1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // See the Attributor.h file comment and the class descriptions in that file for 10 // more information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/Attributor.h" 15 16 #include "llvm/ADT/SCCIterator.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumeBundleQueries.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/LazyValueInfo.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/NoFolder.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 34 #include <cassert> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "attributor" 39 40 static cl::opt<bool> ManifestInternal( 41 "attributor-manifest-internal", cl::Hidden, 42 cl::desc("Manifest Attributor internal string attributes."), 43 cl::init(false)); 44 45 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128), 46 cl::Hidden); 47 48 template <> 49 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0; 50 51 static cl::opt<unsigned, true> MaxPotentialValues( 52 "attributor-max-potential-values", cl::Hidden, 53 cl::desc("Maximum number of potential values to be " 54 "tracked for each position."), 55 cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues), 56 cl::init(7)); 57 58 STATISTIC(NumAAs, "Number of abstract attributes created"); 59 60 // Some helper macros to deal with statistics tracking. 61 // 62 // Usage: 63 // For simple IR attribute tracking overload trackStatistics in the abstract 64 // attribute and choose the right STATS_DECLTRACK_********* macro, 65 // e.g.,: 66 // void trackStatistics() const override { 67 // STATS_DECLTRACK_ARG_ATTR(returned) 68 // } 69 // If there is a single "increment" side one can use the macro 70 // STATS_DECLTRACK with a custom message. If there are multiple increment 71 // sides, STATS_DECL and STATS_TRACK can also be used separately. 72 // 73 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \ 74 ("Number of " #TYPE " marked '" #NAME "'") 75 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME 76 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); 77 #define STATS_DECL(NAME, TYPE, MSG) \ 78 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); 79 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); 80 #define STATS_DECLTRACK(NAME, TYPE, MSG) \ 81 { \ 82 STATS_DECL(NAME, TYPE, MSG) \ 83 STATS_TRACK(NAME, TYPE) \ 84 } 85 #define STATS_DECLTRACK_ARG_ATTR(NAME) \ 86 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) 87 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \ 88 STATS_DECLTRACK(NAME, CSArguments, \ 89 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) 90 #define STATS_DECLTRACK_FN_ATTR(NAME) \ 91 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) 92 #define STATS_DECLTRACK_CS_ATTR(NAME) \ 93 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) 94 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \ 95 STATS_DECLTRACK(NAME, FunctionReturn, \ 96 BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) 97 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \ 98 STATS_DECLTRACK(NAME, CSReturn, \ 99 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) 100 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \ 101 STATS_DECLTRACK(NAME, Floating, \ 102 ("Number of floating values known to be '" #NAME "'")) 103 104 // Specialization of the operator<< for abstract attributes subclasses. This 105 // disambiguates situations where multiple operators are applicable. 106 namespace llvm { 107 #define PIPE_OPERATOR(CLASS) \ 108 raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \ 109 return OS << static_cast<const AbstractAttribute &>(AA); \ 110 } 111 112 PIPE_OPERATOR(AAIsDead) 113 PIPE_OPERATOR(AANoUnwind) 114 PIPE_OPERATOR(AANoSync) 115 PIPE_OPERATOR(AANoRecurse) 116 PIPE_OPERATOR(AAWillReturn) 117 PIPE_OPERATOR(AANoReturn) 118 PIPE_OPERATOR(AAReturnedValues) 119 PIPE_OPERATOR(AANonNull) 120 PIPE_OPERATOR(AANoAlias) 121 PIPE_OPERATOR(AADereferenceable) 122 PIPE_OPERATOR(AAAlign) 123 PIPE_OPERATOR(AANoCapture) 124 PIPE_OPERATOR(AAValueSimplify) 125 PIPE_OPERATOR(AANoFree) 126 PIPE_OPERATOR(AAHeapToStack) 127 PIPE_OPERATOR(AAReachability) 128 PIPE_OPERATOR(AAMemoryBehavior) 129 PIPE_OPERATOR(AAMemoryLocation) 130 PIPE_OPERATOR(AAValueConstantRange) 131 PIPE_OPERATOR(AAPrivatizablePtr) 132 PIPE_OPERATOR(AAUndefinedBehavior) 133 PIPE_OPERATOR(AAPotentialValues) 134 PIPE_OPERATOR(AANoUndef) 135 136 #undef PIPE_OPERATOR 137 } // namespace llvm 138 139 namespace { 140 141 static Optional<ConstantInt *> 142 getAssumedConstantInt(Attributor &A, const Value &V, 143 const AbstractAttribute &AA, 144 bool &UsedAssumedInformation) { 145 Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation); 146 if (C.hasValue()) 147 return dyn_cast_or_null<ConstantInt>(C.getValue()); 148 return llvm::None; 149 } 150 151 /// Get pointer operand of memory accessing instruction. If \p I is 152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, 153 /// is set to false and the instruction is volatile, return nullptr. 154 static const Value *getPointerOperand(const Instruction *I, 155 bool AllowVolatile) { 156 if (auto *LI = dyn_cast<LoadInst>(I)) { 157 if (!AllowVolatile && LI->isVolatile()) 158 return nullptr; 159 return LI->getPointerOperand(); 160 } 161 162 if (auto *SI = dyn_cast<StoreInst>(I)) { 163 if (!AllowVolatile && SI->isVolatile()) 164 return nullptr; 165 return SI->getPointerOperand(); 166 } 167 168 if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) { 169 if (!AllowVolatile && CXI->isVolatile()) 170 return nullptr; 171 return CXI->getPointerOperand(); 172 } 173 174 if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) { 175 if (!AllowVolatile && RMWI->isVolatile()) 176 return nullptr; 177 return RMWI->getPointerOperand(); 178 } 179 180 return nullptr; 181 } 182 183 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and 184 /// advanced by \p Offset bytes. To aid later analysis the method tries to build 185 /// getelement pointer instructions that traverse the natural type of \p Ptr if 186 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence 187 /// through a cast to i8*. 188 /// 189 /// TODO: This could probably live somewhere more prominantly if it doesn't 190 /// already exist. 191 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset, 192 IRBuilder<NoFolder> &IRB, const DataLayout &DL) { 193 assert(Offset >= 0 && "Negative offset not supported yet!"); 194 LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset 195 << "-bytes as " << *ResTy << "\n"); 196 197 // The initial type we are trying to traverse to get nice GEPs. 198 Type *Ty = Ptr->getType(); 199 200 SmallVector<Value *, 4> Indices; 201 std::string GEPName = Ptr->getName().str(); 202 while (Offset) { 203 uint64_t Idx, Rem; 204 205 if (auto *STy = dyn_cast<StructType>(Ty)) { 206 const StructLayout *SL = DL.getStructLayout(STy); 207 if (int64_t(SL->getSizeInBytes()) < Offset) 208 break; 209 Idx = SL->getElementContainingOffset(Offset); 210 assert(Idx < STy->getNumElements() && "Offset calculation error!"); 211 Rem = Offset - SL->getElementOffset(Idx); 212 Ty = STy->getElementType(Idx); 213 } else if (auto *PTy = dyn_cast<PointerType>(Ty)) { 214 Ty = PTy->getElementType(); 215 if (!Ty->isSized()) 216 break; 217 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 218 assert(ElementSize && "Expected type with size!"); 219 Idx = Offset / ElementSize; 220 Rem = Offset % ElementSize; 221 } else { 222 // Non-aggregate type, we cast and make byte-wise progress now. 223 break; 224 } 225 226 LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset 227 << " Idx: " << Idx << " Rem: " << Rem << "\n"); 228 229 GEPName += "." + std::to_string(Idx); 230 Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx)); 231 Offset = Rem; 232 } 233 234 // Create a GEP if we collected indices above. 235 if (Indices.size()) 236 Ptr = IRB.CreateGEP(Ptr, Indices, GEPName); 237 238 // If an offset is left we use byte-wise adjustment. 239 if (Offset) { 240 Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy()); 241 Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset), 242 GEPName + ".b" + Twine(Offset)); 243 } 244 245 // Ensure the result has the requested type. 246 Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast"); 247 248 LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n"); 249 return Ptr; 250 } 251 252 /// Recursively visit all values that might become \p IRP at some point. This 253 /// will be done by looking through cast instructions, selects, phis, and calls 254 /// with the "returned" attribute. Once we cannot look through the value any 255 /// further, the callback \p VisitValueCB is invoked and passed the current 256 /// value, the \p State, and a flag to indicate if we stripped anything. 257 /// Stripped means that we unpacked the value associated with \p IRP at least 258 /// once. Note that the value used for the callback may still be the value 259 /// associated with \p IRP (due to PHIs). To limit how much effort is invested, 260 /// we will never visit more values than specified by \p MaxValues. 261 template <typename AAType, typename StateTy> 262 static bool genericValueTraversal( 263 Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State, 264 function_ref<bool(Value &, const Instruction *, StateTy &, bool)> 265 VisitValueCB, 266 const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16, 267 function_ref<Value *(Value *)> StripCB = nullptr) { 268 269 const AAIsDead *LivenessAA = nullptr; 270 if (IRP.getAnchorScope()) 271 LivenessAA = &A.getAAFor<AAIsDead>( 272 QueryingAA, IRPosition::function(*IRP.getAnchorScope()), 273 /* TrackDependence */ false); 274 bool AnyDead = false; 275 276 using Item = std::pair<Value *, const Instruction *>; 277 SmallSet<Item, 16> Visited; 278 SmallVector<Item, 16> Worklist; 279 Worklist.push_back({&IRP.getAssociatedValue(), CtxI}); 280 281 int Iteration = 0; 282 do { 283 Item I = Worklist.pop_back_val(); 284 Value *V = I.first; 285 CtxI = I.second; 286 if (StripCB) 287 V = StripCB(V); 288 289 // Check if we should process the current value. To prevent endless 290 // recursion keep a record of the values we followed! 291 if (!Visited.insert(I).second) 292 continue; 293 294 // Make sure we limit the compile time for complex expressions. 295 if (Iteration++ >= MaxValues) 296 return false; 297 298 // Explicitly look through calls with a "returned" attribute if we do 299 // not have a pointer as stripPointerCasts only works on them. 300 Value *NewV = nullptr; 301 if (V->getType()->isPointerTy()) { 302 NewV = V->stripPointerCasts(); 303 } else { 304 auto *CB = dyn_cast<CallBase>(V); 305 if (CB && CB->getCalledFunction()) { 306 for (Argument &Arg : CB->getCalledFunction()->args()) 307 if (Arg.hasReturnedAttr()) { 308 NewV = CB->getArgOperand(Arg.getArgNo()); 309 break; 310 } 311 } 312 } 313 if (NewV && NewV != V) { 314 Worklist.push_back({NewV, CtxI}); 315 continue; 316 } 317 318 // Look through select instructions, visit both potential values. 319 if (auto *SI = dyn_cast<SelectInst>(V)) { 320 Worklist.push_back({SI->getTrueValue(), CtxI}); 321 Worklist.push_back({SI->getFalseValue(), CtxI}); 322 continue; 323 } 324 325 // Look through phi nodes, visit all live operands. 326 if (auto *PHI = dyn_cast<PHINode>(V)) { 327 assert(LivenessAA && 328 "Expected liveness in the presence of instructions!"); 329 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { 330 BasicBlock *IncomingBB = PHI->getIncomingBlock(u); 331 if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA, 332 LivenessAA, 333 /* CheckBBLivenessOnly */ true)) { 334 AnyDead = true; 335 continue; 336 } 337 Worklist.push_back( 338 {PHI->getIncomingValue(u), IncomingBB->getTerminator()}); 339 } 340 continue; 341 } 342 343 if (UseValueSimplify && !isa<Constant>(V)) { 344 bool UsedAssumedInformation = false; 345 Optional<Constant *> C = 346 A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation); 347 if (!C.hasValue()) 348 continue; 349 if (Value *NewV = C.getValue()) { 350 Worklist.push_back({NewV, CtxI}); 351 continue; 352 } 353 } 354 355 // Once a leaf is reached we inform the user through the callback. 356 if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) 357 return false; 358 } while (!Worklist.empty()); 359 360 // If we actually used liveness information so we have to record a dependence. 361 if (AnyDead) 362 A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); 363 364 // All values have been visited. 365 return true; 366 } 367 368 const Value *stripAndAccumulateMinimalOffsets( 369 Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val, 370 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 371 bool UseAssumed = false) { 372 373 auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool { 374 const IRPosition &Pos = IRPosition::value(V); 375 // Only track dependence if we are going to use the assumed info. 376 const AAValueConstantRange &ValueConstantRangeAA = 377 A.getAAFor<AAValueConstantRange>(QueryingAA, Pos, 378 /* TrackDependence */ UseAssumed); 379 ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed() 380 : ValueConstantRangeAA.getKnown(); 381 // We can only use the lower part of the range because the upper part can 382 // be higher than what the value can really be. 383 ROffset = Range.getSignedMin(); 384 return true; 385 }; 386 387 return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds, 388 AttributorAnalysis); 389 } 390 391 static const Value *getMinimalBaseOfAccsesPointerOperand( 392 Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I, 393 int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) { 394 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); 395 if (!Ptr) 396 return nullptr; 397 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 398 const Value *Base = stripAndAccumulateMinimalOffsets( 399 A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds); 400 401 BytesOffset = OffsetAPInt.getSExtValue(); 402 return Base; 403 } 404 405 static const Value * 406 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset, 407 const DataLayout &DL, 408 bool AllowNonInbounds = false) { 409 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); 410 if (!Ptr) 411 return nullptr; 412 413 return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL, 414 AllowNonInbounds); 415 } 416 417 /// Helper function to clamp a state \p S of type \p StateType with the 418 /// information in \p R and indicate/return if \p S did change (as-in update is 419 /// required to be run again). 420 template <typename StateType> 421 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) { 422 auto Assumed = S.getAssumed(); 423 S ^= R; 424 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 425 : ChangeStatus::CHANGED; 426 } 427 428 /// Clamp the information known for all returned values of a function 429 /// (identified by \p QueryingAA) into \p S. 430 template <typename AAType, typename StateType = typename AAType::StateType> 431 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA, 432 StateType &S) { 433 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " 434 << QueryingAA << " into " << S << "\n"); 435 436 assert((QueryingAA.getIRPosition().getPositionKind() == 437 IRPosition::IRP_RETURNED || 438 QueryingAA.getIRPosition().getPositionKind() == 439 IRPosition::IRP_CALL_SITE_RETURNED) && 440 "Can only clamp returned value states for a function returned or call " 441 "site returned position!"); 442 443 // Use an optional state as there might not be any return values and we want 444 // to join (IntegerState::operator&) the state of all there are. 445 Optional<StateType> T; 446 447 // Callback for each possibly returned value. 448 auto CheckReturnValue = [&](Value &RV) -> bool { 449 const IRPosition &RVPos = IRPosition::value(RV); 450 const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos); 451 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr() 452 << " @ " << RVPos << "\n"); 453 const StateType &AAS = AA.getState(); 454 if (T.hasValue()) 455 *T &= AAS; 456 else 457 T = AAS; 458 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T 459 << "\n"); 460 return T->isValidState(); 461 }; 462 463 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA)) 464 S.indicatePessimisticFixpoint(); 465 else if (T.hasValue()) 466 S ^= *T; 467 } 468 469 /// Helper class for generic deduction: return value -> returned position. 470 template <typename AAType, typename BaseType, 471 typename StateType = typename BaseType::StateType> 472 struct AAReturnedFromReturnedValues : public BaseType { 473 AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A) 474 : BaseType(IRP, A) {} 475 476 /// See AbstractAttribute::updateImpl(...). 477 ChangeStatus updateImpl(Attributor &A) override { 478 StateType S(StateType::getBestState(this->getState())); 479 clampReturnedValueStates<AAType, StateType>(A, *this, S); 480 // TODO: If we know we visited all returned values, thus no are assumed 481 // dead, we can take the known information from the state T. 482 return clampStateAndIndicateChange<StateType>(this->getState(), S); 483 } 484 }; 485 486 /// Clamp the information known at all call sites for a given argument 487 /// (identified by \p QueryingAA) into \p S. 488 template <typename AAType, typename StateType = typename AAType::StateType> 489 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, 490 StateType &S) { 491 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " 492 << QueryingAA << " into " << S << "\n"); 493 494 assert(QueryingAA.getIRPosition().getPositionKind() == 495 IRPosition::IRP_ARGUMENT && 496 "Can only clamp call site argument states for an argument position!"); 497 498 // Use an optional state as there might not be any return values and we want 499 // to join (IntegerState::operator&) the state of all there are. 500 Optional<StateType> T; 501 502 // The argument number which is also the call site argument number. 503 unsigned ArgNo = QueryingAA.getIRPosition().getArgNo(); 504 505 auto CallSiteCheck = [&](AbstractCallSite ACS) { 506 const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 507 // Check if a coresponding argument was found or if it is on not associated 508 // (which can happen for callback calls). 509 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 510 return false; 511 512 const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos); 513 LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() 514 << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n"); 515 const StateType &AAS = AA.getState(); 516 if (T.hasValue()) 517 *T &= AAS; 518 else 519 T = AAS; 520 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T 521 << "\n"); 522 return T->isValidState(); 523 }; 524 525 bool AllCallSitesKnown; 526 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true, 527 AllCallSitesKnown)) 528 S.indicatePessimisticFixpoint(); 529 else if (T.hasValue()) 530 S ^= *T; 531 } 532 533 /// Helper class for generic deduction: call site argument -> argument position. 534 template <typename AAType, typename BaseType, 535 typename StateType = typename AAType::StateType> 536 struct AAArgumentFromCallSiteArguments : public BaseType { 537 AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A) 538 : BaseType(IRP, A) {} 539 540 /// See AbstractAttribute::updateImpl(...). 541 ChangeStatus updateImpl(Attributor &A) override { 542 StateType S(StateType::getBestState(this->getState())); 543 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S); 544 // TODO: If we know we visited all incoming values, thus no are assumed 545 // dead, we can take the known information from the state T. 546 return clampStateAndIndicateChange<StateType>(this->getState(), S); 547 } 548 }; 549 550 /// Helper class for generic replication: function returned -> cs returned. 551 template <typename AAType, typename BaseType, 552 typename StateType = typename BaseType::StateType> 553 struct AACallSiteReturnedFromReturned : public BaseType { 554 AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A) 555 : BaseType(IRP, A) {} 556 557 /// See AbstractAttribute::updateImpl(...). 558 ChangeStatus updateImpl(Attributor &A) override { 559 assert(this->getIRPosition().getPositionKind() == 560 IRPosition::IRP_CALL_SITE_RETURNED && 561 "Can only wrap function returned positions for call site returned " 562 "positions!"); 563 auto &S = this->getState(); 564 565 const Function *AssociatedFunction = 566 this->getIRPosition().getAssociatedFunction(); 567 if (!AssociatedFunction) 568 return S.indicatePessimisticFixpoint(); 569 570 IRPosition FnPos = IRPosition::returned(*AssociatedFunction); 571 const AAType &AA = A.getAAFor<AAType>(*this, FnPos); 572 return clampStateAndIndicateChange(S, AA.getState()); 573 } 574 }; 575 576 /// Helper function to accumulate uses. 577 template <class AAType, typename StateType = typename AAType::StateType> 578 static void followUsesInContext(AAType &AA, Attributor &A, 579 MustBeExecutedContextExplorer &Explorer, 580 const Instruction *CtxI, 581 SetVector<const Use *> &Uses, 582 StateType &State) { 583 auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI); 584 for (unsigned u = 0; u < Uses.size(); ++u) { 585 const Use *U = Uses[u]; 586 if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) { 587 bool Found = Explorer.findInContextOf(UserI, EIt, EEnd); 588 if (Found && AA.followUseInMBEC(A, U, UserI, State)) 589 for (const Use &Us : UserI->uses()) 590 Uses.insert(&Us); 591 } 592 } 593 } 594 595 /// Use the must-be-executed-context around \p I to add information into \p S. 596 /// The AAType class is required to have `followUseInMBEC` method with the 597 /// following signature and behaviour: 598 /// 599 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I) 600 /// U - Underlying use. 601 /// I - The user of the \p U. 602 /// Returns true if the value should be tracked transitively. 603 /// 604 template <class AAType, typename StateType = typename AAType::StateType> 605 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S, 606 Instruction &CtxI) { 607 608 // Container for (transitive) uses of the associated value. 609 SetVector<const Use *> Uses; 610 for (const Use &U : AA.getIRPosition().getAssociatedValue().uses()) 611 Uses.insert(&U); 612 613 MustBeExecutedContextExplorer &Explorer = 614 A.getInfoCache().getMustBeExecutedContextExplorer(); 615 616 followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S); 617 618 if (S.isAtFixpoint()) 619 return; 620 621 SmallVector<const BranchInst *, 4> BrInsts; 622 auto Pred = [&](const Instruction *I) { 623 if (const BranchInst *Br = dyn_cast<BranchInst>(I)) 624 if (Br->isConditional()) 625 BrInsts.push_back(Br); 626 return true; 627 }; 628 629 // Here, accumulate conditional branch instructions in the context. We 630 // explore the child paths and collect the known states. The disjunction of 631 // those states can be merged to its own state. Let ParentState_i be a state 632 // to indicate the known information for an i-th branch instruction in the 633 // context. ChildStates are created for its successors respectively. 634 // 635 // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1} 636 // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2} 637 // ... 638 // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m} 639 // 640 // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m 641 // 642 // FIXME: Currently, recursive branches are not handled. For example, we 643 // can't deduce that ptr must be dereferenced in below function. 644 // 645 // void f(int a, int c, int *ptr) { 646 // if(a) 647 // if (b) { 648 // *ptr = 0; 649 // } else { 650 // *ptr = 1; 651 // } 652 // else { 653 // if (b) { 654 // *ptr = 0; 655 // } else { 656 // *ptr = 1; 657 // } 658 // } 659 // } 660 661 Explorer.checkForAllContext(&CtxI, Pred); 662 for (const BranchInst *Br : BrInsts) { 663 StateType ParentState; 664 665 // The known state of the parent state is a conjunction of children's 666 // known states so it is initialized with a best state. 667 ParentState.indicateOptimisticFixpoint(); 668 669 for (const BasicBlock *BB : Br->successors()) { 670 StateType ChildState; 671 672 size_t BeforeSize = Uses.size(); 673 followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState); 674 675 // Erase uses which only appear in the child. 676 for (auto It = Uses.begin() + BeforeSize; It != Uses.end();) 677 It = Uses.erase(It); 678 679 ParentState &= ChildState; 680 } 681 682 // Use only known state. 683 S += ParentState; 684 } 685 } 686 687 /// -----------------------NoUnwind Function Attribute-------------------------- 688 689 struct AANoUnwindImpl : AANoUnwind { 690 AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {} 691 692 const std::string getAsStr() const override { 693 return getAssumed() ? "nounwind" : "may-unwind"; 694 } 695 696 /// See AbstractAttribute::updateImpl(...). 697 ChangeStatus updateImpl(Attributor &A) override { 698 auto Opcodes = { 699 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, 700 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet, 701 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; 702 703 auto CheckForNoUnwind = [&](Instruction &I) { 704 if (!I.mayThrow()) 705 return true; 706 707 if (const auto *CB = dyn_cast<CallBase>(&I)) { 708 const auto &NoUnwindAA = 709 A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB)); 710 return NoUnwindAA.isAssumedNoUnwind(); 711 } 712 return false; 713 }; 714 715 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes)) 716 return indicatePessimisticFixpoint(); 717 718 return ChangeStatus::UNCHANGED; 719 } 720 }; 721 722 struct AANoUnwindFunction final : public AANoUnwindImpl { 723 AANoUnwindFunction(const IRPosition &IRP, Attributor &A) 724 : AANoUnwindImpl(IRP, A) {} 725 726 /// See AbstractAttribute::trackStatistics() 727 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } 728 }; 729 730 /// NoUnwind attribute deduction for a call sites. 731 struct AANoUnwindCallSite final : AANoUnwindImpl { 732 AANoUnwindCallSite(const IRPosition &IRP, Attributor &A) 733 : AANoUnwindImpl(IRP, A) {} 734 735 /// See AbstractAttribute::initialize(...). 736 void initialize(Attributor &A) override { 737 AANoUnwindImpl::initialize(A); 738 Function *F = getAssociatedFunction(); 739 if (!F) 740 indicatePessimisticFixpoint(); 741 } 742 743 /// See AbstractAttribute::updateImpl(...). 744 ChangeStatus updateImpl(Attributor &A) override { 745 // TODO: Once we have call site specific value information we can provide 746 // call site specific liveness information and then it makes 747 // sense to specialize attributes for call sites arguments instead of 748 // redirecting requests to the callee argument. 749 Function *F = getAssociatedFunction(); 750 const IRPosition &FnPos = IRPosition::function(*F); 751 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos); 752 return clampStateAndIndicateChange(getState(), FnAA.getState()); 753 } 754 755 /// See AbstractAttribute::trackStatistics() 756 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } 757 }; 758 759 /// --------------------- Function Return Values ------------------------------- 760 761 /// "Attribute" that collects all potential returned values and the return 762 /// instructions that they arise from. 763 /// 764 /// If there is a unique returned value R, the manifest method will: 765 /// - mark R with the "returned" attribute, if R is an argument. 766 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState { 767 768 /// Mapping of values potentially returned by the associated function to the 769 /// return instructions that might return them. 770 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues; 771 772 /// Mapping to remember the number of returned values for a call site such 773 /// that we can avoid updates if nothing changed. 774 DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA; 775 776 /// Set of unresolved calls returned by the associated function. 777 SmallSetVector<CallBase *, 4> UnresolvedCalls; 778 779 /// State flags 780 /// 781 ///{ 782 bool IsFixed = false; 783 bool IsValidState = true; 784 ///} 785 786 public: 787 AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A) 788 : AAReturnedValues(IRP, A) {} 789 790 /// See AbstractAttribute::initialize(...). 791 void initialize(Attributor &A) override { 792 // Reset the state. 793 IsFixed = false; 794 IsValidState = true; 795 ReturnedValues.clear(); 796 797 Function *F = getAssociatedFunction(); 798 if (!F) { 799 indicatePessimisticFixpoint(); 800 return; 801 } 802 assert(!F->getReturnType()->isVoidTy() && 803 "Did not expect a void return type!"); 804 805 // The map from instruction opcodes to those instructions in the function. 806 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F); 807 808 // Look through all arguments, if one is marked as returned we are done. 809 for (Argument &Arg : F->args()) { 810 if (Arg.hasReturnedAttr()) { 811 auto &ReturnInstSet = ReturnedValues[&Arg]; 812 if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret)) 813 for (Instruction *RI : *Insts) 814 ReturnInstSet.insert(cast<ReturnInst>(RI)); 815 816 indicateOptimisticFixpoint(); 817 return; 818 } 819 } 820 821 if (!A.isFunctionIPOAmendable(*F)) 822 indicatePessimisticFixpoint(); 823 } 824 825 /// See AbstractAttribute::manifest(...). 826 ChangeStatus manifest(Attributor &A) override; 827 828 /// See AbstractAttribute::getState(...). 829 AbstractState &getState() override { return *this; } 830 831 /// See AbstractAttribute::getState(...). 832 const AbstractState &getState() const override { return *this; } 833 834 /// See AbstractAttribute::updateImpl(Attributor &A). 835 ChangeStatus updateImpl(Attributor &A) override; 836 837 llvm::iterator_range<iterator> returned_values() override { 838 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 839 } 840 841 llvm::iterator_range<const_iterator> returned_values() const override { 842 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 843 } 844 845 const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override { 846 return UnresolvedCalls; 847 } 848 849 /// Return the number of potential return values, -1 if unknown. 850 size_t getNumReturnValues() const override { 851 return isValidState() ? ReturnedValues.size() : -1; 852 } 853 854 /// Return an assumed unique return value if a single candidate is found. If 855 /// there cannot be one, return a nullptr. If it is not clear yet, return the 856 /// Optional::NoneType. 857 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; 858 859 /// See AbstractState::checkForAllReturnedValues(...). 860 bool checkForAllReturnedValuesAndReturnInsts( 861 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 862 const override; 863 864 /// Pretty print the attribute similar to the IR representation. 865 const std::string getAsStr() const override; 866 867 /// See AbstractState::isAtFixpoint(). 868 bool isAtFixpoint() const override { return IsFixed; } 869 870 /// See AbstractState::isValidState(). 871 bool isValidState() const override { return IsValidState; } 872 873 /// See AbstractState::indicateOptimisticFixpoint(...). 874 ChangeStatus indicateOptimisticFixpoint() override { 875 IsFixed = true; 876 return ChangeStatus::UNCHANGED; 877 } 878 879 ChangeStatus indicatePessimisticFixpoint() override { 880 IsFixed = true; 881 IsValidState = false; 882 return ChangeStatus::CHANGED; 883 } 884 }; 885 886 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { 887 ChangeStatus Changed = ChangeStatus::UNCHANGED; 888 889 // Bookkeeping. 890 assert(isValidState()); 891 STATS_DECLTRACK(KnownReturnValues, FunctionReturn, 892 "Number of function with known return values"); 893 894 // Check if we have an assumed unique return value that we could manifest. 895 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A); 896 897 if (!UniqueRV.hasValue() || !UniqueRV.getValue()) 898 return Changed; 899 900 // Bookkeeping. 901 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, 902 "Number of function with unique return"); 903 904 // Callback to replace the uses of CB with the constant C. 905 auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) { 906 if (CB.use_empty()) 907 return ChangeStatus::UNCHANGED; 908 if (A.changeValueAfterManifest(CB, C)) 909 return ChangeStatus::CHANGED; 910 return ChangeStatus::UNCHANGED; 911 }; 912 913 // If the assumed unique return value is an argument, annotate it. 914 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { 915 if (UniqueRVArg->getType()->canLosslesslyBitCastTo( 916 getAssociatedFunction()->getReturnType())) { 917 getIRPosition() = IRPosition::argument(*UniqueRVArg); 918 Changed = IRAttribute::manifest(A); 919 } 920 } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) { 921 // We can replace the returned value with the unique returned constant. 922 Value &AnchorValue = getAnchorValue(); 923 if (Function *F = dyn_cast<Function>(&AnchorValue)) { 924 for (const Use &U : F->uses()) 925 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) 926 if (CB->isCallee(&U)) { 927 Constant *RVCCast = 928 CB->getType() == RVC->getType() 929 ? RVC 930 : ConstantExpr::getTruncOrBitCast(RVC, CB->getType()); 931 Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed; 932 } 933 } else { 934 assert(isa<CallBase>(AnchorValue) && 935 "Expcected a function or call base anchor!"); 936 Constant *RVCCast = 937 AnchorValue.getType() == RVC->getType() 938 ? RVC 939 : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType()); 940 Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast); 941 } 942 if (Changed == ChangeStatus::CHANGED) 943 STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn, 944 "Number of function returns replaced by constant return"); 945 } 946 947 return Changed; 948 } 949 950 const std::string AAReturnedValuesImpl::getAsStr() const { 951 return (isAtFixpoint() ? "returns(#" : "may-return(#") + 952 (isValidState() ? std::to_string(getNumReturnValues()) : "?") + 953 ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]"; 954 } 955 956 Optional<Value *> 957 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const { 958 // If checkForAllReturnedValues provides a unique value, ignoring potential 959 // undef values that can also be present, it is assumed to be the actual 960 // return value and forwarded to the caller of this method. If there are 961 // multiple, a nullptr is returned indicating there cannot be a unique 962 // returned value. 963 Optional<Value *> UniqueRV; 964 965 auto Pred = [&](Value &RV) -> bool { 966 // If we found a second returned value and neither the current nor the saved 967 // one is an undef, there is no unique returned value. Undefs are special 968 // since we can pretend they have any value. 969 if (UniqueRV.hasValue() && UniqueRV != &RV && 970 !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) { 971 UniqueRV = nullptr; 972 return false; 973 } 974 975 // Do not overwrite a value with an undef. 976 if (!UniqueRV.hasValue() || !isa<UndefValue>(RV)) 977 UniqueRV = &RV; 978 979 return true; 980 }; 981 982 if (!A.checkForAllReturnedValues(Pred, *this)) 983 UniqueRV = nullptr; 984 985 return UniqueRV; 986 } 987 988 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts( 989 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 990 const { 991 if (!isValidState()) 992 return false; 993 994 // Check all returned values but ignore call sites as long as we have not 995 // encountered an overdefined one during an update. 996 for (auto &It : ReturnedValues) { 997 Value *RV = It.first; 998 999 CallBase *CB = dyn_cast<CallBase>(RV); 1000 if (CB && !UnresolvedCalls.count(CB)) 1001 continue; 1002 1003 if (!Pred(*RV, It.second)) 1004 return false; 1005 } 1006 1007 return true; 1008 } 1009 1010 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { 1011 size_t NumUnresolvedCalls = UnresolvedCalls.size(); 1012 bool Changed = false; 1013 1014 // State used in the value traversals starting in returned values. 1015 struct RVState { 1016 // The map in which we collect return values -> return instrs. 1017 decltype(ReturnedValues) &RetValsMap; 1018 // The flag to indicate a change. 1019 bool &Changed; 1020 // The return instrs we come from. 1021 SmallSetVector<ReturnInst *, 4> RetInsts; 1022 }; 1023 1024 // Callback for a leaf value returned by the associated function. 1025 auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS, 1026 bool) -> bool { 1027 auto Size = RVS.RetValsMap[&Val].size(); 1028 RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end()); 1029 bool Inserted = RVS.RetValsMap[&Val].size() != Size; 1030 RVS.Changed |= Inserted; 1031 LLVM_DEBUG({ 1032 if (Inserted) 1033 dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val 1034 << " => " << RVS.RetInsts.size() << "\n"; 1035 }); 1036 return true; 1037 }; 1038 1039 // Helper method to invoke the generic value traversal. 