1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LazyValueInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Assumptions.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/Support/Alignment.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/FileSystem.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include <cassert>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "attributor"
53 
54 static cl::opt<bool> ManifestInternal(
55     "attributor-manifest-internal", cl::Hidden,
56     cl::desc("Manifest Attributor internal string attributes."),
57     cl::init(false));
58 
59 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
60                                        cl::Hidden);
61 
62 template <>
63 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
64 
65 static cl::opt<unsigned, true> MaxPotentialValues(
66     "attributor-max-potential-values", cl::Hidden,
67     cl::desc("Maximum number of potential values to be "
68              "tracked for each position."),
69     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
70     cl::init(7));
71 
72 static cl::opt<unsigned>
73     MaxInterferingWrites("attributor-max-interfering-writes", cl::Hidden,
74                          cl::desc("Maximum number of interfering writes to "
75                                   "check before assuming all might interfere."),
76                          cl::init(6));
77 
78 STATISTIC(NumAAs, "Number of abstract attributes created");
79 
80 // Some helper macros to deal with statistics tracking.
81 //
82 // Usage:
83 // For simple IR attribute tracking overload trackStatistics in the abstract
84 // attribute and choose the right STATS_DECLTRACK_********* macro,
85 // e.g.,:
86 //  void trackStatistics() const override {
87 //    STATS_DECLTRACK_ARG_ATTR(returned)
88 //  }
89 // If there is a single "increment" side one can use the macro
90 // STATS_DECLTRACK with a custom message. If there are multiple increment
91 // sides, STATS_DECL and STATS_TRACK can also be used separately.
92 //
93 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
94   ("Number of " #TYPE " marked '" #NAME "'")
95 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
96 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
97 #define STATS_DECL(NAME, TYPE, MSG)                                            \
98   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
99 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
100 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
101   {                                                                            \
102     STATS_DECL(NAME, TYPE, MSG)                                                \
103     STATS_TRACK(NAME, TYPE)                                                    \
104   }
105 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
106   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
107 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
108   STATS_DECLTRACK(NAME, CSArguments,                                           \
109                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
110 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
111   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
112 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
113   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
114 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
115   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
116                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
117 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
118   STATS_DECLTRACK(NAME, CSReturn,                                              \
119                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
120 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
121   STATS_DECLTRACK(NAME, Floating,                                              \
122                   ("Number of floating values known to be '" #NAME "'"))
123 
124 // Specialization of the operator<< for abstract attributes subclasses. This
125 // disambiguates situations where multiple operators are applicable.
126 namespace llvm {
127 #define PIPE_OPERATOR(CLASS)                                                   \
128   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
129     return OS << static_cast<const AbstractAttribute &>(AA);                   \
130   }
131 
132 PIPE_OPERATOR(AAIsDead)
133 PIPE_OPERATOR(AANoUnwind)
134 PIPE_OPERATOR(AANoSync)
135 PIPE_OPERATOR(AANoRecurse)
136 PIPE_OPERATOR(AAWillReturn)
137 PIPE_OPERATOR(AANoReturn)
138 PIPE_OPERATOR(AAReturnedValues)
139 PIPE_OPERATOR(AANonNull)
140 PIPE_OPERATOR(AANoAlias)
141 PIPE_OPERATOR(AADereferenceable)
142 PIPE_OPERATOR(AAAlign)
143 PIPE_OPERATOR(AANoCapture)
144 PIPE_OPERATOR(AAValueSimplify)
145 PIPE_OPERATOR(AANoFree)
146 PIPE_OPERATOR(AAHeapToStack)
147 PIPE_OPERATOR(AAReachability)
148 PIPE_OPERATOR(AAMemoryBehavior)
149 PIPE_OPERATOR(AAMemoryLocation)
150 PIPE_OPERATOR(AAValueConstantRange)
151 PIPE_OPERATOR(AAPrivatizablePtr)
152 PIPE_OPERATOR(AAUndefinedBehavior)
153 PIPE_OPERATOR(AAPotentialValues)
154 PIPE_OPERATOR(AANoUndef)
155 PIPE_OPERATOR(AACallEdges)
156 PIPE_OPERATOR(AAFunctionReachability)
157 PIPE_OPERATOR(AAPointerInfo)
158 PIPE_OPERATOR(AAAssumptionInfo)
159 
160 #undef PIPE_OPERATOR
161 
162 template <>
163 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
164                                                      const DerefState &R) {
165   ChangeStatus CS0 =
166       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
167   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
168   return CS0 | CS1;
169 }
170 
171 } // namespace llvm
172 
173 /// Get pointer operand of memory accessing instruction. If \p I is
174 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
175 /// is set to false and the instruction is volatile, return nullptr.
176 static const Value *getPointerOperand(const Instruction *I,
177                                       bool AllowVolatile) {
178   if (!AllowVolatile && I->isVolatile())
179     return nullptr;
180 
181   if (auto *LI = dyn_cast<LoadInst>(I)) {
182     return LI->getPointerOperand();
183   }
184 
185   if (auto *SI = dyn_cast<StoreInst>(I)) {
186     return SI->getPointerOperand();
187   }
188 
189   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
190     return CXI->getPointerOperand();
191   }
192 
193   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
194     return RMWI->getPointerOperand();
195   }
196 
197   return nullptr;
198 }
199 
200 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
201 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
202 /// getelement pointer instructions that traverse the natural type of \p Ptr if
203 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
204 /// through a cast to i8*.
205 ///
206 /// TODO: This could probably live somewhere more prominantly if it doesn't
207 ///       already exist.
208 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
209                                int64_t Offset, IRBuilder<NoFolder> &IRB,
210                                const DataLayout &DL) {
211   assert(Offset >= 0 && "Negative offset not supported yet!");
212   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
213                     << "-bytes as " << *ResTy << "\n");
214 
215   if (Offset) {
216     Type *Ty = PtrElemTy;
217     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
218     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
219 
220     SmallVector<Value *, 4> ValIndices;
221     std::string GEPName = Ptr->getName().str();
222     for (const APInt &Index : IntIndices) {
223       ValIndices.push_back(IRB.getInt(Index));
224       GEPName += "." + std::to_string(Index.getZExtValue());
225     }
226 
227     // Create a GEP for the indices collected above.
228     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
229 
230     // If an offset is left we use byte-wise adjustment.
231     if (IntOffset != 0) {
232       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
233       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
234                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
235     }
236   }
237 
238   // Ensure the result has the requested type.
239   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
240                                                 Ptr->getName() + ".cast");
241 
242   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
243   return Ptr;
244 }
245 
246 /// Recursively visit all values that might become \p IRP at some point. This
247 /// will be done by looking through cast instructions, selects, phis, and calls
248 /// with the "returned" attribute. Once we cannot look through the value any
249 /// further, the callback \p VisitValueCB is invoked and passed the current
250 /// value, the \p State, and a flag to indicate if we stripped anything.
251 /// Stripped means that we unpacked the value associated with \p IRP at least
252 /// once. Note that the value used for the callback may still be the value
253 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
254 /// we will never visit more values than specified by \p MaxValues.
255 /// If \p Intraprocedural is set to true only values valid in the scope of
256 /// \p CtxI will be visited and simplification into other scopes is prevented.
257 template <typename StateTy>
258 static bool genericValueTraversal(
259     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
260     StateTy &State,
261     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
262         VisitValueCB,
263     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
264     function_ref<Value *(Value *)> StripCB = nullptr,
265     bool Intraprocedural = false) {
266 
267   const AAIsDead *LivenessAA = nullptr;
268   if (IRP.getAnchorScope())
269     LivenessAA = &A.getAAFor<AAIsDead>(
270         QueryingAA,
271         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
272         DepClassTy::NONE);
273   bool AnyDead = false;
274 
275   Value *InitialV = &IRP.getAssociatedValue();
276   using Item = std::pair<Value *, const Instruction *>;
277   SmallSet<Item, 16> Visited;
278   SmallVector<Item, 16> Worklist;
279   Worklist.push_back({InitialV, CtxI});
280 
281   int Iteration = 0;
282   do {
283     Item I = Worklist.pop_back_val();
284     Value *V = I.first;
285     CtxI = I.second;
286     if (StripCB)
287       V = StripCB(V);
288 
289     // Check if we should process the current value. To prevent endless
290     // recursion keep a record of the values we followed!
291     if (!Visited.insert(I).second)
292       continue;
293 
294     // Make sure we limit the compile time for complex expressions.
295     if (Iteration++ >= MaxValues) {
296       LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
297                         << Iteration << "!\n");
298       return false;
299     }
300 
301     // Explicitly look through calls with a "returned" attribute if we do
302     // not have a pointer as stripPointerCasts only works on them.
303     Value *NewV = nullptr;
304     if (V->getType()->isPointerTy()) {
305       NewV = V->stripPointerCasts();
306     } else {
307       auto *CB = dyn_cast<CallBase>(V);
308       if (CB && CB->getCalledFunction()) {
309         for (Argument &Arg : CB->getCalledFunction()->args())
310           if (Arg.hasReturnedAttr()) {
311             NewV = CB->getArgOperand(Arg.getArgNo());
312             break;
313           }
314       }
315     }
316     if (NewV && NewV != V) {
317       Worklist.push_back({NewV, CtxI});
318       continue;
319     }
320 
321     // Look through select instructions, visit assumed potential values.
322     if (auto *SI = dyn_cast<SelectInst>(V)) {
323       bool UsedAssumedInformation = false;
324       Optional<Constant *> C = A.getAssumedConstant(
325           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
326       bool NoValueYet = !C.hasValue();
327       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
328         continue;
329       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
330         if (CI->isZero())
331           Worklist.push_back({SI->getFalseValue(), CtxI});
332         else
333           Worklist.push_back({SI->getTrueValue(), CtxI});
334         continue;
335       }
336       // We could not simplify the condition, assume both values.(
337       Worklist.push_back({SI->getTrueValue(), CtxI});
338       Worklist.push_back({SI->getFalseValue(), CtxI});
339       continue;
340     }
341 
342     // Look through phi nodes, visit all live operands.
