1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumeBundleQueries.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/LazyValueInfo.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 
34 #include <cassert>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "attributor"
39 
40 static cl::opt<bool> ManifestInternal(
41     "attributor-manifest-internal", cl::Hidden,
42     cl::desc("Manifest Attributor internal string attributes."),
43     cl::init(false));
44 
45 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
46                                        cl::Hidden);
47 
48 template <>
49 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
50 
51 static cl::opt<unsigned, true> MaxPotentialValues(
52     "attributor-max-potential-values", cl::Hidden,
53     cl::desc("Maximum number of potential values to be "
54              "tracked for each position."),
55     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
56     cl::init(7));
57 
58 STATISTIC(NumAAs, "Number of abstract attributes created");
59 
60 // Some helper macros to deal with statistics tracking.
61 //
62 // Usage:
63 // For simple IR attribute tracking overload trackStatistics in the abstract
64 // attribute and choose the right STATS_DECLTRACK_********* macro,
65 // e.g.,:
66 //  void trackStatistics() const override {
67 //    STATS_DECLTRACK_ARG_ATTR(returned)
68 //  }
69 // If there is a single "increment" side one can use the macro
70 // STATS_DECLTRACK with a custom message. If there are multiple increment
71 // sides, STATS_DECL and STATS_TRACK can also be used separately.
72 //
73 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
74   ("Number of " #TYPE " marked '" #NAME "'")
75 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
76 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
77 #define STATS_DECL(NAME, TYPE, MSG)                                            \
78   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
79 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
80 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
81   {                                                                            \
82     STATS_DECL(NAME, TYPE, MSG)                                                \
83     STATS_TRACK(NAME, TYPE)                                                    \
84   }
85 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
86   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
87 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
88   STATS_DECLTRACK(NAME, CSArguments,                                           \
89                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
90 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
91   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
92 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
93   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
94 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
95   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
96                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
97 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
98   STATS_DECLTRACK(NAME, CSReturn,                                              \
99                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
100 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
101   STATS_DECLTRACK(NAME, Floating,                                              \
102                   ("Number of floating values known to be '" #NAME "'"))
103 
104 // Specialization of the operator<< for abstract attributes subclasses. This
105 // disambiguates situations where multiple operators are applicable.
106 namespace llvm {
107 #define PIPE_OPERATOR(CLASS)                                                   \
108   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
109     return OS << static_cast<const AbstractAttribute &>(AA);                   \
110   }
111 
112 PIPE_OPERATOR(AAIsDead)
113 PIPE_OPERATOR(AANoUnwind)
114 PIPE_OPERATOR(AANoSync)
115 PIPE_OPERATOR(AANoRecurse)
116 PIPE_OPERATOR(AAWillReturn)
117 PIPE_OPERATOR(AANoReturn)
118 PIPE_OPERATOR(AAReturnedValues)
119 PIPE_OPERATOR(AANonNull)
120 PIPE_OPERATOR(AANoAlias)
121 PIPE_OPERATOR(AADereferenceable)
122 PIPE_OPERATOR(AAAlign)
123 PIPE_OPERATOR(AANoCapture)
124 PIPE_OPERATOR(AAValueSimplify)
125 PIPE_OPERATOR(AANoFree)
126 PIPE_OPERATOR(AAHeapToStack)
127 PIPE_OPERATOR(AAReachability)
128 PIPE_OPERATOR(AAMemoryBehavior)
129 PIPE_OPERATOR(AAMemoryLocation)
130 PIPE_OPERATOR(AAValueConstantRange)
131 PIPE_OPERATOR(AAPrivatizablePtr)
132 PIPE_OPERATOR(AAUndefinedBehavior)
133 PIPE_OPERATOR(AAPotentialValues)
134 PIPE_OPERATOR(AANoUndef)
135 
136 #undef PIPE_OPERATOR
137 } // namespace llvm
138 
139 namespace {
140 
141 static Optional<ConstantInt *>
142 getAssumedConstantInt(Attributor &A, const Value &V,
143                       const AbstractAttribute &AA,
144                       bool &UsedAssumedInformation) {
145   Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
146   if (C.hasValue())
147     return dyn_cast_or_null<ConstantInt>(C.getValue());
148   return llvm::None;
149 }
150 
151 /// Get pointer operand of memory accessing instruction. If \p I is
152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
153 /// is set to false and the instruction is volatile, return nullptr.
154 static const Value *getPointerOperand(const Instruction *I,
155                                       bool AllowVolatile) {
156   if (auto *LI = dyn_cast<LoadInst>(I)) {
157     if (!AllowVolatile && LI->isVolatile())
158       return nullptr;
159     return LI->getPointerOperand();
160   }
161 
162   if (auto *SI = dyn_cast<StoreInst>(I)) {
163     if (!AllowVolatile && SI->isVolatile())
164       return nullptr;
165     return SI->getPointerOperand();
166   }
167 
168   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
169     if (!AllowVolatile && CXI->isVolatile())
170       return nullptr;
171     return CXI->getPointerOperand();
172   }
173 
174   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
175     if (!AllowVolatile && RMWI->isVolatile())
176       return nullptr;
177     return RMWI->getPointerOperand();
178   }
179 
180   return nullptr;
181 }
182 
183 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
184 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
185 /// getelement pointer instructions that traverse the natural type of \p Ptr if
186 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
187 /// through a cast to i8*.
188 ///
189 /// TODO: This could probably live somewhere more prominantly if it doesn't
190 ///       already exist.
191 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
192                                IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
193   assert(Offset >= 0 && "Negative offset not supported yet!");
194   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
195                     << "-bytes as " << *ResTy << "\n");
196 
197   // The initial type we are trying to traverse to get nice GEPs.
198   Type *Ty = Ptr->getType();
199 
200   SmallVector<Value *, 4> Indices;
201   std::string GEPName = Ptr->getName().str();
202   while (Offset) {
203     uint64_t Idx, Rem;
204 
205     if (auto *STy = dyn_cast<StructType>(Ty)) {
206       const StructLayout *SL = DL.getStructLayout(STy);
207       if (int64_t(SL->getSizeInBytes()) < Offset)
208         break;
209       Idx = SL->getElementContainingOffset(Offset);
210       assert(Idx < STy->getNumElements() && "Offset calculation error!");
211       Rem = Offset - SL->getElementOffset(Idx);
212       Ty = STy->getElementType(Idx);
213     } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
214       Ty = PTy->getElementType();
215       if (!Ty->isSized())
216         break;
217       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
218       assert(ElementSize && "Expected type with size!");
219       Idx = Offset / ElementSize;
220       Rem = Offset % ElementSize;
221     } else {
222       // Non-aggregate type, we cast and make byte-wise progress now.
223       break;
224     }
225 
226     LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
227                       << " Idx: " << Idx << " Rem: " << Rem << "\n");
228 
229     GEPName += "." + std::to_string(Idx);
230     Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
231     Offset = Rem;
232   }
233 
234   // Create a GEP if we collected indices above.
235   if (Indices.size())
236     Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
237 
238   // If an offset is left we use byte-wise adjustment.
239   if (Offset) {
240     Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
241     Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
242                         GEPName + ".b" + Twine(Offset));
243   }
244 
245   // Ensure the result has the requested type.
246   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
247 
248   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
249   return Ptr;
250 }
251 
252 /// Recursively visit all values that might become \p IRP at some point. This
253 /// will be done by looking through cast instructions, selects, phis, and calls
254 /// with the "returned" attribute. Once we cannot look through the value any
255 /// further, the callback \p VisitValueCB is invoked and passed the current
256 /// value, the \p State, and a flag to indicate if we stripped anything.
257 /// Stripped means that we unpacked the value associated with \p IRP at least
258 /// once. Note that the value used for the callback may still be the value
259 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
260 /// we will never visit more values than specified by \p MaxValues.
261 template <typename AAType, typename StateTy>
262 static bool genericValueTraversal(
263     Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
264     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
265         VisitValueCB,
266     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
267     function_ref<Value *(Value *)> StripCB = nullptr) {
268 
269   const AAIsDead *LivenessAA = nullptr;
270   if (IRP.getAnchorScope())
271     LivenessAA = &A.getAAFor<AAIsDead>(
272         QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
273         /* TrackDependence */ false);
274   bool AnyDead = false;
275 
276   using Item = std::pair<Value *, const Instruction *>;
277   SmallSet<Item, 16> Visited;
278   SmallVector<Item, 16> Worklist;
279   Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
280 
281   int Iteration = 0;
282   do {
283     Item I = Worklist.pop_back_val();
284     Value *V = I.first;
285     CtxI = I.second;
286     if (StripCB)
287       V = StripCB(V);
288 
289     // Check if we should process the current value. To prevent endless
290     // recursion keep a record of the values we followed!
291     if (!Visited.insert(I).second)
292       continue;
293 
294     // Make sure we limit the compile time for complex expressions.
295     if (Iteration++ >= MaxValues)
296       return false;
297 
298     // Explicitly look through calls with a "returned" attribute if we do
299     // not have a pointer as stripPointerCasts only works on them.
300     Value *NewV = nullptr;
301     if (V->getType()->isPointerTy()) {
302       NewV = V->stripPointerCasts();
303     } else {
304       auto *CB = dyn_cast<CallBase>(V);
305       if (CB && CB->getCalledFunction()) {
306         for (Argument &Arg : CB->getCalledFunction()->args())
307           if (Arg.hasReturnedAttr()) {
308             NewV = CB->getArgOperand(Arg.getArgNo());
309             break;
310           }
311       }
312     }
313     if (NewV && NewV != V) {
314       Worklist.push_back({NewV, CtxI});
315       continue;
316     }
317 
318     // Look through select instructions, visit both potential values.
319     if (auto *SI = dyn_cast<SelectInst>(V)) {
320       Worklist.push_back({SI->getTrueValue(), CtxI});
321       Worklist.push_back({SI->getFalseValue(), CtxI});
322       continue;
323     }
324 
325     // Look through phi nodes, visit all live operands.
326     if (auto *PHI = dyn_cast<PHINode>(V)) {
327       assert(LivenessAA &&
328              "Expected liveness in the presence of instructions!");
329       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
330         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
331         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
332                             LivenessAA,
333                             /* CheckBBLivenessOnly */ true)) {
334           AnyDead = true;
335           continue;
336         }
337         Worklist.push_back(
338             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
339       }
340       continue;
341     }
342 
343     if (UseValueSimplify && !isa<Constant>(V)) {
344       bool UsedAssumedInformation = false;
345       Optional<Constant *> C =
346           A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation);
347       if (!C.hasValue())
348         continue;
349       if (Value *NewV = C.getValue()) {
350         Worklist.push_back({NewV, CtxI});
351         continue;
352       }
353     }
354 
355     // Once a leaf is reached we inform the user through the callback.
356     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
357       return false;
358   } while (!Worklist.empty());
359 
360   // If we actually used liveness information so we have to record a dependence.
361   if (AnyDead)
362     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
363 
364   // All values have been visited.
365   return true;
366 }
367 
368 const Value *stripAndAccumulateMinimalOffsets(
369     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
370     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
371     bool UseAssumed = false) {
372 
373   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
374     const IRPosition &Pos = IRPosition::value(V);
375     // Only track dependence if we are going to use the assumed info.
376     const AAValueConstantRange &ValueConstantRangeAA =
377         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
378                                          /* TrackDependence */ UseAssumed);
379     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
380                                      : ValueConstantRangeAA.getKnown();
381     // We can only use the lower part of the range because the upper part can
382     // be higher than what the value can really be.
383     ROffset = Range.getSignedMin();
384     return true;
385   };
386 
387   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
388                                                 AttributorAnalysis);
389 }
390 
391 static const Value *getMinimalBaseOfAccsesPointerOperand(
392     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
393     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
394   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
395   if (!Ptr)
396     return nullptr;
397   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
398   const Value *Base = stripAndAccumulateMinimalOffsets(
399       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
400 
401   BytesOffset = OffsetAPInt.getSExtValue();
402   return Base;
403 }
404 
405 static const Value *
406 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
407                                      const DataLayout &DL,
408                                      bool AllowNonInbounds = false) {
409   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
410   if (!Ptr)
411     return nullptr;
412 
413   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
414                                           AllowNonInbounds);
415 }
416 
417 /// Helper function to clamp a state \p S of type \p StateType with the
418 /// information in \p R and indicate/return if \p S did change (as-in update is
419 /// required to be run again).
420 template <typename StateType>
421 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
422   auto Assumed = S.getAssumed();
423   S ^= R;
424   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
425                                    : ChangeStatus::CHANGED;
426 }
427 
428 /// Clamp the information known for all returned values of a function
429 /// (identified by \p QueryingAA) into \p S.
430 template <typename AAType, typename StateType = typename AAType::StateType>
431 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
432                                      StateType &S) {
433   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
434                     << QueryingAA << " into " << S << "\n");
435 
436   assert((QueryingAA.getIRPosition().getPositionKind() ==
437               IRPosition::IRP_RETURNED ||
438           QueryingAA.getIRPosition().getPositionKind() ==
439               IRPosition::IRP_CALL_SITE_RETURNED) &&
440          "Can only clamp returned value states for a function returned or call "
441          "site returned position!");
442 
443   // Use an optional state as there might not be any return values and we want
444   // to join (IntegerState::operator&) the state of all there are.
445   Optional<StateType> T;
446 
447   // Callback for each possibly returned value.
448   auto CheckReturnValue = [&](Value &RV) -> bool {
449     const IRPosition &RVPos = IRPosition::value(RV);
450     const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
451     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
452                       << " @ " << RVPos << "\n");
453     const StateType &AAS = AA.getState();
454     if (T.hasValue())
455       *T &= AAS;
456     else
457       T = AAS;
458     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
459                       << "\n");
460     return T->isValidState();
461   };
462 
463   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
464     S.indicatePessimisticFixpoint();
465   else if (T.hasValue())
466     S ^= *T;
467 }
468 
469 /// Helper class for generic deduction: return value -> returned position.
470 template <typename AAType, typename BaseType,
471           typename StateType = typename BaseType::StateType>
472 struct AAReturnedFromReturnedValues : public BaseType {
473   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
474       : BaseType(IRP, A) {}
475 
476   /// See AbstractAttribute::updateImpl(...).
477   ChangeStatus updateImpl(Attributor &A) override {
478     StateType S(StateType::getBestState(this->getState()));
479     clampReturnedValueStates<AAType, StateType>(A, *this, S);
480     // TODO: If we know we visited all returned values, thus no are assumed
481     // dead, we can take the known information from the state T.
482     return clampStateAndIndicateChange<StateType>(this->getState(), S);
483   }
484 };
485 
486 /// Clamp the information known at all call sites for a given argument
487 /// (identified by \p QueryingAA) into \p S.
488 template <typename AAType, typename StateType = typename AAType::StateType>
489 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
490                                         StateType &S) {
491   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
492                     << QueryingAA << " into " << S << "\n");
493 
494   assert(QueryingAA.getIRPosition().getPositionKind() ==
495              IRPosition::IRP_ARGUMENT &&
496          "Can only clamp call site argument states for an argument position!");
497 
498   // Use an optional state as there might not be any return values and we want
499   // to join (IntegerState::operator&) the state of all there are.
500   Optional<StateType> T;
501 
502   // The argument number which is also the call site argument number.
503   unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
504 
505   auto CallSiteCheck = [&](AbstractCallSite ACS) {
506     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
507     // Check if a coresponding argument was found or if it is on not associated
508     // (which can happen for callback calls).
509     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
510       return false;
511 
512     const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
513     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
514                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
515     const StateType &AAS = AA.getState();
516     if (T.hasValue())
517       *T &= AAS;
518     else
519       T = AAS;
520     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
521                       << "\n");
522     return T->isValidState();
523   };
524 
525   bool AllCallSitesKnown;
526   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
527                               AllCallSitesKnown))
528     S.indicatePessimisticFixpoint();
529   else if (T.hasValue())
530     S ^= *T;
531 }
532 
533 /// Helper class for generic deduction: call site argument -> argument position.
534 template <typename AAType, typename BaseType,
535           typename StateType = typename AAType::StateType>
536 struct AAArgumentFromCallSiteArguments : public BaseType {
537   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
538       : BaseType(IRP, A) {}
539 
540   /// See AbstractAttribute::updateImpl(...).
541   ChangeStatus updateImpl(Attributor &A) override {
542     StateType S(StateType::getBestState(this->getState()));
543     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
544     // TODO: If we know we visited all incoming values, thus no are assumed
545     // dead, we can take the known information from the state T.
546     return clampStateAndIndicateChange<StateType>(this->getState(), S);
547   }
548 };
549 
550 /// Helper class for generic replication: function returned -> cs returned.
551 template <typename AAType, typename BaseType,
552           typename StateType = typename BaseType::StateType>
553 struct AACallSiteReturnedFromReturned : public BaseType {
554   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
555       : BaseType(IRP, A) {}
556 
557   /// See AbstractAttribute::updateImpl(...).
558   ChangeStatus updateImpl(Attributor &A) override {
559     assert(this->getIRPosition().getPositionKind() ==
560                IRPosition::IRP_CALL_SITE_RETURNED &&
561            "Can only wrap function returned positions for call site returned "
562            "positions!");
563     auto &S = this->getState();
564 
565     const Function *AssociatedFunction =
566         this->getIRPosition().getAssociatedFunction();
567     if (!AssociatedFunction)
568       return S.indicatePessimisticFixpoint();
569 
570     IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
571     const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
572     return clampStateAndIndicateChange(S, AA.getState());
573   }
574 };
575 
576 /// Helper function to accumulate uses.
577 template <class AAType, typename StateType = typename AAType::StateType>
578 static void followUsesInContext(AAType &AA, Attributor &A,
579                                 MustBeExecutedContextExplorer &Explorer,
580                                 const Instruction *CtxI,
581                                 SetVector<const Use *> &Uses,
582                                 StateType &State) {
583   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
584   for (unsigned u = 0; u < Uses.size(); ++u) {
585     const Use *U = Uses[u];
586     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
587       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
588       if (Found && AA.followUseInMBEC(A, U, UserI, State))
589         for (const Use &Us : UserI->uses())
590           Uses.insert(&Us);
591     }
592   }
593 }
594 
595 /// Use the must-be-executed-context around \p I to add information into \p S.
596 /// The AAType class is required to have `followUseInMBEC` method with the
597 /// following signature and behaviour:
598 ///
599 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
600 /// U - Underlying use.
601 /// I - The user of the \p U.
602 /// Returns true if the value should be tracked transitively.
603 ///
604 template <class AAType, typename StateType = typename AAType::StateType>
605 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
606                              Instruction &CtxI) {
607 
608   // Container for (transitive) uses of the associated value.
609   SetVector<const Use *> Uses;
610   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
611     Uses.insert(&U);
612 
613   MustBeExecutedContextExplorer &Explorer =
614       A.getInfoCache().getMustBeExecutedContextExplorer();
615 
616   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
617 
618   if (S.isAtFixpoint())
619     return;
620 
621   SmallVector<const BranchInst *, 4> BrInsts;
622   auto Pred = [&](const Instruction *I) {
623     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
624       if (Br->isConditional())
625         BrInsts.push_back(Br);
626     return true;
627   };
628 
629   // Here, accumulate conditional branch instructions in the context. We
630   // explore the child paths and collect the known states. The disjunction of
631   // those states can be merged to its own state. Let ParentState_i be a state
632   // to indicate the known information for an i-th branch instruction in the
633   // context. ChildStates are created for its successors respectively.
634   //
635   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
636   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
637   //      ...
638   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
639   //
640   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
641   //
642   // FIXME: Currently, recursive branches are not handled. For example, we
643   // can't deduce that ptr must be dereferenced in below function.
644   //
645   // void f(int a, int c, int *ptr) {
646   //    if(a)
647   //      if (b) {
648   //        *ptr = 0;
649   //      } else {
650   //        *ptr = 1;
651   //      }
652   //    else {
653   //      if (b) {
654   //        *ptr = 0;
655   //      } else {
656   //        *ptr = 1;
657   //      }
658   //    }
659   // }
660 
661   Explorer.checkForAllContext(&CtxI, Pred);
662   for (const BranchInst *Br : BrInsts) {
663     StateType ParentState;
664 
665     // The known state of the parent state is a conjunction of children's
666     // known states so it is initialized with a best state.
667     ParentState.indicateOptimisticFixpoint();
668 
669     for (const BasicBlock *BB : Br->successors()) {
670       StateType ChildState;
671 
672       size_t BeforeSize = Uses.size();
673       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
674 
675       // Erase uses which only appear in the child.
676       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
677         It = Uses.erase(It);
678 
679       ParentState &= ChildState;
680     }
681 
682     // Use only known state.
683     S += ParentState;
684   }
685 }
686 
687 /// -----------------------NoUnwind Function Attribute--------------------------
688 
689 struct AANoUnwindImpl : AANoUnwind {
690   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
691 
692   const std::string getAsStr() const override {
693     return getAssumed() ? "nounwind" : "may-unwind";
694   }
695 
696   /// See AbstractAttribute::updateImpl(...).
697   ChangeStatus updateImpl(Attributor &A) override {
698     auto Opcodes = {
699         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
700         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
701         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
702 
703     auto CheckForNoUnwind = [&](Instruction &I) {
704       if (!I.mayThrow())
705         return true;
706 
707       if (const auto *CB = dyn_cast<CallBase>(&I)) {
708         const auto &NoUnwindAA =
709             A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB));
710         return NoUnwindAA.isAssumedNoUnwind();
711       }
712       return false;
713     };
714 
715     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
716       return indicatePessimisticFixpoint();
717 
718     return ChangeStatus::UNCHANGED;
719   }
720 };
721 
722 struct AANoUnwindFunction final : public AANoUnwindImpl {
723   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
724       : AANoUnwindImpl(IRP, A) {}
725 
726   /// See AbstractAttribute::trackStatistics()
727   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
728 };
729 
730 /// NoUnwind attribute deduction for a call sites.
731 struct AANoUnwindCallSite final : AANoUnwindImpl {
732   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
733       : AANoUnwindImpl(IRP, A) {}
734 
735   /// See AbstractAttribute::initialize(...).
736   void initialize(Attributor &A) override {
737     AANoUnwindImpl::initialize(A);
738     Function *F = getAssociatedFunction();
739     if (!F)
740       indicatePessimisticFixpoint();
741   }
742 
743   /// See AbstractAttribute::updateImpl(...).
744   ChangeStatus updateImpl(Attributor &A) override {
745     // TODO: Once we have call site specific value information we can provide
746     //       call site specific liveness information and then it makes
747     //       sense to specialize attributes for call sites arguments instead of
748     //       redirecting requests to the callee argument.
749     Function *F = getAssociatedFunction();
750     const IRPosition &FnPos = IRPosition::function(*F);
751     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
752     return clampStateAndIndicateChange(getState(), FnAA.getState());
753   }
754 
755   /// See AbstractAttribute::trackStatistics()
756   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
757 };
758 
759 /// --------------------- Function Return Values -------------------------------
760 
761 /// "Attribute" that collects all potential returned values and the return
762 /// instructions that they arise from.
763 ///
764 /// If there is a unique returned value R, the manifest method will:
765 ///   - mark R with the "returned" attribute, if R is an argument.
766 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
767 
768   /// Mapping of values potentially returned by the associated function to the
769   /// return instructions that might return them.
770   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
771 
772   /// Mapping to remember the number of returned values for a call site such
773   /// that we can avoid updates if nothing changed.
774   DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
775 
776   /// Set of unresolved calls returned by the associated function.
777   SmallSetVector<CallBase *, 4> UnresolvedCalls;
778 
779   /// State flags
780   ///
781   ///{
782   bool IsFixed = false;
783   bool IsValidState = true;
784   ///}
785 
786 public:
787   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
788       : AAReturnedValues(IRP, A) {}
789 
790   /// See AbstractAttribute::initialize(...).
791   void initialize(Attributor &A) override {
792     // Reset the state.
793     IsFixed = false;
794     IsValidState = true;
795     ReturnedValues.clear();
796 
797     Function *F = getAssociatedFunction();
798     if (!F) {
799       indicatePessimisticFixpoint();
800       return;
801     }
802     assert(!F->getReturnType()->isVoidTy() &&
803            "Did not expect a void return type!");
804 
805     // The map from instruction opcodes to those instructions in the function.
806     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
807 
808     // Look through all arguments, if one is marked as returned we are done.
809     for (Argument &Arg : F->args()) {
810       if (Arg.hasReturnedAttr()) {
811         auto &ReturnInstSet = ReturnedValues[&Arg];
812         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
813           for (Instruction *RI : *Insts)
814             ReturnInstSet.insert(cast<ReturnInst>(RI));
815 
816         indicateOptimisticFixpoint();
817         return;
818       }
819     }
820 
821     if (!A.isFunctionIPOAmendable(*F))
822       indicatePessimisticFixpoint();
823   }
824 
825   /// See AbstractAttribute::manifest(...).
826   ChangeStatus manifest(Attributor &A) override;
827 
828   /// See AbstractAttribute::getState(...).
829   AbstractState &getState() override { return *this; }
830 
831   /// See AbstractAttribute::getState(...).
832   const AbstractState &getState() const override { return *this; }
833 
834   /// See AbstractAttribute::updateImpl(Attributor &A).
835   ChangeStatus updateImpl(Attributor &A) override;
836 
837   llvm::iterator_range<iterator> returned_values() override {
838     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
839   }
840 
841   llvm::iterator_range<const_iterator> returned_values() const override {
842     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
843   }
844 
845   const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
846     return UnresolvedCalls;
847   }
848 
849   /// Return the number of potential return values, -1 if unknown.
850   size_t getNumReturnValues() const override {
851     return isValidState() ? ReturnedValues.size() : -1;
852   }
853 
854   /// Return an assumed unique return value if a single candidate is found. If
855   /// there cannot be one, return a nullptr. If it is not clear yet, return the
856   /// Optional::NoneType.
857   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
858 
859   /// See AbstractState::checkForAllReturnedValues(...).
860   bool checkForAllReturnedValuesAndReturnInsts(
861       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
862       const override;
863 
864   /// Pretty print the attribute similar to the IR representation.
865   const std::string getAsStr() const override;
866 
867   /// See AbstractState::isAtFixpoint().
868   bool isAtFixpoint() const override { return IsFixed; }
869 
870   /// See AbstractState::isValidState().
871   bool isValidState() const override { return IsValidState; }
872 
873   /// See AbstractState::indicateOptimisticFixpoint(...).
874   ChangeStatus indicateOptimisticFixpoint() override {
875     IsFixed = true;
876     return ChangeStatus::UNCHANGED;
877   }
878 
879   ChangeStatus indicatePessimisticFixpoint() override {
880     IsFixed = true;
881     IsValidState = false;
882     return ChangeStatus::CHANGED;
883   }
884 };
885 
886 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
887   ChangeStatus Changed = ChangeStatus::UNCHANGED;
888 
889   // Bookkeeping.
890   assert(isValidState());
891   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
892                   "Number of function with known return values");
893 
894   // Check if we have an assumed unique return value that we could manifest.
895   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
896 
897   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
898     return Changed;
899 
900   // Bookkeeping.
901   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
902                   "Number of function with unique return");
903 
904   // Callback to replace the uses of CB with the constant C.
905   auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
906     if (CB.use_empty())
907       return ChangeStatus::UNCHANGED;
908     if (A.changeValueAfterManifest(CB, C))
909       return ChangeStatus::CHANGED;
910     return ChangeStatus::UNCHANGED;
911   };
912 
913   // If the assumed unique return value is an argument, annotate it.
914   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
915     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
916             getAssociatedFunction()->getReturnType())) {
917       getIRPosition() = IRPosition::argument(*UniqueRVArg);
918       Changed = IRAttribute::manifest(A);
919     }
920   } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
921     // We can replace the returned value with the unique returned constant.
922     Value &AnchorValue = getAnchorValue();
923     if (Function *F = dyn_cast<Function>(&AnchorValue)) {
924       for (const Use &U : F->uses())
925         if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
926           if (CB->isCallee(&U)) {
927             Constant *RVCCast =
928                 CB->getType() == RVC->getType()
929                     ? RVC
930                     : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
931             Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
932           }
933     } else {
934       assert(isa<CallBase>(AnchorValue) &&
935              "Expcected a function or call base anchor!");
936       Constant *RVCCast =
937           AnchorValue.getType() == RVC->getType()
938               ? RVC
939               : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
940       Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
941     }
942     if (Changed == ChangeStatus::CHANGED)
943       STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
944                       "Number of function returns replaced by constant return");
945   }
946 
947   return Changed;
948 }
949 
950 const std::string AAReturnedValuesImpl::getAsStr() const {
951   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
952          (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
953          ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
954 }
955 
956 Optional<Value *>
957 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
958   // If checkForAllReturnedValues provides a unique value, ignoring potential
959   // undef values that can also be present, it is assumed to be the actual
960   // return value and forwarded to the caller of this method. If there are
961   // multiple, a nullptr is returned indicating there cannot be a unique
962   // returned value.
963   Optional<Value *> UniqueRV;
964 
965   auto Pred = [&](Value &RV) -> bool {
966     // If we found a second returned value and neither the current nor the saved
967     // one is an undef, there is no unique returned value. Undefs are special
968     // since we can pretend they have any value.
969     if (UniqueRV.hasValue() && UniqueRV != &RV &&
970         !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
971       UniqueRV = nullptr;
972       return false;
973     }
974 
975     // Do not overwrite a value with an undef.
976     if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
977       UniqueRV = &RV;
978 
979     return true;
980   };
981 
982   if (!A.checkForAllReturnedValues(Pred, *this))
983     UniqueRV = nullptr;
984 
985   return UniqueRV;
986 }
987 
988 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
989     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
990     const {
991   if (!isValidState())
992     return false;
993 
994   // Check all returned values but ignore call sites as long as we have not
995   // encountered an overdefined one during an update.
996   for (auto &It : ReturnedValues) {
997     Value *RV = It.first;
998 
999     CallBase *CB = dyn_cast<CallBase>(RV);
1000     if (CB && !UnresolvedCalls.count(CB))
1001       continue;
1002 
1003     if (!Pred(*RV, It.second))
1004       return false;
1005   }
1006 
1007   return true;
1008 }
1009 
1010 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1011   size_t NumUnresolvedCalls = UnresolvedCalls.size();
1012   bool Changed = false;
1013 
1014   // State used in the value traversals starting in returned values.
1015   struct RVState {
1016     // The map in which we collect return values -> return instrs.
1017     decltype(ReturnedValues) &RetValsMap;
1018     // The flag to indicate a change.
1019     bool &Changed;
1020     // The return instrs we come from.
1021     SmallSetVector<ReturnInst *, 4> RetInsts;
1022   };
1023 
1024   // Callback for a leaf value returned by the associated function.
1025   auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
1026                          bool) -> bool {
1027     auto Size = RVS.RetValsMap[&Val].size();
1028     RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1029     bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1030     RVS.Changed |= Inserted;
1031     LLVM_DEBUG({
1032       if (Inserted)
1033         dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1034                << " => " << RVS.RetInsts.size() << "\n";
1035     });
1036     return true;
1037   };
1038 
1039   // Helper method to invoke the generic value traversal.
1040   auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
1041                                 const Instruction *CtxI) {
1042     IRPosition RetValPos = IRPosition::value(RV);
1043     return genericValueTraversal<AAReturnedValues, RVState>(
1044         A, RetValPos, *this, RVS, VisitValueCB, CtxI,
1045         /* UseValueSimplify */ false);
1046   };
1047 
1048   // Callback for all "return intructions" live in the associated function.
1049   auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1050     ReturnInst &Ret = cast<ReturnInst>(I);
1051     RVState RVS({ReturnedValues, Changed, {}});
1052     RVS.RetInsts.insert(&Ret);
1053     return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
1054   };
1055 
1056   // Start by discovering returned values from all live returned instructions in
1057   // the associated function.
