no alignment is specified for the load instruction,
5380           // natural alignment is assumed.
5381           createReplacementValues(
5382               assumeAligned(AlignAA.getAssumedAlign()),
5383               PrivatizableType.getValue(), ACS,
5384               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5385               NewArgOperands);
5386         };
5387 
5388     // Collect the types that will replace the privatizable type in the function
5389     // signature.
5390     SmallVector<Type *, 16> ReplacementTypes;
5391     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5392 
5393     // Register a rewrite of the argument.
5394     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5395                                            std::move(FnRepairCB),
5396                                            std::move(ACSRepairCB)))
5397       return ChangeStatus::CHANGED;
5398     return ChangeStatus::UNCHANGED;
5399   }
5400 
5401   /// See AbstractAttribute::trackStatistics()
5402   void trackStatistics() const override {
5403     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5404   }
5405 };
5406 
5407 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
5408   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
5409       : AAPrivatizablePtrImpl(IRP, A) {}
5410 
5411   /// See AbstractAttribute::initialize(...).
5412   virtual void initialize(Attributor &A) override {
5413     // TODO: We can privatize more than arguments.
5414     indicatePessimisticFixpoint();
5415   }
5416 
5417   ChangeStatus updateImpl(Attributor &A) override {
5418     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5419                      "updateImpl will not be called");
5420   }
5421 
5422   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5423   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5424     Value *Obj =
5425         GetUnderlyingObject(&getAssociatedValue(), A.getInfoCache().getDL());
5426     if (!Obj) {
5427       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5428       return nullptr;
5429     }
5430 
5431     if (auto *AI = dyn_cast<AllocaInst>(Obj))
5432       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5433         if (CI->isOne())
5434           return Obj->getType()->getPointerElementType();
5435     if (auto *Arg = dyn_cast<Argument>(Obj)) {
5436       auto &PrivArgAA =
5437           A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
5438       if (PrivArgAA.isAssumedPrivatizablePtr())
5439         return Obj->getType()->getPointerElementType();
5440     }
5441 
5442     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5443                          "alloca nor privatizable argument: "
5444                       << *Obj << "!\n");
5445     return nullptr;
5446   }
5447 
5448   /// See AbstractAttribute::trackStatistics()
5449   void trackStatistics() const override {
5450     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5451   }
5452 };
5453 
5454 struct AAPrivatizablePtrCallSiteArgument final
5455     : public AAPrivatizablePtrFloating {
5456   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
5457       : AAPrivatizablePtrFloating(IRP, A) {}
5458 
5459   /// See AbstractAttribute::initialize(...).
5460   void initialize(Attributor &A) override {
5461     if (getIRPosition().hasAttr(Attribute::ByVal))
5462       indicateOptimisticFixpoint();
5463   }
5464 
5465   /// See AbstractAttribute::updateImpl(...).
5466   ChangeStatus updateImpl(Attributor &A) override {
5467     PrivatizableType = identifyPrivatizableType(A);
5468     if (!PrivatizableType.hasValue())
5469       return ChangeStatus::UNCHANGED;
5470     if (!PrivatizableType.getValue())
5471       return indicatePessimisticFixpoint();
5472 
5473     const IRPosition &IRP = getIRPosition();
5474     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
5475     if (!NoCaptureAA.isAssumedNoCapture()) {
5476       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5477       return indicatePessimisticFixpoint();
5478     }
5479 
5480     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
5481     if (!NoAliasAA.isAssumedNoAlias()) {
5482       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5483       return indicatePessimisticFixpoint();
5484     }
5485 
5486     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
5487     if (!MemBehaviorAA.isAssumedReadOnly()) {
5488       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5489       return indicatePessimisticFixpoint();
5490     }
5491 
5492     return ChangeStatus::UNCHANGED;
5493   }
5494 
5495   /// See AbstractAttribute::trackStatistics()
5496   void trackStatistics() const override {
5497     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5498   }
5499 };
5500 
5501 struct AAPrivatizablePtrCallSiteReturned final
5502     : public AAPrivatizablePtrFloating {
5503   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
5504       : AAPrivatizablePtrFloating(IRP, A) {}
5505 
5506   /// See AbstractAttribute::initialize(...).
5507   void initialize(Attributor &A) override {
5508     // TODO: We can privatize more than arguments.
5509     indicatePessimisticFixpoint();
5510   }
5511 
5512   /// See AbstractAttribute::trackStatistics()
5513   void trackStatistics() const override {
5514     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5515   }
5516 };
5517 
5518 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
5519   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
5520       : AAPrivatizablePtrFloating(IRP, A) {}
5521 
5522   /// See AbstractAttribute::initialize(...).
5523   void initialize(Attributor &A) override {
5524     // TODO: We can privatize more than arguments.
5525     indicatePessimisticFixpoint();
5526   }
5527 
5528   /// See AbstractAttribute::trackStatistics()
5529   void trackStatistics() const override {
5530     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5531   }
5532 };
5533 
5534 /// -------------------- Memory Behavior Attributes ----------------------------
5535 /// Includes read-none, read-only, and write-only.
5536 /// ----------------------------------------------------------------------------
5537 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
5538   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
5539       : AAMemoryBehavior(IRP, A) {}
5540 
5541   /// See AbstractAttribute::initialize(...).
5542   void initialize(Attributor &A) override {
5543     intersectAssumedBits(BEST_STATE);
5544     getKnownStateFromValue(getIRPosition(), getState());
5545     IRAttribute::initialize(A);
5546   }
5547 
5548   /// Return the memory behavior information encoded in the IR for \p IRP.
5549   static void getKnownStateFromValue(const IRPosition &IRP,
5550                                      BitIntegerState &State,
5551                                      bool IgnoreSubsumingPositions = false) {
5552     SmallVector<Attribute, 2> Attrs;
5553     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5554     for (const Attribute &Attr : Attrs) {
5555       switch (Attr.getKindAsEnum()) {
5556       case Attribute::ReadNone:
5557         State.addKnownBits(NO_ACCESSES);
5558         break;
5559       case Attribute::ReadOnly:
5560         State.addKnownBits(NO_WRITES);
5561         break;
5562       case Attribute::WriteOnly:
5563         State.addKnownBits(NO_READS);
5564         break;
5565       default:
5566         llvm_unreachable("Unexpected attribute!");
5567       }
5568     }
5569 
5570     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5571       if (!I->mayReadFromMemory())
5572         State.addKnownBits(NO_READS);
5573       if (!I->mayWriteToMemory())
5574         State.addKnownBits(NO_WRITES);
5575     }
5576   }
5577 
5578   /// See AbstractAttribute::getDeducedAttributes(...).
5579   void getDeducedAttributes(LLVMContext &Ctx,
5580                             SmallVectorImpl<Attribute> &Attrs) const override {
5581     assert(Attrs.size() == 0);
5582     if (isAssumedReadNone())
5583       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5584     else if (isAssumedReadOnly())
5585       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5586     else if (isAssumedWriteOnly())
5587       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5588     assert(Attrs.size() <= 1);
5589   }
5590 
5591   /// See AbstractAttribute::manifest(...).
5592   ChangeStatus manifest(Attributor &A) override {
5593     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5594       return ChangeStatus::UNCHANGED;
5595 
5596     const IRPosition &IRP = getIRPosition();
5597 
5598     // Check if we would improve the existing attributes first.
5599     SmallVector<Attribute, 4> DeducedAttrs;
5600     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5601     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5602           return IRP.hasAttr(Attr.getKindAsEnum(),
5603                              /* IgnoreSubsumingPositions */ true);
5604         }))
5605       return ChangeStatus::UNCHANGED;
5606 
5607     // Clear existing attributes.