343     if (auto *PHI = dyn_cast<PHINode>(V)) {
344       assert(LivenessAA &&
345              "Expected liveness in the presence of instructions!");
346       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
347         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
348         if (LivenessAA->isEdgeDead(IncomingBB, PHI->getParent())) {
349           AnyDead = true;
350           continue;
351         }
352         Worklist.push_back(
353             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
354       }
355       continue;
356     }
357 
358     if (auto *Arg = dyn_cast<Argument>(V)) {
359       if (!Intraprocedural && !Arg->hasPassPointeeByValueCopyAttr()) {
360         SmallVector<Item> CallSiteValues;
361         bool AllCallSitesKnown = true;
362         if (A.checkForAllCallSites(
363                 [&](AbstractCallSite ACS) {
364                   // Callbacks might not have a corresponding call site operand,
365                   // stick with the argument in that case.
366                   Value *CSOp = ACS.getCallArgOperand(*Arg);
367                   if (!CSOp)
368                     return false;
369                   CallSiteValues.push_back({CSOp, ACS.getInstruction()});
370                   return true;
371                 },
372                 *Arg->getParent(), true, &QueryingAA, AllCallSitesKnown)) {
373           Worklist.append(CallSiteValues);
374           continue;
375         }
376       }
377     }
378 
379     if (UseValueSimplify && !isa<Constant>(V)) {
380       bool UsedAssumedInformation = false;
381       Optional<Value *> SimpleV =
382           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
383       if (!SimpleV.hasValue())
384         continue;
385       Value *NewV = SimpleV.getValue();
386       if (NewV && NewV != V) {
387         if (!Intraprocedural || !CtxI ||
388             AA::isValidInScope(*NewV, CtxI->getFunction())) {
389           Worklist.push_back({NewV, CtxI});
390           continue;
391         }
392       }
393     }
394 
395     // Once a leaf is reached we inform the user through the callback.
396     if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) {
397       LLVM_DEBUG(dbgs() << "Generic value traversal visit callback failed for: "
398                         << *V << "!\n");
399       return false;
400     }
401   } while (!Worklist.empty());
402 
403   // If we actually used liveness information so we have to record a dependence.
404   if (AnyDead)
405     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
406 
407   // All values have been visited.
408   return true;
409 }
410 
411 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
412                                      SmallVectorImpl<Value *> &Objects,
413                                      const AbstractAttribute &QueryingAA,
414                                      const Instruction *CtxI,
415                                      bool Intraprocedural) {
416   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
417   SmallPtrSet<Value *, 8> SeenObjects;
418   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
419                                      SmallVectorImpl<Value *> &Objects,
420                                      bool) -> bool {
421     if (SeenObjects.insert(&Val).second)
422       Objects.push_back(&Val);
423     return true;
424   };
425   if (!genericValueTraversal<decltype(Objects)>(
426           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
427           true, 32, StripCB, Intraprocedural))
428     return false;
429   return true;
430 }
431 
432 const Value *stripAndAccumulateMinimalOffsets(
433     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
434     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
435     bool UseAssumed = false) {
436 
437   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
438     const IRPosition &Pos = IRPosition::value(V);
439     // Only track dependence if we are going to use the assumed info.
440     const AAValueConstantRange &ValueConstantRangeAA =
441         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
442                                          UseAssumed ? DepClassTy::OPTIONAL
443                                                     : DepClassTy::NONE);
444     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
445                                      : ValueConstantRangeAA.getKnown();
446     // We can only use the lower part of the range because the upper part can
447     // be higher than what the value can really be.
448     ROffset = Range.getSignedMin();
449     return true;
450   };
451 
452   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
453                                                 /* AllowInvariant */ false,
454                                                 AttributorAnalysis);
455 }
456 
457 static const Value *
458 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
459                         const Value *Ptr, int64_t &BytesOffset,
460                         const DataLayout &DL, bool AllowNonInbounds = false) {
461   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
462   const Value *Base = stripAndAccumulateMinimalOffsets(
463       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
464 
465   BytesOffset = OffsetAPInt.getSExtValue();
466   return Base;
467 }
468 
469 /// Clamp the information known for all returned values of a function
470 /// (identified by \p QueryingAA) into \p S.
471 template <typename AAType, typename StateType = typename AAType::StateType>
472 static void clampReturnedValueStates(
473     Attributor &A, const AAType &QueryingAA, StateType &S,
474     const IRPosition::CallBaseContext *CBContext = nullptr) {
475   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
476                     << QueryingAA << " into " << S << "\n");
477 
478   assert((QueryingAA.getIRPosition().getPositionKind() ==
479               IRPosition::IRP_RETURNED ||
480           QueryingAA.getIRPosition().getPositionKind() ==
481               IRPosition::IRP_CALL_SITE_RETURNED) &&
482          "Can only clamp returned value states for a function returned or call "
483          "site returned position!");
484 
485   // Use an optional state as there might not be any return values and we want
486   // to join (IntegerState::operator&) the state of all there are.
487   Optional<StateType> T;
488 
489   // Callback for each possibly returned value.
490   auto CheckReturnValue = [&](Value &RV) -> bool {
491     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
492     const AAType &AA =
493         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
494     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
495                       << " @ " << RVPos << "\n");
496     const StateType &AAS = AA.getState();
497     if (T.hasValue())
498       *T &= AAS;
499     else
500       T = AAS;
501     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
502                       << "\n");
503     return T->isValidState();
504   };
505 
506   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
507     S.indicatePessimisticFixpoint();
508   else if (T.hasValue())
509     S ^= *T;
510 }
511 
512 namespace {
513 /// Helper class for generic deduction: return value -> returned position.
514 template <typename AAType, typename BaseType,
515           typename StateType = typename BaseType::StateType,
516           bool PropagateCallBaseContext = false>
517 struct AAReturnedFromReturnedValues : public BaseType {
518   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
519       : BaseType(IRP, A) {}
520 
521   /// See AbstractAttribute::updateImpl(...).
522   ChangeStatus updateImpl(Attributor &A) override {
523     StateType S(StateType::getBestState(this->getState()));
524     clampReturnedValueStates<AAType, StateType>(
525         A, *this, S,
526         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
527     // TODO: If we know we visited all returned values, thus no are assumed
528     // dead, we can take the known information from the state T.
529     return clampStateAndIndicateChange<StateType>(this->getState(), S);
530   }
531 };
532 
533 /// Clamp the information known at all call sites for a given argument
534 /// (identified by \p QueryingAA) into \p S.
535 template <typename AAType, typename StateType = typename AAType::StateType>
536 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
537                                         StateType &S) {
538   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
539                     << QueryingAA << " into " << S << "\n");
540 
541   assert(QueryingAA.getIRPosition().getPositionKind() ==
542              IRPosition::IRP_ARGUMENT &&
543          "Can only clamp call site argument states for an argument position!");
544 
545   // Use an optional state as there might not be any return values and we want
546   // to join (IntegerState::operator&) the state of all there are.
547   Optional<StateType> T;
548 
549   // The argument number which is also the call site argument number.
550   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
551 
552   auto CallSiteCheck = [&](AbstractCallSite ACS) {
553     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
554     // Check if a coresponding argument was found or if it is on not associated
555     // (which can happen for callback calls).
556     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
557       return false;
558 
559     const AAType &AA =
560         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
561     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
562                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
563     const StateType &AAS = AA.getState();
564     if (T.hasValue())
565       *T &= AAS;
566     else
567       T = AAS;
568     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
569                       << "\n");
570     return T->isValidState();
571   };
572 
573   bool AllCallSitesKnown;
574   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
575                               AllCallSitesKnown))
576     S.indicatePessimisticFixpoint();
577   else if (T.hasValue())
578     S ^= *T;
579 }
580 
581 /// This function is the bridge between argument position and the call base
582 /// context.
583 template <typename AAType, typename BaseType,
584           typename StateType = typename AAType::StateType>
585 bool getArgumentStateFromCallBaseContext(Attributor &A,
586                                          BaseType &QueryingAttribute,
587                                          IRPosition &Pos, StateType &State) {
588   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
589          "Expected an 'argument' position !");
590   const CallBase *CBContext = Pos.getCallBaseContext();
591   if (!CBContext)
592     return false;
593 
594   int ArgNo = Pos.getCallSiteArgNo();
595   assert(ArgNo >= 0 && "Invalid Arg No!");
596 
597   const auto &AA = A.getAAFor<AAType>(
598       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
599       DepClassTy::REQUIRED);
600   const StateType &CBArgumentState =
601       static_cast<const StateType &>(AA.getState());
602 
603   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
604                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
605                     << "\n");
606 
607   // NOTE: If we want to do call site grouping it should happen here.
608   State ^= CBArgumentState;
609   return true;
610 }
611 
612 /// Helper class for generic deduction: call site argument -> argument position.
613 template <typename AAType, typename BaseType,
614           typename StateType = typename AAType::StateType,
615           bool BridgeCallBaseContext = false>
616 struct AAArgumentFromCallSiteArguments : public BaseType {
617   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
618       : BaseType(IRP, A) {}
619 
620   /// See AbstractAttribute::updateImpl(...).
621   ChangeStatus updateImpl(Attributor &A) override {
622     StateType S = StateType::getBestState(this->getState());
623 
624     if (BridgeCallBaseContext) {
625       bool Success =
626           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
627               A, *this, this->getIRPosition(), S);
628       if (Success)
629         return clampStateAndIndicateChange<StateType>(this->getState(), S);
630     }
631     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
632 
633     // TODO: If we know we visited all incoming values, thus no are assumed
634     // dead, we can take the known information from the state T.
635     return clampStateAndIndicateChange<StateType>(this->getState(), S);
636   }
637 };
638 
639 /// Helper class for generic replication: function returned -> cs returned.
640 template <typename AAType, typename BaseType,
641           typename StateType = typename BaseType::StateType,
642           bool IntroduceCallBaseContext = false>
643 struct AACallSiteReturnedFromReturned : public BaseType {
644   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
645       : BaseType(IRP, A) {}
646 
647   /// See AbstractAttribute::updateImpl(...).