1058   if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1059     return indicatePessimisticFixpoint();
1060 
1061   // Once returned values "directly" present in the code are handled we try to
1062   // resolve returned calls. To avoid modifications to the ReturnedValues map
1063   // while we iterate over it we kept record of potential new entries in a copy
1064   // map, NewRVsMap.
1065   decltype(ReturnedValues) NewRVsMap;
1066 
1067   auto HandleReturnValue = [&](Value *RV,
1068                                SmallSetVector<ReturnInst *, 4> &RIs) {
1069     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #"
1070                       << RIs.size() << " RIs\n");
1071     CallBase *CB = dyn_cast<CallBase>(RV);
1072     if (!CB || UnresolvedCalls.count(CB))
1073       return;
1074 
1075     if (!CB->getCalledFunction()) {
1076       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1077                         << "\n");
1078       UnresolvedCalls.insert(CB);
1079       return;
1080     }
1081 
1082     // TODO: use the function scope once we have call site AAReturnedValues.
1083     const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1084         *this, IRPosition::function(*CB->getCalledFunction()));
1085     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1086                       << RetValAA << "\n");
1087 
1088     // Skip dead ends, thus if we do not know anything about the returned
1089     // call we mark it as unresolved and it will stay that way.
1090     if (!RetValAA.getState().isValidState()) {
1091       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1092                         << "\n");
1093       UnresolvedCalls.insert(CB);
1094       return;
1095     }
1096 
1097     // Do not try to learn partial information. If the callee has unresolved
1098     // return values we will treat the call as unresolved/opaque.
1099     auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1100     if (!RetValAAUnresolvedCalls.empty()) {
1101       UnresolvedCalls.insert(CB);
1102       return;
1103     }
1104 
1105     // Now check if we can track transitively returned values. If possible, thus
1106     // if all return value can be represented in the current scope, do so.
1107     bool Unresolved = false;
1108     for (auto &RetValAAIt : RetValAA.returned_values()) {
1109       Value *RetVal = RetValAAIt.first;
1110       if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1111           isa<Constant>(RetVal))
1112         continue;
1113       // Anything that did not fit in the above categories cannot be resolved,
1114       // mark the call as unresolved.
1115       LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1116                            "cannot be translated: "
1117                         << *RetVal << "\n");
1118       UnresolvedCalls.insert(CB);
1119       Unresolved = true;
1120       break;
1121     }
1122 
1123     if (Unresolved)
1124       return;
1125 
1126     // Now track transitively returned values.
1127     unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1128     if (NumRetAA == RetValAA.getNumReturnValues()) {
1129       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1130                            "changed since it was seen last\n");
1131       return;
1132     }
1133     NumRetAA = RetValAA.getNumReturnValues();
1134 
1135     for (auto &RetValAAIt : RetValAA.returned_values()) {
1136       Value *RetVal = RetValAAIt.first;
1137       if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1138         // Arguments are mapped to call site operands and we begin the traversal
1139         // again.
1140         bool Unused = false;
1141         RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1142         VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
1143         continue;
1144       } else if (isa<CallBase>(RetVal)) {
1145         // Call sites are resolved by the callee attribute over time, no need to
1146         // do anything for us.
1147         continue;
1148       } else if (isa<Constant>(RetVal)) {
1149         // Constants are valid everywhere, we can simply take them.
1150         NewRVsMap[RetVal].insert(RIs.begin(), RIs.end());
1151         continue;
1152       }
1153     }
1154   };
1155 
1156   for (auto &It : ReturnedValues)
1157     HandleReturnValue(It.first, It.second);
1158 
1159   // Because processing the new information can again lead to new return values
1160   // we have to be careful and iterate until this iteration is complete. The
1161   // idea is that we are in a stable state at the end of an update. All return
1162   // values have been handled and properly categorized. We might not update
1163   // again if we have not requested a non-fix attribute so we cannot "wait" for
1164   // the next update to analyze a new return value.
1165   while (!NewRVsMap.empty()) {
1166     auto It = std::move(NewRVsMap.back());
1167     NewRVsMap.pop_back();
1168 
1169     assert(!It.second.empty() && "Entry does not add anything.");
1170     auto &ReturnInsts = ReturnedValues[It.first];
1171     for (ReturnInst *RI : It.second)
1172       if (ReturnInsts.insert(RI)) {
1173         LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1174                           << *It.first << " => " << *RI << "\n");
1175         HandleReturnValue(It.first, ReturnInsts);
1176         Changed = true;
1177       }
1178   }
1179 
1180   Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1181   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1182 }
1183 
1184 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1185   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1186       : AAReturnedValuesImpl(IRP, A) {}
1187 
1188   /// See AbstractAttribute::trackStatistics()
1189   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1190 };
1191 
1192 /// Returned values information for a call sites.
1193 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1194   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1195       : AAReturnedValuesImpl(IRP, A) {}
1196 
1197   /// See AbstractAttribute::initialize(...).
1198   void initialize(Attributor &A) override {
1199     // TODO: Once we have call site specific value information we can provide
1200     //       call site specific liveness information and then it makes
1201     //       sense to specialize attributes for call sites instead of
1202     //       redirecting requests to the callee.
1203     llvm_unreachable("Abstract attributes for returned values are not "
1204                      "supported for call sites yet!");
1205   }
1206 
1207   /// See AbstractAttribute::updateImpl(...).
1208   ChangeStatus updateImpl(Attributor &A) override {
1209     return indicatePessimisticFixpoint();
1210   }
1211 
1212   /// See AbstractAttribute::trackStatistics()
1213   void trackStatistics() const override {}
1214 };
1215 
1216 /// ------------------------ NoSync Function Attribute -------------------------
1217 
1218 struct AANoSyncImpl : AANoSync {
1219   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1220 
1221   const std::string getAsStr() const override {
1222     return getAssumed() ? "nosync" : "may-sync";
1223   }
1224 
1225   /// See AbstractAttribute::updateImpl(...).
1226   ChangeStatus updateImpl(Attributor &A) override;
1227 
1228   /// Helper function used to determine whether an instruction is non-relaxed
1229   /// atomic. In other words, if an atomic instruction does not have unordered
1230   /// or monotonic ordering
1231   static bool isNonRelaxedAtomic(Instruction *I);
1232 
1233   /// Helper function used to determine whether an instruction is volatile.
1234   static bool isVolatile(Instruction *I);
1235 
1236   /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1237   /// memset).
1238   static bool isNoSyncIntrinsic(Instruction *I);
1239 };
1240 
1241 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1242   if (!I->isAtomic())
1243     return false;
1244 
1245   AtomicOrdering Ordering;
1246   switch (I->getOpcode()) {
1247   case Instruction::AtomicRMW:
1248     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1249     break;
1250   case Instruction::Store:
1251     Ordering = cast<StoreInst>(I)->getOrdering();
1252     break;
1253   case Instruction::Load:
1254     Ordering = cast<LoadInst>(I)->getOrdering();
1255     break;
1256   case Instruction::Fence: {
1257     auto *FI = cast<FenceInst>(I);
1258     if (FI->getSyncScopeID() == SyncScope::SingleThread)
1259       return false;
1260     Ordering = FI->getOrdering();
1261     break;
1262   }
1263   case Instruction::AtomicCmpXchg: {
1264     AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1265     AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1266     // Only if both are relaxed, than it can be treated as relaxed.
1267     // Otherwise it is non-relaxed.
1268     if (Success != AtomicOrdering::Unordered &&
1269         Success != AtomicOrdering::Monotonic)
1270       return true;
1271     if (Failure != AtomicOrdering::Unordered &&
1272         Failure != AtomicOrdering::Monotonic)
1273       return true;
1274     return false;
1275   }
1276   default:
1277     llvm_unreachable(
1278         "New atomic operations need to be known in the attributor.");
1279   }
1280 
1281   // Relaxed.
1282   if (Ordering == AtomicOrdering::Unordered ||
1283       Ordering == AtomicOrdering::Monotonic)
1284     return false;
1285   return true;
1286 }
1287 
1288 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1289 /// FIXME: We should ipmrove the handling of intrinsics.
1290 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1291   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1292     switch (II->getIntrinsicID()) {
1293     /// Element wise atomic memory intrinsics are can only be unordered,
1294     /// therefore nosync.
1295     case Intrinsic::memset_element_unordered_atomic:
1296     case Intrinsic::memmove_element_unordered_atomic:
1297     case Intrinsic::memcpy_element_unordered_atomic:
1298       return true;
1299     case Intrinsic::memset:
1300     case Intrinsic::memmove:
1301     case Intrinsic::memcpy:
1302       if (!cast<MemIntrinsic>(II)->isVolatile())
1303         return true;
1304       return false;
1305     default:
1306       return false;
1307     }
1308   }
1309   return false;
1310 }
1311 
1312 bool AANoSyncImpl::isVolatile(Instruction *I) {
1313   assert(!isa<CallBase>(I) && "Calls should not be checked here");
1314 
1315   switch (I->getOpcode()) {
1316   case Instruction::AtomicRMW:
1317     return cast<AtomicRMWInst>(I)->isVolatile();
1318   case Instruction::Store:
1319     return cast<StoreInst>(I)->isVolatile();
1320   case Instruction::Load:
1321     return cast<LoadInst>(I)->isVolatile();
1322   case Instruction::AtomicCmpXchg:
1323     return cast<AtomicCmpXchgInst>(I)->isVolatile();
1324   default:
1325     return false;
1326   }
1327 }
1328 
1329 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1330 
1331   auto CheckRWInstForNoSync = [&](Instruction &I) {
1332     /// We are looking for volatile instructions or Non-Relaxed atomics.
1333     /// FIXME: We should improve the handling of intrinsics.
1334 
1335     if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1336       return true;
1337 
1338     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1339       if (CB->hasFnAttr(Attribute::NoSync))
1340         return true;
1341 
1342       const auto &NoSyncAA =
1343           A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB));
1344       if (NoSyncAA.isAssumedNoSync())
1345         return true;
1346       return false;
1347     }
1348 
1349     if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1350       return true;
1351 
1352     return false;
1353   };
1354 
1355   auto CheckForNoSync = [&](Instruction &I) {
1356     // At this point we handled all read/write effects and they are all
1357     // nosync, so they can be skipped.
1358     if (I.mayReadOrWriteMemory())
1359       return true;
1360 
1361     // non-convergent and readnone imply nosync.
1362     return !cast<CallBase>(I).isConvergent();
1363   };
1364 
1365   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1366       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1367     return indicatePessimisticFixpoint();
1368 
1369   return ChangeStatus::UNCHANGED;
1370 }
1371 
1372 struct AANoSyncFunction final : public AANoSyncImpl {
1373   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1374       : AANoSyncImpl(IRP, A) {}
1375 
1376   /// See AbstractAttribute::trackStatistics()
1377   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1378 };
1379 
1380 /// NoSync attribute deduction for a call sites.
1381 struct AANoSyncCallSite final : AANoSyncImpl {
1382   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1383       : AANoSyncImpl(IRP, A) {}
1384 
1385   /// See AbstractAttribute::initialize(...).
1386   void initialize(Attributor &A) override {
1387     AANoSyncImpl::initialize(A);
1388     Function *F = getAssociatedFunction();
1389     if (!F)
1390       indicatePessimisticFixpoint();
1391   }
1392 
1393   /// See AbstractAttribute::updateImpl(...).
1394   ChangeStatus updateImpl(Attributor &A) override {
1395     // TODO: Once we have call site specific value information we can provide
1396     //       call site specific liveness information and then it makes
1397     //       sense to specialize attributes for call sites arguments instead of
1398     //       redirecting requests to the callee argument.
1399     Function *F = getAssociatedFunction();
1400     const IRPosition &FnPos = IRPosition::function(*F);
1401     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1402     return clampStateAndIndicateChange(getState(), FnAA.getState());
1403   }
1404 
1405   /// See AbstractAttribute::trackStatistics()
1406   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1407 };
1408 
1409 /// ------------------------ No-Free Attributes ----------------------------
1410 
1411 struct AANoFreeImpl : public AANoFree {
1412   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1413 
1414   /// See AbstractAttribute::updateImpl(...).
1415   ChangeStatus updateImpl(Attributor &A) override {
1416     auto CheckForNoFree = [&](Instruction &I) {
1417       const auto &CB = cast<CallBase>(I);
1418       if (CB.hasFnAttr(Attribute::NoFree))
1419         return true;
1420 
1421       const auto &NoFreeAA =
1422           A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB));
1423       return NoFreeAA.isAssumedNoFree();
1424     };
1425 
1426     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1427       return indicatePessimisticFixpoint();
1428     return ChangeStatus::UNCHANGED;
1429   }
1430 
1431   /// See AbstractAttribute::getAsStr().
1432   const std::string getAsStr() const override {
1433     return getAssumed() ? "nofree" : "may-free";
1434   }
1435 };
1436 
1437 struct AANoFreeFunction final : public AANoFreeImpl {
1438   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1439       : AANoFreeImpl(IRP, A) {}
1440 
1441   /// See AbstractAttribute::trackStatistics()
1442   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1443 };
1444 
1445 /// NoFree attribute deduction for a call sites.
1446 struct AANoFreeCallSite final : AANoFreeImpl {
1447   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1448       : AANoFreeImpl(IRP, A) {}
1449 
1450   /// See AbstractAttribute::initialize(...).
1451   void initialize(Attributor &A) override {
1452     AANoFreeImpl::initialize(A);
1453     Function *F = getAssociatedFunction();
1454     if (!F)
1455       indicatePessimisticFixpoint();
1456   }
1457 
1458   /// See AbstractAttribute::updateImpl(...).
1459   ChangeStatus updateImpl(Attributor &A) override {
1460     // TODO: Once we have call site specific value information we can provide
1461     //       call site specific liveness information and then it makes
1462     //       sense to specialize attributes for call sites arguments instead of
1463     //       redirecting requests to the callee argument.
1464     Function *F = getAssociatedFunction();
1465     const IRPosition &FnPos = IRPosition::function(*F);
1466     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1467     return clampStateAndIndicateChange(getState(), FnAA.getState());
1468   }
1469 
1470   /// See AbstractAttribute::trackStatistics()
1471   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1472 };
1473 
1474 /// NoFree attribute for floating values.
1475 struct AANoFreeFloating : AANoFreeImpl {
1476   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1477       : AANoFreeImpl(IRP, A) {}
1478 
1479   /// See AbstractAttribute::trackStatistics()
1480   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1481 
1482   /// See Abstract Attribute::updateImpl(...).
1483   ChangeStatus updateImpl(Attributor &A) override {
1484     const IRPosition &IRP = getIRPosition();
1485 
1486     const auto &NoFreeAA =
1487         A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
1488     if (NoFreeAA.isAssumedNoFree())
1489       return ChangeStatus::UNCHANGED;
1490 
1491     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1492     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1493       Instruction *UserI = cast<Instruction>(U.getUser());
1494       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1495         if (CB->isBundleOperand(&U))
1496           return false;
1497         if (!CB->isArgOperand(&U))
1498           return true;
1499         unsigned ArgNo = CB->getArgOperandNo(&U);
1500 
1501         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1502             *this, IRPosition::callsite_argument(*CB, ArgNo));
1503         return NoFreeArg.isAssumedNoFree();
1504       }
1505 
1506       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1507           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1508         Follow = true;
1509         return true;
1510       }
1511       if (isa<ReturnInst>(UserI))
1512         return true;
1513 
1514       // Unknown user.
1515       return false;
1516     };
1517     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1518       return indicatePessimisticFixpoint();
1519 
1520     return ChangeStatus::UNCHANGED;
1521   }
1522 };
1523 
1524 /// NoFree attribute for a call site argument.
1525 struct AANoFreeArgument final : AANoFreeFloating {
1526   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1527       : AANoFreeFloating(IRP, A) {}
1528 
1529   /// See AbstractAttribute::trackStatistics()
1530   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1531 };
1532 
1533 /// NoFree attribute for call site arguments.
1534 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1535   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1536       : AANoFreeFloating(IRP, A) {}
1537 
1538   /// See AbstractAttribute::updateImpl(...).
1539   ChangeStatus updateImpl(Attributor &A) override {
1540     // TODO: Once we have call site specific value information we can provide
1541     //       call site specific liveness information and then it makes
1542     //       sense to specialize attributes for call sites arguments instead of
1543     //       redirecting requests to the callee argument.
1544     Argument *Arg = getAssociatedArgument();
1545     if (!Arg)
1546       return indicatePessimisticFixpoint();
1547     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1548     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
1549     return clampStateAndIndicateChange(getState(), ArgAA.getState());
1550   }
1551 
1552   /// See AbstractAttribute::trackStatistics()
1553   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1554 };
1555 
1556 /// NoFree attribute for function return value.
1557 struct AANoFreeReturned final : AANoFreeFloating {
1558   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
1559       : AANoFreeFloating(IRP, A) {
1560     llvm_unreachable("NoFree is not applicable to function returns!");
1561   }
1562 
1563   /// See AbstractAttribute::initialize(...).
1564   void initialize(Attributor &A) override {
1565     llvm_unreachable("NoFree is not applicable to function returns!");
1566   }
1567 
1568   /// See AbstractAttribute::updateImpl(...).
1569   ChangeStatus updateImpl(Attributor &A) override {
1570     llvm_unreachable("NoFree is not applicable to function returns!");
1571   }
1572 
1573   /// See AbstractAttribute::trackStatistics()
1574   void trackStatistics() const override {}
1575 };
1576 
1577 /// NoFree attribute deduction for a call site return value.
1578 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
1579   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
1580       : AANoFreeFloating(IRP, A) {}
1581 
1582   ChangeStatus manifest(Attributor &A) override {
1583     return ChangeStatus::UNCHANGED;
1584   }
1585   /// See AbstractAttribute::trackStatistics()
1586   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1587 };
1588 
1589 /// ------------------------ NonNull Argument Attribute ------------------------
1590 static int64_t getKnownNonNullAndDerefBytesForUse(
1591     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
1592     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1593   TrackUse = false;
1594 
1595   const Value *UseV = U->get();
1596   if (!UseV->getType()->isPointerTy())
1597     return 0;
1598 
1599   Type *PtrTy = UseV->getType();
1600   const Function *F = I->getFunction();
1601   bool NullPointerIsDefined =
1602       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1603   const DataLayout &DL = A.getInfoCache().getDL();
1604   if (const auto *CB = dyn_cast<CallBase>(I)) {
1605     if (CB->isBundleOperand(U)) {
1606       if (RetainedKnowledge RK = getKnowledgeFromUse(
1607               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
1608         IsNonNull |=
1609             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
1610         return RK.ArgValue;
1611       }
1612       return 0;
1613     }
1614 
1615     if (CB->isCallee(U)) {
1616       IsNonNull |= !NullPointerIsDefined;
1617       return 0;
1618     }
1619 
1620     unsigned ArgNo = CB->getArgOperandNo(U);
1621     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
1622     // As long as we only use known information there is no need to track
1623     // dependences here.
1624     auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
1625                                                   /* TrackDependence */ false);
1626     IsNonNull |= DerefAA.isKnownNonNull();
1627     return DerefAA.getKnownDereferenceableBytes();
1628   }
1629 
1630   // We need to follow common pointer manipulation uses to the accesses they
1631   // feed into. We can try to be smart to avoid looking through things we do not
1632   // like for now, e.g., non-inbounds GEPs.
1633   if (isa<CastInst>(I)) {
1634     TrackUse = true;
1635     return 0;
1636   }
1637 
1638   if (isa<GetElementPtrInst>(I)) {
1639     TrackUse = true;
1640     return 0;
1641   }
1642 
1643   int64_t Offset;
1644   const Value *Base =
1645       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
1646   if (Base) {
1647     if (Base == &AssociatedValue &&
1648         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1649       int64_t DerefBytes =
1650           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1651 
1652       IsNonNull |= !NullPointerIsDefined;
1653       return std::max(int64_t(0), DerefBytes);
1654     }
1655   }
1656 
1657   /// Corner case when an offset is 0.
1658   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
1659                                               /*AllowNonInbounds*/ true);
1660   if (Base) {
1661     if (Offset == 0 && Base == &AssociatedValue &&
1662         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1663       int64_t DerefBytes =
1664           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1665       IsNonNull |= !NullPointerIsDefined;
1666       return std::max(int64_t(0), DerefBytes);
1667     }
1668   }
1669 
1670   return 0;
1671 }
1672 
1673 struct AANonNullImpl : AANonNull {
1674   AANonNullImpl(const IRPosition &IRP, Attributor &A)
1675       : AANonNull(IRP, A),
1676         NullIsDefined(NullPointerIsDefined(
1677             getAnchorScope(),
1678             getAssociatedValue().getType()->getPointerAddressSpace())) {}
1679 
1680   /// See AbstractAttribute::initialize(...).
1681   void initialize(Attributor &A) override {
1682     Value &V = getAssociatedValue();
1683     if (!NullIsDefined &&
1684         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
1685                 /* IgnoreSubsumingPositions */ false, &A)) {
1686       indicateOptimisticFixpoint();
1687       return;
1688     }
1689 
1690     if (isa<ConstantPointerNull>(V)) {
1691       indicatePessimisticFixpoint();
1692       return;
1693     }
1694 
1695     AANonNull::initialize(A);
1696 
1697     bool CanBeNull = true;
1698     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) {
1699       if (!CanBeNull) {
1700         indicateOptimisticFixpoint();
1701         return;
1702       }
1703     }
1704 
1705     if (isa<GlobalValue>(&getAssociatedValue())) {
1706       indicatePessimisticFixpoint();
1707       return;
1708     }
1709 
1710     if (Instruction *CtxI = getCtxI())
1711       followUsesInMBEC(*this, A, getState(), *CtxI);
1712   }
1713 
1714   /// See followUsesInMBEC
1715   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
1716                        AANonNull::StateType &State) {
1717     bool IsNonNull = false;
1718     bool TrackUse = false;
1719     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1720                                        IsNonNull, TrackUse);
1721     State.setKnown(IsNonNull);
1722     return TrackUse;
1723   }
1724 
1725   /// See AbstractAttribute::getAsStr().
1726   const std::string getAsStr() const override {
1727     return getAssumed() ? "nonnull" : "may-null";
1728   }
1729 
1730   /// Flag to determine if the underlying value can be null and still allow
1731   /// valid accesses.
1732   const bool NullIsDefined;
1733 };
1734 
1735 /// NonNull attribute for a floating value.
1736 struct AANonNullFloating : public AANonNullImpl {
1737   AANonNullFloating(const IRPosition &IRP, Attributor &A)
1738       : AANonNullImpl(IRP, A) {}
1739 
1740   /// See AbstractAttribute::updateImpl(...).
1741   ChangeStatus updateImpl(Attributor &A) override {
1742     if (!NullIsDefined) {
1743       const auto &DerefAA =
1744           A.getAAFor<AADereferenceable>(*this, getIRPosition());
1745       if (DerefAA.getAssumedDereferenceableBytes())
1746         return ChangeStatus::UNCHANGED;
1747     }
1748 
1749     const DataLayout &DL = A.getDataLayout();
1750 
1751     DominatorTree *DT = nullptr;
1752     AssumptionCache *AC = nullptr;
1753     InformationCache &InfoCache = A.getInfoCache();
1754     if (const Function *Fn = getAnchorScope()) {
1755       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
1756       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
1757     }
1758 
1759     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
1760                             AANonNull::StateType &T, bool Stripped) -> bool {
1761       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
1762       if (!Stripped && this == &AA) {
1763         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
1764           T.indicatePessimisticFixpoint();
1765       } else {
1766         // Use abstract attribute information.
1767         const AANonNull::StateType &NS = AA.getState();
1768         T ^= NS;
1769       }
1770       return T.isValidState();
1771     };
1772 
1773     StateType T;
1774     if (!genericValueTraversal<AANonNull, StateType>(
1775             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
1776       return indicatePessimisticFixpoint();
1777 
1778     return clampStateAndIndicateChange(getState(), T);
1779   }
1780 
1781   /// See AbstractAttribute::trackStatistics()
1782   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1783 };
1784 
1785 /// NonNull attribute for function return value.
1786 struct AANonNullReturned final
1787     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
1788   AANonNullReturned(const IRPosition &IRP, Attributor &A)
1789       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
1790 
1791   /// See AbstractAttribute::getAsStr().
1792   const std::string getAsStr() const override {
1793     return getAssumed() ? "nonnull" : "may-null";
1794   }
1795 
1796   /// See AbstractAttribute::trackStatistics()
1797   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1798 };
1799 
1800 /// NonNull attribute for function argument.
1801 struct AANonNullArgument final
1802     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
1803   AANonNullArgument(const IRPosition &IRP, Attributor &A)
1804       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
1805 
1806   /// See AbstractAttribute::trackStatistics()
1807   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1808 };
1809 
1810 struct AANonNullCallSiteArgument final : AANonNullFloating {
1811   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
1812       : AANonNullFloating(IRP, A) {}
1813 
1814   /// See AbstractAttribute::trackStatistics()
1815   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1816 };
1817 
1818 /// NonNull attribute for a call site return position.
1819 struct AANonNullCallSiteReturned final
1820     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
1821   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
1822       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
1823 
1824   /// See AbstractAttribute::trackStatistics()
1825   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1826 };
1827 
1828 /// ------------------------ No-Recurse Attributes ----------------------------
1829 
1830 struct AANoRecurseImpl : public AANoRecurse {
1831   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
1832 
1833   /// See AbstractAttribute::getAsStr()
1834   const std::string getAsStr() const override {
1835     return getAssumed() ? "norecurse" : "may-recurse";
1836   }
1837 };
1838 
1839 struct AANoRecurseFunction final : AANoRecurseImpl {
1840   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
1841       : AANoRecurseImpl(IRP, A) {}
1842 
1843   /// See AbstractAttribute::initialize(...).
1844   void initialize(Attributor &A) override {
1845     AANoRecurseImpl::initialize(A);
1846     if (const Function *F = getAnchorScope())
1847       if (A.getInfoCache().getSccSize(*F) != 1)
1848         indicatePessimisticFixpoint();
1849   }
1850 
1851   /// See AbstractAttribute::updateImpl(...).
1852   ChangeStatus updateImpl(Attributor &A) override {
1853 
1854     // If all live call sites are known to be no-recurse, we are as well.
1855     auto CallSitePred = [&](AbstractCallSite ACS) {
1856       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1857           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
1858           /* TrackDependence */ false, DepClassTy::OPTIONAL);
1859       return NoRecurseAA.isKnownNoRecurse();
1860     };
1861     bool AllCallSitesKnown;
1862     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
1863       // If we know all call sites and all are known no-recurse, we are done.
1864       // If all known call sites, which might not be all that exist, are known
1865       // to be no-recurse, we are not done but we can continue to assume
1866       // no-recurse. If one of the call sites we have not visited will become
1867       // live, another update is triggered.
1868       if (AllCallSitesKnown)
1869         indicateOptimisticFixpoint();
1870       return ChangeStatus::UNCHANGED;
1871     }
1872 
1873     // If the above check does not hold anymore we look at the calls.
1874     auto CheckForNoRecurse = [&](Instruction &I) {
1875       const auto &CB = cast<CallBase>(I);
1876       if (CB.hasFnAttr(Attribute::NoRecurse))
1877         return true;
1878 
1879       const auto &NoRecurseAA =
1880           A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB));
1881       if (!NoRecurseAA.isAssumedNoRecurse())
1882         return false;
1883 
1884       // Recursion to the same function
1885       if (CB.getCalledFunction() == getAnchorScope())
1886         return false;
1887 
1888       return true;
1889     };
1890 
1891     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
1892       return indicatePessimisticFixpoint();
1893     return ChangeStatus::UNCHANGED;
1894   }
1895 
1896   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1897 };
1898 
1899 /// NoRecurse attribute deduction for a call sites.
1900 struct AANoRecurseCallSite final : AANoRecurseImpl {
1901   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
1902       : AANoRecurseImpl(IRP, A) {}
1903 
1904   /// See AbstractAttribute::initialize(...).
1905   void initialize(Attributor &A) override {
1906     AANoRecurseImpl::initialize(A);
1907     Function *F = getAssociatedFunction();
1908     if (!F)
1909       indicatePessimisticFixpoint();
1910   }
1911 
1912   /// See AbstractAttribute::updateImpl(...).
1913   ChangeStatus updateImpl(Attributor &A) override {
1914     // TODO: Once we have call site specific value information we can provide
1915     //       call site specific liveness information and then it makes
1916     //       sense to specialize attributes for call sites arguments instead of
1917     //       redirecting requests to the callee argument.
1918     Function *F = getAssociatedFunction();
1919     const IRPosition &FnPos = IRPosition::function(*F);
1920     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
1921     return clampStateAndIndicateChange(getState(), FnAA.getState());
1922   }
1923 
1924   /// See AbstractAttribute::trackStatistics()
1925   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1926 };
1927 
1928 /// -------------------- Undefined-Behavior Attributes ------------------------
1929 
1930 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
1931   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
1932       : AAUndefinedBehavior(IRP, A) {}
1933 
1934   /// See AbstractAttribute::updateImpl(...).
1935   // through a pointer (i.e. also branches etc.)
1936   ChangeStatus updateImpl(Attributor &A) override {
1937     const size_t UBPrevSize = KnownUBInsts.size();
1938     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
1939 
1940     auto InspectMemAccessInstForUB = [&](Instruction &I) {
1941       // Skip instructions that are already saved.
1942       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1943         return true;
1944 
1945       // If we reach here, we know we have an instruction
1946       // that accesses memory through a pointer operand,
1947       // for which getPointerOperand() should give it to us.
1948       const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
1949       assert(PtrOp &&
1950              "Expected pointer operand of memory accessing instruction");
1951 
1952       // Either we stopped and the appropriate action was taken,
1953       // or we got back a simplified value to continue.
1954       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
1955       if (!SimplifiedPtrOp.hasValue())
1956         return true;
1957       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
1958 
1959       // A memory access through a pointer is considered UB
1960       // only if the pointer has constant null value.
1961       // TODO: Expand it to not only check constant values.
1962       if (!isa<ConstantPointerNull>(PtrOpVal)) {
1963         AssumedNoUBInsts.insert(&I);
1964         return true;
1965       }
1966       const Type *PtrTy = PtrOpVal->getType();
1967 
1968       // Because we only consider instructions inside functions,
1969       // assume that a parent function exists.
1970       const Function *F = I.getFunction();
1971 
1972       // A memory access using constant null pointer is only considered UB
1973       // if null pointer is _not_ defined for the target platform.
1974       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
1975         AssumedNoUBInsts.insert(&I);
1976       else
1977         KnownUBInsts.insert(&I);
1978       return true;
1979     };
1980 
1981     auto InspectBrInstForUB = [&](Instruction &I) {
1982       // A conditional branch instruction is considered UB if it has `undef`
1983       // condition.
1984 
1985       // Skip instructions that are already saved.
1986       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1987         return true;
1988 
1989       // We know we have a branch instruction.
1990       auto BrInst = cast<BranchInst>(&I);
1991 
1992       // Unconditional branches are never considered UB.
1993       if (BrInst->isUnconditional())
1994         return true;
1995 
1996       // Either we stopped and the appropriate action was taken,
1997       // or we got back a simplified value to continue.
1998       Optional<Value *> SimplifiedCond =
1999           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2000       if (!SimplifiedCond.hasValue())
2001         return true;
2002       AssumedNoUBInsts.insert(&I);
2003       return true;
2004     };
2005 
2006     auto InspectCallSiteForUB = [&](Instruction &I) {
2007       // Check whether a callsite always cause UB or not
2008 
2009       // Skip instructions that are already saved.
2010       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2011         return true;
2012 
2013       // Check nonnull and noundef argument attribute violation for each
2014       // callsite.
2015       CallBase &CB = cast<CallBase>(I);
2016       Function *Callee = CB.getCalledFunction();
2017       if (!Callee)
2018         return true;
2019       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2020         // If current argument is known to be simplified to null pointer and the
2021         // corresponding argument position is known to have nonnull attribute,
2022         // the argument is poison. Furthermore, if the argument is poison and
2023         // the position is known to have noundef attriubte, this callsite is
2024         // considered UB.