5608     IRP.removeAttrs(AttrKinds);
5609 
5610     // Use the generic manifest method.
5611     return IRAttribute::manifest(A);
5612   }
5613 
5614   /// See AbstractState::getAsStr().
5615   const std::string getAsStr() const override {
5616     if (isAssumedReadNone())
5617       return "readnone";
5618     if (isAssumedReadOnly())
5619       return "readonly";
5620     if (isAssumedWriteOnly())
5621       return "writeonly";
5622     return "may-read/write";
5623   }
5624 
5625   /// The set of IR attributes AAMemoryBehavior deals with.
5626   static const Attribute::AttrKind AttrKinds[3];
5627 };
5628 
5629 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
5630     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
5631 
5632 /// Memory behavior attribute for a floating value.
5633 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
5634   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
5635       : AAMemoryBehaviorImpl(IRP, A) {}
5636 
5637   /// See AbstractAttribute::initialize(...).
5638   void initialize(Attributor &A) override {
5639     AAMemoryBehaviorImpl::initialize(A);
5640     // Initialize the use vector with all direct uses of the associated value.
5641     for (const Use &U : getAssociatedValue().uses())
5642       Uses.insert(&U);
5643   }
5644 
5645   /// See AbstractAttribute::updateImpl(...).
5646   ChangeStatus updateImpl(Attributor &A) override;
5647 
5648   /// See AbstractAttribute::trackStatistics()
5649   void trackStatistics() const override {
5650     if (isAssumedReadNone())
5651       STATS_DECLTRACK_FLOATING_ATTR(readnone)
5652     else if (isAssumedReadOnly())
5653       STATS_DECLTRACK_FLOATING_ATTR(readonly)
5654     else if (isAssumedWriteOnly())
5655       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
5656   }
5657 
5658 private:
5659   /// Return true if users of \p UserI might access the underlying
5660   /// variable/location described by \p U and should therefore be analyzed.
5661   bool followUsersOfUseIn(Attributor &A, const Use *U,
5662                           const Instruction *UserI);
5663 
5664   /// Update the state according to the effect of use \p U in \p UserI.
5665   void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
5666 
5667 protected:
5668   /// Container for (transitive) uses of the associated argument.
5669   SetVector<const Use *> Uses;
5670 };
5671 
5672 /// Memory behavior attribute for function argument.
5673 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
5674   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
5675       : AAMemoryBehaviorFloating(IRP, A) {}
5676 
5677   /// See AbstractAttribute::initialize(...).
5678   void initialize(Attributor &A) override {
5679     intersectAssumedBits(BEST_STATE);
5680     const IRPosition &IRP = getIRPosition();
5681     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
5682     // can query it when we use has/getAttr. That would allow us to reuse the
5683     // initialize of the base class here.
5684     bool HasByVal =
5685         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
5686     getKnownStateFromValue(IRP, getState(),
5687                            /* IgnoreSubsumingPositions */ HasByVal);
5688 
5689     // Initialize the use vector with all direct uses of the associated value.
5690     Argument *Arg = getAssociatedArgument();
5691     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
5692       indicatePessimisticFixpoint();
5693     } else {
5694       // Initialize the use vector with all direct uses of the associated value.
5695       for (const Use &U : Arg->uses())
5696         Uses.insert(&U);
5697     }
5698   }
5699 
5700   ChangeStatus manifest(Attributor &A) override {
5701     // TODO: Pointer arguments are not supported on vectors of pointers yet.
5702     if (!getAssociatedValue().getType()->isPointerTy())
5703       return ChangeStatus::UNCHANGED;
5704 
5705     // TODO: From readattrs.ll: "inalloca parameters are always
5706     //                           considered written"
5707     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
5708       removeKnownBits(NO_WRITES);
5709       removeAssumedBits(NO_WRITES);
5710     }
5711     return AAMemoryBehaviorFloating::manifest(A);
5712   }
5713 
5714   /// See AbstractAttribute::trackStatistics()
5715   void trackStatistics() const override {
5716     if (isAssumedReadNone())
5717       STATS_DECLTRACK_ARG_ATTR(readnone)
5718     else if (isAssumedReadOnly())
5719       STATS_DECLTRACK_ARG_ATTR(readonly)
5720     else if (isAssumedWriteOnly())
5721       STATS_DECLTRACK_ARG_ATTR(writeonly)
5722   }
5723 };
5724 
5725 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
5726   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
5727       : AAMemoryBehaviorArgument(IRP, A) {}
5728 
5729   /// See AbstractAttribute::initialize(...).
5730   void initialize(Attributor &A) override {
5731     if (Argument *Arg = getAssociatedArgument()) {
5732       if (Arg->hasByValAttr()) {
5733         addKnownBits(NO_WRITES);
5734         removeKnownBits(NO_READS);
5735         removeAssumedBits(NO_READS);
5736       }
5737     }
5738     AAMemoryBehaviorArgument::initialize(A);
5739   }
5740 
5741   /// See AbstractAttribute::updateImpl(...).
5742   ChangeStatus updateImpl(Attributor &A) override {
5743     // TODO: Once we have call site specific value information we can provide
5744     //       call site specific liveness liveness information and then it makes
5745     //       sense to specialize attributes for call sites arguments instead of
5746     //       redirecting requests to the callee argument.
5747     Argument *Arg = getAssociatedArgument();
5748     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5749     auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
5750     return clampStateAndIndicateChange(
5751         getState(),
5752         static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState()));
5753   }
5754 
5755   /// See AbstractAttribute::trackStatistics()
5756   void trackStatistics() const override {
5757     if (isAssumedReadNone())
5758       STATS_DECLTRACK_CSARG_ATTR(readnone)
5759     else if (isAssumedReadOnly())
5760       STATS_DECLTRACK_CSARG_ATTR(readonly)
5761     else if (isAssumedWriteOnly())
5762       STATS_DECLTRACK_CSARG_ATTR(writeonly)
5763   }
5764 };
5765 
5766 /// Memory behavior attribute for a call site return position.
5767 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
5768   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
5769       : AAMemoryBehaviorFloating(IRP, A) {}
5770 
5771   /// See AbstractAttribute::manifest(...).
5772   ChangeStatus manifest(Attributor &A) override {
5773     // We do not annotate returned values.
5774     return ChangeStatus::UNCHANGED;
5775   }
5776 
5777   /// See AbstractAttribute::trackStatistics()
5778   void trackStatistics() const override {}
5779 };
5780 
5781 /// An AA to represent the memory behavior function attributes.
5782 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
5783   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
5784       : AAMemoryBehaviorImpl(IRP, A) {}
5785 
5786   /// See AbstractAttribute::updateImpl(Attributor &A).
5787   virtual ChangeStatus updateImpl(Attributor &A) override;
5788 
5789   /// See AbstractAttribute::manifest(...).
5790   ChangeStatus manifest(Attributor &A) override {
5791     Function &F = cast<Function>(getAnchorValue());
5792     if (isAssumedReadNone()) {
5793       F.removeFnAttr(Attribute::ArgMemOnly);
5794       F.removeFnAttr(Attribute::InaccessibleMemOnly);
5795       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
5796     }
5797     return AAMemoryBehaviorImpl::manifest(A);
5798   }
5799 
5800   /// See AbstractAttribute::trackStatistics()
5801   void trackStatistics() const override {
5802     if (isAssumedReadNone())
5803       STATS_DECLTRACK_FN_ATTR(readnone)
5804     else if (isAssumedReadOnly())
5805       STATS_DECLTRACK_FN_ATTR(readonly)
5806     else if (isAssumedWriteOnly())
5807       STATS_DECLTRACK_FN_ATTR(writeonly)
5808   }
5809 };
5810 
5811 /// AAMemoryBehavior attribute for call sites.