1040 auto VisitReturnedValue = [&](Value &RV, RVState &RVS, 1041 const Instruction *CtxI) { 1042 IRPosition RetValPos = IRPosition::value(RV); 1043 return genericValueTraversal<AAReturnedValues, RVState>( 1044 A, RetValPos, *this, RVS, VisitValueCB, CtxI, 1045 /* UseValueSimplify */ false); 1046 }; 1047 1048 // Callback for all "return intructions" live in the associated function. 1049 auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) { 1050 ReturnInst &Ret = cast<ReturnInst>(I); 1051 RVState RVS({ReturnedValues, Changed, {}}); 1052 RVS.RetInsts.insert(&Ret); 1053 return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I); 1054 }; 1055 1056 // Start by discovering returned values from all live returned instructions in 1057 // the associated function. 1058 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret})) 1059 return indicatePessimisticFixpoint(); 1060 1061 // Once returned values "directly" present in the code are handled we try to 1062 // resolve returned calls. To avoid modifications to the ReturnedValues map 1063 // while we iterate over it we kept record of potential new entries in a copy 1064 // map, NewRVsMap. 1065 decltype(ReturnedValues) NewRVsMap; 1066 1067 auto HandleReturnValue = [&](Value *RV, 1068 SmallSetVector<ReturnInst *, 4> &RIs) { 1069 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #" 1070 << RIs.size() << " RIs\n"); 1071 CallBase *CB = dyn_cast<CallBase>(RV); 1072 if (!CB || UnresolvedCalls.count(CB)) 1073 return; 1074 1075 if (!CB->getCalledFunction()) { 1076 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1077 << "\n"); 1078 UnresolvedCalls.insert(CB); 1079 return; 1080 } 1081 1082 // TODO: use the function scope once we have call site AAReturnedValues. 1083 const auto &RetValAA = A.getAAFor<AAReturnedValues>( 1084 *this, IRPosition::function(*CB->getCalledFunction())); 1085 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: " 1086 << RetValAA << "\n"); 1087 1088 // Skip dead ends, thus if we do not know anything about the returned 1089 // call we mark it as unresolved and it will stay that way. 1090 if (!RetValAA.getState().isValidState()) { 1091 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1092 << "\n"); 1093 UnresolvedCalls.insert(CB); 1094 return; 1095 } 1096 1097 // Do not try to learn partial information. If the callee has unresolved 1098 // return values we will treat the call as unresolved/opaque. 1099 auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls(); 1100 if (!RetValAAUnresolvedCalls.empty()) { 1101 UnresolvedCalls.insert(CB); 1102 return; 1103 } 1104 1105 // Now check if we can track transitively returned values. If possible, thus 1106 // if all return value can be represented in the current scope, do so. 1107 bool Unresolved = false; 1108 for (auto &RetValAAIt : RetValAA.returned_values()) { 1109 Value *RetVal = RetValAAIt.first; 1110 if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) || 1111 isa<Constant>(RetVal)) 1112 continue; 1113 // Anything that did not fit in the above categories cannot be resolved, 1114 // mark the call as unresolved. 1115 LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value " 1116 "cannot be translated: " 1117 << *RetVal << "\n"); 1118 UnresolvedCalls.insert(CB); 1119 Unresolved = true; 1120 break; 1121 } 1122 1123 if (Unresolved) 1124 return; 1125 1126 // Now track transitively returned values. 1127 unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB]; 1128 if (NumRetAA == RetValAA.getNumReturnValues()) { 1129 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not " 1130 "changed since it was seen last\n"); 1131 return; 1132 } 1133 NumRetAA = RetValAA.getNumReturnValues(); 1134 1135 for (auto &RetValAAIt : RetValAA.returned_values()) { 1136 Value *RetVal = RetValAAIt.first; 1137 if (Argument *Arg = dyn_cast<Argument>(RetVal)) { 1138 // Arguments are mapped to call site operands and we begin the traversal 1139 // again. 1140 bool Unused = false; 1141 RVState RVS({NewRVsMap, Unused, RetValAAIt.second}); 1142 VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB); 1143 continue; 1144 } else if (isa<CallBase>(RetVal)) { 1145 // Call sites are resolved by the callee attribute over time, no need to 1146 // do anything for us. 1147 continue; 1148 } else if (isa<Constant>(RetVal)) { 1149 // Constants are valid everywhere, we can simply take them. 1150 NewRVsMap[RetVal].insert(RIs.begin(), RIs.end()); 1151 continue; 1152 } 1153 } 1154 }; 1155 1156 for (auto &It : ReturnedValues) 1157 HandleReturnValue(It.first, It.second); 1158 1159 // Because processing the new information can again lead to new return values 1160 // we have to be careful and iterate until this iteration is complete. The 1161 // idea is that we are in a stable state at the end of an update. All return 1162 // values have been handled and properly categorized. We might not update 1163 // again if we have not requested a non-fix attribute so we cannot "wait" for 1164 // the next update to analyze a new return value. 1165 while (!NewRVsMap.empty()) { 1166 auto It = std::move(NewRVsMap.back()); 1167 NewRVsMap.pop_back(); 1168 1169 assert(!It.second.empty() && "Entry does not add anything."); 1170 auto &ReturnInsts = ReturnedValues[It.first]; 1171 for (ReturnInst *RI : It.second) 1172 if (ReturnInsts.insert(RI)) { 1173 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value " 1174 << *It.first << " => " << *RI << "\n"); 1175 HandleReturnValue(It.first, ReturnInsts); 1176 Changed = true; 1177 } 1178 } 1179 1180 Changed |= (NumUnresolvedCalls != UnresolvedCalls.size()); 1181 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 1182 } 1183 1184 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl { 1185 AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A) 1186 : AAReturnedValuesImpl(IRP, A) {} 1187 1188 /// See AbstractAttribute::trackStatistics() 1189 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) } 1190 }; 1191 1192 /// Returned values information for a call sites. 1193 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl { 1194 AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A) 1195 : AAReturnedValuesImpl(IRP, A) {} 1196 1197 /// See AbstractAttribute::initialize(...). 1198 void initialize(Attributor &A) override { 1199 // TODO: Once we have call site specific value information we can provide 1200 // call site specific liveness information and then it makes 1201 // sense to specialize attributes for call sites instead of 1202 // redirecting requests to the callee. 1203 llvm_unreachable("Abstract attributes for returned values are not " 1204 "supported for call sites yet!"); 1205 } 1206 1207 /// See AbstractAttribute::updateImpl(...). 1208 ChangeStatus updateImpl(Attributor &A) override { 1209 return indicatePessimisticFixpoint(); 1210 } 1211 1212 /// See AbstractAttribute::trackStatistics() 1213 void trackStatistics() const override {} 1214 }; 1215 1216 /// ------------------------ NoSync Function Attribute ------------------------- 1217 1218 struct AANoSyncImpl : AANoSync { 1219 AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {} 1220 1221 const std::string getAsStr() const override { 1222 return getAssumed() ? "nosync" : "may-sync"; 1223 } 1224 1225 /// See AbstractAttribute::updateImpl(...). 1226 ChangeStatus updateImpl(Attributor &A) override; 1227 1228 /// Helper function used to determine whether an instruction is non-relaxed 1229 /// atomic. In other words, if an atomic instruction does not have unordered 1230 /// or monotonic ordering 1231 static bool isNonRelaxedAtomic(Instruction *I); 1232 1233 /// Helper function used to determine whether an instruction is volatile. 1234 static bool isVolatile(Instruction *I); 1235 1236 /// Helper function uset to check if intrinsic is volatile (memcpy, memmove, 1237 /// memset). 1238 static bool isNoSyncIntrinsic(Instruction *I); 1239 }; 1240 1241 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) { 1242 if (!I->isAtomic()) 1243 return false; 1244 1245 AtomicOrdering Ordering; 1246 switch (I->getOpcode()) { 1247 case Instruction::AtomicRMW: 1248 Ordering = cast<AtomicRMWInst>(I)->getOrdering(); 1249 break; 1250 case Instruction::Store: 1251 Ordering = cast<StoreInst>(I)->getOrdering(); 1252 break; 1253 case Instruction::Load: 1254 Ordering = cast<LoadInst>(I)->getOrdering(); 1255 break; 1256 case Instruction::Fence: { 1257 auto *FI = cast<FenceInst>(I); 1258 if (FI->getSyncScopeID() == SyncScope::SingleThread) 1259 return false; 1260 Ordering = FI->getOrdering(); 1261 break; 1262 } 1263 case Instruction::AtomicCmpXchg: { 1264 AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering(); 1265 AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering(); 1266 // Only if both are relaxed, than it can be treated as relaxed. 1267 // Otherwise it is non-relaxed. 1268 if (Success != AtomicOrdering::Unordered && 1269 Success != AtomicOrdering::Monotonic) 1270 return true; 1271 if (Failure != AtomicOrdering::Unordered && 1272 Failure != AtomicOrdering::Monotonic) 1273 return true; 1274 return false; 1275 } 1276 default: 1277 llvm_unreachable( 1278 "New atomic operations need to be known in the attributor."); 1279 } 1280 1281 // Relaxed. 1282 if (Ordering == AtomicOrdering::Unordered || 1283 Ordering == AtomicOrdering::Monotonic) 1284 return false; 1285 return true; 1286 } 1287 1288 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics. 1289 /// FIXME: We should ipmrove the handling of intrinsics. 1290 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) { 1291 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1292 switch (II->getIntrinsicID()) { 1293 /// Element wise atomic memory intrinsics are can only be unordered, 1294 /// therefore nosync. 1295 case Intrinsic::memset_element_unordered_atomic: 1296 case Intrinsic::memmove_element_unordered_atomic: 1297 case Intrinsic::memcpy_element_unordered_atomic: 1298 return true; 1299 case Intrinsic::memset: 1300 case Intrinsic::memmove: 1301 case Intrinsic::memcpy: 1302 if (!cast<MemIntrinsic>(II)->isVolatile()) 1303 return true; 1304 return false; 1305 default: 1306 return false; 1307 } 1308 } 1309 return false; 1310 } 1311 1312 bool AANoSyncImpl::isVolatile(Instruction *I) { 1313 assert(!isa<CallBase>(I) && "Calls should not be checked here"); 1314 1315 switch (I->getOpcode()) { 1316 case Instruction::AtomicRMW: 1317 return cast<AtomicRMWInst>(I)->isVolatile(); 1318 case Instruction::Store: 1319 return cast<StoreInst>(I)->isVolatile(); 1320 case Instruction::Load: 1321 return cast<LoadInst>(I)->isVolatile(); 1322 case Instruction::AtomicCmpXchg: 1323 return cast<AtomicCmpXchgInst>(I)->isVolatile(); 1324 default: 1325 return false; 1326 } 1327 } 1328 1329 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { 1330 1331 auto CheckRWInstForNoSync = [&](Instruction &I) { 1332 /// We are looking for volatile instructions or Non-Relaxed atomics. 1333 /// FIXME: We should improve the handling of intrinsics. 1334 1335 if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I)) 1336 return true; 1337 1338 if (const auto *CB = dyn_cast<CallBase>(&I)) { 1339 if (CB->hasFnAttr(Attribute::NoSync)) 1340 return true; 1341 1342 const auto &NoSyncAA = 1343 A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB)); 1344 if (NoSyncAA.isAssumedNoSync()) 1345 return true; 1346 return false; 1347 } 1348 1349 if (!isVolatile(&I) && !isNonRelaxedAtomic(&I)) 1350 return true; 1351 1352 return false; 1353 }; 1354 1355 auto CheckForNoSync = [&](Instruction &I) { 1356 // At this point we handled all read/write effects and they are all 1357 // nosync, so they can be skipped. 1358 if (I.mayReadOrWriteMemory()) 1359 return true; 1360 1361 // non-convergent and readnone imply nosync. 1362 return !cast<CallBase>(I).isConvergent(); 1363 }; 1364 1365 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) || 1366 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this)) 1367 return indicatePessimisticFixpoint(); 1368 1369 return ChangeStatus::UNCHANGED; 1370 } 1371 1372 struct AANoSyncFunction final : public AANoSyncImpl { 1373 AANoSyncFunction(const IRPosition &IRP, Attributor &A) 1374 : AANoSyncImpl(IRP, A) {} 1375 1376 /// See AbstractAttribute::trackStatistics() 1377 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } 1378 }; 1379 1380 /// NoSync attribute deduction for a call sites. 1381 struct AANoSyncCallSite final : AANoSyncImpl { 1382 AANoSyncCallSite(const IRPosition &IRP, Attributor &A) 1383 : AANoSyncImpl(IRP, A) {} 1384 1385 /// See AbstractAttribute::initialize(...). 1386 void initialize(Attributor &A) override { 1387 AANoSyncImpl::initialize(A); 1388 Function *F = getAssociatedFunction(); 1389 if (!F) 1390 indicatePessimisticFixpoint(); 1391 } 1392 1393 /// See AbstractAttribute::updateImpl(...). 1394 ChangeStatus updateImpl(Attributor &A) override { 1395 // TODO: Once we have call site specific value information we can provide 1396 // call site specific liveness information and then it makes 1397 // sense to specialize attributes for call sites arguments instead of 1398 // redirecting requests to the callee argument. 1399 Function *F = getAssociatedFunction(); 1400 const IRPosition &FnPos = IRPosition::function(*F); 1401 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos); 1402 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1403 } 1404 1405 /// See AbstractAttribute::trackStatistics() 1406 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } 1407 }; 1408 1409 /// ------------------------ No-Free Attributes ---------------------------- 1410 1411 struct AANoFreeImpl : public AANoFree { 1412 AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {} 1413 1414 /// See AbstractAttribute::updateImpl(...). 1415 ChangeStatus updateImpl(Attributor &A) override { 1416 auto CheckForNoFree = [&](Instruction &I) { 1417 const auto &CB = cast<CallBase>(I); 1418 if (CB.hasFnAttr(Attribute::NoFree)) 1419 return true; 1420 1421 const auto &NoFreeAA = 1422 A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB)); 1423 return NoFreeAA.isAssumedNoFree(); 1424 }; 1425 1426 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this)) 1427 return indicatePessimisticFixpoint(); 1428 return ChangeStatus::UNCHANGED; 1429 } 1430 1431 /// See AbstractAttribute::getAsStr(). 1432 const std::string getAsStr() const override { 1433 return getAssumed() ? "nofree" : "may-free"; 1434 } 1435 }; 1436 1437 struct AANoFreeFunction final : public AANoFreeImpl { 1438 AANoFreeFunction(const IRPosition &IRP, Attributor &A) 1439 : AANoFreeImpl(IRP, A) {} 1440 1441 /// See AbstractAttribute::trackStatistics() 1442 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } 1443 }; 1444 1445 /// NoFree attribute deduction for a call sites. 1446 struct AANoFreeCallSite final : AANoFreeImpl { 1447 AANoFreeCallSite(const IRPosition &IRP, Attributor &A) 1448 : AANoFreeImpl(IRP, A) {} 1449 1450 /// See AbstractAttribute::initialize(...). 1451 void initialize(Attributor &A) override { 1452 AANoFreeImpl::initialize(A); 1453 Function *F = getAssociatedFunction(); 1454 if (!F) 1455 indicatePessimisticFixpoint(); 1456 } 1457 1458 /// See AbstractAttribute::updateImpl(...). 1459 ChangeStatus updateImpl(Attributor &A) override { 1460 // TODO: Once we have call site specific value information we can provide 1461 // call site specific liveness information and then it makes 1462 // sense to specialize attributes for call sites arguments instead of 1463 // redirecting requests to the callee argument. 1464 Function *F = getAssociatedFunction(); 1465 const IRPosition &FnPos = IRPosition::function(*F); 1466 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos); 1467 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1468 } 1469 1470 /// See AbstractAttribute::trackStatistics() 1471 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } 1472 }; 1473 1474 /// NoFree attribute for floating values. 1475 struct AANoFreeFloating : AANoFreeImpl { 1476 AANoFreeFloating(const IRPosition &IRP, Attributor &A) 1477 : AANoFreeImpl(IRP, A) {} 1478 1479 /// See AbstractAttribute::trackStatistics() 1480 void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} 1481 1482 /// See Abstract Attribute::updateImpl(...). 1483 ChangeStatus updateImpl(Attributor &A) override { 1484 const IRPosition &IRP = getIRPosition(); 1485 1486 const auto &NoFreeAA = 1487 A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP)); 1488 if (NoFreeAA.isAssumedNoFree()) 1489 return ChangeStatus::UNCHANGED; 1490 1491 Value &AssociatedValue = getIRPosition().getAssociatedValue(); 1492 auto Pred = [&](const Use &U, bool &Follow) -> bool { 1493 Instruction *UserI = cast<Instruction>(U.getUser()); 1494 if (auto *CB = dyn_cast<CallBase>(UserI)) { 1495 if (CB->isBundleOperand(&U)) 1496 return false; 1497 if (!CB->isArgOperand(&U)) 1498 return true; 1499 unsigned ArgNo = CB->getArgOperandNo(&U); 1500 1501 const auto &NoFreeArg = A.getAAFor<AANoFree>( 1502 *this, IRPosition::callsite_argument(*CB, ArgNo)); 1503 return NoFreeArg.isAssumedNoFree(); 1504 } 1505 1506 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 1507 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 1508 Follow = true; 1509 return true; 1510 } 1511 if (isa<ReturnInst>(UserI)) 1512 return true; 1513 1514 // Unknown user. 1515 return false; 1516 }; 1517 if (!A.checkForAllUses(Pred, *this, AssociatedValue)) 1518 return indicatePessimisticFixpoint(); 1519 1520 return ChangeStatus::UNCHANGED; 1521 } 1522 }; 1523 1524 /// NoFree attribute for a call site argument. 1525 struct AANoFreeArgument final : AANoFreeFloating { 1526 AANoFreeArgument(const IRPosition &IRP, Attributor &A) 1527 : AANoFreeFloating(IRP, A) {} 1528 1529 /// See AbstractAttribute::trackStatistics() 1530 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } 1531 }; 1532 1533 /// NoFree attribute for call site arguments. 1534 struct AANoFreeCallSiteArgument final : AANoFreeFloating { 1535 AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A) 1536 : AANoFreeFloating(IRP, A) {} 1537 1538 /// See AbstractAttribute::updateImpl(...). 1539 ChangeStatus updateImpl(Attributor &A) override { 1540 // TODO: Once we have call site specific value information we can provide 1541 // call site specific liveness information and then it makes 1542 // sense to specialize attributes for call sites arguments instead of 1543 // redirecting requests to the callee argument. 1544 Argument *Arg = getAssociatedArgument(); 1545 if (!Arg) 1546 return indicatePessimisticFixpoint(); 1547 const IRPosition &ArgPos = IRPosition::argument(*Arg); 1548 auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos); 1549 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 1550 } 1551 1552 /// See AbstractAttribute::trackStatistics() 1553 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)}; 1554 }; 1555 1556 /// NoFree attribute for function return value. 1557 struct AANoFreeReturned final : AANoFreeFloating { 1558 AANoFreeReturned(const IRPosition &IRP, Attributor &A) 1559 : AANoFreeFloating(IRP, A) { 1560 llvm_unreachable("NoFree is not applicable to function returns!"); 1561 } 1562 1563 /// See AbstractAttribute::initialize(...). 1564 void initialize(Attributor &A) override { 1565 llvm_unreachable("NoFree is not applicable to function returns!"); 1566 } 1567 1568 /// See AbstractAttribute::updateImpl(...). 1569 ChangeStatus updateImpl(Attributor &A) override { 1570 llvm_unreachable("NoFree is not applicable to function returns!"); 1571 } 1572 1573 /// See AbstractAttribute::trackStatistics() 1574 void trackStatistics() const override {} 1575 }; 1576 1577 /// NoFree attribute deduction for a call site return value. 1578 struct AANoFreeCallSiteReturned final : AANoFreeFloating { 1579 AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A) 1580 : AANoFreeFloating(IRP, A) {} 1581 1582 ChangeStatus manifest(Attributor &A) override { 1583 return ChangeStatus::UNCHANGED; 1584 } 1585 /// See AbstractAttribute::trackStatistics() 1586 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } 1587 }; 1588 1589 /// ------------------------ NonNull Argument Attribute ------------------------ 1590 static int64_t getKnownNonNullAndDerefBytesForUse( 1591 Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue, 1592 const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { 1593 TrackUse = false; 1594 1595 const Value *UseV = U->get(); 1596 if (!UseV->getType()->isPointerTy()) 1597 return 0; 1598 1599 Type *PtrTy = UseV->getType(); 1600 const Function *F = I->getFunction(); 1601 bool NullPointerIsDefined = 1602 F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true; 1603 const DataLayout &DL = A.getInfoCache().getDL(); 1604 if (const auto *CB = dyn_cast<CallBase>(I)) { 1605 if (CB->isBundleOperand(U)) { 1606 if (RetainedKnowledge RK = getKnowledgeFromUse( 1607 U, {Attribute::NonNull, Attribute::Dereferenceable})) { 1608 IsNonNull |= 1609 (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined); 1610 return RK.ArgValue; 1611 } 1612 return 0; 1613 } 1614 1615 if (CB->isCallee(U)) { 1616 IsNonNull |= !NullPointerIsDefined; 1617 return 0; 1618 } 1619 1620 unsigned ArgNo = CB->getArgOperandNo(U); 1621 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); 1622 // As long as we only use known information there is no need to track 1623 // dependences here. 1624 auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP, 1625 /* TrackDependence */ false); 1626 IsNonNull |= DerefAA.isKnownNonNull(); 1627 return DerefAA.getKnownDereferenceableBytes(); 1628 } 1629 1630 // We need to follow common pointer manipulation uses to the accesses they 1631 // feed into. We can try to be smart to avoid looking through things we do not 1632 // like for now, e.g., non-inbounds GEPs. 1633 if (isa<CastInst>(I)) { 1634 TrackUse = true; 1635 return 0; 1636 } 1637 1638 if (isa<GetElementPtrInst>(I)) { 1639 TrackUse = true; 1640 return 0; 1641 } 1642 1643 int64_t Offset; 1644 const Value *Base = 1645 getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL); 1646 if (Base) { 1647 if (Base == &AssociatedValue && 1648 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 1649 int64_t DerefBytes = 1650 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset; 1651 1652 IsNonNull |= !NullPointerIsDefined; 1653 return std::max(int64_t(0), DerefBytes); 1654 } 1655 } 1656 1657 /// Corner case when an offset is 0. 1658 Base = getBasePointerOfAccessPointerOperand(I, Offset, DL, 1659 /*AllowNonInbounds*/ true); 1660 if (Base) { 1661 if (Offset == 0 && Base == &AssociatedValue && 1662 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 1663 int64_t DerefBytes = 1664 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()); 1665 IsNonNull |= !NullPointerIsDefined; 1666 return std::max(int64_t(0), DerefBytes); 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 struct AANonNullImpl : AANonNull { 1674 AANonNullImpl(const IRPosition &IRP, Attributor &A) 1675 : AANonNull(IRP, A), 1676 NullIsDefined(NullPointerIsDefined( 1677 getAnchorScope(), 1678 getAssociatedValue().getType()->getPointerAddressSpace())) {} 1679 1680 /// See AbstractAttribute::initialize(...). 1681 void initialize(Attributor &A) override { 1682 Value &V = getAssociatedValue(); 1683 if (!NullIsDefined && 1684 hasAttr({Attribute::NonNull, Attribute::Dereferenceable}, 1685 /* IgnoreSubsumingPositions */ false, &A)) { 1686 indicateOptimisticFixpoint(); 1687 return; 1688 } 1689 1690 if (isa<ConstantPointerNull>(V)) { 1691 indicatePessimisticFixpoint(); 1692 return; 1693 } 1694 1695 AANonNull::initialize(A); 1696 1697 bool CanBeNull = true; 1698 if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) { 1699 if (!CanBeNull) { 1700 indicateOptimisticFixpoint(); 1701 return; 1702 } 1703 } 1704 1705 if (isa<GlobalValue>(&getAssociatedValue())) { 1706 indicatePessimisticFixpoint(); 1707 return; 1708 } 1709 1710 if (Instruction *CtxI = getCtxI()) 1711 followUsesInMBEC(*this, A, getState(), *CtxI); 1712 } 1713 1714 /// See followUsesInMBEC 1715 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 1716 AANonNull::StateType &State) { 1717 bool IsNonNull = false; 1718 bool TrackUse = false; 1719 getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I, 1720 IsNonNull, TrackUse); 1721 State.setKnown(IsNonNull); 1722 return TrackUse; 1723 } 1724 1725 /// See AbstractAttribute::getAsStr(). 1726 const std::string getAsStr() const override { 1727 return getAssumed() ? "nonnull" : "may-null"; 1728 } 1729 1730 /// Flag to determine if the underlying value can be null and still allow 1731 /// valid accesses. 1732 const bool NullIsDefined; 1733 }; 1734 1735 /// NonNull attribute for a floating value. 1736 struct AANonNullFloating : public AANonNullImpl { 1737 AANonNullFloating(const IRPosition &IRP, Attributor &A) 1738 : AANonNullImpl(IRP, A) {} 1739 1740 /// See AbstractAttribute::updateImpl(...). 1741 ChangeStatus updateImpl(Attributor &A) override { 1742 const DataLayout &DL = A.getDataLayout(); 1743 1744 DominatorTree *DT = nullptr; 1745 AssumptionCache *AC = nullptr; 1746 InformationCache &InfoCache = A.getInfoCache(); 1747 if (const Function *Fn = getAnchorScope()) { 1748 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn); 1749 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn); 1750 } 1751 1752 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 1753 AANonNull::StateType &T, bool Stripped) -> bool { 1754 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V)); 1755 if (!Stripped && this == &AA) { 1756 if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT)) 1757 T.indicatePessimisticFixpoint(); 1758 } else { 1759 // Use abstract attribute information. 1760 const AANonNull::StateType &NS = AA.getState(); 1761 T ^= NS; 1762 } 1763 return T.isValidState(); 1764 }; 1765 1766 StateType T; 1767 if (!genericValueTraversal<AANonNull, StateType>( 1768 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 1769 return indicatePessimisticFixpoint(); 1770 1771 return clampStateAndIndicateChange(getState(), T); 1772 } 1773 1774 /// See AbstractAttribute::trackStatistics() 1775 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 1776 }; 1777 1778 /// NonNull attribute for function return value. 1779 struct AANonNullReturned final 1780 : AAReturnedFromReturnedValues<AANonNull, AANonNull> { 1781 AANonNullReturned(const IRPosition &IRP, Attributor &A) 1782 : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {} 1783 1784 /// See AbstractAttribute::getAsStr(). 1785 const std::string getAsStr() const override { 1786 return getAssumed() ? "nonnull" : "may-null"; 1787 } 1788 1789 /// See AbstractAttribute::trackStatistics() 1790 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 1791 }; 1792 1793 /// NonNull attribute for function argument. 1794 struct AANonNullArgument final 1795 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> { 1796 AANonNullArgument(const IRPosition &IRP, Attributor &A) 1797 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {} 1798 1799 /// See AbstractAttribute::trackStatistics() 1800 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } 1801 }; 1802 1803 struct AANonNullCallSiteArgument final : AANonNullFloating { 1804 AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A) 1805 : AANonNullFloating(IRP, A) {} 1806 1807 /// See AbstractAttribute::trackStatistics() 1808 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } 1809 }; 1810 1811 /// NonNull attribute for a call site return position. 1812 struct AANonNullCallSiteReturned final 1813 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> { 1814 AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A) 1815 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {} 1816 1817 /// See AbstractAttribute::trackStatistics() 1818 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } 1819 }; 1820 1821 /// ------------------------ No-Recurse Attributes ---------------------------- 1822 1823 struct AANoRecurseImpl : public AANoRecurse { 1824 AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {} 1825 1826 /// See AbstractAttribute::getAsStr() 1827 const std::string getAsStr() const override { 1828 return getAssumed() ? "norecurse" : "may-recurse"; 1829 } 1830 }; 1831 1832 struct AANoRecurseFunction final : AANoRecurseImpl { 1833 AANoRecurseFunction(const IRPosition &IRP, Attributor &A) 1834 : AANoRecurseImpl(IRP, A) {} 1835 1836 /// See AbstractAttribute::initialize(...). 1837 void initialize(Attributor &A) override { 1838 AANoRecurseImpl::initialize(A); 1839 if (const Function *F = getAnchorScope()) 1840 if (A.getInfoCache().getSccSize(*F) != 1) 1841 indicatePessimisticFixpoint(); 1842 } 1843 1844 /// See AbstractAttribute::updateImpl(...). 1845 ChangeStatus updateImpl(Attributor &A) override { 1846 1847 // If all live call sites are known to be no-recurse, we are as well. 1848 auto CallSitePred = [&](AbstractCallSite ACS) { 1849 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>( 1850 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 1851 /* TrackDependence */ false, DepClassTy::OPTIONAL); 1852 return NoRecurseAA.isKnownNoRecurse(); 1853 }; 1854 bool AllCallSitesKnown; 1855 if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) { 1856 // If we know all call sites and all are known no-recurse, we are done. 1857 // If all known call sites, which might not be all that exist, are known 1858 // to be no-recurse, we are not done but we can continue to assume 1859 // no-recurse. If one of the call sites we have not visited will become 1860 // live, another update is triggered. 1861 if (AllCallSitesKnown) 1862 indicateOptimisticFixpoint(); 1863 return ChangeStatus::UNCHANGED; 1864 } 1865 1866 // If the above check does not hold anymore we look at the calls. 1867 auto CheckForNoRecurse = [&](Instruction &I) { 1868 const auto &CB = cast<CallBase>(I); 1869 if (CB.hasFnAttr(Attribute::NoRecurse)) 1870 return true; 1871 1872 const auto &NoRecurseAA = 1873 A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB)); 1874 if (!NoRecurseAA.isAssumedNoRecurse()) 1875 return false; 1876 1877 // Recursion to the same function 1878 if (CB.getCalledFunction() == getAnchorScope()) 1879 return false; 1880 1881 return true; 1882 }; 1883 1884 if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this)) 1885 return indicatePessimisticFixpoint(); 1886 return ChangeStatus::UNCHANGED; 1887 } 1888 1889 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } 1890 }; 1891 1892 /// NoRecurse attribute deduction for a call sites. 1893 struct AANoRecurseCallSite final : AANoRecurseImpl { 1894 AANoRecurseCallSite(const IRPosition &IRP, Attributor &A) 1895 : AANoRecurseImpl(IRP, A) {} 1896 1897 /// See AbstractAttribute::initialize(...). 1898 void initialize(Attributor &A) override { 1899 AANoRecurseImpl::initialize(A); 1900 Function *F = getAssociatedFunction(); 1901 if (!F) 1902 indicatePessimisticFixpoint(); 1903 } 1904 1905 /// See AbstractAttribute::updateImpl(...). 1906 ChangeStatus updateImpl(Attributor &A) override { 1907 // TODO: Once we have call site specific value information we can provide 1908 // call site specific liveness information and then it makes 1909 // sense to specialize attributes for call sites arguments instead of 1910 // redirecting requests to the callee argument. 1911 Function *F = getAssociatedFunction(); 1912 const IRPosition &FnPos = IRPosition::function(*F); 1913 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos); 1914 return clampStateAndIndicateChange(getState(), FnAA.getState()); 1915 } 1916 1917 /// See AbstractAttribute::trackStatistics() 1918 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } 1919 }; 1920 1921 /// -------------------- Undefined-Behavior Attributes ------------------------ 1922 1923 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior { 1924 AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A) 1925 : AAUndefinedBehavior(IRP, A) {} 1926 1927 /// See AbstractAttribute::updateImpl(...). 1928 // through a pointer (i.e. also branches etc.) 1929 ChangeStatus updateImpl(Attributor &A) override { 1930 const size_t UBPrevSize = KnownUBInsts.size(); 1931 const size_t NoUBPrevSize = AssumedNoUBInsts.size(); 1932 1933 auto InspectMemAccessInstForUB = [&](Instruction &I) { 1934 // Skip instructions that are already saved. 1935 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 1936 return true; 1937 1938 // If we reach here, we know we have an instruction 1939 // that accesses memory through a pointer operand, 1940 // for which getPointerOperand() should give it to us. 1941 const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true); 1942 assert(PtrOp && 1943 "Expected pointer operand of memory accessing instruction"); 1944 1945 // Either we stopped and the appropriate action was taken, 1946 // or we got back a simplified value to continue. 1947 Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I); 1948 if (!SimplifiedPtrOp.hasValue()) 1949 return true; 1950 const Value *PtrOpVal = SimplifiedPtrOp.getValue(); 1951 1952 // A memory access through a pointer is considered UB 1953 // only if the pointer has constant null value. 1954 // TODO: Expand it to not only check constant values. 1955 if (!isa<ConstantPointerNull>(PtrOpVal)) { 1956 AssumedNoUBInsts.insert(&I); 1957 return true; 1958 } 1959 const Type *PtrTy = PtrOpVal->getType(); 1960 1961 // Because we only consider instructions inside functions, 1962 // assume that a parent function exists. 1963 const Function *F = I.getFunction(); 1964 1965 // A memory access using constant null pointer is only considered UB 1966 // if null pointer is _not_ defined for the target platform. 1967 if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace())) 1968 AssumedNoUBInsts.insert(&I); 1969 else 1970 KnownUBInsts.insert(&I); 1971 return true; 1972 }; 1973 1974 auto InspectBrInstForUB = [&](Instruction &I) { 1975 // A conditional branch instruction is considered UB if it has `undef` 1976 // condition. 1977 1978 // Skip instructions that are already saved. 1979 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 1980 return true; 1981 1982 // We know we have a branch instruction. 1983 auto BrInst = cast<BranchInst>(&I); 1984 1985 // Unconditional branches are never considered UB. 1986 if (BrInst->isUnconditional()) 1987 return true; 1988 1989 // Either we stopped and the appropriate action was taken, 1990 // or we got back a simplified value to continue. 1991 Optional<Value *> SimplifiedCond = 1992 stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst); 1993 if (!SimplifiedCond.hasValue()) 1994 return true; 1995 AssumedNoUBInsts.insert(&I); 1996 return true; 1997 }; 1998 1999 auto InspectCallSiteForUB = [&](Instruction &I) { 2000 // Check whether a callsite always cause UB or not 2001 2002 // Skip instructions that are already saved. 2003 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 2004 return true; 2005 2006 // Check nonnull and noundef argument attribute violation for each 2007 // callsite. 2008 CallBase &CB = cast<CallBase>(I); 2009 Function *Callee = CB.getCalledFunction(); 2010 if (!Callee) 2011 return true; 2012 for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) { 2013 // If current argument is known to be simplified to null pointer and the 2014 // corresponding argument position is known to have nonnull attribute, 2015 // the argument is poison. Furthermore, if the argument is poison and 2016 // the position is known to have noundef attriubte, this callsite is 2017 // considered UB. 2018 // TODO: Check also nopoison attribute if it is introduced. 2019 if (idx >= Callee->arg_size()) 2020 break; 2021 Value *ArgVal = CB.getArgOperand(idx); 2022 if (!ArgVal || !ArgVal->getType()->isPointerTy()) 2023 continue; 2024 IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx); 2025 if (!CalleeArgumentIRP.hasAttr({Attribute::NoUndef})) 2026 continue; 2027 auto &NonNullAA = A.getAAFor<AANonNull>(*this, CalleeArgumentIRP); 2028 if (!NonNullAA.isKnownNonNull()) 2029 continue; 2030 const auto &ValueSimplifyAA = 2031 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*ArgVal)); 2032 Optional<Value *> SimplifiedVal = 2033 ValueSimplifyAA.getAssumedSimplifiedValue(A); 2034 2035 if (!ValueSimplifyAA.isKnown()) 2036 continue; 2037 // Here, we handle three cases. 2038 // (1) Not having a value means it is dead. (we can replace the value 2039 // with undef) 2040 // (2) Simplified to null pointer. The argument is a poison value and 2041 // violate noundef attribute. 2042 // (3) Simplified to undef. The argument violate noundef attriubte. 2043 if (!SimplifiedVal.hasValue() || 2044 isa<ConstantPointerNull>(*SimplifiedVal.getValue()) || 2045 isa<UndefValue>(*SimplifiedVal.getValue())) { 2046 KnownUBInsts.insert(&I); 2047 return true; 2048 } 2049 } 2050 return true; 2051 }; 2052 2053 auto InspectReturnInstForUB = 2054 [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) { 2055 // Check if a return instruction always cause UB or not 2056 // Note: It is guaranteed that the returned position of the anchor 2057 // scope has noundef attribute when this is called. 