648   ChangeStatus updateImpl(Attributor &A) override {
649     assert(this->getIRPosition().getPositionKind() ==
650                IRPosition::IRP_CALL_SITE_RETURNED &&
651            "Can only wrap function returned positions for call site returned "
652            "positions!");
653     auto &S = this->getState();
654 
655     const Function *AssociatedFunction =
656         this->getIRPosition().getAssociatedFunction();
657     if (!AssociatedFunction)
658       return S.indicatePessimisticFixpoint();
659 
660     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
661     if (IntroduceCallBaseContext)
662       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
663                         << CBContext << "\n");
664 
665     IRPosition FnPos = IRPosition::returned(
666         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
667     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
668     return clampStateAndIndicateChange(S, AA.getState());
669   }
670 };
671 } // namespace
672 
673 /// Helper function to accumulate uses.
674 template <class AAType, typename StateType = typename AAType::StateType>
675 static void followUsesInContext(AAType &AA, Attributor &A,
676                                 MustBeExecutedContextExplorer &Explorer,
677                                 const Instruction *CtxI,
678                                 SetVector<const Use *> &Uses,
679                                 StateType &State) {
680   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
681   for (unsigned u = 0; u < Uses.size(); ++u) {
682     const Use *U = Uses[u];
683     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
684       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
685       if (Found && AA.followUseInMBEC(A, U, UserI, State))
686         for (const Use &Us : UserI->uses())
687           Uses.insert(&Us);
688     }
689   }
690 }
691 
692 /// Use the must-be-executed-context around \p I to add information into \p S.
693 /// The AAType class is required to have `followUseInMBEC` method with the
694 /// following signature and behaviour:
695 ///
696 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
697 /// U - Underlying use.
698 /// I - The user of the \p U.
699 /// Returns true if the value should be tracked transitively.
700 ///
701 template <class AAType, typename StateType = typename AAType::StateType>
702 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
703                              Instruction &CtxI) {
704 
705   // Container for (transitive) uses of the associated value.
706   SetVector<const Use *> Uses;
707   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
708     Uses.insert(&U);
709 
710   MustBeExecutedContextExplorer &Explorer =
711       A.getInfoCache().getMustBeExecutedContextExplorer();
712 
713   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
714 
715   if (S.isAtFixpoint())
716     return;
717 
718   SmallVector<const BranchInst *, 4> BrInsts;
719   auto Pred = [&](const Instruction *I) {
720     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
721       if (Br->isConditional())
722         BrInsts.push_back(Br);
723     return true;
724   };
725 
726   // Here, accumulate conditional branch instructions in the context. We
727   // explore the child paths and collect the known states. The disjunction of
728   // those states can be merged to its own state. Let ParentState_i be a state
729   // to indicate the known information for an i-th branch instruction in the
730   // context. ChildStates are created for its successors respectively.
731   //
732   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
733   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
734   //      ...
735   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
736   //
737   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
738   //
739   // FIXME: Currently, recursive branches are not handled. For example, we
740   // can't deduce that ptr must be dereferenced in below function.
741   //
742   // void f(int a, int c, int *ptr) {
743   //    if(a)
744   //      if (b) {
745   //        *ptr = 0;
746   //      } else {
747   //        *ptr = 1;
748   //      }
749   //    else {
750   //      if (b) {
751   //        *ptr = 0;
752   //      } else {
753   //        *ptr = 1;
754   //      }
755   //    }
756   // }
757 
758   Explorer.checkForAllContext(&CtxI, Pred);
759   for (const BranchInst *Br : BrInsts) {
760     StateType ParentState;
761 
762     // The known state of the parent state is a conjunction of children's
763     // known states so it is initialized with a best state.
764     ParentState.indicateOptimisticFixpoint();
765 
766     for (const BasicBlock *BB : Br->successors()) {
767       StateType ChildState;
768 
769       size_t BeforeSize = Uses.size();
770       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
771 
772       // Erase uses which only appear in the child.
773       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
774         It = Uses.erase(It);
775 
776       ParentState &= ChildState;
777     }
778 
779     // Use only known state.
780     S += ParentState;
781   }
782 }
783 
784 /// ------------------------ PointerInfo ---------------------------------------
785 
786 namespace llvm {
787 namespace AA {
788 namespace PointerInfo {
789 
790 struct State;
791 
792 } // namespace PointerInfo
793 } // namespace AA
794 
795 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
796 template <>
797 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
798   using Access = AAPointerInfo::Access;
799   static inline Access getEmptyKey();
800   static inline Access getTombstoneKey();
801   static unsigned getHashValue(const Access &A);
802   static bool isEqual(const Access &LHS, const Access &RHS);
803 };
804 
805 /// Helper that allows OffsetAndSize as a key in a DenseMap.
806 template <>
807 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
808     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
809 
810 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
811 /// but the instruction
812 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
813   using Base = DenseMapInfo<Instruction *>;
814   using Access = AAPointerInfo::Access;
815   static inline Access getEmptyKey();
816   static inline Access getTombstoneKey();
817   static unsigned getHashValue(const Access &A);
818   static bool isEqual(const Access &LHS, const Access &RHS);
819 };
820 
821 } // namespace llvm
822 
823 /// Implementation of the DenseMapInfo.
824 ///
825 ///{
826 inline llvm::AccessAsInstructionInfo::Access
827 llvm::AccessAsInstructionInfo::getEmptyKey() {
828   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
829 }
830 inline llvm::AccessAsInstructionInfo::Access
831 llvm::AccessAsInstructionInfo::getTombstoneKey() {
832   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
833                 nullptr);
834 }
835 unsigned llvm::AccessAsInstructionInfo::getHashValue(
836     const llvm::AccessAsInstructionInfo::Access &A) {
837   return Base::getHashValue(A.getRemoteInst());
838 }
839 bool llvm::AccessAsInstructionInfo::isEqual(
840     const llvm::AccessAsInstructionInfo::Access &LHS,
841     const llvm::AccessAsInstructionInfo::Access &RHS) {
842   return LHS.getRemoteInst() == RHS.getRemoteInst();
843 }
844 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
845 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
846   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
847                                nullptr);
848 }
849 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
850 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
851   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
852                                nullptr);
853 }
854 
855 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
856     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
857   return detail::combineHashValue(
858              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
859              (A.isWrittenValueYetUndetermined()
860                   ? ~0
861                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
862          A.getKind();
863 }
864 
865 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
866     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
867     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
868   return LHS == RHS;
869 }
870 ///}
871 
872 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
873 struct AA::PointerInfo::State : public AbstractState {
874 
875   /// Return the best possible representable state.
876   static State getBestState(const State &SIS) { return State(); }
877 
878   /// Return the worst possible representable state.
879   static State getWorstState(const State &SIS) {
880     State R;
881     R.indicatePessimisticFixpoint();
882     return R;
883   }
884 
885   State() = default;
886   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
887   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
888 
889   const State &getAssumed() const { return *this; }
890 
891   /// See AbstractState::isValidState().
892   bool isValidState() const override { return BS.isValidState(); }
893 
894   /// See AbstractState::isAtFixpoint().
895   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
896 
897   /// See AbstractState::indicateOptimisticFixpoint().
898   ChangeStatus indicateOptimisticFixpoint() override {
899     BS.indicateOptimisticFixpoint();
900     return ChangeStatus::UNCHANGED;
901   }
902 
903   /// See AbstractState::indicatePessimisticFixpoint().
904   ChangeStatus indicatePessimisticFixpoint() override {
905     BS.indicatePessimisticFixpoint();
906     return ChangeStatus::CHANGED;
907   }
908 
909   State &operator=(const State &R) {
910     if (this == &R)
911       return *this;
912     BS = R.BS;
913     AccessBins = R.AccessBins;
914     return *this;
915   }
916 
917   State &operator=(State &&R) {
918     if (this == &R)
919       return *this;
920     std::swap(BS, R.BS);
921     std::swap(AccessBins, R.AccessBins);
922     return *this;
923   }
924 
925   bool operator==(const State &R) const {
926     if (BS != R.BS)
927       return false;
928     if (AccessBins.size() != R.AccessBins.size())
929       return false;
930     auto It = begin(), RIt = R.begin(), E = end();
931     while (It != E) {
932       if (It->getFirst() != RIt->getFirst())
933         return false;
934       auto &Accs = It->getSecond();
935       auto &RAccs = RIt->getSecond();
936       if (Accs.size() != RAccs.size())
937         return false;
938       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
939       while (AccIt != AccE) {
940         if (*AccIt != *RAccIt)
941           return false;
942         ++AccIt;
943         ++RAccIt;
944       }
945       ++It;
946       ++RIt;
947     }
948     return true;
949   }
950   bool operator!=(const State &R) const { return !(*this == R); }
951 
952   /// We store accesses in a set with the instruction as key.
953   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
954 
955   /// We store all accesses in bins denoted by their offset and size.
956   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses>;
957 
958   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
959   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
960 
961 protected:
962   /// The bins with all the accesses for the associated pointer.
963   DenseMap<AAPointerInfo::OffsetAndSize, Accesses> AccessBins;
964 
965   /// Add a new access to the state at offset \p Offset and with size \p Size.
966   /// The access is associated with \p I, writes \p Content (if anything), and
967   /// is of kind \p Kind.
968   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
969   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
970                          Optional<Value *> Content,
971                          AAPointerInfo::AccessKind Kind, Type *Ty,
972                          Instruction *RemoteI = nullptr,
973                          Accesses *BinPtr = nullptr) {
974     AAPointerInfo::OffsetAndSize Key{Offset, Size};
975     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
976     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
977     // Check if we have an access for this instruction in this bin, if not,
978     // simply add it.
979     auto It = Bin.find(Acc);
980     if (It == Bin.end()) {
981       Bin.insert(Acc);
982       return ChangeStatus::CHANGED;
983     }
984     // If the existing access is the same as then new one, nothing changed.
985     AAPointerInfo::Access Before = *It;
986     // The new one will be combined with the existing one.
987     *It &= Acc;
988     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
989   }
990 
991   /// See AAPointerInfo::forallInterferingAccesses.
992   bool forallInterferingAccesses(
993       AAPointerInfo::OffsetAndSize OAS,
994       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
995     if (!isValidState())
996       return false;
997 
998     for (auto &It : AccessBins) {
999       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
1000       if (!OAS.mayOverlap(ItOAS))
1001         continue;
1002       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1003       for (auto &Access : It.getSecond())
1004         if (!CB(Access, IsExact))
1005           return false;
1006     }
1007     return true;
1008   }
1009 
1010   /// See AAPointerInfo::forallInterferingAccesses.