5812 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
5813   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
5814       : AAMemoryBehaviorImpl(IRP, A) {}
5815 
5816   /// See AbstractAttribute::initialize(...).
5817   void initialize(Attributor &A) override {
5818     AAMemoryBehaviorImpl::initialize(A);
5819     Function *F = getAssociatedFunction();
5820     if (!F || !A.isFunctionIPOAmendable(*F)) {
5821       indicatePessimisticFixpoint();
5822       return;
5823     }
5824   }
5825 
5826   /// See AbstractAttribute::updateImpl(...).
5827   ChangeStatus updateImpl(Attributor &A) override {
5828     // TODO: Once we have call site specific value information we can provide
5829     //       call site specific liveness liveness information and then it makes
5830     //       sense to specialize attributes for call sites arguments instead of
5831     //       redirecting requests to the callee argument.
5832     Function *F = getAssociatedFunction();
5833     const IRPosition &FnPos = IRPosition::function(*F);
5834     auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
5835     return clampStateAndIndicateChange(
5836         getState(),
5837         static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState()));
5838   }
5839 
5840   /// See AbstractAttribute::trackStatistics()
5841   void trackStatistics() const override {
5842     if (isAssumedReadNone())
5843       STATS_DECLTRACK_CS_ATTR(readnone)
5844     else if (isAssumedReadOnly())
5845       STATS_DECLTRACK_CS_ATTR(readonly)
5846     else if (isAssumedWriteOnly())
5847       STATS_DECLTRACK_CS_ATTR(writeonly)
5848   }
5849 };
5850 
5851 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
5852 
5853   // The current assumed state used to determine a change.
5854   auto AssumedState = getAssumed();
5855 
5856   auto CheckRWInst = [&](Instruction &I) {
5857     // If the instruction has an own memory behavior state, use it to restrict
5858     // the local state. No further analysis is required as the other memory
5859     // state is as optimistic as it gets.
5860     if (const auto *CB = dyn_cast<CallBase>(&I)) {
5861       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
5862           *this, IRPosition::callsite_function(*CB));
5863       intersectAssumedBits(MemBehaviorAA.getAssumed());
5864       return !isAtFixpoint();
5865     }
5866 
5867     // Remove access kind modifiers if necessary.
5868     if (I.mayReadFromMemory())
5869       removeAssumedBits(NO_READS);
5870     if (I.mayWriteToMemory())
5871       removeAssumedBits(NO_WRITES);
5872     return !isAtFixpoint();
5873   };
5874 
5875   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
5876     return indicatePessimisticFixpoint();
5877 
5878   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
5879                                         : ChangeStatus::UNCHANGED;
5880 }
5881 
5882 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
5883 
5884   const IRPosition &IRP = getIRPosition();
5885   const IRPosition &FnPos = IRPosition::function_scope(IRP);
5886   AAMemoryBehavior::StateType &S = getState();
5887 
5888   // First, check the function scope. We take the known information and we avoid
5889   // work if the assumed information implies the current assumed information for
5890   // this attribute. This is a valid for all but byval arguments.
5891   Argument *Arg = IRP.getAssociatedArgument();
5892   AAMemoryBehavior::base_t FnMemAssumedState =
5893       AAMemoryBehavior::StateType::getWorstState();
5894   if (!Arg || !Arg->hasByValAttr()) {
5895     const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
5896         *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
5897     FnMemAssumedState = FnMemAA.getAssumed();
5898     S.addKnownBits(FnMemAA.getKnown());
5899     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
5900       return ChangeStatus::UNCHANGED;
5901   }
5902 
5903   // Make sure the value is not captured (except through "return"), if
5904   // it is, any information derived would be irrelevant anyway as we cannot
5905   // check the potential aliases introduced by the capture. However, no need
5906   // to fall back to anythign less optimistic than the function state.
5907   const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
5908       *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
5909   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5910     S.intersectAssumedBits(FnMemAssumedState);
5911     return ChangeStatus::CHANGED;
5912   }
5913 
5914   // The current assumed state used to determine a change.
5915   auto AssumedState = S.getAssumed();
5916 
5917   // Liveness information to exclude dead users.
5918   // TODO: Take the FnPos once we have call site specific liveness information.
5919   const auto &LivenessAA = A.getAAFor<AAIsDead>(
5920       *this, IRPosition::function(*IRP.getAssociatedFunction()),
5921       /* TrackDependence */ false);
5922 
5923   // Visit and expand uses until all are analyzed or a fixpoint is reached.
5924   for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
5925     const Use *U = Uses[i];
5926     Instruction *UserI = cast<Instruction>(U->getUser());
5927     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
5928                       << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
5929                       << "]\n");
5930     if (A.isAssumedDead(*U, this, &LivenessAA))
5931       continue;
5932 
5933     // Droppable users, e.g., llvm::assume does not actually perform any action.
5934     if (UserI->isDroppable())
5935       continue;
5936 
5937     // Check if the users of UserI should also be visited.
5938     if (followUsersOfUseIn(A, U, UserI))
5939       for (const Use &UserIUse : UserI->uses())
5940         Uses.insert(&UserIUse);
5941 
5942     // If UserI might touch memory we analyze the use in detail.
5943     if (UserI->mayReadOrWriteMemory())
5944       analyzeUseIn(A, U, UserI);
5945   }
5946 
5947   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
5948                                         : ChangeStatus::UNCHANGED;
5949 }
5950 
5951 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
5952                                                   const Instruction *UserI) {
5953   // The loaded value is unrelated to the pointer argument, no need to
5954   // follow the users of the load.
5955   if (isa<LoadInst>(UserI))
5956     return false;
5957 
5958   // By default we follow all uses assuming UserI might leak information on U,
5959   // we have special handling for call sites operands though.
5960   const auto *CB = dyn_cast<CallBase>(UserI);
5961   if (!CB || !CB->isArgOperand(U))
5962     return true;
5963 
5964   // If the use is a call argument known not to be captured, the users of
5965   // the call do not need to be visited because they have to be unrelated to
5966   // the input. Note that this check is not trivial even though we disallow
5967   // general capturing of the underlying argument. The reason is that the
5968   // call might the argument "through return", which we allow and for which we
5969   // need to check call users.
5970   if (U->get()->getType()->isPointerTy()) {
5971     unsigned ArgNo = CB->getArgOperandNo(U);
5972     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
5973         *this, IRPosition::callsite_argument(*CB, ArgNo),
5974         /* TrackDependence */ true, DepClassTy::OPTIONAL);
5975     return !ArgNoCaptureAA.isAssumedNoCapture();
5976   }
5977 
5978   return true;
5979 }
5980 
5981 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
5982                                             const Instruction *UserI) {
5983   assert(UserI->mayReadOrWriteMemory());
5984 
5985   switch (UserI->getOpcode()) {
5986   default:
5987     // TODO: Handle all atomics and other side-effect operations we know of.
5988     break;
5989   case Instruction::Load:
5990     // Loads cause the NO_READS property to disappear.
5991     removeAssumedBits(NO_READS);
5992     return;
5993 
5994   case Instruction::Store:
5995     // Stores cause the NO_WRITES property to disappear if the use is the
5996     // pointer operand. Note that we do assume that capturing was taken care of
5997     // somewhere else.