2058 2059 // When the returned position has noundef attriubte, UB occur in the 2060 // following cases. 2061 // (1) Returned value is known to be undef. 2062 // (2) The value is known to be a null pointer and the returned 2063 // position has nonnull attribute (because the returned value is 2064 // poison). 2065 // Note: This callback is not called for a dead returned value because 2066 // such values are ignored in 2067 // checkForAllReturnedValuesAndReturnedInsts. 2068 bool FoundUB = false; 2069 if (isa<UndefValue>(V)) { 2070 FoundUB = true; 2071 } else { 2072 if (isa<ConstantPointerNull>(V)) { 2073 auto &NonNullAA = A.getAAFor<AANonNull>( 2074 *this, IRPosition::returned(*getAnchorScope())); 2075 if (NonNullAA.isKnownNonNull()) 2076 FoundUB = true; 2077 } 2078 } 2079 2080 if (FoundUB) 2081 for (ReturnInst *RI : RetInsts) 2082 KnownUBInsts.insert(RI); 2083 return true; 2084 }; 2085 2086 A.checkForAllInstructions(InspectMemAccessInstForUB, *this, 2087 {Instruction::Load, Instruction::Store, 2088 Instruction::AtomicCmpXchg, 2089 Instruction::AtomicRMW}, 2090 /* CheckBBLivenessOnly */ true); 2091 A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br}, 2092 /* CheckBBLivenessOnly */ true); 2093 A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this); 2094 2095 // If the returned position of the anchor scope has noundef attriubte, check 2096 // all returned instructions. 2097 // TODO: If AANoUndef is implemented, ask it here. 2098 if (IRPosition::returned(*getAnchorScope()).hasAttr({Attribute::NoUndef})) 2099 A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB, *this); 2100 2101 if (NoUBPrevSize != AssumedNoUBInsts.size() || 2102 UBPrevSize != KnownUBInsts.size()) 2103 return ChangeStatus::CHANGED; 2104 return ChangeStatus::UNCHANGED; 2105 } 2106 2107 bool isKnownToCauseUB(Instruction *I) const override { 2108 return KnownUBInsts.count(I); 2109 } 2110 2111 bool isAssumedToCauseUB(Instruction *I) const override { 2112 // In simple words, if an instruction is not in the assumed to _not_ 2113 // cause UB, then it is assumed UB (that includes those 2114 // in the KnownUBInsts set). The rest is boilerplate 2115 // is to ensure that it is one of the instructions we test 2116 // for UB. 2117 2118 switch (I->getOpcode()) { 2119 case Instruction::Load: 2120 case Instruction::Store: 2121 case Instruction::AtomicCmpXchg: 2122 case Instruction::AtomicRMW: 2123 return !AssumedNoUBInsts.count(I); 2124 case Instruction::Br: { 2125 auto BrInst = cast<BranchInst>(I); 2126 if (BrInst->isUnconditional()) 2127 return false; 2128 return !AssumedNoUBInsts.count(I); 2129 } break; 2130 default: 2131 return false; 2132 } 2133 return false; 2134 } 2135 2136 ChangeStatus manifest(Attributor &A) override { 2137 if (KnownUBInsts.empty()) 2138 return ChangeStatus::UNCHANGED; 2139 for (Instruction *I : KnownUBInsts) 2140 A.changeToUnreachableAfterManifest(I); 2141 return ChangeStatus::CHANGED; 2142 } 2143 2144 /// See AbstractAttribute::getAsStr() 2145 const std::string getAsStr() const override { 2146 return getAssumed() ? "undefined-behavior" : "no-ub"; 2147 } 2148 2149 /// Note: The correctness of this analysis depends on the fact that the 2150 /// following 2 sets will stop changing after some point. 2151 /// "Change" here means that their size changes. 2152 /// The size of each set is monotonically increasing 2153 /// (we only add items to them) and it is upper bounded by the number of 2154 /// instructions in the processed function (we can never save more 2155 /// elements in either set than this number). Hence, at some point, 2156 /// they will stop increasing. 2157 /// Consequently, at some point, both sets will have stopped 2158 /// changing, effectively making the analysis reach a fixpoint. 2159 2160 /// Note: These 2 sets are disjoint and an instruction can be considered 2161 /// one of 3 things: 2162 /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in 2163 /// the KnownUBInsts set. 2164 /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior 2165 /// has a reason to assume it). 2166 /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior 2167 /// could not find a reason to assume or prove that it can cause UB, 2168 /// hence it assumes it doesn't. We have a set for these instructions 2169 /// so that we don't reprocess them in every update. 2170 /// Note however that instructions in this set may cause UB. 2171 2172 protected: 2173 /// A set of all live instructions _known_ to cause UB. 2174 SmallPtrSet<Instruction *, 8> KnownUBInsts; 2175 2176 private: 2177 /// A set of all the (live) instructions that are assumed to _not_ cause UB. 2178 SmallPtrSet<Instruction *, 8> AssumedNoUBInsts; 2179 2180 // Should be called on updates in which if we're processing an instruction 2181 // \p I that depends on a value \p V, one of the following has to happen: 2182 // - If the value is assumed, then stop. 2183 // - If the value is known but undef, then consider it UB. 2184 // - Otherwise, do specific processing with the simplified value. 2185 // We return None in the first 2 cases to signify that an appropriate 2186 // action was taken and the caller should stop. 2187 // Otherwise, we return the simplified value that the caller should 2188 // use for specific processing. 2189 Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V, 2190 Instruction *I) { 2191 const auto &ValueSimplifyAA = 2192 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V)); 2193 Optional<Value *> SimplifiedV = 2194 ValueSimplifyAA.getAssumedSimplifiedValue(A); 2195 if (!ValueSimplifyAA.isKnown()) { 2196 // Don't depend on assumed values. 2197 return llvm::None; 2198 } 2199 if (!SimplifiedV.hasValue()) { 2200 // If it is known (which we tested above) but it doesn't have a value, 2201 // then we can assume `undef` and hence the instruction is UB. 2202 KnownUBInsts.insert(I); 2203 return llvm::None; 2204 } 2205 Value *Val = SimplifiedV.getValue(); 2206 if (isa<UndefValue>(Val)) { 2207 KnownUBInsts.insert(I); 2208 return llvm::None; 2209 } 2210 return Val; 2211 } 2212 }; 2213 2214 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl { 2215 AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A) 2216 : AAUndefinedBehaviorImpl(IRP, A) {} 2217 2218 /// See AbstractAttribute::trackStatistics() 2219 void trackStatistics() const override { 2220 STATS_DECL(UndefinedBehaviorInstruction, Instruction, 2221 "Number of instructions known to have UB"); 2222 BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) += 2223 KnownUBInsts.size(); 2224 } 2225 }; 2226 2227 /// ------------------------ Will-Return Attributes ---------------------------- 2228 2229 // Helper function that checks whether a function has any cycle which we don't 2230 // know if it is bounded or not. 2231 // Loops with maximum trip count are considered bounded, any other cycle not. 2232 static bool mayContainUnboundedCycle(Function &F, Attributor &A) { 2233 ScalarEvolution *SE = 2234 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F); 2235 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F); 2236 // If either SCEV or LoopInfo is not available for the function then we assume 2237 // any cycle to be unbounded cycle. 2238 // We use scc_iterator which uses Tarjan algorithm to find all the maximal 2239 // SCCs.To detect if there's a cycle, we only need to find the maximal ones. 2240 if (!SE || !LI) { 2241 for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI) 2242 if (SCCI.hasCycle()) 2243 return true; 2244 return false; 2245 } 2246 2247 // If there's irreducible control, the function may contain non-loop cycles. 2248 if (mayContainIrreducibleControl(F, LI)) 2249 return true; 2250 2251 // Any loop that does not have a max trip count is considered unbounded cycle. 2252 for (auto *L : LI->getLoopsInPreorder()) { 2253 if (!SE->getSmallConstantMaxTripCount(L)) 2254 return true; 2255 } 2256 return false; 2257 } 2258 2259 struct AAWillReturnImpl : public AAWillReturn { 2260 AAWillReturnImpl(const IRPosition &IRP, Attributor &A) 2261 : AAWillReturn(IRP, A) {} 2262 2263 /// See AbstractAttribute::initialize(...). 2264 void initialize(Attributor &A) override { 2265 AAWillReturn::initialize(A); 2266 2267 Function *F = getAnchorScope(); 2268 if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A)) 2269 indicatePessimisticFixpoint(); 2270 } 2271 2272 /// See AbstractAttribute::updateImpl(...). 2273 ChangeStatus updateImpl(Attributor &A) override { 2274 auto CheckForWillReturn = [&](Instruction &I) { 2275 IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I)); 2276 const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos); 2277 if (WillReturnAA.isKnownWillReturn()) 2278 return true; 2279 if (!WillReturnAA.isAssumedWillReturn()) 2280 return false; 2281 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos); 2282 return NoRecurseAA.isAssumedNoRecurse(); 2283 }; 2284 2285 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this)) 2286 return indicatePessimisticFixpoint(); 2287 2288 return ChangeStatus::UNCHANGED; 2289 } 2290 2291 /// See AbstractAttribute::getAsStr() 2292 const std::string getAsStr() const override { 2293 return getAssumed() ? "willreturn" : "may-noreturn"; 2294 } 2295 }; 2296 2297 struct AAWillReturnFunction final : AAWillReturnImpl { 2298 AAWillReturnFunction(const IRPosition &IRP, Attributor &A) 2299 : AAWillReturnImpl(IRP, A) {} 2300 2301 /// See AbstractAttribute::trackStatistics() 2302 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } 2303 }; 2304 2305 /// WillReturn attribute deduction for a call sites. 2306 struct AAWillReturnCallSite final : AAWillReturnImpl { 2307 AAWillReturnCallSite(const IRPosition &IRP, Attributor &A) 2308 : AAWillReturnImpl(IRP, A) {} 2309 2310 /// See AbstractAttribute::initialize(...). 2311 void initialize(Attributor &A) override { 2312 AAWillReturnImpl::initialize(A); 2313 Function *F = getAssociatedFunction(); 2314 if (!F) 2315 indicatePessimisticFixpoint(); 2316 } 2317 2318 /// See AbstractAttribute::updateImpl(...). 2319 ChangeStatus updateImpl(Attributor &A) override { 2320 // TODO: Once we have call site specific value information we can provide 2321 // call site specific liveness information and then it makes 2322 // sense to specialize attributes for call sites arguments instead of 2323 // redirecting requests to the callee argument. 2324 Function *F = getAssociatedFunction(); 2325 const IRPosition &FnPos = IRPosition::function(*F); 2326 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos); 2327 return clampStateAndIndicateChange(getState(), FnAA.getState()); 2328 } 2329 2330 /// See AbstractAttribute::trackStatistics() 2331 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } 2332 }; 2333 2334 /// -------------------AAReachability Attribute-------------------------- 2335 2336 struct AAReachabilityImpl : AAReachability { 2337 AAReachabilityImpl(const IRPosition &IRP, Attributor &A) 2338 : AAReachability(IRP, A) {} 2339 2340 const std::string getAsStr() const override { 2341 // TODO: Return the number of reachable queries. 2342 return "reachable"; 2343 } 2344 2345 /// See AbstractAttribute::initialize(...). 2346 void initialize(Attributor &A) override { indicatePessimisticFixpoint(); } 2347 2348 /// See AbstractAttribute::updateImpl(...). 2349 ChangeStatus updateImpl(Attributor &A) override { 2350 return indicatePessimisticFixpoint(); 2351 } 2352 }; 2353 2354 struct AAReachabilityFunction final : public AAReachabilityImpl { 2355 AAReachabilityFunction(const IRPosition &IRP, Attributor &A) 2356 : AAReachabilityImpl(IRP, A) {} 2357 2358 /// See AbstractAttribute::trackStatistics() 2359 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); } 2360 }; 2361 2362 /// ------------------------ NoAlias Argument Attribute ------------------------ 2363 2364 struct AANoAliasImpl : AANoAlias { 2365 AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) { 2366 assert(getAssociatedType()->isPointerTy() && 2367 "Noalias is a pointer attribute"); 2368 } 2369 2370 const std::string getAsStr() const override { 2371 return getAssumed() ? "noalias" : "may-alias"; 2372 } 2373 }; 2374 2375 /// NoAlias attribute for a floating value. 2376 struct AANoAliasFloating final : AANoAliasImpl { 2377 AANoAliasFloating(const IRPosition &IRP, Attributor &A) 2378 : AANoAliasImpl(IRP, A) {} 2379 2380 /// See AbstractAttribute::initialize(...). 2381 void initialize(Attributor &A) override { 2382 AANoAliasImpl::initialize(A); 2383 Value *Val = &getAssociatedValue(); 2384 do { 2385 CastInst *CI = dyn_cast<CastInst>(Val); 2386 if (!CI) 2387 break; 2388 Value *Base = CI->getOperand(0); 2389 if (!Base->hasOneUse()) 2390 break; 2391 Val = Base; 2392 } while (true); 2393 2394 if (!Val->getType()->isPointerTy()) { 2395 indicatePessimisticFixpoint(); 2396 return; 2397 } 2398 2399 if (isa<AllocaInst>(Val)) 2400 indicateOptimisticFixpoint(); 2401 else if (isa<ConstantPointerNull>(Val) && 2402 !NullPointerIsDefined(getAnchorScope(), 2403 Val->getType()->getPointerAddressSpace())) 2404 indicateOptimisticFixpoint(); 2405 else if (Val != &getAssociatedValue()) { 2406 const auto &ValNoAliasAA = 2407 A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val)); 2408 if (ValNoAliasAA.isKnownNoAlias()) 2409 indicateOptimisticFixpoint(); 2410 } 2411 } 2412 2413 /// See AbstractAttribute::updateImpl(...). 2414 ChangeStatus updateImpl(Attributor &A) override { 2415 // TODO: Implement this. 2416 return indicatePessimisticFixpoint(); 2417 } 2418 2419 /// See AbstractAttribute::trackStatistics() 2420 void trackStatistics() const override { 2421 STATS_DECLTRACK_FLOATING_ATTR(noalias) 2422 } 2423 }; 2424 2425 /// NoAlias attribute for an argument. 2426 struct AANoAliasArgument final 2427 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { 2428 using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>; 2429 AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} 2430 2431 /// See AbstractAttribute::initialize(...). 2432 void initialize(Attributor &A) override { 2433 Base::initialize(A); 2434 // See callsite argument attribute and callee argument attribute. 2435 if (hasAttr({Attribute::ByVal})) 2436 indicateOptimisticFixpoint(); 2437 } 2438 2439 /// See AbstractAttribute::update(...). 2440 ChangeStatus updateImpl(Attributor &A) override { 2441 // We have to make sure no-alias on the argument does not break 2442 // synchronization when this is a callback argument, see also [1] below. 2443 // If synchronization cannot be affected, we delegate to the base updateImpl 2444 // function, otherwise we give up for now. 2445 2446 // If the function is no-sync, no-alias cannot break synchronization. 2447 const auto &NoSyncAA = A.getAAFor<AANoSync>( 2448 *this, IRPosition::function_scope(getIRPosition())); 2449 if (NoSyncAA.isAssumedNoSync()) 2450 return Base::updateImpl(A); 2451 2452 // If the argument is read-only, no-alias cannot break synchronization. 2453 const auto &MemBehaviorAA = 2454 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 2455 if (MemBehaviorAA.isAssumedReadOnly()) 2456 return Base::updateImpl(A); 2457 2458 // If the argument is never passed through callbacks, no-alias cannot break 2459 // synchronization. 2460 bool AllCallSitesKnown; 2461 if (A.checkForAllCallSites( 2462 [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this, 2463 true, AllCallSitesKnown)) 2464 return Base::updateImpl(A); 2465 2466 // TODO: add no-alias but make sure it doesn't break synchronization by 2467 // introducing fake uses. See: 2468 // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel, 2469 // International Workshop on OpenMP 2018, 2470 // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf 2471 2472 return indicatePessimisticFixpoint(); 2473 } 2474 2475 /// See AbstractAttribute::trackStatistics() 2476 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } 2477 }; 2478 2479 struct AANoAliasCallSiteArgument final : AANoAliasImpl { 2480 AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A) 2481 : AANoAliasImpl(IRP, A) {} 2482 2483 /// See AbstractAttribute::initialize(...). 2484 void initialize(Attributor &A) override { 2485 // See callsite argument attribute and callee argument attribute. 2486 const auto &CB = cast<CallBase>(getAnchorValue()); 2487 if (CB.paramHasAttr(getArgNo(), Attribute::NoAlias)) 2488 indicateOptimisticFixpoint(); 2489 Value &Val = getAssociatedValue(); 2490 if (isa<ConstantPointerNull>(Val) && 2491 !NullPointerIsDefined(getAnchorScope(), 2492 Val.getType()->getPointerAddressSpace())) 2493 indicateOptimisticFixpoint(); 2494 } 2495 2496 /// Determine if the underlying value may alias with the call site argument 2497 /// \p OtherArgNo of \p ICS (= the underlying call site). 2498 bool mayAliasWithArgument(Attributor &A, AAResults *&AAR, 2499 const AAMemoryBehavior &MemBehaviorAA, 2500 const CallBase &CB, unsigned OtherArgNo) { 2501 // We do not need to worry about aliasing with the underlying IRP. 2502 if (this->getArgNo() == (int)OtherArgNo) 2503 return false; 2504 2505 // If it is not a pointer or pointer vector we do not alias. 2506 const Value *ArgOp = CB.getArgOperand(OtherArgNo); 2507 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 2508 return false; 2509 2510 auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 2511 *this, IRPosition::callsite_argument(CB, OtherArgNo), 2512 /* TrackDependence */ false); 2513 2514 // If the argument is readnone, there is no read-write aliasing. 2515 if (CBArgMemBehaviorAA.isAssumedReadNone()) { 2516 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2517 return false; 2518 } 2519 2520 // If the argument is readonly and the underlying value is readonly, there 2521 // is no read-write aliasing. 2522 bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly(); 2523 if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) { 2524 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2525 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2526 return false; 2527 } 2528 2529 // We have to utilize actual alias analysis queries so we need the object. 2530 if (!AAR) 2531 AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope()); 2532 2533 // Try to rule it out at the call site. 2534 bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp); 2535 LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between " 2536 "callsite arguments: " 2537 << getAssociatedValue() << " " << *ArgOp << " => " 2538 << (IsAliasing ? "" : "no-") << "alias \n"); 2539 2540 return IsAliasing; 2541 } 2542 2543 bool 2544 isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR, 2545 const AAMemoryBehavior &MemBehaviorAA, 2546 const AANoAlias &NoAliasAA) { 2547 // We can deduce "noalias" if the following conditions hold. 2548 // (i) Associated value is assumed to be noalias in the definition. 2549 // (ii) Associated value is assumed to be no-capture in all the uses 2550 // possibly executed before this callsite. 2551 // (iii) There is no other pointer argument which could alias with the 2552 // value. 2553 2554 bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias(); 2555 if (!AssociatedValueIsNoAliasAtDef) { 2556 LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue() 2557 << " is not no-alias at the definition\n"); 2558 return false; 2559 } 2560 2561 A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL); 2562 2563 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2564 auto &NoCaptureAA = 2565 A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false); 2566 // Check whether the value is captured in the scope using AANoCapture. 2567 // Look at CFG and check only uses possibly executed before this 2568 // callsite. 2569 auto UsePred = [&](const Use &U, bool &Follow) -> bool { 2570 Instruction *UserI = cast<Instruction>(U.getUser()); 2571 2572 // If user if curr instr and only use. 2573 if (UserI == getCtxI() && UserI->hasOneUse()) 2574 return true; 2575 2576 const Function *ScopeFn = VIRP.getAnchorScope(); 2577 if (ScopeFn) { 2578 const auto &ReachabilityAA = 2579 A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn)); 2580 2581 if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI())) 2582 return true; 2583 2584 if (auto *CB = dyn_cast<CallBase>(UserI)) { 2585 if (CB->isArgOperand(&U)) { 2586 2587 unsigned ArgNo = CB->getArgOperandNo(&U); 2588 2589 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 2590 *this, IRPosition::callsite_argument(*CB, ArgNo)); 2591 2592 if (NoCaptureAA.isAssumedNoCapture()) 2593 return true; 2594 } 2595 } 2596 } 2597 2598 // For cases which can potentially have more users 2599 if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) || 2600 isa<SelectInst>(U)) { 2601 Follow = true; 2602 return true; 2603 } 2604 2605 LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n"); 2606 return false; 2607 }; 2608 2609 if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 2610 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) { 2611 LLVM_DEBUG( 2612 dbgs() << "[AANoAliasCSArg] " << getAssociatedValue() 2613 << " cannot be noalias as it is potentially captured\n"); 2614 return false; 2615 } 2616 } 2617 A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL); 2618 2619 // Check there is no other pointer argument which could alias with the 2620 // value passed at this call site. 2621 // TODO: AbstractCallSite 2622 const auto &CB = cast<CallBase>(getAnchorValue()); 2623 for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands(); 2624 OtherArgNo++) 2625 if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo)) 2626 return false; 2627 2628 return true; 2629 } 2630 2631 /// See AbstractAttribute::updateImpl(...). 2632 ChangeStatus updateImpl(Attributor &A) override { 2633 // If the argument is readnone we are done as there are no accesses via the 2634 // argument. 2635 auto &MemBehaviorAA = 2636 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), 2637 /* TrackDependence */ false); 2638 if (MemBehaviorAA.isAssumedReadNone()) { 2639 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2640 return ChangeStatus::UNCHANGED; 2641 } 2642 2643 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2644 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP, 2645 /* TrackDependence */ false); 2646 2647 AAResults *AAR = nullptr; 2648 if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA, 2649 NoAliasAA)) { 2650 LLVM_DEBUG( 2651 dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n"); 2652 return ChangeStatus::UNCHANGED; 2653 } 2654 2655 return indicatePessimisticFixpoint(); 2656 } 2657 2658 /// See AbstractAttribute::trackStatistics() 2659 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } 2660 }; 2661 2662 /// NoAlias attribute for function return value. 2663 struct AANoAliasReturned final : AANoAliasImpl { 2664 AANoAliasReturned(const IRPosition &IRP, Attributor &A) 2665 : AANoAliasImpl(IRP, A) {} 2666 2667 /// See AbstractAttribute::updateImpl(...). 2668 virtual ChangeStatus updateImpl(Attributor &A) override { 2669 2670 auto CheckReturnValue = [&](Value &RV) -> bool { 2671 if (Constant *C = dyn_cast<Constant>(&RV)) 2672 if (C->isNullValue() || isa<UndefValue>(C)) 2673 return true; 2674 2675 /// For now, we can only deduce noalias if we have call sites. 2676 /// FIXME: add more support. 2677 if (!isa<CallBase>(&RV)) 2678 return false; 2679 2680 const IRPosition &RVPos = IRPosition::value(RV); 2681 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos); 2682 if (!NoAliasAA.isAssumedNoAlias()) 2683 return false; 2684 2685 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos); 2686 return NoCaptureAA.isAssumedNoCaptureMaybeReturned(); 2687 }; 2688 2689 if (!A.checkForAllReturnedValues(CheckReturnValue, *this)) 2690 return indicatePessimisticFixpoint(); 2691 2692 return ChangeStatus::UNCHANGED; 2693 } 2694 2695 /// See AbstractAttribute::trackStatistics() 2696 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } 2697 }; 2698 2699 /// NoAlias attribute deduction for a call site return value. 2700 struct AANoAliasCallSiteReturned final : AANoAliasImpl { 2701 AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A) 2702 : AANoAliasImpl(IRP, A) {} 2703 2704 /// See AbstractAttribute::initialize(...). 2705 void initialize(Attributor &A) override { 2706 AANoAliasImpl::initialize(A); 2707 Function *F = getAssociatedFunction(); 2708 if (!F) 2709 indicatePessimisticFixpoint(); 2710 } 2711 2712 /// See AbstractAttribute::updateImpl(...). 2713 ChangeStatus updateImpl(Attributor &A) override { 2714 // TODO: Once we have call site specific value information we can provide 2715 // call site specific liveness information and then it makes 2716 // sense to specialize attributes for call sites arguments instead of 2717 // redirecting requests to the callee argument. 2718 Function *F = getAssociatedFunction(); 2719 const IRPosition &FnPos = IRPosition::returned(*F); 2720 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos); 2721 return clampStateAndIndicateChange(getState(), FnAA.getState()); 2722 } 2723 2724 /// See AbstractAttribute::trackStatistics() 2725 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } 2726 }; 2727 2728 /// -------------------AAIsDead Function Attribute----------------------- 2729 2730 struct AAIsDeadValueImpl : public AAIsDead { 2731 AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} 2732 2733 /// See AAIsDead::isAssumedDead(). 2734 bool isAssumedDead() const override { return getAssumed(); } 2735 2736 /// See AAIsDead::isKnownDead(). 2737 bool isKnownDead() const override { return getKnown(); } 2738 2739 /// See AAIsDead::isAssumedDead(BasicBlock *). 2740 bool isAssumedDead(const BasicBlock *BB) const override { return false; } 2741 2742 /// See AAIsDead::isKnownDead(BasicBlock *). 2743 bool isKnownDead(const BasicBlock *BB) const override { return false; } 2744 2745 /// See AAIsDead::isAssumedDead(Instruction *I). 2746 bool isAssumedDead(const Instruction *I) const override { 2747 return I == getCtxI() && isAssumedDead(); 2748 } 2749 2750 /// See AAIsDead::isKnownDead(Instruction *I). 2751 bool isKnownDead(const Instruction *I) const override { 2752 return isAssumedDead(I) && getKnown(); 2753 } 2754 2755 /// See AbstractAttribute::getAsStr(). 2756 const std::string getAsStr() const override { 2757 return isAssumedDead() ? "assumed-dead" : "assumed-live"; 2758 } 2759 2760 /// Check if all uses are assumed dead. 2761 bool areAllUsesAssumedDead(Attributor &A, Value &V) { 2762 auto UsePred = [&](const Use &U, bool &Follow) { return false; }; 2763 // Explicitly set the dependence class to required because we want a long 2764 // chain of N dependent instructions to be considered live as soon as one is 2765 // without going through N update cycles. This is not required for 2766 // correctness. 2767 return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED); 2768 } 2769 2770 /// Determine if \p I is assumed to be side-effect free. 2771 bool isAssumedSideEffectFree(Attributor &A, Instruction *I) { 2772 if (!I || wouldInstructionBeTriviallyDead(I)) 2773 return true; 2774 2775 auto *CB = dyn_cast<CallBase>(I); 2776 if (!CB || isa<IntrinsicInst>(CB)) 2777 return false; 2778 2779 const IRPosition &CallIRP = IRPosition::callsite_function(*CB); 2780 const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>( 2781 *this, CallIRP, /* TrackDependence */ false); 2782 if (!NoUnwindAA.isAssumedNoUnwind()) 2783 return false; 2784 if (!NoUnwindAA.isKnownNoUnwind()) 2785 A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL); 2786 2787 const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>( 2788 *this, CallIRP, /* TrackDependence */ false); 2789 if (MemBehaviorAA.isAssumedReadOnly()) { 2790 if (!MemBehaviorAA.isKnownReadOnly()) 2791 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2792 return true; 2793 } 2794 return false; 2795 } 2796 }; 2797 2798 struct AAIsDeadFloating : public AAIsDeadValueImpl { 2799 AAIsDeadFloating(const IRPosition &IRP, Attributor &A) 2800 : AAIsDeadValueImpl(IRP, A) {} 2801 2802 /// See AbstractAttribute::initialize(...). 2803 void initialize(Attributor &A) override { 2804 if (isa<UndefValue>(getAssociatedValue())) { 2805 indicatePessimisticFixpoint(); 2806 return; 2807 } 2808 2809 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 2810 if (!isAssumedSideEffectFree(A, I)) 2811 indicatePessimisticFixpoint(); 2812 } 2813 2814 /// See AbstractAttribute::updateImpl(...). 2815 ChangeStatus updateImpl(Attributor &A) override { 2816 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 2817 if (!isAssumedSideEffectFree(A, I)) 2818 return indicatePessimisticFixpoint(); 2819 2820 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 2821 return indicatePessimisticFixpoint(); 2822 return ChangeStatus::UNCHANGED; 2823 } 2824 2825 /// See AbstractAttribute::manifest(...). 2826 ChangeStatus manifest(Attributor &A) override { 2827 Value &V = getAssociatedValue(); 2828 if (auto *I = dyn_cast<Instruction>(&V)) { 2829 // If we get here we basically know the users are all dead. We check if 2830 // isAssumedSideEffectFree returns true here again because it might not be 2831 // the case and only the users are dead but the instruction (=call) is 2832 // still needed. 2833 if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) { 2834 A.deleteAfterManifest(*I); 2835 return ChangeStatus::CHANGED; 2836 } 2837 } 2838 if (V.use_empty()) 2839 return ChangeStatus::UNCHANGED; 2840 2841 bool UsedAssumedInformation = false; 2842 Optional<Constant *> C = 2843 A.getAssumedConstant(V, *this, UsedAssumedInformation); 2844 if (C.hasValue() && C.getValue()) 2845 return ChangeStatus::UNCHANGED; 2846 2847 // Replace the value with undef as it is dead but keep droppable uses around 2848 // as they provide information we don't want to give up on just yet. 2849 UndefValue &UV = *UndefValue::get(V.getType()); 2850 bool AnyChange = 2851 A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false); 2852 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 2853 } 2854 2855 /// See AbstractAttribute::trackStatistics() 2856 void trackStatistics() const override { 2857 STATS_DECLTRACK_FLOATING_ATTR(IsDead) 2858 } 2859 }; 2860 2861 struct AAIsDeadArgument : public AAIsDeadFloating { 2862 AAIsDeadArgument(const IRPosition &IRP, Attributor &A) 2863 : AAIsDeadFloating(IRP, A) {} 2864 2865 /// See AbstractAttribute::initialize(...). 2866 void initialize(Attributor &A) override { 2867 if (!A.isFunctionIPOAmendable(*getAnchorScope())) 2868 indicatePessimisticFixpoint(); 2869 } 2870 2871 /// See AbstractAttribute::manifest(...). 2872 ChangeStatus manifest(Attributor &A) override { 2873 ChangeStatus Changed = AAIsDeadFloating::manifest(A); 2874 Argument &Arg = *getAssociatedArgument(); 2875 if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {})) 2876 if (A.registerFunctionSignatureRewrite( 2877 Arg, /* ReplacementTypes */ {}, 2878 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{}, 2879 Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) { 2880 Arg.dropDroppableUses(); 2881 return ChangeStatus::CHANGED; 2882 } 2883 return Changed; 2884 } 2885 2886 /// See AbstractAttribute::trackStatistics() 2887 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } 2888 }; 2889 2890 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { 2891 AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A) 2892 : AAIsDeadValueImpl(IRP, A) {} 2893 2894 /// See AbstractAttribute::initialize(...). 2895 void initialize(Attributor &A) override { 2896 if (isa<UndefValue>(getAssociatedValue())) 2897 indicatePessimisticFixpoint(); 2898 } 2899 2900 /// See AbstractAttribute::updateImpl(...). 2901 ChangeStatus updateImpl(Attributor &A) override { 2902 // TODO: Once we have call site specific value information we can provide 2903 // call site specific liveness information and then it makes 2904 // sense to specialize attributes for call sites arguments instead of 2905 // redirecting requests to the callee argument. 2906 Argument *Arg = getAssociatedArgument(); 2907 if (!Arg) 2908 return indicatePessimisticFixpoint(); 2909 const IRPosition &ArgPos = IRPosition::argument(*Arg); 2910 auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos); 2911 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 2912 } 2913 2914 /// See AbstractAttribute::manifest(...). 2915 ChangeStatus manifest(Attributor &A) override { 2916 CallBase &CB = cast<CallBase>(getAnchorValue()); 2917 Use &U = CB.getArgOperandUse(getArgNo()); 2918 assert(!isa<UndefValue>(U.get()) && 2919 "Expected undef values to be filtered out!"); 2920 UndefValue &UV = *UndefValue::get(U->getType()); 2921 if (A.changeUseAfterManifest(U, UV)) 2922 return ChangeStatus::CHANGED; 2923 return ChangeStatus::UNCHANGED; 2924 } 2925 2926 /// See AbstractAttribute::trackStatistics() 2927 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } 2928 }; 2929 2930 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { 2931 AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A) 2932 : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {} 2933 2934 /// See AAIsDead::isAssumedDead(). 2935 bool isAssumedDead() const override { 2936 return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree; 2937 } 2938 2939 /// See AbstractAttribute::initialize(...). 2940 void initialize(Attributor &A) override { 2941 if (isa<UndefValue>(getAssociatedValue())) { 2942 indicatePessimisticFixpoint(); 2943 return; 2944 } 2945 2946 // We track this separately as a secondary state. 2947 IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI()); 2948 } 2949 2950 /// See AbstractAttribute::updateImpl(...). 2951 ChangeStatus updateImpl(Attributor &A) override { 2952 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2953 if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) { 2954 IsAssumedSideEffectFree = false; 2955 Changed = ChangeStatus::CHANGED; 2956 } 2957 2958 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 2959 return indicatePessimisticFixpoint(); 2960 return Changed; 2961 } 2962 2963 /// See AbstractAttribute::trackStatistics() 2964 void trackStatistics() const override { 2965 if (IsAssumedSideEffectFree) 2966 STATS_DECLTRACK_CSRET_ATTR(IsDead) 2967 else 2968 STATS_DECLTRACK_CSRET_ATTR(UnusedResult) 2969 } 2970 2971 /// See AbstractAttribute::getAsStr(). 2972 const std::string getAsStr() const override { 2973 return isAssumedDead() 2974 ? "assumed-dead" 2975 : (getAssumed() ? "assumed-dead-users" : "assumed-live"); 2976 } 2977 2978 private: 2979 bool IsAssumedSideEffectFree; 2980 }; 2981 2982 struct AAIsDeadReturned : public AAIsDeadValueImpl { 2983 AAIsDeadReturned(const IRPosition &IRP, Attributor &A) 2984 : AAIsDeadValueImpl(IRP, A) {} 2985 2986 /// See AbstractAttribute::updateImpl(...). 2987 ChangeStatus updateImpl(Attributor &A) override { 2988 2989 A.checkForAllInstructions([](Instruction &) { return true; }, *this, 2990 {Instruction::Ret}); 2991 2992 auto PredForCallSite = [&](AbstractCallSite ACS) { 2993 if (ACS.isCallbackCall() || !ACS.getInstruction()) 2994 return false; 2995 return areAllUsesAssumedDead(A, *ACS.getInstruction()); 2996 }; 2997 2998 bool AllCallSitesKnown; 2999 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 3000 AllCallSitesKnown)) 3001 return indicatePessimisticFixpoint(); 3002 3003 return ChangeStatus::UNCHANGED; 3004 } 3005 3006 /// See AbstractAttribute::manifest(...). 3007 ChangeStatus manifest(Attributor &A) override { 3008 // TODO: Rewrite the signature to return void? 3009 bool AnyChange = false; 3010 UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType()); 3011 auto RetInstPred = [&](Instruction &I) { 3012 ReturnInst &RI = cast<ReturnInst>(I); 3013 if (!isa<UndefValue>(RI.getReturnValue())) 3014 AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV); 3015 return true; 3016 }; 3017 A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret}); 3018 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 3019 } 3020 3021 /// See AbstractAttribute::trackStatistics() 3022 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } 3023 }; 3024 3025 struct AAIsDeadFunction : public AAIsDead { 3026 AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} 3027 3028 /// See AbstractAttribute::initialize(...). 3029 void initialize(Attributor &A) override { 3030 const Function *F = getAnchorScope(); 3031 if (F && !F->isDeclaration()) { 3032 ToBeExploredFrom.insert(&F->getEntryBlock().front()); 3033 assumeLive(A, F->getEntryBlock()); 3034 } 3035 } 3036 3037 /// See AbstractAttribute::getAsStr(). 3038 const std::string getAsStr() const override { 3039 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" + 3040 std::to_string(getAnchorScope()->size()) + "][#TBEP " + 3041 std::to_string(ToBeExploredFrom.size()) + "][#KDE " + 3042 std::to_string(KnownDeadEnds.size()) + "]"; 3043 } 3044 3045 /// See AbstractAttribute::manifest(...). 