2025         // TODO: Check also nopoison attribute if it is introduced.
2026         if (idx >= Callee->arg_size())
2027           break;
2028         Value *ArgVal = CB.getArgOperand(idx);
2029         if (!ArgVal || !ArgVal->getType()->isPointerTy())
2030           continue;
2031         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2032         if (!CalleeArgumentIRP.hasAttr({Attribute::NoUndef}))
2033           continue;
2034         auto &NonNullAA = A.getAAFor<AANonNull>(*this, CalleeArgumentIRP);
2035         if (!NonNullAA.isKnownNonNull())
2036           continue;
2037         const auto &ValueSimplifyAA =
2038             A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*ArgVal));
2039         Optional<Value *> SimplifiedVal =
2040             ValueSimplifyAA.getAssumedSimplifiedValue(A);
2041 
2042         if (!ValueSimplifyAA.isKnown())
2043           continue;
2044         // Here, we handle three cases.
2045         //   (1) Not having a value means it is dead. (we can replace the value
2046         //       with undef)
2047         //   (2) Simplified to null pointer. The argument is a poison value and
2048         //       violate noundef attribute.
2049         //   (3) Simplified to undef. The argument violate noundef attriubte.
2050         if (!SimplifiedVal.hasValue() ||
2051             isa<ConstantPointerNull>(*SimplifiedVal.getValue()) ||
2052             isa<UndefValue>(*SimplifiedVal.getValue())) {
2053           KnownUBInsts.insert(&I);
2054           return true;
2055         }
2056       }
2057       return true;
2058     };
2059 
2060     auto InspectReturnInstForUB =
2061         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2062           // Check if a return instruction always cause UB or not
2063           // Note: It is guaranteed that the returned position of the anchor
2064           //       scope has noundef attribute when this is called.
2065 
2066           // When the returned position has noundef attriubte, UB occur in the
2067           // following cases.
2068           //   (1) Returned value is known to be undef.
2069           //   (2) The value is known to be a null pointer and the returned
2070           //       position has nonnull attribute (because the returned value is
2071           //       poison).
2072           // Note: This callback is not called for a dead returned value because
2073           //       such values are ignored in
2074           //       checkForAllReturnedValuesAndReturnedInsts.
2075           bool FoundUB = false;
2076           if (isa<UndefValue>(V)) {
2077             FoundUB = true;
2078           } else {
2079             if (isa<ConstantPointerNull>(V)) {
2080               auto &NonNullAA = A.getAAFor<AANonNull>(
2081                   *this, IRPosition::returned(*getAnchorScope()));
2082               if (NonNullAA.isKnownNonNull())
2083                 FoundUB = true;
2084             }
2085           }
2086 
2087           if (FoundUB)
2088             for (ReturnInst *RI : RetInsts)
2089               KnownUBInsts.insert(RI);
2090           return true;
2091         };
2092 
2093     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2094                               {Instruction::Load, Instruction::Store,
2095                                Instruction::AtomicCmpXchg,
2096                                Instruction::AtomicRMW},
2097                               /* CheckBBLivenessOnly */ true);
2098     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2099                               /* CheckBBLivenessOnly */ true);
2100     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this);
2101 
2102     // If the returned position of the anchor scope has noundef attriubte, check
2103     // all returned instructions.
2104     // TODO: If AANoUndef is implemented, ask it here.
2105     if (IRPosition::returned(*getAnchorScope()).hasAttr({Attribute::NoUndef}))
2106       A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB, *this);
2107 
2108     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2109         UBPrevSize != KnownUBInsts.size())
2110       return ChangeStatus::CHANGED;
2111     return ChangeStatus::UNCHANGED;
2112   }
2113 
2114   bool isKnownToCauseUB(Instruction *I) const override {
2115     return KnownUBInsts.count(I);
2116   }
2117 
2118   bool isAssumedToCauseUB(Instruction *I) const override {
2119     // In simple words, if an instruction is not in the assumed to _not_
2120     // cause UB, then it is assumed UB (that includes those
2121     // in the KnownUBInsts set). The rest is boilerplate
2122     // is to ensure that it is one of the instructions we test
2123     // for UB.
2124 
2125     switch (I->getOpcode()) {
2126     case Instruction::Load:
2127     case Instruction::Store:
2128     case Instruction::AtomicCmpXchg:
2129     case Instruction::AtomicRMW:
2130       return !AssumedNoUBInsts.count(I);
2131     case Instruction::Br: {
2132       auto BrInst = cast<BranchInst>(I);
2133       if (BrInst->isUnconditional())
2134         return false;
2135       return !AssumedNoUBInsts.count(I);
2136     } break;
2137     default:
2138       return false;
2139     }
2140     return false;
2141   }
2142 
2143   ChangeStatus manifest(Attributor &A) override {
2144     if (KnownUBInsts.empty())
2145       return ChangeStatus::UNCHANGED;
2146     for (Instruction *I : KnownUBInsts)
2147       A.changeToUnreachableAfterManifest(I);
2148     return ChangeStatus::CHANGED;
2149   }
2150 
2151   /// See AbstractAttribute::getAsStr()
2152   const std::string getAsStr() const override {
2153     return getAssumed() ? "undefined-behavior" : "no-ub";
2154   }
2155 
2156   /// Note: The correctness of this analysis depends on the fact that the
2157   /// following 2 sets will stop changing after some point.
2158   /// "Change" here means that their size changes.
2159   /// The size of each set is monotonically increasing
2160   /// (we only add items to them) and it is upper bounded by the number of
2161   /// instructions in the processed function (we can never save more
2162   /// elements in either set than this number). Hence, at some point,
2163   /// they will stop increasing.
2164   /// Consequently, at some point, both sets will have stopped
2165   /// changing, effectively making the analysis reach a fixpoint.
2166 
2167   /// Note: These 2 sets are disjoint and an instruction can be considered
2168   /// one of 3 things:
2169   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2170   ///    the KnownUBInsts set.
2171   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2172   ///    has a reason to assume it).
2173   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2174   ///    could not find a reason to assume or prove that it can cause UB,
2175   ///    hence it assumes it doesn't. We have a set for these instructions
2176   ///    so that we don't reprocess them in every update.
2177   ///    Note however that instructions in this set may cause UB.
2178 
2179 protected:
2180   /// A set of all live instructions _known_ to cause UB.
2181   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2182 
2183 private:
2184   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2185   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2186 
2187   // Should be called on updates in which if we're processing an instruction
2188   // \p I that depends on a value \p V, one of the following has to happen:
2189   // - If the value is assumed, then stop.
2190   // - If the value is known but undef, then consider it UB.
2191   // - Otherwise, do specific processing with the simplified value.
2192   // We return None in the first 2 cases to signify that an appropriate
2193   // action was taken and the caller should stop.
2194   // Otherwise, we return the simplified value that the caller should
2195   // use for specific processing.
2196   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2197                                          Instruction *I) {
2198     const auto &ValueSimplifyAA =
2199         A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
2200     Optional<Value *> SimplifiedV =
2201         ValueSimplifyAA.getAssumedSimplifiedValue(A);
2202     if (!ValueSimplifyAA.isKnown()) {
2203       // Don't depend on assumed values.
2204       return llvm::None;
2205     }
2206     if (!SimplifiedV.hasValue()) {
2207       // If it is known (which we tested above) but it doesn't have a value,
2208       // then we can assume `undef` and hence the instruction is UB.
2209       KnownUBInsts.insert(I);
2210       return llvm::None;
2211     }
2212     Value *Val = SimplifiedV.getValue();
2213     if (isa<UndefValue>(Val)) {
2214       KnownUBInsts.insert(I);
2215       return llvm::None;
2216     }
2217     return Val;
2218   }
2219 };
2220 
2221 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2222   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2223       : AAUndefinedBehaviorImpl(IRP, A) {}
2224 
2225   /// See AbstractAttribute::trackStatistics()
2226   void trackStatistics() const override {
2227     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2228                "Number of instructions known to have UB");
2229     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2230         KnownUBInsts.size();
2231   }
2232 };
2233 
2234 /// ------------------------ Will-Return Attributes ----------------------------
2235 
2236 // Helper function that checks whether a function has any cycle which we don't
2237 // know if it is bounded or not.
2238 // Loops with maximum trip count are considered bounded, any other cycle not.
2239 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2240   ScalarEvolution *SE =
2241       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2242   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2243   // If either SCEV or LoopInfo is not available for the function then we assume
2244   // any cycle to be unbounded cycle.
2245   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2246   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2247   if (!SE || !LI) {
2248     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2249       if (SCCI.hasCycle())
2250         return true;
2251     return false;
2252   }
2253 
2254   // If there's irreducible control, the function may contain non-loop cycles.
2255   if (mayContainIrreducibleControl(F, LI))
2256     return true;
2257 
2258   // Any loop that does not have a max trip count is considered unbounded cycle.
2259   for (auto *L : LI->getLoopsInPreorder()) {
2260     if (!SE->getSmallConstantMaxTripCount(L))
2261       return true;
2262   }
2263   return false;
2264 }
2265 
2266 struct AAWillReturnImpl : public AAWillReturn {
2267   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2268       : AAWillReturn(IRP, A) {}
2269 
2270   /// See AbstractAttribute::initialize(...).
2271   void initialize(Attributor &A) override {
2272     AAWillReturn::initialize(A);
2273 
2274     Function *F = getAnchorScope();
2275     if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A))
2276       indicatePessimisticFixpoint();
2277   }
2278 
2279   /// See AbstractAttribute::updateImpl(...).
2280   ChangeStatus updateImpl(Attributor &A) override {
2281     auto CheckForWillReturn = [&](Instruction &I) {
2282       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2283       const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
2284       if (WillReturnAA.isKnownWillReturn())
2285         return true;
2286       if (!WillReturnAA.isAssumedWillReturn())
2287         return false;
2288       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
2289       return NoRecurseAA.isAssumedNoRecurse();
2290     };
2291 
2292     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2293       return indicatePessimisticFixpoint();
2294 
2295     return ChangeStatus::UNCHANGED;
2296   }
2297 
2298   /// See AbstractAttribute::getAsStr()
2299   const std::string getAsStr() const override {
2300     return getAssumed() ? "willreturn" : "may-noreturn";
2301   }
2302 };
2303 
2304 struct AAWillReturnFunction final : AAWillReturnImpl {
2305   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2306       : AAWillReturnImpl(IRP, A) {}
2307 
2308   /// See AbstractAttribute::trackStatistics()
2309   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2310 };
2311 
2312 /// WillReturn attribute deduction for a call sites.
2313 struct AAWillReturnCallSite final : AAWillReturnImpl {
2314   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2315       : AAWillReturnImpl(IRP, A) {}
2316 
2317   /// See AbstractAttribute::initialize(...).
2318   void initialize(Attributor &A) override {
2319     AAWillReturnImpl::initialize(A);
2320     Function *F = getAssociatedFunction();
2321     if (!F)
2322       indicatePessimisticFixpoint();
2323   }
2324 
2325   /// See AbstractAttribute::updateImpl(...).
2326   ChangeStatus updateImpl(Attributor &A) override {
2327     // TODO: Once we have call site specific value information we can provide
2328     //       call site specific liveness information and then it makes
2329     //       sense to specialize attributes for call sites arguments instead of
2330     //       redirecting requests to the callee argument.
2331     Function *F = getAssociatedFunction();
2332     const IRPosition &FnPos = IRPosition::function(*F);
2333     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
2334     return clampStateAndIndicateChange(getState(), FnAA.getState());
2335   }
2336 
2337   /// See AbstractAttribute::trackStatistics()
2338   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2339 };
2340 
2341 /// -------------------AAReachability Attribute--------------------------
2342 
2343 struct AAReachabilityImpl : AAReachability {
2344   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2345       : AAReachability(IRP, A) {}
2346 
2347   const std::string getAsStr() const override {
2348     // TODO: Return the number of reachable queries.
2349     return "reachable";
2350   }
2351 
2352   /// See AbstractAttribute::initialize(...).
2353   void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2354 
2355   /// See AbstractAttribute::updateImpl(...).
2356   ChangeStatus updateImpl(Attributor &A) override {
2357     return indicatePessimisticFixpoint();
2358   }
2359 };
2360 
2361 struct AAReachabilityFunction final : public AAReachabilityImpl {
2362   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2363       : AAReachabilityImpl(IRP, A) {}
2364 
2365   /// See AbstractAttribute::trackStatistics()
2366   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2367 };
2368 
2369 /// ------------------------ NoAlias Argument Attribute ------------------------
2370 
2371 struct AANoAliasImpl : AANoAlias {
2372   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2373     assert(getAssociatedType()->isPointerTy() &&
2374            "Noalias is a pointer attribute");
2375   }
2376 
2377   const std::string getAsStr() const override {
2378     return getAssumed() ? "noalias" : "may-alias";
2379   }
2380 };
2381 
2382 /// NoAlias attribute for a floating value.
2383 struct AANoAliasFloating final : AANoAliasImpl {
2384   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2385       : AANoAliasImpl(IRP, A) {}
2386 
2387   /// See AbstractAttribute::initialize(...).
2388   void initialize(Attributor &A) override {
2389     AANoAliasImpl::initialize(A);
2390     Value *Val = &getAssociatedValue();
2391     do {
2392       CastInst *CI = dyn_cast<CastInst>(Val);
2393       if (!CI)
2394         break;
2395       Value *Base = CI->getOperand(0);
2396       if (!Base->hasOneUse())
2397         break;
2398       Val = Base;
2399     } while (true);
2400 
2401     if (!Val->getType()->isPointerTy()) {
2402       indicatePessimisticFixpoint();
2403       return;
2404     }
2405 
2406     if (isa<AllocaInst>(Val))
2407       indicateOptimisticFixpoint();
2408     else if (isa<ConstantPointerNull>(Val) &&
2409              !NullPointerIsDefined(getAnchorScope(),
2410                                    Val->getType()->getPointerAddressSpace()))
2411       indicateOptimisticFixpoint();
2412     else if (Val != &getAssociatedValue()) {
2413       const auto &ValNoAliasAA =
2414           A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
2415       if (ValNoAliasAA.isKnownNoAlias())
2416         indicateOptimisticFixpoint();
2417     }
2418   }
2419 
2420   /// See AbstractAttribute::updateImpl(...).
2421   ChangeStatus updateImpl(Attributor &A) override {
2422     // TODO: Implement this.
2423     return indicatePessimisticFixpoint();
2424   }
2425 
2426   /// See AbstractAttribute::trackStatistics()
2427   void trackStatistics() const override {
2428     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2429   }
2430 };
2431 
2432 /// NoAlias attribute for an argument.
2433 struct AANoAliasArgument final
2434     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2435   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2436   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2437 
2438   /// See AbstractAttribute::initialize(...).
2439   void initialize(Attributor &A) override {
2440     Base::initialize(A);
2441     // See callsite argument attribute and callee argument attribute.
2442     if (hasAttr({Attribute::ByVal}))
2443       indicateOptimisticFixpoint();
2444   }
2445 
2446   /// See AbstractAttribute::update(...).
2447   ChangeStatus updateImpl(Attributor &A) override {
2448     // We have to make sure no-alias on the argument does not break
2449     // synchronization when this is a callback argument, see also [1] below.
2450     // If synchronization cannot be affected, we delegate to the base updateImpl
2451     // function, otherwise we give up for now.
2452 
2453     // If the function is no-sync, no-alias cannot break synchronization.
2454     const auto &NoSyncAA = A.getAAFor<AANoSync>(
2455         *this, IRPosition::function_scope(getIRPosition()));
2456     if (NoSyncAA.isAssumedNoSync())
2457       return Base::updateImpl(A);
2458 
2459     // If the argument is read-only, no-alias cannot break synchronization.
2460     const auto &MemBehaviorAA =
2461         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
2462     if (MemBehaviorAA.isAssumedReadOnly())
2463       return Base::updateImpl(A);
2464 
2465     // If the argument is never passed through callbacks, no-alias cannot break
2466     // synchronization.
2467     bool AllCallSitesKnown;
2468     if (A.checkForAllCallSites(
2469             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2470             true, AllCallSitesKnown))
2471       return Base::updateImpl(A);
2472 
2473     // TODO: add no-alias but make sure it doesn't break synchronization by
2474     // introducing fake uses. See:
2475     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2476     //     International Workshop on OpenMP 2018,
2477     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2478 
2479     return indicatePessimisticFixpoint();
2480   }
2481 
2482   /// See AbstractAttribute::trackStatistics()
2483   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2484 };
2485 
2486 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2487   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2488       : AANoAliasImpl(IRP, A) {}
2489 
2490   /// See AbstractAttribute::initialize(...).
2491   void initialize(Attributor &A) override {
2492     // See callsite argument attribute and callee argument attribute.
2493     const auto &CB = cast<CallBase>(getAnchorValue());
2494     if (CB.paramHasAttr(getArgNo(), Attribute::NoAlias))
2495       indicateOptimisticFixpoint();
2496     Value &Val = getAssociatedValue();
2497     if (isa<ConstantPointerNull>(Val) &&
2498         !NullPointerIsDefined(getAnchorScope(),
2499                               Val.getType()->getPointerAddressSpace()))
2500       indicateOptimisticFixpoint();
2501   }
2502 
2503   /// Determine if the underlying value may alias with the call site argument
2504   /// \p OtherArgNo of \p ICS (= the underlying call site).
2505   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2506                             const AAMemoryBehavior &MemBehaviorAA,
2507                             const CallBase &CB, unsigned OtherArgNo) {
2508     // We do not need to worry about aliasing with the underlying IRP.
2509     if (this->getArgNo() == (int)OtherArgNo)
2510       return false;
2511 
2512     // If it is not a pointer or pointer vector we do not alias.
2513     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
2514     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2515       return false;
2516 
2517     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2518         *this, IRPosition::callsite_argument(CB, OtherArgNo),
2519         /* TrackDependence */ false);
2520 
2521     // If the argument is readnone, there is no read-write aliasing.
2522     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
2523       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2524       return false;
2525     }
2526 
2527     // If the argument is readonly and the underlying value is readonly, there
2528     // is no read-write aliasing.
2529     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2530     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2531       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2532       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2533       return false;
2534     }
2535 
2536     // We have to utilize actual alias analysis queries so we need the object.
2537     if (!AAR)
2538       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2539 
2540     // Try to rule it out at the call site.
2541     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2542     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2543                          "callsite arguments: "
2544                       << getAssociatedValue() << " " << *ArgOp << " => "
2545                       << (IsAliasing ? "" : "no-") << "alias \n");
2546 
2547     return IsAliasing;
2548   }
2549 
2550   bool
2551   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2552                                          const AAMemoryBehavior &MemBehaviorAA,
2553                                          const AANoAlias &NoAliasAA) {
2554     // We can deduce "noalias" if the following conditions hold.
2555     // (i)   Associated value is assumed to be noalias in the definition.
2556     // (ii)  Associated value is assumed to be no-capture in all the uses
2557     //       possibly executed before this callsite.
2558     // (iii) There is no other pointer argument which could alias with the
2559     //       value.
2560 
2561     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2562     if (!AssociatedValueIsNoAliasAtDef) {
2563       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2564                         << " is not no-alias at the definition\n");
2565       return false;
2566     }
2567 
2568     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
2569 
2570     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2571     auto &NoCaptureAA =
2572         A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
2573     // Check whether the value is captured in the scope using AANoCapture.
2574     //      Look at CFG and check only uses possibly executed before this
2575     //      callsite.
2576     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
2577       Instruction *UserI = cast<Instruction>(U.getUser());
2578 
2579       // If user if curr instr and only use.
2580       if (UserI == getCtxI() && UserI->hasOneUse())
2581         return true;
2582 
2583       const Function *ScopeFn = VIRP.getAnchorScope();
2584       if (ScopeFn) {
2585         const auto &ReachabilityAA =
2586             A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
2587 
2588         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
2589           return true;
2590 
2591         if (auto *CB = dyn_cast<CallBase>(UserI)) {
2592           if (CB->isArgOperand(&U)) {
2593 
2594             unsigned ArgNo = CB->getArgOperandNo(&U);
2595 
2596             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
2597                 *this, IRPosition::callsite_argument(*CB, ArgNo));
2598 
2599             if (NoCaptureAA.isAssumedNoCapture())
2600               return true;
2601           }
2602         }
2603       }
2604 
2605       // For cases which can potentially have more users
2606       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
2607           isa<SelectInst>(U)) {
2608         Follow = true;
2609         return true;
2610       }
2611 
2612       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
2613       return false;
2614     };
2615 
2616     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2617       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
2618         LLVM_DEBUG(
2619             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2620                    << " cannot be noalias as it is potentially captured\n");
2621         return false;
2622       }
2623     }
2624     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2625 
2626     // Check there is no other pointer argument which could alias with the
2627     // value passed at this call site.
2628     // TODO: AbstractCallSite
2629     const auto &CB = cast<CallBase>(getAnchorValue());
2630     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
2631          OtherArgNo++)
2632       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
2633         return false;
2634 
2635     return true;
2636   }
2637 
2638   /// See AbstractAttribute::updateImpl(...).
2639   ChangeStatus updateImpl(Attributor &A) override {
2640     // If the argument is readnone we are done as there are no accesses via the
2641     // argument.
2642     auto &MemBehaviorAA =
2643         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2644                                      /* TrackDependence */ false);
2645     if (MemBehaviorAA.isAssumedReadNone()) {
2646       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2647       return ChangeStatus::UNCHANGED;
2648     }
2649 
2650     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2651     const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
2652                                                   /* TrackDependence */ false);
2653 
2654     AAResults *AAR = nullptr;
2655     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2656                                                NoAliasAA)) {
2657       LLVM_DEBUG(
2658           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2659       return ChangeStatus::UNCHANGED;
2660     }
2661 
2662     return indicatePessimisticFixpoint();
2663   }
2664 
2665   /// See AbstractAttribute::trackStatistics()
2666   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2667 };
2668 
2669 /// NoAlias attribute for function return value.
2670 struct AANoAliasReturned final : AANoAliasImpl {
2671   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
2672       : AANoAliasImpl(IRP, A) {}
2673 
2674   /// See AbstractAttribute::updateImpl(...).
2675   virtual ChangeStatus updateImpl(Attributor &A) override {
2676 
2677     auto CheckReturnValue = [&](Value &RV) -> bool {
2678       if (Constant *C = dyn_cast<Constant>(&RV))
2679         if (C->isNullValue() || isa<UndefValue>(C))
2680           return true;
2681 
2682       /// For now, we can only deduce noalias if we have call sites.
2683       /// FIXME: add more support.
2684       if (!isa<CallBase>(&RV))
2685         return false;
2686 
2687       const IRPosition &RVPos = IRPosition::value(RV);
2688       const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
2689       if (!NoAliasAA.isAssumedNoAlias())
2690         return false;
2691 
2692       const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
2693       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2694     };
2695 
2696     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2697       return indicatePessimisticFixpoint();
2698 
2699     return ChangeStatus::UNCHANGED;
2700   }
2701 
2702   /// See AbstractAttribute::trackStatistics()
2703   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2704 };
2705 
2706 /// NoAlias attribute deduction for a call site return value.
2707 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
2708   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
2709       : AANoAliasImpl(IRP, A) {}
2710 
2711   /// See AbstractAttribute::initialize(...).
2712   void initialize(Attributor &A) override {
2713     AANoAliasImpl::initialize(A);
2714     Function *F = getAssociatedFunction();
2715     if (!F)
2716       indicatePessimisticFixpoint();
2717   }
2718 
2719   /// See AbstractAttribute::updateImpl(...).
2720   ChangeStatus updateImpl(Attributor &A) override {
2721     // TODO: Once we have call site specific value information we can provide
2722     //       call site specific liveness information and then it makes
2723     //       sense to specialize attributes for call sites arguments instead of
2724     //       redirecting requests to the callee argument.
2725     Function *F = getAssociatedFunction();
2726     const IRPosition &FnPos = IRPosition::returned(*F);
2727     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
2728     return clampStateAndIndicateChange(getState(), FnAA.getState());
2729   }
2730 
2731   /// See AbstractAttribute::trackStatistics()
2732   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2733 };
2734 
2735 /// -------------------AAIsDead Function Attribute-----------------------
2736 
2737 struct AAIsDeadValueImpl : public AAIsDead {
2738   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2739 
2740   /// See AAIsDead::isAssumedDead().
2741   bool isAssumedDead() const override { return getAssumed(); }
2742 
2743   /// See AAIsDead::isKnownDead().
2744   bool isKnownDead() const override { return getKnown(); }
2745 
2746   /// See AAIsDead::isAssumedDead(BasicBlock *).
2747   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2748 
2749   /// See AAIsDead::isKnownDead(BasicBlock *).
2750   bool isKnownDead(const BasicBlock *BB) const override { return false; }
2751 
2752   /// See AAIsDead::isAssumedDead(Instruction *I).
2753   bool isAssumedDead(const Instruction *I) const override {
2754     return I == getCtxI() && isAssumedDead();
2755   }
2756 
2757   /// See AAIsDead::isKnownDead(Instruction *I).
2758   bool isKnownDead(const Instruction *I) const override {
2759     return isAssumedDead(I) && getKnown();
2760   }
2761 
2762   /// See AbstractAttribute::getAsStr().
2763   const std::string getAsStr() const override {
2764     return isAssumedDead() ? "assumed-dead" : "assumed-live";
2765   }
2766 
2767   /// Check if all uses are assumed dead.
2768   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2769     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2770     // Explicitly set the dependence class to required because we want a long
2771     // chain of N dependent instructions to be considered live as soon as one is
2772     // without going through N update cycles. This is not required for
2773     // correctness.
2774     return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2775   }
2776 
2777   /// Determine if \p I is assumed to be side-effect free.
2778   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2779     if (!I || wouldInstructionBeTriviallyDead(I))
2780       return true;
2781 
2782     auto *CB = dyn_cast<CallBase>(I);
2783     if (!CB || isa<IntrinsicInst>(CB))
2784       return false;
2785 
2786     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2787     const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>(
2788         *this, CallIRP, /* TrackDependence */ false);
2789     if (!NoUnwindAA.isAssumedNoUnwind())
2790       return false;
2791     if (!NoUnwindAA.isKnownNoUnwind())
2792       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
2793 
2794     const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>(
2795         *this, CallIRP, /* TrackDependence */ false);
2796     if (MemBehaviorAA.isAssumedReadOnly()) {
2797       if (!MemBehaviorAA.isKnownReadOnly())
2798         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2799       return true;
2800     }
2801     return false;
2802   }
2803 };
2804 
2805 struct AAIsDeadFloating : public AAIsDeadValueImpl {
2806   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
2807       : AAIsDeadValueImpl(IRP, A) {}
2808 
2809   /// See AbstractAttribute::initialize(...).
2810   void initialize(Attributor &A) override {
2811     if (isa<UndefValue>(getAssociatedValue())) {
2812       indicatePessimisticFixpoint();
2813       return;
2814     }
2815 
2816     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2817     if (!isAssumedSideEffectFree(A, I))
2818       indicatePessimisticFixpoint();
2819   }
2820 
2821   /// See AbstractAttribute::updateImpl(...).
2822   ChangeStatus updateImpl(Attributor &A) override {
2823     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2824     if (!isAssumedSideEffectFree(A, I))
2825       return indicatePessimisticFixpoint();
2826 
2827     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2828       return indicatePessimisticFixpoint();
2829     return ChangeStatus::UNCHANGED;
2830   }
2831 
2832   /// See AbstractAttribute::manifest(...).
2833   ChangeStatus manifest(Attributor &A) override {
2834     Value &V = getAssociatedValue();
2835     if (auto *I = dyn_cast<Instruction>(&V)) {
2836       // If we get here we basically know the users are all dead. We check if
2837       // isAssumedSideEffectFree returns true here again because it might not be
2838       // the case and only the users are dead but the instruction (=call) is
2839       // still needed.
2840       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2841         A.deleteAfterManifest(*I);
2842         return ChangeStatus::CHANGED;
2843       }
2844     }
2845     if (V.use_empty())
2846       return ChangeStatus::UNCHANGED;
2847 
2848     bool UsedAssumedInformation = false;
2849     Optional<Constant *> C =
2850         A.getAssumedConstant(V, *this, UsedAssumedInformation);
2851     if (C.hasValue() && C.getValue())
2852       return ChangeStatus::UNCHANGED;
2853 
2854     // Replace the value with undef as it is dead but keep droppable uses around
2855     // as they provide information we don't want to give up on just yet.
2856     UndefValue &UV = *UndefValue::get(V.getType());
2857     bool AnyChange =
2858         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
2859     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2860   }
2861 
2862   /// See AbstractAttribute::trackStatistics()
2863   void trackStatistics() const override {
2864     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2865   }
2866 };
2867 
2868 struct AAIsDeadArgument : public AAIsDeadFloating {
2869   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
2870       : AAIsDeadFloating(IRP, A) {}
2871 
2872   /// See AbstractAttribute::initialize(...).
2873   void initialize(Attributor &A) override {
2874     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
2875       indicatePessimisticFixpoint();
2876   }
2877 
2878   /// See AbstractAttribute::manifest(...).
2879   ChangeStatus manifest(Attributor &A) override {
2880     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2881     Argument &Arg = *getAssociatedArgument();
2882     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2883       if (A.registerFunctionSignatureRewrite(
2884               Arg, /* ReplacementTypes */ {},
2885               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2886               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
2887         Arg.dropDroppableUses();
2888         return ChangeStatus::CHANGED;
2889       }
2890     return Changed;
2891   }
2892 
2893   /// See AbstractAttribute::trackStatistics()
2894   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
2895 };
2896 
2897 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
2898   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
2899       : AAIsDeadValueImpl(IRP, A) {}
2900 
2901   /// See AbstractAttribute::initialize(...).
2902   void initialize(Attributor &A) override {
2903     if (isa<UndefValue>(getAssociatedValue()))
2904       indicatePessimisticFixpoint();
2905   }
2906 
2907   /// See AbstractAttribute::updateImpl(...).
2908   ChangeStatus updateImpl(Attributor &A) override {
2909     // TODO: Once we have call site specific value information we can provide
2910     //       call site specific liveness information and then it makes
2911     //       sense to specialize attributes for call sites arguments instead of
2912     //       redirecting requests to the callee argument.
2913     Argument *Arg = getAssociatedArgument();
2914     if (!Arg)
2915       return indicatePessimisticFixpoint();
2916     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2917     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
2918     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2919   }
2920 
2921   /// See AbstractAttribute::manifest(...).
2922   ChangeStatus manifest(Attributor &A) override {
2923     CallBase &CB = cast<CallBase>(getAnchorValue());
2924     Use &U = CB.getArgOperandUse(getArgNo());
2925     assert(!isa<UndefValue>(U.get()) &&
2926            "Expected undef values to be filtered out!");
2927     UndefValue &UV = *UndefValue::get(U->getType());
2928     if (A.changeUseAfterManifest(U, UV))
2929       return ChangeStatus::CHANGED;
2930     return ChangeStatus::UNCHANGED;
2931   }
2932 
2933   /// See AbstractAttribute::trackStatistics()
2934   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
2935 };
2936 
2937 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
2938   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
2939       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
2940 
2941   /// See AAIsDead::isAssumedDead().
2942   bool isAssumedDead() const override {
2943     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
2944   }
2945 
2946   /// See AbstractAttribute::initialize(...).
2947   void initialize(Attributor &A) override {
2948     if (isa<UndefValue>(getAssociatedValue())) {
2949       indicatePessimisticFixpoint();
2950       return;
2951     }
2952 
2953     // We track this separately as a secondary state.
2954     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
2955   }
2956 
2957   /// See AbstractAttribute::updateImpl(...).