5998     if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
5999       removeAssumedBits(NO_WRITES);
6000     return;
6001 
6002   case Instruction::Call:
6003   case Instruction::CallBr:
6004   case Instruction::Invoke: {
6005     // For call sites we look at the argument memory behavior attribute (this
6006     // could be recursive!) in order to restrict our own state.
6007     const auto *CB = cast<CallBase>(UserI);
6008 
6009     // Give up on operand bundles.
6010     if (CB->isBundleOperand(U)) {
6011       indicatePessimisticFixpoint();
6012       return;
6013     }
6014 
6015     // Calling a function does read the function pointer, maybe write it if the
6016     // function is self-modifying.
6017     if (CB->isCallee(U)) {
6018       removeAssumedBits(NO_READS);
6019       break;
6020     }
6021 
6022     // Adjust the possible access behavior based on the information on the
6023     // argument.
6024     IRPosition Pos;
6025     if (U->get()->getType()->isPointerTy())
6026       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U));
6027     else
6028       Pos = IRPosition::callsite_function(*CB);
6029     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6030         *this, Pos,
6031         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6032     // "assumed" has at most the same bits as the MemBehaviorAA assumed
6033     // and at least "known".
6034     intersectAssumedBits(MemBehaviorAA.getAssumed());
6035     return;
6036   }
6037   };
6038 
6039   // Generally, look at the "may-properties" and adjust the assumed state if we
6040   // did not trigger special handling before.
6041   if (UserI->mayReadFromMemory())
6042     removeAssumedBits(NO_READS);
6043   if (UserI->mayWriteToMemory())
6044     removeAssumedBits(NO_WRITES);
6045 }
6046 
6047 } // namespace
6048 
6049 /// -------------------- Memory Locations Attributes ---------------------------
6050 /// Includes read-none, argmemonly, inaccessiblememonly,
6051 /// inaccessiblememorargmemonly
6052 /// ----------------------------------------------------------------------------
6053 
6054 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6055     AAMemoryLocation::MemoryLocationsKind MLK) {
6056   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6057     return "all memory";
6058   if (MLK == AAMemoryLocation::NO_LOCATIONS)
6059     return "no memory";
6060   std::string S = "memory:";
6061   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6062     S += "stack,";
6063   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6064     S += "constant,";
6065   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6066     S += "internal global,";
6067   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6068     S += "external global,";
6069   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6070     S += "argument,";
6071   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6072     S += "inaccessible,";
6073   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6074     S += "malloced,";
6075   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6076     S += "unknown,";
6077   S.pop_back();
6078   return S;
6079 }
6080 
6081 namespace {
6082 struct AAMemoryLocationImpl : public AAMemoryLocation {
6083 
6084   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
6085       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
6086     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6087       AccessKind2Accesses[u] = nullptr;
6088   }
6089 
6090   ~AAMemoryLocationImpl() {
6091     // The AccessSets are allocated via a BumpPtrAllocator, we call
6092     // the destructor manually.
6093     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6094       if (AccessKind2Accesses[u])
6095         AccessKind2Accesses[u]->~AccessSet();
6096   }
6097 
6098   /// See AbstractAttribute::initialize(...).
6099   void initialize(Attributor &A) override {
6100     intersectAssumedBits(BEST_STATE);
6101     getKnownStateFromValue(A, getIRPosition(), getState());
6102     IRAttribute::initialize(A);
6103   }
6104 
6105   /// Return the memory behavior information encoded in the IR for \p IRP.
6106   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
6107                                      BitIntegerState &State,
6108                                      bool IgnoreSubsumingPositions = false) {
6109     // For internal functions we ignore `argmemonly` and
6110     // `inaccessiblememorargmemonly` as we might break it via interprocedural
6111     // constant propagation. It is unclear if this is the best way but it is
6112     // unlikely this will cause real performance problems. If we are deriving
6113     // attributes for the anchor function we even remove the attribute in
6114     // addition to ignoring it.
6115     bool UseArgMemOnly = true;
6116     Function *AnchorFn = IRP.getAnchorScope();
6117     if (AnchorFn && A.isRunOn(*AnchorFn))
6118       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
6119 
6120     SmallVector<Attribute, 2> Attrs;
6121     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6122     for (const Attribute &Attr : Attrs) {
6123       switch (Attr.getKindAsEnum()) {
6124       case Attribute::ReadNone:
6125         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6126         break;
6127       case Attribute::InaccessibleMemOnly:
6128         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6129         break;
6130       case Attribute::ArgMemOnly:
6131         if (UseArgMemOnly)
6132           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6133         else
6134           IRP.removeAttrs({Attribute::ArgMemOnly});
6135         break;
6136       case Attribute::InaccessibleMemOrArgMemOnly:
6137         if (UseArgMemOnly)
6138           State.addKnownBits(inverseLocation(
6139               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6140         else
6141           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
6142         break;
6143       default:
6144         llvm_unreachable("Unexpected attribute!");
6145       }
6146     }
6147   }
6148 
6149   /// See AbstractAttribute::getDeducedAttributes(...).
6150   void getDeducedAttributes(LLVMContext &Ctx,
6151                             SmallVectorImpl<Attribute> &Attrs) const override {
6152     assert(Attrs.size() == 0);
6153     if (isAssumedReadNone()) {
6154       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6155     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6156       if (isAssumedInaccessibleMemOnly())
6157         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6158       else if (isAssumedArgMemOnly())
6159         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6160       else if (isAssumedInaccessibleOrArgMemOnly())
6161         Attrs.push_back(
6162             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6163     }
6164     assert(Attrs.size() <= 1);
6165   }
6166 
6167   /// See AbstractAttribute::manifest(...).
6168   ChangeStatus manifest(Attributor &A) override {
6169     const IRPosition &IRP = getIRPosition();
6170 
6171     // Check if we would improve the existing attributes first.
6172     SmallVector<Attribute, 4> DeducedAttrs;
6173     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6174     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6175           return IRP.hasAttr(Attr.getKindAsEnum(),
6176                              /* IgnoreSubsumingPositions */ true);
6177         }))
6178       return ChangeStatus::UNCHANGED;
6179 
6180     // Clear existing attributes.
6181     IRP.removeAttrs(AttrKinds);
6182     if (isAssumedReadNone())
6183       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6184 
6185     // Use the generic manifest method.
6186     return IRAttribute::manifest(A);
6187   }
6188 
6189   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
6190   bool checkForAllAccessesToMemoryKind(
6191       function_ref<bool(const Instruction *, const Value *, AccessKind,
6192                         MemoryLocationsKind)>
6193           Pred,
6194       MemoryLocationsKind RequestedMLK) const override {
6195     if (!isValidState())
6196       return false;
6197 
6198     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6199     if (AssumedMLK == NO_LOCATIONS)
6200       return true;
6201 
6202     unsigned Idx = 0;
6203     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
6204          CurMLK *= 2, ++Idx) {
6205       if (CurMLK & RequestedMLK)
6206         continue;
6207 
6208       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
6209         for (const AccessInfo &AI : *Accesses)
6210           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6211             return false;
6212     }
6213 
6214     return true;
6215   }
6216 
6217   ChangeStatus indicatePessimisticFixpoint() override {
6218     // If we give up and indicate a pessimistic fixpoint this instruction will
6219     // become an access for all potential access kinds:
6220     // TODO: Add pointers for argmemonly and globals to improve the results of
6221     //       checkForAllAccessesToMemoryKind.
6222     bool Changed = false;
6223     MemoryLocationsKind KnownMLK = getKnown();
6224     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6225     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6226       if (!(CurMLK & KnownMLK))
6227         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
6228                                   getAccessKindFromInst(I));
6229     return AAMemoryLocation::indicatePessimisticFixpoint();
6230   }
6231 
6232 protected:
6233   /// Helper struct to tie together an instruction that has a read or write
6234   /// effect with the pointer it accesses (if any).