3046 ChangeStatus manifest(Attributor &A) override { 3047 assert(getState().isValidState() && 3048 "Attempted to manifest an invalid state!"); 3049 3050 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 3051 Function &F = *getAnchorScope(); 3052 3053 if (AssumedLiveBlocks.empty()) { 3054 A.deleteAfterManifest(F); 3055 return ChangeStatus::CHANGED; 3056 } 3057 3058 // Flag to determine if we can change an invoke to a call assuming the 3059 // callee is nounwind. This is not possible if the personality of the 3060 // function allows to catch asynchronous exceptions. 3061 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); 3062 3063 KnownDeadEnds.set_union(ToBeExploredFrom); 3064 for (const Instruction *DeadEndI : KnownDeadEnds) { 3065 auto *CB = dyn_cast<CallBase>(DeadEndI); 3066 if (!CB) 3067 continue; 3068 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>( 3069 *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true, 3070 DepClassTy::OPTIONAL); 3071 bool MayReturn = !NoReturnAA.isAssumedNoReturn(); 3072 if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB))) 3073 continue; 3074 3075 if (auto *II = dyn_cast<InvokeInst>(DeadEndI)) 3076 A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II)); 3077 else 3078 A.changeToUnreachableAfterManifest( 3079 const_cast<Instruction *>(DeadEndI->getNextNode())); 3080 HasChanged = ChangeStatus::CHANGED; 3081 } 3082 3083 STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted."); 3084 for (BasicBlock &BB : F) 3085 if (!AssumedLiveBlocks.count(&BB)) { 3086 A.deleteAfterManifest(BB); 3087 ++BUILD_STAT_NAME(AAIsDead, BasicBlock); 3088 } 3089 3090 return HasChanged; 3091 } 3092 3093 /// See AbstractAttribute::updateImpl(...). 3094 ChangeStatus updateImpl(Attributor &A) override; 3095 3096 bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override { 3097 return !AssumedLiveEdges.count(std::make_pair(From, To)); 3098 } 3099 3100 /// See AbstractAttribute::trackStatistics() 3101 void trackStatistics() const override {} 3102 3103 /// Returns true if the function is assumed dead. 3104 bool isAssumedDead() const override { return false; } 3105 3106 /// See AAIsDead::isKnownDead(). 3107 bool isKnownDead() const override { return false; } 3108 3109 /// See AAIsDead::isAssumedDead(BasicBlock *). 3110 bool isAssumedDead(const BasicBlock *BB) const override { 3111 assert(BB->getParent() == getAnchorScope() && 3112 "BB must be in the same anchor scope function."); 3113 3114 if (!getAssumed()) 3115 return false; 3116 return !AssumedLiveBlocks.count(BB); 3117 } 3118 3119 /// See AAIsDead::isKnownDead(BasicBlock *). 3120 bool isKnownDead(const BasicBlock *BB) const override { 3121 return getKnown() && isAssumedDead(BB); 3122 } 3123 3124 /// See AAIsDead::isAssumed(Instruction *I). 3125 bool isAssumedDead(const Instruction *I) const override { 3126 assert(I->getParent()->getParent() == getAnchorScope() && 3127 "Instruction must be in the same anchor scope function."); 3128 3129 if (!getAssumed()) 3130 return false; 3131 3132 // If it is not in AssumedLiveBlocks then it for sure dead. 3133 // Otherwise, it can still be after noreturn call in a live block. 3134 if (!AssumedLiveBlocks.count(I->getParent())) 3135 return true; 3136 3137 // If it is not after a liveness barrier it is live. 3138 const Instruction *PrevI = I->getPrevNode(); 3139 while (PrevI) { 3140 if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI)) 3141 return true; 3142 PrevI = PrevI->getPrevNode(); 3143 } 3144 return false; 3145 } 3146 3147 /// See AAIsDead::isKnownDead(Instruction *I). 3148 bool isKnownDead(const Instruction *I) const override { 3149 return getKnown() && isAssumedDead(I); 3150 } 3151 3152 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A 3153 /// that internal function called from \p BB should now be looked at. 3154 bool assumeLive(Attributor &A, const BasicBlock &BB) { 3155 if (!AssumedLiveBlocks.insert(&BB).second) 3156 return false; 3157 3158 // We assume that all of BB is (probably) live now and if there are calls to 3159 // internal functions we will assume that those are now live as well. This 3160 // is a performance optimization for blocks with calls to a lot of internal 3161 // functions. It can however cause dead functions to be treated as live. 3162 for (const Instruction &I : BB) 3163 if (const auto *CB = dyn_cast<CallBase>(&I)) 3164 if (const Function *F = CB->getCalledFunction()) 3165 if (F->hasLocalLinkage()) 3166 A.markLiveInternalFunction(*F); 3167 return true; 3168 } 3169 3170 /// Collection of instructions that need to be explored again, e.g., we 3171 /// did assume they do not transfer control to (one of their) successors. 3172 SmallSetVector<const Instruction *, 8> ToBeExploredFrom; 3173 3174 /// Collection of instructions that are known to not transfer control. 3175 SmallSetVector<const Instruction *, 8> KnownDeadEnds; 3176 3177 /// Collection of all assumed live edges 3178 DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges; 3179 3180 /// Collection of all assumed live BasicBlocks. 3181 DenseSet<const BasicBlock *> AssumedLiveBlocks; 3182 }; 3183 3184 static bool 3185 identifyAliveSuccessors(Attributor &A, const CallBase &CB, 3186 AbstractAttribute &AA, 3187 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3188 const IRPosition &IPos = IRPosition::callsite_function(CB); 3189 3190 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>( 3191 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 3192 if (NoReturnAA.isAssumedNoReturn()) 3193 return !NoReturnAA.isKnownNoReturn(); 3194 if (CB.isTerminator()) 3195 AliveSuccessors.push_back(&CB.getSuccessor(0)->front()); 3196 else 3197 AliveSuccessors.push_back(CB.getNextNode()); 3198 return false; 3199 } 3200 3201 static bool 3202 identifyAliveSuccessors(Attributor &A, const InvokeInst &II, 3203 AbstractAttribute &AA, 3204 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3205 bool UsedAssumedInformation = 3206 identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors); 3207 3208 // First, determine if we can change an invoke to a call assuming the 3209 // callee is nounwind. This is not possible if the personality of the 3210 // function allows to catch asynchronous exceptions. 3211 if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) { 3212 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3213 } else { 3214 const IRPosition &IPos = IRPosition::callsite_function(II); 3215 const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>( 3216 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 3217 if (AANoUnw.isAssumedNoUnwind()) { 3218 UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind(); 3219 } else { 3220 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3221 } 3222 } 3223 return UsedAssumedInformation; 3224 } 3225 3226 static bool 3227 identifyAliveSuccessors(Attributor &A, const BranchInst &BI, 3228 AbstractAttribute &AA, 3229 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3230 bool UsedAssumedInformation = false; 3231 if (BI.getNumSuccessors() == 1) { 3232 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3233 } else { 3234 Optional<ConstantInt *> CI = getAssumedConstantInt( 3235 A, *BI.getCondition(), AA, UsedAssumedInformation); 3236 if (!CI.hasValue()) { 3237 // No value yet, assume both edges are dead. 3238 } else if (CI.getValue()) { 3239 const BasicBlock *SuccBB = 3240 BI.getSuccessor(1 - CI.getValue()->getZExtValue()); 3241 AliveSuccessors.push_back(&SuccBB->front()); 3242 } else { 3243 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3244 AliveSuccessors.push_back(&BI.getSuccessor(1)->front()); 3245 UsedAssumedInformation = false; 3246 } 3247 } 3248 return UsedAssumedInformation; 3249 } 3250 3251 static bool 3252 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, 3253 AbstractAttribute &AA, 3254 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3255 bool UsedAssumedInformation = false; 3256 Optional<ConstantInt *> CI = 3257 getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation); 3258 if (!CI.hasValue()) { 3259 // No value yet, assume all edges are dead. 3260 } else if (CI.getValue()) { 3261 for (auto &CaseIt : SI.cases()) { 3262 if (CaseIt.getCaseValue() == CI.getValue()) { 3263 AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front()); 3264 return UsedAssumedInformation; 3265 } 3266 } 3267 AliveSuccessors.push_back(&SI.getDefaultDest()->front()); 3268 return UsedAssumedInformation; 3269 } else { 3270 for (const BasicBlock *SuccBB : successors(SI.getParent())) 3271 AliveSuccessors.push_back(&SuccBB->front()); 3272 } 3273 return UsedAssumedInformation; 3274 } 3275 3276 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { 3277 ChangeStatus Change = ChangeStatus::UNCHANGED; 3278 3279 LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" 3280 << getAnchorScope()->size() << "] BBs and " 3281 << ToBeExploredFrom.size() << " exploration points and " 3282 << KnownDeadEnds.size() << " known dead ends\n"); 3283 3284 // Copy and clear the list of instructions we need to explore from. It is 3285 // refilled with instructions the next update has to look at. 3286 SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), 3287 ToBeExploredFrom.end()); 3288 decltype(ToBeExploredFrom) NewToBeExploredFrom; 3289 3290 SmallVector<const Instruction *, 8> AliveSuccessors; 3291 while (!Worklist.empty()) { 3292 const Instruction *I = Worklist.pop_back_val(); 3293 LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n"); 3294 3295 // Fast forward for uninteresting instructions. We could look for UB here 3296 // though. 3297 while (!I->isTerminator() && !isa<CallBase>(I)) { 3298 Change = ChangeStatus::CHANGED; 3299 I = I->getNextNode(); 3300 } 3301 3302 AliveSuccessors.clear(); 3303 3304 bool UsedAssumedInformation = false; 3305 switch (I->getOpcode()) { 3306 // TODO: look for (assumed) UB to backwards propagate "deadness". 3307 default: 3308 assert(I->isTerminator() && 3309 "Expected non-terminators to be handled already!"); 3310 for (const BasicBlock *SuccBB : successors(I->getParent())) 3311 AliveSuccessors.push_back(&SuccBB->front()); 3312 break; 3313 case Instruction::Call: 3314 UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I), 3315 *this, AliveSuccessors); 3316 break; 3317 case Instruction::Invoke: 3318 UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I), 3319 *this, AliveSuccessors); 3320 break; 3321 case Instruction::Br: 3322 UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I), 3323 *this, AliveSuccessors); 3324 break; 3325 case Instruction::Switch: 3326 UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I), 3327 *this, AliveSuccessors); 3328 break; 3329 } 3330 3331 if (UsedAssumedInformation) { 3332 NewToBeExploredFrom.insert(I); 3333 } else { 3334 Change = ChangeStatus::CHANGED; 3335 if (AliveSuccessors.empty() || 3336 (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors())) 3337 KnownDeadEnds.insert(I); 3338 } 3339 3340 LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " 3341 << AliveSuccessors.size() << " UsedAssumedInformation: " 3342 << UsedAssumedInformation << "\n"); 3343 3344 for (const Instruction *AliveSuccessor : AliveSuccessors) { 3345 if (!I->isTerminator()) { 3346 assert(AliveSuccessors.size() == 1 && 3347 "Non-terminator expected to have a single successor!"); 3348 Worklist.push_back(AliveSuccessor); 3349 } else { 3350 // record the assumed live edge 3351 AssumedLiveEdges.insert( 3352 std::make_pair(I->getParent(), AliveSuccessor->getParent())); 3353 if (assumeLive(A, *AliveSuccessor->getParent())) 3354 Worklist.push_back(AliveSuccessor); 3355 } 3356 } 3357 } 3358 3359 ToBeExploredFrom = std::move(NewToBeExploredFrom); 3360 3361 // If we know everything is live there is no need to query for liveness. 3362 // Instead, indicating a pessimistic fixpoint will cause the state to be 3363 // "invalid" and all queries to be answered conservatively without lookups. 3364 // To be in this state we have to (1) finished the exploration and (3) not 3365 // discovered any non-trivial dead end and (2) not ruled unreachable code 3366 // dead. 3367 if (ToBeExploredFrom.empty() && 3368 getAnchorScope()->size() == AssumedLiveBlocks.size() && 3369 llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) { 3370 return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; 3371 })) 3372 return indicatePessimisticFixpoint(); 3373 return Change; 3374 } 3375 3376 /// Liveness information for a call sites. 3377 struct AAIsDeadCallSite final : AAIsDeadFunction { 3378 AAIsDeadCallSite(const IRPosition &IRP, Attributor &A) 3379 : AAIsDeadFunction(IRP, A) {} 3380 3381 /// See AbstractAttribute::initialize(...). 3382 void initialize(Attributor &A) override { 3383 // TODO: Once we have call site specific value information we can provide 3384 // call site specific liveness information and then it makes 3385 // sense to specialize attributes for call sites instead of 3386 // redirecting requests to the callee. 3387 llvm_unreachable("Abstract attributes for liveness are not " 3388 "supported for call sites yet!"); 3389 } 3390 3391 /// See AbstractAttribute::updateImpl(...). 3392 ChangeStatus updateImpl(Attributor &A) override { 3393 return indicatePessimisticFixpoint(); 3394 } 3395 3396 /// See AbstractAttribute::trackStatistics() 3397 void trackStatistics() const override {} 3398 }; 3399 3400 /// -------------------- Dereferenceable Argument Attribute -------------------- 3401 3402 template <> 3403 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, 3404 const DerefState &R) { 3405 ChangeStatus CS0 = 3406 clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState); 3407 ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState); 3408 return CS0 | CS1; 3409 } 3410 3411 struct AADereferenceableImpl : AADereferenceable { 3412 AADereferenceableImpl(const IRPosition &IRP, Attributor &A) 3413 : AADereferenceable(IRP, A) {} 3414 using StateType = DerefState; 3415 3416 /// See AbstractAttribute::initialize(...). 3417 void initialize(Attributor &A) override { 3418 SmallVector<Attribute, 4> Attrs; 3419 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, 3420 Attrs, /* IgnoreSubsumingPositions */ false, &A); 3421 for (const Attribute &Attr : Attrs) 3422 takeKnownDerefBytesMaximum(Attr.getValueAsInt()); 3423 3424 const IRPosition &IRP = this->getIRPosition(); 3425 NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, 3426 /* TrackDependence */ false); 3427 3428 bool CanBeNull; 3429 takeKnownDerefBytesMaximum( 3430 IRP.getAssociatedValue().getPointerDereferenceableBytes( 3431 A.getDataLayout(), CanBeNull)); 3432 3433 bool IsFnInterface = IRP.isFnInterfaceKind(); 3434 Function *FnScope = IRP.getAnchorScope(); 3435 if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) { 3436 indicatePessimisticFixpoint(); 3437 return; 3438 } 3439 3440 if (Instruction *CtxI = getCtxI()) 3441 followUsesInMBEC(*this, A, getState(), *CtxI); 3442 } 3443 3444 /// See AbstractAttribute::getState() 3445 /// { 3446 StateType &getState() override { return *this; } 3447 const StateType &getState() const override { return *this; } 3448 /// } 3449 3450 /// Helper function for collecting accessed bytes in must-be-executed-context 3451 void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I, 3452 DerefState &State) { 3453 const Value *UseV = U->get(); 3454 if (!UseV->getType()->isPointerTy()) 3455 return; 3456 3457 Type *PtrTy = UseV->getType(); 3458 const DataLayout &DL = A.getDataLayout(); 3459 int64_t Offset; 3460 if (const Value *Base = getBasePointerOfAccessPointerOperand( 3461 I, Offset, DL, /*AllowNonInbounds*/ true)) { 3462 if (Base == &getAssociatedValue() && 3463 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 3464 uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType()); 3465 State.addAccessedBytes(Offset, Size); 3466 } 3467 } 3468 return; 3469 } 3470 3471 /// See followUsesInMBEC 3472 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 3473 AADereferenceable::StateType &State) { 3474 bool IsNonNull = false; 3475 bool TrackUse = false; 3476 int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( 3477 A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse); 3478 LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes 3479 << " for instruction " << *I << "\n"); 3480 3481 addAccessedBytesForUse(A, U, I, State); 3482 State.takeKnownDerefBytesMaximum(DerefBytes); 3483 return TrackUse; 3484 } 3485 3486 /// See AbstractAttribute::manifest(...). 3487 ChangeStatus manifest(Attributor &A) override { 3488 ChangeStatus Change = AADereferenceable::manifest(A); 3489 if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) { 3490 removeAttrs({Attribute::DereferenceableOrNull}); 3491 return ChangeStatus::CHANGED; 3492 } 3493 return Change; 3494 } 3495 3496 void getDeducedAttributes(LLVMContext &Ctx, 3497 SmallVectorImpl<Attribute> &Attrs) const override { 3498 // TODO: Add *_globally support 3499 if (isAssumedNonNull()) 3500 Attrs.emplace_back(Attribute::getWithDereferenceableBytes( 3501 Ctx, getAssumedDereferenceableBytes())); 3502 else 3503 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( 3504 Ctx, getAssumedDereferenceableBytes())); 3505 } 3506 3507 /// See AbstractAttribute::getAsStr(). 3508 const std::string getAsStr() const override { 3509 if (!getAssumedDereferenceableBytes()) 3510 return "unknown-dereferenceable"; 3511 return std::string("dereferenceable") + 3512 (isAssumedNonNull() ? "" : "_or_null") + 3513 (isAssumedGlobal() ? "_globally" : "") + "<" + 3514 std::to_string(getKnownDereferenceableBytes()) + "-" + 3515 std::to_string(getAssumedDereferenceableBytes()) + ">"; 3516 } 3517 }; 3518 3519 /// Dereferenceable attribute for a floating value. 3520 struct AADereferenceableFloating : AADereferenceableImpl { 3521 AADereferenceableFloating(const IRPosition &IRP, Attributor &A) 3522 : AADereferenceableImpl(IRP, A) {} 3523 3524 /// See AbstractAttribute::updateImpl(...). 3525 ChangeStatus updateImpl(Attributor &A) override { 3526 const DataLayout &DL = A.getDataLayout(); 3527 3528 auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T, 3529 bool Stripped) -> bool { 3530 unsigned IdxWidth = 3531 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); 3532 APInt Offset(IdxWidth, 0); 3533 const Value *Base = 3534 stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false); 3535 3536 const auto &AA = 3537 A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base)); 3538 int64_t DerefBytes = 0; 3539 if (!Stripped && this == &AA) { 3540 // Use IR information if we did not strip anything. 3541 // TODO: track globally. 3542 bool CanBeNull; 3543 DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull); 3544 T.GlobalState.indicatePessimisticFixpoint(); 3545 } else { 3546 const DerefState &DS = AA.getState(); 3547 DerefBytes = DS.DerefBytesState.getAssumed(); 3548 T.GlobalState &= DS.GlobalState; 3549 } 3550 3551 // For now we do not try to "increase" dereferenceability due to negative 3552 // indices as we first have to come up with code to deal with loops and 3553 // for overflows of the dereferenceable bytes. 3554 int64_t OffsetSExt = Offset.getSExtValue(); 3555 if (OffsetSExt < 0) 3556 OffsetSExt = 0; 3557 3558 T.takeAssumedDerefBytesMinimum( 3559 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3560 3561 if (this == &AA) { 3562 if (!Stripped) { 3563 // If nothing was stripped IR information is all we got. 3564 T.takeKnownDerefBytesMaximum( 3565 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3566 T.indicatePessimisticFixpoint(); 3567 } else if (OffsetSExt > 0) { 3568 // If something was stripped but there is circular reasoning we look 3569 // for the offset. If it is positive we basically decrease the 3570 // dereferenceable bytes in a circluar loop now, which will simply 3571 // drive them down to the known value in a very slow way which we 3572 // can accelerate. 3573 T.indicatePessimisticFixpoint(); 3574 } 3575 } 3576 3577 return T.isValidState(); 3578 }; 3579 3580 DerefState T; 3581 if (!genericValueTraversal<AADereferenceable, DerefState>( 3582 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 3583 return indicatePessimisticFixpoint(); 3584 3585 return clampStateAndIndicateChange(getState(), T); 3586 } 3587 3588 /// See AbstractAttribute::trackStatistics() 3589 void trackStatistics() const override { 3590 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) 3591 } 3592 }; 3593 3594 /// Dereferenceable attribute for a return value. 3595 struct AADereferenceableReturned final 3596 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> { 3597 AADereferenceableReturned(const IRPosition &IRP, Attributor &A) 3598 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>( 3599 IRP, A) {} 3600 3601 /// See AbstractAttribute::trackStatistics() 3602 void trackStatistics() const override { 3603 STATS_DECLTRACK_FNRET_ATTR(dereferenceable) 3604 } 3605 }; 3606 3607 /// Dereferenceable attribute for an argument 3608 struct AADereferenceableArgument final 3609 : AAArgumentFromCallSiteArguments<AADereferenceable, 3610 AADereferenceableImpl> { 3611 using Base = 3612 AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>; 3613 AADereferenceableArgument(const IRPosition &IRP, Attributor &A) 3614 : Base(IRP, A) {} 3615 3616 /// See AbstractAttribute::trackStatistics() 3617 void trackStatistics() const override { 3618 STATS_DECLTRACK_ARG_ATTR(dereferenceable) 3619 } 3620 }; 3621 3622 /// Dereferenceable attribute for a call site argument. 3623 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { 3624 AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A) 3625 : AADereferenceableFloating(IRP, A) {} 3626 3627 /// See AbstractAttribute::trackStatistics() 3628 void trackStatistics() const override { 3629 STATS_DECLTRACK_CSARG_ATTR(dereferenceable) 3630 } 3631 }; 3632 3633 /// Dereferenceable attribute deduction for a call site return value. 3634 struct AADereferenceableCallSiteReturned final 3635 : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> { 3636 using Base = 3637 AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>; 3638 AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A) 3639 : Base(IRP, A) {} 3640 3641 /// See AbstractAttribute::trackStatistics() 3642 void trackStatistics() const override { 3643 STATS_DECLTRACK_CS_ATTR(dereferenceable); 3644 } 3645 }; 3646 3647 // ------------------------ Align Argument Attribute ------------------------ 3648 3649 static unsigned getKnownAlignForUse(Attributor &A, 3650 AbstractAttribute &QueryingAA, 3651 Value &AssociatedValue, const Use *U, 3652 const Instruction *I, bool &TrackUse) { 3653 // We need to follow common pointer manipulation uses to the accesses they 3654 // feed into. 3655 if (isa<CastInst>(I)) { 3656 // Follow all but ptr2int casts. 3657 TrackUse = !isa<PtrToIntInst>(I); 3658 return 0; 3659 } 3660 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3661 if (GEP->hasAllConstantIndices()) { 3662 TrackUse = true; 3663 return 0; 3664 } 3665 } 3666 3667 MaybeAlign MA; 3668 if (const auto *CB = dyn_cast<CallBase>(I)) { 3669 if (CB->isBundleOperand(U) || CB->isCallee(U)) 3670 return 0; 3671 3672 unsigned ArgNo = CB->getArgOperandNo(U); 3673 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); 3674 // As long as we only use known information there is no need to track 3675 // dependences here. 3676 auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, 3677 /* TrackDependence */ false); 3678 MA = MaybeAlign(AlignAA.getKnownAlign()); 3679 } 3680 3681 const DataLayout &DL = A.getDataLayout(); 3682 const Value *UseV = U->get(); 3683 if (auto *SI = dyn_cast<StoreInst>(I)) { 3684 if (SI->getPointerOperand() == UseV) 3685 MA = SI->getAlign(); 3686 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 3687 if (LI->getPointerOperand() == UseV) 3688 MA = LI->getAlign(); 3689 } 3690 3691 if (!MA || *MA <= 1) 3692 return 0; 3693 3694 unsigned Alignment = MA->value(); 3695 int64_t Offset; 3696 3697 if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) { 3698 if (Base == &AssociatedValue) { 3699 // BasePointerAddr + Offset = Alignment * Q for some integer Q. 3700 // So we can say that the maximum power of two which is a divisor of 3701 // gcd(Offset, Alignment) is an alignment. 3702 3703 uint32_t gcd = 3704 greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment); 3705 Alignment = llvm::PowerOf2Floor(gcd); 3706 } 3707 } 3708 3709 return Alignment; 3710 } 3711 3712 struct AAAlignImpl : AAAlign { 3713 AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {} 3714 3715 /// See AbstractAttribute::initialize(...). 3716 void initialize(Attributor &A) override { 3717 SmallVector<Attribute, 4> Attrs; 3718 getAttrs({Attribute::Alignment}, Attrs); 3719 for (const Attribute &Attr : Attrs) 3720 takeKnownMaximum(Attr.getValueAsInt()); 3721 3722 Value &V = getAssociatedValue(); 3723 // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int 3724 // use of the function pointer. This was caused by D73131. We want to 3725 // avoid this for function pointers especially because we iterate 3726 // their uses and int2ptr is not handled. It is not a correctness 3727 // problem though! 3728 if (!V.getType()->getPointerElementType()->isFunctionTy()) 3729 takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value()); 3730 3731 if (getIRPosition().isFnInterfaceKind() && 3732 (!getAnchorScope() || 3733 !A.isFunctionIPOAmendable(*getAssociatedFunction()))) { 3734 indicatePessimisticFixpoint(); 3735 return; 3736 } 3737 3738 if (Instruction *CtxI = getCtxI()) 3739 followUsesInMBEC(*this, A, getState(), *CtxI); 3740 } 3741 3742 /// See AbstractAttribute::manifest(...). 3743 ChangeStatus manifest(Attributor &A) override { 3744 ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED; 3745 3746 // Check for users that allow alignment annotations. 3747 Value &AssociatedValue = getAssociatedValue(); 3748 for (const Use &U : AssociatedValue.uses()) { 3749 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) { 3750 if (SI->getPointerOperand() == &AssociatedValue) 3751 if (SI->getAlignment() < getAssumedAlign()) { 3752 STATS_DECLTRACK(AAAlign, Store, 3753 "Number of times alignment added to a store"); 3754 SI->setAlignment(Align(getAssumedAlign())); 3755 LoadStoreChanged = ChangeStatus::CHANGED; 3756 } 3757 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) { 3758 if (LI->getPointerOperand() == &AssociatedValue) 3759 if (LI->getAlignment() < getAssumedAlign()) { 3760 LI->setAlignment(Align(getAssumedAlign())); 3761 STATS_DECLTRACK(AAAlign, Load, 3762 "Number of times alignment added to a load"); 3763 LoadStoreChanged = ChangeStatus::CHANGED; 3764 } 3765 } 3766 } 3767 3768 ChangeStatus Changed = AAAlign::manifest(A); 3769 3770 Align InheritAlign = 3771 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 3772 if (InheritAlign >= getAssumedAlign()) 3773 return LoadStoreChanged; 3774 return Changed | LoadStoreChanged; 3775 } 3776 3777 // TODO: Provide a helper to determine the implied ABI alignment and check in 3778 // the existing manifest method and a new one for AAAlignImpl that value 3779 // to avoid making the alignment explicit if it did not improve. 3780 3781 /// See AbstractAttribute::getDeducedAttributes 3782 virtual void 3783 getDeducedAttributes(LLVMContext &Ctx, 3784 SmallVectorImpl<Attribute> &Attrs) const override { 3785 if (getAssumedAlign() > 1) 3786 Attrs.emplace_back( 3787 Attribute::getWithAlignment(Ctx, Align(getAssumedAlign()))); 3788 } 3789 3790 /// See followUsesInMBEC 3791 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 3792 AAAlign::StateType &State) { 3793 bool TrackUse = false; 3794 3795 unsigned int KnownAlign = 3796 getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse); 3797 State.takeKnownMaximum(KnownAlign); 3798 3799 return TrackUse; 3800 } 3801 3802 /// See AbstractAttribute::getAsStr(). 3803 const std::string getAsStr() const override { 3804 return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) + 3805 "-" + std::to_string(getAssumedAlign()) + ">") 3806 : "unknown-align"; 3807 } 3808 }; 3809 3810 /// Align attribute for a floating value. 3811 struct AAAlignFloating : AAAlignImpl { 3812 AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {} 3813 3814 /// See AbstractAttribute::updateImpl(...). 3815 ChangeStatus updateImpl(Attributor &A) override { 3816 const DataLayout &DL = A.getDataLayout(); 3817 3818 auto VisitValueCB = [&](Value &V, const Instruction *, 3819 AAAlign::StateType &T, bool Stripped) -> bool { 3820 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V)); 3821 if (!Stripped && this == &AA) { 3822 // Use only IR information if we did not strip anything. 3823 Align PA = V.getPointerAlignment(DL); 3824 T.takeKnownMaximum(PA.value()); 3825 T.indicatePessimisticFixpoint(); 3826 } else { 3827 // Use abstract attribute information. 3828 const AAAlign::StateType &DS = AA.getState(); 3829 T ^= DS; 3830 } 3831 return T.isValidState(); 3832 }; 3833 3834 StateType T; 3835 if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T, 3836 VisitValueCB, getCtxI())) 3837 return indicatePessimisticFixpoint(); 3838 3839 // TODO: If we know we visited all incoming values, thus no are assumed 3840 // dead, we can take the known information from the state T. 3841 return clampStateAndIndicateChange(getState(), T); 3842 } 3843 3844 /// See AbstractAttribute::trackStatistics() 3845 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } 3846 }; 3847 3848 /// Align attribute for function return value. 3849 struct AAAlignReturned final 3850 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { 3851 AAAlignReturned(const IRPosition &IRP, Attributor &A) 3852 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP, A) {} 3853 3854 /// See AbstractAttribute::trackStatistics() 3855 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } 3856 }; 3857 3858 /// Align attribute for function argument. 3859 struct AAAlignArgument final 3860 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> { 3861 using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>; 3862 AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} 3863 3864 /// See AbstractAttribute::manifest(...). 3865 ChangeStatus manifest(Attributor &A) override { 3866 // If the associated argument is involved in a must-tail call we give up 3867 // because we would need to keep the argument alignments of caller and 3868 // callee in-sync. Just does not seem worth the trouble right now. 3869 if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument())) 3870 return ChangeStatus::UNCHANGED; 3871 return Base::manifest(A); 3872 } 3873 3874 /// See AbstractAttribute::trackStatistics() 3875 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } 3876 }; 3877 3878 struct AAAlignCallSiteArgument final : AAAlignFloating { 3879 AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A) 3880 : AAAlignFloating(IRP, A) {} 3881 3882 /// See AbstractAttribute::manifest(...). 3883 ChangeStatus manifest(Attributor &A) override { 3884 // If the associated argument is involved in a must-tail call we give up 3885 // because we would need to keep the argument alignments of caller and 3886 // callee in-sync. Just does not seem worth the trouble right now. 3887 if (Argument *Arg = getAssociatedArgument()) 3888 if (A.getInfoCache().isInvolvedInMustTailCall(*Arg)) 3889 return ChangeStatus::UNCHANGED; 3890 ChangeStatus Changed = AAAlignImpl::manifest(A); 3891 Align InheritAlign = 3892 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 3893 if (InheritAlign >= getAssumedAlign()) 3894 Changed = ChangeStatus::UNCHANGED; 3895 return Changed; 3896 } 3897 3898 /// See AbstractAttribute::updateImpl(Attributor &A). 3899 ChangeStatus updateImpl(Attributor &A) override { 3900 ChangeStatus Changed = AAAlignFloating::updateImpl(A); 3901 if (Argument *Arg = getAssociatedArgument()) { 3902 // We only take known information from the argument 3903 // so we do not need to track a dependence. 3904 const auto &ArgAlignAA = A.getAAFor<AAAlign>( 3905 *this, IRPosition::argument(*Arg), /* TrackDependence */ false); 3906 takeKnownMaximum(ArgAlignAA.getKnownAlign()); 3907 } 3908 return Changed; 3909 } 3910 3911 /// See AbstractAttribute::trackStatistics() 3912 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } 3913 }; 3914 3915 /// Align attribute deduction for a call site return value. 3916 struct AAAlignCallSiteReturned final 3917 : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> { 3918 using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>; 3919 AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A) 3920 : Base(IRP, A) {} 3921 3922 /// See AbstractAttribute::initialize(...). 3923 void initialize(Attributor &A) override { 3924 Base::initialize(A); 3925 Function *F = getAssociatedFunction(); 3926 if (!F) 3927 indicatePessimisticFixpoint(); 3928 } 3929 3930 /// See AbstractAttribute::trackStatistics() 3931 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } 3932 }; 3933 3934 /// ------------------ Function No-Return Attribute ---------------------------- 3935 struct AANoReturnImpl : public AANoReturn { 3936 AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {} 3937 3938 /// See AbstractAttribute::initialize(...). 3939 void initialize(Attributor &A) override { 3940 AANoReturn::initialize(A); 3941 Function *F = getAssociatedFunction(); 3942 if (!F) 3943 indicatePessimisticFixpoint(); 3944 } 3945 3946 /// See AbstractAttribute::getAsStr(). 3947 const std::string getAsStr() const override { 3948 return getAssumed() ? "noreturn" : "may-return"; 3949 } 3950 3951 /// See AbstractAttribute::updateImpl(Attributor &A). 3952 virtual ChangeStatus updateImpl(Attributor &A) override { 3953 auto CheckForNoReturn = [](Instruction &) { return false; }; 3954 if (!A.checkForAllInstructions(CheckForNoReturn, *this, 3955 {(unsigned)Instruction::Ret})) 3956 return indicatePessimisticFixpoint(); 3957 return ChangeStatus::UNCHANGED; 3958 } 3959 }; 3960 3961 struct AANoReturnFunction final : AANoReturnImpl { 3962 AANoReturnFunction(const IRPosition &IRP, Attributor &A) 3963 : AANoReturnImpl(IRP, A) {} 3964 3965 /// See AbstractAttribute::trackStatistics() 3966 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } 3967 }; 3968 3969 /// NoReturn attribute deduction for a call sites. 3970 struct AANoReturnCallSite final : AANoReturnImpl { 3971 AANoReturnCallSite(const IRPosition &IRP, Attributor &A) 3972 : AANoReturnImpl(IRP, A) {} 3973 3974 /// See AbstractAttribute::updateImpl(...). 3975 ChangeStatus updateImpl(Attributor &A) override { 3976 // TODO: Once we have call site specific value information we can provide 3977 // call site specific liveness information and then it makes 3978 // sense to specialize attributes for call sites arguments instead of 3979 // redirecting requests to the callee argument. 3980 Function *F = getAssociatedFunction(); 3981 const IRPosition &FnPos = IRPosition::function(*F); 3982 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos); 3983 return clampStateAndIndicateChange(getState(), FnAA.getState()); 3984 } 3985 3986 /// See AbstractAttribute::trackStatistics() 3987 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } 3988 }; 3989 3990 /// ----------------------- Variable Capturing --------------------------------- 3991 3992 /// A class to hold the state of for no-capture attributes. 3993 struct AANoCaptureImpl : public AANoCapture { 3994 AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {} 3995 3996 /// See AbstractAttribute::initialize(...). 3997 void initialize(Attributor &A) override { 3998 if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) { 3999 indicateOptimisticFixpoint(); 4000 return; 4001 } 4002 Function *AnchorScope = getAnchorScope(); 4003 if (isFnInterfaceKind() && 4004 (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) { 4005 indicatePessimisticFixpoint(); 4006 return; 4007 } 4008 4009 // You cannot "capture" null in the default address space. 4010 if (isa<ConstantPointerNull>(getAssociatedValue()) && 4011 getAssociatedValue().getType()->getPointerAddressSpace() == 0) { 4012 indicateOptimisticFixpoint(); 4013 return; 4014 } 4015 4016 const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope; 4017 4018 // Check what state the associated function can actually capture. 4019 if (F) 4020 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); 4021 else 4022 indicatePessimisticFixpoint(); 4023 } 4024 4025 /// See AbstractAttribute::updateImpl(...). 4026 ChangeStatus updateImpl(Attributor &A) override; 4027 4028 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). 4029 virtual void 4030 getDeducedAttributes(LLVMContext &Ctx, 4031 SmallVectorImpl<Attribute> &Attrs) const override { 4032 if (!isAssumedNoCaptureMaybeReturned()) 4033 return; 4034 4035 if (getArgNo() >= 0) { 4036 if (isAssumedNoCapture()) 4037 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture)); 4038 else if (ManifestInternal) 4039 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned")); 4040 } 4041 } 4042 4043 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known 4044 /// depending on the ability of the function associated with \p IRP to capture 4045 /// state in memory and through "returning/throwing", respectively. 