1011   bool forallInterferingAccesses(
1012       Instruction &I,
1013       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1014     if (!isValidState())
1015       return false;
1016 
1017     // First find the offset and size of I.
1018     AAPointerInfo::OffsetAndSize OAS(-1, -1);
1019     for (auto &It : AccessBins) {
1020       for (auto &Access : It.getSecond()) {
1021         if (Access.getRemoteInst() == &I) {
1022           OAS = It.getFirst();
1023           break;
1024         }
1025       }
1026       if (OAS.getSize() != -1)
1027         break;
1028     }
1029     // No access for I was found, we are done.
1030     if (OAS.getSize() == -1)
1031       return true;
1032 
1033     // Now that we have an offset and size, find all overlapping ones and use
1034     // the callback on the accesses.
1035     return forallInterferingAccesses(OAS, CB);
1036   }
1037 
1038 private:
1039   /// State to track fixpoint and validity.
1040   BooleanState BS;
1041 };
1042 
1043 struct AAPointerInfoImpl
1044     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1045   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1046   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1047 
1048   /// See AbstractAttribute::initialize(...).
1049   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1050 
1051   /// See AbstractAttribute::getAsStr().
1052   const std::string getAsStr() const override {
1053     return std::string("PointerInfo ") +
1054            (isValidState() ? (std::string("#") +
1055                               std::to_string(AccessBins.size()) + " bins")
1056                            : "<invalid>");
1057   }
1058 
1059   /// See AbstractAttribute::manifest(...).
1060   ChangeStatus manifest(Attributor &A) override {
1061     return AAPointerInfo::manifest(A);
1062   }
1063 
1064   bool forallInterferingAccesses(
1065       OffsetAndSize OAS,
1066       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1067       const override {
1068     return State::forallInterferingAccesses(OAS, CB);
1069   }
1070   bool forallInterferingAccesses(
1071       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1072       const override {
1073     return State::forallInterferingAccesses(LI, CB);
1074   }
1075   bool forallInterferingAccesses(
1076       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1077       const override {
1078     return State::forallInterferingAccesses(SI, CB);
1079   }
1080   bool forallInterferingWrites(
1081       Attributor &A, const AbstractAttribute &QueryingAA, LoadInst &LI,
1082       function_ref<bool(const Access &, bool)> UserCB) const override {
1083     SmallPtrSet<const Access *, 8> DominatingWrites;
1084     SmallVector<std::pair<const Access *, bool>, 8> InterferingWrites;
1085 
1086     Function &Scope = *LI.getFunction();
1087     const auto &NoSyncAA = A.getAAFor<AANoSync>(
1088         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1089     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1090         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
1091     const bool NoSync = NoSyncAA.isAssumedNoSync();
1092 
1093     // Helper to determine if we need to consider threading, which we cannot
1094     // right now. However, if the function is (assumed) nosync or the thread
1095     // executing all instructions is the main thread only we can ignore
1096     // threading.
1097     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
1098       if (NoSync)
1099         return true;
1100       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
1101         return true;
1102       return false;
1103     };
1104 
1105     // Helper to determine if the access is executed by the same thread as the
1106     // load, for now it is sufficient to avoid any potential threading effects
1107     // as we cannot deal with them anyway.
1108     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
1109       return CanIgnoreThreading(*Acc.getLocalInst());
1110     };
1111 
1112     // TODO: Use inter-procedural reachability and dominance.
1113     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1114         QueryingAA, IRPosition::function(*LI.getFunction()),
1115         DepClassTy::OPTIONAL);
1116 
1117     const bool CanUseCFGResoning = CanIgnoreThreading(LI);
1118     InformationCache &InfoCache = A.getInfoCache();
1119     const DominatorTree *DT =
1120         NoRecurseAA.isKnownNoRecurse()
1121             ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
1122                   Scope)
1123             : nullptr;
1124 
1125     enum GPUAddressSpace : unsigned {
1126       Generic = 0,
1127       Global = 1,
1128       Shared = 3,
1129       Constant = 4,
1130       Local = 5,
1131     };
1132 
1133     // Helper to check if a value has "kernel lifetime", that is it will not
1134     // outlive a GPU kernel. This is true for shared, constant, and local
1135     // globals on AMD and NVIDIA GPUs.
1136     auto HasKernelLifetime = [&](Value *V, Module &M) {
1137       Triple T(M.getTargetTriple());
1138       if (!(T.isAMDGPU() || T.isNVPTX()))
1139         return false;
1140       switch (V->getType()->getPointerAddressSpace()) {
1141       case GPUAddressSpace::Shared:
1142       case GPUAddressSpace::Constant:
1143       case GPUAddressSpace::Local:
1144         return true;
1145       default:
1146         return false;
1147       };
1148     };
1149 
1150     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1151     // to determine if we should look at reachability from the callee. For
1152     // certain pointers we know the lifetime and we do not have to step into the
1153     // callee to determine reachability as the pointer would be dead in the
1154     // callee. See the conditional initialization below.
1155     std::function<bool(const Function &)> IsLiveInCalleeCB;
1156 
1157     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1158       // If the alloca containing function is not recursive the alloca
1159       // must be dead in the callee.
1160       const Function *AIFn = AI->getFunction();
1161       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1162           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1163       if (NoRecurseAA.isAssumedNoRecurse()) {
1164         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1165       }
1166     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1167       // If the global has kernel lifetime we can stop if we reach a kernel
1168       // as it is "dead" in the (unknown) callees.
1169       if (HasKernelLifetime(GV, *GV->getParent()))
1170         IsLiveInCalleeCB = [](const Function &Fn) {
1171           return !Fn.hasFnAttribute("kernel");
1172         };
1173     }
1174 
1175     auto AccessCB = [&](const Access &Acc, bool Exact) {
1176       if (!Acc.isWrite())
1177         return true;
1178 
1179       // For now we only filter accesses based on CFG reasoning which does not
1180       // work yet if we have threading effects, or the access is complicated.
1181       if (CanUseCFGResoning) {
1182         if (!AA::isPotentiallyReachable(A, *Acc.getLocalInst(), LI, QueryingAA,
1183                                         IsLiveInCalleeCB))
1184           return true;
1185         if (DT && Exact &&
1186             (Acc.getLocalInst()->getFunction() == LI.getFunction()) &&
1187             IsSameThreadAsLoad(Acc)) {
1188           if (DT->dominates(Acc.getLocalInst(), &LI))
1189             DominatingWrites.insert(&Acc);
1190         }
1191       }
1192 
1193       InterferingWrites.push_back({&Acc, Exact});
1194       return true;
1195     };
1196     if (!State::forallInterferingAccesses(LI, AccessCB))
1197       return false;
1198 
1199     // If we cannot use CFG reasoning we only filter the non-write accesses
1200     // and are done here.
1201     if (!CanUseCFGResoning) {
1202       for (auto &It : InterferingWrites)
1203         if (!UserCB(*It.first, It.second))
1204           return false;
1205       return true;
1206     }
1207 
1208     // Helper to determine if we can skip a specific write access. This is in
1209     // the worst case quadratic as we are looking for another write that will
1210     // hide the effect of this one.
1211     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1212       if (!IsSameThreadAsLoad(Acc))
1213         return false;
1214       if (!DominatingWrites.count(&Acc))
1215         return false;
1216       for (const Access *DomAcc : DominatingWrites) {
1217         assert(Acc.getLocalInst()->getFunction() ==
1218                    DomAcc->getLocalInst()->getFunction() &&
1219                "Expected dominating writes to be in the same function!");
1220 
1221         if (DomAcc != &Acc &&
1222             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1223           return true;
1224         }
1225       }
1226       return false;
1227     };
1228 
1229     // Run the user callback on all writes we cannot skip and return if that
1230     // succeeded for all or not.
1231     unsigned NumInterferingWrites = InterferingWrites.size();
1232     for (auto &It : InterferingWrites)
1233       if (!DT || NumInterferingWrites > MaxInterferingWrites ||
1234           !CanSkipAccess(*It.first, It.second))
1235         if (!UserCB(*It.first, It.second))
1236           return false;
1237     return true;
1238   }
1239 
1240   ChangeStatus translateAndAddCalleeState(Attributor &A,
1241                                           const AAPointerInfo &CalleeAA,
1242                                           int64_t CallArgOffset, CallBase &CB) {
1243     using namespace AA::PointerInfo;
1244     if (!CalleeAA.getState().isValidState() || !isValidState())
1245       return indicatePessimisticFixpoint();
1246 
1247     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1248     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1249 
1250     // Combine the accesses bin by bin.
1251     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1252     for (auto &It : CalleeImplAA.getState()) {
1253       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1254       if (CallArgOffset != OffsetAndSize::Unknown)
1255         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1256                             It.first.getSize());
1257       Accesses &Bin = AccessBins[OAS];
1258       for (const AAPointerInfo::Access &RAcc : It.second) {
1259         if (IsByval && !RAcc.isRead())
1260           continue;
1261         bool UsedAssumedInformation = false;
1262         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1263             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1264         AccessKind AK =
1265             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1266                                                  : AccessKind::AK_READ_WRITE));
1267         Changed =
1268             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1269                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1270       }
1271     }
1272     return Changed;
1273   }
1274 
1275   /// Statistic tracking for all AAPointerInfo implementations.
1276   /// See AbstractAttribute::trackStatistics().
1277   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1278 };
1279 
1280 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1281   using AccessKind = AAPointerInfo::AccessKind;
1282   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1283       : AAPointerInfoImpl(IRP, A) {}
1284 
1285   /// See AbstractAttribute::initialize(...).
1286   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1287 
1288   /// Deal with an access and signal if it was handled successfully.
1289   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1290                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1291                     ChangeStatus &Changed, Type *Ty,
1292                     int64_t Size = OffsetAndSize::Unknown) {
1293     using namespace AA::PointerInfo;
1294     // No need to find a size if one is given or the offset is unknown.
1295     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1296         Ty) {
1297       const DataLayout &DL = A.getDataLayout();
1298       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1299       if (!AccessSize.isScalable())
1300         Size = AccessSize.getFixedSize();
1301     }
1302     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1303     return true;
1304   };
1305 
1306   /// Helper struct, will support ranges eventually.