2958   ChangeStatus updateImpl(Attributor &A) override {
2959     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2960     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
2961       IsAssumedSideEffectFree = false;
2962       Changed = ChangeStatus::CHANGED;
2963     }
2964 
2965     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2966       return indicatePessimisticFixpoint();
2967     return Changed;
2968   }
2969 
2970   /// See AbstractAttribute::trackStatistics()
2971   void trackStatistics() const override {
2972     if (IsAssumedSideEffectFree)
2973       STATS_DECLTRACK_CSRET_ATTR(IsDead)
2974     else
2975       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
2976   }
2977 
2978   /// See AbstractAttribute::getAsStr().
2979   const std::string getAsStr() const override {
2980     return isAssumedDead()
2981                ? "assumed-dead"
2982                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
2983   }
2984 
2985 private:
2986   bool IsAssumedSideEffectFree;
2987 };
2988 
2989 struct AAIsDeadReturned : public AAIsDeadValueImpl {
2990   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
2991       : AAIsDeadValueImpl(IRP, A) {}
2992 
2993   /// See AbstractAttribute::updateImpl(...).
2994   ChangeStatus updateImpl(Attributor &A) override {
2995 
2996     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
2997                               {Instruction::Ret});
2998 
2999     auto PredForCallSite = [&](AbstractCallSite ACS) {
3000       if (ACS.isCallbackCall() || !ACS.getInstruction())
3001         return false;
3002       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3003     };
3004 
3005     bool AllCallSitesKnown;
3006     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3007                                 AllCallSitesKnown))
3008       return indicatePessimisticFixpoint();
3009 
3010     return ChangeStatus::UNCHANGED;
3011   }
3012 
3013   /// See AbstractAttribute::manifest(...).
3014   ChangeStatus manifest(Attributor &A) override {
3015     // TODO: Rewrite the signature to return void?
3016     bool AnyChange = false;
3017     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3018     auto RetInstPred = [&](Instruction &I) {
3019       ReturnInst &RI = cast<ReturnInst>(I);
3020       if (!isa<UndefValue>(RI.getReturnValue()))
3021         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3022       return true;
3023     };
3024     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
3025     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3026   }
3027 
3028   /// See AbstractAttribute::trackStatistics()
3029   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3030 };
3031 
3032 struct AAIsDeadFunction : public AAIsDead {
3033   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3034 
3035   /// See AbstractAttribute::initialize(...).
3036   void initialize(Attributor &A) override {
3037     const Function *F = getAnchorScope();
3038     if (F && !F->isDeclaration()) {
3039       ToBeExploredFrom.insert(&F->getEntryBlock().front());
3040       assumeLive(A, F->getEntryBlock());
3041     }
3042   }
3043 
3044   /// See AbstractAttribute::getAsStr().
3045   const std::string getAsStr() const override {
3046     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3047            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3048            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3049            std::to_string(KnownDeadEnds.size()) + "]";
3050   }
3051 
3052   /// See AbstractAttribute::manifest(...).
3053   ChangeStatus manifest(Attributor &A) override {
3054     assert(getState().isValidState() &&
3055            "Attempted to manifest an invalid state!");
3056 
3057     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3058     Function &F = *getAnchorScope();
3059 
3060     if (AssumedLiveBlocks.empty()) {
3061       A.deleteAfterManifest(F);
3062       return ChangeStatus::CHANGED;
3063     }
3064 
3065     // Flag to determine if we can change an invoke to a call assuming the
3066     // callee is nounwind. This is not possible if the personality of the
3067     // function allows to catch asynchronous exceptions.
3068     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3069 
3070     KnownDeadEnds.set_union(ToBeExploredFrom);
3071     for (const Instruction *DeadEndI : KnownDeadEnds) {
3072       auto *CB = dyn_cast<CallBase>(DeadEndI);
3073       if (!CB)
3074         continue;
3075       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3076           *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true,
3077           DepClassTy::OPTIONAL);
3078       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3079       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3080         continue;
3081 
3082       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3083         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3084       else
3085         A.changeToUnreachableAfterManifest(
3086             const_cast<Instruction *>(DeadEndI->getNextNode()));
3087       HasChanged = ChangeStatus::CHANGED;
3088     }
3089 
3090     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3091     for (BasicBlock &BB : F)
3092       if (!AssumedLiveBlocks.count(&BB)) {
3093         A.deleteAfterManifest(BB);
3094         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3095       }
3096 
3097     return HasChanged;
3098   }
3099 
3100   /// See AbstractAttribute::updateImpl(...).
3101   ChangeStatus updateImpl(Attributor &A) override;
3102 
3103   /// See AbstractAttribute::trackStatistics()
3104   void trackStatistics() const override {}
3105 
3106   /// Returns true if the function is assumed dead.
3107   bool isAssumedDead() const override { return false; }
3108 
3109   /// See AAIsDead::isKnownDead().
3110   bool isKnownDead() const override { return false; }
3111 
3112   /// See AAIsDead::isAssumedDead(BasicBlock *).
3113   bool isAssumedDead(const BasicBlock *BB) const override {
3114     assert(BB->getParent() == getAnchorScope() &&
3115            "BB must be in the same anchor scope function.");
3116 
3117     if (!getAssumed())
3118       return false;
3119     return !AssumedLiveBlocks.count(BB);
3120   }
3121 
3122   /// See AAIsDead::isKnownDead(BasicBlock *).
3123   bool isKnownDead(const BasicBlock *BB) const override {
3124     return getKnown() && isAssumedDead(BB);
3125   }
3126 
3127   /// See AAIsDead::isAssumed(Instruction *I).
3128   bool isAssumedDead(const Instruction *I) const override {
3129     assert(I->getParent()->getParent() == getAnchorScope() &&
3130            "Instruction must be in the same anchor scope function.");
3131 
3132     if (!getAssumed())
3133       return false;
3134 
3135     // If it is not in AssumedLiveBlocks then it for sure dead.
3136     // Otherwise, it can still be after noreturn call in a live block.
3137     if (!AssumedLiveBlocks.count(I->getParent()))
3138       return true;
3139 
3140     // If it is not after a liveness barrier it is live.
3141     const Instruction *PrevI = I->getPrevNode();
3142     while (PrevI) {
3143       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3144         return true;
3145       PrevI = PrevI->getPrevNode();
3146     }
3147     return false;
3148   }
3149 
3150   /// See AAIsDead::isKnownDead(Instruction *I).
3151   bool isKnownDead(const Instruction *I) const override {
3152     return getKnown() && isAssumedDead(I);
3153   }
3154 
3155   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3156   /// that internal function called from \p BB should now be looked at.
3157   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3158     if (!AssumedLiveBlocks.insert(&BB).second)
3159       return false;
3160 
3161     // We assume that all of BB is (probably) live now and if there are calls to
3162     // internal functions we will assume that those are now live as well. This
3163     // is a performance optimization for blocks with calls to a lot of internal
3164     // functions. It can however cause dead functions to be treated as live.
3165     for (const Instruction &I : BB)
3166       if (const auto *CB = dyn_cast<CallBase>(&I))
3167         if (const Function *F = CB->getCalledFunction())
3168           if (F->hasLocalLinkage())
3169             A.markLiveInternalFunction(*F);
3170     return true;
3171   }
3172 
3173   /// Collection of instructions that need to be explored again, e.g., we
3174   /// did assume they do not transfer control to (one of their) successors.
3175   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3176 
3177   /// Collection of instructions that are known to not transfer control.
3178   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3179 
3180   /// Collection of all assumed live BasicBlocks.
3181   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3182 };
3183 
3184 static bool
3185 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3186                         AbstractAttribute &AA,
3187                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3188   const IRPosition &IPos = IRPosition::callsite_function(CB);
3189 
3190   const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3191       AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3192   if (NoReturnAA.isAssumedNoReturn())
3193     return !NoReturnAA.isKnownNoReturn();
3194   if (CB.isTerminator())
3195     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3196   else
3197     AliveSuccessors.push_back(CB.getNextNode());
3198   return false;
3199 }
3200 
3201 static bool
3202 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3203                         AbstractAttribute &AA,
3204                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3205   bool UsedAssumedInformation =
3206       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3207 
3208   // First, determine if we can change an invoke to a call assuming the
3209   // callee is nounwind. This is not possible if the personality of the
3210   // function allows to catch asynchronous exceptions.
3211   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3212     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3213   } else {
3214     const IRPosition &IPos = IRPosition::callsite_function(II);
3215     const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>(
3216         AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3217     if (AANoUnw.isAssumedNoUnwind()) {
3218       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3219     } else {
3220       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3221     }
3222   }
3223   return UsedAssumedInformation;
3224 }
3225 
3226 static bool
3227 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3228                         AbstractAttribute &AA,
3229                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3230   bool UsedAssumedInformation = false;
3231   if (BI.getNumSuccessors() == 1) {
3232     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3233   } else {
3234     Optional<ConstantInt *> CI = getAssumedConstantInt(
3235         A, *BI.getCondition(), AA, UsedAssumedInformation);
3236     if (!CI.hasValue()) {
3237       // No value yet, assume both edges are dead.
3238     } else if (CI.getValue()) {
3239       const BasicBlock *SuccBB =
3240           BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3241       AliveSuccessors.push_back(&SuccBB->front());
3242     } else {
3243       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3244       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3245       UsedAssumedInformation = false;
3246     }
3247   }
3248   return UsedAssumedInformation;
3249 }
3250 
3251 static bool
3252 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3253                         AbstractAttribute &AA,
3254                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3255   bool UsedAssumedInformation = false;
3256   Optional<ConstantInt *> CI =
3257       getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3258   if (!CI.hasValue()) {
3259     // No value yet, assume all edges are dead.
3260   } else if (CI.getValue()) {
3261     for (auto &CaseIt : SI.cases()) {
3262       if (CaseIt.getCaseValue() == CI.getValue()) {
3263         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3264         return UsedAssumedInformation;
3265       }
3266     }
3267     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3268     return UsedAssumedInformation;
3269   } else {
3270     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3271       AliveSuccessors.push_back(&SuccBB->front());
3272   }
3273   return UsedAssumedInformation;
3274 }
3275 
3276 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3277   ChangeStatus Change = ChangeStatus::UNCHANGED;
3278 
3279   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3280                     << getAnchorScope()->size() << "] BBs and "
3281                     << ToBeExploredFrom.size() << " exploration points and "
3282                     << KnownDeadEnds.size() << " known dead ends\n");
3283 
3284   // Copy and clear the list of instructions we need to explore from. It is
3285   // refilled with instructions the next update has to look at.
3286   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3287                                                ToBeExploredFrom.end());
3288   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3289 
3290   SmallVector<const Instruction *, 8> AliveSuccessors;
3291   while (!Worklist.empty()) {
3292     const Instruction *I = Worklist.pop_back_val();
3293     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3294 
3295     AliveSuccessors.clear();
3296 
3297     bool UsedAssumedInformation = false;
3298     switch (I->getOpcode()) {
3299     // TODO: look for (assumed) UB to backwards propagate "deadness".
3300     default:
3301       if (I->isTerminator()) {
3302         for (const BasicBlock *SuccBB : successors(I->getParent()))
3303           AliveSuccessors.push_back(&SuccBB->front());
3304       } else {
3305         AliveSuccessors.push_back(I->getNextNode());
3306       }
3307       break;
3308     case Instruction::Call:
3309       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3310                                                        *this, AliveSuccessors);
3311       break;
3312     case Instruction::Invoke:
3313       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3314                                                        *this, AliveSuccessors);
3315       break;
3316     case Instruction::Br:
3317       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3318                                                        *this, AliveSuccessors);
3319       break;
3320     case Instruction::Switch:
3321       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3322                                                        *this, AliveSuccessors);
3323       break;
3324     }
3325 
3326     if (UsedAssumedInformation) {
3327       NewToBeExploredFrom.insert(I);
3328     } else {
3329       Change = ChangeStatus::CHANGED;
3330       if (AliveSuccessors.empty() ||
3331           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3332         KnownDeadEnds.insert(I);
3333     }
3334 
3335     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3336                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3337                       << UsedAssumedInformation << "\n");
3338 
3339     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3340       if (!I->isTerminator()) {
3341         assert(AliveSuccessors.size() == 1 &&
3342                "Non-terminator expected to have a single successor!");
3343         Worklist.push_back(AliveSuccessor);
3344       } else {
3345         if (assumeLive(A, *AliveSuccessor->getParent()))
3346           Worklist.push_back(AliveSuccessor);
3347       }
3348     }
3349   }
3350 
3351   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3352 
3353   // If we know everything is live there is no need to query for liveness.
3354   // Instead, indicating a pessimistic fixpoint will cause the state to be
3355   // "invalid" and all queries to be answered conservatively without lookups.
3356   // To be in this state we have to (1) finished the exploration and (3) not
3357   // discovered any non-trivial dead end and (2) not ruled unreachable code
3358   // dead.
3359   if (ToBeExploredFrom.empty() &&
3360       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3361       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3362         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3363       }))
3364     return indicatePessimisticFixpoint();
3365   return Change;
3366 }
3367 
3368 /// Liveness information for a call sites.
3369 struct AAIsDeadCallSite final : AAIsDeadFunction {
3370   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3371       : AAIsDeadFunction(IRP, A) {}
3372 
3373   /// See AbstractAttribute::initialize(...).
3374   void initialize(Attributor &A) override {
3375     // TODO: Once we have call site specific value information we can provide
3376     //       call site specific liveness information and then it makes
3377     //       sense to specialize attributes for call sites instead of
3378     //       redirecting requests to the callee.
3379     llvm_unreachable("Abstract attributes for liveness are not "
3380                      "supported for call sites yet!");
3381   }
3382 
3383   /// See AbstractAttribute::updateImpl(...).
3384   ChangeStatus updateImpl(Attributor &A) override {
3385     return indicatePessimisticFixpoint();
3386   }
3387 
3388   /// See AbstractAttribute::trackStatistics()
3389   void trackStatistics() const override {}
3390 };
3391 
3392 /// -------------------- Dereferenceable Argument Attribute --------------------
3393 
3394 template <>
3395 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3396                                                      const DerefState &R) {
3397   ChangeStatus CS0 =
3398       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3399   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3400   return CS0 | CS1;
3401 }
3402 
3403 struct AADereferenceableImpl : AADereferenceable {
3404   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3405       : AADereferenceable(IRP, A) {}
3406   using StateType = DerefState;
3407 
3408   /// See AbstractAttribute::initialize(...).
3409   void initialize(Attributor &A) override {
3410     SmallVector<Attribute, 4> Attrs;
3411     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3412              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3413     for (const Attribute &Attr : Attrs)
3414       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3415 
3416     const IRPosition &IRP = this->getIRPosition();
3417     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP,
3418                                        /* TrackDependence */ false);
3419 
3420     bool CanBeNull;
3421     takeKnownDerefBytesMaximum(
3422         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3423             A.getDataLayout(), CanBeNull));
3424 
3425     bool IsFnInterface = IRP.isFnInterfaceKind();
3426     Function *FnScope = IRP.getAnchorScope();
3427     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3428       indicatePessimisticFixpoint();
3429       return;
3430     }
3431 
3432     if (Instruction *CtxI = getCtxI())
3433       followUsesInMBEC(*this, A, getState(), *CtxI);
3434   }
3435 
3436   /// See AbstractAttribute::getState()
3437   /// {
3438   StateType &getState() override { return *this; }
3439   const StateType &getState() const override { return *this; }
3440   /// }
3441 
3442   /// Helper function for collecting accessed bytes in must-be-executed-context
3443   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3444                               DerefState &State) {
3445     const Value *UseV = U->get();
3446     if (!UseV->getType()->isPointerTy())
3447       return;
3448 
3449     Type *PtrTy = UseV->getType();
3450     const DataLayout &DL = A.getDataLayout();
3451     int64_t Offset;
3452     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3453             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3454       if (Base == &getAssociatedValue() &&
3455           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3456         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3457         State.addAccessedBytes(Offset, Size);
3458       }
3459     }
3460     return;
3461   }
3462 
3463   /// See followUsesInMBEC
3464   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3465                        AADereferenceable::StateType &State) {
3466     bool IsNonNull = false;
3467     bool TrackUse = false;
3468     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3469         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3470     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
3471                       << " for instruction " << *I << "\n");
3472 
3473     addAccessedBytesForUse(A, U, I, State);
3474     State.takeKnownDerefBytesMaximum(DerefBytes);
3475     return TrackUse;
3476   }
3477 
3478   /// See AbstractAttribute::manifest(...).
3479   ChangeStatus manifest(Attributor &A) override {
3480     ChangeStatus Change = AADereferenceable::manifest(A);
3481     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3482       removeAttrs({Attribute::DereferenceableOrNull});
3483       return ChangeStatus::CHANGED;
3484     }
3485     return Change;
3486   }
3487 
3488   void getDeducedAttributes(LLVMContext &Ctx,
3489                             SmallVectorImpl<Attribute> &Attrs) const override {
3490     // TODO: Add *_globally support
3491     if (isAssumedNonNull())
3492       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3493           Ctx, getAssumedDereferenceableBytes()));
3494     else
3495       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3496           Ctx, getAssumedDereferenceableBytes()));
3497   }
3498 
3499   /// See AbstractAttribute::getAsStr().
3500   const std::string getAsStr() const override {
3501     if (!getAssumedDereferenceableBytes())
3502       return "unknown-dereferenceable";
3503     return std::string("dereferenceable") +
3504            (isAssumedNonNull() ? "" : "_or_null") +
3505            (isAssumedGlobal() ? "_globally" : "") + "<" +
3506            std::to_string(getKnownDereferenceableBytes()) + "-" +
3507            std::to_string(getAssumedDereferenceableBytes()) + ">";
3508   }
3509 };
3510 
3511 /// Dereferenceable attribute for a floating value.
3512 struct AADereferenceableFloating : AADereferenceableImpl {
3513   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
3514       : AADereferenceableImpl(IRP, A) {}
3515 
3516   /// See AbstractAttribute::updateImpl(...).
3517   ChangeStatus updateImpl(Attributor &A) override {
3518     const DataLayout &DL = A.getDataLayout();
3519 
3520     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
3521                             bool Stripped) -> bool {
3522       unsigned IdxWidth =
3523           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3524       APInt Offset(IdxWidth, 0);
3525       const Value *Base =
3526           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
3527 
3528       const auto &AA =
3529           A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
3530       int64_t DerefBytes = 0;
3531       if (!Stripped && this == &AA) {
3532         // Use IR information if we did not strip anything.
3533         // TODO: track globally.
3534         bool CanBeNull;
3535         DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3536         T.GlobalState.indicatePessimisticFixpoint();
3537       } else {
3538         const DerefState &DS = AA.getState();
3539         DerefBytes = DS.DerefBytesState.getAssumed();
3540         T.GlobalState &= DS.GlobalState;
3541       }
3542 
3543       // For now we do not try to "increase" dereferenceability due to negative
3544       // indices as we first have to come up with code to deal with loops and
3545       // for overflows of the dereferenceable bytes.
3546       int64_t OffsetSExt = Offset.getSExtValue();
3547       if (OffsetSExt < 0)
3548         OffsetSExt = 0;
3549 
3550       T.takeAssumedDerefBytesMinimum(
3551           std::max(int64_t(0), DerefBytes - OffsetSExt));
3552 
3553       if (this == &AA) {
3554         if (!Stripped) {
3555           // If nothing was stripped IR information is all we got.
3556           T.takeKnownDerefBytesMaximum(
3557               std::max(int64_t(0), DerefBytes - OffsetSExt));
3558           T.indicatePessimisticFixpoint();
3559         } else if (OffsetSExt > 0) {
3560           // If something was stripped but there is circular reasoning we look
3561           // for the offset. If it is positive we basically decrease the
3562           // dereferenceable bytes in a circluar loop now, which will simply
3563           // drive them down to the known value in a very slow way which we
3564           // can accelerate.
3565           T.indicatePessimisticFixpoint();
3566         }
3567       }
3568 
3569       return T.isValidState();
3570     };
3571 
3572     DerefState T;
3573     if (!genericValueTraversal<AADereferenceable, DerefState>(
3574             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
3575       return indicatePessimisticFixpoint();
3576 
3577     return clampStateAndIndicateChange(getState(), T);
3578   }
3579 
3580   /// See AbstractAttribute::trackStatistics()
3581   void trackStatistics() const override {
3582     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3583   }
3584 };
3585 
3586 /// Dereferenceable attribute for a return value.
3587 struct AADereferenceableReturned final
3588     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
3589   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
3590       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3591             IRP, A) {}
3592 
3593   /// See AbstractAttribute::trackStatistics()
3594   void trackStatistics() const override {
3595     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3596   }
3597 };
3598 
3599 /// Dereferenceable attribute for an argument
3600 struct AADereferenceableArgument final
3601     : AAArgumentFromCallSiteArguments<AADereferenceable,
3602                                       AADereferenceableImpl> {
3603   using Base =
3604       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
3605   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
3606       : Base(IRP, A) {}
3607 
3608   /// See AbstractAttribute::trackStatistics()
3609   void trackStatistics() const override {
3610     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3611   }
3612 };
3613 
3614 /// Dereferenceable attribute for a call site argument.
3615 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
3616   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
3617       : AADereferenceableFloating(IRP, A) {}
3618 
3619   /// See AbstractAttribute::trackStatistics()
3620   void trackStatistics() const override {
3621     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3622   }
3623 };
3624 
3625 /// Dereferenceable attribute deduction for a call site return value.
3626 struct AADereferenceableCallSiteReturned final
3627     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
3628   using Base =
3629       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
3630   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
3631       : Base(IRP, A) {}
3632 
3633   /// See AbstractAttribute::trackStatistics()
3634   void trackStatistics() const override {
3635     STATS_DECLTRACK_CS_ATTR(dereferenceable);
3636   }
3637 };
3638 
3639 // ------------------------ Align Argument Attribute ------------------------
3640 
3641 static unsigned getKnownAlignForUse(Attributor &A,
3642                                     AbstractAttribute &QueryingAA,
3643                                     Value &AssociatedValue, const Use *U,
3644                                     const Instruction *I, bool &TrackUse) {
3645   // We need to follow common pointer manipulation uses to the accesses they
3646   // feed into.
3647   if (isa<CastInst>(I)) {
3648     // Follow all but ptr2int casts.
3649     TrackUse = !isa<PtrToIntInst>(I);
3650     return 0;
3651   }
3652   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3653     if (GEP->hasAllConstantIndices()) {
3654       TrackUse = true;
3655       return 0;
3656     }
3657   }
3658 
3659   MaybeAlign MA;
3660   if (const auto *CB = dyn_cast<CallBase>(I)) {
3661     if (CB->isBundleOperand(U) || CB->isCallee(U))
3662       return 0;
3663 
3664     unsigned ArgNo = CB->getArgOperandNo(U);
3665     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
3666     // As long as we only use known information there is no need to track
3667     // dependences here.
3668     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
3669                                         /* TrackDependence */ false);
3670     MA = MaybeAlign(AlignAA.getKnownAlign());
3671   }
3672 
3673   const DataLayout &DL = A.getDataLayout();
3674   const Value *UseV = U->get();
3675   if (auto *SI = dyn_cast<StoreInst>(I)) {
3676     if (SI->getPointerOperand() == UseV)
3677       MA = SI->getAlign();
3678   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
3679     if (LI->getPointerOperand() == UseV)
3680       MA = LI->getAlign();
3681   }
3682 
3683   if (!MA || *MA <= 1)
3684     return 0;
3685 
3686   unsigned Alignment = MA->value();
3687   int64_t Offset;
3688 
3689   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3690     if (Base == &AssociatedValue) {
3691       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3692       // So we can say that the maximum power of two which is a divisor of
3693       // gcd(Offset, Alignment) is an alignment.
3694 
3695       uint32_t gcd =
3696           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3697       Alignment = llvm::PowerOf2Floor(gcd);
3698     }
3699   }
3700 
3701   return Alignment;
3702 }
3703 
3704 struct AAAlignImpl : AAAlign {
3705   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
3706 
3707   /// See AbstractAttribute::initialize(...).
3708   void initialize(Attributor &A) override {
3709     SmallVector<Attribute, 4> Attrs;
3710     getAttrs({Attribute::Alignment}, Attrs);
3711     for (const Attribute &Attr : Attrs)
3712       takeKnownMaximum(Attr.getValueAsInt());
3713 
3714     Value &V = getAssociatedValue();
3715     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
3716     //       use of the function pointer. This was caused by D73131. We want to
3717     //       avoid this for function pointers especially because we iterate
3718     //       their uses and int2ptr is not handled. It is not a correctness
3719     //       problem though!
3720     if (!V.getType()->getPointerElementType()->isFunctionTy())
3721       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
3722 
3723     if (getIRPosition().isFnInterfaceKind() &&
3724         (!getAnchorScope() ||
3725          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
3726       indicatePessimisticFixpoint();
3727       return;
3728     }
3729 
3730     if (Instruction *CtxI = getCtxI())
3731       followUsesInMBEC(*this, A, getState(), *CtxI);
3732   }
3733 
3734   /// See AbstractAttribute::manifest(...).
3735   ChangeStatus manifest(Attributor &A) override {
3736     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3737 
3738     // Check for users that allow alignment annotations.
3739     Value &AssociatedValue = getAssociatedValue();
3740     for (const Use &U : AssociatedValue.uses()) {
3741       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3742         if (SI->getPointerOperand() == &AssociatedValue)
3743           if (SI->getAlignment() < getAssumedAlign()) {
3744             STATS_DECLTRACK(AAAlign, Store,
3745                             "Number of times alignment added to a store");
3746             SI->setAlignment(Align(getAssumedAlign()));
3747             LoadStoreChanged = ChangeStatus::CHANGED;
3748           }
3749       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3750         if (LI->getPointerOperand() == &AssociatedValue)
3751           if (LI->getAlignment() < getAssumedAlign()) {
3752             LI->setAlignment(Align(getAssumedAlign()));
3753             STATS_DECLTRACK(AAAlign, Load,
3754                             "Number of times alignment added to a load");
3755             LoadStoreChanged = ChangeStatus::CHANGED;
3756           }
3757       }
3758     }
3759 
3760     ChangeStatus Changed = AAAlign::manifest(A);
3761 
3762     Align InheritAlign =
3763         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3764     if (InheritAlign >= getAssumedAlign())
3765       return LoadStoreChanged;
3766     return Changed | LoadStoreChanged;
3767   }
3768 
3769   // TODO: Provide a helper to determine the implied ABI alignment and check in
3770   //       the existing manifest method and a new one for AAAlignImpl that value
3771   //       to avoid making the alignment explicit if it did not improve.
3772 
3773   /// See AbstractAttribute::getDeducedAttributes
3774   virtual void
3775   getDeducedAttributes(LLVMContext &Ctx,
3776                        SmallVectorImpl<Attribute> &Attrs) const override {
3777     if (getAssumedAlign() > 1)
3778       Attrs.emplace_back(
3779           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3780   }
3781 
3782   /// See followUsesInMBEC
3783   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3784                        AAAlign::StateType &State) {
3785     bool TrackUse = false;
3786 
3787     unsigned int KnownAlign =
3788         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3789     State.takeKnownMaximum(KnownAlign);
3790 
3791     return TrackUse;
3792   }
3793 
3794   /// See AbstractAttribute::getAsStr().
3795   const std::string getAsStr() const override {
3796     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3797                                 "-" + std::to_string(getAssumedAlign()) + ">")
3798                              : "unknown-align";
3799   }
3800 };
3801 
3802 /// Align attribute for a floating value.
3803 struct AAAlignFloating : AAAlignImpl {
3804   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
3805 
3806   /// See AbstractAttribute::updateImpl(...).
3807   ChangeStatus updateImpl(Attributor &A) override {
3808     const DataLayout &DL = A.getDataLayout();
3809 
3810     auto VisitValueCB = [&](Value &V, const Instruction *,
3811                             AAAlign::StateType &T, bool Stripped) -> bool {
3812       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
3813       if (!Stripped && this == &AA) {
3814         // Use only IR information if we did not strip anything.
3815         Align PA = V.getPointerAlignment(DL);
3816         T.takeKnownMaximum(PA.value());
3817         T.indicatePessimisticFixpoint();
3818       } else {
3819         // Use abstract attribute information.
3820         const AAAlign::StateType &DS = AA.getState();
3821         T ^= DS;
3822       }
3823       return T.isValidState();
3824     };
3825 
3826     StateType T;
3827     if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3828                                                    VisitValueCB, getCtxI()))
3829       return indicatePessimisticFixpoint();
3830 
3831     // TODO: If we know we visited all incoming values, thus no are assumed
3832     // dead, we can take the known information from the state T.
3833     return clampStateAndIndicateChange(getState(), T);
3834   }
3835 
3836   /// See AbstractAttribute::trackStatistics()
3837   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3838 };
3839 
3840 /// Align attribute for function return value.
3841 struct AAAlignReturned final
3842     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3843   AAAlignReturned(const IRPosition &IRP, Attributor &A)
3844       : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP, A) {}
3845 
3846   /// See AbstractAttribute::trackStatistics()
3847   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3848 };
3849 
3850 /// Align attribute for function argument.
3851 struct AAAlignArgument final
3852     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
3853   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
3854   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3855 
3856   /// See AbstractAttribute::manifest(...).
3857   ChangeStatus manifest(Attributor &A) override {
3858     // If the associated argument is involved in a must-tail call we give up
3859     // because we would need to keep the argument alignments of caller and
3860     // callee in-sync. Just does not seem worth the trouble right now.
3861     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
3862       return ChangeStatus::UNCHANGED;
3863     return Base::manifest(A);
3864   }
3865 
3866   /// See AbstractAttribute::trackStatistics()
3867   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
3868 };
3869 
3870 struct AAAlignCallSiteArgument final : AAAlignFloating {
3871   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
3872       : AAAlignFloating(IRP, A) {}
3873 
3874   /// See AbstractAttribute::manifest(...).
3875   ChangeStatus manifest(Attributor &A) override {
3876     // If the associated argument is involved in a must-tail call we give up
3877     // because we would need to keep the argument alignments of caller and
3878     // callee in-sync. Just does not seem worth the trouble right now.
3879     if (Argument *Arg = getAssociatedArgument())
3880       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
3881         return ChangeStatus::UNCHANGED;
3882     ChangeStatus Changed = AAAlignImpl::manifest(A);
3883     Align InheritAlign =
3884         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3885     if (InheritAlign >= getAssumedAlign())
3886       Changed = ChangeStatus::UNCHANGED;
3887     return Changed;
3888   }
3889 
3890   /// See AbstractAttribute::updateImpl(Attributor &A).
3891   ChangeStatus updateImpl(Attributor &A) override {
3892     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
3893     if (Argument *Arg = getAssociatedArgument()) {
3894       // We only take known information from the argument
3895       // so we do not need to track a dependence.
3896       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
3897           *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
3898       takeKnownMaximum(ArgAlignAA.getKnownAlign());
3899     }
3900     return Changed;
3901   }
3902 
3903   /// See AbstractAttribute::trackStatistics()
3904   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
3905 };
3906 
3907 /// Align attribute deduction for a call site return value.
3908 struct AAAlignCallSiteReturned final
3909     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
3910   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
3911   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
3912       : Base(IRP, A) {}
3913 
3914   /// See AbstractAttribute::initialize(...).
3915   void initialize(Attributor &A) override {
3916     Base::initialize(A);
3917     Function *F = getAssociatedFunction();
3918     if (!F)
3919       indicatePessimisticFixpoint();
3920   }
3921 
3922   /// See AbstractAttribute::trackStatistics()
3923   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
3924 };
3925 
3926 /// ------------------ Function No-Return Attribute ----------------------------
3927 struct AANoReturnImpl : public AANoReturn {
3928   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
3929 
3930   /// See AbstractAttribute::initialize(...).
3931   void initialize(Attributor &A) override {
3932     AANoReturn::initialize(A);
3933     Function *F = getAssociatedFunction();
3934     if (!F)
3935       indicatePessimisticFixpoint();
3936   }
3937 
3938   /// See AbstractAttribute::getAsStr().