4046 static void determineFunctionCaptureCapabilities(const IRPosition &IRP, 4047 const Function &F, 4048 BitIntegerState &State) { 4049 // TODO: Once we have memory behavior attributes we should use them here. 4050 4051 // If we know we cannot communicate or write to memory, we do not care about 4052 // ptr2int anymore. 4053 if (F.onlyReadsMemory() && F.doesNotThrow() && 4054 F.getReturnType()->isVoidTy()) { 4055 State.addKnownBits(NO_CAPTURE); 4056 return; 4057 } 4058 4059 // A function cannot capture state in memory if it only reads memory, it can 4060 // however return/throw state and the state might be influenced by the 4061 // pointer value, e.g., loading from a returned pointer might reveal a bit. 4062 if (F.onlyReadsMemory()) 4063 State.addKnownBits(NOT_CAPTURED_IN_MEM); 4064 4065 // A function cannot communicate state back if it does not through 4066 // exceptions and doesn not return values. 4067 if (F.doesNotThrow() && F.getReturnType()->isVoidTy()) 4068 State.addKnownBits(NOT_CAPTURED_IN_RET); 4069 4070 // Check existing "returned" attributes. 4071 int ArgNo = IRP.getArgNo(); 4072 if (F.doesNotThrow() && ArgNo >= 0) { 4073 for (unsigned u = 0, e = F.arg_size(); u < e; ++u) 4074 if (F.hasParamAttribute(u, Attribute::Returned)) { 4075 if (u == unsigned(ArgNo)) 4076 State.removeAssumedBits(NOT_CAPTURED_IN_RET); 4077 else if (F.onlyReadsMemory()) 4078 State.addKnownBits(NO_CAPTURE); 4079 else 4080 State.addKnownBits(NOT_CAPTURED_IN_RET); 4081 break; 4082 } 4083 } 4084 } 4085 4086 /// See AbstractState::getAsStr(). 4087 const std::string getAsStr() const override { 4088 if (isKnownNoCapture()) 4089 return "known not-captured"; 4090 if (isAssumedNoCapture()) 4091 return "assumed not-captured"; 4092 if (isKnownNoCaptureMaybeReturned()) 4093 return "known not-captured-maybe-returned"; 4094 if (isAssumedNoCaptureMaybeReturned()) 4095 return "assumed not-captured-maybe-returned"; 4096 return "assumed-captured"; 4097 } 4098 }; 4099 4100 /// Attributor-aware capture tracker. 4101 struct AACaptureUseTracker final : public CaptureTracker { 4102 4103 /// Create a capture tracker that can lookup in-flight abstract attributes 4104 /// through the Attributor \p A. 4105 /// 4106 /// If a use leads to a potential capture, \p CapturedInMemory is set and the 4107 /// search is stopped. If a use leads to a return instruction, 4108 /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed. 4109 /// If a use leads to a ptr2int which may capture the value, 4110 /// \p CapturedInInteger is set. If a use is found that is currently assumed 4111 /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies 4112 /// set. All values in \p PotentialCopies are later tracked as well. For every 4113 /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0, 4114 /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger 4115 /// conservatively set to true. 4116 AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA, 4117 const AAIsDead &IsDeadAA, AANoCapture::StateType &State, 4118 SmallVectorImpl<const Value *> &PotentialCopies, 4119 unsigned &RemainingUsesToExplore) 4120 : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State), 4121 PotentialCopies(PotentialCopies), 4122 RemainingUsesToExplore(RemainingUsesToExplore) {} 4123 4124 /// Determine if \p V maybe captured. *Also updates the state!* 4125 bool valueMayBeCaptured(const Value *V) { 4126 if (V->getType()->isPointerTy()) { 4127 PointerMayBeCaptured(V, this); 4128 } else { 4129 State.indicatePessimisticFixpoint(); 4130 } 4131 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4132 } 4133 4134 /// See CaptureTracker::tooManyUses(). 4135 void tooManyUses() override { 4136 State.removeAssumedBits(AANoCapture::NO_CAPTURE); 4137 } 4138 4139 bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override { 4140 if (CaptureTracker::isDereferenceableOrNull(O, DL)) 4141 return true; 4142 const auto &DerefAA = A.getAAFor<AADereferenceable>( 4143 NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true, 4144 DepClassTy::OPTIONAL); 4145 return DerefAA.getAssumedDereferenceableBytes(); 4146 } 4147 4148 /// See CaptureTracker::captured(...). 4149 bool captured(const Use *U) override { 4150 Instruction *UInst = cast<Instruction>(U->getUser()); 4151 LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst 4152 << "\n"); 4153 4154 // Because we may reuse the tracker multiple times we keep track of the 4155 // number of explored uses ourselves as well. 4156 if (RemainingUsesToExplore-- == 0) { 4157 LLVM_DEBUG(dbgs() << " - too many uses to explore!\n"); 4158 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4159 /* Return */ true); 4160 } 4161 4162 // Deal with ptr2int by following uses. 4163 if (isa<PtrToIntInst>(UInst)) { 4164 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n"); 4165 return valueMayBeCaptured(UInst); 4166 } 4167 4168 // Explicitly catch return instructions. 4169 if (isa<ReturnInst>(UInst)) 4170 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4171 /* Return */ true); 4172 4173 // For now we only use special logic for call sites. However, the tracker 4174 // itself knows about a lot of other non-capturing cases already. 4175 auto *CB = dyn_cast<CallBase>(UInst); 4176 if (!CB || !CB->isArgOperand(U)) 4177 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4178 /* Return */ true); 4179 4180 unsigned ArgNo = CB->getArgOperandNo(U); 4181 const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo); 4182 // If we have a abstract no-capture attribute for the argument we can use 4183 // it to justify a non-capture attribute here. This allows recursion! 4184 auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos); 4185 if (ArgNoCaptureAA.isAssumedNoCapture()) 4186 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4187 /* Return */ false); 4188 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 4189 addPotentialCopy(*CB); 4190 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4191 /* Return */ false); 4192 } 4193 4194 // Lastly, we could not find a reason no-capture can be assumed so we don't. 4195 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4196 /* Return */ true); 4197 } 4198 4199 /// Register \p CS as potential copy of the value we are checking. 4200 void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); } 4201 4202 /// See CaptureTracker::shouldExplore(...). 4203 bool shouldExplore(const Use *U) override { 4204 // Check liveness and ignore droppable users. 4205 return !U->getUser()->isDroppable() && 4206 !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA); 4207 } 4208 4209 /// Update the state according to \p CapturedInMem, \p CapturedInInt, and 4210 /// \p CapturedInRet, then return the appropriate value for use in the 4211 /// CaptureTracker::captured() interface. 4212 bool isCapturedIn(bool CapturedInMem, bool CapturedInInt, 4213 bool CapturedInRet) { 4214 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " 4215 << CapturedInInt << "|Ret " << CapturedInRet << "]\n"); 4216 if (CapturedInMem) 4217 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM); 4218 if (CapturedInInt) 4219 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT); 4220 if (CapturedInRet) 4221 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET); 4222 return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4223 } 4224 4225 private: 4226 /// The attributor providing in-flight abstract attributes. 4227 Attributor &A; 4228 4229 /// The abstract attribute currently updated. 4230 AANoCapture &NoCaptureAA; 4231 4232 /// The abstract liveness state. 4233 const AAIsDead &IsDeadAA; 4234 4235 /// The state currently updated. 4236 AANoCapture::StateType &State; 4237 4238 /// Set of potential copies of the tracked value. 4239 SmallVectorImpl<const Value *> &PotentialCopies; 4240 4241 /// Global counter to limit the number of explored uses. 4242 unsigned &RemainingUsesToExplore; 4243 }; 4244 4245 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { 4246 const IRPosition &IRP = getIRPosition(); 4247 const Value *V = 4248 getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue(); 4249 if (!V) 4250 return indicatePessimisticFixpoint(); 4251 4252 const Function *F = 4253 getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); 4254 assert(F && "Expected a function!"); 4255 const IRPosition &FnPos = IRPosition::function(*F); 4256 const auto &IsDeadAA = 4257 A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false); 4258 4259 AANoCapture::StateType T; 4260 4261 // Readonly means we cannot capture through memory. 4262 const auto &FnMemAA = 4263 A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false); 4264 if (FnMemAA.isAssumedReadOnly()) { 4265 T.addKnownBits(NOT_CAPTURED_IN_MEM); 4266 if (FnMemAA.isKnownReadOnly()) 4267 addKnownBits(NOT_CAPTURED_IN_MEM); 4268 else 4269 A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL); 4270 } 4271 4272 // Make sure all returned values are different than the underlying value. 4273 // TODO: we could do this in a more sophisticated way inside 4274 // AAReturnedValues, e.g., track all values that escape through returns 4275 // directly somehow. 4276 auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) { 4277 bool SeenConstant = false; 4278 for (auto &It : RVAA.returned_values()) { 4279 if (isa<Constant>(It.first)) { 4280 if (SeenConstant) 4281 return false; 4282 SeenConstant = true; 4283 } else if (!isa<Argument>(It.first) || 4284 It.first == getAssociatedArgument()) 4285 return false; 4286 } 4287 return true; 4288 }; 4289 4290 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>( 4291 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 4292 if (NoUnwindAA.isAssumedNoUnwind()) { 4293 bool IsVoidTy = F->getReturnType()->isVoidTy(); 4294 const AAReturnedValues *RVAA = 4295 IsVoidTy ? nullptr 4296 : &A.getAAFor<AAReturnedValues>(*this, FnPos, 4297 /* TrackDependence */ true, 4298 DepClassTy::OPTIONAL); 4299 if (IsVoidTy || CheckReturnedArgs(*RVAA)) { 4300 T.addKnownBits(NOT_CAPTURED_IN_RET); 4301 if (T.isKnown(NOT_CAPTURED_IN_MEM)) 4302 return ChangeStatus::UNCHANGED; 4303 if (NoUnwindAA.isKnownNoUnwind() && 4304 (IsVoidTy || RVAA->getState().isAtFixpoint())) { 4305 addKnownBits(NOT_CAPTURED_IN_RET); 4306 if (isKnown(NOT_CAPTURED_IN_MEM)) 4307 return indicateOptimisticFixpoint(); 4308 } 4309 } 4310 } 4311 4312 // Use the CaptureTracker interface and logic with the specialized tracker, 4313 // defined in AACaptureUseTracker, that can look at in-flight abstract 4314 // attributes and directly updates the assumed state. 4315 SmallVector<const Value *, 4> PotentialCopies; 4316 unsigned RemainingUsesToExplore = 4317 getDefaultMaxUsesToExploreForCaptureTracking(); 4318 AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies, 4319 RemainingUsesToExplore); 4320 4321 // Check all potential copies of the associated value until we can assume 4322 // none will be captured or we have to assume at least one might be. 4323 unsigned Idx = 0; 4324 PotentialCopies.push_back(V); 4325 while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size()) 4326 Tracker.valueMayBeCaptured(PotentialCopies[Idx++]); 4327 4328 AANoCapture::StateType &S = getState(); 4329 auto Assumed = S.getAssumed(); 4330 S.intersectAssumedBits(T.getAssumed()); 4331 if (!isAssumedNoCaptureMaybeReturned()) 4332 return indicatePessimisticFixpoint(); 4333 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 4334 : ChangeStatus::CHANGED; 4335 } 4336 4337 /// NoCapture attribute for function arguments. 4338 struct AANoCaptureArgument final : AANoCaptureImpl { 4339 AANoCaptureArgument(const IRPosition &IRP, Attributor &A) 4340 : AANoCaptureImpl(IRP, A) {} 4341 4342 /// See AbstractAttribute::trackStatistics() 4343 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } 4344 }; 4345 4346 /// NoCapture attribute for call site arguments. 4347 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { 4348 AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A) 4349 : AANoCaptureImpl(IRP, A) {} 4350 4351 /// See AbstractAttribute::initialize(...). 4352 void initialize(Attributor &A) override { 4353 if (Argument *Arg = getAssociatedArgument()) 4354 if (Arg->hasByValAttr()) 4355 indicateOptimisticFixpoint(); 4356 AANoCaptureImpl::initialize(A); 4357 } 4358 4359 /// See AbstractAttribute::updateImpl(...). 4360 ChangeStatus updateImpl(Attributor &A) override { 4361 // TODO: Once we have call site specific value information we can provide 4362 // call site specific liveness information and then it makes 4363 // sense to specialize attributes for call sites arguments instead of 4364 // redirecting requests to the callee argument. 4365 Argument *Arg = getAssociatedArgument(); 4366 if (!Arg) 4367 return indicatePessimisticFixpoint(); 4368 const IRPosition &ArgPos = IRPosition::argument(*Arg); 4369 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos); 4370 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 4371 } 4372 4373 /// See AbstractAttribute::trackStatistics() 4374 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)}; 4375 }; 4376 4377 /// NoCapture attribute for floating values. 4378 struct AANoCaptureFloating final : AANoCaptureImpl { 4379 AANoCaptureFloating(const IRPosition &IRP, Attributor &A) 4380 : AANoCaptureImpl(IRP, A) {} 4381 4382 /// See AbstractAttribute::trackStatistics() 4383 void trackStatistics() const override { 4384 STATS_DECLTRACK_FLOATING_ATTR(nocapture) 4385 } 4386 }; 4387 4388 /// NoCapture attribute for function return value. 4389 struct AANoCaptureReturned final : AANoCaptureImpl { 4390 AANoCaptureReturned(const IRPosition &IRP, Attributor &A) 4391 : AANoCaptureImpl(IRP, A) { 4392 llvm_unreachable("NoCapture is not applicable to function returns!"); 4393 } 4394 4395 /// See AbstractAttribute::initialize(...). 4396 void initialize(Attributor &A) override { 4397 llvm_unreachable("NoCapture is not applicable to function returns!"); 4398 } 4399 4400 /// See AbstractAttribute::updateImpl(...). 4401 ChangeStatus updateImpl(Attributor &A) override { 4402 llvm_unreachable("NoCapture is not applicable to function returns!"); 4403 } 4404 4405 /// See AbstractAttribute::trackStatistics() 4406 void trackStatistics() const override {} 4407 }; 4408 4409 /// NoCapture attribute deduction for a call site return value. 4410 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { 4411 AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A) 4412 : AANoCaptureImpl(IRP, A) {} 4413 4414 /// See AbstractAttribute::trackStatistics() 4415 void trackStatistics() const override { 4416 STATS_DECLTRACK_CSRET_ATTR(nocapture) 4417 } 4418 }; 4419 4420 /// ------------------ Value Simplify Attribute ---------------------------- 4421 struct AAValueSimplifyImpl : AAValueSimplify { 4422 AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A) 4423 : AAValueSimplify(IRP, A) {} 4424 4425 /// See AbstractAttribute::initialize(...). 4426 void initialize(Attributor &A) override { 4427 if (getAssociatedValue().getType()->isVoidTy()) 4428 indicatePessimisticFixpoint(); 4429 } 4430 4431 /// See AbstractAttribute::getAsStr(). 4432 const std::string getAsStr() const override { 4433 return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple") 4434 : "not-simple"; 4435 } 4436 4437 /// See AbstractAttribute::trackStatistics() 4438 void trackStatistics() const override {} 4439 4440 /// See AAValueSimplify::getAssumedSimplifiedValue() 4441 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { 4442 if (!getAssumed()) 4443 return const_cast<Value *>(&getAssociatedValue()); 4444 return SimplifiedAssociatedValue; 4445 } 4446 4447 /// Helper function for querying AAValueSimplify and updating candicate. 4448 /// \param QueryingValue Value trying to unify with SimplifiedValue 4449 /// \param AccumulatedSimplifiedValue Current simplification result. 4450 static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, 4451 Value &QueryingValue, 4452 Optional<Value *> &AccumulatedSimplifiedValue) { 4453 // FIXME: Add a typecast support. 4454 4455 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>( 4456 QueryingAA, IRPosition::value(QueryingValue)); 4457 4458 Optional<Value *> QueryingValueSimplified = 4459 ValueSimplifyAA.getAssumedSimplifiedValue(A); 4460 4461 if (!QueryingValueSimplified.hasValue()) 4462 return true; 4463 4464 if (!QueryingValueSimplified.getValue()) 4465 return false; 4466 4467 Value &QueryingValueSimplifiedUnwrapped = 4468 *QueryingValueSimplified.getValue(); 4469 4470 if (AccumulatedSimplifiedValue.hasValue() && 4471 !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) && 4472 !isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4473 return AccumulatedSimplifiedValue == QueryingValueSimplified; 4474 if (AccumulatedSimplifiedValue.hasValue() && 4475 isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4476 return true; 4477 4478 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue 4479 << " is assumed to be " 4480 << QueryingValueSimplifiedUnwrapped << "\n"); 4481 4482 AccumulatedSimplifiedValue = QueryingValueSimplified; 4483 return true; 4484 } 4485 4486 /// Returns a candidate is found or not 4487 template <typename AAType> bool askSimplifiedValueFor(Attributor &A) { 4488 if (!getAssociatedValue().getType()->isIntegerTy()) 4489 return false; 4490 4491 const auto &AA = 4492 A.getAAFor<AAType>(*this, getIRPosition(), /* TrackDependence */ false); 4493 4494 Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A); 4495 4496 if (!COpt.hasValue()) { 4497 SimplifiedAssociatedValue = llvm::None; 4498 A.recordDependence(AA, *this, DepClassTy::OPTIONAL); 4499 return true; 4500 } 4501 if (auto *C = COpt.getValue()) { 4502 SimplifiedAssociatedValue = C; 4503 A.recordDependence(AA, *this, DepClassTy::OPTIONAL); 4504 return true; 4505 } 4506 return false; 4507 } 4508 4509 bool askSimplifiedValueForOtherAAs(Attributor &A) { 4510 if (askSimplifiedValueFor<AAValueConstantRange>(A)) 4511 return true; 4512 if (askSimplifiedValueFor<AAPotentialValues>(A)) 4513 return true; 4514 return false; 4515 } 4516 4517 /// See AbstractAttribute::manifest(...). 4518 ChangeStatus manifest(Attributor &A) override { 4519 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4520 4521 if (SimplifiedAssociatedValue.hasValue() && 4522 !SimplifiedAssociatedValue.getValue()) 4523 return Changed; 4524 4525 Value &V = getAssociatedValue(); 4526 auto *C = SimplifiedAssociatedValue.hasValue() 4527 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4528 : UndefValue::get(V.getType()); 4529 if (C) { 4530 // We can replace the AssociatedValue with the constant. 4531 if (!V.user_empty() && &V != C && V.getType() == C->getType()) { 4532 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C 4533 << " :: " << *this << "\n"); 4534 if (A.changeValueAfterManifest(V, *C)) 4535 Changed = ChangeStatus::CHANGED; 4536 } 4537 } 4538 4539 return Changed | AAValueSimplify::manifest(A); 4540 } 4541 4542 /// See AbstractState::indicatePessimisticFixpoint(...). 4543 ChangeStatus indicatePessimisticFixpoint() override { 4544 // NOTE: Associated value will be returned in a pessimistic fixpoint and is 4545 // regarded as known. That's why`indicateOptimisticFixpoint` is called. 4546 SimplifiedAssociatedValue = &getAssociatedValue(); 4547 indicateOptimisticFixpoint(); 4548 return ChangeStatus::CHANGED; 4549 } 4550 4551 protected: 4552 // An assumed simplified value. Initially, it is set to Optional::None, which 4553 // means that the value is not clear under current assumption. If in the 4554 // pessimistic state, getAssumedSimplifiedValue doesn't return this value but 4555 // returns orignal associated value. 4556 Optional<Value *> SimplifiedAssociatedValue; 4557 }; 4558 4559 struct AAValueSimplifyArgument final : AAValueSimplifyImpl { 4560 AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A) 4561 : AAValueSimplifyImpl(IRP, A) {} 4562 4563 void initialize(Attributor &A) override { 4564 AAValueSimplifyImpl::initialize(A); 4565 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) 4566 indicatePessimisticFixpoint(); 4567 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated, 4568 Attribute::StructRet, Attribute::Nest}, 4569 /* IgnoreSubsumingPositions */ true)) 4570 indicatePessimisticFixpoint(); 4571 4572 // FIXME: This is a hack to prevent us from propagating function poiner in 4573 // the new pass manager CGSCC pass as it creates call edges the 4574 // CallGraphUpdater cannot handle yet. 4575 Value &V = getAssociatedValue(); 4576 if (V.getType()->isPointerTy() && 4577 V.getType()->getPointerElementType()->isFunctionTy() && 4578 !A.isModulePass()) 4579 indicatePessimisticFixpoint(); 4580 } 4581 4582 /// See AbstractAttribute::updateImpl(...). 4583 ChangeStatus updateImpl(Attributor &A) override { 4584 // Byval is only replacable if it is readonly otherwise we would write into 4585 // the replaced value and not the copy that byval creates implicitly. 4586 Argument *Arg = getAssociatedArgument(); 4587 if (Arg->hasByValAttr()) { 4588 // TODO: We probably need to verify synchronization is not an issue, e.g., 4589 // there is no race by not copying a constant byval. 4590 const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 4591 if (!MemAA.isAssumedReadOnly()) 4592 return indicatePessimisticFixpoint(); 4593 } 4594 4595 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4596 4597 auto PredForCallSite = [&](AbstractCallSite ACS) { 4598 const IRPosition &ACSArgPos = 4599 IRPosition::callsite_argument(ACS, getArgNo()); 4600 // Check if a coresponding argument was found or if it is on not 4601 // associated (which can happen for callback calls). 4602 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 4603 return false; 4604 4605 // We can only propagate thread independent values through callbacks. 4606 // This is different to direct/indirect call sites because for them we 4607 // know the thread executing the caller and callee is the same. For 4608 // callbacks this is not guaranteed, thus a thread dependent value could 4609 // be different for the caller and callee, making it invalid to propagate. 4610 Value &ArgOp = ACSArgPos.getAssociatedValue(); 4611 if (ACS.isCallbackCall()) 4612 if (auto *C = dyn_cast<Constant>(&ArgOp)) 4613 if (C->isThreadDependent()) 4614 return false; 4615 return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue); 4616 }; 4617 4618 bool AllCallSitesKnown; 4619 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 4620 AllCallSitesKnown)) 4621 if (!askSimplifiedValueForOtherAAs(A)) 4622 return indicatePessimisticFixpoint(); 4623 4624 // If a candicate was found in this update, return CHANGED. 4625 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4626 ? ChangeStatus::UNCHANGED 4627 : ChangeStatus ::CHANGED; 4628 } 4629 4630 /// See AbstractAttribute::trackStatistics() 4631 void trackStatistics() const override { 4632 STATS_DECLTRACK_ARG_ATTR(value_simplify) 4633 } 4634 }; 4635 4636 struct AAValueSimplifyReturned : AAValueSimplifyImpl { 4637 AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A) 4638 : AAValueSimplifyImpl(IRP, A) {} 4639 4640 /// See AbstractAttribute::updateImpl(...). 4641 ChangeStatus updateImpl(Attributor &A) override { 4642 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4643 4644 auto PredForReturned = [&](Value &V) { 4645 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4646 }; 4647 4648 if (!A.checkForAllReturnedValues(PredForReturned, *this)) 4649 if (!askSimplifiedValueForOtherAAs(A)) 4650 return indicatePessimisticFixpoint(); 4651 4652 // If a candicate was found in this update, return CHANGED. 4653 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4654 ? ChangeStatus::UNCHANGED 4655 : ChangeStatus ::CHANGED; 4656 } 4657 4658 ChangeStatus manifest(Attributor &A) override { 4659 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4660 4661 if (SimplifiedAssociatedValue.hasValue() && 4662 !SimplifiedAssociatedValue.getValue()) 4663 return Changed; 4664 4665 Value &V = getAssociatedValue(); 4666 auto *C = SimplifiedAssociatedValue.hasValue() 4667 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4668 : UndefValue::get(V.getType()); 4669 if (C) { 4670 auto PredForReturned = 4671 [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) { 4672 // We can replace the AssociatedValue with the constant. 4673 if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V)) 4674 return true; 4675 4676 for (ReturnInst *RI : RetInsts) { 4677 if (RI->getFunction() != getAnchorScope()) 4678 continue; 4679 auto *RC = C; 4680 if (RC->getType() != RI->getReturnValue()->getType()) 4681 RC = ConstantExpr::getBitCast(RC, 4682 RI->getReturnValue()->getType()); 4683 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC 4684 << " in " << *RI << " :: " << *this << "\n"); 4685 if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC)) 4686 Changed = ChangeStatus::CHANGED; 4687 } 4688 return true; 4689 }; 4690 A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this); 4691 } 4692 4693 return Changed | AAValueSimplify::manifest(A); 4694 } 4695 4696 /// See AbstractAttribute::trackStatistics() 4697 void trackStatistics() const override { 4698 STATS_DECLTRACK_FNRET_ATTR(value_simplify) 4699 } 4700 }; 4701 4702 struct AAValueSimplifyFloating : AAValueSimplifyImpl { 4703 AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A) 4704 : AAValueSimplifyImpl(IRP, A) {} 4705 4706 /// See AbstractAttribute::initialize(...). 4707 void initialize(Attributor &A) override { 4708 // FIXME: This might have exposed a SCC iterator update bug in the old PM. 4709 // Needs investigation. 4710 // AAValueSimplifyImpl::initialize(A); 4711 Value &V = getAnchorValue(); 4712 4713 // TODO: add other stuffs 4714 if (isa<Constant>(V)) 4715 indicatePessimisticFixpoint(); 4716 } 4717 4718 /// Check if \p ICmp is an equality comparison (==/!=) with at least one 4719 /// nullptr. If so, try to simplify it using AANonNull on the other operand. 4720 /// Return true if successful, in that case SimplifiedAssociatedValue will be 4721 /// updated and \p Changed is set appropriately. 4722 bool checkForNullPtrCompare(Attributor &A, ICmpInst *ICmp, 4723 ChangeStatus &Changed) { 4724 if (!ICmp) 4725 return false; 4726 if (!ICmp->isEquality()) 4727 return false; 4728 4729 // This is a comparison with == or !-. We check for nullptr now. 4730 bool Op0IsNull = isa<ConstantPointerNull>(ICmp->getOperand(0)); 4731 bool Op1IsNull = isa<ConstantPointerNull>(ICmp->getOperand(1)); 4732 if (!Op0IsNull && !Op1IsNull) 4733 return false; 4734 4735 LLVMContext &Ctx = ICmp->getContext(); 4736 // Check for `nullptr ==/!= nullptr` first: 4737 if (Op0IsNull && Op1IsNull) { 4738 Value *NewVal = ConstantInt::get( 4739 Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_EQ); 4740 SimplifiedAssociatedValue = NewVal; 4741 indicateOptimisticFixpoint(); 4742 assert(!SimplifiedAssociatedValue.hasValue() && 4743 "Did not expect non-fixed value for constant comparison"); 4744 Changed = ChangeStatus::CHANGED; 4745 return true; 4746 } 4747 4748 // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the 4749 // non-nullptr operand and if we assume it's non-null we can conclude the 4750 // result of the comparison. 4751 assert((Op0IsNull || Op1IsNull) && 4752 "Expected nullptr versus non-nullptr comparison at this point"); 4753 4754 // The index is the operand that we assume is not null. 4755 unsigned PtrIdx = Op0IsNull; 4756 auto &PtrNonNullAA = A.getAAFor<AANonNull>( 4757 *this, IRPosition::value(*ICmp->getOperand(PtrIdx))); 4758 if (!PtrNonNullAA.isAssumedNonNull()) 4759 return false; 4760 4761 // The new value depends on the predicate, true for != and false for ==. 4762 Value *NewVal = ConstantInt::get(Type::getInt1Ty(Ctx), 4763 ICmp->getPredicate() == CmpInst::ICMP_NE); 4764 4765 assert((!SimplifiedAssociatedValue.hasValue() || 4766 SimplifiedAssociatedValue == NewVal) && 4767 "Did not expect to change value for zero-comparison"); 4768 4769 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4770 SimplifiedAssociatedValue = NewVal; 4771 4772 if (PtrNonNullAA.isKnownNonNull()) 4773 indicateOptimisticFixpoint(); 4774 4775 Changed = HasValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus ::CHANGED; 4776 return true; 4777 } 4778 4779 /// See AbstractAttribute::updateImpl(...). 4780 ChangeStatus updateImpl(Attributor &A) override { 4781 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4782 4783 ChangeStatus Changed; 4784 if (checkForNullPtrCompare(A, dyn_cast<ICmpInst>(&getAnchorValue()), 4785 Changed)) 4786 return Changed; 4787 4788 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &, 4789 bool Stripped) -> bool { 4790 auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V)); 4791 if (!Stripped && this == &AA) { 4792 // TODO: Look the instruction and check recursively. 4793 4794 LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V 4795 << "\n"); 4796 return false; 4797 } 4798 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4799 }; 4800 4801 bool Dummy = false; 4802 if (!genericValueTraversal<AAValueSimplify, bool>( 4803 A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(), 4804 /* UseValueSimplify */ false)) 4805 if (!askSimplifiedValueForOtherAAs(A)) 4806 return indicatePessimisticFixpoint(); 4807 4808 // If a candicate was found in this update, return CHANGED. 4809 4810 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4811 ? ChangeStatus::UNCHANGED 4812 : ChangeStatus ::CHANGED; 4813 } 4814 4815 /// See AbstractAttribute::trackStatistics() 4816 void trackStatistics() const override { 4817 STATS_DECLTRACK_FLOATING_ATTR(value_simplify) 4818 } 4819 }; 4820 4821 struct AAValueSimplifyFunction : AAValueSimplifyImpl { 4822 AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A) 4823 : AAValueSimplifyImpl(IRP, A) {} 4824 4825 /// See AbstractAttribute::initialize(...). 4826 void initialize(Attributor &A) override { 4827 SimplifiedAssociatedValue = &getAnchorValue(); 4828 indicateOptimisticFixpoint(); 4829 } 4830 /// See AbstractAttribute::initialize(...). 4831 ChangeStatus updateImpl(Attributor &A) override { 4832 llvm_unreachable( 4833 "AAValueSimplify(Function|CallSite)::updateImpl will not be called"); 4834 } 4835 /// See AbstractAttribute::trackStatistics() 4836 void trackStatistics() const override { 4837 STATS_DECLTRACK_FN_ATTR(value_simplify) 4838 } 4839 }; 4840 4841 struct AAValueSimplifyCallSite : AAValueSimplifyFunction { 4842 AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A) 4843 : AAValueSimplifyFunction(IRP, A) {} 4844 /// See AbstractAttribute::trackStatistics() 4845 void trackStatistics() const override { 4846 STATS_DECLTRACK_CS_ATTR(value_simplify) 4847 } 4848 }; 4849 4850 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned { 4851 AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A) 4852 : AAValueSimplifyReturned(IRP, A) {} 4853 4854 /// See AbstractAttribute::manifest(...). 4855 ChangeStatus manifest(Attributor &A) override { 4856 return AAValueSimplifyImpl::manifest(A); 4857 } 4858 4859 void trackStatistics() const override { 4860 STATS_DECLTRACK_CSRET_ATTR(value_simplify) 4861 } 4862 }; 4863 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { 4864 AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A) 4865 : AAValueSimplifyFloating(IRP, A) {} 4866 4867 /// See AbstractAttribute::manifest(...). 4868 ChangeStatus manifest(Attributor &A) override { 4869 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4870 4871 if (SimplifiedAssociatedValue.hasValue() && 4872 !SimplifiedAssociatedValue.getValue()) 4873 return Changed; 4874 4875 Value &V = getAssociatedValue(); 4876 auto *C = SimplifiedAssociatedValue.hasValue() 4877 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4878 : UndefValue::get(V.getType()); 4879 if (C) { 4880 Use &U = cast<CallBase>(&getAnchorValue())->getArgOperandUse(getArgNo()); 4881 // We can replace the AssociatedValue with the constant. 4882 if (&V != C && V.getType() == C->getType()) { 4883 if (A.changeUseAfterManifest(U, *C)) 4884 Changed = ChangeStatus::CHANGED; 4885 } 4886 } 4887 4888 return Changed | AAValueSimplify::manifest(A); 4889 } 4890 4891 void trackStatistics() const override { 4892 STATS_DECLTRACK_CSARG_ATTR(value_simplify) 4893 } 4894 }; 4895 4896 /// ----------------------- Heap-To-Stack Conversion --------------------------- 4897 struct AAHeapToStackImpl : public AAHeapToStack { 4898 AAHeapToStackImpl(const IRPosition &IRP, Attributor &A) 4899 : AAHeapToStack(IRP, A) {} 4900 4901 const std::string getAsStr() const override { 4902 return "[H2S] Mallocs: " + std::to_string(MallocCalls.size()); 4903 } 4904 4905 ChangeStatus manifest(Attributor &A) override { 4906 assert(getState().isValidState() && 4907 "Attempted to manifest an invalid state!"); 4908 4909 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 4910 Function *F = getAnchorScope(); 4911 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 4912 4913 for (Instruction *MallocCall : MallocCalls) { 4914 // This malloc cannot be replaced. 4915 if (BadMallocCalls.count(MallocCall)) 4916 continue; 4917 4918 for (Instruction *FreeCall : FreesForMalloc[MallocCall]) { 4919 LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n"); 4920 A.deleteAfterManifest(*FreeCall); 4921 HasChanged = ChangeStatus::CHANGED; 4922 } 4923 4924 LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall 4925 << "\n"); 4926 4927 Align Alignment; 4928 Constant *Size; 4929 if (isCallocLikeFn(MallocCall, TLI)) { 4930 auto *Num = cast<ConstantInt>(MallocCall->getOperand(0)); 4931 auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1)); 4932 APInt TotalSize = SizeT->getValue() * Num->getValue(); 4933 Size = 4934 ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize); 4935 } else if (isAlignedAllocLikeFn(MallocCall, TLI)) { 4936 Size = cast<ConstantInt>(MallocCall->getOperand(1)); 4937 Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0)) 4938 ->getValue() 4939 .getZExtValue()) 4940 .valueOrOne(); 4941 } else { 4942 Size = cast<ConstantInt>(MallocCall->getOperand(0)); 4943 } 4944 4945 unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace(); 4946 Instruction *AI = 4947 new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment, 4948 "", MallocCall->getNextNode()); 4949 4950 if (AI->getType() != MallocCall->getType()) 4951 AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc", 4952 AI->getNextNode()); 4953 4954 A.changeValueAfterManifest(*MallocCall, *AI); 4955 4956 if (auto *II = dyn_cast<InvokeInst>(MallocCall)) { 4957 auto *NBB = II->getNormalDest(); 4958 BranchInst::Create(NBB, MallocCall->getParent()); 4959 A.deleteAfterManifest(*MallocCall); 4960 } else { 4961 A.deleteAfterManifest(*MallocCall); 4962 } 4963 4964 // Zero out the allocated memory if it was a calloc. 4965 if (isCallocLikeFn(MallocCall, TLI)) { 4966 auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc", 4967 AI->getNextNode()); 4968 Value *Ops[] = { 4969 BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size, 4970 ConstantInt::get(Type::getInt1Ty(F->getContext()), false)}; 4971 4972 Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()}; 4973 Module *M = F->getParent(); 4974 Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); 4975 CallInst::Create(Fn, Ops, "", BI->getNextNode()); 4976 } 4977 HasChanged = ChangeStatus::CHANGED; 4978 } 4979 4980 return HasChanged; 4981 } 4982 4983 /// Collection of all malloc calls in a function. 4984 SmallSetVector<Instruction *, 4> MallocCalls; 4985 4986 /// Collection of malloc calls that cannot be converted. 4987 DenseSet<const Instruction *> BadMallocCalls; 4988 4989 /// A map for each malloc call to the set of associated free calls. 4990 DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc; 4991 4992 ChangeStatus updateImpl(Attributor &A) override; 4993 }; 4994 4995 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) { 4996 const Function *F = getAnchorScope(); 4997 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 4998 4999 MustBeExecutedContextExplorer &Explorer = 5000 A.getInfoCache().getMustBeExecutedContextExplorer(); 5001 5002 auto FreeCheck = [&](Instruction &I) { 5003 const auto &Frees = FreesForMalloc.lookup(&I); 5004 if (Frees.size() != 1) 5005 return false; 5006 Instruction *UniqueFree = *Frees.begin(); 5007 return Explorer.findInContextOf(UniqueFree, I.getNextNode()); 5008 }; 5009 5010 auto UsesCheck = [&](Instruction &I) { 5011 bool ValidUsesOnly = true; 5012 bool MustUse = true; 5013 auto Pred = [&](const Use &U, bool &Follow) -> bool { 5014 Instruction *UserI = cast<Instruction>(U.getUser()); 5015 if (isa<LoadInst>(UserI)) 5016 return true; 5017 if (auto *SI = dyn_cast<StoreInst>(UserI)) { 5018 if (SI->getValueOperand() == U.get()) { 5019 LLVM_DEBUG(dbgs() 5020 << "[H2S] escaping store to memory: " << *UserI << "\n"); 5021 ValidUsesOnly = false; 5022 } else { 5023 // A store into the malloc'ed memory is fine. 5024 } 5025 return true; 5026 } 5027 if (auto *CB = dyn_cast<CallBase>(UserI)) { 5028 if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd()) 5029 return true; 5030 // Record malloc. 