6235   struct AccessInfo {
6236 
6237     /// The instruction that caused the access.
6238     const Instruction *I;
6239 
6240     /// The base pointer that is accessed, or null if unknown.
6241     const Value *Ptr;
6242 
6243     /// The kind of access (read/write/read+write).
6244     AccessKind Kind;
6245 
6246     bool operator==(const AccessInfo &RHS) const {
6247       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6248     }
6249     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6250       if (LHS.I != RHS.I)
6251         return LHS.I < RHS.I;
6252       if (LHS.Ptr != RHS.Ptr)
6253         return LHS.Ptr < RHS.Ptr;
6254       if (LHS.Kind != RHS.Kind)
6255         return LHS.Kind < RHS.Kind;
6256       return false;
6257     }
6258   };
6259 
6260   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6261   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6262   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
6263   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
6264 
6265   /// Return the kind(s) of location that may be accessed by \p V.
6266   AAMemoryLocation::MemoryLocationsKind
6267   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6268 
6269   /// Return the access kind as determined by \p I.
6270   AccessKind getAccessKindFromInst(const Instruction *I) {
6271     AccessKind AK = READ_WRITE;
6272     if (I) {
6273       AK = I->mayReadFromMemory() ? READ : NONE;
6274       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
6275     }
6276     return AK;
6277   }
6278 
6279   /// Update the state \p State and the AccessKind2Accesses given that \p I is
6280   /// an access of kind \p AK to a \p MLK memory location with the access
6281   /// pointer \p Ptr.
6282   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6283                                  MemoryLocationsKind MLK, const Instruction *I,
6284                                  const Value *Ptr, bool &Changed,
6285                                  AccessKind AK = READ_WRITE) {
6286 
6287     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6288     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
6289     if (!Accesses)
6290       Accesses = new (Allocator) AccessSet();
6291     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
6292     State.removeAssumedBits(MLK);
6293   }
6294 
6295   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6296   /// arguments, and update the state and access map accordingly.
6297   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6298                           AAMemoryLocation::StateType &State, bool &Changed);
6299 
6300   /// Used to allocate access sets.
6301   BumpPtrAllocator &Allocator;
6302 
6303   /// The set of IR attributes AAMemoryLocation deals with.
6304   static const Attribute::AttrKind AttrKinds[4];
6305 };
6306 
6307 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6308     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6309     Attribute::InaccessibleMemOrArgMemOnly};
6310 
6311 void AAMemoryLocationImpl::categorizePtrValue(
6312     Attributor &A, const Instruction &I, const Value &Ptr,
6313     AAMemoryLocation::StateType &State, bool &Changed) {
6314   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6315                     << Ptr << " ["
6316                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6317 
6318   auto StripGEPCB = [](Value *V) -> Value * {
6319     auto *GEP = dyn_cast<GEPOperator>(V);
6320     while (GEP) {
6321       V = GEP->getPointerOperand();
6322       GEP = dyn_cast<GEPOperator>(V);
6323     }
6324     return V;
6325   };
6326 
6327   auto VisitValueCB = [&](Value &V, const Instruction *,
6328                           AAMemoryLocation::StateType &T,
6329                           bool Stripped) -> bool {
6330     MemoryLocationsKind MLK = NO_LOCATIONS;
6331     assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6332     if (isa<UndefValue>(V))
6333       return true;
6334     if (auto *Arg = dyn_cast<Argument>(&V)) {
6335       if (Arg->hasByValAttr())
6336         MLK = NO_LOCAL_MEM;
6337       else
6338         MLK = NO_ARGUMENT_MEM;
6339     } else if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6340       if (GV->hasLocalLinkage())
6341         MLK = NO_GLOBAL_INTERNAL_MEM;
6342       else
6343         MLK = NO_GLOBAL_EXTERNAL_MEM;
6344     } else if (isa<ConstantPointerNull>(V) &&
6345                !NullPointerIsDefined(getAssociatedFunction(),
6346                                      V.getType()->getPointerAddressSpace())) {
6347       return true;
6348     } else if (isa<AllocaInst>(V)) {
6349       MLK = NO_LOCAL_MEM;
6350     } else if (const auto *CB = dyn_cast<CallBase>(&V)) {
6351       const auto &NoAliasAA =
6352           A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB));
6353       if (NoAliasAA.isAssumedNoAlias())
6354         MLK = NO_MALLOCED_MEM;
6355       else
6356         MLK = NO_UNKOWN_MEM;
6357     } else {
6358       MLK = NO_UNKOWN_MEM;
6359     }
6360 
6361     assert(MLK != NO_LOCATIONS && "No location specified!");
6362     updateStateAndAccessesMap(T, MLK, &I, &V, Changed,
6363                               getAccessKindFromInst(&I));
6364     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6365                       << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6366                       << "\n");
6367     return true;
6368   };
6369 
6370   if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6371           A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
6372           /* UseValueSimplify */ true,
6373           /* MaxValues */ 32, StripGEPCB)) {
6374     LLVM_DEBUG(
6375         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6376     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
6377                               getAccessKindFromInst(&I));
6378   } else {
6379     LLVM_DEBUG(
6380         dbgs()
6381         << "[AAMemoryLocation] Accessed locations with pointer locations: "
6382         << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6383   }
6384 }
6385 
6386 AAMemoryLocation::MemoryLocationsKind
6387 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6388                                                   bool &Changed) {
6389   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6390                     << I << "\n");
6391 
6392   AAMemoryLocation::StateType AccessedLocs;
6393   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6394 
6395   if (auto *CB = dyn_cast<CallBase>(&I)) {
6396 
6397     // First check if we assume any memory is access is visible.
6398     const auto &CBMemLocationAA =
6399         A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB));
6400     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6401                       << " [" << CBMemLocationAA << "]\n");
6402 
6403     if (CBMemLocationAA.isAssumedReadNone())
6404       return NO_LOCATIONS;
6405 
6406     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
6407       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
6408                                 Changed, getAccessKindFromInst(&I));
6409       return AccessedLocs.getAssumed();
6410     }
6411 
6412     uint32_t CBAssumedNotAccessedLocs =
6413         CBMemLocationAA.getAssumedNotAccessedLocation();
6414 
6415     // Set the argmemonly and global bit as we handle them separately below.
6416     uint32_t CBAssumedNotAccessedLocsNoArgMem =
6417         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6418 
6419     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6420       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
6421         continue;
6422       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
6423                                 getAccessKindFromInst(&I));
6424     }
6425 
6426     // Now handle global memory if it might be accessed. This is slightly tricky
6427     // as NO_GLOBAL_MEM has multiple bits set.
6428     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
6429     if (HasGlobalAccesses) {
6430       auto AccessPred = [&](const Instruction *, const Value *Ptr,
6431                             AccessKind Kind, MemoryLocationsKind MLK) {
6432         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
6433                                   getAccessKindFromInst(&I));
6434         return true;
6435       };
6436       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
6437               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6438         return AccessedLocs.getWorstState();
6439     }
6440 
6441     LLVM_DEBUG(
6442         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6443                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6444 
6445     // Now handle argument memory if it might be accessed.
6446     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
6447     if (HasArgAccesses) {
6448       for (unsigned ArgNo = 0, E = CB->getNumArgOperands(); ArgNo < E;
6449            ++ArgNo) {
6450 
6451         // Skip non-pointer arguments.