3939   const std::string getAsStr() const override {
3940     return getAssumed() ? "noreturn" : "may-return";
3941   }
3942 
3943   /// See AbstractAttribute::updateImpl(Attributor &A).
3944   virtual ChangeStatus updateImpl(Attributor &A) override {
3945     auto CheckForNoReturn = [](Instruction &) { return false; };
3946     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
3947                                    {(unsigned)Instruction::Ret}))
3948       return indicatePessimisticFixpoint();
3949     return ChangeStatus::UNCHANGED;
3950   }
3951 };
3952 
3953 struct AANoReturnFunction final : AANoReturnImpl {
3954   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
3955       : AANoReturnImpl(IRP, A) {}
3956 
3957   /// See AbstractAttribute::trackStatistics()
3958   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
3959 };
3960 
3961 /// NoReturn attribute deduction for a call sites.
3962 struct AANoReturnCallSite final : AANoReturnImpl {
3963   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
3964       : AANoReturnImpl(IRP, A) {}
3965 
3966   /// See AbstractAttribute::updateImpl(...).
3967   ChangeStatus updateImpl(Attributor &A) override {
3968     // TODO: Once we have call site specific value information we can provide
3969     //       call site specific liveness information and then it makes
3970     //       sense to specialize attributes for call sites arguments instead of
3971     //       redirecting requests to the callee argument.
3972     Function *F = getAssociatedFunction();
3973     const IRPosition &FnPos = IRPosition::function(*F);
3974     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
3975     return clampStateAndIndicateChange(getState(), FnAA.getState());
3976   }
3977 
3978   /// See AbstractAttribute::trackStatistics()
3979   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
3980 };
3981 
3982 /// ----------------------- Variable Capturing ---------------------------------
3983 
3984 /// A class to hold the state of for no-capture attributes.
3985 struct AANoCaptureImpl : public AANoCapture {
3986   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
3987 
3988   /// See AbstractAttribute::initialize(...).
3989   void initialize(Attributor &A) override {
3990     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
3991       indicateOptimisticFixpoint();
3992       return;
3993     }
3994     Function *AnchorScope = getAnchorScope();
3995     if (isFnInterfaceKind() &&
3996         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
3997       indicatePessimisticFixpoint();
3998       return;
3999     }
4000 
4001     // You cannot "capture" null in the default address space.
4002     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4003         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4004       indicateOptimisticFixpoint();
4005       return;
4006     }
4007 
4008     const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope;
4009 
4010     // Check what state the associated function can actually capture.
4011     if (F)
4012       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4013     else
4014       indicatePessimisticFixpoint();
4015   }
4016 
4017   /// See AbstractAttribute::updateImpl(...).
4018   ChangeStatus updateImpl(Attributor &A) override;
4019 
4020   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4021   virtual void
4022   getDeducedAttributes(LLVMContext &Ctx,
4023                        SmallVectorImpl<Attribute> &Attrs) const override {
4024     if (!isAssumedNoCaptureMaybeReturned())
4025       return;
4026 
4027     if (getArgNo() >= 0) {
4028       if (isAssumedNoCapture())
4029         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4030       else if (ManifestInternal)
4031         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4032     }
4033   }
4034 
4035   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4036   /// depending on the ability of the function associated with \p IRP to capture
4037   /// state in memory and through "returning/throwing", respectively.
4038   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4039                                                    const Function &F,
4040                                                    BitIntegerState &State) {
4041     // TODO: Once we have memory behavior attributes we should use them here.
4042 
4043     // If we know we cannot communicate or write to memory, we do not care about
4044     // ptr2int anymore.
4045     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4046         F.getReturnType()->isVoidTy()) {
4047       State.addKnownBits(NO_CAPTURE);
4048       return;
4049     }
4050 
4051     // A function cannot capture state in memory if it only reads memory, it can
4052     // however return/throw state and the state might be influenced by the
4053     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4054     if (F.onlyReadsMemory())
4055       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4056 
4057     // A function cannot communicate state back if it does not through
4058     // exceptions and doesn not return values.
4059     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4060       State.addKnownBits(NOT_CAPTURED_IN_RET);
4061 
4062     // Check existing "returned" attributes.
4063     int ArgNo = IRP.getArgNo();
4064     if (F.doesNotThrow() && ArgNo >= 0) {
4065       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4066         if (F.hasParamAttribute(u, Attribute::Returned)) {
4067           if (u == unsigned(ArgNo))
4068             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4069           else if (F.onlyReadsMemory())
4070             State.addKnownBits(NO_CAPTURE);
4071           else
4072             State.addKnownBits(NOT_CAPTURED_IN_RET);
4073           break;
4074         }
4075     }
4076   }
4077 
4078   /// See AbstractState::getAsStr().
4079   const std::string getAsStr() const override {
4080     if (isKnownNoCapture())
4081       return "known not-captured";
4082     if (isAssumedNoCapture())
4083       return "assumed not-captured";
4084     if (isKnownNoCaptureMaybeReturned())
4085       return "known not-captured-maybe-returned";
4086     if (isAssumedNoCaptureMaybeReturned())
4087       return "assumed not-captured-maybe-returned";
4088     return "assumed-captured";
4089   }
4090 };
4091 
4092 /// Attributor-aware capture tracker.
4093 struct AACaptureUseTracker final : public CaptureTracker {
4094 
4095   /// Create a capture tracker that can lookup in-flight abstract attributes
4096   /// through the Attributor \p A.
4097   ///
4098   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4099   /// search is stopped. If a use leads to a return instruction,
4100   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4101   /// If a use leads to a ptr2int which may capture the value,
4102   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4103   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4104   /// set. All values in \p PotentialCopies are later tracked as well. For every
4105   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4106   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4107   /// conservatively set to true.
4108   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4109                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4110                       SmallVectorImpl<const Value *> &PotentialCopies,
4111                       unsigned &RemainingUsesToExplore)
4112       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4113         PotentialCopies(PotentialCopies),
4114         RemainingUsesToExplore(RemainingUsesToExplore) {}
4115 
4116   /// Determine if \p V maybe captured. *Also updates the state!*
4117   bool valueMayBeCaptured(const Value *V) {
4118     if (V->getType()->isPointerTy()) {
4119       PointerMayBeCaptured(V, this);
4120     } else {
4121       State.indicatePessimisticFixpoint();
4122     }
4123     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4124   }
4125 
4126   /// See CaptureTracker::tooManyUses().
4127   void tooManyUses() override {
4128     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4129   }
4130 
4131   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4132     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4133       return true;
4134     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4135         NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
4136         DepClassTy::OPTIONAL);
4137     return DerefAA.getAssumedDereferenceableBytes();
4138   }
4139 
4140   /// See CaptureTracker::captured(...).
4141   bool captured(const Use *U) override {
4142     Instruction *UInst = cast<Instruction>(U->getUser());
4143     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4144                       << "\n");
4145 
4146     // Because we may reuse the tracker multiple times we keep track of the
4147     // number of explored uses ourselves as well.
4148     if (RemainingUsesToExplore-- == 0) {
4149       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4150       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4151                           /* Return */ true);
4152     }
4153 
4154     // Deal with ptr2int by following uses.
4155     if (isa<PtrToIntInst>(UInst)) {
4156       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4157       return valueMayBeCaptured(UInst);
4158     }
4159 
4160     // Explicitly catch return instructions.
4161     if (isa<ReturnInst>(UInst))
4162       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4163                           /* Return */ true);
4164 
4165     // For now we only use special logic for call sites. However, the tracker
4166     // itself knows about a lot of other non-capturing cases already.
4167     auto *CB = dyn_cast<CallBase>(UInst);
4168     if (!CB || !CB->isArgOperand(U))
4169       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4170                           /* Return */ true);
4171 
4172     unsigned ArgNo = CB->getArgOperandNo(U);
4173     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4174     // If we have a abstract no-capture attribute for the argument we can use
4175     // it to justify a non-capture attribute here. This allows recursion!
4176     auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
4177     if (ArgNoCaptureAA.isAssumedNoCapture())
4178       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4179                           /* Return */ false);
4180     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4181       addPotentialCopy(*CB);
4182       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4183                           /* Return */ false);
4184     }
4185 
4186     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4187     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4188                         /* Return */ true);
4189   }
4190 
4191   /// Register \p CS as potential copy of the value we are checking.
4192   void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); }
4193 
4194   /// See CaptureTracker::shouldExplore(...).
4195   bool shouldExplore(const Use *U) override {
4196     // Check liveness and ignore droppable users.
4197     return !U->getUser()->isDroppable() &&
4198            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4199   }
4200 
4201   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4202   /// \p CapturedInRet, then return the appropriate value for use in the
4203   /// CaptureTracker::captured() interface.
4204   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4205                     bool CapturedInRet) {
4206     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4207                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4208     if (CapturedInMem)
4209       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4210     if (CapturedInInt)
4211       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4212     if (CapturedInRet)
4213       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4214     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4215   }
4216 
4217 private:
4218   /// The attributor providing in-flight abstract attributes.
4219   Attributor &A;
4220 
4221   /// The abstract attribute currently updated.
4222   AANoCapture &NoCaptureAA;
4223 
4224   /// The abstract liveness state.
4225   const AAIsDead &IsDeadAA;
4226 
4227   /// The state currently updated.
4228   AANoCapture::StateType &State;
4229 
4230   /// Set of potential copies of the tracked value.
4231   SmallVectorImpl<const Value *> &PotentialCopies;
4232 
4233   /// Global counter to limit the number of explored uses.
4234   unsigned &RemainingUsesToExplore;
4235 };
4236 
4237 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4238   const IRPosition &IRP = getIRPosition();
4239   const Value *V =
4240       getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
4241   if (!V)
4242     return indicatePessimisticFixpoint();
4243 
4244   const Function *F =
4245       getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4246   assert(F && "Expected a function!");
4247   const IRPosition &FnPos = IRPosition::function(*F);
4248   const auto &IsDeadAA =
4249       A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
4250 
4251   AANoCapture::StateType T;
4252 
4253   // Readonly means we cannot capture through memory.
4254   const auto &FnMemAA =
4255       A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false);
4256   if (FnMemAA.isAssumedReadOnly()) {
4257     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4258     if (FnMemAA.isKnownReadOnly())
4259       addKnownBits(NOT_CAPTURED_IN_MEM);
4260     else
4261       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4262   }
4263 
4264   // Make sure all returned values are different than the underlying value.
4265   // TODO: we could do this in a more sophisticated way inside
4266   //       AAReturnedValues, e.g., track all values that escape through returns
4267   //       directly somehow.
4268   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4269     bool SeenConstant = false;
4270     for (auto &It : RVAA.returned_values()) {
4271       if (isa<Constant>(It.first)) {
4272         if (SeenConstant)
4273           return false;
4274         SeenConstant = true;
4275       } else if (!isa<Argument>(It.first) ||
4276                  It.first == getAssociatedArgument())
4277         return false;
4278     }
4279     return true;
4280   };
4281 
4282   const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
4283       *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4284   if (NoUnwindAA.isAssumedNoUnwind()) {
4285     bool IsVoidTy = F->getReturnType()->isVoidTy();
4286     const AAReturnedValues *RVAA =
4287         IsVoidTy ? nullptr
4288                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4289                                                  /* TrackDependence */ true,
4290                                                  DepClassTy::OPTIONAL);
4291     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4292       T.addKnownBits(NOT_CAPTURED_IN_RET);
4293       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4294         return ChangeStatus::UNCHANGED;
4295       if (NoUnwindAA.isKnownNoUnwind() &&
4296           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4297         addKnownBits(NOT_CAPTURED_IN_RET);
4298         if (isKnown(NOT_CAPTURED_IN_MEM))
4299           return indicateOptimisticFixpoint();
4300       }
4301     }
4302   }
4303 
4304   // Use the CaptureTracker interface and logic with the specialized tracker,
4305   // defined in AACaptureUseTracker, that can look at in-flight abstract
4306   // attributes and directly updates the assumed state.
4307   SmallVector<const Value *, 4> PotentialCopies;
4308   unsigned RemainingUsesToExplore =
4309       getDefaultMaxUsesToExploreForCaptureTracking();
4310   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4311                               RemainingUsesToExplore);
4312 
4313   // Check all potential copies of the associated value until we can assume
4314   // none will be captured or we have to assume at least one might be.
4315   unsigned Idx = 0;
4316   PotentialCopies.push_back(V);
4317   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4318     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4319 
4320   AANoCapture::StateType &S = getState();
4321   auto Assumed = S.getAssumed();
4322   S.intersectAssumedBits(T.getAssumed());
4323   if (!isAssumedNoCaptureMaybeReturned())
4324     return indicatePessimisticFixpoint();
4325   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4326                                    : ChangeStatus::CHANGED;
4327 }
4328 
4329 /// NoCapture attribute for function arguments.
4330 struct AANoCaptureArgument final : AANoCaptureImpl {
4331   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4332       : AANoCaptureImpl(IRP, A) {}
4333 
4334   /// See AbstractAttribute::trackStatistics()
4335   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4336 };
4337 
4338 /// NoCapture attribute for call site arguments.
4339 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4340   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4341       : AANoCaptureImpl(IRP, A) {}
4342 
4343   /// See AbstractAttribute::initialize(...).
4344   void initialize(Attributor &A) override {
4345     if (Argument *Arg = getAssociatedArgument())
4346       if (Arg->hasByValAttr())
4347         indicateOptimisticFixpoint();
4348     AANoCaptureImpl::initialize(A);
4349   }
4350 
4351   /// See AbstractAttribute::updateImpl(...).
4352   ChangeStatus updateImpl(Attributor &A) override {
4353     // TODO: Once we have call site specific value information we can provide
4354     //       call site specific liveness information and then it makes
4355     //       sense to specialize attributes for call sites arguments instead of
4356     //       redirecting requests to the callee argument.
4357     Argument *Arg = getAssociatedArgument();
4358     if (!Arg)
4359       return indicatePessimisticFixpoint();
4360     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4361     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
4362     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4363   }
4364 
4365   /// See AbstractAttribute::trackStatistics()
4366   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4367 };
4368 
4369 /// NoCapture attribute for floating values.
4370 struct AANoCaptureFloating final : AANoCaptureImpl {
4371   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4372       : AANoCaptureImpl(IRP, A) {}
4373 
4374   /// See AbstractAttribute::trackStatistics()
4375   void trackStatistics() const override {
4376     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4377   }
4378 };
4379 
4380 /// NoCapture attribute for function return value.
4381 struct AANoCaptureReturned final : AANoCaptureImpl {
4382   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4383       : AANoCaptureImpl(IRP, A) {
4384     llvm_unreachable("NoCapture is not applicable to function returns!");
4385   }
4386 
4387   /// See AbstractAttribute::initialize(...).
4388   void initialize(Attributor &A) override {
4389     llvm_unreachable("NoCapture is not applicable to function returns!");
4390   }
4391 
4392   /// See AbstractAttribute::updateImpl(...).
4393   ChangeStatus updateImpl(Attributor &A) override {
4394     llvm_unreachable("NoCapture is not applicable to function returns!");
4395   }
4396 
4397   /// See AbstractAttribute::trackStatistics()
4398   void trackStatistics() const override {}
4399 };
4400 
4401 /// NoCapture attribute deduction for a call site return value.
4402 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4403   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4404       : AANoCaptureImpl(IRP, A) {}
4405 
4406   /// See AbstractAttribute::trackStatistics()
4407   void trackStatistics() const override {
4408     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4409   }
4410 };
4411 
4412 /// ------------------ Value Simplify Attribute ----------------------------
4413 struct AAValueSimplifyImpl : AAValueSimplify {
4414   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
4415       : AAValueSimplify(IRP, A) {}
4416 
4417   /// See AbstractAttribute::initialize(...).
4418   void initialize(Attributor &A) override {
4419     if (getAssociatedValue().getType()->isVoidTy())
4420       indicatePessimisticFixpoint();
4421   }
4422 
4423   /// See AbstractAttribute::getAsStr().
4424   const std::string getAsStr() const override {
4425     return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4426                         : "not-simple";
4427   }
4428 
4429   /// See AbstractAttribute::trackStatistics()
4430   void trackStatistics() const override {}
4431 
4432   /// See AAValueSimplify::getAssumedSimplifiedValue()
4433   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4434     if (!getAssumed())
4435       return const_cast<Value *>(&getAssociatedValue());
4436     return SimplifiedAssociatedValue;
4437   }
4438 
4439   /// Helper function for querying AAValueSimplify and updating candicate.
4440   /// \param QueryingValue Value trying to unify with SimplifiedValue
4441   /// \param AccumulatedSimplifiedValue Current simplification result.
4442   static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4443                              Value &QueryingValue,
4444                              Optional<Value *> &AccumulatedSimplifiedValue) {
4445     // FIXME: Add a typecast support.
4446 
4447     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4448         QueryingAA, IRPosition::value(QueryingValue));
4449 
4450     Optional<Value *> QueryingValueSimplified =
4451         ValueSimplifyAA.getAssumedSimplifiedValue(A);
4452 
4453     if (!QueryingValueSimplified.hasValue())
4454       return true;
4455 
4456     if (!QueryingValueSimplified.getValue())
4457       return false;
4458 
4459     Value &QueryingValueSimplifiedUnwrapped =
4460         *QueryingValueSimplified.getValue();
4461 
4462     if (AccumulatedSimplifiedValue.hasValue() &&
4463         !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4464         !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4465       return AccumulatedSimplifiedValue == QueryingValueSimplified;
4466     if (AccumulatedSimplifiedValue.hasValue() &&
4467         isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4468       return true;
4469 
4470     LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4471                       << " is assumed to be "
4472                       << QueryingValueSimplifiedUnwrapped << "\n");
4473 
4474     AccumulatedSimplifiedValue = QueryingValueSimplified;
4475     return true;
4476   }
4477 
4478   /// Returns a candidate is found or not
4479   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
4480     if (!getAssociatedValue().getType()->isIntegerTy())
4481       return false;
4482 
4483     const auto &AA =
4484         A.getAAFor<AAType>(*this, getIRPosition(), /* TrackDependence */ false);
4485 
4486     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
4487 
4488     if (!COpt.hasValue()) {
4489       SimplifiedAssociatedValue = llvm::None;
4490       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4491       return true;
4492     }
4493     if (auto *C = COpt.getValue()) {
4494       SimplifiedAssociatedValue = C;
4495       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4496       return true;
4497     }
4498     return false;
4499   }
4500 
4501   bool askSimplifiedValueForOtherAAs(Attributor &A) {
4502     if (askSimplifiedValueFor<AAValueConstantRange>(A))
4503       return true;
4504     if (askSimplifiedValueFor<AAPotentialValues>(A))
4505       return true;
4506     return false;
4507   }
4508 
4509   /// See AbstractAttribute::manifest(...).
4510   ChangeStatus manifest(Attributor &A) override {
4511     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4512 
4513     if (SimplifiedAssociatedValue.hasValue() &&
4514         !SimplifiedAssociatedValue.getValue())
4515       return Changed;
4516 
4517     Value &V = getAssociatedValue();
4518     auto *C = SimplifiedAssociatedValue.hasValue()
4519                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4520                   : UndefValue::get(V.getType());
4521     if (C) {
4522       // We can replace the AssociatedValue with the constant.
4523       if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4524         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4525                           << " :: " << *this << "\n");
4526         if (A.changeValueAfterManifest(V, *C))
4527           Changed = ChangeStatus::CHANGED;
4528       }
4529     }
4530 
4531     return Changed | AAValueSimplify::manifest(A);
4532   }
4533 
4534   /// See AbstractState::indicatePessimisticFixpoint(...).
4535   ChangeStatus indicatePessimisticFixpoint() override {
4536     // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4537     // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4538     SimplifiedAssociatedValue = &getAssociatedValue();
4539     indicateOptimisticFixpoint();
4540     return ChangeStatus::CHANGED;
4541   }
4542 
4543 protected:
4544   // An assumed simplified value. Initially, it is set to Optional::None, which
4545   // means that the value is not clear under current assumption. If in the
4546   // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4547   // returns orignal associated value.
4548   Optional<Value *> SimplifiedAssociatedValue;
4549 };
4550 
4551 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
4552   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
4553       : AAValueSimplifyImpl(IRP, A) {}
4554 
4555   void initialize(Attributor &A) override {
4556     AAValueSimplifyImpl::initialize(A);
4557     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
4558       indicatePessimisticFixpoint();
4559     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
4560                  Attribute::StructRet, Attribute::Nest},
4561                 /* IgnoreSubsumingPositions */ true))
4562       indicatePessimisticFixpoint();
4563 
4564     // FIXME: This is a hack to prevent us from propagating function poiner in
4565     // the new pass manager CGSCC pass as it creates call edges the
4566     // CallGraphUpdater cannot handle yet.
4567     Value &V = getAssociatedValue();
4568     if (V.getType()->isPointerTy() &&
4569         V.getType()->getPointerElementType()->isFunctionTy() &&
4570         !A.isModulePass())
4571       indicatePessimisticFixpoint();
4572   }
4573 
4574   /// See AbstractAttribute::updateImpl(...).
4575   ChangeStatus updateImpl(Attributor &A) override {
4576     // Byval is only replacable if it is readonly otherwise we would write into
4577     // the replaced value and not the copy that byval creates implicitly.
4578     Argument *Arg = getAssociatedArgument();
4579     if (Arg->hasByValAttr()) {
4580       // TODO: We probably need to verify synchronization is not an issue, e.g.,
4581       //       there is no race by not copying a constant byval.
4582       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
4583       if (!MemAA.isAssumedReadOnly())
4584         return indicatePessimisticFixpoint();
4585     }
4586 
4587     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4588 
4589     auto PredForCallSite = [&](AbstractCallSite ACS) {
4590       const IRPosition &ACSArgPos =
4591           IRPosition::callsite_argument(ACS, getArgNo());
4592       // Check if a coresponding argument was found or if it is on not
4593       // associated (which can happen for callback calls).
4594       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4595         return false;
4596 
4597       // We can only propagate thread independent values through callbacks.
4598       // This is different to direct/indirect call sites because for them we
4599       // know the thread executing the caller and callee is the same. For
4600       // callbacks this is not guaranteed, thus a thread dependent value could
4601       // be different for the caller and callee, making it invalid to propagate.
4602       Value &ArgOp = ACSArgPos.getAssociatedValue();
4603       if (ACS.isCallbackCall())
4604         if (auto *C = dyn_cast<Constant>(&ArgOp))
4605           if (C->isThreadDependent())
4606             return false;
4607       return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4608     };
4609 
4610     bool AllCallSitesKnown;
4611     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4612                                 AllCallSitesKnown))
4613       if (!askSimplifiedValueForOtherAAs(A))
4614         return indicatePessimisticFixpoint();
4615 
4616     // If a candicate was found in this update, return CHANGED.
4617     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4618                ? ChangeStatus::UNCHANGED
4619                : ChangeStatus ::CHANGED;
4620   }
4621 
4622   /// See AbstractAttribute::trackStatistics()
4623   void trackStatistics() const override {
4624     STATS_DECLTRACK_ARG_ATTR(value_simplify)
4625   }
4626 };
4627 
4628 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
4629   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
4630       : AAValueSimplifyImpl(IRP, A) {}
4631 
4632   /// See AbstractAttribute::updateImpl(...).
4633   ChangeStatus updateImpl(Attributor &A) override {
4634     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4635 
4636     auto PredForReturned = [&](Value &V) {
4637       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4638     };
4639 
4640     if (!A.checkForAllReturnedValues(PredForReturned, *this))
4641       if (!askSimplifiedValueForOtherAAs(A))
4642         return indicatePessimisticFixpoint();
4643 
4644     // If a candicate was found in this update, return CHANGED.
4645     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4646                ? ChangeStatus::UNCHANGED
4647                : ChangeStatus ::CHANGED;
4648   }
4649 
4650   ChangeStatus manifest(Attributor &A) override {
4651     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4652 
4653     if (SimplifiedAssociatedValue.hasValue() &&
4654         !SimplifiedAssociatedValue.getValue())
4655       return Changed;
4656 
4657     Value &V = getAssociatedValue();
4658     auto *C = SimplifiedAssociatedValue.hasValue()
4659                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4660                   : UndefValue::get(V.getType());
4661     if (C) {
4662       auto PredForReturned =
4663           [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4664             // We can replace the AssociatedValue with the constant.
4665             if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4666               return true;
4667 
4668             for (ReturnInst *RI : RetInsts) {
4669               if (RI->getFunction() != getAnchorScope())
4670                 continue;
4671               auto *RC = C;
4672               if (RC->getType() != RI->getReturnValue()->getType())
4673                 RC = ConstantExpr::getBitCast(RC,
4674                                               RI->getReturnValue()->getType());
4675               LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC
4676                                 << " in " << *RI << " :: " << *this << "\n");
4677               if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC))
4678                 Changed = ChangeStatus::CHANGED;
4679             }
4680             return true;
4681           };
4682       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4683     }
4684 
4685     return Changed | AAValueSimplify::manifest(A);
4686   }
4687 
4688   /// See AbstractAttribute::trackStatistics()
4689   void trackStatistics() const override {
4690     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4691   }
4692 };
4693 
4694 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
4695   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
4696       : AAValueSimplifyImpl(IRP, A) {}
4697 
4698   /// See AbstractAttribute::initialize(...).
4699   void initialize(Attributor &A) override {
4700     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
4701     //        Needs investigation.
4702     // AAValueSimplifyImpl::initialize(A);
4703     Value &V = getAnchorValue();
4704 
4705     // TODO: add other stuffs
4706     if (isa<Constant>(V))
4707       indicatePessimisticFixpoint();
4708   }
4709 
4710   /// See AbstractAttribute::updateImpl(...).
4711   ChangeStatus updateImpl(Attributor &A) override {
4712     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4713 
4714     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
4715                             bool Stripped) -> bool {
4716       auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
4717       if (!Stripped && this == &AA) {
4718         // TODO: Look the instruction and check recursively.
4719 
4720         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4721                           << "\n");
4722         return false;
4723       }
4724       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4725     };
4726 
4727     bool Dummy = false;
4728     if (!genericValueTraversal<AAValueSimplify, bool>(
4729             A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(),
4730             /* UseValueSimplify */ false))
4731       if (!askSimplifiedValueForOtherAAs(A))
4732         return indicatePessimisticFixpoint();
4733 
4734     // If a candicate was found in this update, return CHANGED.
4735 
4736     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4737                ? ChangeStatus::UNCHANGED
4738                : ChangeStatus ::CHANGED;
4739   }
4740 
4741   /// See AbstractAttribute::trackStatistics()
4742   void trackStatistics() const override {
4743     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4744   }
4745 };
4746 
4747 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
4748   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
4749       : AAValueSimplifyImpl(IRP, A) {}
4750 
4751   /// See AbstractAttribute::initialize(...).
4752   void initialize(Attributor &A) override {
4753     SimplifiedAssociatedValue = &getAnchorValue();
4754     indicateOptimisticFixpoint();
4755   }
4756   /// See AbstractAttribute::initialize(...).
4757   ChangeStatus updateImpl(Attributor &A) override {
4758     llvm_unreachable(
4759         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4760   }
4761   /// See AbstractAttribute::trackStatistics()
4762   void trackStatistics() const override {
4763     STATS_DECLTRACK_FN_ATTR(value_simplify)
4764   }
4765 };
4766 
4767 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
4768   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
4769       : AAValueSimplifyFunction(IRP, A) {}
4770   /// See AbstractAttribute::trackStatistics()
4771   void trackStatistics() const override {
4772     STATS_DECLTRACK_CS_ATTR(value_simplify)
4773   }
4774 };
4775 
4776 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
4777   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
4778       : AAValueSimplifyReturned(IRP, A) {}
4779 
4780   /// See AbstractAttribute::manifest(...).
4781   ChangeStatus manifest(Attributor &A) override {
4782     return AAValueSimplifyImpl::manifest(A);
4783   }
4784 
4785   void trackStatistics() const override {
4786     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
4787   }
4788 };
4789 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
4790   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
4791       : AAValueSimplifyFloating(IRP, A) {}
4792 
4793   /// See AbstractAttribute::manifest(...).
4794   ChangeStatus manifest(Attributor &A) override {
4795     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4796 
4797     if (SimplifiedAssociatedValue.hasValue() &&
4798         !SimplifiedAssociatedValue.getValue())
4799       return Changed;
4800 
4801     Value &V = getAssociatedValue();
4802     auto *C = SimplifiedAssociatedValue.hasValue()
4803                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4804                   : UndefValue::get(V.getType());
4805     if (C) {
4806       Use &U = cast<CallBase>(&getAnchorValue())->getArgOperandUse(getArgNo());
4807       // We can replace the AssociatedValue with the constant.
4808       if (&V != C && V.getType() == C->getType()) {
4809         if (A.changeUseAfterManifest(U, *C))
4810           Changed = ChangeStatus::CHANGED;
4811       }
4812     }
4813 
4814     return Changed | AAValueSimplify::manifest(A);
4815   }
4816 
4817   void trackStatistics() const override {
4818     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
4819   }
4820 };
4821 
4822 /// ----------------------- Heap-To-Stack Conversion ---------------------------
4823 struct AAHeapToStackImpl : public AAHeapToStack {
4824   AAHeapToStackImpl(const IRPosition &IRP, Attributor &A)
4825       : AAHeapToStack(IRP, A) {}
4826 
4827   const std::string getAsStr() const override {
4828     return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
4829   }
4830 
4831   ChangeStatus manifest(Attributor &A) override {
4832     assert(getState().isValidState() &&
4833            "Attempted to manifest an invalid state!");
4834 
4835     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4836     Function *F = getAnchorScope();
4837     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4838 
4839     for (Instruction *MallocCall : MallocCalls) {
4840       // This malloc cannot be replaced.
4841       if (BadMallocCalls.count(MallocCall))
4842         continue;
4843 
4844       for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
4845         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
4846         A.deleteAfterManifest(*FreeCall);
4847         HasChanged = ChangeStatus::CHANGED;
4848       }
4849 
4850       LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
4851                         << "\n");
4852 
4853       Align Alignment;
4854       Constant *Size;
4855       if (isCallocLikeFn(MallocCall, TLI)) {
4856         auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
4857         auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
4858         APInt TotalSize = SizeT->getValue() * Num->getValue();
4859         Size =
4860             ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
4861       } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
4862         Size = cast<ConstantInt>(MallocCall->getOperand(1));
4863         Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
4864                                    ->getValue()
4865                                    .getZExtValue())
4866                         .valueOrOne();
4867       } else {
4868         Size = cast<ConstantInt>(MallocCall->getOperand(0));
4869       }
4870 
4871       unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
4872       Instruction *AI =
4873           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
4874                          "", MallocCall->getNextNode());
4875 
4876       if (AI->getType() != MallocCall->getType())
4877         AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
4878                              AI->getNextNode());
4879 
4880       A.changeValueAfterManifest(*MallocCall, *AI);
4881 
4882       if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
4883         auto *NBB = II->getNormalDest();
4884         BranchInst::Create(NBB, MallocCall->getParent());
4885         A.deleteAfterManifest(*MallocCall);
4886       } else {
4887         A.deleteAfterManifest(*MallocCall);
4888       }
4889 
4890       // Zero out the allocated memory if it was a calloc.
4891       if (isCallocLikeFn(MallocCall, TLI)) {
4892         auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
4893                                    AI->getNextNode());
4894         Value *Ops[] = {
4895             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
4896             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
4897 
4898         Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
4899         Module *M = F->getParent();
4900         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
4901         CallInst::Create(Fn, Ops, "", BI->getNextNode());
4902       }
4903       HasChanged = ChangeStatus::CHANGED;
4904     }
4905 
4906     return HasChanged;
4907   }
4908 
4909   /// Collection of all malloc calls in a function.
4910   SmallSetVector<Instruction *, 4> MallocCalls;
4911 
4912   /// Collection of malloc calls that cannot be converted.
4913   DenseSet<const Instruction *> BadMallocCalls;
4914 
4915   /// A map for each malloc call to the set of associated free calls.