5031 if (isFreeCall(UserI, TLI)) { 5032 if (MustUse) { 5033 FreesForMalloc[&I].insert(UserI); 5034 } else { 5035 LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: " 5036 << *UserI << "\n"); 5037 ValidUsesOnly = false; 5038 } 5039 return true; 5040 } 5041 5042 unsigned ArgNo = CB->getArgOperandNo(&U); 5043 5044 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 5045 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5046 5047 // If a callsite argument use is nofree, we are fine. 5048 const auto &ArgNoFreeAA = A.getAAFor<AANoFree>( 5049 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5050 5051 if (!NoCaptureAA.isAssumedNoCapture() || 5052 !ArgNoFreeAA.isAssumedNoFree()) { 5053 LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n"); 5054 ValidUsesOnly = false; 5055 } 5056 return true; 5057 } 5058 5059 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 5060 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 5061 MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI)); 5062 Follow = true; 5063 return true; 5064 } 5065 // Unknown user for which we can not track uses further (in a way that 5066 // makes sense). 5067 LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n"); 5068 ValidUsesOnly = false; 5069 return true; 5070 }; 5071 A.checkForAllUses(Pred, *this, I); 5072 return ValidUsesOnly; 5073 }; 5074 5075 auto MallocCallocCheck = [&](Instruction &I) { 5076 if (BadMallocCalls.count(&I)) 5077 return true; 5078 5079 bool IsMalloc = isMallocLikeFn(&I, TLI); 5080 bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI); 5081 bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI); 5082 if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) { 5083 BadMallocCalls.insert(&I); 5084 return true; 5085 } 5086 5087 if (IsMalloc) { 5088 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0))) 5089 if (Size->getValue().ule(MaxHeapToStackSize)) 5090 if (UsesCheck(I) || FreeCheck(I)) { 5091 MallocCalls.insert(&I); 5092 return true; 5093 } 5094 } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) { 5095 // Only if the alignment and sizes are constant. 5096 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) 5097 if (Size->getValue().ule(MaxHeapToStackSize)) 5098 if (UsesCheck(I) || FreeCheck(I)) { 5099 MallocCalls.insert(&I); 5100 return true; 5101 } 5102 } else if (IsCalloc) { 5103 bool Overflow = false; 5104 if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0))) 5105 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) 5106 if ((Size->getValue().umul_ov(Num->getValue(), Overflow)) 5107 .ule(MaxHeapToStackSize)) 5108 if (!Overflow && (UsesCheck(I) || FreeCheck(I))) { 5109 MallocCalls.insert(&I); 5110 return true; 5111 } 5112 } 5113 5114 BadMallocCalls.insert(&I); 5115 return true; 5116 }; 5117 5118 size_t NumBadMallocs = BadMallocCalls.size(); 5119 5120 A.checkForAllCallLikeInstructions(MallocCallocCheck, *this); 5121 5122 if (NumBadMallocs != BadMallocCalls.size()) 5123 return ChangeStatus::CHANGED; 5124 5125 return ChangeStatus::UNCHANGED; 5126 } 5127 5128 struct AAHeapToStackFunction final : public AAHeapToStackImpl { 5129 AAHeapToStackFunction(const IRPosition &IRP, Attributor &A) 5130 : AAHeapToStackImpl(IRP, A) {} 5131 5132 /// See AbstractAttribute::trackStatistics(). 5133 void trackStatistics() const override { 5134 STATS_DECL( 5135 MallocCalls, Function, 5136 "Number of malloc/calloc/aligned_alloc calls converted to allocas"); 5137 for (auto *C : MallocCalls) 5138 if (!BadMallocCalls.count(C)) 5139 ++BUILD_STAT_NAME(MallocCalls, Function); 5140 } 5141 }; 5142 5143 /// ----------------------- Privatizable Pointers ------------------------------ 5144 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr { 5145 AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A) 5146 : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {} 5147 5148 ChangeStatus indicatePessimisticFixpoint() override { 5149 AAPrivatizablePtr::indicatePessimisticFixpoint(); 5150 PrivatizableType = nullptr; 5151 return ChangeStatus::CHANGED; 5152 } 5153 5154 /// Identify the type we can chose for a private copy of the underlying 5155 /// argument. None means it is not clear yet, nullptr means there is none. 5156 virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0; 5157 5158 /// Return a privatizable type that encloses both T0 and T1. 5159 /// TODO: This is merely a stub for now as we should manage a mapping as well. 5160 Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) { 5161 if (!T0.hasValue()) 5162 return T1; 5163 if (!T1.hasValue()) 5164 return T0; 5165 if (T0 == T1) 5166 return T0; 5167 return nullptr; 5168 } 5169 5170 Optional<Type *> getPrivatizableType() const override { 5171 return PrivatizableType; 5172 } 5173 5174 const std::string getAsStr() const override { 5175 return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]"; 5176 } 5177 5178 protected: 5179 Optional<Type *> PrivatizableType; 5180 }; 5181 5182 // TODO: Do this for call site arguments (probably also other values) as well. 5183 5184 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl { 5185 AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A) 5186 : AAPrivatizablePtrImpl(IRP, A) {} 5187 5188 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5189 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5190 // If this is a byval argument and we know all the call sites (so we can 5191 // rewrite them), there is no need to check them explicitly. 5192 bool AllCallSitesKnown; 5193 if (getIRPosition().hasAttr(Attribute::ByVal) && 5194 A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this, 5195 true, AllCallSitesKnown)) 5196 return getAssociatedValue().getType()->getPointerElementType(); 5197 5198 Optional<Type *> Ty; 5199 unsigned ArgNo = getIRPosition().getArgNo(); 5200 5201 // Make sure the associated call site argument has the same type at all call 5202 // sites and it is an allocation we know is safe to privatize, for now that 5203 // means we only allow alloca instructions. 5204 // TODO: We can additionally analyze the accesses in the callee to create 5205 // the type from that information instead. That is a little more 5206 // involved and will be done in a follow up patch. 5207 auto CallSiteCheck = [&](AbstractCallSite ACS) { 5208 IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 5209 // Check if a coresponding argument was found or if it is one not 5210 // associated (which can happen for callback calls). 5211 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 5212 return false; 5213 5214 // Check that all call sites agree on a type. 5215 auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos); 5216 Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType(); 5217 5218 LLVM_DEBUG({ 5219 dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: "; 5220 if (CSTy.hasValue() && CSTy.getValue()) 5221 CSTy.getValue()->print(dbgs()); 5222 else if (CSTy.hasValue()) 5223 dbgs() << "<nullptr>"; 5224 else 5225 dbgs() << "<none>"; 5226 }); 5227 5228 Ty = combineTypes(Ty, CSTy); 5229 5230 LLVM_DEBUG({ 5231 dbgs() << " : New Type: "; 5232 if (Ty.hasValue() && Ty.getValue()) 5233 Ty.getValue()->print(dbgs()); 5234 else if (Ty.hasValue()) 5235 dbgs() << "<nullptr>"; 5236 else 5237 dbgs() << "<none>"; 5238 dbgs() << "\n"; 5239 }); 5240 5241 return !Ty.hasValue() || Ty.getValue(); 5242 }; 5243 5244 if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown)) 5245 return nullptr; 5246 return Ty; 5247 } 5248 5249 /// See AbstractAttribute::updateImpl(...). 5250 ChangeStatus updateImpl(Attributor &A) override { 5251 PrivatizableType = identifyPrivatizableType(A); 5252 if (!PrivatizableType.hasValue()) 5253 return ChangeStatus::UNCHANGED; 5254 if (!PrivatizableType.getValue()) 5255 return indicatePessimisticFixpoint(); 5256 5257 // The dependence is optional so we don't give up once we give up on the 5258 // alignment. 5259 A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()), 5260 /* TrackDependence */ true, DepClassTy::OPTIONAL); 5261 5262 // Avoid arguments with padding for now. 5263 if (!getIRPosition().hasAttr(Attribute::ByVal) && 5264 !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(), 5265 A.getInfoCache().getDL())) { 5266 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n"); 5267 return indicatePessimisticFixpoint(); 5268 } 5269 5270 // Verify callee and caller agree on how the promoted argument would be 5271 // passed. 5272 // TODO: The use of the ArgumentPromotion interface here is ugly, we need a 5273 // specialized form of TargetTransformInfo::areFunctionArgsABICompatible 5274 // which doesn't require the arguments ArgumentPromotion wanted to pass. 5275 Function &Fn = *getIRPosition().getAnchorScope(); 5276 SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy; 5277 ArgsToPromote.insert(getAssociatedArgument()); 5278 const auto *TTI = 5279 A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn); 5280 if (!TTI || 5281 !ArgumentPromotionPass::areFunctionArgsABICompatible( 5282 Fn, *TTI, ArgsToPromote, Dummy) || 5283 ArgsToPromote.empty()) { 5284 LLVM_DEBUG( 5285 dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for " 5286 << Fn.getName() << "\n"); 5287 return indicatePessimisticFixpoint(); 5288 } 5289 5290 // Collect the types that will replace the privatizable type in the function 5291 // signature. 5292 SmallVector<Type *, 16> ReplacementTypes; 5293 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5294 5295 // Register a rewrite of the argument. 5296 Argument *Arg = getAssociatedArgument(); 5297 if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) { 5298 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n"); 5299 return indicatePessimisticFixpoint(); 5300 } 5301 5302 unsigned ArgNo = Arg->getArgNo(); 5303 5304 // Helper to check if for the given call site the associated argument is 5305 // passed to a callback where the privatization would be different. 5306 auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) { 5307 SmallVector<const Use *, 4> CallbackUses; 5308 AbstractCallSite::getCallbackUses(CB, CallbackUses); 5309 for (const Use *U : CallbackUses) { 5310 AbstractCallSite CBACS(U); 5311 assert(CBACS && CBACS.isCallbackCall()); 5312 for (Argument &CBArg : CBACS.getCalledFunction()->args()) { 5313 int CBArgNo = CBACS.getCallArgOperandNo(CBArg); 5314 5315 LLVM_DEBUG({ 5316 dbgs() 5317 << "[AAPrivatizablePtr] Argument " << *Arg 5318 << "check if can be privatized in the context of its parent (" 5319 << Arg->getParent()->getName() 5320 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5321 "callback (" 5322 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5323 << ")\n[AAPrivatizablePtr] " << CBArg << " : " 5324 << CBACS.getCallArgOperand(CBArg) << " vs " 5325 << CB.getArgOperand(ArgNo) << "\n" 5326 << "[AAPrivatizablePtr] " << CBArg << " : " 5327 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n"; 5328 }); 5329 5330 if (CBArgNo != int(ArgNo)) 5331 continue; 5332 const auto &CBArgPrivAA = 5333 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg)); 5334 if (CBArgPrivAA.isValidState()) { 5335 auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType(); 5336 if (!CBArgPrivTy.hasValue()) 5337 continue; 5338 if (CBArgPrivTy.getValue() == PrivatizableType) 5339 continue; 5340 } 5341 5342 LLVM_DEBUG({ 5343 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5344 << " cannot be privatized in the context of its parent (" 5345 << Arg->getParent()->getName() 5346 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5347 "callback (" 5348 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5349 << ").\n[AAPrivatizablePtr] for which the argument " 5350 "privatization is not compatible.\n"; 5351 }); 5352 return false; 5353 } 5354 } 5355 return true; 5356 }; 5357 5358 // Helper to check if for the given call site the associated argument is 5359 // passed to a direct call where the privatization would be different. 5360 auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) { 5361 CallBase *DC = cast<CallBase>(ACS.getInstruction()); 5362 int DCArgNo = ACS.getCallArgOperandNo(ArgNo); 5363 assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() && 5364 "Expected a direct call operand for callback call operand"); 5365 5366 LLVM_DEBUG({ 5367 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5368 << " check if be privatized in the context of its parent (" 5369 << Arg->getParent()->getName() 5370 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5371 "direct call of (" 5372 << DCArgNo << "@" << DC->getCalledFunction()->getName() 5373 << ").\n"; 5374 }); 5375 5376 Function *DCCallee = DC->getCalledFunction(); 5377 if (unsigned(DCArgNo) < DCCallee->arg_size()) { 5378 const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>( 5379 *this, IRPosition::argument(*DCCallee->getArg(DCArgNo))); 5380 if (DCArgPrivAA.isValidState()) { 5381 auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType(); 5382 if (!DCArgPrivTy.hasValue()) 5383 return true; 5384 if (DCArgPrivTy.getValue() == PrivatizableType) 5385 return true; 5386 } 5387 } 5388 5389 LLVM_DEBUG({ 5390 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5391 << " cannot be privatized in the context of its parent (" 5392 << Arg->getParent()->getName() 5393 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5394 "direct call of (" 5395 << ACS.getInstruction()->getCalledFunction()->getName() 5396 << ").\n[AAPrivatizablePtr] for which the argument " 5397 "privatization is not compatible.\n"; 5398 }); 5399 return false; 5400 }; 5401 5402 // Helper to check if the associated argument is used at the given abstract 5403 // call site in a way that is incompatible with the privatization assumed 5404 // here. 5405 auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) { 5406 if (ACS.isDirectCall()) 5407 return IsCompatiblePrivArgOfCallback(*ACS.getInstruction()); 5408 if (ACS.isCallbackCall()) 5409 return IsCompatiblePrivArgOfDirectCS(ACS); 5410 return false; 5411 }; 5412 5413 bool AllCallSitesKnown; 5414 if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true, 5415 AllCallSitesKnown)) 5416 return indicatePessimisticFixpoint(); 5417 5418 return ChangeStatus::UNCHANGED; 5419 } 5420 5421 /// Given a type to private \p PrivType, collect the constituates (which are 5422 /// used) in \p ReplacementTypes. 5423 static void 5424 identifyReplacementTypes(Type *PrivType, 5425 SmallVectorImpl<Type *> &ReplacementTypes) { 5426 // TODO: For now we expand the privatization type to the fullest which can 5427 // lead to dead arguments that need to be removed later. 5428 assert(PrivType && "Expected privatizable type!"); 5429 5430 // Traverse the type, extract constituate types on the outermost level. 5431 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5432 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) 5433 ReplacementTypes.push_back(PrivStructType->getElementType(u)); 5434 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5435 ReplacementTypes.append(PrivArrayType->getNumElements(), 5436 PrivArrayType->getElementType()); 5437 } else { 5438 ReplacementTypes.push_back(PrivType); 5439 } 5440 } 5441 5442 /// Initialize \p Base according to the type \p PrivType at position \p IP. 5443 /// The values needed are taken from the arguments of \p F starting at 5444 /// position \p ArgNo. 5445 static void createInitialization(Type *PrivType, Value &Base, Function &F, 5446 unsigned ArgNo, Instruction &IP) { 5447 assert(PrivType && "Expected privatizable type!"); 5448 5449 IRBuilder<NoFolder> IRB(&IP); 5450 const DataLayout &DL = F.getParent()->getDataLayout(); 5451 5452 // Traverse the type, build GEPs and stores. 5453 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5454 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5455 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5456 Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo(); 5457 Value *Ptr = constructPointer( 5458 PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL); 5459 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5460 } 5461 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5462 Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo(); 5463 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy); 5464 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5465 Value *Ptr = 5466 constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL); 5467 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5468 } 5469 } else { 5470 new StoreInst(F.getArg(ArgNo), &Base, &IP); 5471 } 5472 } 5473 5474 /// Extract values from \p Base according to the type \p PrivType at the 5475 /// call position \p ACS. The values are appended to \p ReplacementValues. 5476 void createReplacementValues(Align Alignment, Type *PrivType, 5477 AbstractCallSite ACS, Value *Base, 5478 SmallVectorImpl<Value *> &ReplacementValues) { 5479 assert(Base && "Expected base value!"); 5480 assert(PrivType && "Expected privatizable type!"); 5481 Instruction *IP = ACS.getInstruction(); 5482 5483 IRBuilder<NoFolder> IRB(IP); 5484 const DataLayout &DL = IP->getModule()->getDataLayout(); 5485 5486 if (Base->getType()->getPointerElementType() != PrivType) 5487 Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(), 5488 "", ACS.getInstruction()); 5489 5490 // Traverse the type, build GEPs and loads. 5491 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5492 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5493 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5494 Type *PointeeTy = PrivStructType->getElementType(u); 5495 Value *Ptr = 5496 constructPointer(PointeeTy->getPointerTo(), Base, 5497 PrivStructLayout->getElementOffset(u), IRB, DL); 5498 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP); 5499 L->setAlignment(Alignment); 5500 ReplacementValues.push_back(L); 5501 } 5502 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5503 Type *PointeeTy = PrivArrayType->getElementType(); 5504 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy); 5505 Type *PointeePtrTy = PointeeTy->getPointerTo(); 5506 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5507 Value *Ptr = 5508 constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL); 5509 LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP); 5510 L->setAlignment(Alignment); 5511 ReplacementValues.push_back(L); 5512 } 5513 } else { 5514 LoadInst *L = new LoadInst(PrivType, Base, "", IP); 5515 L->setAlignment(Alignment); 5516 ReplacementValues.push_back(L); 5517 } 5518 } 5519 5520 /// See AbstractAttribute::manifest(...) 5521 ChangeStatus manifest(Attributor &A) override { 5522 if (!PrivatizableType.hasValue()) 5523 return ChangeStatus::UNCHANGED; 5524 assert(PrivatizableType.getValue() && "Expected privatizable type!"); 5525 5526 // Collect all tail calls in the function as we cannot allow new allocas to 5527 // escape into tail recursion. 5528 // TODO: Be smarter about new allocas escaping into tail calls. 5529 SmallVector<CallInst *, 16> TailCalls; 5530 if (!A.checkForAllInstructions( 5531 [&](Instruction &I) { 5532 CallInst &CI = cast<CallInst>(I); 5533 if (CI.isTailCall()) 5534 TailCalls.push_back(&CI); 5535 return true; 5536 }, 5537 *this, {Instruction::Call})) 5538 return ChangeStatus::UNCHANGED; 5539 5540 Argument *Arg = getAssociatedArgument(); 5541 // Query AAAlign attribute for alignment of associated argument to 5542 // determine the best alignment of loads. 5543 const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg)); 5544 5545 // Callback to repair the associated function. A new alloca is placed at the 5546 // beginning and initialized with the values passed through arguments. The 5547 // new alloca replaces the use of the old pointer argument. 5548 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB = 5549 [=](const Attributor::ArgumentReplacementInfo &ARI, 5550 Function &ReplacementFn, Function::arg_iterator ArgIt) { 5551 BasicBlock &EntryBB = ReplacementFn.getEntryBlock(); 5552 Instruction *IP = &*EntryBB.getFirstInsertionPt(); 5553 auto *AI = new AllocaInst(PrivatizableType.getValue(), 0, 5554 Arg->getName() + ".priv", IP); 5555 createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn, 5556 ArgIt->getArgNo(), *IP); 5557 Arg->replaceAllUsesWith(AI); 5558 5559 for (CallInst *CI : TailCalls) 5560 CI->setTailCall(false); 5561 }; 5562 5563 // Callback to repair a call site of the associated function. The elements 5564 // of the privatizable type are loaded prior to the call and passed to the 5565 // new function version. 5566 Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB = 5567 [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI, 5568 AbstractCallSite ACS, 5569 SmallVectorImpl<Value *> &NewArgOperands) { 5570 // When no alignment is specified for the load instruction, 5571 // natural alignment is assumed. 5572 createReplacementValues( 5573 assumeAligned(AlignAA.getAssumedAlign()), 5574 PrivatizableType.getValue(), ACS, 5575 ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()), 5576 NewArgOperands); 5577 }; 5578 5579 // Collect the types that will replace the privatizable type in the function 5580 // signature. 5581 SmallVector<Type *, 16> ReplacementTypes; 5582 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5583 5584 // Register a rewrite of the argument. 5585 if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes, 5586 std::move(FnRepairCB), 5587 std::move(ACSRepairCB))) 5588 return ChangeStatus::CHANGED; 5589 return ChangeStatus::UNCHANGED; 5590 } 5591 5592 /// See AbstractAttribute::trackStatistics() 5593 void trackStatistics() const override { 5594 STATS_DECLTRACK_ARG_ATTR(privatizable_ptr); 5595 } 5596 }; 5597 5598 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl { 5599 AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A) 5600 : AAPrivatizablePtrImpl(IRP, A) {} 5601 5602 /// See AbstractAttribute::initialize(...). 5603 virtual void initialize(Attributor &A) override { 5604 // TODO: We can privatize more than arguments. 5605 indicatePessimisticFixpoint(); 5606 } 5607 5608 ChangeStatus updateImpl(Attributor &A) override { 5609 llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::" 5610 "updateImpl will not be called"); 5611 } 5612 5613 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5614 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5615 Value *Obj = getUnderlyingObject(&getAssociatedValue()); 5616 if (!Obj) { 5617 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n"); 5618 return nullptr; 5619 } 5620 5621 if (auto *AI = dyn_cast<AllocaInst>(Obj)) 5622 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) 5623 if (CI->isOne()) 5624 return Obj->getType()->getPointerElementType(); 5625 if (auto *Arg = dyn_cast<Argument>(Obj)) { 5626 auto &PrivArgAA = 5627 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg)); 5628 if (PrivArgAA.isAssumedPrivatizablePtr()) 5629 return Obj->getType()->getPointerElementType(); 5630 } 5631 5632 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid " 5633 "alloca nor privatizable argument: " 5634 << *Obj << "!\n"); 5635 return nullptr; 5636 } 5637 5638 /// See AbstractAttribute::trackStatistics() 5639 void trackStatistics() const override { 5640 STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr); 5641 } 5642 }; 5643 5644 struct AAPrivatizablePtrCallSiteArgument final 5645 : public AAPrivatizablePtrFloating { 5646 AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A) 5647 : AAPrivatizablePtrFloating(IRP, A) {} 5648 5649 /// See AbstractAttribute::initialize(...). 5650 void initialize(Attributor &A) override { 5651 if (getIRPosition().hasAttr(Attribute::ByVal)) 5652 indicateOptimisticFixpoint(); 5653 } 5654 5655 /// See AbstractAttribute::updateImpl(...). 5656 ChangeStatus updateImpl(Attributor &A) override { 5657 PrivatizableType = identifyPrivatizableType(A); 5658 if (!PrivatizableType.hasValue()) 5659 return ChangeStatus::UNCHANGED; 5660 if (!PrivatizableType.getValue()) 5661 return indicatePessimisticFixpoint(); 5662 5663 const IRPosition &IRP = getIRPosition(); 5664 auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP); 5665 if (!NoCaptureAA.isAssumedNoCapture()) { 5666 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n"); 5667 return indicatePessimisticFixpoint(); 5668 } 5669 5670 auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP); 5671 if (!NoAliasAA.isAssumedNoAlias()) { 5672 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n"); 5673 return indicatePessimisticFixpoint(); 5674 } 5675 5676 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP); 5677 if (!MemBehaviorAA.isAssumedReadOnly()) { 5678 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n"); 5679 return indicatePessimisticFixpoint(); 5680 } 5681 5682 return ChangeStatus::UNCHANGED; 5683 } 5684 5685 /// See AbstractAttribute::trackStatistics() 5686 void trackStatistics() const override { 5687 STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr); 5688 } 5689 }; 5690 5691 struct AAPrivatizablePtrCallSiteReturned final 5692 : public AAPrivatizablePtrFloating { 5693 AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A) 5694 : AAPrivatizablePtrFloating(IRP, A) {} 5695 5696 /// See AbstractAttribute::initialize(...). 5697 void initialize(Attributor &A) override { 5698 // TODO: We can privatize more than arguments. 5699 indicatePessimisticFixpoint(); 5700 } 5701 5702 /// See AbstractAttribute::trackStatistics() 5703 void trackStatistics() const override { 5704 STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr); 5705 } 5706 }; 5707 5708 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating { 5709 AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A) 5710 : AAPrivatizablePtrFloating(IRP, A) {} 5711 5712 /// See AbstractAttribute::initialize(...). 5713 void initialize(Attributor &A) override { 5714 // TODO: We can privatize more than arguments. 5715 indicatePessimisticFixpoint(); 5716 } 5717 5718 /// See AbstractAttribute::trackStatistics() 5719 void trackStatistics() const override { 5720 STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr); 5721 } 5722 }; 5723 5724 /// -------------------- Memory Behavior Attributes ---------------------------- 5725 /// Includes read-none, read-only, and write-only. 5726 /// ---------------------------------------------------------------------------- 5727 struct AAMemoryBehaviorImpl : public AAMemoryBehavior { 5728 AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A) 5729 : AAMemoryBehavior(IRP, A) {} 5730 5731 /// See AbstractAttribute::initialize(...). 5732 void initialize(Attributor &A) override { 5733 intersectAssumedBits(BEST_STATE); 5734 getKnownStateFromValue(getIRPosition(), getState()); 5735 IRAttribute::initialize(A); 5736 } 5737 5738 /// Return the memory behavior information encoded in the IR for \p IRP. 5739 static void getKnownStateFromValue(const IRPosition &IRP, 5740 BitIntegerState &State, 5741 bool IgnoreSubsumingPositions = false) { 5742 SmallVector<Attribute, 2> Attrs; 5743 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 5744 for (const Attribute &Attr : Attrs) { 5745 switch (Attr.getKindAsEnum()) { 5746 case Attribute::ReadNone: 5747 State.addKnownBits(NO_ACCESSES); 5748 break; 5749 case Attribute::ReadOnly: 5750 State.addKnownBits(NO_WRITES); 5751 break; 5752 case Attribute::WriteOnly: 5753 State.addKnownBits(NO_READS); 5754 break; 5755 default: 5756 llvm_unreachable("Unexpected attribute!"); 5757 } 5758 } 5759 5760 if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) { 5761 if (!I->mayReadFromMemory()) 5762 State.addKnownBits(NO_READS); 5763 if (!I->mayWriteToMemory()) 5764 State.addKnownBits(NO_WRITES); 5765 } 5766 } 5767 5768 /// See AbstractAttribute::getDeducedAttributes(...). 5769 void getDeducedAttributes(LLVMContext &Ctx, 5770 SmallVectorImpl<Attribute> &Attrs) const override { 5771 assert(Attrs.size() == 0); 5772 if (isAssumedReadNone()) 5773 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 5774 else if (isAssumedReadOnly()) 5775 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly)); 5776 else if (isAssumedWriteOnly()) 5777 Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly)); 5778 assert(Attrs.size() <= 1); 5779 } 5780 5781 /// See AbstractAttribute::manifest(...). 5782 ChangeStatus manifest(Attributor &A) override { 5783 if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true)) 5784 return ChangeStatus::UNCHANGED; 5785 5786 const IRPosition &IRP = getIRPosition(); 5787 5788 // Check if we would improve the existing attributes first. 5789 SmallVector<Attribute, 4> DeducedAttrs; 5790 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 5791 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 5792 return IRP.hasAttr(Attr.getKindAsEnum(), 5793 /* IgnoreSubsumingPositions */ true); 5794 })) 5795 return ChangeStatus::UNCHANGED; 5796 5797 // Clear existing attributes. 5798 IRP.removeAttrs(AttrKinds); 5799 5800 // Use the generic manifest method. 5801 return IRAttribute::manifest(A); 5802 } 5803 5804 /// See AbstractState::getAsStr(). 5805 const std::string getAsStr() const override { 5806 if (isAssumedReadNone()) 5807 return "readnone"; 5808 if (isAssumedReadOnly()) 5809 return "readonly"; 5810 if (isAssumedWriteOnly()) 5811 return "writeonly"; 5812 return "may-read/write"; 5813 } 5814 5815 /// The set of IR attributes AAMemoryBehavior deals with. 5816 static const Attribute::AttrKind AttrKinds[3]; 5817 }; 5818 5819 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { 5820 Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; 5821 5822 /// Memory behavior attribute for a floating value. 5823 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { 5824 AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A) 5825 : AAMemoryBehaviorImpl(IRP, A) {} 5826 5827 /// See AbstractAttribute::initialize(...). 5828 void initialize(Attributor &A) override { 5829 AAMemoryBehaviorImpl::initialize(A); 5830 // Initialize the use vector with all direct uses of the associated value. 5831 for (const Use &U : getAssociatedValue().uses()) 5832 Uses.insert(&U); 5833 } 5834 5835 /// See AbstractAttribute::updateImpl(...). 5836 ChangeStatus updateImpl(Attributor &A) override; 5837 5838 /// See AbstractAttribute::trackStatistics() 5839 void trackStatistics() const override { 5840 if (isAssumedReadNone()) 5841 STATS_DECLTRACK_FLOATING_ATTR(readnone) 5842 else if (isAssumedReadOnly()) 5843 STATS_DECLTRACK_FLOATING_ATTR(readonly) 5844 else if (isAssumedWriteOnly()) 5845 STATS_DECLTRACK_FLOATING_ATTR(writeonly) 5846 } 5847 5848 private: 5849 /// Return true if users of \p UserI might access the underlying 5850 /// variable/location described by \p U and should therefore be analyzed. 5851 bool followUsersOfUseIn(Attributor &A, const Use *U, 5852 const Instruction *UserI); 5853 5854 /// Update the state according to the effect of use \p U in \p UserI. 5855 void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI); 5856 5857 protected: 5858 /// Container for (transitive) uses of the associated argument. 5859 SetVector<const Use *> Uses; 5860 }; 5861 5862 /// Memory behavior attribute for function argument. 5863 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { 5864 AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A) 5865 : AAMemoryBehaviorFloating(IRP, A) {} 5866 5867 /// See AbstractAttribute::initialize(...). 5868 void initialize(Attributor &A) override { 5869 intersectAssumedBits(BEST_STATE); 5870 const IRPosition &IRP = getIRPosition(); 5871 // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we 5872 // can query it when we use has/getAttr. That would allow us to reuse the 5873 // initialize of the base class here. 5874 bool HasByVal = 5875 IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true); 5876 getKnownStateFromValue(IRP, getState(), 5877 /* IgnoreSubsumingPositions */ HasByVal); 5878 5879 // Initialize the use vector with all direct uses of the associated value. 5880 Argument *Arg = getAssociatedArgument(); 5881 if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) { 5882 indicatePessimisticFixpoint(); 5883 } else { 5884 // Initialize the use vector with all direct uses of the associated value. 5885 for (const Use &U : Arg->uses()) 5886 Uses.insert(&U); 5887 } 5888 } 5889 5890 ChangeStatus manifest(Attributor &A) override { 5891 // TODO: Pointer arguments are not supported on vectors of pointers yet. 5892 if (!getAssociatedValue().getType()->isPointerTy()) 5893 return ChangeStatus::UNCHANGED; 5894 5895 // TODO: From readattrs.ll: "inalloca parameters are always 5896 // considered written" 5897 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) { 5898 removeKnownBits(NO_WRITES); 5899 removeAssumedBits(NO_WRITES); 5900 } 5901 return AAMemoryBehaviorFloating::manifest(A); 5902 } 5903 5904 /// See AbstractAttribute::trackStatistics() 5905 void trackStatistics() const override { 5906 if (isAssumedReadNone()) 5907 STATS_DECLTRACK_ARG_ATTR(readnone) 5908 else if (isAssumedReadOnly()) 5909 STATS_DECLTRACK_ARG_ATTR(readonly) 5910 else if (isAssumedWriteOnly()) 5911 STATS_DECLTRACK_ARG_ATTR(writeonly) 5912 } 5913 }; 5914 5915 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { 5916 AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A) 5917 : AAMemoryBehaviorArgument(IRP, A) {} 5918 5919 /// See AbstractAttribute::initialize(...). 5920 void initialize(Attributor &A) override { 5921 if (Argument *Arg = getAssociatedArgument()) { 5922 if (Arg->hasByValAttr()) { 5923 addKnownBits(NO_WRITES); 5924 removeKnownBits(NO_READS); 5925 removeAssumedBits(NO_READS); 5926 } 5927 } 5928 AAMemoryBehaviorArgument::initialize(A); 5929 } 5930 5931 /// See AbstractAttribute::updateImpl(...). 5932 ChangeStatus updateImpl(Attributor &A) override { 5933 // TODO: Once we have call site specific value information we can provide 5934 // call site specific liveness liveness information and then it makes 5935 // sense to specialize attributes for call sites arguments instead of 5936 // redirecting requests to the callee argument. 5937 Argument *Arg = getAssociatedArgument(); 5938 const IRPosition &ArgPos = IRPosition::argument(*Arg); 5939 auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos); 5940 return clampStateAndIndicateChange(getState(), ArgAA.getState()); 5941 } 5942 5943 /// See AbstractAttribute::trackStatistics() 5944 void trackStatistics() const override { 5945 if (isAssumedReadNone()) 5946 STATS_DECLTRACK_CSARG_ATTR(readnone) 5947 else if (isAssumedReadOnly()) 5948 STATS_DECLTRACK_CSARG_ATTR(readonly) 5949 else if (isAssumedWriteOnly()) 5950 STATS_DECLTRACK_CSARG_ATTR(writeonly) 5951 } 5952 }; 5953 5954 /// Memory behavior attribute for a call site return position. 5955 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { 5956 AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A) 5957 : AAMemoryBehaviorFloating(IRP, A) {} 5958 5959 /// See AbstractAttribute::manifest(...). 5960 ChangeStatus manifest(Attributor &A) override { 5961 // We do not annotate returned values. 5962 return ChangeStatus::UNCHANGED; 5963 } 5964 5965 /// See AbstractAttribute::trackStatistics() 5966 void trackStatistics() const override {} 5967 }; 5968 5969 /// An AA to represent the memory behavior function attributes. 5970 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { 5971 AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A) 5972 : AAMemoryBehaviorImpl(IRP, A) {} 5973 5974 /// See AbstractAttribute::updateImpl(Attributor &A). 5975 virtual ChangeStatus updateImpl(Attributor &A) override; 5976 5977 /// See AbstractAttribute::manifest(...). 5978 ChangeStatus manifest(Attributor &A) override { 5979 Function &F = cast<Function>(getAnchorValue()); 5980 if (isAssumedReadNone()) { 5981 F.removeFnAttr(Attribute::ArgMemOnly); 5982 F.removeFnAttr(Attribute::InaccessibleMemOnly); 5983 F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); 5984 } 5985 return AAMemoryBehaviorImpl::manifest(A); 5986 } 5987 5988 /// See AbstractAttribute::trackStatistics() 5989 void trackStatistics() const override { 5990 if (isAssumedReadNone()) 5991 STATS_DECLTRACK_FN_ATTR(readnone) 5992 else if (isAssumedReadOnly()) 5993 STATS_DECLTRACK_FN_ATTR(readonly) 5994 else if (isAssumedWriteOnly()) 5995 STATS_DECLTRACK_FN_ATTR(writeonly) 5996 } 5997 }; 5998 5999 /// AAMemoryBehavior attribute for call sites. 6000 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl { 6001 AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A) 6002 : AAMemoryBehaviorImpl(IRP, A) {} 6003 6004 /// See AbstractAttribute::initialize(...). 6005 void initialize(Attributor &A) override { 6006 AAMemoryBehaviorImpl::initialize(A); 6007 Function *F = getAssociatedFunction(); 6008 if (!F || !A.isFunctionIPOAmendable(*F)) { 6009 indicatePessimisticFixpoint(); 6010 return; 6011 } 6012 } 6013 6014 /// See AbstractAttribute::updateImpl(...). 