6452         const Value *ArgOp = CB->getArgOperand(ArgNo);
6453         if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6454           continue;
6455 
6456         // Skip readnone arguments.
6457         const IRPosition &ArgOpIRP = IRPosition::callsite_argument(*CB, ArgNo);
6458         const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
6459             *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6460 
6461         if (ArgOpMemLocationAA.isAssumedReadNone())
6462           continue;
6463 
6464         // Categorize potentially accessed pointer arguments as if there was an
6465         // access instruction with them as pointer.
6466         categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed);
6467       }
6468     }
6469 
6470     LLVM_DEBUG(
6471         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6472                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6473 
6474     return AccessedLocs.getAssumed();
6475   }
6476 
6477   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6478     LLVM_DEBUG(
6479         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6480                << I << " [" << *Ptr << "]\n");
6481     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6482     return AccessedLocs.getAssumed();
6483   }
6484 
6485   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6486                     << I << "\n");
6487   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
6488                             getAccessKindFromInst(&I));
6489   return AccessedLocs.getAssumed();
6490 }
6491 
6492 /// An AA to represent the memory behavior function attributes.
6493 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
6494   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
6495       : AAMemoryLocationImpl(IRP, A) {}
6496 
6497   /// See AbstractAttribute::updateImpl(Attributor &A).
6498   virtual ChangeStatus updateImpl(Attributor &A) override {
6499 
6500     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6501         *this, getIRPosition(), /* TrackDependence */ false);
6502     if (MemBehaviorAA.isAssumedReadNone()) {
6503       if (MemBehaviorAA.isKnownReadNone())
6504         return indicateOptimisticFixpoint();
6505       assert(isAssumedReadNone() &&
6506              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6507       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6508       return ChangeStatus::UNCHANGED;
6509     }
6510 
6511     // The current assumed state used to determine a change.
6512     auto AssumedState = getAssumed();
6513     bool Changed = false;
6514 
6515     auto CheckRWInst = [&](Instruction &I) {
6516       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6517       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6518                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6519       removeAssumedBits(inverseLocation(MLK, false, false));
6520       return true;
6521     };
6522 
6523     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6524       return indicatePessimisticFixpoint();
6525 
6526     Changed |= AssumedState != getAssumed();
6527     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6528   }
6529 
6530   /// See AbstractAttribute::trackStatistics()
6531   void trackStatistics() const override {
6532     if (isAssumedReadNone())
6533       STATS_DECLTRACK_FN_ATTR(readnone)
6534     else if (isAssumedArgMemOnly())
6535       STATS_DECLTRACK_FN_ATTR(argmemonly)
6536     else if (isAssumedInaccessibleMemOnly())
6537       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6538     else if (isAssumedInaccessibleOrArgMemOnly())
6539       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6540   }
6541 };
6542 
6543 /// AAMemoryLocation attribute for call sites.
6544 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
6545   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
6546       : AAMemoryLocationImpl(IRP, A) {}
6547 
6548   /// See AbstractAttribute::initialize(...).
6549   void initialize(Attributor &A) override {
6550     AAMemoryLocationImpl::initialize(A);
6551     Function *F = getAssociatedFunction();
6552     if (!F || !A.isFunctionIPOAmendable(*F)) {
6553       indicatePessimisticFixpoint();
6554       return;
6555     }
6556   }
6557 
6558   /// See AbstractAttribute::updateImpl(...).
6559   ChangeStatus updateImpl(Attributor &A) override {
6560     // TODO: Once we have call site specific value information we can provide
6561     //       call site specific liveness liveness information and then it makes
6562     //       sense to specialize attributes for call sites arguments instead of
6563     //       redirecting requests to the callee argument.
6564     Function *F = getAssociatedFunction();
6565     const IRPosition &FnPos = IRPosition::function(*F);
6566     auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
6567     bool Changed = false;
6568     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
6569                           AccessKind Kind, MemoryLocationsKind MLK) {
6570       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
6571                                 getAccessKindFromInst(I));
6572       return true;
6573     };
6574     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
6575       return indicatePessimisticFixpoint();
6576     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6577   }
6578 
6579   /// See AbstractAttribute::trackStatistics()
6580   void trackStatistics() const override {
6581     if (isAssumedReadNone())
6582       STATS_DECLTRACK_CS_ATTR(readnone)
6583   }
6584 };
6585 
6586 /// ------------------ Value Constant Range Attribute -------------------------
6587 
6588 struct AAValueConstantRangeImpl : AAValueConstantRange {
6589   using StateType = IntegerRangeState;
6590   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
6591       : AAValueConstantRange(IRP, A) {}
6592 
6593   /// See AbstractAttribute::getAsStr().
6594   const std::string getAsStr() const override {
6595     std::string Str;
6596     llvm::raw_string_ostream OS(Str);
6597     OS << "range(" << getBitWidth() << ")<";
6598     getKnown().print(OS);
6599     OS << " / ";
6600     getAssumed().print(OS);
6601     OS << ">";
6602     return OS.str();
6603   }
6604 
6605   /// Helper function to get a SCEV expr for the associated value at program
6606   /// point \p I.
6607   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
6608     if (!getAnchorScope())
6609       return nullptr;
6610 
6611     ScalarEvolution *SE =
6612         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6613             *getAnchorScope());
6614 
6615     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
6616         *getAnchorScope());
6617 
6618     if (!SE || !LI)
6619       return nullptr;
6620 
6621     const SCEV *S = SE->getSCEV(&getAssociatedValue());
6622     if (!I)
6623       return S;
6624 
6625     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
6626   }
6627 
6628   /// Helper function to get a range from SCEV for the associated value at
6629   /// program point \p I.
6630   ConstantRange getConstantRangeFromSCEV(Attributor &A,
6631                                          const Instruction *I = nullptr) const {
6632     if (!getAnchorScope())
6633       return getWorstState(getBitWidth());
6634 
6635     ScalarEvolution *SE =
6636         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6637             *getAnchorScope());
6638 
6639     const SCEV *S = getSCEV(A, I);
6640     if (!SE || !S)
6641       return getWorstState(getBitWidth());
6642 
6643     return SE->getUnsignedRange(S);
6644   }
6645 
6646   /// Helper function to get a range from LVI for the associated value at
6647   /// program point \p I.
6648   ConstantRange
6649   getConstantRangeFromLVI(Attributor &A,
6650                           const Instruction *CtxI = nullptr) const {
6651     if (!getAnchorScope())
6652       return getWorstState(getBitWidth());
6653 
6654     LazyValueInfo *LVI =
6655         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
6656             *getAnchorScope());
6657 
6658     if (!LVI || !CtxI)
6659       return getWorstState(getBitWidth());
6660     return LVI->getConstantRange(&getAssociatedValue(),
6661                                  const_cast<BasicBlock *>(CtxI->getParent()),
6662                                  const_cast<Instruction *>(CtxI));
6663   }
6664 
6665   /// See AAValueConstantRange::getKnownConstantRange(..).
6666   ConstantRange
6667   getKnownConstantRange(Attributor &A,
6668                         const Instruction *CtxI = nullptr) const override {
6669     if (!CtxI || CtxI == getCtxI())
6670       return getKnown();
6671 
6672     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6673     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6674     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
6675   }
6676 
6677   /// See AAValueConstantRange::getAssumedConstantRange(..).
6678   ConstantRange
6679   getAssumedConstantRange(Attributor &A,
6680                           const Instruction *CtxI = nullptr) const override {
6681     // TODO: Make SCEV use Attributor assumption.
6682     //       We may be able to bound a variable range via assumptions in
6683     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
6684     //       evolve to x^2 + x, then we can say that y is in [2, 12].