1307   struct OffsetInfo {
1308     int64_t Offset = OffsetAndSize::Unknown;
1309 
1310     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1311   };
1312 
1313   /// See AbstractAttribute::updateImpl(...).
1314   ChangeStatus updateImpl(Attributor &A) override {
1315     using namespace AA::PointerInfo;
1316     State S = getState();
1317     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1318     Value &AssociatedValue = getAssociatedValue();
1319 
1320     const DataLayout &DL = A.getDataLayout();
1321     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1322     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1323 
1324     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1325                                      bool &Follow) {
1326       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1327       UsrOI = PtrOI;
1328       Follow = true;
1329       return true;
1330     };
1331 
1332     const auto *TLI = getAnchorScope()
1333                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1334                                 *getAnchorScope())
1335                           : nullptr;
1336     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1337       Value *CurPtr = U.get();
1338       User *Usr = U.getUser();
1339       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1340                         << *Usr << "\n");
1341       assert(OffsetInfoMap.count(CurPtr) &&
1342              "The current pointer offset should have been seeded!");
1343 
1344       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1345         if (CE->isCast())
1346           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1347         if (CE->isCompare())
1348           return true;
1349         if (!isa<GEPOperator>(CE)) {
1350           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1351                             << "\n");
1352           return false;
1353         }
1354       }
1355       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1356         // Note the order here, the Usr access might change the map, CurPtr is
1357         // already in it though.
1358         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1359         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1360         UsrOI = PtrOI;
1361 
1362         // TODO: Use range information.
1363         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1364             !GEP->hasAllConstantIndices()) {
1365           UsrOI.Offset = OffsetAndSize::Unknown;
1366           Follow = true;
1367           return true;
1368         }
1369 
1370         SmallVector<Value *, 8> Indices;
1371         for (Use &Idx : GEP->indices()) {
1372           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1373             Indices.push_back(CIdx);
1374             continue;
1375           }
1376 
1377           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1378                             << " : " << *Idx << "\n");
1379           return false;
1380         }
1381         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1382                                           GEP->getSourceElementType(), Indices);
1383         Follow = true;
1384         return true;
1385       }
1386       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1387         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1388 
1389       // For PHIs we need to take care of the recurrence explicitly as the value
1390       // might change while we iterate through a loop. For now, we give up if
1391       // the PHI is not invariant.
1392       if (isa<PHINode>(Usr)) {
1393         // Note the order here, the Usr access might change the map, CurPtr is
1394         // already in it though.
1395         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1396         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1397         // Check if the PHI is invariant (so far).
1398         if (UsrOI == PtrOI)
1399           return true;
1400 
1401         // Check if the PHI operand has already an unknown offset as we can't
1402         // improve on that anymore.
1403         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1404           UsrOI = PtrOI;
1405           Follow = true;
1406           return true;
1407         }
1408 
1409         // Check if the PHI operand is not dependent on the PHI itself.
1410         // TODO: This is not great as we look at the pointer type. However, it
1411         // is unclear where the Offset size comes from with typeless pointers.
1412         APInt Offset(
1413             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1414             0);
1415         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1416                                     DL, Offset, /* AllowNonInbounds */ true)) {
1417           if (Offset != PtrOI.Offset) {
1418             LLVM_DEBUG(dbgs()
1419                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1420                        << *CurPtr << " in " << *Usr << "\n");
1421             return false;
1422           }
1423           return HandlePassthroughUser(Usr, PtrOI, Follow);
1424         }
1425 
1426         // TODO: Approximate in case we know the direction of the recurrence.
1427         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1428                           << *CurPtr << " in " << *Usr << "\n");
1429         UsrOI = PtrOI;
1430         UsrOI.Offset = OffsetAndSize::Unknown;
1431         Follow = true;
1432         return true;
1433       }
1434 
1435       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1436         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1437                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1438                             Changed, LoadI->getType());
1439       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1440         if (StoreI->getValueOperand() == CurPtr) {
1441           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1442                             << *StoreI << "\n");
1443           return false;
1444         }
1445         bool UsedAssumedInformation = false;
1446         Optional<Value *> Content = A.getAssumedSimplified(
1447             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1448         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1449                             OffsetInfoMap[CurPtr].Offset, Changed,
1450                             StoreI->getValueOperand()->getType());
1451       }
1452       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1453         if (CB->isLifetimeStartOrEnd())
1454           return true;
1455         if (TLI && isFreeCall(CB, TLI))
1456           return true;
1457         if (CB->isArgOperand(&U)) {
1458           unsigned ArgNo = CB->getArgOperandNo(&U);
1459           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1460               *this, IRPosition::callsite_argument(*CB, ArgNo),
1461               DepClassTy::REQUIRED);
1462           Changed = translateAndAddCalleeState(
1463                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1464                     Changed;
1465           return true;
1466         }
1467         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1468                           << "\n");
1469         // TODO: Allow some call uses
1470         return false;
1471       }
1472 
1473       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1474       return false;
1475     };
1476     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1477       if (OffsetInfoMap.count(NewU))
1478         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1479       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1480       return true;
1481     };
1482     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1483                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1484                            EquivalentUseCB))
1485       return indicatePessimisticFixpoint();
1486 
1487     LLVM_DEBUG({
1488       dbgs() << "Accesses by bin after update:\n";
1489       for (auto &It : AccessBins) {
1490         dbgs() << "[" << It.first.getOffset() << "-"
1491                << It.first.getOffset() + It.first.getSize()
1492                << "] : " << It.getSecond().size() << "\n";
1493         for (auto &Acc : It.getSecond()) {
1494           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1495                  << "\n";
1496           if (Acc.getLocalInst() != Acc.getRemoteInst())
1497             dbgs() << "     -->                         "
1498                    << *Acc.getRemoteInst() << "\n";
1499           if (!Acc.isWrittenValueYetUndetermined())
1500             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1501         }
1502       }
1503     });
1504 
1505     return Changed;
1506   }
1507 
1508   /// See AbstractAttribute::trackStatistics()
1509   void trackStatistics() const override {
1510     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1511   }
1512 };
1513 
1514 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1515   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1516       : AAPointerInfoImpl(IRP, A) {}
1517 
1518   /// See AbstractAttribute::updateImpl(...).
1519   ChangeStatus updateImpl(Attributor &A) override {
1520     return indicatePessimisticFixpoint();
1521   }
1522 
1523   /// See AbstractAttribute::trackStatistics()
1524   void trackStatistics() const override {
1525     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1526   }
1527 };
1528 
1529 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1530   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1531       : AAPointerInfoFloating(IRP, A) {}
1532 
1533   /// See AbstractAttribute::initialize(...).
1534   void initialize(Attributor &A) override {
1535     AAPointerInfoFloating::initialize(A);
1536     if (getAnchorScope()->isDeclaration())
1537       indicatePessimisticFixpoint();
1538   }
1539 
1540   /// See AbstractAttribute::trackStatistics()
1541   void trackStatistics() const override {
1542     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1543   }
1544 };
1545 
1546 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1547   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1548       : AAPointerInfoFloating(IRP, A) {}
1549 
1550   /// See AbstractAttribute::updateImpl(...).
1551   ChangeStatus updateImpl(Attributor &A) override {
1552     using namespace AA::PointerInfo;
1553     // We handle memory intrinsics explicitly, at least the first (=
1554     // destination) and second (=source) arguments as we know how they are
1555     // accessed.
1556     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1557       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1558       int64_t LengthVal = OffsetAndSize::Unknown;
1559       if (Length)
1560         LengthVal = Length->getSExtValue();
1561       Value &Ptr = getAssociatedValue();
1562       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1563       ChangeStatus Changed;
1564       if (ArgNo == 0) {
1565         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1566                      nullptr, LengthVal);
1567       } else if (ArgNo == 1) {
1568         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1569                      nullptr, LengthVal);
1570       } else {
1571         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1572                           << *MI << "\n");
1573         return indicatePessimisticFixpoint();
1574       }
1575       return Changed;
1576     }
1577 
1578     // TODO: Once we have call site specific value information we can provide
1579     //       call site specific liveness information and then it makes
1580     //       sense to specialize attributes for call sites arguments instead of
1581     //       redirecting requests to the callee argument.
1582     Argument *Arg = getAssociatedArgument();
1583     if (!Arg)
1584       return indicatePessimisticFixpoint();
1585     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1586     auto &ArgAA =
1587         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1588     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1589   }
1590 
1591   /// See AbstractAttribute::trackStatistics()
1592   void trackStatistics() const override {
1593     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1594   }
1595 };
1596 
1597 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1598   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1599       : AAPointerInfoFloating(IRP, A) {}
1600 
1601   /// See AbstractAttribute::trackStatistics()
1602   void trackStatistics() const override {
1603     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1604   }
1605 };
1606 
1607 /// -----------------------NoUnwind Function Attribute--------------------------
1608 
1609 struct AANoUnwindImpl : AANoUnwind {
1610   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1611 
1612   const std::string getAsStr() const override {
1613     return getAssumed() ? "nounwind" : "may-unwind";
1614   }
1615 
1616   /// See AbstractAttribute::updateImpl(...).
1617   ChangeStatus updateImpl(Attributor &A) override {
1618     auto Opcodes = {
1619         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1620         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1621         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1622 
1623     auto CheckForNoUnwind = [&](Instruction &I) {
1624       if (!I.mayThrow())
1625         return true;
1626 
1627       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1628         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1629             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1630         return NoUnwindAA.isAssumedNoUnwind();
1631       }
1632       return false;
1633     };
1634 
1635     bool UsedAssumedInformation = false;
1636     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1637                                    UsedAssumedInformation))
1638       return indicatePessimisticFixpoint();
1639 
1640     return ChangeStatus::UNCHANGED;
1641   }
1642 };
1643 
1644 struct AANoUnwindFunction final : public AANoUnwindImpl {
1645   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1646       : AANoUnwindImpl(IRP, A) {}
1647 
1648   /// See AbstractAttribute::trackStatistics()
1649   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1650 };
1651 
1652 /// NoUnwind attribute deduction for a call sites.
1653 struct AANoUnwindCallSite final : AANoUnwindImpl {
1654   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1655       : AANoUnwindImpl(IRP, A) {}
1656 
1657   /// See AbstractAttribute::initialize(...).