6015 ChangeStatus updateImpl(Attributor &A) override { 6016 // TODO: Once we have call site specific value information we can provide 6017 // call site specific liveness liveness information and then it makes 6018 // sense to specialize attributes for call sites arguments instead of 6019 // redirecting requests to the callee argument. 6020 Function *F = getAssociatedFunction(); 6021 const IRPosition &FnPos = IRPosition::function(*F); 6022 auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); 6023 return clampStateAndIndicateChange(getState(), FnAA.getState()); 6024 } 6025 6026 /// See AbstractAttribute::trackStatistics() 6027 void trackStatistics() const override { 6028 if (isAssumedReadNone()) 6029 STATS_DECLTRACK_CS_ATTR(readnone) 6030 else if (isAssumedReadOnly()) 6031 STATS_DECLTRACK_CS_ATTR(readonly) 6032 else if (isAssumedWriteOnly()) 6033 STATS_DECLTRACK_CS_ATTR(writeonly) 6034 } 6035 }; 6036 6037 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { 6038 6039 // The current assumed state used to determine a change. 6040 auto AssumedState = getAssumed(); 6041 6042 auto CheckRWInst = [&](Instruction &I) { 6043 // If the instruction has an own memory behavior state, use it to restrict 6044 // the local state. No further analysis is required as the other memory 6045 // state is as optimistic as it gets. 6046 if (const auto *CB = dyn_cast<CallBase>(&I)) { 6047 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6048 *this, IRPosition::callsite_function(*CB)); 6049 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6050 return !isAtFixpoint(); 6051 } 6052 6053 // Remove access kind modifiers if necessary. 6054 if (I.mayReadFromMemory()) 6055 removeAssumedBits(NO_READS); 6056 if (I.mayWriteToMemory()) 6057 removeAssumedBits(NO_WRITES); 6058 return !isAtFixpoint(); 6059 }; 6060 6061 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6062 return indicatePessimisticFixpoint(); 6063 6064 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6065 : ChangeStatus::UNCHANGED; 6066 } 6067 6068 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { 6069 6070 const IRPosition &IRP = getIRPosition(); 6071 const IRPosition &FnPos = IRPosition::function_scope(IRP); 6072 AAMemoryBehavior::StateType &S = getState(); 6073 6074 // First, check the function scope. We take the known information and we avoid 6075 // work if the assumed information implies the current assumed information for 6076 // this attribute. This is a valid for all but byval arguments. 6077 Argument *Arg = IRP.getAssociatedArgument(); 6078 AAMemoryBehavior::base_t FnMemAssumedState = 6079 AAMemoryBehavior::StateType::getWorstState(); 6080 if (!Arg || !Arg->hasByValAttr()) { 6081 const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>( 6082 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6083 FnMemAssumedState = FnMemAA.getAssumed(); 6084 S.addKnownBits(FnMemAA.getKnown()); 6085 if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed()) 6086 return ChangeStatus::UNCHANGED; 6087 } 6088 6089 // Make sure the value is not captured (except through "return"), if 6090 // it is, any information derived would be irrelevant anyway as we cannot 6091 // check the potential aliases introduced by the capture. However, no need 6092 // to fall back to anythign less optimistic than the function state. 6093 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6094 *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6095 if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 6096 S.intersectAssumedBits(FnMemAssumedState); 6097 return ChangeStatus::CHANGED; 6098 } 6099 6100 // The current assumed state used to determine a change. 6101 auto AssumedState = S.getAssumed(); 6102 6103 // Liveness information to exclude dead users. 6104 // TODO: Take the FnPos once we have call site specific liveness information. 6105 const auto &LivenessAA = A.getAAFor<AAIsDead>( 6106 *this, IRPosition::function(*IRP.getAssociatedFunction()), 6107 /* TrackDependence */ false); 6108 6109 // Visit and expand uses until all are analyzed or a fixpoint is reached. 6110 for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) { 6111 const Use *U = Uses[i]; 6112 Instruction *UserI = cast<Instruction>(U->getUser()); 6113 LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI 6114 << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA)) 6115 << "]\n"); 6116 if (A.isAssumedDead(*U, this, &LivenessAA)) 6117 continue; 6118 6119 // Droppable users, e.g., llvm::assume does not actually perform any action. 6120 if (UserI->isDroppable()) 6121 continue; 6122 6123 // Check if the users of UserI should also be visited. 6124 if (followUsersOfUseIn(A, U, UserI)) 6125 for (const Use &UserIUse : UserI->uses()) 6126 Uses.insert(&UserIUse); 6127 6128 // If UserI might touch memory we analyze the use in detail. 6129 if (UserI->mayReadOrWriteMemory()) 6130 analyzeUseIn(A, U, UserI); 6131 } 6132 6133 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6134 : ChangeStatus::UNCHANGED; 6135 } 6136 6137 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U, 6138 const Instruction *UserI) { 6139 // The loaded value is unrelated to the pointer argument, no need to 6140 // follow the users of the load. 6141 if (isa<LoadInst>(UserI)) 6142 return false; 6143 6144 // By default we follow all uses assuming UserI might leak information on U, 6145 // we have special handling for call sites operands though. 6146 const auto *CB = dyn_cast<CallBase>(UserI); 6147 if (!CB || !CB->isArgOperand(U)) 6148 return true; 6149 6150 // If the use is a call argument known not to be captured, the users of 6151 // the call do not need to be visited because they have to be unrelated to 6152 // the input. Note that this check is not trivial even though we disallow 6153 // general capturing of the underlying argument. The reason is that the 6154 // call might the argument "through return", which we allow and for which we 6155 // need to check call users. 6156 if (U->get()->getType()->isPointerTy()) { 6157 unsigned ArgNo = CB->getArgOperandNo(U); 6158 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6159 *this, IRPosition::callsite_argument(*CB, ArgNo), 6160 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6161 return !ArgNoCaptureAA.isAssumedNoCapture(); 6162 } 6163 6164 return true; 6165 } 6166 6167 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U, 6168 const Instruction *UserI) { 6169 assert(UserI->mayReadOrWriteMemory()); 6170 6171 switch (UserI->getOpcode()) { 6172 default: 6173 // TODO: Handle all atomics and other side-effect operations we know of. 6174 break; 6175 case Instruction::Load: 6176 // Loads cause the NO_READS property to disappear. 6177 removeAssumedBits(NO_READS); 6178 return; 6179 6180 case Instruction::Store: 6181 // Stores cause the NO_WRITES property to disappear if the use is the 6182 // pointer operand. Note that we do assume that capturing was taken care of 6183 // somewhere else. 6184 if (cast<StoreInst>(UserI)->getPointerOperand() == U->get()) 6185 removeAssumedBits(NO_WRITES); 6186 return; 6187 6188 case Instruction::Call: 6189 case Instruction::CallBr: 6190 case Instruction::Invoke: { 6191 // For call sites we look at the argument memory behavior attribute (this 6192 // could be recursive!) in order to restrict our own state. 6193 const auto *CB = cast<CallBase>(UserI); 6194 6195 // Give up on operand bundles. 6196 if (CB->isBundleOperand(U)) { 6197 indicatePessimisticFixpoint(); 6198 return; 6199 } 6200 6201 // Calling a function does read the function pointer, maybe write it if the 6202 // function is self-modifying. 6203 if (CB->isCallee(U)) { 6204 removeAssumedBits(NO_READS); 6205 break; 6206 } 6207 6208 // Adjust the possible access behavior based on the information on the 6209 // argument. 6210 IRPosition Pos; 6211 if (U->get()->getType()->isPointerTy()) 6212 Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U)); 6213 else 6214 Pos = IRPosition::callsite_function(*CB); 6215 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6216 *this, Pos, 6217 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6218 // "assumed" has at most the same bits as the MemBehaviorAA assumed 6219 // and at least "known". 6220 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6221 return; 6222 } 6223 }; 6224 6225 // Generally, look at the "may-properties" and adjust the assumed state if we 6226 // did not trigger special handling before. 6227 if (UserI->mayReadFromMemory()) 6228 removeAssumedBits(NO_READS); 6229 if (UserI->mayWriteToMemory()) 6230 removeAssumedBits(NO_WRITES); 6231 } 6232 6233 } // namespace 6234 6235 /// -------------------- Memory Locations Attributes --------------------------- 6236 /// Includes read-none, argmemonly, inaccessiblememonly, 6237 /// inaccessiblememorargmemonly 6238 /// ---------------------------------------------------------------------------- 6239 6240 std::string AAMemoryLocation::getMemoryLocationsAsStr( 6241 AAMemoryLocation::MemoryLocationsKind MLK) { 6242 if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS)) 6243 return "all memory"; 6244 if (MLK == AAMemoryLocation::NO_LOCATIONS) 6245 return "no memory"; 6246 std::string S = "memory:"; 6247 if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM)) 6248 S += "stack,"; 6249 if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM)) 6250 S += "constant,"; 6251 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM)) 6252 S += "internal global,"; 6253 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM)) 6254 S += "external global,"; 6255 if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM)) 6256 S += "argument,"; 6257 if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM)) 6258 S += "inaccessible,"; 6259 if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM)) 6260 S += "malloced,"; 6261 if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM)) 6262 S += "unknown,"; 6263 S.pop_back(); 6264 return S; 6265 } 6266 6267 namespace { 6268 struct AAMemoryLocationImpl : public AAMemoryLocation { 6269 6270 AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A) 6271 : AAMemoryLocation(IRP, A), Allocator(A.Allocator) { 6272 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) 6273 AccessKind2Accesses[u] = nullptr; 6274 } 6275 6276 ~AAMemoryLocationImpl() { 6277 // The AccessSets are allocated via a BumpPtrAllocator, we call 6278 // the destructor manually. 6279 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) 6280 if (AccessKind2Accesses[u]) 6281 AccessKind2Accesses[u]->~AccessSet(); 6282 } 6283 6284 /// See AbstractAttribute::initialize(...). 6285 void initialize(Attributor &A) override { 6286 intersectAssumedBits(BEST_STATE); 6287 getKnownStateFromValue(A, getIRPosition(), getState()); 6288 IRAttribute::initialize(A); 6289 } 6290 6291 /// Return the memory behavior information encoded in the IR for \p IRP. 6292 static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP, 6293 BitIntegerState &State, 6294 bool IgnoreSubsumingPositions = false) { 6295 // For internal functions we ignore `argmemonly` and 6296 // `inaccessiblememorargmemonly` as we might break it via interprocedural 6297 // constant propagation. It is unclear if this is the best way but it is 6298 // unlikely this will cause real performance problems. If we are deriving 6299 // attributes for the anchor function we even remove the attribute in 6300 // addition to ignoring it. 6301 bool UseArgMemOnly = true; 6302 Function *AnchorFn = IRP.getAnchorScope(); 6303 if (AnchorFn && A.isRunOn(*AnchorFn)) 6304 UseArgMemOnly = !AnchorFn->hasLocalLinkage(); 6305 6306 SmallVector<Attribute, 2> Attrs; 6307 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 6308 for (const Attribute &Attr : Attrs) { 6309 switch (Attr.getKindAsEnum()) { 6310 case Attribute::ReadNone: 6311 State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM); 6312 break; 6313 case Attribute::InaccessibleMemOnly: 6314 State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); 6315 break; 6316 case Attribute::ArgMemOnly: 6317 if (UseArgMemOnly) 6318 State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true)); 6319 else 6320 IRP.removeAttrs({Attribute::ArgMemOnly}); 6321 break; 6322 case Attribute::InaccessibleMemOrArgMemOnly: 6323 if (UseArgMemOnly) 6324 State.addKnownBits(inverseLocation( 6325 NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); 6326 else 6327 IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly}); 6328 break; 6329 default: 6330 llvm_unreachable("Unexpected attribute!"); 6331 } 6332 } 6333 } 6334 6335 /// See AbstractAttribute::getDeducedAttributes(...). 6336 void getDeducedAttributes(LLVMContext &Ctx, 6337 SmallVectorImpl<Attribute> &Attrs) const override { 6338 assert(Attrs.size() == 0); 6339 if (isAssumedReadNone()) { 6340 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 6341 } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) { 6342 if (isAssumedInaccessibleMemOnly()) 6343 Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly)); 6344 else if (isAssumedArgMemOnly()) 6345 Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly)); 6346 else if (isAssumedInaccessibleOrArgMemOnly()) 6347 Attrs.push_back( 6348 Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly)); 6349 } 6350 assert(Attrs.size() <= 1); 6351 } 6352 6353 /// See AbstractAttribute::manifest(...). 6354 ChangeStatus manifest(Attributor &A) override { 6355 const IRPosition &IRP = getIRPosition(); 6356 6357 // Check if we would improve the existing attributes first. 6358 SmallVector<Attribute, 4> DeducedAttrs; 6359 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 6360 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 6361 return IRP.hasAttr(Attr.getKindAsEnum(), 6362 /* IgnoreSubsumingPositions */ true); 6363 })) 6364 return ChangeStatus::UNCHANGED; 6365 6366 // Clear existing attributes. 6367 IRP.removeAttrs(AttrKinds); 6368 if (isAssumedReadNone()) 6369 IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds); 6370 6371 // Use the generic manifest method. 6372 return IRAttribute::manifest(A); 6373 } 6374 6375 /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...). 6376 bool checkForAllAccessesToMemoryKind( 6377 function_ref<bool(const Instruction *, const Value *, AccessKind, 6378 MemoryLocationsKind)> 6379 Pred, 6380 MemoryLocationsKind RequestedMLK) const override { 6381 if (!isValidState()) 6382 return false; 6383 6384 MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation(); 6385 if (AssumedMLK == NO_LOCATIONS) 6386 return true; 6387 6388 unsigned Idx = 0; 6389 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; 6390 CurMLK *= 2, ++Idx) { 6391 if (CurMLK & RequestedMLK) 6392 continue; 6393 6394 if (const AccessSet *Accesses = AccessKind2Accesses[Idx]) 6395 for (const AccessInfo &AI : *Accesses) 6396 if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK)) 6397 return false; 6398 } 6399 6400 return true; 6401 } 6402 6403 ChangeStatus indicatePessimisticFixpoint() override { 6404 // If we give up and indicate a pessimistic fixpoint this instruction will 6405 // become an access for all potential access kinds: 6406 // TODO: Add pointers for argmemonly and globals to improve the results of 6407 // checkForAllAccessesToMemoryKind. 6408 bool Changed = false; 6409 MemoryLocationsKind KnownMLK = getKnown(); 6410 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 6411 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) 6412 if (!(CurMLK & KnownMLK)) 6413 updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed, 6414 getAccessKindFromInst(I)); 6415 return AAMemoryLocation::indicatePessimisticFixpoint(); 6416 } 6417 6418 protected: 6419 /// Helper struct to tie together an instruction that has a read or write 6420 /// effect with the pointer it accesses (if any). 6421 struct AccessInfo { 6422 6423 /// The instruction that caused the access. 6424 const Instruction *I; 6425 6426 /// The base pointer that is accessed, or null if unknown. 6427 const Value *Ptr; 6428 6429 /// The kind of access (read/write/read+write). 6430 AccessKind Kind; 6431 6432 bool operator==(const AccessInfo &RHS) const { 6433 return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind; 6434 } 6435 bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const { 6436 if (LHS.I != RHS.I) 6437 return LHS.I < RHS.I; 6438 if (LHS.Ptr != RHS.Ptr) 6439 return LHS.Ptr < RHS.Ptr; 6440 if (LHS.Kind != RHS.Kind) 6441 return LHS.Kind < RHS.Kind; 6442 return false; 6443 } 6444 }; 6445 6446 /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the 6447 /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind. 6448 using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>; 6449 AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()]; 6450 6451 /// Categorize the pointer arguments of CB that might access memory in 6452 /// AccessedLoc and update the state and access map accordingly. 6453 void 6454 categorizeArgumentPointerLocations(Attributor &A, CallBase &CB, 6455 AAMemoryLocation::StateType &AccessedLocs, 6456 bool &Changed); 6457 6458 /// Return the kind(s) of location that may be accessed by \p V. 6459 AAMemoryLocation::MemoryLocationsKind 6460 categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed); 6461 6462 /// Return the access kind as determined by \p I. 6463 AccessKind getAccessKindFromInst(const Instruction *I) { 6464 AccessKind AK = READ_WRITE; 6465 if (I) { 6466 AK = I->mayReadFromMemory() ? READ : NONE; 6467 AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE)); 6468 } 6469 return AK; 6470 } 6471 6472 /// Update the state \p State and the AccessKind2Accesses given that \p I is 6473 /// an access of kind \p AK to a \p MLK memory location with the access 6474 /// pointer \p Ptr. 6475 void updateStateAndAccessesMap(AAMemoryLocation::StateType &State, 6476 MemoryLocationsKind MLK, const Instruction *I, 6477 const Value *Ptr, bool &Changed, 6478 AccessKind AK = READ_WRITE) { 6479 6480 assert(isPowerOf2_32(MLK) && "Expected a single location set!"); 6481 auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)]; 6482 if (!Accesses) 6483 Accesses = new (Allocator) AccessSet(); 6484 Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second; 6485 State.removeAssumedBits(MLK); 6486 } 6487 6488 /// Determine the underlying locations kinds for \p Ptr, e.g., globals or 6489 /// arguments, and update the state and access map accordingly. 6490 void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr, 6491 AAMemoryLocation::StateType &State, bool &Changed); 6492 6493 /// Used to allocate access sets. 6494 BumpPtrAllocator &Allocator; 6495 6496 /// The set of IR attributes AAMemoryLocation deals with. 6497 static const Attribute::AttrKind AttrKinds[4]; 6498 }; 6499 6500 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = { 6501 Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly, 6502 Attribute::InaccessibleMemOrArgMemOnly}; 6503 6504 void AAMemoryLocationImpl::categorizePtrValue( 6505 Attributor &A, const Instruction &I, const Value &Ptr, 6506 AAMemoryLocation::StateType &State, bool &Changed) { 6507 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for " 6508 << Ptr << " [" 6509 << getMemoryLocationsAsStr(State.getAssumed()) << "]\n"); 6510 6511 auto StripGEPCB = [](Value *V) -> Value * { 6512 auto *GEP = dyn_cast<GEPOperator>(V); 6513 while (GEP) { 6514 V = GEP->getPointerOperand(); 6515 GEP = dyn_cast<GEPOperator>(V); 6516 } 6517 return V; 6518 }; 6519 6520 auto VisitValueCB = [&](Value &V, const Instruction *, 6521 AAMemoryLocation::StateType &T, 6522 bool Stripped) -> bool { 6523 MemoryLocationsKind MLK = NO_LOCATIONS; 6524 assert(!isa<GEPOperator>(V) && "GEPs should have been stripped."); 6525 if (isa<UndefValue>(V)) 6526 return true; 6527 if (auto *Arg = dyn_cast<Argument>(&V)) { 6528 if (Arg->hasByValAttr()) 6529 MLK = NO_LOCAL_MEM; 6530 else 6531 MLK = NO_ARGUMENT_MEM; 6532 } else if (auto *GV = dyn_cast<GlobalValue>(&V)) { 6533 if (GV->hasLocalLinkage()) 6534 MLK = NO_GLOBAL_INTERNAL_MEM; 6535 else 6536 MLK = NO_GLOBAL_EXTERNAL_MEM; 6537 } else if (isa<ConstantPointerNull>(V) && 6538 !NullPointerIsDefined(getAssociatedFunction(), 6539 V.getType()->getPointerAddressSpace())) { 6540 return true; 6541 } else if (isa<AllocaInst>(V)) { 6542 MLK = NO_LOCAL_MEM; 6543 } else if (const auto *CB = dyn_cast<CallBase>(&V)) { 6544 const auto &NoAliasAA = 6545 A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB)); 6546 if (NoAliasAA.isAssumedNoAlias()) 6547 MLK = NO_MALLOCED_MEM; 6548 else 6549 MLK = NO_UNKOWN_MEM; 6550 } else { 6551 MLK = NO_UNKOWN_MEM; 6552 } 6553 6554 assert(MLK != NO_LOCATIONS && "No location specified!"); 6555 updateStateAndAccessesMap(T, MLK, &I, &V, Changed, 6556 getAccessKindFromInst(&I)); 6557 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: " 6558 << V << " -> " << getMemoryLocationsAsStr(T.getAssumed()) 6559 << "\n"); 6560 return true; 6561 }; 6562 6563 if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>( 6564 A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(), 6565 /* UseValueSimplify */ true, 6566 /* MaxValues */ 32, StripGEPCB)) { 6567 LLVM_DEBUG( 6568 dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n"); 6569 updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed, 6570 getAccessKindFromInst(&I)); 6571 } else { 6572 LLVM_DEBUG( 6573 dbgs() 6574 << "[AAMemoryLocation] Accessed locations with pointer locations: " 6575 << getMemoryLocationsAsStr(State.getAssumed()) << "\n"); 6576 } 6577 } 6578 6579 void AAMemoryLocationImpl::categorizeArgumentPointerLocations( 6580 Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs, 6581 bool &Changed) { 6582 for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) { 6583 6584 // Skip non-pointer arguments. 6585 const Value *ArgOp = CB.getArgOperand(ArgNo); 6586 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 6587 continue; 6588 6589 // Skip readnone arguments. 6590 const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo); 6591 const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>( 6592 *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6593 6594 if (ArgOpMemLocationAA.isAssumedReadNone()) 6595 continue; 6596 6597 // Categorize potentially accessed pointer arguments as if there was an 6598 // access instruction with them as pointer. 6599 categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed); 6600 } 6601 } 6602 6603 AAMemoryLocation::MemoryLocationsKind 6604 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I, 6605 bool &Changed) { 6606 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for " 6607 << I << "\n"); 6608 6609 AAMemoryLocation::StateType AccessedLocs; 6610 AccessedLocs.intersectAssumedBits(NO_LOCATIONS); 6611 6612 if (auto *CB = dyn_cast<CallBase>(&I)) { 6613 6614 // First check if we assume any memory is access is visible. 6615 const auto &CBMemLocationAA = 6616 A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB)); 6617 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I 6618 << " [" << CBMemLocationAA << "]\n"); 6619 6620 if (CBMemLocationAA.isAssumedReadNone()) 6621 return NO_LOCATIONS; 6622 6623 if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) { 6624 updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr, 6625 Changed, getAccessKindFromInst(&I)); 6626 return AccessedLocs.getAssumed(); 6627 } 6628 6629 uint32_t CBAssumedNotAccessedLocs = 6630 CBMemLocationAA.getAssumedNotAccessedLocation(); 6631 6632 // Set the argmemonly and global bit as we handle them separately below. 6633 uint32_t CBAssumedNotAccessedLocsNoArgMem = 6634 CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM; 6635 6636 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { 6637 if (CBAssumedNotAccessedLocsNoArgMem & CurMLK) 6638 continue; 6639 updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed, 6640 getAccessKindFromInst(&I)); 6641 } 6642 6643 // Now handle global memory if it might be accessed. This is slightly tricky 6644 // as NO_GLOBAL_MEM has multiple bits set. 6645 bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM); 6646 if (HasGlobalAccesses) { 6647 auto AccessPred = [&](const Instruction *, const Value *Ptr, 6648 AccessKind Kind, MemoryLocationsKind MLK) { 6649 updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed, 6650 getAccessKindFromInst(&I)); 6651 return true; 6652 }; 6653 if (!CBMemLocationAA.checkForAllAccessesToMemoryKind( 6654 AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false))) 6655 return AccessedLocs.getWorstState(); 6656 } 6657 6658 LLVM_DEBUG( 6659 dbgs() << "[AAMemoryLocation] Accessed state before argument handling: " 6660 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6661 6662 // Now handle argument memory if it might be accessed. 6663 bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM); 6664 if (HasArgAccesses) 6665 categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed); 6666 6667 LLVM_DEBUG( 6668 dbgs() << "[AAMemoryLocation] Accessed state after argument handling: " 6669 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6670 6671 return AccessedLocs.getAssumed(); 6672 } 6673 6674 if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) { 6675 LLVM_DEBUG( 6676 dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: " 6677 << I << " [" << *Ptr << "]\n"); 6678 categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed); 6679 return AccessedLocs.getAssumed(); 6680 } 6681 6682 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: " 6683 << I << "\n"); 6684 updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed, 6685 getAccessKindFromInst(&I)); 6686 return AccessedLocs.getAssumed(); 6687 } 6688 6689 /// An AA to represent the memory behavior function attributes. 6690 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl { 6691 AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A) 6692 : AAMemoryLocationImpl(IRP, A) {} 6693 6694 /// See AbstractAttribute::updateImpl(Attributor &A). 6695 virtual ChangeStatus updateImpl(Attributor &A) override { 6696 6697 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6698 *this, getIRPosition(), /* TrackDependence */ false); 6699 if (MemBehaviorAA.isAssumedReadNone()) { 6700 if (MemBehaviorAA.isKnownReadNone()) 6701 return indicateOptimisticFixpoint(); 6702 assert(isAssumedReadNone() && 6703 "AAMemoryLocation was not read-none but AAMemoryBehavior was!"); 6704 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 6705 return ChangeStatus::UNCHANGED; 6706 } 6707 6708 // The current assumed state used to determine a change. 6709 auto AssumedState = getAssumed(); 6710 bool Changed = false; 6711 6712 auto CheckRWInst = [&](Instruction &I) { 6713 MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed); 6714 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I 6715 << ": " << getMemoryLocationsAsStr(MLK) << "\n"); 6716 removeAssumedBits(inverseLocation(MLK, false, false)); 6717 // Stop once only the valid bit set in the *not assumed location*, thus 6718 // once we don't actually exclude any memory locations in the state. 6719 return getAssumedNotAccessedLocation() != VALID_STATE; 6720 }; 6721 6722 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6723 return indicatePessimisticFixpoint(); 6724 6725 Changed |= AssumedState != getAssumed(); 6726 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6727 } 6728 6729 /// See AbstractAttribute::trackStatistics() 6730 void trackStatistics() const override { 6731 if (isAssumedReadNone()) 6732 STATS_DECLTRACK_FN_ATTR(readnone) 6733 else if (isAssumedArgMemOnly()) 6734 STATS_DECLTRACK_FN_ATTR(argmemonly) 6735 else if (isAssumedInaccessibleMemOnly()) 6736 STATS_DECLTRACK_FN_ATTR(inaccessiblememonly) 6737 else if (isAssumedInaccessibleOrArgMemOnly()) 6738 STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly) 6739 } 6740 }; 6741 6742 /// AAMemoryLocation attribute for call sites. 6743 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl { 6744 AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A) 6745 : AAMemoryLocationImpl(IRP, A) {} 6746 6747 /// See AbstractAttribute::initialize(...). 6748 void initialize(Attributor &A) override { 6749 AAMemoryLocationImpl::initialize(A); 6750 Function *F = getAssociatedFunction(); 6751 if (!F || !A.isFunctionIPOAmendable(*F)) { 6752 indicatePessimisticFixpoint(); 6753 return; 6754 } 6755 } 6756 6757 /// See AbstractAttribute::updateImpl(...). 6758 ChangeStatus updateImpl(Attributor &A) override { 6759 // TODO: Once we have call site specific value information we can provide 6760 // call site specific liveness liveness information and then it makes 6761 // sense to specialize attributes for call sites arguments instead of 6762 // redirecting requests to the callee argument. 6763 Function *F = getAssociatedFunction(); 6764 const IRPosition &FnPos = IRPosition::function(*F); 6765 auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos); 6766 bool Changed = false; 6767 auto AccessPred = [&](const Instruction *I, const Value *Ptr, 6768 AccessKind Kind, MemoryLocationsKind MLK) { 6769 updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed, 6770 getAccessKindFromInst(I)); 6771 return true; 6772 }; 6773 if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS)) 6774 return indicatePessimisticFixpoint(); 6775 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6776 } 6777 6778 /// See AbstractAttribute::trackStatistics() 6779 void trackStatistics() const override { 6780 if (isAssumedReadNone()) 6781 STATS_DECLTRACK_CS_ATTR(readnone) 6782 } 6783 }; 6784 6785 /// ------------------ Value Constant Range Attribute ------------------------- 6786 6787 struct AAValueConstantRangeImpl : AAValueConstantRange { 6788 using StateType = IntegerRangeState; 6789 AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A) 6790 : AAValueConstantRange(IRP, A) {} 6791 6792 /// See AbstractAttribute::getAsStr(). 6793 const std::string getAsStr() const override { 6794 std::string Str; 6795 llvm::raw_string_ostream OS(Str); 6796 OS << "range(" << getBitWidth() << ")<"; 6797 getKnown().print(OS); 6798 OS << " / "; 6799 getAssumed().print(OS); 6800 OS << ">"; 6801 return OS.str(); 6802 } 6803 6804 /// Helper function to get a SCEV expr for the associated value at program 6805 /// point \p I. 6806 const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const { 6807 if (!getAnchorScope()) 6808 return nullptr; 6809 6810 ScalarEvolution *SE = 6811 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6812 *getAnchorScope()); 6813 6814 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>( 6815 *getAnchorScope()); 6816 6817 if (!SE || !LI) 6818 return nullptr; 6819 6820 const SCEV *S = SE->getSCEV(&getAssociatedValue()); 6821 if (!I) 6822 return S; 6823 6824 return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent())); 6825 } 6826 6827 /// Helper function to get a range from SCEV for the associated value at 6828 /// program point \p I. 6829 ConstantRange getConstantRangeFromSCEV(Attributor &A, 6830 const Instruction *I = nullptr) const { 6831 if (!getAnchorScope()) 6832 return getWorstState(getBitWidth()); 6833 6834 ScalarEvolution *SE = 6835 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6836 *getAnchorScope()); 6837 6838 const SCEV *S = getSCEV(A, I); 6839 if (!SE || !S) 6840 return getWorstState(getBitWidth()); 6841 6842 return SE->getUnsignedRange(S); 6843 } 6844 6845 /// Helper function to get a range from LVI for the associated value at 6846 /// program point \p I. 6847 ConstantRange 6848 getConstantRangeFromLVI(Attributor &A, 6849 const Instruction *CtxI = nullptr) const { 6850 if (!getAnchorScope()) 6851 return getWorstState(getBitWidth()); 6852 6853 LazyValueInfo *LVI = 6854 A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>( 6855 *getAnchorScope()); 6856 6857 if (!LVI || !CtxI) 6858 return getWorstState(getBitWidth()); 6859 return LVI->getConstantRange(&getAssociatedValue(), 6860 const_cast<BasicBlock *>(CtxI->getParent()), 6861 const_cast<Instruction *>(CtxI)); 6862 } 6863 6864 /// See AAValueConstantRange::getKnownConstantRange(..). 6865 ConstantRange 6866 getKnownConstantRange(Attributor &A, 6867 const Instruction *CtxI = nullptr) const override { 6868 if (!CtxI || CtxI == getCtxI()) 6869 return getKnown(); 6870 6871 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6872 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6873 return getKnown().intersectWith(SCEVR).intersectWith(LVIR); 6874 } 6875 6876 /// See AAValueConstantRange::getAssumedConstantRange(..). 6877 ConstantRange 6878 getAssumedConstantRange(Attributor &A, 6879 const Instruction *CtxI = nullptr) const override { 6880 // TODO: Make SCEV use Attributor assumption. 6881 // We may be able to bound a variable range via assumptions in 6882 // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to 6883 // evolve to x^2 + x, then we can say that y is in [2, 12]. 6884 6885 if (!CtxI || CtxI == getCtxI()) 6886 return getAssumed(); 6887 6888 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6889 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6890 return getAssumed().intersectWith(SCEVR).intersectWith(LVIR); 6891 } 6892 6893 /// See AbstractAttribute::initialize(..). 6894 void initialize(Attributor &A) override { 6895 // Intersect a range given by SCEV. 6896 intersectKnown(getConstantRangeFromSCEV(A, getCtxI())); 6897 6898 // Intersect a range given by LVI. 6899 intersectKnown(getConstantRangeFromLVI(A, getCtxI())); 6900 } 6901 6902 /// Helper function to create MDNode for range metadata. 6903 static MDNode * 6904 getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx, 6905 const ConstantRange &AssumedConstantRange) { 6906 Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get( 6907 Ty, AssumedConstantRange.getLower())), 6908 ConstantAsMetadata::get(ConstantInt::get( 6909 Ty, AssumedConstantRange.getUpper()))}; 6910 return MDNode::get(Ctx, LowAndHigh); 6911 } 6912 6913 /// Return true if \p Assumed is included in \p KnownRanges. 6914 static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) { 6915 6916 if (Assumed.isFullSet()) 6917 return false; 6918 6919 if (!KnownRanges) 6920 return true; 6921 6922 // If multiple ranges are annotated in IR, we give up to annotate assumed 6923 // range for now. 6924 6925 // TODO: If there exists a known range which containts assumed range, we 6926 // can say assumed range is better. 6927 if (KnownRanges->getNumOperands() > 2) 6928 return false; 6929 6930 ConstantInt *Lower = 6931 mdconst::extract<ConstantInt>(KnownRanges->getOperand(0)); 6932 ConstantInt *Upper = 6933 mdconst::extract<ConstantInt>(KnownRanges->getOperand(1)); 6934 6935 ConstantRange Known(Lower->getValue(), Upper->getValue()); 6936 return Known.contains(Assumed) && Known != Assumed; 6937 } 6938 6939 /// Helper function to set range metadata. 6940 static bool 6941 setRangeMetadataIfisBetterRange(Instruction *I, 6942 const ConstantRange &AssumedConstantRange) { 6943 auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range); 6944 if (isBetterRange(AssumedConstantRange, OldRangeMD)) { 6945 if (!AssumedConstantRange.isEmptySet()) { 6946 I->setMetadata(LLVMContext::MD_range, 6947 getMDNodeForConstantRange(I->getType(), I->getContext(), 6948 AssumedConstantRange)); 6949 return true; 6950 } 6951 } 6952 return false; 6953 } 6954 6955 /// See AbstractAttribute::manifest() 6956 ChangeStatus manifest(Attributor &A) override { 6957 ChangeStatus Changed = ChangeStatus::UNCHANGED; 6958 ConstantRange AssumedConstantRange = getAssumedConstantRange(A); 6959 assert(!AssumedConstantRange.isFullSet() && "Invalid state"); 6960 6961 auto &V = getAssociatedValue(); 6962 if (!AssumedConstantRange.isEmptySet() && 6963 !AssumedConstantRange.isSingleElement()) { 6964 if (Instruction *I = dyn_cast<Instruction>(&V)) 6965 if (isa<CallInst>(I) || isa<LoadInst>(I)) 6966 if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange)) 6967 Changed = ChangeStatus::CHANGED; 6968 } 6969 6970 return Changed; 6971 } 6972 }; 6973 6974 struct AAValueConstantRangeArgument final 6975 : AAArgumentFromCallSiteArguments< 6976 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> { 6977 using Base = AAArgumentFromCallSiteArguments< 6978 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>; 6979 AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A) 6980 : Base(IRP, A) {} 6981 6982 /// See AbstractAttribute::initialize(..). 6983 void initialize(Attributor &A) override { 6984 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { 6985 indicatePessimisticFixpoint(); 6986 } else { 6987 Base::initialize(A); 6988 } 6989 } 6990 6991 /// See AbstractAttribute::trackStatistics() 6992 void trackStatistics() const override { 6993 STATS_DECLTRACK_ARG_ATTR(value_range) 6994 } 6995 }; 6996 6997 struct AAValueConstantRangeReturned 6998 : AAReturnedFromReturnedValues<AAValueConstantRange, 6999 AAValueConstantRangeImpl> { 7000 using Base = AAReturnedFromReturnedValues<AAValueConstantRange, 7001 AAValueConstantRangeImpl>; 7002 AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A) 7003 : Base(IRP, A) {} 7004 7005 /// See AbstractAttribute::initialize(...). 