6685 
6686     if (!CtxI || CtxI == getCtxI())
6687       return getAssumed();
6688 
6689     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6690     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6691     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
6692   }
6693 
6694   /// See AbstractAttribute::initialize(..).
6695   void initialize(Attributor &A) override {
6696     // Intersect a range given by SCEV.
6697     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
6698 
6699     // Intersect a range given by LVI.
6700     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
6701   }
6702 
6703   /// Helper function to create MDNode for range metadata.
6704   static MDNode *
6705   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
6706                             const ConstantRange &AssumedConstantRange) {
6707     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
6708                                   Ty, AssumedConstantRange.getLower())),
6709                               ConstantAsMetadata::get(ConstantInt::get(
6710                                   Ty, AssumedConstantRange.getUpper()))};
6711     return MDNode::get(Ctx, LowAndHigh);
6712   }
6713 
6714   /// Return true if \p Assumed is included in \p KnownRanges.
6715   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
6716 
6717     if (Assumed.isFullSet())
6718       return false;
6719 
6720     if (!KnownRanges)
6721       return true;
6722 
6723     // If multiple ranges are annotated in IR, we give up to annotate assumed
6724     // range for now.
6725 
6726     // TODO:  If there exists a known range which containts assumed range, we
6727     // can say assumed range is better.
6728     if (KnownRanges->getNumOperands() > 2)
6729       return false;
6730 
6731     ConstantInt *Lower =
6732         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
6733     ConstantInt *Upper =
6734         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
6735 
6736     ConstantRange Known(Lower->getValue(), Upper->getValue());
6737     return Known.contains(Assumed) && Known != Assumed;
6738   }
6739 
6740   /// Helper function to set range metadata.
6741   static bool
6742   setRangeMetadataIfisBetterRange(Instruction *I,
6743                                   const ConstantRange &AssumedConstantRange) {
6744     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
6745     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
6746       if (!AssumedConstantRange.isEmptySet()) {
6747         I->setMetadata(LLVMContext::MD_range,
6748                        getMDNodeForConstantRange(I->getType(), I->getContext(),
6749                                                  AssumedConstantRange));
6750         return true;
6751       }
6752     }
6753     return false;
6754   }
6755 
6756   /// See AbstractAttribute::manifest()
6757   ChangeStatus manifest(Attributor &A) override {
6758     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6759     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
6760     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
6761 
6762     auto &V = getAssociatedValue();
6763     if (!AssumedConstantRange.isEmptySet() &&
6764         !AssumedConstantRange.isSingleElement()) {
6765       if (Instruction *I = dyn_cast<Instruction>(&V))
6766         if (isa<CallInst>(I) || isa<LoadInst>(I))
6767           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
6768             Changed = ChangeStatus::CHANGED;
6769     }
6770 
6771     return Changed;
6772   }
6773 };
6774 
6775 struct AAValueConstantRangeArgument final
6776     : AAArgumentFromCallSiteArguments<
6777           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
6778   using Base = AAArgumentFromCallSiteArguments<
6779       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
6780   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
6781       : Base(IRP, A) {}
6782 
6783   /// See AbstractAttribute::initialize(..).
6784   void initialize(Attributor &A) override {
6785     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
6786       indicatePessimisticFixpoint();
6787     } else {
6788       Base::initialize(A);
6789     }
6790   }
6791 
6792   /// See AbstractAttribute::trackStatistics()
6793   void trackStatistics() const override {
6794     STATS_DECLTRACK_ARG_ATTR(value_range)
6795   }
6796 };
6797 
6798 struct AAValueConstantRangeReturned
6799     : AAReturnedFromReturnedValues<AAValueConstantRange,
6800                                    AAValueConstantRangeImpl> {
6801   using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
6802                                             AAValueConstantRangeImpl>;
6803   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
6804       : Base(IRP, A) {}
6805 
6806   /// See AbstractAttribute::initialize(...).
6807   void initialize(Attributor &A) override {}
6808 
6809   /// See AbstractAttribute::trackStatistics()
6810   void trackStatistics() const override {
6811     STATS_DECLTRACK_FNRET_ATTR(value_range)
6812   }
6813 };
6814 
6815 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
6816   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
6817       : AAValueConstantRangeImpl(IRP, A) {}
6818 
6819   /// See AbstractAttribute::initialize(...).
6820   void initialize(Attributor &A) override {
6821     AAValueConstantRangeImpl::initialize(A);
6822     Value &V = getAssociatedValue();
6823 
6824     if (auto *C = dyn_cast<ConstantInt>(&V)) {
6825       unionAssumed(ConstantRange(C->getValue()));
6826       indicateOptimisticFixpoint();
6827       return;
6828     }
6829 
6830     if (isa<UndefValue>(&V)) {
6831       // Collapse the undef state to 0.
6832       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
6833       indicateOptimisticFixpoint();
6834       return;
6835     }
6836 
6837     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
6838       return;
6839     // If it is a load instruction with range metadata, use it.
6840     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
6841       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
6842         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
6843         return;
6844       }
6845 
6846     // We can work with PHI and select instruction as we traverse their operands
6847     // during update.
6848     if (isa<SelectInst>(V) || isa<PHINode>(V))
6849       return;
6850 
6851     // Otherwise we give up.
6852     indicatePessimisticFixpoint();
6853 
6854     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
6855                       << getAssociatedValue() << "\n");
6856   }
6857 
6858   bool calculateBinaryOperator(
6859       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
6860       const Instruction *CtxI,
6861       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6862     Value *LHS = BinOp->getOperand(0);
6863     Value *RHS = BinOp->getOperand(1);
6864     // TODO: Allow non integers as well.
6865     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
6866       return false;
6867 
6868     auto &LHSAA =
6869         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
6870     QuerriedAAs.push_back(&LHSAA);
6871     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
6872 
6873     auto &RHSAA =
6874         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
6875     QuerriedAAs.push_back(&RHSAA);
6876     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
6877 
6878     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
6879 
6880     T.unionAssumed(AssumedRange);
6881 
6882     // TODO: Track a known state too.
6883 
6884     return T.isValidState();
6885   }
6886 
6887   bool calculateCastInst(
6888       Attributor &A, CastInst *CastI, IntegerRangeState &T,
6889       const Instruction *CtxI,
6890       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6891     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
6892     // TODO: Allow non integers as well.
6893     Value &OpV = *CastI->getOperand(0);
6894     if (!OpV.getType()->isIntegerTy())
6895       return false;
6896 
6897     auto &OpAA =
6898         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
6899     QuerriedAAs.push_back(&OpAA);
6900     T.unionAssumed(
6901         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
6902     return T.isValidState();
6903   }
6904 
6905   bool
6906   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
6907                    const Instruction *CtxI,
6908                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6909     Value *LHS = CmpI->getOperand(0);
6910     Value *RHS = CmpI->getOperand(1);
6911     // TODO: Allow non integers as well.
6912     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
6913       return false;
6914 
6915     auto &LHSAA =
6916         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
6917     QuerriedAAs.push_back(&LHSAA);
6918     auto &RHSAA =
6919         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
6920     QuerriedAAs.push_back(&RHSAA);
6921 
6922     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
6923     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
6924 
6925     // If one of them is empty set, we can't decide.