1658   void initialize(Attributor &A) override {
1659     AANoUnwindImpl::initialize(A);
1660     Function *F = getAssociatedFunction();
1661     if (!F || F->isDeclaration())
1662       indicatePessimisticFixpoint();
1663   }
1664 
1665   /// See AbstractAttribute::updateImpl(...).
1666   ChangeStatus updateImpl(Attributor &A) override {
1667     // TODO: Once we have call site specific value information we can provide
1668     //       call site specific liveness information and then it makes
1669     //       sense to specialize attributes for call sites arguments instead of
1670     //       redirecting requests to the callee argument.
1671     Function *F = getAssociatedFunction();
1672     const IRPosition &FnPos = IRPosition::function(*F);
1673     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1674     return clampStateAndIndicateChange(getState(), FnAA.getState());
1675   }
1676 
1677   /// See AbstractAttribute::trackStatistics()
1678   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1679 };
1680 
1681 /// --------------------- Function Return Values -------------------------------
1682 
1683 /// "Attribute" that collects all potential returned values and the return
1684 /// instructions that they arise from.
1685 ///
1686 /// If there is a unique returned value R, the manifest method will:
1687 ///   - mark R with the "returned" attribute, if R is an argument.
1688 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1689 
1690   /// Mapping of values potentially returned by the associated function to the
1691   /// return instructions that might return them.
1692   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1693 
1694   /// State flags
1695   ///
1696   ///{
1697   bool IsFixed = false;
1698   bool IsValidState = true;
1699   ///}
1700 
1701 public:
1702   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1703       : AAReturnedValues(IRP, A) {}
1704 
1705   /// See AbstractAttribute::initialize(...).
1706   void initialize(Attributor &A) override {
1707     // Reset the state.
1708     IsFixed = false;
1709     IsValidState = true;
1710     ReturnedValues.clear();
1711 
1712     Function *F = getAssociatedFunction();
1713     if (!F || F->isDeclaration()) {
1714       indicatePessimisticFixpoint();
1715       return;
1716     }
1717     assert(!F->getReturnType()->isVoidTy() &&
1718            "Did not expect a void return type!");
1719 
1720     // The map from instruction opcodes to those instructions in the function.
1721     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1722 
1723     // Look through all arguments, if one is marked as returned we are done.
1724     for (Argument &Arg : F->args()) {
1725       if (Arg.hasReturnedAttr()) {
1726         auto &ReturnInstSet = ReturnedValues[&Arg];
1727         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1728           for (Instruction *RI : *Insts)
1729             ReturnInstSet.insert(cast<ReturnInst>(RI));
1730 
1731         indicateOptimisticFixpoint();
1732         return;
1733       }
1734     }
1735 
1736     if (!A.isFunctionIPOAmendable(*F))
1737       indicatePessimisticFixpoint();
1738   }
1739 
1740   /// See AbstractAttribute::manifest(...).
1741   ChangeStatus manifest(Attributor &A) override;
1742 
1743   /// See AbstractAttribute::getState(...).
1744   AbstractState &getState() override { return *this; }
1745 
1746   /// See AbstractAttribute::getState(...).
1747   const AbstractState &getState() const override { return *this; }
1748 
1749   /// See AbstractAttribute::updateImpl(Attributor &A).
1750   ChangeStatus updateImpl(Attributor &A) override;
1751 
1752   llvm::iterator_range<iterator> returned_values() override {
1753     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1754   }
1755 
1756   llvm::iterator_range<const_iterator> returned_values() const override {
1757     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1758   }
1759 
1760   /// Return the number of potential return values, -1 if unknown.
1761   size_t getNumReturnValues() const override {
1762     return isValidState() ? ReturnedValues.size() : -1;
1763   }
1764 
1765   /// Return an assumed unique return value if a single candidate is found. If
1766   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1767   /// Optional::NoneType.
1768   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1769 
1770   /// See AbstractState::checkForAllReturnedValues(...).
1771   bool checkForAllReturnedValuesAndReturnInsts(
1772       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1773       const override;
1774 
1775   /// Pretty print the attribute similar to the IR representation.
1776   const std::string getAsStr() const override;
1777 
1778   /// See AbstractState::isAtFixpoint().
1779   bool isAtFixpoint() const override { return IsFixed; }
1780 
1781   /// See AbstractState::isValidState().
1782   bool isValidState() const override { return IsValidState; }
1783 
1784   /// See AbstractState::indicateOptimisticFixpoint(...).
1785   ChangeStatus indicateOptimisticFixpoint() override {
1786     IsFixed = true;
1787     return ChangeStatus::UNCHANGED;
1788   }
1789 
1790   ChangeStatus indicatePessimisticFixpoint() override {
1791     IsFixed = true;
1792     IsValidState = false;
1793     return ChangeStatus::CHANGED;
1794   }
1795 };
1796 
1797 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1798   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1799 
1800   // Bookkeeping.
1801   assert(isValidState());
1802   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1803                   "Number of function with known return values");
1804 
1805   // Check if we have an assumed unique return value that we could manifest.
1806   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1807 
1808   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1809     return Changed;
1810 
1811   // Bookkeeping.
1812   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1813                   "Number of function with unique return");
1814   // If the assumed unique return value is an argument, annotate it.
1815   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1816     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1817             getAssociatedFunction()->getReturnType())) {
1818       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1819       Changed = IRAttribute::manifest(A);
1820     }
1821   }
1822   return Changed;
1823 }
1824 
1825 const std::string AAReturnedValuesImpl::getAsStr() const {
1826   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1827          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1828 }
1829 
1830 Optional<Value *>
1831 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1832   // If checkForAllReturnedValues provides a unique value, ignoring potential
1833   // undef values that can also be present, it is assumed to be the actual
1834   // return value and forwarded to the caller of this method. If there are
1835   // multiple, a nullptr is returned indicating there cannot be a unique
1836   // returned value.
1837   Optional<Value *> UniqueRV;
1838   Type *Ty = getAssociatedFunction()->getReturnType();
1839 
1840   auto Pred = [&](Value &RV) -> bool {
1841     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1842     return UniqueRV != Optional<Value *>(nullptr);
1843   };
1844 
1845   if (!A.checkForAllReturnedValues(Pred, *this))
1846     UniqueRV = nullptr;
1847 
1848   return UniqueRV;
1849 }
1850 
1851 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1852     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1853     const {
1854   if (!isValidState())
1855     return false;
1856 
1857   // Check all returned values but ignore call sites as long as we have not
1858   // encountered an overdefined one during an update.
1859   for (auto &It : ReturnedValues) {
1860     Value *RV = It.first;
1861     if (!Pred(*RV, It.second))
1862       return false;
1863   }
1864 
1865   return true;
1866 }
1867 
1868 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1869   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1870 
1871   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1872                            bool) -> bool {
1873     assert(AA::isValidInScope(V, Ret.getFunction()) &&
1874            "Assumed returned value should be valid in function scope!");
1875     if (ReturnedValues[&V].insert(&Ret))
1876       Changed = ChangeStatus::CHANGED;
1877     return true;
1878   };
1879 
1880   auto ReturnInstCB = [&](Instruction &I) {
1881     ReturnInst &Ret = cast<ReturnInst>(I);
1882     return genericValueTraversal<ReturnInst>(
1883         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1884         &I, /* UseValueSimplify */ true, /* MaxValues */ 16,
1885         /* StripCB */ nullptr, /* Intraprocedural */ true);
1886   };
1887 
1888   // Discover returned values from all live returned instructions in the
1889   // associated function.
1890   bool UsedAssumedInformation = false;
1891   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1892                                  UsedAssumedInformation))
1893     return indicatePessimisticFixpoint();
1894   return Changed;
1895 }
1896 
1897 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1898   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1899       : AAReturnedValuesImpl(IRP, A) {}
1900 
1901   /// See AbstractAttribute::trackStatistics()
1902   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1903 };
1904 
1905 /// Returned values information for a call sites.
1906 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1907   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1908       : AAReturnedValuesImpl(IRP, A) {}
1909 
1910   /// See AbstractAttribute::initialize(...).
1911   void initialize(Attributor &A) override {
1912     // TODO: Once we have call site specific value information we can provide
1913     //       call site specific liveness information and then it makes
1914     //       sense to specialize attributes for call sites instead of
1915     //       redirecting requests to the callee.
1916     llvm_unreachable("Abstract attributes for returned values are not "
1917                      "supported for call sites yet!");
1918   }
1919 
1920   /// See AbstractAttribute::updateImpl(...).
1921   ChangeStatus updateImpl(Attributor &A) override {
1922     return indicatePessimisticFixpoint();
1923   }
1924 
1925   /// See AbstractAttribute::trackStatistics()
1926   void trackStatistics() const override {}
1927 };
1928 
1929 /// ------------------------ NoSync Function Attribute -------------------------
1930 
1931 struct AANoSyncImpl : AANoSync {
1932   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1933 
1934   const std::string getAsStr() const override {
1935     return getAssumed() ? "nosync" : "may-sync";
1936   }
1937 
1938   /// See AbstractAttribute::updateImpl(...).
1939   ChangeStatus updateImpl(Attributor &A) override;
1940 };
1941 
1942 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1943   if (!I->isAtomic())
1944     return false;
1945 
1946   if (auto *FI = dyn_cast<FenceInst>(I))
1947     // All legal orderings for fence are stronger than monotonic.
1948     return FI->getSyncScopeID() != SyncScope::SingleThread;
1949   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1950     // Unordered is not a legal ordering for cmpxchg.
1951     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1952             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1953   }
1954 
1955   AtomicOrdering Ordering;
1956   switch (I->getOpcode()) {
1957   case Instruction::AtomicRMW:
1958     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1959     break;
1960   case Instruction::Store:
1961     Ordering = cast<StoreInst>(I)->getOrdering();
1962     break;
1963   case Instruction::Load:
1964     Ordering = cast<LoadInst>(I)->getOrdering();
1965     break;
1966   default:
1967     llvm_unreachable(
1968         "New atomic operations need to be known in the attributor.");
1969   }
1970 
1971   return (Ordering != AtomicOrdering::Unordered &&
1972           Ordering != AtomicOrdering::Monotonic);
1973 }
1974 
1975 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1976 /// which would be nosync except that they have a volatile flag.  All other
1977 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1978 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
1979   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1980     return !MI->isVolatile();
1981   return false;
1982 }
1983 
1984 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1985 
1986   auto CheckRWInstForNoSync = [&](Instruction &I) {
1987     return AA::isNoSyncInst(A, I, *this);
1988   };
1989 
1990   auto CheckForNoSync = [&](Instruction &I) {
1991     // At this point we handled all read/write effects and they are all
1992     // nosync, so they can be skipped.