7006 void initialize(Attributor &A) override {} 7007 7008 /// See AbstractAttribute::trackStatistics() 7009 void trackStatistics() const override { 7010 STATS_DECLTRACK_FNRET_ATTR(value_range) 7011 } 7012 }; 7013 7014 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl { 7015 AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A) 7016 : AAValueConstantRangeImpl(IRP, A) {} 7017 7018 /// See AbstractAttribute::initialize(...). 7019 void initialize(Attributor &A) override { 7020 AAValueConstantRangeImpl::initialize(A); 7021 Value &V = getAssociatedValue(); 7022 7023 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7024 unionAssumed(ConstantRange(C->getValue())); 7025 indicateOptimisticFixpoint(); 7026 return; 7027 } 7028 7029 if (isa<UndefValue>(&V)) { 7030 // Collapse the undef state to 0. 7031 unionAssumed(ConstantRange(APInt(getBitWidth(), 0))); 7032 indicateOptimisticFixpoint(); 7033 return; 7034 } 7035 7036 if (isa<CallBase>(&V)) 7037 return; 7038 7039 if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V)) 7040 return; 7041 // If it is a load instruction with range metadata, use it. 7042 if (LoadInst *LI = dyn_cast<LoadInst>(&V)) 7043 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) { 7044 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7045 return; 7046 } 7047 7048 // We can work with PHI and select instruction as we traverse their operands 7049 // during update. 7050 if (isa<SelectInst>(V) || isa<PHINode>(V)) 7051 return; 7052 7053 // Otherwise we give up. 7054 indicatePessimisticFixpoint(); 7055 7056 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: " 7057 << getAssociatedValue() << "\n"); 7058 } 7059 7060 bool calculateBinaryOperator( 7061 Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T, 7062 const Instruction *CtxI, 7063 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7064 Value *LHS = BinOp->getOperand(0); 7065 Value *RHS = BinOp->getOperand(1); 7066 // TODO: Allow non integers as well. 7067 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7068 return false; 7069 7070 auto &LHSAA = 7071 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7072 QuerriedAAs.push_back(&LHSAA); 7073 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7074 7075 auto &RHSAA = 7076 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7077 QuerriedAAs.push_back(&RHSAA); 7078 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7079 7080 auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange); 7081 7082 T.unionAssumed(AssumedRange); 7083 7084 // TODO: Track a known state too. 7085 7086 return T.isValidState(); 7087 } 7088 7089 bool calculateCastInst( 7090 Attributor &A, CastInst *CastI, IntegerRangeState &T, 7091 const Instruction *CtxI, 7092 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7093 assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!"); 7094 // TODO: Allow non integers as well. 7095 Value &OpV = *CastI->getOperand(0); 7096 if (!OpV.getType()->isIntegerTy()) 7097 return false; 7098 7099 auto &OpAA = 7100 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV)); 7101 QuerriedAAs.push_back(&OpAA); 7102 T.unionAssumed( 7103 OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth())); 7104 return T.isValidState(); 7105 } 7106 7107 bool 7108 calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T, 7109 const Instruction *CtxI, 7110 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7111 Value *LHS = CmpI->getOperand(0); 7112 Value *RHS = CmpI->getOperand(1); 7113 // TODO: Allow non integers as well. 7114 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7115 return false; 7116 7117 auto &LHSAA = 7118 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7119 QuerriedAAs.push_back(&LHSAA); 7120 auto &RHSAA = 7121 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7122 QuerriedAAs.push_back(&RHSAA); 7123 7124 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7125 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7126 7127 // If one of them is empty set, we can't decide. 7128 if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet()) 7129 return true; 7130 7131 bool MustTrue = false, MustFalse = false; 7132 7133 auto AllowedRegion = 7134 ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange); 7135 7136 auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion( 7137 CmpI->getPredicate(), RHSAARange); 7138 7139 if (AllowedRegion.intersectWith(LHSAARange).isEmptySet()) 7140 MustFalse = true; 7141 7142 if (SatisfyingRegion.contains(LHSAARange)) 7143 MustTrue = true; 7144 7145 assert((!MustTrue || !MustFalse) && 7146 "Either MustTrue or MustFalse should be false!"); 7147 7148 if (MustTrue) 7149 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1))); 7150 else if (MustFalse) 7151 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0))); 7152 else 7153 T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true)); 7154 7155 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA 7156 << " " << RHSAA << "\n"); 7157 7158 // TODO: Track a known state too. 7159 return T.isValidState(); 7160 } 7161 7162 /// See AbstractAttribute::updateImpl(...). 7163 ChangeStatus updateImpl(Attributor &A) override { 7164 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 7165 IntegerRangeState &T, bool Stripped) -> bool { 7166 Instruction *I = dyn_cast<Instruction>(&V); 7167 if (!I || isa<CallBase>(I)) { 7168 7169 // If the value is not instruction, we query AA to Attributor. 7170 const auto &AA = 7171 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V)); 7172 7173 // Clamp operator is not used to utilize a program point CtxI. 7174 T.unionAssumed(AA.getAssumedConstantRange(A, CtxI)); 7175 7176 return T.isValidState(); 7177 } 7178 7179 SmallVector<const AAValueConstantRange *, 4> QuerriedAAs; 7180 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) { 7181 if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs)) 7182 return false; 7183 } else if (auto *CmpI = dyn_cast<CmpInst>(I)) { 7184 if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs)) 7185 return false; 7186 } else if (auto *CastI = dyn_cast<CastInst>(I)) { 7187 if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs)) 7188 return false; 7189 } else { 7190 // Give up with other instructions. 7191 // TODO: Add other instructions 7192 7193 T.indicatePessimisticFixpoint(); 7194 return false; 7195 } 7196 7197 // Catch circular reasoning in a pessimistic way for now. 7198 // TODO: Check how the range evolves and if we stripped anything, see also 7199 // AADereferenceable or AAAlign for similar situations. 7200 for (const AAValueConstantRange *QueriedAA : QuerriedAAs) { 7201 if (QueriedAA != this) 7202 continue; 7203 // If we are in a stady state we do not need to worry. 7204 if (T.getAssumed() == getState().getAssumed()) 7205 continue; 7206 T.indicatePessimisticFixpoint(); 7207 } 7208 7209 return T.isValidState(); 7210 }; 7211 7212 IntegerRangeState T(getBitWidth()); 7213 7214 if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>( 7215 A, getIRPosition(), *this, T, VisitValueCB, getCtxI(), 7216 /* UseValueSimplify */ false)) 7217 return indicatePessimisticFixpoint(); 7218 7219 return clampStateAndIndicateChange(getState(), T); 7220 } 7221 7222 /// See AbstractAttribute::trackStatistics() 7223 void trackStatistics() const override { 7224 STATS_DECLTRACK_FLOATING_ATTR(value_range) 7225 } 7226 }; 7227 7228 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl { 7229 AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A) 7230 : AAValueConstantRangeImpl(IRP, A) {} 7231 7232 /// See AbstractAttribute::initialize(...). 7233 ChangeStatus updateImpl(Attributor &A) override { 7234 llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will " 7235 "not be called"); 7236 } 7237 7238 /// See AbstractAttribute::trackStatistics() 7239 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) } 7240 }; 7241 7242 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction { 7243 AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A) 7244 : AAValueConstantRangeFunction(IRP, A) {} 7245 7246 /// See AbstractAttribute::trackStatistics() 7247 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) } 7248 }; 7249 7250 struct AAValueConstantRangeCallSiteReturned 7251 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7252 AAValueConstantRangeImpl> { 7253 AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A) 7254 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7255 AAValueConstantRangeImpl>(IRP, A) {} 7256 7257 /// See AbstractAttribute::initialize(...). 7258 void initialize(Attributor &A) override { 7259 // If it is a load instruction with range metadata, use the metadata. 7260 if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue())) 7261 if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range)) 7262 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7263 7264 AAValueConstantRangeImpl::initialize(A); 7265 } 7266 7267 /// See AbstractAttribute::trackStatistics() 7268 void trackStatistics() const override { 7269 STATS_DECLTRACK_CSRET_ATTR(value_range) 7270 } 7271 }; 7272 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating { 7273 AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A) 7274 : AAValueConstantRangeFloating(IRP, A) {} 7275 7276 /// See AbstractAttribute::trackStatistics() 7277 void trackStatistics() const override { 7278 STATS_DECLTRACK_CSARG_ATTR(value_range) 7279 } 7280 }; 7281 7282 /// ------------------ Potential Values Attribute ------------------------- 7283 7284 struct AAPotentialValuesImpl : AAPotentialValues { 7285 using StateType = PotentialConstantIntValuesState; 7286 7287 AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A) 7288 : AAPotentialValues(IRP, A) {} 7289 7290 /// See AbstractAttribute::getAsStr(). 7291 const std::string getAsStr() const override { 7292 std::string Str; 7293 llvm::raw_string_ostream OS(Str); 7294 OS << getState(); 7295 return OS.str(); 7296 } 7297 7298 /// See AbstractAttribute::updateImpl(...). 7299 ChangeStatus updateImpl(Attributor &A) override { 7300 return indicatePessimisticFixpoint(); 7301 } 7302 }; 7303 7304 struct AAPotentialValuesArgument final 7305 : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, 7306 PotentialConstantIntValuesState> { 7307 using Base = 7308 AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, 7309 PotentialConstantIntValuesState>; 7310 AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A) 7311 : Base(IRP, A) {} 7312 7313 /// See AbstractAttribute::initialize(..). 7314 void initialize(Attributor &A) override { 7315 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { 7316 indicatePessimisticFixpoint(); 7317 } else { 7318 Base::initialize(A); 7319 } 7320 } 7321 7322 /// See AbstractAttribute::trackStatistics() 7323 void trackStatistics() const override { 7324 STATS_DECLTRACK_ARG_ATTR(potential_values) 7325 } 7326 }; 7327 7328 struct AAPotentialValuesReturned 7329 : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> { 7330 using Base = 7331 AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>; 7332 AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A) 7333 : Base(IRP, A) {} 7334 7335 /// See AbstractAttribute::trackStatistics() 7336 void trackStatistics() const override { 7337 STATS_DECLTRACK_FNRET_ATTR(potential_values) 7338 } 7339 }; 7340 7341 struct AAPotentialValuesFloating : AAPotentialValuesImpl { 7342 AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A) 7343 : AAPotentialValuesImpl(IRP, A) {} 7344 7345 /// See AbstractAttribute::initialize(..). 7346 void initialize(Attributor &A) override { 7347 Value &V = getAssociatedValue(); 7348 7349 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7350 unionAssumed(C->getValue()); 7351 indicateOptimisticFixpoint(); 7352 return; 7353 } 7354 7355 if (isa<UndefValue>(&V)) { 7356 unionAssumedWithUndef(); 7357 indicateOptimisticFixpoint(); 7358 return; 7359 } 7360 7361 if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V)) 7362 return; 7363 7364 if (isa<SelectInst>(V) || isa<PHINode>(V)) 7365 return; 7366 7367 indicatePessimisticFixpoint(); 7368 7369 LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: " 7370 << getAssociatedValue() << "\n"); 7371 } 7372 7373 static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS, 7374 const APInt &RHS) { 7375 ICmpInst::Predicate Pred = ICI->getPredicate(); 7376 switch (Pred) { 7377 case ICmpInst::ICMP_UGT: 7378 return LHS.ugt(RHS); 7379 case ICmpInst::ICMP_SGT: 7380 return LHS.sgt(RHS); 7381 case ICmpInst::ICMP_EQ: 7382 return LHS.eq(RHS); 7383 case ICmpInst::ICMP_UGE: 7384 return LHS.uge(RHS); 7385 case ICmpInst::ICMP_SGE: 7386 return LHS.sge(RHS); 7387 case ICmpInst::ICMP_ULT: 7388 return LHS.ult(RHS); 7389 case ICmpInst::ICMP_SLT: 7390 return LHS.slt(RHS); 7391 case ICmpInst::ICMP_NE: 7392 return LHS.ne(RHS); 7393 case ICmpInst::ICMP_ULE: 7394 return LHS.ule(RHS); 7395 case ICmpInst::ICMP_SLE: 7396 return LHS.sle(RHS); 7397 default: 7398 llvm_unreachable("Invalid ICmp predicate!"); 7399 } 7400 } 7401 7402 static APInt calculateCastInst(const CastInst *CI, const APInt &Src, 7403 uint32_t ResultBitWidth) { 7404 Instruction::CastOps CastOp = CI->getOpcode(); 7405 switch (CastOp) { 7406 default: 7407 llvm_unreachable("unsupported or not integer cast"); 7408 case Instruction::Trunc: 7409 return Src.trunc(ResultBitWidth); 7410 case Instruction::SExt: 7411 return Src.sext(ResultBitWidth); 7412 case Instruction::ZExt: 7413 return Src.zext(ResultBitWidth); 7414 case Instruction::BitCast: 7415 return Src; 7416 } 7417 } 7418 7419 static APInt calculateBinaryOperator(const BinaryOperator *BinOp, 7420 const APInt &LHS, const APInt &RHS, 7421 bool &SkipOperation, bool &Unsupported) { 7422 Instruction::BinaryOps BinOpcode = BinOp->getOpcode(); 7423 // Unsupported is set to true when the binary operator is not supported. 7424 // SkipOperation is set to true when UB occur with the given operand pair 7425 // (LHS, RHS). 7426 // TODO: we should look at nsw and nuw keywords to handle operations 7427 // that create poison or undef value. 7428 switch (BinOpcode) { 7429 default: 7430 Unsupported = true; 7431 return LHS; 7432 case Instruction::Add: 7433 return LHS + RHS; 7434 case Instruction::Sub: 7435 return LHS - RHS; 7436 case Instruction::Mul: 7437 return LHS * RHS; 7438 case Instruction::UDiv: 7439 if (RHS.isNullValue()) { 7440 SkipOperation = true; 7441 return LHS; 7442 } 7443 return LHS.udiv(RHS); 7444 case Instruction::SDiv: 7445 if (RHS.isNullValue()) { 7446 SkipOperation = true; 7447 return LHS; 7448 } 7449 return LHS.sdiv(RHS); 7450 case Instruction::URem: 7451 if (RHS.isNullValue()) { 7452 SkipOperation = true; 7453 return LHS; 7454 } 7455 return LHS.urem(RHS); 7456 case Instruction::SRem: 7457 if (RHS.isNullValue()) { 7458 SkipOperation = true; 7459 return LHS; 7460 } 7461 return LHS.srem(RHS); 7462 case Instruction::Shl: 7463 return LHS.shl(RHS); 7464 case Instruction::LShr: 7465 return LHS.lshr(RHS); 7466 case Instruction::AShr: 7467 return LHS.ashr(RHS); 7468 case Instruction::And: 7469 return LHS & RHS; 7470 case Instruction::Or: 7471 return LHS | RHS; 7472 case Instruction::Xor: 7473 return LHS ^ RHS; 7474 } 7475 } 7476 7477 bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp, 7478 const APInt &LHS, const APInt &RHS) { 7479 bool SkipOperation = false; 7480 bool Unsupported = false; 7481 APInt Result = 7482 calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported); 7483 if (Unsupported) 7484 return false; 7485 // If SkipOperation is true, we can ignore this operand pair (L, R). 7486 if (!SkipOperation) 7487 unionAssumed(Result); 7488 return isValidState(); 7489 } 7490 7491 ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) { 7492 auto AssumedBefore = getAssumed(); 7493 Value *LHS = ICI->getOperand(0); 7494 Value *RHS = ICI->getOperand(1); 7495 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7496 return indicatePessimisticFixpoint(); 7497 7498 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7499 if (!LHSAA.isValidState()) 7500 return indicatePessimisticFixpoint(); 7501 7502 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7503 if (!RHSAA.isValidState()) 7504 return indicatePessimisticFixpoint(); 7505 7506 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); 7507 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); 7508 7509 // TODO: make use of undef flag to limit potential values aggressively. 7510 bool MaybeTrue = false, MaybeFalse = false; 7511 const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0); 7512 if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) { 7513 // The result of any comparison between undefs can be soundly replaced 7514 // with undef. 7515 unionAssumedWithUndef(); 7516 } else if (LHSAA.undefIsContained()) { 7517 bool MaybeTrue = false, MaybeFalse = false; 7518 for (const APInt &R : RHSAAPVS) { 7519 bool CmpResult = calculateICmpInst(ICI, Zero, R); 7520 MaybeTrue |= CmpResult; 7521 MaybeFalse |= !CmpResult; 7522 if (MaybeTrue & MaybeFalse) 7523 return indicatePessimisticFixpoint(); 7524 } 7525 } else if (RHSAA.undefIsContained()) { 7526 for (const APInt &L : LHSAAPVS) { 7527 bool CmpResult = calculateICmpInst(ICI, L, Zero); 7528 MaybeTrue |= CmpResult; 7529 MaybeFalse |= !CmpResult; 7530 if (MaybeTrue & MaybeFalse) 7531 return indicatePessimisticFixpoint(); 7532 } 7533 } else { 7534 for (const APInt &L : LHSAAPVS) { 7535 for (const APInt &R : RHSAAPVS) { 7536 bool CmpResult = calculateICmpInst(ICI, L, R); 7537 MaybeTrue |= CmpResult; 7538 MaybeFalse |= !CmpResult; 7539 if (MaybeTrue & MaybeFalse) 7540 return indicatePessimisticFixpoint(); 7541 } 7542 } 7543 } 7544 if (MaybeTrue) 7545 unionAssumed(APInt(/* numBits */ 1, /* val */ 1)); 7546 if (MaybeFalse) 7547 unionAssumed(APInt(/* numBits */ 1, /* val */ 0)); 7548 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7549 : ChangeStatus::CHANGED; 7550 } 7551 7552 ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) { 7553 auto AssumedBefore = getAssumed(); 7554 Value *LHS = SI->getTrueValue(); 7555 Value *RHS = SI->getFalseValue(); 7556 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7557 return indicatePessimisticFixpoint(); 7558 7559 // TODO: Use assumed simplified condition value 7560 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7561 if (!LHSAA.isValidState()) 7562 return indicatePessimisticFixpoint(); 7563 7564 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7565 if (!RHSAA.isValidState()) 7566 return indicatePessimisticFixpoint(); 7567 7568 if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) 7569 // select i1 *, undef , undef => undef 7570 unionAssumedWithUndef(); 7571 else { 7572 unionAssumed(LHSAA); 7573 unionAssumed(RHSAA); 7574 } 7575 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7576 : ChangeStatus::CHANGED; 7577 } 7578 7579 ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) { 7580 auto AssumedBefore = getAssumed(); 7581 if (!CI->isIntegerCast()) 7582 return indicatePessimisticFixpoint(); 7583 assert(CI->getNumOperands() == 1 && "Expected cast to be unary!"); 7584 uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth(); 7585 Value *Src = CI->getOperand(0); 7586 auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src)); 7587 if (!SrcAA.isValidState()) 7588 return indicatePessimisticFixpoint(); 7589 const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet(); 7590 if (SrcAA.undefIsContained()) 7591 unionAssumedWithUndef(); 7592 else { 7593 for (const APInt &S : SrcAAPVS) { 7594 APInt T = calculateCastInst(CI, S, ResultBitWidth); 7595 unionAssumed(T); 7596 } 7597 } 7598 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7599 : ChangeStatus::CHANGED; 7600 } 7601 7602 ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) { 7603 auto AssumedBefore = getAssumed(); 7604 Value *LHS = BinOp->getOperand(0); 7605 Value *RHS = BinOp->getOperand(1); 7606 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7607 return indicatePessimisticFixpoint(); 7608 7609 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS)); 7610 if (!LHSAA.isValidState()) 7611 return indicatePessimisticFixpoint(); 7612 7613 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS)); 7614 if (!RHSAA.isValidState()) 7615 return indicatePessimisticFixpoint(); 7616 7617 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); 7618 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); 7619 const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0); 7620 7621 // TODO: make use of undef flag to limit potential values aggressively. 7622 if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) { 7623 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero)) 7624 return indicatePessimisticFixpoint(); 7625 } else if (LHSAA.undefIsContained()) { 7626 for (const APInt &R : RHSAAPVS) { 7627 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R)) 7628 return indicatePessimisticFixpoint(); 7629 } 7630 } else if (RHSAA.undefIsContained()) { 7631 for (const APInt &L : LHSAAPVS) { 7632 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero)) 7633 return indicatePessimisticFixpoint(); 7634 } 7635 } else { 7636 for (const APInt &L : LHSAAPVS) { 7637 for (const APInt &R : RHSAAPVS) { 7638 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R)) 7639 return indicatePessimisticFixpoint(); 7640 } 7641 } 7642 } 7643 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7644 : ChangeStatus::CHANGED; 7645 } 7646 7647 ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) { 7648 auto AssumedBefore = getAssumed(); 7649 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { 7650 Value *IncomingValue = PHI->getIncomingValue(u); 7651 auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>( 7652 *this, IRPosition::value(*IncomingValue)); 7653 if (!PotentialValuesAA.isValidState()) 7654 return indicatePessimisticFixpoint(); 7655 if (PotentialValuesAA.undefIsContained()) 7656 unionAssumedWithUndef(); 7657 else 7658 unionAssumed(PotentialValuesAA.getAssumed()); 7659 } 7660 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7661 : ChangeStatus::CHANGED; 7662 } 7663 7664 /// See AbstractAttribute::updateImpl(...). 7665 ChangeStatus updateImpl(Attributor &A) override { 7666 Value &V = getAssociatedValue(); 7667 Instruction *I = dyn_cast<Instruction>(&V); 7668 7669 if (auto *ICI = dyn_cast<ICmpInst>(I)) 7670 return updateWithICmpInst(A, ICI); 7671 7672 if (auto *SI = dyn_cast<SelectInst>(I)) 7673 return updateWithSelectInst(A, SI); 7674 7675 if (auto *CI = dyn_cast<CastInst>(I)) 7676 return updateWithCastInst(A, CI); 7677 7678 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) 7679 return updateWithBinaryOperator(A, BinOp); 7680 7681 if (auto *PHI = dyn_cast<PHINode>(I)) 7682 return updateWithPHINode(A, PHI); 7683 7684 return indicatePessimisticFixpoint(); 7685 } 7686 7687 /// See AbstractAttribute::trackStatistics() 7688 void trackStatistics() const override { 7689 STATS_DECLTRACK_FLOATING_ATTR(potential_values) 7690 } 7691 }; 7692 7693 struct AAPotentialValuesFunction : AAPotentialValuesImpl { 7694 AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A) 7695 : AAPotentialValuesImpl(IRP, A) {} 7696 7697 /// See AbstractAttribute::initialize(...). 7698 ChangeStatus updateImpl(Attributor &A) override { 7699 llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will " 7700 "not be called"); 7701 } 7702 7703 /// See AbstractAttribute::trackStatistics() 7704 void trackStatistics() const override { 7705 STATS_DECLTRACK_FN_ATTR(potential_values) 7706 } 7707 }; 7708 7709 struct AAPotentialValuesCallSite : AAPotentialValuesFunction { 7710 AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A) 7711 : AAPotentialValuesFunction(IRP, A) {} 7712 7713 /// See AbstractAttribute::trackStatistics() 7714 void trackStatistics() const override { 7715 STATS_DECLTRACK_CS_ATTR(potential_values) 7716 } 7717 }; 7718 7719 struct AAPotentialValuesCallSiteReturned 7720 : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> { 7721 AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A) 7722 : AACallSiteReturnedFromReturned<AAPotentialValues, 7723 AAPotentialValuesImpl>(IRP, A) {} 7724 7725 /// See AbstractAttribute::trackStatistics() 7726 void trackStatistics() const override { 7727 STATS_DECLTRACK_CSRET_ATTR(potential_values) 7728 } 7729 }; 7730 7731 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating { 7732 AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A) 7733 : AAPotentialValuesFloating(IRP, A) {} 7734 7735 /// See AbstractAttribute::initialize(..). 7736 void initialize(Attributor &A) override { 7737 Value &V = getAssociatedValue(); 7738 7739 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7740 unionAssumed(C->getValue()); 7741 indicateOptimisticFixpoint(); 7742 return; 7743 } 7744 7745 if (isa<UndefValue>(&V)) { 7746 unionAssumedWithUndef(); 7747 indicateOptimisticFixpoint(); 7748 return; 7749 } 7750 } 7751 7752 /// See AbstractAttribute::updateImpl(...). 7753 ChangeStatus updateImpl(Attributor &A) override { 7754 Value &V = getAssociatedValue(); 7755 auto AssumedBefore = getAssumed(); 7756 auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V)); 7757 const auto &S = AA.getAssumed(); 7758 unionAssumed(S); 7759 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED 7760 : ChangeStatus::CHANGED; 7761 } 7762 7763 /// See AbstractAttribute::trackStatistics() 7764 void trackStatistics() const override { 7765 STATS_DECLTRACK_CSARG_ATTR(potential_values) 7766 } 7767 }; 7768 7769 /// ------------------------ NoUndef Attribute --------------------------------- 7770 struct AANoUndefImpl : AANoUndef { 7771 AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {} 7772 7773 /// See AbstractAttribute::initialize(...). 7774 void initialize(Attributor &A) override { 7775 Value &V = getAssociatedValue(); 7776 if (isa<UndefValue>(V)) 7777 indicatePessimisticFixpoint(); 7778 else if (isa<FreezeInst>(V)) 7779 indicateOptimisticFixpoint(); 7780 else if (getPositionKind() != IRPosition::IRP_RETURNED && 7781 isGuaranteedNotToBeUndefOrPoison(&V)) 7782 indicateOptimisticFixpoint(); 7783 else 7784 AANoUndef::initialize(A); 7785 } 7786 7787 /// See followUsesInMBEC 7788 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, 7789 AANoUndef::StateType &State) { 7790 const Value *UseV = U->get(); 7791 const DominatorTree *DT = nullptr; 7792 if (Function *F = getAnchorScope()) 7793 DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>( 7794 *F); 7795 State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, I, DT)); 7796 bool TrackUse = false; 7797 // Track use for instructions which must produce undef or poison bits when 7798 // at least one operand contains such bits. 7799 if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I)) 7800 TrackUse = true; 7801 return TrackUse; 7802 } 7803 7804 /// See AbstractAttribute::getAsStr(). 7805 const std::string getAsStr() const override { 7806 return getAssumed() ? "noundef" : "may-undef-or-poison"; 7807 } 7808 7809 ChangeStatus manifest(Attributor &A) override { 7810 // We don't manifest noundef attribute for dead positions because the 7811 // associated values with dead positions would be replaced with undef 7812 // values. 7813 if (A.isAssumedDead(getIRPosition(), nullptr, nullptr)) 7814 return ChangeStatus::UNCHANGED; 7815 return AANoUndef::manifest(A); 7816 } 7817 }; 7818 7819 struct AANoUndefFloating : public AANoUndefImpl { 7820 AANoUndefFloating(const IRPosition &IRP, Attributor &A) 7821 : AANoUndefImpl(IRP, A) {} 7822 7823 /// See AbstractAttribute::initialize(...). 7824 void initialize(Attributor &A) override { 7825 AANoUndefImpl::initialize(A); 7826 if (!getState().isAtFixpoint()) 7827 if (Instruction *CtxI = getCtxI()) 7828 followUsesInMBEC(*this, A, getState(), *CtxI); 7829 } 7830 7831 /// See AbstractAttribute::updateImpl(...). 7832 ChangeStatus updateImpl(Attributor &A) override { 7833 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, 7834 AANoUndef::StateType &T, bool Stripped) -> bool { 7835 const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V)); 7836 if (!Stripped && this == &AA) { 7837 T.indicatePessimisticFixpoint(); 7838 } else { 7839 const AANoUndef::StateType &S = 7840 static_cast<const AANoUndef::StateType &>(AA.getState()); 7841 T ^= S; 7842 } 7843 return T.isValidState(); 7844 }; 7845 7846 StateType T; 7847 if (!genericValueTraversal<AANoUndef, StateType>( 7848 A, getIRPosition(), *this, T, VisitValueCB, getCtxI())) 7849 return indicatePessimisticFixpoint(); 7850 7851 return clampStateAndIndicateChange(getState(), T); 7852 } 7853 7854 /// See AbstractAttribute::trackStatistics() 7855 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } 7856 }; 7857 7858 struct AANoUndefReturned final 7859 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> { 7860 AANoUndefReturned(const IRPosition &IRP, Attributor &A) 7861 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {} 7862 7863 /// See AbstractAttribute::trackStatistics() 7864 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } 7865 }; 7866 7867 struct AANoUndefArgument final 7868 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> { 7869 AANoUndefArgument(const IRPosition &IRP, Attributor &A) 7870 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {} 7871 7872 /// See AbstractAttribute::trackStatistics() 7873 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) } 7874 }; 7875 7876 struct AANoUndefCallSiteArgument final : AANoUndefFloating { 7877 AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A) 7878 : AANoUndefFloating(IRP, A) {} 7879 7880 /// See AbstractAttribute::trackStatistics() 7881 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) } 7882 }; 7883 7884 struct AANoUndefCallSiteReturned final 7885 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> { 7886 AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A) 7887 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {} 7888 7889 /// See AbstractAttribute::trackStatistics() 7890 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) } 7891 }; 7892 } // namespace 7893 7894 const char AAReturnedValues::ID = 0; 7895 const char AANoUnwind::ID = 0; 7896 const char AANoSync::ID = 0; 7897 const char AANoFree::ID = 0; 7898 const char AANonNull::ID = 0; 7899 const char AANoRecurse::ID = 0; 7900 const char AAWillReturn::ID = 0; 7901 const char AAUndefinedBehavior::ID = 0; 7902 const char AANoAlias::ID = 0; 7903 const char AAReachability::ID = 0; 7904 const char AANoReturn::ID = 0; 7905 const char AAIsDead::ID = 0; 7906 const char AADereferenceable::ID = 0; 7907 const char AAAlign::ID = 0; 7908 const char AANoCapture::ID = 0; 7909 const char AAValueSimplify::ID = 0; 7910 const char AAHeapToStack::ID = 0; 7911 const char AAPrivatizablePtr::ID = 0; 7912 const char AAMemoryBehavior::ID = 0; 7913 const char AAMemoryLocation::ID = 0; 7914 const char AAValueConstantRange::ID = 0; 7915 const char AAPotentialValues::ID = 0; 7916 const char AANoUndef::ID = 0; 7917 7918 // Macro magic to create the static generator function for attributes that 7919 // follow the naming scheme. 7920 7921 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \ 7922 case IRPosition::PK: \ 7923 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); 7924 7925 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \ 7926 case IRPosition::PK: \ 7927 AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \ 7928 ++NumAAs; \ 7929 break; 7930 7931 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7932 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7933 CLASS *AA = nullptr; \ 7934 switch (IRP.getPositionKind()) { \ 7935 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7936 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 7937 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 7938 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 7939 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 7940 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 7941 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7942 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 7943 } \ 7944 return *AA; \ 7945 } 7946 7947 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7948 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7949 CLASS *AA = nullptr; \ 7950 switch (IRP.getPositionKind()) { \ 7951 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7952 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \ 7953 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 7954 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 7955 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 7956 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 7957 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 7958 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 7959 } \ 7960 return *AA; \ 7961 } 7962 7963 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7964 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7965 CLASS *AA = nullptr; \ 7966 switch (IRP.getPositionKind()) { \ 7967 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7968 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7969 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 7970 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 7971 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 7972 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 7973 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 7974 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 7975 } \ 7976 return *AA; \ 7977 } 7978 7979 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7980 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7981 CLASS *AA = nullptr; \ 7982 switch (IRP.getPositionKind()) { \ 7983 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 7984 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 7985 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 7986 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 7987 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 7988 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 7989 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 7990 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 7991 } \ 7992 return *AA; \ 7993 } 7994 7995 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 7996 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 7997 CLASS *AA = nullptr; \ 7998 switch (IRP.getPositionKind()) { \ 7999 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8000 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 8001 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 8002 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 8003 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 8004 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 8005 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 8006 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 8007 } \ 8008 return *AA; \ 8009 } 8010 8011 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) 8012 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) 8013 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) 8014 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) 8015 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) 8016 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues) 8017 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation) 8018 8019 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) 8020 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) 8021 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr) 8022 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) 8023 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) 8024 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) 8025 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange) 8026 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues) 8027 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef) 8028 8029 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) 8030 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) 8031 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) 8032 8033 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) 8034 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability) 8035 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior) 8036 8037 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) 8038 8039 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION 8040 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION 8041 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION 8042 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION 8043 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION 8044 #undef SWITCH_PK_CREATE 8045 #undef SWITCH_PK_INV 8046