6926     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
6927       return true;
6928 
6929     bool MustTrue = false, MustFalse = false;
6930 
6931     auto AllowedRegion =
6932         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
6933 
6934     auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
6935         CmpI->getPredicate(), RHSAARange);
6936 
6937     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
6938       MustFalse = true;
6939 
6940     if (SatisfyingRegion.contains(LHSAARange))
6941       MustTrue = true;
6942 
6943     assert((!MustTrue || !MustFalse) &&
6944            "Either MustTrue or MustFalse should be false!");
6945 
6946     if (MustTrue)
6947       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
6948     else if (MustFalse)
6949       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
6950     else
6951       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
6952 
6953     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
6954                       << " " << RHSAA << "\n");
6955 
6956     // TODO: Track a known state too.
6957     return T.isValidState();
6958   }
6959 
6960   /// See AbstractAttribute::updateImpl(...).
6961   ChangeStatus updateImpl(Attributor &A) override {
6962     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
6963                             IntegerRangeState &T, bool Stripped) -> bool {
6964       Instruction *I = dyn_cast<Instruction>(&V);
6965       if (!I || isa<CallBase>(I)) {
6966 
6967         // If the value is not instruction, we query AA to Attributor.
6968         const auto &AA =
6969             A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
6970 
6971         // Clamp operator is not used to utilize a program point CtxI.
6972         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
6973 
6974         return T.isValidState();
6975       }
6976 
6977       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
6978       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
6979         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
6980           return false;
6981       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
6982         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
6983           return false;
6984       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
6985         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
6986           return false;
6987       } else {
6988         // Give up with other instructions.
6989         // TODO: Add other instructions
6990 
6991         T.indicatePessimisticFixpoint();
6992         return false;
6993       }
6994 
6995       // Catch circular reasoning in a pessimistic way for now.
6996       // TODO: Check how the range evolves and if we stripped anything, see also
6997       //       AADereferenceable or AAAlign for similar situations.
6998       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
6999         if (QueriedAA != this)
7000           continue;
7001         // If we are in a stady state we do not need to worry.
7002         if (T.getAssumed() == getState().getAssumed())
7003           continue;
7004         T.indicatePessimisticFixpoint();
7005       }
7006 
7007       return T.isValidState();
7008     };
7009 
7010     IntegerRangeState T(getBitWidth());
7011 
7012     if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7013             A, getIRPosition(), *this, T, VisitValueCB, getCtxI(),
7014             /* UseValueSimplify */ false))
7015       return indicatePessimisticFixpoint();
7016 
7017     return clampStateAndIndicateChange(getState(), T);
7018   }
7019 
7020   /// See AbstractAttribute::trackStatistics()
7021   void trackStatistics() const override {
7022     STATS_DECLTRACK_FLOATING_ATTR(value_range)
7023   }
7024 };
7025 
7026 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
7027   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
7028       : AAValueConstantRangeImpl(IRP, A) {}
7029 
7030   /// See AbstractAttribute::initialize(...).
7031   ChangeStatus updateImpl(Attributor &A) override {
7032     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7033                      "not be called");
7034   }
7035 
7036   /// See AbstractAttribute::trackStatistics()
7037   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7038 };
7039 
7040 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
7041   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
7042       : AAValueConstantRangeFunction(IRP, A) {}
7043 
7044   /// See AbstractAttribute::trackStatistics()
7045   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7046 };
7047 
7048 struct AAValueConstantRangeCallSiteReturned
7049     : AACallSiteReturnedFromReturned<AAValueConstantRange,
7050                                      AAValueConstantRangeImpl> {
7051   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
7052       : AACallSiteReturnedFromReturned<AAValueConstantRange,
7053                                        AAValueConstantRangeImpl>(IRP, A) {}
7054 
7055   /// See AbstractAttribute::initialize(...).
7056   void initialize(Attributor &A) override {
7057     // If it is a load instruction with range metadata, use the metadata.
7058     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7059       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7060         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7061 
7062     AAValueConstantRangeImpl::initialize(A);
7063   }
7064 
7065   /// See AbstractAttribute::trackStatistics()
7066   void trackStatistics() const override {
7067     STATS_DECLTRACK_CSRET_ATTR(value_range)
7068   }
7069 };
7070 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
7071   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
7072       : AAValueConstantRangeFloating(IRP, A) {}
7073 
7074   /// See AbstractAttribute::trackStatistics()
7075   void trackStatistics() const override {
7076     STATS_DECLTRACK_CSARG_ATTR(value_range)
7077   }
7078 };
7079 } // namespace
7080 
7081 const char AAReturnedValues::ID = 0;
7082 const char AANoUnwind::ID = 0;
7083 const char AANoSync::ID = 0;
7084 const char AANoFree::ID = 0;
7085 const char AANonNull::ID = 0;
7086 const char AANoRecurse::ID = 0;
7087 const char AAWillReturn::ID = 0;
7088 const char AAUndefinedBehavior::ID = 0;
7089 const char AANoAlias::ID = 0;
7090 const char AAReachability::ID = 0;
7091 const char AANoReturn::ID = 0;
7092 const char AAIsDead::ID = 0;
7093 const char AADereferenceable::ID = 0;
7094 const char AAAlign::ID = 0;
7095 const char AANoCapture::ID = 0;
7096 const char AAValueSimplify::ID = 0;
7097 const char AAHeapToStack::ID = 0;
7098 const char AAPrivatizablePtr::ID = 0;
7099 const char AAMemoryBehavior::ID = 0;
7100 const char AAMemoryLocation::ID = 0;
7101 const char AAValueConstantRange::ID = 0;
7102 
7103 // Macro magic to create the static generator function for attributes that
7104 // follow the naming scheme.
7105 
7106 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
7107   case IRPosition::PK:                                                         \
7108     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
7109 
7110 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
7111   case IRPosition::PK:                                                         \
7112     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
7113     ++NumAAs;                                                                  \
7114     break;
7115 
7116 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
7117   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7118     CLASS *AA = nullptr;                                                       \
7119     switch (IRP.getPositionKind()) {                                           \
7120       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7121       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
7122       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
7123       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7124       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
7125       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
7126       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7127       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7128     }                                                                          \
7129     return *AA;                                                                \
7130   }
7131 
7132 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
7133   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7134     CLASS *AA = nullptr;                                                       \
7135     switch (IRP.getPositionKind()) {                                           \
7136       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7137       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
7138       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
7139       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7140       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7141       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
7142       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7143       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7144     }                                                                          \
7145     return *AA;                                                                \
7146   }
7147 
7148 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
7149   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7150     CLASS *AA = nullptr;                                                       \
7151     switch (IRP.getPositionKind()) {                                           \
7152       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7153       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7154       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7155       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7156       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7157       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
7158       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7159       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7160     }                                                                          \
7161     return *AA;                                                                \
7162   }
7163 
7164 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
7165   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7166     CLASS *AA = nullptr;                                                       \
7167     switch (IRP.getPositionKind()) {                                           \
7168       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7169       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
7170       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
7171       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7172       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
7173       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
7174       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
7175       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7176     }                                                                          \
7177     return *AA;                                                                \
7178   }
7179 
7180 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
7181   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7182     CLASS *AA = nullptr;                                                       \
7183     switch (IRP.getPositionKind()) {                                           \
7184       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7185       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7186       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7187       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7188       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7189       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7190       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7191       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7192     }                                                                          \
7193     return *AA;                                                                \
7194   }
7195 
7196 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
7197 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
7198 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
7199 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
7200 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
7201 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
7202 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
7203 
7204 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
7205 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
7206 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
7207 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
7208 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
7209 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
7210 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
7211 
7212 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
7213 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
7214 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
7215 
7216 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
7217 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
7218 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
7219 
7220 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
7221 
7222 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
7223 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
7224 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
7225 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
7226 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
7227 #undef SWITCH_PK_CREATE
7228 #undef SWITCH_PK_INV
7229