4916   DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
4917 
4918   ChangeStatus updateImpl(Attributor &A) override;
4919 };
4920 
4921 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
4922   const Function *F = getAnchorScope();
4923   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4924 
4925   MustBeExecutedContextExplorer &Explorer =
4926       A.getInfoCache().getMustBeExecutedContextExplorer();
4927 
4928   auto FreeCheck = [&](Instruction &I) {
4929     const auto &Frees = FreesForMalloc.lookup(&I);
4930     if (Frees.size() != 1)
4931       return false;
4932     Instruction *UniqueFree = *Frees.begin();
4933     return Explorer.findInContextOf(UniqueFree, I.getNextNode());
4934   };
4935 
4936   auto UsesCheck = [&](Instruction &I) {
4937     bool ValidUsesOnly = true;
4938     bool MustUse = true;
4939     auto Pred = [&](const Use &U, bool &Follow) -> bool {
4940       Instruction *UserI = cast<Instruction>(U.getUser());
4941       if (isa<LoadInst>(UserI))
4942         return true;
4943       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
4944         if (SI->getValueOperand() == U.get()) {
4945           LLVM_DEBUG(dbgs()
4946                      << "[H2S] escaping store to memory: " << *UserI << "\n");
4947           ValidUsesOnly = false;
4948         } else {
4949           // A store into the malloc'ed memory is fine.
4950         }
4951         return true;
4952       }
4953       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4954         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
4955           return true;
4956         // Record malloc.
4957         if (isFreeCall(UserI, TLI)) {
4958           if (MustUse) {
4959             FreesForMalloc[&I].insert(UserI);
4960           } else {
4961             LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
4962                               << *UserI << "\n");
4963             ValidUsesOnly = false;
4964           }
4965           return true;
4966         }
4967 
4968         unsigned ArgNo = CB->getArgOperandNo(&U);
4969 
4970         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
4971             *this, IRPosition::callsite_argument(*CB, ArgNo));
4972 
4973         // If a callsite argument use is nofree, we are fine.
4974         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
4975             *this, IRPosition::callsite_argument(*CB, ArgNo));
4976 
4977         if (!NoCaptureAA.isAssumedNoCapture() ||
4978             !ArgNoFreeAA.isAssumedNoFree()) {
4979           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
4980           ValidUsesOnly = false;
4981         }
4982         return true;
4983       }
4984 
4985       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
4986           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4987         MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
4988         Follow = true;
4989         return true;
4990       }
4991       // Unknown user for which we can not track uses further (in a way that
4992       // makes sense).
4993       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
4994       ValidUsesOnly = false;
4995       return true;
4996     };
4997     A.checkForAllUses(Pred, *this, I);
4998     return ValidUsesOnly;
4999   };
5000 
5001   auto MallocCallocCheck = [&](Instruction &I) {
5002     if (BadMallocCalls.count(&I))
5003       return true;
5004 
5005     bool IsMalloc = isMallocLikeFn(&I, TLI);
5006     bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
5007     bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
5008     if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
5009       BadMallocCalls.insert(&I);
5010       return true;
5011     }
5012 
5013     if (IsMalloc) {
5014       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
5015         if (Size->getValue().ule(MaxHeapToStackSize))
5016           if (UsesCheck(I) || FreeCheck(I)) {
5017             MallocCalls.insert(&I);
5018             return true;
5019           }
5020     } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
5021       // Only if the alignment and sizes are constant.
5022       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5023         if (Size->getValue().ule(MaxHeapToStackSize))
5024           if (UsesCheck(I) || FreeCheck(I)) {
5025             MallocCalls.insert(&I);
5026             return true;
5027           }
5028     } else if (IsCalloc) {
5029       bool Overflow = false;
5030       if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
5031         if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5032           if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
5033                   .ule(MaxHeapToStackSize))
5034             if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
5035               MallocCalls.insert(&I);
5036               return true;
5037             }
5038     }
5039 
5040     BadMallocCalls.insert(&I);
5041     return true;
5042   };
5043 
5044   size_t NumBadMallocs = BadMallocCalls.size();
5045 
5046   A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
5047 
5048   if (NumBadMallocs != BadMallocCalls.size())
5049     return ChangeStatus::CHANGED;
5050 
5051   return ChangeStatus::UNCHANGED;
5052 }
5053 
5054 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
5055   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5056       : AAHeapToStackImpl(IRP, A) {}
5057 
5058   /// See AbstractAttribute::trackStatistics().
5059   void trackStatistics() const override {
5060     STATS_DECL(
5061         MallocCalls, Function,
5062         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5063     for (auto *C : MallocCalls)
5064       if (!BadMallocCalls.count(C))
5065         ++BUILD_STAT_NAME(MallocCalls, Function);
5066   }
5067 };
5068 
5069 /// ----------------------- Privatizable Pointers ------------------------------
5070 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
5071   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
5072       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
5073 
5074   ChangeStatus indicatePessimisticFixpoint() override {
5075     AAPrivatizablePtr::indicatePessimisticFixpoint();
5076     PrivatizableType = nullptr;
5077     return ChangeStatus::CHANGED;
5078   }
5079 
5080   /// Identify the type we can chose for a private copy of the underlying
5081   /// argument. None means it is not clear yet, nullptr means there is none.
5082   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
5083 
5084   /// Return a privatizable type that encloses both T0 and T1.
5085   /// TODO: This is merely a stub for now as we should manage a mapping as well.
5086   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
5087     if (!T0.hasValue())
5088       return T1;
5089     if (!T1.hasValue())
5090       return T0;
5091     if (T0 == T1)
5092       return T0;
5093     return nullptr;
5094   }
5095 
5096   Optional<Type *> getPrivatizableType() const override {
5097     return PrivatizableType;
5098   }
5099 
5100   const std::string getAsStr() const override {
5101     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
5102   }
5103 
5104 protected:
5105   Optional<Type *> PrivatizableType;
5106 };
5107 
5108 // TODO: Do this for call site arguments (probably also other values) as well.
5109 
5110 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
5111   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
5112       : AAPrivatizablePtrImpl(IRP, A) {}
5113 
5114   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5115   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5116     // If this is a byval argument and we know all the call sites (so we can
5117     // rewrite them), there is no need to check them explicitly.
5118     bool AllCallSitesKnown;
5119     if (getIRPosition().hasAttr(Attribute::ByVal) &&
5120         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5121                                true, AllCallSitesKnown))
5122       return getAssociatedValue().getType()->getPointerElementType();
5123 
5124     Optional<Type *> Ty;
5125     unsigned ArgNo = getIRPosition().getArgNo();
5126 
5127     // Make sure the associated call site argument has the same type at all call
5128     // sites and it is an allocation we know is safe to privatize, for now that
5129     // means we only allow alloca instructions.
5130     // TODO: We can additionally analyze the accesses in the callee to  create
5131     //       the type from that information instead. That is a little more
5132     //       involved and will be done in a follow up patch.
5133     auto CallSiteCheck = [&](AbstractCallSite ACS) {
5134       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5135       // Check if a coresponding argument was found or if it is one not
5136       // associated (which can happen for callback calls).
5137       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5138         return false;
5139 
5140       // Check that all call sites agree on a type.
5141       auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
5142       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5143 
5144       LLVM_DEBUG({
5145         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5146         if (CSTy.hasValue() && CSTy.getValue())
5147           CSTy.getValue()->print(dbgs());
5148         else if (CSTy.hasValue())
5149           dbgs() << "<nullptr>";
5150         else
5151           dbgs() << "<none>";
5152       });
5153 
5154       Ty = combineTypes(Ty, CSTy);
5155 
5156       LLVM_DEBUG({
5157         dbgs() << " : New Type: ";
5158         if (Ty.hasValue() && Ty.getValue())
5159           Ty.getValue()->print(dbgs());
5160         else if (Ty.hasValue())
5161           dbgs() << "<nullptr>";
5162         else
5163           dbgs() << "<none>";
5164         dbgs() << "\n";
5165       });
5166 
5167       return !Ty.hasValue() || Ty.getValue();
5168     };
5169 
5170     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5171       return nullptr;
5172     return Ty;
5173   }
5174 
5175   /// See AbstractAttribute::updateImpl(...).
5176   ChangeStatus updateImpl(Attributor &A) override {
5177     PrivatizableType = identifyPrivatizableType(A);
5178     if (!PrivatizableType.hasValue())
5179       return ChangeStatus::UNCHANGED;
5180     if (!PrivatizableType.getValue())
5181       return indicatePessimisticFixpoint();
5182 
5183     // The dependence is optional so we don't give up once we give up on the
5184     // alignment.
5185     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
5186                         /* TrackDependence */ true, DepClassTy::OPTIONAL);
5187 
5188     // Avoid arguments with padding for now.
5189     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5190         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5191                                                 A.getInfoCache().getDL())) {
5192       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5193       return indicatePessimisticFixpoint();
5194     }
5195 
5196     // Verify callee and caller agree on how the promoted argument would be
5197     // passed.
5198     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5199     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5200     // which doesn't require the arguments ArgumentPromotion wanted to pass.
5201     Function &Fn = *getIRPosition().getAnchorScope();
5202     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5203     ArgsToPromote.insert(getAssociatedArgument());
5204     const auto *TTI =
5205         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5206     if (!TTI ||
5207         !ArgumentPromotionPass::areFunctionArgsABICompatible(
5208             Fn, *TTI, ArgsToPromote, Dummy) ||
5209         ArgsToPromote.empty()) {
5210       LLVM_DEBUG(
5211           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5212                  << Fn.getName() << "\n");
5213       return indicatePessimisticFixpoint();
5214     }
5215 
5216     // Collect the types that will replace the privatizable type in the function
5217     // signature.
5218     SmallVector<Type *, 16> ReplacementTypes;
5219     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5220 
5221     // Register a rewrite of the argument.
5222     Argument *Arg = getAssociatedArgument();
5223     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5224       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5225       return indicatePessimisticFixpoint();
5226     }
5227 
5228     unsigned ArgNo = Arg->getArgNo();
5229 
5230     // Helper to check if for the given call site the associated argument is
5231     // passed to a callback where the privatization would be different.
5232     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
5233       SmallVector<const Use *, 4> CallbackUses;
5234       AbstractCallSite::getCallbackUses(CB, CallbackUses);
5235       for (const Use *U : CallbackUses) {
5236         AbstractCallSite CBACS(U);
5237         assert(CBACS && CBACS.isCallbackCall());
5238         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5239           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5240 
5241           LLVM_DEBUG({
5242             dbgs()
5243                 << "[AAPrivatizablePtr] Argument " << *Arg
5244                 << "check if can be privatized in the context of its parent ("
5245                 << Arg->getParent()->getName()
5246                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5247                    "callback ("
5248                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5249                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5250                 << CBACS.getCallArgOperand(CBArg) << " vs "
5251                 << CB.getArgOperand(ArgNo) << "\n"
5252                 << "[AAPrivatizablePtr] " << CBArg << " : "
5253                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5254           });
5255 
5256           if (CBArgNo != int(ArgNo))
5257             continue;
5258           const auto &CBArgPrivAA =
5259               A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
5260           if (CBArgPrivAA.isValidState()) {
5261             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5262             if (!CBArgPrivTy.hasValue())
5263               continue;
5264             if (CBArgPrivTy.getValue() == PrivatizableType)
5265               continue;
5266           }
5267 
5268           LLVM_DEBUG({
5269             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5270                    << " cannot be privatized in the context of its parent ("
5271                    << Arg->getParent()->getName()
5272                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
5273                       "callback ("
5274                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5275                    << ").\n[AAPrivatizablePtr] for which the argument "
5276                       "privatization is not compatible.\n";
5277           });
5278           return false;
5279         }
5280       }
5281       return true;
5282     };
5283 
5284     // Helper to check if for the given call site the associated argument is
5285     // passed to a direct call where the privatization would be different.
5286     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5287       CallBase *DC = cast<CallBase>(ACS.getInstruction());
5288       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5289       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5290              "Expected a direct call operand for callback call operand");
5291 
5292       LLVM_DEBUG({
5293         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5294                << " check if be privatized in the context of its parent ("
5295                << Arg->getParent()->getName()
5296                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5297                   "direct call of ("
5298                << DCArgNo << "@" << DC->getCalledFunction()->getName()
5299                << ").\n";
5300       });
5301 
5302       Function *DCCallee = DC->getCalledFunction();
5303       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5304         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5305             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
5306         if (DCArgPrivAA.isValidState()) {
5307           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5308           if (!DCArgPrivTy.hasValue())
5309             return true;
5310           if (DCArgPrivTy.getValue() == PrivatizableType)
5311             return true;
5312         }
5313       }
5314 
5315       LLVM_DEBUG({
5316         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5317                << " cannot be privatized in the context of its parent ("
5318                << Arg->getParent()->getName()
5319                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5320                   "direct call of ("
5321                << ACS.getInstruction()->getCalledFunction()->getName()
5322                << ").\n[AAPrivatizablePtr] for which the argument "
5323                   "privatization is not compatible.\n";
5324       });
5325       return false;
5326     };
5327 
5328     // Helper to check if the associated argument is used at the given abstract
5329     // call site in a way that is incompatible with the privatization assumed
5330     // here.
5331     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5332       if (ACS.isDirectCall())
5333         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
5334       if (ACS.isCallbackCall())
5335         return IsCompatiblePrivArgOfDirectCS(ACS);
5336       return false;
5337     };
5338 
5339     bool AllCallSitesKnown;
5340     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5341                                 AllCallSitesKnown))
5342       return indicatePessimisticFixpoint();
5343 
5344     return ChangeStatus::UNCHANGED;
5345   }
5346 
5347   /// Given a type to private \p PrivType, collect the constituates (which are
5348   /// used) in \p ReplacementTypes.
5349   static void
5350   identifyReplacementTypes(Type *PrivType,
5351                            SmallVectorImpl<Type *> &ReplacementTypes) {
5352     // TODO: For now we expand the privatization type to the fullest which can
5353     //       lead to dead arguments that need to be removed later.
5354     assert(PrivType && "Expected privatizable type!");
5355 
5356     // Traverse the type, extract constituate types on the outermost level.
5357     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5358       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5359         ReplacementTypes.push_back(PrivStructType->getElementType(u));
5360     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5361       ReplacementTypes.append(PrivArrayType->getNumElements(),
5362                               PrivArrayType->getElementType());
5363     } else {
5364       ReplacementTypes.push_back(PrivType);
5365     }
5366   }
5367 
5368   /// Initialize \p Base according to the type \p PrivType at position \p IP.
5369   /// The values needed are taken from the arguments of \p F starting at
5370   /// position \p ArgNo.
5371   static void createInitialization(Type *PrivType, Value &Base, Function &F,
5372                                    unsigned ArgNo, Instruction &IP) {
5373     assert(PrivType && "Expected privatizable type!");
5374 
5375     IRBuilder<NoFolder> IRB(&IP);
5376     const DataLayout &DL = F.getParent()->getDataLayout();
5377 
5378     // Traverse the type, build GEPs and stores.
5379     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5380       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5381       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5382         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5383         Value *Ptr = constructPointer(
5384             PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
5385         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5386       }
5387     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5388       Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
5389       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
5390       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5391         Value *Ptr =
5392             constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
5393         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5394       }
5395     } else {
5396       new StoreInst(F.getArg(ArgNo), &Base, &IP);
5397     }
5398   }
5399 
5400   /// Extract values from \p Base according to the type \p PrivType at the
5401   /// call position \p ACS. The values are appended to \p ReplacementValues.
5402   void createReplacementValues(Align Alignment, Type *PrivType,
5403                                AbstractCallSite ACS, Value *Base,
5404                                SmallVectorImpl<Value *> &ReplacementValues) {
5405     assert(Base && "Expected base value!");
5406     assert(PrivType && "Expected privatizable type!");
5407     Instruction *IP = ACS.getInstruction();
5408 
5409     IRBuilder<NoFolder> IRB(IP);
5410     const DataLayout &DL = IP->getModule()->getDataLayout();
5411 
5412     if (Base->getType()->getPointerElementType() != PrivType)
5413       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5414                                                  "", ACS.getInstruction());
5415 
5416     // Traverse the type, build GEPs and loads.
5417     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5418       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5419       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5420         Type *PointeeTy = PrivStructType->getElementType(u);
5421         Value *Ptr =
5422             constructPointer(PointeeTy->getPointerTo(), Base,
5423                              PrivStructLayout->getElementOffset(u), IRB, DL);
5424         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5425         L->setAlignment(Alignment);
5426         ReplacementValues.push_back(L);
5427       }
5428     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5429       Type *PointeeTy = PrivArrayType->getElementType();
5430       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5431       Type *PointeePtrTy = PointeeTy->getPointerTo();
5432       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5433         Value *Ptr =
5434             constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
5435         LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
5436         L->setAlignment(Alignment);
5437         ReplacementValues.push_back(L);
5438       }
5439     } else {
5440       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5441       L->setAlignment(Alignment);
5442       ReplacementValues.push_back(L);
5443     }
5444   }
5445 
5446   /// See AbstractAttribute::manifest(...)
5447   ChangeStatus manifest(Attributor &A) override {
5448     if (!PrivatizableType.hasValue())
5449       return ChangeStatus::UNCHANGED;
5450     assert(PrivatizableType.getValue() && "Expected privatizable type!");
5451 
5452     // Collect all tail calls in the function as we cannot allow new allocas to
5453     // escape into tail recursion.
5454     // TODO: Be smarter about new allocas escaping into tail calls.
5455     SmallVector<CallInst *, 16> TailCalls;
5456     if (!A.checkForAllInstructions(
5457             [&](Instruction &I) {
5458               CallInst &CI = cast<CallInst>(I);
5459               if (CI.isTailCall())
5460                 TailCalls.push_back(&CI);
5461               return true;
5462             },
5463             *this, {Instruction::Call}))
5464       return ChangeStatus::UNCHANGED;
5465 
5466     Argument *Arg = getAssociatedArgument();
5467     // Query AAAlign attribute for alignment of associated argument to
5468     // determine the best alignment of loads.
5469     const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg));
5470 
5471     // Callback to repair the associated function. A new alloca is placed at the
5472     // beginning and initialized with the values passed through arguments. The
5473     // new alloca replaces the use of the old pointer argument.
5474     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5475         [=](const Attributor::ArgumentReplacementInfo &ARI,
5476             Function &ReplacementFn, Function::arg_iterator ArgIt) {
5477           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5478           Instruction *IP = &*EntryBB.getFirstInsertionPt();
5479           auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5480                                     Arg->getName() + ".priv", IP);
5481           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5482                                ArgIt->getArgNo(), *IP);
5483           Arg->replaceAllUsesWith(AI);
5484 
5485           for (CallInst *CI : TailCalls)
5486             CI->setTailCall(false);
5487         };
5488 
5489     // Callback to repair a call site of the associated function. The elements
5490     // of the privatizable type are loaded prior to the call and passed to the
5491     // new function version.
5492     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5493         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
5494                       AbstractCallSite ACS,
5495                       SmallVectorImpl<Value *> &NewArgOperands) {
5496           // When no alignment is specified for the load instruction,
5497           // natural alignment is assumed.
5498           createReplacementValues(
5499               assumeAligned(AlignAA.getAssumedAlign()),
5500               PrivatizableType.getValue(), ACS,
5501               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5502               NewArgOperands);
5503         };
5504 
5505     // Collect the types that will replace the privatizable type in the function
5506     // signature.
5507     SmallVector<Type *, 16> ReplacementTypes;
5508     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5509 
5510     // Register a rewrite of the argument.
5511     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5512                                            std::move(FnRepairCB),
5513                                            std::move(ACSRepairCB)))
5514       return ChangeStatus::CHANGED;
5515     return ChangeStatus::UNCHANGED;
5516   }
5517 
5518   /// See AbstractAttribute::trackStatistics()
5519   void trackStatistics() const override {
5520     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5521   }
5522 };
5523 
5524 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
5525   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
5526       : AAPrivatizablePtrImpl(IRP, A) {}
5527 
5528   /// See AbstractAttribute::initialize(...).
5529   virtual void initialize(Attributor &A) override {
5530     // TODO: We can privatize more than arguments.
5531     indicatePessimisticFixpoint();
5532   }
5533 
5534   ChangeStatus updateImpl(Attributor &A) override {
5535     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5536                      "updateImpl will not be called");
5537   }
5538 
5539   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5540   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5541     Value *Obj = getUnderlyingObject(&getAssociatedValue());
5542     if (!Obj) {
5543       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5544       return nullptr;
5545     }
5546 
5547     if (auto *AI = dyn_cast<AllocaInst>(Obj))
5548       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5549         if (CI->isOne())
5550           return Obj->getType()->getPointerElementType();
5551     if (auto *Arg = dyn_cast<Argument>(Obj)) {
5552       auto &PrivArgAA =
5553           A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
5554       if (PrivArgAA.isAssumedPrivatizablePtr())
5555         return Obj->getType()->getPointerElementType();
5556     }
5557 
5558     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5559                          "alloca nor privatizable argument: "
5560                       << *Obj << "!\n");
5561     return nullptr;
5562   }
5563 
5564   /// See AbstractAttribute::trackStatistics()
5565   void trackStatistics() const override {
5566     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5567   }
5568 };
5569 
5570 struct AAPrivatizablePtrCallSiteArgument final
5571     : public AAPrivatizablePtrFloating {
5572   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
5573       : AAPrivatizablePtrFloating(IRP, A) {}
5574 
5575   /// See AbstractAttribute::initialize(...).
5576   void initialize(Attributor &A) override {
5577     if (getIRPosition().hasAttr(Attribute::ByVal))
5578       indicateOptimisticFixpoint();
5579   }
5580 
5581   /// See AbstractAttribute::updateImpl(...).
5582   ChangeStatus updateImpl(Attributor &A) override {
5583     PrivatizableType = identifyPrivatizableType(A);
5584     if (!PrivatizableType.hasValue())
5585       return ChangeStatus::UNCHANGED;
5586     if (!PrivatizableType.getValue())
5587       return indicatePessimisticFixpoint();
5588 
5589     const IRPosition &IRP = getIRPosition();
5590     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
5591     if (!NoCaptureAA.isAssumedNoCapture()) {
5592       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5593       return indicatePessimisticFixpoint();
5594     }
5595 
5596     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
5597     if (!NoAliasAA.isAssumedNoAlias()) {
5598       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5599       return indicatePessimisticFixpoint();
5600     }
5601 
5602     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
5603     if (!MemBehaviorAA.isAssumedReadOnly()) {
5604       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5605       return indicatePessimisticFixpoint();
5606     }
5607 
5608     return ChangeStatus::UNCHANGED;
5609   }
5610 
5611   /// See AbstractAttribute::trackStatistics()
5612   void trackStatistics() const override {
5613     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5614   }
5615 };
5616 
5617 struct AAPrivatizablePtrCallSiteReturned final
5618     : public AAPrivatizablePtrFloating {
5619   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
5620       : AAPrivatizablePtrFloating(IRP, A) {}
5621 
5622   /// See AbstractAttribute::initialize(...).
5623   void initialize(Attributor &A) override {
5624     // TODO: We can privatize more than arguments.
5625     indicatePessimisticFixpoint();
5626   }
5627 
5628   /// See AbstractAttribute::trackStatistics()
5629   void trackStatistics() const override {
5630     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5631   }
5632 };
5633 
5634 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
5635   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
5636       : AAPrivatizablePtrFloating(IRP, A) {}
5637 
5638   /// See AbstractAttribute::initialize(...).
5639   void initialize(Attributor &A) override {
5640     // TODO: We can privatize more than arguments.
5641     indicatePessimisticFixpoint();
5642   }
5643 
5644   /// See AbstractAttribute::trackStatistics()
5645   void trackStatistics() const override {
5646     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5647   }
5648 };
5649 
5650 /// -------------------- Memory Behavior Attributes ----------------------------
5651 /// Includes read-none, read-only, and write-only.
5652 /// ----------------------------------------------------------------------------
5653 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
5654   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
5655       : AAMemoryBehavior(IRP, A) {}
5656 
5657   /// See AbstractAttribute::initialize(...).
5658   void initialize(Attributor &A) override {
5659     intersectAssumedBits(BEST_STATE);
5660     getKnownStateFromValue(getIRPosition(), getState());
5661     IRAttribute::initialize(A);
5662   }
5663 
5664   /// Return the memory behavior information encoded in the IR for \p IRP.
5665   static void getKnownStateFromValue(const IRPosition &IRP,
5666                                      BitIntegerState &State,
5667                                      bool IgnoreSubsumingPositions = false) {
5668     SmallVector<Attribute, 2> Attrs;
5669     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5670     for (const Attribute &Attr : Attrs) {
5671       switch (Attr.getKindAsEnum()) {
5672       case Attribute::ReadNone:
5673         State.addKnownBits(NO_ACCESSES);
5674         break;
5675       case Attribute::ReadOnly:
5676         State.addKnownBits(NO_WRITES);
5677         break;
5678       case Attribute::WriteOnly:
5679         State.addKnownBits(NO_READS);
5680         break;
5681       default:
5682         llvm_unreachable("Unexpected attribute!");
5683       }
5684     }
5685 
5686     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5687       if (!I->mayReadFromMemory())
5688         State.addKnownBits(NO_READS);
5689       if (!I->mayWriteToMemory())
5690         State.addKnownBits(NO_WRITES);
5691     }
5692   }
5693 
5694   /// See AbstractAttribute::getDeducedAttributes(...).
5695   void getDeducedAttributes(LLVMContext &Ctx,
5696                             SmallVectorImpl<Attribute> &Attrs) const override {
5697     assert(Attrs.size() == 0);
5698     if (isAssumedReadNone())
5699       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5700     else if (isAssumedReadOnly())
5701       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5702     else if (isAssumedWriteOnly())
5703       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5704     assert(Attrs.size() <= 1);
5705   }
5706 
5707   /// See AbstractAttribute::manifest(...).
5708   ChangeStatus manifest(Attributor &A) override {
5709     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5710       return ChangeStatus::UNCHANGED;
5711 
5712     const IRPosition &IRP = getIRPosition();
5713 
5714     // Check if we would improve the existing attributes first.
5715     SmallVector<Attribute, 4> DeducedAttrs;
5716     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5717     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5718           return IRP.hasAttr(Attr.getKindAsEnum(),
5719                              /* IgnoreSubsumingPositions */ true);
5720         }))
5721       return ChangeStatus::UNCHANGED;
5722 
5723     // Clear existing attributes.
5724     IRP.removeAttrs(AttrKinds);
5725 
5726     // Use the generic manifest method.
5727     return IRAttribute::manifest(A);
5728   }
5729 
5730   /// See AbstractState::getAsStr().
5731   const std::string getAsStr() const override {
5732     if (isAssumedReadNone())
5733       return "readnone";
5734     if (isAssumedReadOnly())
5735       return "readonly";
5736     if (isAssumedWriteOnly())
5737       return "writeonly";
5738     return "may-read/write";
5739   }
5740 
5741   /// The set of IR attributes AAMemoryBehavior deals with.
5742   static const Attribute::AttrKind AttrKinds[3];
5743 };
5744 
5745 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
5746     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
5747 
5748 /// Memory behavior attribute for a floating value.
5749 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
5750   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
5751       : AAMemoryBehaviorImpl(IRP, A) {}
5752 
5753   /// See AbstractAttribute::initialize(...).
5754   void initialize(Attributor &A) override {
5755     AAMemoryBehaviorImpl::initialize(A);
5756     // Initialize the use vector with all direct uses of the associated value.
5757     for (const Use &U : getAssociatedValue().uses())
5758       Uses.insert(&U);
5759   }
5760 
5761   /// See AbstractAttribute::updateImpl(...).
5762   ChangeStatus updateImpl(Attributor &A) override;
5763 
5764   /// See AbstractAttribute::trackStatistics()
5765   void trackStatistics() const override {
5766     if (isAssumedReadNone())
5767       STATS_DECLTRACK_FLOATING_ATTR(readnone)
5768     else if (isAssumedReadOnly())
5769       STATS_DECLTRACK_FLOATING_ATTR(readonly)
5770     else if (isAssumedWriteOnly())
5771       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
5772   }
5773 
5774 private:
5775   /// Return true if users of \p UserI might access the underlying
5776   /// variable/location described by \p U and should therefore be analyzed.
5777   bool followUsersOfUseIn(Attributor &A, const Use *U,
5778                           const Instruction *UserI);
5779 
5780   /// Update the state according to the effect of use \p U in \p UserI.
5781   void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
5782 
5783 protected:
5784   /// Container for (transitive) uses of the associated argument.
5785   SetVector<const Use *> Uses;
5786 };
5787 
5788 /// Memory behavior attribute for function argument.
5789 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
5790   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
5791       : AAMemoryBehaviorFloating(IRP, A) {}
5792 
5793   /// See AbstractAttribute::initialize(...).
5794   void initialize(Attributor &A) override {
5795     intersectAssumedBits(BEST_STATE);
5796     const IRPosition &IRP = getIRPosition();
5797     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
5798     // can query it when we use has/getAttr. That would allow us to reuse the
5799     // initialize of the base class here.
5800     bool HasByVal =
5801         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
5802     getKnownStateFromValue(IRP, getState(),
5803                            /* IgnoreSubsumingPositions */ HasByVal);
5804 
5805     // Initialize the use vector with all direct uses of the associated value.
5806     Argument *Arg = getAssociatedArgument();
5807     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
5808       indicatePessimisticFixpoint();
5809     } else {
5810       // Initialize the use vector with all direct uses of the associated value.
5811       for (const Use &U : Arg->uses())
5812         Uses.insert(&U);
5813     }
5814   }
5815 
5816   ChangeStatus manifest(Attributor &A) override {
5817     // TODO: Pointer arguments are not supported on vectors of pointers yet.
5818     if (!getAssociatedValue().getType()->isPointerTy())
5819       return ChangeStatus::UNCHANGED;
5820 
5821     // TODO: From readattrs.ll: "inalloca parameters are always
5822     //                           considered written"
5823     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
5824       removeKnownBits(NO_WRITES);
5825       removeAssumedBits(NO_WRITES);
5826     }
5827     return AAMemoryBehaviorFloating::manifest(A);
5828   }
5829 
5830   /// See AbstractAttribute::trackStatistics()
5831   void trackStatistics() const override {
5832     if (isAssumedReadNone())
5833       STATS_DECLTRACK_ARG_ATTR(readnone)
5834     else if (isAssumedReadOnly())
5835       STATS_DECLTRACK_ARG_ATTR(readonly)
5836     else if (isAssumedWriteOnly())
5837       STATS_DECLTRACK_ARG_ATTR(writeonly)
5838   }
5839 };
5840 
5841 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
5842   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
5843       : AAMemoryBehaviorArgument(IRP, A) {}
5844 
5845   /// See AbstractAttribute::initialize(...).
5846   void initialize(Attributor &A) override {
5847     if (Argument *Arg = getAssociatedArgument()) {
5848       if (Arg->hasByValAttr()) {
5849         addKnownBits(NO_WRITES);
5850         removeKnownBits(NO_READS);
5851         removeAssumedBits(NO_READS);
5852       }
5853     }
5854     AAMemoryBehaviorArgument::initialize(A);
5855   }
5856 
5857   /// See AbstractAttribute::updateImpl(...).
5858   ChangeStatus updateImpl(Attributor &A) override {
5859     // TODO: Once we have call site specific value information we can provide
5860     //       call site specific liveness liveness information and then it makes
5861     //       sense to specialize attributes for call sites arguments instead of
5862     //       redirecting requests to the callee argument.
5863     Argument *Arg = getAssociatedArgument();
5864     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5865     auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
5866     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5867   }
5868 
5869   /// See AbstractAttribute::trackStatistics()
5870   void trackStatistics() const override {
5871     if (isAssumedReadNone())
5872       STATS_DECLTRACK_CSARG_ATTR(readnone)
5873     else if (isAssumedReadOnly())
5874       STATS_DECLTRACK_CSARG_ATTR(readonly)
5875     else if (isAssumedWriteOnly())
5876       STATS_DECLTRACK_CSARG_ATTR(writeonly)
5877   }
5878 };
5879 
5880 /// Memory behavior attribute for a call site return position.