1993     if (I.mayReadOrWriteMemory())
1994       return true;
1995 
1996     // non-convergent and readnone imply nosync.
1997     return !cast<CallBase>(I).isConvergent();
1998   };
1999 
2000   bool UsedAssumedInformation = false;
2001   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2002                                           UsedAssumedInformation) ||
2003       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2004                                          UsedAssumedInformation))
2005     return indicatePessimisticFixpoint();
2006 
2007   return ChangeStatus::UNCHANGED;
2008 }
2009 
2010 struct AANoSyncFunction final : public AANoSyncImpl {
2011   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2012       : AANoSyncImpl(IRP, A) {}
2013 
2014   /// See AbstractAttribute::trackStatistics()
2015   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2016 };
2017 
2018 /// NoSync attribute deduction for a call sites.
2019 struct AANoSyncCallSite final : AANoSyncImpl {
2020   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2021       : AANoSyncImpl(IRP, A) {}
2022 
2023   /// See AbstractAttribute::initialize(...).
2024   void initialize(Attributor &A) override {
2025     AANoSyncImpl::initialize(A);
2026     Function *F = getAssociatedFunction();
2027     if (!F || F->isDeclaration())
2028       indicatePessimisticFixpoint();
2029   }
2030 
2031   /// See AbstractAttribute::updateImpl(...).
2032   ChangeStatus updateImpl(Attributor &A) override {
2033     // TODO: Once we have call site specific value information we can provide
2034     //       call site specific liveness information and then it makes
2035     //       sense to specialize attributes for call sites arguments instead of
2036     //       redirecting requests to the callee argument.
2037     Function *F = getAssociatedFunction();
2038     const IRPosition &FnPos = IRPosition::function(*F);
2039     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
2040     return clampStateAndIndicateChange(getState(), FnAA.getState());
2041   }
2042 
2043   /// See AbstractAttribute::trackStatistics()
2044   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2045 };
2046 
2047 /// ------------------------ No-Free Attributes ----------------------------
2048 
2049 struct AANoFreeImpl : public AANoFree {
2050   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2051 
2052   /// See AbstractAttribute::updateImpl(...).
2053   ChangeStatus updateImpl(Attributor &A) override {
2054     auto CheckForNoFree = [&](Instruction &I) {
2055       const auto &CB = cast<CallBase>(I);
2056       if (CB.hasFnAttr(Attribute::NoFree))
2057         return true;
2058 
2059       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2060           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2061       return NoFreeAA.isAssumedNoFree();
2062     };
2063 
2064     bool UsedAssumedInformation = false;
2065     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2066                                            UsedAssumedInformation))
2067       return indicatePessimisticFixpoint();
2068     return ChangeStatus::UNCHANGED;
2069   }
2070 
2071   /// See AbstractAttribute::getAsStr().
2072   const std::string getAsStr() const override {
2073     return getAssumed() ? "nofree" : "may-free";
2074   }
2075 };
2076 
2077 struct AANoFreeFunction final : public AANoFreeImpl {
2078   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2079       : AANoFreeImpl(IRP, A) {}
2080 
2081   /// See AbstractAttribute::trackStatistics()
2082   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2083 };
2084 
2085 /// NoFree attribute deduction for a call sites.
2086 struct AANoFreeCallSite final : AANoFreeImpl {
2087   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2088       : AANoFreeImpl(IRP, A) {}
2089 
2090   /// See AbstractAttribute::initialize(...).
2091   void initialize(Attributor &A) override {
2092     AANoFreeImpl::initialize(A);
2093     Function *F = getAssociatedFunction();
2094     if (!F || F->isDeclaration())
2095       indicatePessimisticFixpoint();
2096   }
2097 
2098   /// See AbstractAttribute::updateImpl(...).
2099   ChangeStatus updateImpl(Attributor &A) override {
2100     // TODO: Once we have call site specific value information we can provide
2101     //       call site specific liveness information and then it makes
2102     //       sense to specialize attributes for call sites arguments instead of
2103     //       redirecting requests to the callee argument.
2104     Function *F = getAssociatedFunction();
2105     const IRPosition &FnPos = IRPosition::function(*F);
2106     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2107     return clampStateAndIndicateChange(getState(), FnAA.getState());
2108   }
2109 
2110   /// See AbstractAttribute::trackStatistics()
2111   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2112 };
2113 
2114 /// NoFree attribute for floating values.
2115 struct AANoFreeFloating : AANoFreeImpl {
2116   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2117       : AANoFreeImpl(IRP, A) {}
2118 
2119   /// See AbstractAttribute::trackStatistics()
2120   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2121 
2122   /// See Abstract Attribute::updateImpl(...).
2123   ChangeStatus updateImpl(Attributor &A) override {
2124     const IRPosition &IRP = getIRPosition();
2125 
2126     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2127         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2128     if (NoFreeAA.isAssumedNoFree())
2129       return ChangeStatus::UNCHANGED;
2130 
2131     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2132     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2133       Instruction *UserI = cast<Instruction>(U.getUser());
2134       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2135         if (CB->isBundleOperand(&U))
2136           return false;
2137         if (!CB->isArgOperand(&U))
2138           return true;
2139         unsigned ArgNo = CB->getArgOperandNo(&U);
2140 
2141         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2142             *this, IRPosition::callsite_argument(*CB, ArgNo),
2143             DepClassTy::REQUIRED);
2144         return NoFreeArg.isAssumedNoFree();
2145       }
2146 
2147       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2148           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2149         Follow = true;
2150         return true;
2151       }
2152       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2153           isa<ReturnInst>(UserI))
2154         return true;
2155 
2156       // Unknown user.
2157       return false;
2158     };
2159     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2160       return indicatePessimisticFixpoint();
2161 
2162     return ChangeStatus::UNCHANGED;
2163   }
2164 };
2165 
2166 /// NoFree attribute for a call site argument.
2167 struct AANoFreeArgument final : AANoFreeFloating {
2168   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2169       : AANoFreeFloating(IRP, A) {}
2170 
2171   /// See AbstractAttribute::trackStatistics()
2172   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2173 };
2174 
2175 /// NoFree attribute for call site arguments.
2176 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2177   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2178       : AANoFreeFloating(IRP, A) {}
2179 
2180   /// See AbstractAttribute::updateImpl(...).
2181   ChangeStatus updateImpl(Attributor &A) override {
2182     // TODO: Once we have call site specific value information we can provide
2183     //       call site specific liveness information and then it makes
2184     //       sense to specialize attributes for call sites arguments instead of
2185     //       redirecting requests to the callee argument.
2186     Argument *Arg = getAssociatedArgument();
2187     if (!Arg)
2188       return indicatePessimisticFixpoint();
2189     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2190     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2191     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2192   }
2193 
2194   /// See AbstractAttribute::trackStatistics()
2195   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2196 };
2197 
2198 /// NoFree attribute for function return value.
2199 struct AANoFreeReturned final : AANoFreeFloating {
2200   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2201       : AANoFreeFloating(IRP, A) {
2202     llvm_unreachable("NoFree is not applicable to function returns!");
2203   }
2204 
2205   /// See AbstractAttribute::initialize(...).
2206   void initialize(Attributor &A) override {
2207     llvm_unreachable("NoFree is not applicable to function returns!");
2208   }
2209 
2210   /// See AbstractAttribute::updateImpl(...).
2211   ChangeStatus updateImpl(Attributor &A) override {
2212     llvm_unreachable("NoFree is not applicable to function returns!");
2213   }
2214 
2215   /// See AbstractAttribute::trackStatistics()
2216   void trackStatistics() const override {}
2217 };
2218 
2219 /// NoFree attribute deduction for a call site return value.
2220 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2221   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2222       : AANoFreeFloating(IRP, A) {}
2223 
2224   ChangeStatus manifest(Attributor &A) override {
2225     return ChangeStatus::UNCHANGED;
2226   }
2227   /// See AbstractAttribute::trackStatistics()
2228   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2229 };
2230 
2231 /// ------------------------ NonNull Argument Attribute ------------------------
2232 static int64_t getKnownNonNullAndDerefBytesForUse(
2233     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2234     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2235   TrackUse = false;
2236 
2237   const Value *UseV = U->get();
2238   if (!UseV->getType()->isPointerTy())
2239     return 0;
2240 
2241   // We need to follow common pointer manipulation uses to the accesses they
2242   // feed into. We can try to be smart to avoid looking through things we do not
2243   // like for now, e.g., non-inbounds GEPs.
2244   if (isa<CastInst>(I)) {
2245     TrackUse = true;
2246     return 0;
2247   }
2248 
2249   if (isa<GetElementPtrInst>(I)) {
2250     TrackUse = true;
2251     return 0;
2252   }
2253 
2254   Type *PtrTy = UseV->getType();
2255   const Function *F = I->getFunction();
2256   bool NullPointerIsDefined =
2257       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2258   const DataLayout &DL = A.getInfoCache().getDL();
2259   if (const auto *CB = dyn_cast<CallBase>(I)) {
2260     if (CB->isBundleOperand(U)) {
2261       if (RetainedKnowledge RK = getKnowledgeFromUse(
2262               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2263         IsNonNull |=
2264             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2265         return RK.ArgValue;
2266       }
2267       return 0;
2268     }
2269 
2270     if (CB->isCallee(U)) {
2271       IsNonNull |= !NullPointerIsDefined;
2272       return 0;
2273     }
2274 
2275     unsigned ArgNo = CB->getArgOperandNo(U);
2276     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2277     // As long as we only use known information there is no need to track
2278     // dependences here.