5881 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
5882   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
5883       : AAMemoryBehaviorFloating(IRP, A) {}
5884 
5885   /// See AbstractAttribute::manifest(...).
5886   ChangeStatus manifest(Attributor &A) override {
5887     // We do not annotate returned values.
5888     return ChangeStatus::UNCHANGED;
5889   }
5890 
5891   /// See AbstractAttribute::trackStatistics()
5892   void trackStatistics() const override {}
5893 };
5894 
5895 /// An AA to represent the memory behavior function attributes.
5896 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
5897   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
5898       : AAMemoryBehaviorImpl(IRP, A) {}
5899 
5900   /// See AbstractAttribute::updateImpl(Attributor &A).
5901   virtual ChangeStatus updateImpl(Attributor &A) override;
5902 
5903   /// See AbstractAttribute::manifest(...).
5904   ChangeStatus manifest(Attributor &A) override {
5905     Function &F = cast<Function>(getAnchorValue());
5906     if (isAssumedReadNone()) {
5907       F.removeFnAttr(Attribute::ArgMemOnly);
5908       F.removeFnAttr(Attribute::InaccessibleMemOnly);
5909       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
5910     }
5911     return AAMemoryBehaviorImpl::manifest(A);
5912   }
5913 
5914   /// See AbstractAttribute::trackStatistics()
5915   void trackStatistics() const override {
5916     if (isAssumedReadNone())
5917       STATS_DECLTRACK_FN_ATTR(readnone)
5918     else if (isAssumedReadOnly())
5919       STATS_DECLTRACK_FN_ATTR(readonly)
5920     else if (isAssumedWriteOnly())
5921       STATS_DECLTRACK_FN_ATTR(writeonly)
5922   }
5923 };
5924 
5925 /// AAMemoryBehavior attribute for call sites.
5926 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
5927   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
5928       : AAMemoryBehaviorImpl(IRP, A) {}
5929 
5930   /// See AbstractAttribute::initialize(...).
5931   void initialize(Attributor &A) override {
5932     AAMemoryBehaviorImpl::initialize(A);
5933     Function *F = getAssociatedFunction();
5934     if (!F || !A.isFunctionIPOAmendable(*F)) {
5935       indicatePessimisticFixpoint();
5936       return;
5937     }
5938   }
5939 
5940   /// See AbstractAttribute::updateImpl(...).
5941   ChangeStatus updateImpl(Attributor &A) override {
5942     // TODO: Once we have call site specific value information we can provide
5943     //       call site specific liveness liveness information and then it makes
5944     //       sense to specialize attributes for call sites arguments instead of
5945     //       redirecting requests to the callee argument.
5946     Function *F = getAssociatedFunction();
5947     const IRPosition &FnPos = IRPosition::function(*F);
5948     auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
5949     return clampStateAndIndicateChange(getState(), FnAA.getState());
5950   }
5951 
5952   /// See AbstractAttribute::trackStatistics()
5953   void trackStatistics() const override {
5954     if (isAssumedReadNone())
5955       STATS_DECLTRACK_CS_ATTR(readnone)
5956     else if (isAssumedReadOnly())
5957       STATS_DECLTRACK_CS_ATTR(readonly)
5958     else if (isAssumedWriteOnly())
5959       STATS_DECLTRACK_CS_ATTR(writeonly)
5960   }
5961 };
5962 
5963 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
5964 
5965   // The current assumed state used to determine a change.
5966   auto AssumedState = getAssumed();
5967 
5968   auto CheckRWInst = [&](Instruction &I) {
5969     // If the instruction has an own memory behavior state, use it to restrict
5970     // the local state. No further analysis is required as the other memory
5971     // state is as optimistic as it gets.
5972     if (const auto *CB = dyn_cast<CallBase>(&I)) {
5973       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
5974           *this, IRPosition::callsite_function(*CB));
5975       intersectAssumedBits(MemBehaviorAA.getAssumed());
5976       return !isAtFixpoint();
5977     }
5978 
5979     // Remove access kind modifiers if necessary.
5980     if (I.mayReadFromMemory())
5981       removeAssumedBits(NO_READS);
5982     if (I.mayWriteToMemory())
5983       removeAssumedBits(NO_WRITES);
5984     return !isAtFixpoint();
5985   };
5986 
5987   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
5988     return indicatePessimisticFixpoint();
5989 
5990   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
5991                                         : ChangeStatus::UNCHANGED;
5992 }
5993 
5994 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
5995 
5996   const IRPosition &IRP = getIRPosition();
5997   const IRPosition &FnPos = IRPosition::function_scope(IRP);
5998   AAMemoryBehavior::StateType &S = getState();
5999 
6000   // First, check the function scope. We take the known information and we avoid
6001   // work if the assumed information implies the current assumed information for
6002   // this attribute. This is a valid for all but byval arguments.
6003   Argument *Arg = IRP.getAssociatedArgument();
6004   AAMemoryBehavior::base_t FnMemAssumedState =
6005       AAMemoryBehavior::StateType::getWorstState();
6006   if (!Arg || !Arg->hasByValAttr()) {
6007     const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
6008         *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6009     FnMemAssumedState = FnMemAA.getAssumed();
6010     S.addKnownBits(FnMemAA.getKnown());
6011     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
6012       return ChangeStatus::UNCHANGED;
6013   }
6014 
6015   // Make sure the value is not captured (except through "return"), if
6016   // it is, any information derived would be irrelevant anyway as we cannot
6017   // check the potential aliases introduced by the capture. However, no need
6018   // to fall back to anythign less optimistic than the function state.
6019   const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6020       *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6021   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
6022     S.intersectAssumedBits(FnMemAssumedState);
6023     return ChangeStatus::CHANGED;
6024   }
6025 
6026   // The current assumed state used to determine a change.
6027   auto AssumedState = S.getAssumed();
6028 
6029   // Liveness information to exclude dead users.
6030   // TODO: Take the FnPos once we have call site specific liveness information.
6031   const auto &LivenessAA = A.getAAFor<AAIsDead>(
6032       *this, IRPosition::function(*IRP.getAssociatedFunction()),
6033       /* TrackDependence */ false);
6034 
6035   // Visit and expand uses until all are analyzed or a fixpoint is reached.
6036   for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
6037     const Use *U = Uses[i];
6038     Instruction *UserI = cast<Instruction>(U->getUser());
6039     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
6040                       << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
6041                       << "]\n");
6042     if (A.isAssumedDead(*U, this, &LivenessAA))
6043       continue;
6044 
6045     // Droppable users, e.g., llvm::assume does not actually perform any action.
6046     if (UserI->isDroppable())
6047       continue;
6048 
6049     // Check if the users of UserI should also be visited.
6050     if (followUsersOfUseIn(A, U, UserI))
6051       for (const Use &UserIUse : UserI->uses())
6052         Uses.insert(&UserIUse);
6053 
6054     // If UserI might touch memory we analyze the use in detail.
6055     if (UserI->mayReadOrWriteMemory())
6056       analyzeUseIn(A, U, UserI);
6057   }
6058 
6059   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6060                                         : ChangeStatus::UNCHANGED;
6061 }
6062 
6063 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
6064                                                   const Instruction *UserI) {
6065   // The loaded value is unrelated to the pointer argument, no need to
6066   // follow the users of the load.
6067   if (isa<LoadInst>(UserI))
6068     return false;
6069 
6070   // By default we follow all uses assuming UserI might leak information on U,
6071   // we have special handling for call sites operands though.
6072   const auto *CB = dyn_cast<CallBase>(UserI);
6073   if (!CB || !CB->isArgOperand(U))
6074     return true;
6075 
6076   // If the use is a call argument known not to be captured, the users of
6077   // the call do not need to be visited because they have to be unrelated to
6078   // the input. Note that this check is not trivial even though we disallow
6079   // general capturing of the underlying argument. The reason is that the
6080   // call might the argument "through return", which we allow and for which we
6081   // need to check call users.
6082   if (U->get()->getType()->isPointerTy()) {
6083     unsigned ArgNo = CB->getArgOperandNo(U);
6084     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6085         *this, IRPosition::callsite_argument(*CB, ArgNo),
6086         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6087     return !ArgNoCaptureAA.isAssumedNoCapture();
6088   }
6089 
6090   return true;
6091 }
6092 
6093 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
6094                                             const Instruction *UserI) {
6095   assert(UserI->mayReadOrWriteMemory());
6096 
6097   switch (UserI->getOpcode()) {
6098   default:
6099     // TODO: Handle all atomics and other side-effect operations we know of.
6100     break;
6101   case Instruction::Load:
6102     // Loads cause the NO_READS property to disappear.
6103     removeAssumedBits(NO_READS);
6104     return;
6105 
6106   case Instruction::Store:
6107     // Stores cause the NO_WRITES property to disappear if the use is the
6108     // pointer operand. Note that we do assume that capturing was taken care of
6109     // somewhere else.
6110     if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
6111       removeAssumedBits(NO_WRITES);
6112     return;
6113 
6114   case Instruction::Call:
6115   case Instruction::CallBr:
6116   case Instruction::Invoke: {
6117     // For call sites we look at the argument memory behavior attribute (this
6118     // could be recursive!) in order to restrict our own state.
6119     const auto *CB = cast<CallBase>(UserI);
6120 
6121     // Give up on operand bundles.
6122     if (CB->isBundleOperand(U)) {
6123       indicatePessimisticFixpoint();
6124       return;
6125     }
6126 
6127     // Calling a function does read the function pointer, maybe write it if the
6128     // function is self-modifying.
6129     if (CB->isCallee(U)) {
6130       removeAssumedBits(NO_READS);
6131       break;
6132     }
6133 
6134     // Adjust the possible access behavior based on the information on the
6135     // argument.
6136     IRPosition Pos;
6137     if (U->get()->getType()->isPointerTy())
6138       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U));
6139     else
6140       Pos = IRPosition::callsite_function(*CB);
6141     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6142         *this, Pos,
6143         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6144     // "assumed" has at most the same bits as the MemBehaviorAA assumed
6145     // and at least "known".
6146     intersectAssumedBits(MemBehaviorAA.getAssumed());
6147     return;
6148   }
6149   };
6150 
6151   // Generally, look at the "may-properties" and adjust the assumed state if we
6152   // did not trigger special handling before.
6153   if (UserI->mayReadFromMemory())
6154     removeAssumedBits(NO_READS);
6155   if (UserI->mayWriteToMemory())
6156     removeAssumedBits(NO_WRITES);
6157 }
6158 
6159 } // namespace
6160 
6161 /// -------------------- Memory Locations Attributes ---------------------------
6162 /// Includes read-none, argmemonly, inaccessiblememonly,
6163 /// inaccessiblememorargmemonly
6164 /// ----------------------------------------------------------------------------
6165 
6166 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6167     AAMemoryLocation::MemoryLocationsKind MLK) {
6168   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6169     return "all memory";
6170   if (MLK == AAMemoryLocation::NO_LOCATIONS)
6171     return "no memory";
6172   std::string S = "memory:";
6173   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6174     S += "stack,";
6175   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6176     S += "constant,";
6177   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6178     S += "internal global,";
6179   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6180     S += "external global,";
6181   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6182     S += "argument,";
6183   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6184     S += "inaccessible,";
6185   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6186     S += "malloced,";
6187   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6188     S += "unknown,";
6189   S.pop_back();
6190   return S;
6191 }
6192 
6193 namespace {
6194 struct AAMemoryLocationImpl : public AAMemoryLocation {
6195 
6196   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
6197       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
6198     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6199       AccessKind2Accesses[u] = nullptr;
6200   }
6201 
6202   ~AAMemoryLocationImpl() {
6203     // The AccessSets are allocated via a BumpPtrAllocator, we call
6204     // the destructor manually.
6205     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6206       if (AccessKind2Accesses[u])
6207         AccessKind2Accesses[u]->~AccessSet();
6208   }
6209 
6210   /// See AbstractAttribute::initialize(...).
6211   void initialize(Attributor &A) override {
6212     intersectAssumedBits(BEST_STATE);
6213     getKnownStateFromValue(A, getIRPosition(), getState());
6214     IRAttribute::initialize(A);
6215   }
6216 
6217   /// Return the memory behavior information encoded in the IR for \p IRP.
6218   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
6219                                      BitIntegerState &State,
6220                                      bool IgnoreSubsumingPositions = false) {
6221     // For internal functions we ignore `argmemonly` and
6222     // `inaccessiblememorargmemonly` as we might break it via interprocedural
6223     // constant propagation. It is unclear if this is the best way but it is
6224     // unlikely this will cause real performance problems. If we are deriving
6225     // attributes for the anchor function we even remove the attribute in
6226     // addition to ignoring it.
6227     bool UseArgMemOnly = true;
6228     Function *AnchorFn = IRP.getAnchorScope();
6229     if (AnchorFn && A.isRunOn(*AnchorFn))
6230       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
6231 
6232     SmallVector<Attribute, 2> Attrs;
6233     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6234     for (const Attribute &Attr : Attrs) {
6235       switch (Attr.getKindAsEnum()) {
6236       case Attribute::ReadNone:
6237         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6238         break;
6239       case Attribute::InaccessibleMemOnly:
6240         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6241         break;
6242       case Attribute::ArgMemOnly:
6243         if (UseArgMemOnly)
6244           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6245         else
6246           IRP.removeAttrs({Attribute::ArgMemOnly});
6247         break;
6248       case Attribute::InaccessibleMemOrArgMemOnly:
6249         if (UseArgMemOnly)
6250           State.addKnownBits(inverseLocation(
6251               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6252         else
6253           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
6254         break;
6255       default:
6256         llvm_unreachable("Unexpected attribute!");
6257       }
6258     }
6259   }
6260 
6261   /// See AbstractAttribute::getDeducedAttributes(...).
6262   void getDeducedAttributes(LLVMContext &Ctx,
6263                             SmallVectorImpl<Attribute> &Attrs) const override {
6264     assert(Attrs.size() == 0);
6265     if (isAssumedReadNone()) {
6266       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6267     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6268       if (isAssumedInaccessibleMemOnly())
6269         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6270       else if (isAssumedArgMemOnly())
6271         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6272       else if (isAssumedInaccessibleOrArgMemOnly())
6273         Attrs.push_back(
6274             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6275     }
6276     assert(Attrs.size() <= 1);
6277   }
6278 
6279   /// See AbstractAttribute::manifest(...).
6280   ChangeStatus manifest(Attributor &A) override {
6281     const IRPosition &IRP = getIRPosition();
6282 
6283     // Check if we would improve the existing attributes first.
6284     SmallVector<Attribute, 4> DeducedAttrs;
6285     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6286     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6287           return IRP.hasAttr(Attr.getKindAsEnum(),
6288                              /* IgnoreSubsumingPositions */ true);
6289         }))
6290       return ChangeStatus::UNCHANGED;
6291 
6292     // Clear existing attributes.
6293     IRP.removeAttrs(AttrKinds);
6294     if (isAssumedReadNone())
6295       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6296 
6297     // Use the generic manifest method.
6298     return IRAttribute::manifest(A);
6299   }
6300 
6301   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
6302   bool checkForAllAccessesToMemoryKind(
6303       function_ref<bool(const Instruction *, const Value *, AccessKind,
6304                         MemoryLocationsKind)>
6305           Pred,
6306       MemoryLocationsKind RequestedMLK) const override {
6307     if (!isValidState())
6308       return false;
6309 
6310     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6311     if (AssumedMLK == NO_LOCATIONS)
6312       return true;
6313 
6314     unsigned Idx = 0;
6315     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
6316          CurMLK *= 2, ++Idx) {
6317       if (CurMLK & RequestedMLK)
6318         continue;
6319 
6320       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
6321         for (const AccessInfo &AI : *Accesses)
6322           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6323             return false;
6324     }
6325 
6326     return true;
6327   }
6328 
6329   ChangeStatus indicatePessimisticFixpoint() override {
6330     // If we give up and indicate a pessimistic fixpoint this instruction will
6331     // become an access for all potential access kinds:
6332     // TODO: Add pointers for argmemonly and globals to improve the results of
6333     //       checkForAllAccessesToMemoryKind.
6334     bool Changed = false;
6335     MemoryLocationsKind KnownMLK = getKnown();
6336     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6337     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6338       if (!(CurMLK & KnownMLK))
6339         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
6340                                   getAccessKindFromInst(I));
6341     return AAMemoryLocation::indicatePessimisticFixpoint();
6342   }
6343 
6344 protected:
6345   /// Helper struct to tie together an instruction that has a read or write
6346   /// effect with the pointer it accesses (if any).
6347   struct AccessInfo {
6348 
6349     /// The instruction that caused the access.
6350     const Instruction *I;
6351 
6352     /// The base pointer that is accessed, or null if unknown.
6353     const Value *Ptr;
6354 
6355     /// The kind of access (read/write/read+write).
6356     AccessKind Kind;
6357 
6358     bool operator==(const AccessInfo &RHS) const {
6359       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6360     }
6361     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6362       if (LHS.I != RHS.I)
6363         return LHS.I < RHS.I;
6364       if (LHS.Ptr != RHS.Ptr)
6365         return LHS.Ptr < RHS.Ptr;
6366       if (LHS.Kind != RHS.Kind)
6367         return LHS.Kind < RHS.Kind;
6368       return false;
6369     }
6370   };
6371 
6372   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6373   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6374   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
6375   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
6376 
6377   /// Return the kind(s) of location that may be accessed by \p V.
6378   AAMemoryLocation::MemoryLocationsKind
6379   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6380 
6381   /// Return the access kind as determined by \p I.
6382   AccessKind getAccessKindFromInst(const Instruction *I) {
6383     AccessKind AK = READ_WRITE;
6384     if (I) {
6385       AK = I->mayReadFromMemory() ? READ : NONE;
6386       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
6387     }
6388     return AK;
6389   }
6390 
6391   /// Update the state \p State and the AccessKind2Accesses given that \p I is
6392   /// an access of kind \p AK to a \p MLK memory location with the access
6393   /// pointer \p Ptr.
6394   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6395                                  MemoryLocationsKind MLK, const Instruction *I,
6396                                  const Value *Ptr, bool &Changed,
6397                                  AccessKind AK = READ_WRITE) {
6398 
6399     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6400     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
6401     if (!Accesses)
6402       Accesses = new (Allocator) AccessSet();
6403     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
6404     State.removeAssumedBits(MLK);
6405   }
6406 
6407   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6408   /// arguments, and update the state and access map accordingly.
6409   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6410                           AAMemoryLocation::StateType &State, bool &Changed);
6411 
6412   /// Used to allocate access sets.
6413   BumpPtrAllocator &Allocator;
6414 
6415   /// The set of IR attributes AAMemoryLocation deals with.
6416   static const Attribute::AttrKind AttrKinds[4];
6417 };
6418 
6419 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6420     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6421     Attribute::InaccessibleMemOrArgMemOnly};
6422 
6423 void AAMemoryLocationImpl::categorizePtrValue(
6424     Attributor &A, const Instruction &I, const Value &Ptr,
6425     AAMemoryLocation::StateType &State, bool &Changed) {
6426   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6427                     << Ptr << " ["
6428                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6429 
6430   auto StripGEPCB = [](Value *V) -> Value * {
6431     auto *GEP = dyn_cast<GEPOperator>(V);
6432     while (GEP) {
6433       V = GEP->getPointerOperand();
6434       GEP = dyn_cast<GEPOperator>(V);
6435     }
6436     return V;
6437   };
6438 
6439   auto VisitValueCB = [&](Value &V, const Instruction *,
6440                           AAMemoryLocation::StateType &T,
6441                           bool Stripped) -> bool {
6442     MemoryLocationsKind MLK = NO_LOCATIONS;
6443     assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6444     if (isa<UndefValue>(V))
6445       return true;
6446     if (auto *Arg = dyn_cast<Argument>(&V)) {
6447       if (Arg->hasByValAttr())
6448         MLK = NO_LOCAL_MEM;
6449       else
6450         MLK = NO_ARGUMENT_MEM;
6451     } else if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6452       if (GV->hasLocalLinkage())
6453         MLK = NO_GLOBAL_INTERNAL_MEM;
6454       else
6455         MLK = NO_GLOBAL_EXTERNAL_MEM;
6456     } else if (isa<ConstantPointerNull>(V) &&
6457                !NullPointerIsDefined(getAssociatedFunction(),
6458                                      V.getType()->getPointerAddressSpace())) {
6459       return true;
6460     } else if (isa<AllocaInst>(V)) {
6461       MLK = NO_LOCAL_MEM;
6462     } else if (const auto *CB = dyn_cast<CallBase>(&V)) {
6463       const auto &NoAliasAA =
6464           A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB));
6465       if (NoAliasAA.isAssumedNoAlias())
6466         MLK = NO_MALLOCED_MEM;
6467       else
6468         MLK = NO_UNKOWN_MEM;
6469     } else {
6470       MLK = NO_UNKOWN_MEM;
6471     }
6472 
6473     assert(MLK != NO_LOCATIONS && "No location specified!");
6474     updateStateAndAccessesMap(T, MLK, &I, &V, Changed,
6475                               getAccessKindFromInst(&I));
6476     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6477                       << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6478                       << "\n");
6479     return true;
6480   };
6481 
6482   if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6483           A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
6484           /* UseValueSimplify */ true,
6485           /* MaxValues */ 32, StripGEPCB)) {
6486     LLVM_DEBUG(
6487         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6488     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
6489                               getAccessKindFromInst(&I));
6490   } else {
6491     LLVM_DEBUG(
6492         dbgs()
6493         << "[AAMemoryLocation] Accessed locations with pointer locations: "
6494         << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6495   }
6496 }
6497 
6498 AAMemoryLocation::MemoryLocationsKind
6499 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6500                                                   bool &Changed) {
6501   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6502                     << I << "\n");
6503 
6504   AAMemoryLocation::StateType AccessedLocs;
6505   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6506 
6507   if (auto *CB = dyn_cast<CallBase>(&I)) {
6508 
6509     // First check if we assume any memory is access is visible.
6510     const auto &CBMemLocationAA =
6511         A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB));
6512     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6513                       << " [" << CBMemLocationAA << "]\n");
6514 
6515     if (CBMemLocationAA.isAssumedReadNone())
6516       return NO_LOCATIONS;
6517 
6518     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
6519       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
6520                                 Changed, getAccessKindFromInst(&I));
6521       return AccessedLocs.getAssumed();
6522     }
6523 
6524     uint32_t CBAssumedNotAccessedLocs =
6525         CBMemLocationAA.getAssumedNotAccessedLocation();
6526 
6527     // Set the argmemonly and global bit as we handle them separately below.
6528     uint32_t CBAssumedNotAccessedLocsNoArgMem =
6529         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6530 
6531     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6532       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
6533         continue;
6534       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
6535                                 getAccessKindFromInst(&I));
6536     }
6537 
6538     // Now handle global memory if it might be accessed. This is slightly tricky
6539     // as NO_GLOBAL_MEM has multiple bits set.
6540     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
6541     if (HasGlobalAccesses) {
6542       auto AccessPred = [&](const Instruction *, const Value *Ptr,
6543                             AccessKind Kind, MemoryLocationsKind MLK) {
6544         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
6545                                   getAccessKindFromInst(&I));
6546         return true;
6547       };
6548       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
6549               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6550         return AccessedLocs.getWorstState();
6551     }
6552 
6553     LLVM_DEBUG(
6554         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6555                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6556 
6557     // Now handle argument memory if it might be accessed.
6558     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
6559     if (HasArgAccesses) {
6560       for (unsigned ArgNo = 0, E = CB->getNumArgOperands(); ArgNo < E;
6561            ++ArgNo) {
6562 
6563         // Skip non-pointer arguments.
6564         const Value *ArgOp = CB->getArgOperand(ArgNo);
6565         if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6566           continue;
6567 
6568         // Skip readnone arguments.
6569         const IRPosition &ArgOpIRP = IRPosition::callsite_argument(*CB, ArgNo);
6570         const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
6571             *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6572 
6573         if (ArgOpMemLocationAA.isAssumedReadNone())
6574           continue;
6575 
6576         // Categorize potentially accessed pointer arguments as if there was an
6577         // access instruction with them as pointer.
6578         categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed);
6579       }
6580     }
6581 
6582     LLVM_DEBUG(
6583         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6584                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6585 
6586     return AccessedLocs.getAssumed();
6587   }
6588 
6589   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6590     LLVM_DEBUG(
6591         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6592                << I << " [" << *Ptr << "]\n");
6593     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6594     return AccessedLocs.getAssumed();
6595   }
6596 
6597   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6598                     << I << "\n");
6599   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
6600                             getAccessKindFromInst(&I));
6601   return AccessedLocs.getAssumed();
6602 }
6603 
6604 /// An AA to represent the memory behavior function attributes.
6605 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
6606   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
6607       : AAMemoryLocationImpl(IRP, A) {}
6608 
6609   /// See AbstractAttribute::updateImpl(Attributor &A).
6610   virtual ChangeStatus updateImpl(Attributor &A) override {
6611 
6612     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6613         *this, getIRPosition(), /* TrackDependence */ false);
6614     if (MemBehaviorAA.isAssumedReadNone()) {
6615       if (MemBehaviorAA.isKnownReadNone())
6616         return indicateOptimisticFixpoint();
6617       assert(isAssumedReadNone() &&
6618              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6619       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6620       return ChangeStatus::UNCHANGED;
6621     }
6622 
6623     // The current assumed state used to determine a change.
6624     auto AssumedState = getAssumed();
6625     bool Changed = false;
6626 
6627     auto CheckRWInst = [&](Instruction &I) {
6628       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6629       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6630                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6631       removeAssumedBits(inverseLocation(MLK, false, false));
6632       // Stop once only the valid bit set in the *not assumed location*, thus
6633       // once we don't actually exclude any memory locations in the state.
6634       return getAssumedNotAccessedLocation() != VALID_STATE;
6635     };
6636 
6637     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6638       return indicatePessimisticFixpoint();
6639 
6640     Changed |= AssumedState != getAssumed();
6641     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6642   }
6643 
6644   /// See AbstractAttribute::trackStatistics()
6645   void trackStatistics() const override {
6646     if (isAssumedReadNone())
6647       STATS_DECLTRACK_FN_ATTR(readnone)
6648     else if (isAssumedArgMemOnly())
6649       STATS_DECLTRACK_FN_ATTR(argmemonly)
6650     else if (isAssumedInaccessibleMemOnly())
6651       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6652     else if (isAssumedInaccessibleOrArgMemOnly())
6653       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6654   }
6655 };
6656 
6657 /// AAMemoryLocation attribute for call sites.
6658 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
6659   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
6660       : AAMemoryLocationImpl(IRP, A) {}
6661 
6662   /// See AbstractAttribute::initialize(...).
6663   void initialize(Attributor &A) override {
6664     AAMemoryLocationImpl::initialize(A);
6665     Function *F = getAssociatedFunction();
6666     if (!F || !A.isFunctionIPOAmendable(*F)) {
6667       indicatePessimisticFixpoint();
6668       return;
6669     }
6670   }
6671 
6672   /// See AbstractAttribute::updateImpl(...).
6673   ChangeStatus updateImpl(Attributor &A) override {
6674     // TODO: Once we have call site specific value information we can provide
6675     //       call site specific liveness liveness information and then it makes
6676     //       sense to specialize attributes for call sites arguments instead of
6677     //       redirecting requests to the callee argument.
6678     Function *F = getAssociatedFunction();
6679     const IRPosition &FnPos = IRPosition::function(*F);
6680     auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
6681     bool Changed = false;
6682     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
6683                           AccessKind Kind, MemoryLocationsKind MLK) {
6684       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
6685                                 getAccessKindFromInst(I));
6686       return true;
6687     };
6688     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
6689       return indicatePessimisticFixpoint();
6690     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6691   }
6692 
6693   /// See AbstractAttribute::trackStatistics()
6694   void trackStatistics() const override {
6695     if (isAssumedReadNone())
6696       STATS_DECLTRACK_CS_ATTR(readnone)
6697   }
6698 };
6699 
6700 /// ------------------ Value Constant Range Attribute -------------------------
6701 
6702 struct AAValueConstantRangeImpl : AAValueConstantRange {
6703   using StateType = IntegerRangeState;
6704   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
6705       : AAValueConstantRange(IRP, A) {}
6706 
6707   /// See AbstractAttribute::getAsStr().
6708   const std::string getAsStr() const override {
6709     std::string Str;
6710     llvm::raw_string_ostream OS(Str);
6711     OS << "range(" << getBitWidth() << ")<";
6712     getKnown().print(OS);
6713     OS << " / ";
6714     getAssumed().print(OS);
6715     OS << ">";
6716     return OS.str();
6717   }
6718 
6719   /// Helper function to get a SCEV expr for the associated value at program
6720   /// point \p I.
6721   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
6722     if (!getAnchorScope())
6723       return nullptr;
6724 
6725     ScalarEvolution *SE =
6726         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6727             *getAnchorScope());
6728 
6729     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
6730         *getAnchorScope());
6731 
6732     if (!SE || !LI)
6733       return nullptr;
6734 
6735     const SCEV *S = SE->getSCEV(&getAssociatedValue());
6736     if (!I)
6737       return S;
6738 
6739     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
6740   }
6741 
6742   /// Helper function to get a range from SCEV for the associated value at
6743   /// program point \p I.
6744   ConstantRange getConstantRangeFromSCEV(Attributor &A,
6745                                          const Instruction *I = nullptr) const {
6746     if (!getAnchorScope())
6747       return getWorstState(getBitWidth());
6748 
6749     ScalarEvolution *SE =
6750         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6751             *getAnchorScope());
6752 
6753     const SCEV *S = getSCEV(A, I);
6754     if (!SE || !S)
6755       return getWorstState(getBitWidth());
6756 
6757     return SE->getUnsignedRange(S);
6758   }
6759 
6760   /// Helper function to get a range from LVI for the associated value at
6761   /// program point \p I.
6762   ConstantRange
6763   getConstantRangeFromLVI(Attributor &A,
6764                           const Instruction *CtxI = nullptr) const {
6765     if (!getAnchorScope())
6766       return getWorstState(getBitWidth());
6767 
6768     LazyValueInfo *LVI =
6769         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
6770             *getAnchorScope());
6771 
6772     if (!LVI || !CtxI)
6773       return getWorstState(getBitWidth());
6774     return LVI->getConstantRange(&getAssociatedValue(),
6775                                  const_cast<BasicBlock *>(CtxI->getParent()),
6776                                  const_cast<Instruction *>(CtxI));
6777   }
6778 
6779   /// See AAValueConstantRange::getKnownConstantRange(..).
6780   ConstantRange
6781   getKnownConstantRange(Attributor &A,
6782                         const Instruction *CtxI = nullptr) const override {
6783     if (!CtxI || CtxI == getCtxI())
6784       return getKnown();
6785 
6786     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6787     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6788     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
6789   }
6790 
6791   /// See AAValueConstantRange::getAssumedConstantRange(..).
6792   ConstantRange
6793   getAssumedConstantRange(Attributor &A,
6794                           const Instruction *CtxI = nullptr) const override {
6795     // TODO: Make SCEV use Attributor assumption.
6796     //       We may be able to bound a variable range via assumptions in
6797     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
6798     //       evolve to x^2 + x, then we can say that y is in [2, 12].
6799 
6800     if (!CtxI || CtxI == getCtxI())
6801       return getAssumed();
6802 
6803     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6804     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6805     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
6806   }
6807 
6808   /// See AbstractAttribute::initialize(..).
6809   void initialize(Attributor &A) override {
6810     // Intersect a range given by SCEV.
6811     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
6812 
6813     // Intersect a range given by LVI.
6814     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
6815   }
6816 
6817   /// Helper function to create MDNode for range metadata.
6818   static MDNode *
6819   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
6820                             const ConstantRange &AssumedConstantRange) {
6821     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
6822                                   Ty, AssumedConstantRange.getLower())),
6823                               ConstantAsMetadata::get(ConstantInt::get(
6824                                   Ty, AssumedConstantRange.getUpper()))};
6825     return MDNode::get(Ctx, LowAndHigh);
6826   }
6827 
6828   /// Return true if \p Assumed is included in \p KnownRanges.
6829   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
6830 
6831     if (Assumed.isFullSet())
6832       return false;
6833 
6834     if (!KnownRanges)
6835       return true;
6836 
6837     // If multiple ranges are annotated in IR, we give up to annotate assumed
6838     // range for now.
6839 
6840     // TODO:  If there exists a known range which containts assumed range, we
6841     // can say assumed range is better.
6842     if (KnownRanges->getNumOperands() > 2)
6843       return false;
6844 
6845     ConstantInt *Lower =
6846         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
6847     ConstantInt *Upper =
6848         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
6849 
6850     ConstantRange Known(Lower->getValue(), Upper->getValue());
6851     return Known.contains(Assumed) && Known != Assumed;
6852   }
6853 
6854   /// Helper function to set range metadata.
6855   static bool
6856   setRangeMetadataIfisBetterRange(Instruction *I,
6857                                   const ConstantRange &AssumedConstantRange) {
6858     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
6859     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
6860       if (!AssumedConstantRange.isEmptySet()) {
6861         I->setMetadata(LLVMContext::MD_range,
6862                        getMDNodeForConstantRange(I->getType(), I->getContext(),
6863                                                  AssumedConstantRange));
6864         return true;
6865       }
6866     }
6867     return false;
6868   }
6869 
6870   /// See AbstractAttribute::manifest()
6871   ChangeStatus manifest(Attributor &A) override {
6872     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6873     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
6874     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
6875 
6876     auto &V = getAssociatedValue();
6877     if (!AssumedConstantRange.isEmptySet() &&
6878         !AssumedConstantRange.isSingleElement()) {
6879       if (Instruction *I = dyn_cast<Instruction>(&V))
6880         if (isa<CallInst>(I) || isa<LoadInst>(I))
6881           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
6882             Changed = ChangeStatus::CHANGED;
6883     }
6884 
6885     return Changed;
6886   }
6887 };
6888 
6889 struct AAValueConstantRangeArgument final
6890     : AAArgumentFromCallSiteArguments<
6891           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
6892   using Base = AAArgumentFromCallSiteArguments<
6893       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
6894   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
6895       : Base(IRP, A) {}
6896 
6897   /// See AbstractAttribute::initialize(..).
6898   void initialize(Attributor &A) override {
6899     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
6900       indicatePessimisticFixpoint();
6901     } else {
6902       Base::initialize(A);
6903     }
6904   }
6905 
6906   /// See AbstractAttribute::trackStatistics()
6907   void trackStatistics() const override {
6908     STATS_DECLTRACK_ARG_ATTR(value_range)
6909   }
6910 };
6911 
6912 struct AAValueConstantRangeReturned
6913     : AAReturnedFromReturnedValues<AAValueConstantRange,
6914                                    AAValueConstantRangeImpl> {
6915   using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
6916                                             AAValueConstantRangeImpl>;
6917   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
6918       : Base(IRP, A) {}
6919 
6920   /// See AbstractAttribute::initialize(...).
6921   void initialize(Attributor &A) override {}
6922 
6923   /// See AbstractAttribute::trackStatistics()
6924   void trackStatistics() const override {
6925     STATS_DECLTRACK_FNRET_ATTR(value_range)
6926   }
6927 };
6928 
6929 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
6930   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
6931       : AAValueConstantRangeImpl(IRP, A) {}
6932 
6933   /// See AbstractAttribute::initialize(...).
6934   void initialize(Attributor &A) override {
6935     AAValueConstantRangeImpl::initialize(A);
6936     Value &V = getAssociatedValue();
6937 
6938     if (auto *C = dyn_cast<ConstantInt>(&V)) {
6939       unionAssumed(ConstantRange(C->getValue()));
6940       indicateOptimisticFixpoint();
6941       return;
6942     }
6943 
6944     if (isa<UndefValue>(&V)) {
6945       // Collapse the undef state to 0.
6946       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
6947       indicateOptimisticFixpoint();
6948       return;
6949     }
6950 
6951     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
6952       return;
6953     // If it is a load instruction with range metadata, use it.
6954     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
6955       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
6956         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
6957         return;
6958       }
6959 
6960     // We can work with PHI and select instruction as we traverse their operands
6961     // during update.
6962     if (isa<SelectInst>(V) || isa<PHINode>(V))
6963       return;
6964 
6965     // Otherwise we give up.
6966     indicatePessimisticFixpoint();
6967 
6968     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
6969                       << getAssociatedValue() << "\n");
6970   }
6971 
6972   bool calculateBinaryOperator(
6973       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
6974       const Instruction *CtxI,
6975       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6976     Value *LHS = BinOp->getOperand(0);
6977     Value *RHS = BinOp->getOperand(1);
6978     // TODO: Allow non integers as well.
6979     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
6980       return false;
6981 
6982     auto &LHSAA =
6983         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
6984     QuerriedAAs.push_back(&LHSAA);
6985     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
6986 
6987     auto &RHSAA =
6988         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
6989     QuerriedAAs.push_back(&RHSAA);
6990     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
6991 
6992     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
6993 
6994     T.unionAssumed(AssumedRange);
6995 
6996     // TODO: Track a known state too.
6997 
6998     return T.isValidState();
6999   }
7000 
7001   bool calculateCastInst(
7002       Attributor &A, CastInst *CastI, IntegerRangeState &T,
7003       const Instruction *CtxI,
7004       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7005     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
7006     // TODO: Allow non integers as well.
7007     Value &OpV = *CastI->getOperand(0);
7008     if (!OpV.getType()->isIntegerTy())
7009       return false;
7010 
7011     auto &OpAA =
7012         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
7013     QuerriedAAs.push_back(&OpAA);
7014     T.unionAssumed(
7015         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
7016     return T.isValidState();
7017   }
7018 
7019   bool
7020   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
7021                    const Instruction *CtxI,
7022                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7023     Value *LHS = CmpI->getOperand(0);
7024     Value *RHS = CmpI->getOperand(1);
7025     // TODO: Allow non integers as well.
7026     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7027       return false;
7028 
7029     auto &LHSAA =
7030         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
7031     QuerriedAAs.push_back(&LHSAA);
7032     auto &RHSAA =
7033         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
7034     QuerriedAAs.push_back(&RHSAA);
7035 
7036     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7037     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7038 
7039     // If one of them is empty set, we can't decide.
7040     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
7041       return true;
7042 
7043     bool MustTrue = false, MustFalse = false;
7044 
7045     auto AllowedRegion =
7046         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
7047 
7048     auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
7049         CmpI->getPredicate(), RHSAARange);
7050 
7051     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
7052       MustFalse = true;
7053 
7054     if (SatisfyingRegion.contains(LHSAARange))
7055       MustTrue = true;
7056 
7057     assert((!MustTrue || !MustFalse) &&
7058            "Either MustTrue or MustFalse should be false!");
7059 
7060     if (MustTrue)
7061       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
7062     else if (MustFalse)
7063       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
7064     else
7065       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
7066 
7067     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
7068                       << " " << RHSAA << "\n");
7069 
7070     // TODO: Track a known state too.
7071     return T.isValidState();
7072   }
7073 
7074   /// See AbstractAttribute::updateImpl(...).
7075   ChangeStatus updateImpl(Attributor &A) override {
7076     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7077                             IntegerRangeState &T, bool Stripped) -> bool {
7078       Instruction *I = dyn_cast<Instruction>(&V);
7079       if (!I || isa<CallBase>(I)) {
7080 
7081         // If the value is not instruction, we query AA to Attributor.
7082         const auto &AA =
7083             A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
7084 
7085         // Clamp operator is not used to utilize a program point CtxI.
7086         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
7087 
7088         return T.isValidState();
7089       }
7090 
7091       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
7092       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
7093         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
7094           return false;
7095       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
7096         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
7097           return false;
7098       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
7099         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
7100           return false;
7101       } else {
7102         // Give up with other instructions.
7103         // TODO: Add other instructions
7104 
7105         T.indicatePessimisticFixpoint();
7106         return false;
7107       }
7108 
7109       // Catch circular reasoning in a pessimistic way for now.
7110       // TODO: Check how the range evolves and if we stripped anything, see also
7111       //       AADereferenceable or AAAlign for similar situations.
7112       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
7113         if (QueriedAA != this)
7114           continue;
7115         // If we are in a stady state we do not need to worry.
7116         if (T.getAssumed() == getState().getAssumed())
7117           continue;
7118         T.indicatePessimisticFixpoint();
7119       }
7120 
7121       return T.isValidState();
7122     };
7123 
7124     IntegerRangeState T(getBitWidth());
7125 
7126     if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7127             A, getIRPosition(), *this, T, VisitValueCB, getCtxI(),
7128             /* UseValueSimplify */ false))
7129       return indicatePessimisticFixpoint();
7130 
7131     return clampStateAndIndicateChange(getState(), T);
7132   }
7133 
7134   /// See AbstractAttribute::trackStatistics()
7135   void trackStatistics() const override {
7136     STATS_DECLTRACK_FLOATING_ATTR(value_range)
7137   }
7138 };
7139 
7140 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
7141   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
7142       : AAValueConstantRangeImpl(IRP, A) {}
7143 
7144   /// See AbstractAttribute::initialize(...).
7145   ChangeStatus updateImpl(Attributor &A) override {
7146     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7147                      "not be called");
7148   }
7149 
7150   /// See AbstractAttribute::trackStatistics()
7151   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7152 };
7153 
7154 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
7155   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
7156       : AAValueConstantRangeFunction(IRP, A) {}
7157 
7158   /// See AbstractAttribute::trackStatistics()
7159   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7160 };
7161 
7162 struct AAValueConstantRangeCallSiteReturned
7163     : AACallSiteReturnedFromReturned<AAValueConstantRange,
7164                                      AAValueConstantRangeImpl> {
7165   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
7166       : AACallSiteReturnedFromReturned<AAValueConstantRange,
7167                                        AAValueConstantRangeImpl>(IRP, A) {}
7168 
7169   /// See AbstractAttribute::initialize(...).
7170   void initialize(Attributor &A) override {
7171     // If it is a load instruction with range metadata, use the metadata.
7172     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7173       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7174         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7175 
7176     AAValueConstantRangeImpl::initialize(A);
7177   }
7178 
7179   /// See AbstractAttribute::trackStatistics()
7180   void trackStatistics() const override {
7181     STATS_DECLTRACK_CSRET_ATTR(value_range)
7182   }
7183 };
7184 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
7185   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
7186       : AAValueConstantRangeFloating(IRP, A) {}
7187 
7188   /// See AbstractAttribute::trackStatistics()
7189   void trackStatistics() const override {
7190     STATS_DECLTRACK_CSARG_ATTR(value_range)
7191   }
7192 };
7193 
7194 /// ------------------ Potential Values Attribute -------------------------
7195 
7196 struct AAPotentialValuesImpl : AAPotentialValues {
7197   using StateType = PotentialConstantIntValuesState;
7198 
7199   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
7200       : AAPotentialValues(IRP, A) {}
7201 
7202   /// See AbstractAttribute::getAsStr().
7203   const std::string getAsStr() const override {
7204     std::string Str;
7205     llvm::raw_string_ostream OS(Str);
7206     OS << getState();
7207     return OS.str();
7208   }
7209 
7210   /// See AbstractAttribute::updateImpl(...).
7211   ChangeStatus updateImpl(Attributor &A) override {
7212     return indicatePessimisticFixpoint();
7213   }
7214 };
7215 
7216 struct AAPotentialValuesArgument final
7217     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7218                                       PotentialConstantIntValuesState> {
7219   using Base =
7220       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7221                                       PotentialConstantIntValuesState>;
7222   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
7223       : Base(IRP, A) {}
7224 
7225   /// See AbstractAttribute::initialize(..).
7226   void initialize(Attributor &A) override {
7227     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7228       indicatePessimisticFixpoint();
7229     } else {
7230       Base::initialize(A);
7231     }
7232   }
7233 
7234   /// See AbstractAttribute::trackStatistics()
7235   void trackStatistics() const override {
7236     STATS_DECLTRACK_ARG_ATTR(potential_values)
7237   }
7238 };
7239 
7240 struct AAPotentialValuesReturned
7241     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
7242   using Base =
7243       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
7244   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
7245       : Base(IRP, A) {}
7246 
7247   /// See AbstractAttribute::trackStatistics()
7248   void trackStatistics() const override {
7249     STATS_DECLTRACK_FNRET_ATTR(potential_values)
7250   }
7251 };
7252 
7253 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
7254   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
7255       : AAPotentialValuesImpl(IRP, A) {}
7256 
7257   /// See AbstractAttribute::initialize(..).
7258   void initialize(Attributor &A) override {
7259     Value &V = getAssociatedValue();
7260 
7261     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7262       unionAssumed(C->getValue());
7263       indicateOptimisticFixpoint();
7264       return;
7265     }
7266 
7267     if (isa<UndefValue>(&V)) {
7268       // Collapse the undef state to 0.
7269       unionAssumed(
7270           APInt(/* numBits */ getAssociatedType()->getIntegerBitWidth(),
7271                 /* val */ 0));
7272       indicateOptimisticFixpoint();
7273       return;
7274     }
7275 
7276     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
7277       return;
7278 
7279     if (isa<SelectInst>(V) || isa<PHINode>(V))
7280       return;
7281 
7282     indicatePessimisticFixpoint();
7283 
7284     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
7285                       << getAssociatedValue() << "\n");
7286   }
7287 
7288   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
7289                                 const APInt &RHS) {
7290     ICmpInst::Predicate Pred = ICI->getPredicate();
7291     switch (Pred) {
7292     case ICmpInst::ICMP_UGT:
7293       return LHS.ugt(RHS);
7294     case ICmpInst::ICMP_SGT:
7295       return LHS.sgt(RHS);
7296     case ICmpInst::ICMP_EQ:
7297       return LHS.eq(RHS);
7298     case ICmpInst::ICMP_UGE:
7299       return LHS.uge(RHS);
7300     case ICmpInst::ICMP_SGE:
7301       return LHS.sge(RHS);
7302     case ICmpInst::ICMP_ULT:
7303       return LHS.ult(RHS);
7304     case ICmpInst::ICMP_SLT:
7305       return LHS.slt(RHS);
7306     case ICmpInst::ICMP_NE:
7307       return LHS.ne(RHS);
7308     case ICmpInst::ICMP_ULE:
7309       return LHS.ule(RHS);
7310     case ICmpInst::ICMP_SLE:
7311       return LHS.sle(RHS);
7312     default:
7313       llvm_unreachable("Invalid ICmp predicate!");
7314     }
7315   }
7316 
7317   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
7318                                  uint32_t ResultBitWidth) {
7319     Instruction::CastOps CastOp = CI->getOpcode();
7320     switch (CastOp) {
7321     default:
7322       llvm_unreachable("unsupported or not integer cast");
7323     case Instruction::Trunc:
7324       return Src.trunc(ResultBitWidth);
7325     case Instruction::SExt:
7326       return Src.sext(ResultBitWidth);
7327     case Instruction::ZExt:
7328       return Src.zext(ResultBitWidth);
7329     case Instruction::BitCast:
7330       return Src;
7331     }
7332   }
7333 
7334   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
7335                                        const APInt &LHS, const APInt &RHS,
7336                                        bool &SkipOperation, bool &Unsupported) {
7337     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
7338     // Unsupported is set to true when the binary operator is not supported.
7339     // SkipOperation is set to true when UB occur with the given operand pair
7340     // (LHS, RHS).
7341     // TODO: we should look at nsw and nuw keywords to handle operations
7342     //       that create poison or undef value.
7343     switch (BinOpcode) {
7344     default:
7345       Unsupported = true;
7346       return LHS;
7347     case Instruction::Add:
7348       return LHS + RHS;
7349     case Instruction::Sub:
7350       return LHS - RHS;
7351     case Instruction::Mul:
7352       return LHS * RHS;
7353     case Instruction::UDiv:
7354       if (RHS.isNullValue()) {
7355         SkipOperation = true;
7356         return LHS;
7357       }
7358       return LHS.udiv(RHS);
7359     case Instruction::SDiv:
7360       if (RHS.isNullValue()) {
7361         SkipOperation = true;
7362         return LHS;
7363       }
7364       return LHS.sdiv(RHS);
7365     case Instruction::URem:
7366       if (RHS.isNullValue()) {
7367         SkipOperation = true;
7368         return LHS;
7369       }
7370       return LHS.urem(RHS);
7371     case Instruction::SRem:
7372       if (RHS.isNullValue()) {
7373         SkipOperation = true;
7374         return LHS;
7375       }
7376       return LHS.srem(RHS);
7377     case Instruction::Shl:
7378       return LHS.shl(RHS);
7379     case Instruction::LShr:
7380       return LHS.lshr(RHS);
7381     case Instruction::AShr:
7382       return LHS.ashr(RHS);
7383     case Instruction::And:
7384       return LHS & RHS;
7385     case Instruction::Or:
7386       return LHS | RHS;
7387     case Instruction::Xor:
7388       return LHS ^ RHS;
7389     }
7390   }
7391 
7392   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
7393     auto AssumedBefore = getAssumed();
7394     Value *LHS = ICI->getOperand(0);
7395     Value *RHS = ICI->getOperand(1);
7396     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7397       return indicatePessimisticFixpoint();
7398 
7399     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7400     if (!LHSAA.isValidState())
7401       return indicatePessimisticFixpoint();
7402 
7403     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7404     if (!RHSAA.isValidState())
7405       return indicatePessimisticFixpoint();
7406 
7407     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7408     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7409 
7410     // TODO: Handle undef correctly.
7411     bool MaybeTrue = false, MaybeFalse = false;
7412     for (const APInt &L : LHSAAPVS) {
7413       for (const APInt &R : RHSAAPVS) {
7414         bool CmpResult = calculateICmpInst(ICI, L, R);
7415         MaybeTrue |= CmpResult;
7416         MaybeFalse |= !CmpResult;
7417         if (MaybeTrue & MaybeFalse)
7418           return indicatePessimisticFixpoint();
7419       }
7420     }
7421     if (MaybeTrue)
7422       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
7423     if (MaybeFalse)
7424       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
7425     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7426                                          : ChangeStatus::CHANGED;
7427   }
7428 
7429   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
7430     auto AssumedBefore = getAssumed();
7431     Value *LHS = SI->getTrueValue();
7432     Value *RHS = SI->getFalseValue();
7433     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7434       return indicatePessimisticFixpoint();
7435 
7436     // TODO: Use assumed simplified condition value
7437     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7438     if (!LHSAA.isValidState())
7439       return indicatePessimisticFixpoint();
7440 
7441     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7442     if (!RHSAA.isValidState())
7443       return indicatePessimisticFixpoint();
7444 
7445     unionAssumed(LHSAA);
7446     unionAssumed(RHSAA);
7447     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7448                                          : ChangeStatus::CHANGED;
7449   }
7450 
7451   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
7452     auto AssumedBefore = getAssumed();
7453     if (!CI->isIntegerCast())
7454       return indicatePessimisticFixpoint();
7455     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
7456     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
7457     Value *Src = CI->getOperand(0);
7458     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src));
7459     if (!SrcAA.isValidState())
7460       return indicatePessimisticFixpoint();
7461     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
7462     for (const APInt &S : SrcAAPVS) {
7463       APInt T = calculateCastInst(CI, S, ResultBitWidth);
7464       unionAssumed(T);
7465     }
7466     // TODO: Handle undef correctly.
7467     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7468                                          : ChangeStatus::CHANGED;
7469   }
7470 
7471   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
7472     auto AssumedBefore = getAssumed();
7473     Value *LHS = BinOp->getOperand(0);
7474     Value *RHS = BinOp->getOperand(1);
7475     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7476       return indicatePessimisticFixpoint();
7477 
7478     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7479     if (!LHSAA.isValidState())
7480       return indicatePessimisticFixpoint();
7481 
7482     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7483     if (!RHSAA.isValidState())
7484       return indicatePessimisticFixpoint();
7485 
7486     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7487     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7488 
7489     // TODO: Handle undef correctly
7490     for (const APInt &L : LHSAAPVS) {
7491       for (const APInt &R : RHSAAPVS) {
7492         bool SkipOperation = false;
7493         bool Unsupported = false;
7494         APInt Result =
7495             calculateBinaryOperator(BinOp, L, R, SkipOperation, Unsupported);
7496         if (Unsupported)
7497           return indicatePessimisticFixpoint();
7498         // If SkipOperation is true, we can ignore this operand pair (L, R).
7499         if (!SkipOperation)
7500           unionAssumed(Result);
7501       }
7502     }
7503     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7504                                          : ChangeStatus::CHANGED;
7505   }
7506 
7507   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
7508     auto AssumedBefore = getAssumed();
7509     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
7510       Value *IncomingValue = PHI->getIncomingValue(u);
7511       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
7512           *this, IRPosition::value(*IncomingValue));
7513       if (!PotentialValuesAA.isValidState())
7514         return indicatePessimisticFixpoint();
7515       unionAssumed(PotentialValuesAA.getAssumed());
7516     }
7517     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7518                                          : ChangeStatus::CHANGED;
7519   }
7520 
7521   /// See AbstractAttribute::updateImpl(...).
7522   ChangeStatus updateImpl(Attributor &A) override {
7523     Value &V = getAssociatedValue();
7524     Instruction *I = dyn_cast<Instruction>(&V);
7525 
7526     if (auto *ICI = dyn_cast<ICmpInst>(I))
7527       return updateWithICmpInst(A, ICI);
7528 
7529     if (auto *SI = dyn_cast<SelectInst>(I))
7530       return updateWithSelectInst(A, SI);
7531 
7532     if (auto *CI = dyn_cast<CastInst>(I))
7533       return updateWithCastInst(A, CI);
7534 
7535     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
7536       return updateWithBinaryOperator(A, BinOp);
7537 
7538     if (auto *PHI = dyn_cast<PHINode>(I))
7539       return updateWithPHINode(A, PHI);
7540 
7541     return indicatePessimisticFixpoint();
7542   }
7543 
7544   /// See AbstractAttribute::trackStatistics()
7545   void trackStatistics() const override {
7546     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
7547   }
7548 };
7549 
7550 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
7551   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
7552       : AAPotentialValuesImpl(IRP, A) {}
7553 
7554   /// See AbstractAttribute::initialize(...).
7555   ChangeStatus updateImpl(Attributor &A) override {
7556     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
7557                      "not be called");
7558   }
7559 
7560   /// See AbstractAttribute::trackStatistics()
7561   void trackStatistics() const override {
7562     STATS_DECLTRACK_FN_ATTR(potential_values)
7563   }
7564 };
7565 
7566 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
7567   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
7568       : AAPotentialValuesFunction(IRP, A) {}
7569 
7570   /// See AbstractAttribute::trackStatistics()
7571   void trackStatistics() const override {
7572     STATS_DECLTRACK_CS_ATTR(potential_values)
7573   }
7574 };
7575 
7576 struct AAPotentialValuesCallSiteReturned
7577     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
7578   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
7579       : AACallSiteReturnedFromReturned<AAPotentialValues,
7580                                        AAPotentialValuesImpl>(IRP, A) {}
7581 
7582   /// See AbstractAttribute::trackStatistics()
7583   void trackStatistics() const override {
7584     STATS_DECLTRACK_CSRET_ATTR(potential_values)
7585   }
7586 };
7587 
7588 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
7589   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
7590       : AAPotentialValuesFloating(IRP, A) {}
7591 
7592   /// See AbstractAttribute::initialize(..).
7593   void initialize(Attributor &A) override {
7594     Value &V = getAssociatedValue();
7595 
7596     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7597       unionAssumed(C->getValue());
7598       indicateOptimisticFixpoint();
7599       return;
7600     }
7601 
7602     if (isa<UndefValue>(&V)) {
7603       // Collapse the undef state to 0.
7604       unionAssumed(
7605           APInt(/* numBits */ getAssociatedType()->getIntegerBitWidth(),
7606                 /* val */ 0));
7607       indicateOptimisticFixpoint();
7608       return;
7609     }
7610   }
7611 
7612   /// See AbstractAttribute::updateImpl(...).
7613   ChangeStatus updateImpl(Attributor &A) override {
7614     Value &V = getAssociatedValue();
7615     auto AssumedBefore = getAssumed();
7616     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V));
7617     const auto &S = AA.getAssumed();
7618     unionAssumed(S);
7619     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7620                                          : ChangeStatus::CHANGED;
7621   }
7622 
7623   /// See AbstractAttribute::trackStatistics()
7624   void trackStatistics() const override {
7625     STATS_DECLTRACK_CSARG_ATTR(potential_values)
7626   }
7627 };
7628 
7629 /// ------------------------ NoUndef Attribute ---------------------------------
7630 struct AANoUndefImpl : AANoUndef {
7631   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
7632 
7633   /// See AbstractAttribute::initialize(...).
7634   void initialize(Attributor &A) override {
7635     Value &V = getAssociatedValue();
7636     if (isa<UndefValue>(V))
7637       indicatePessimisticFixpoint();
7638     else if (isa<FreezeInst>(V))
7639       indicateOptimisticFixpoint();
7640     else if (isGuaranteedNotToBeUndefOrPoison(&V))
7641       indicateOptimisticFixpoint();
7642     else
7643       AANoUndef::initialize(A);
7644   }
7645 
7646   /// See followUsesInMBEC
7647   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
7648                        AANoUndef::StateType &State) {
7649     const Value *UseV = U->get();
7650     const DominatorTree *DT = nullptr;
7651     if (Function *F = getAnchorScope())
7652       DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>(
7653           *F);
7654     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, I, DT));
7655     bool TrackUse = false;
7656     // Track use for instructions which must produce undef or poison bits when
7657     // at least one operand contains such bits.
7658     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
7659       TrackUse = true;
7660     return TrackUse;
7661   }
7662 
7663   /// See AbstractAttribute::getAsStr().
7664   const std::string getAsStr() const override {
7665     return getAssumed() ? "noundef" : "may-undef-or-poison";
7666   }
7667 };
7668 
7669 struct AANoUndefFloating : public AANoUndefImpl {
7670   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
7671       : AANoUndefImpl(IRP, A) {}
7672 
7673   /// See AbstractAttribute::initialize(...).
7674   void initialize(Attributor &A) override {
7675     AANoUndefImpl::initialize(A);
7676     if (!getState().isAtFixpoint())
7677       if (Instruction *CtxI = getCtxI())
7678         followUsesInMBEC(*this, A, getState(), *CtxI);
7679   }
7680 
7681   /// See AbstractAttribute::updateImpl(...).
7682   ChangeStatus updateImpl(Attributor &A) override {
7683     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7684                             AANoUndef::StateType &T, bool Stripped) -> bool {
7685       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V));
7686       if (!Stripped && this == &AA) {
7687         T.indicatePessimisticFixpoint();
7688       } else {
7689         const AANoUndef::StateType &S =
7690             static_cast<const AANoUndef::StateType &>(AA.getState());
7691         T ^= S;
7692       }
7693       return T.isValidState();
7694     };
7695 
7696     StateType T;
7697     if (!genericValueTraversal<AANoUndef, StateType>(
7698             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
7699       return indicatePessimisticFixpoint();
7700 
7701     return clampStateAndIndicateChange(getState(), T);
7702   }
7703 
7704   /// See AbstractAttribute::trackStatistics()
7705   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
7706 };
7707 
7708 struct AANoUndefReturned final
7709     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
7710   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
7711       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
7712 
7713   /// See AbstractAttribute::trackStatistics()
7714   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
7715 };
7716 
7717 struct AANoUndefArgument final
7718     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
7719   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
7720       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
7721 
7722   /// See AbstractAttribute::trackStatistics()
7723   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
7724 };
7725 
7726 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
7727   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
7728       : AANoUndefFloating(IRP, A) {}
7729 
7730   /// See AbstractAttribute::trackStatistics()
7731   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
7732 };
7733 
7734 struct AANoUndefCallSiteReturned final
7735     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
7736   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
7737       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
7738 
7739   /// See AbstractAttribute::trackStatistics()
7740   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
7741 };
7742 } // namespace
7743 
7744 const char AAReturnedValues::ID = 0;
7745 const char AANoUnwind::ID = 0;
7746 const char AANoSync::ID = 0;
7747 const char AANoFree::ID = 0;
7748 const char AANonNull::ID = 0;
7749 const char AANoRecurse::ID = 0;
7750 const char AAWillReturn::ID = 0;
7751 const char AAUndefinedBehavior::ID = 0;
7752 const char AANoAlias::ID = 0;
7753 const char AAReachability::ID = 0;
7754 const char AANoReturn::ID = 0;
7755 const char AAIsDead::ID = 0;
7756 const char AADereferenceable::ID = 0;
7757 const char AAAlign::ID = 0;
7758 const char AANoCapture::ID = 0;
7759 const char AAValueSimplify::ID = 0;
7760 const char AAHeapToStack::ID = 0;
7761 const char AAPrivatizablePtr::ID = 0;
7762 const char AAMemoryBehavior::ID = 0;
7763 const char AAMemoryLocation::ID = 0;
7764 const char AAValueConstantRange::ID = 0;
7765 const char AAPotentialValues::ID = 0;
7766 const char AANoUndef::ID = 0;
7767 
7768 // Macro magic to create the static generator function for attributes that
7769 // follow the naming scheme.
7770 
7771 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
7772   case IRPosition::PK:                                                         \
7773     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
7774 
7775 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
7776   case IRPosition::PK:                                                         \
7777     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
7778     ++NumAAs;                                                                  \
7779     break;
7780 
7781 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
7782   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7783     CLASS *AA = nullptr;                                                       \
7784     switch (IRP.getPositionKind()) {                                           \
7785       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7786       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
7787       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
7788       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7789       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
7790       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
7791       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7792       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7793     }                                                                          \
7794     return *AA;                                                                \
7795   }
7796 
7797 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
7798   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7799     CLASS *AA = nullptr;                                                       \
7800     switch (IRP.getPositionKind()) {                                           \
7801       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7802       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
7803       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
7804       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7805       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7806       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
7807       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7808       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7809     }                                                                          \
7810     return *AA;                                                                \
7811   }
7812 
7813 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
7814   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7815     CLASS *AA = nullptr;                                                       \
7816     switch (IRP.getPositionKind()) {                                           \
7817       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7818       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7819       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7820       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7821       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7822       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
7823       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7824       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7825     }                                                                          \
7826     return *AA;                                                                \
7827   }
7828 
7829 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
7830   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7831     CLASS *AA = nullptr;                                                       \
7832     switch (IRP.getPositionKind()) {                                           \
7833       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7834       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
7835       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
7836       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7837       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
7838       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
7839       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
7840       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7841     }                                                                          \
7842     return *AA;                                                                \
7843   }
7844 
7845 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
7846   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
7847     CLASS *AA = nullptr;                                                       \
7848     switch (IRP.getPositionKind()) {                                           \
7849       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
7850       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
7851       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
7852       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
7853       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
7854       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
7855       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
7856       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
7857     }                                                                          \
7858     return *AA;                                                                \
7859   }
7860 
7861 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
7862 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
7863 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
7864 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
7865 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
7866 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
7867 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
7868 
7869 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
7870 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
7871 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
7872 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
7873 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
7874 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
7875 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
7876 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
7877 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
7878 
7879 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
7880 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
7881 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
7882 
7883 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
7884 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
7885 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
7886 
7887 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
7888 
7889 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
7890 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
7891 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
7892 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
7893 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
7894 #undef SWITCH_PK_CREATE
7895 #undef SWITCH_PK_INV
7896