2279     auto &DerefAA =
2280         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2281     IsNonNull |= DerefAA.isKnownNonNull();
2282     return DerefAA.getKnownDereferenceableBytes();
2283   }
2284 
2285   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2286   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2287     return 0;
2288 
2289   int64_t Offset;
2290   const Value *Base =
2291       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2292   if (Base && Base == &AssociatedValue) {
2293     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2294     IsNonNull |= !NullPointerIsDefined;
2295     return std::max(int64_t(0), DerefBytes);
2296   }
2297 
2298   /// Corner case when an offset is 0.
2299   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2300                                           /*AllowNonInbounds*/ true);
2301   if (Base && Base == &AssociatedValue && Offset == 0) {
2302     int64_t DerefBytes = Loc->Size.getValue();
2303     IsNonNull |= !NullPointerIsDefined;
2304     return std::max(int64_t(0), DerefBytes);
2305   }
2306 
2307   return 0;
2308 }
2309 
2310 struct AANonNullImpl : AANonNull {
2311   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2312       : AANonNull(IRP, A),
2313         NullIsDefined(NullPointerIsDefined(
2314             getAnchorScope(),
2315             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2316 
2317   /// See AbstractAttribute::initialize(...).
2318   void initialize(Attributor &A) override {
2319     Value &V = getAssociatedValue();
2320     if (!NullIsDefined &&
2321         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2322                 /* IgnoreSubsumingPositions */ false, &A)) {
2323       indicateOptimisticFixpoint();
2324       return;
2325     }
2326 
2327     if (isa<ConstantPointerNull>(V)) {
2328       indicatePessimisticFixpoint();
2329       return;
2330     }
2331 
2332     AANonNull::initialize(A);
2333 
2334     bool CanBeNull, CanBeFreed;
2335     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2336                                          CanBeFreed)) {
2337       if (!CanBeNull) {
2338         indicateOptimisticFixpoint();
2339         return;
2340       }
2341     }
2342 
2343     if (isa<GlobalValue>(&getAssociatedValue())) {
2344       indicatePessimisticFixpoint();
2345       return;
2346     }
2347 
2348     if (Instruction *CtxI = getCtxI())
2349       followUsesInMBEC(*this, A, getState(), *CtxI);
2350   }
2351 
2352   /// See followUsesInMBEC
2353   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2354                        AANonNull::StateType &State) {
2355     bool IsNonNull = false;
2356     bool TrackUse = false;
2357     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2358                                        IsNonNull, TrackUse);
2359     State.setKnown(IsNonNull);
2360     return TrackUse;
2361   }
2362 
2363   /// See AbstractAttribute::getAsStr().
2364   const std::string getAsStr() const override {
2365     return getAssumed() ? "nonnull" : "may-null";
2366   }
2367 
2368   /// Flag to determine if the underlying value can be null and still allow
2369   /// valid accesses.
2370   const bool NullIsDefined;
2371 };
2372 
2373 /// NonNull attribute for a floating value.
2374 struct AANonNullFloating : public AANonNullImpl {
2375   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2376       : AANonNullImpl(IRP, A) {}
2377 
2378   /// See AbstractAttribute::updateImpl(...).
2379   ChangeStatus updateImpl(Attributor &A) override {
2380     const DataLayout &DL = A.getDataLayout();
2381 
2382     DominatorTree *DT = nullptr;
2383     AssumptionCache *AC = nullptr;
2384     InformationCache &InfoCache = A.getInfoCache();
2385     if (const Function *Fn = getAnchorScope()) {
2386       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2387       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2388     }
2389 
2390     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2391                             AANonNull::StateType &T, bool Stripped) -> bool {
2392       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2393                                              DepClassTy::REQUIRED);
2394       if (!Stripped && this == &AA) {
2395         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2396           T.indicatePessimisticFixpoint();
2397       } else {
2398         // Use abstract attribute information.
2399         const AANonNull::StateType &NS = AA.getState();
2400         T ^= NS;
2401       }
2402       return T.isValidState();
2403     };
2404 
2405     StateType T;
2406     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2407                                           VisitValueCB, getCtxI()))
2408       return indicatePessimisticFixpoint();
2409 
2410     return clampStateAndIndicateChange(getState(), T);
2411   }
2412 
2413   /// See AbstractAttribute::trackStatistics()
2414   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2415 };
2416 
2417 /// NonNull attribute for function return value.
2418 struct AANonNullReturned final
2419     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2420   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2421       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2422 
2423   /// See AbstractAttribute::getAsStr().
2424   const std::string getAsStr() const override {
2425     return getAssumed() ? "nonnull" : "may-null";
2426   }
2427 
2428   /// See AbstractAttribute::trackStatistics()
2429   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2430 };
2431 
2432 /// NonNull attribute for function argument.
2433 struct AANonNullArgument final
2434     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2435   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2436       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2437 
2438   /// See AbstractAttribute::trackStatistics()
2439   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2440 };
2441 
2442 struct AANonNullCallSiteArgument final : AANonNullFloating {
2443   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2444       : AANonNullFloating(IRP, A) {}
2445 
2446   /// See AbstractAttribute::trackStatistics()
2447   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2448 };
2449 
2450 /// NonNull attribute for a call site return position.
2451 struct AANonNullCallSiteReturned final
2452     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2453   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2454       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2455 
2456   /// See AbstractAttribute::trackStatistics()
2457   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2458 };
2459 
2460 /// ------------------------ No-Recurse Attributes ----------------------------
2461 
2462 struct AANoRecurseImpl : public AANoRecurse {
2463   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2464 
2465   /// See AbstractAttribute::getAsStr()
2466   const std::string getAsStr() const override {
2467     return getAssumed() ? "norecurse" : "may-recurse";
2468   }
2469 };
2470 
2471 struct AANoRecurseFunction final : AANoRecurseImpl {
2472   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2473       : AANoRecurseImpl(IRP, A) {}
2474 
2475   /// See AbstractAttribute::updateImpl(...).
2476   ChangeStatus updateImpl(Attributor &A) override {
2477 
2478     // If all live call sites are known to be no-recurse, we are as well.
2479     auto CallSitePred = [&](AbstractCallSite ACS) {
2480       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2481           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2482           DepClassTy::NONE);
2483       return NoRecurseAA.isKnownNoRecurse();
2484     };
2485     bool AllCallSitesKnown;
2486     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2487       // If we know all call sites and all are known no-recurse, we are done.
2488       // If all known call sites, which might not be all that exist, are known
2489       // to be no-recurse, we are not done but we can continue to assume
2490       // no-recurse. If one of the call sites we have not visited will become
2491       // live, another update is triggered.
2492       if (AllCallSitesKnown)
2493         indicateOptimisticFixpoint();
2494       return ChangeStatus::UNCHANGED;
2495     }
2496 
2497     const AAFunctionReachability &EdgeReachability =
2498         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2499                                            DepClassTy::REQUIRED);
2500     if (EdgeReachability.canReach(A, *getAnchorScope()))
2501       return indicatePessimisticFixpoint();
2502     return ChangeStatus::UNCHANGED;
2503   }
2504 
2505   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2506 };
2507 
2508 /// NoRecurse attribute deduction for a call sites.
2509 struct AANoRecurseCallSite final : AANoRecurseImpl {
2510   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2511       : AANoRecurseImpl(IRP, A) {}
2512 
2513   /// See AbstractAttribute::initialize(...).
2514   void initialize(Attributor &A) override {
2515     AANoRecurseImpl::initialize(A);
2516     Function *F = getAssociatedFunction();
2517     if (!F || F->isDeclaration())
2518       indicatePessimisticFixpoint();
2519   }
2520 
2521   /// See AbstractAttribute::updateImpl(...).
2522   ChangeStatus updateImpl(Attributor &A) override {
2523     // TODO: Once we have call site specific value information we can provide
2524     //       call site specific liveness information and then it makes
2525     //       sense to specialize attributes for call sites arguments instead of
2526     //       redirecting requests to the callee argument.
2527     Function *F = getAssociatedFunction();
2528     const IRPosition &FnPos = IRPosition::function(*F);
2529     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2530     return clampStateAndIndicateChange(getState(), FnAA.getState());
2531   }
2532 
2533   /// See AbstractAttribute::trackStatistics()
2534   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2535 };
2536 
2537 /// -------------------- Undefined-Behavior Attributes ------------------------
2538 
2539 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2540   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2541       : AAUndefinedBehavior(IRP, A) {}
2542 
2543   /// See AbstractAttribute::updateImpl(...).
2544   // through a pointer (i.e. also branches etc.)
2545   ChangeStatus updateImpl(Attributor &A) override {
2546     const size_t UBPrevSize = KnownUBInsts.size();
2547     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2548 
2549     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2550       // Lang ref now states volatile store is not UB, let's skip them.
2551       if (I.isVolatile() && I.mayWriteToMemory())
2552         return true;
2553 
2554       // Skip instructions that are already saved.
2555       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2556         return true;
2557 
2558       // If we reach here, we know we have an instruction
2559       // that accesses memory through a pointer operand,
2560       // for which getPointerOperand() should give it to us.
2561       Value *PtrOp =
2562           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2563       assert(PtrOp &&
2564              "Expected pointer operand of memory accessing instruction");
2565 
2566       // Either we stopped and the appropriate action was taken,
2567       // or we got back a simplified value to continue.
2568       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2569       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2570         return true;
2571       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2572 
2573       // A memory access through a pointer is considered UB
2574       // only if the pointer has constant null value.
2575       // TODO: Expand it to not only check constant values.
2576       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2577         AssumedNoUBInsts.insert(&I);
2578         return true;
2579       }
2580       const Type *PtrTy = PtrOpVal->getType();
2581 
2582       // Because we only consider instructions inside functions,
2583       // assume that a parent function exists.
2584       const Function *F = I.getFunction();
2585 
2586       // A memory access using constant null pointer is only considered UB
2587       // if null pointer is _not_ defined for the target platform.
2588       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2589         AssumedNoUBInsts.insert(&I);
2590       else
2591         KnownUBInsts.insert(&I);
2592       return true;
2593     };
2594 
2595     auto InspectBrInstForUB = [&](Instruction &I) {
2596       // A conditional branch instruction is considered UB if it has `undef`
2597       // condition.
2598 
2599       // Skip instructions that are already saved.
2600       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2601         return true;
2602 
2603       // We know we have a branch instruction.
2604       auto *BrInst = cast<BranchInst>(&I);
2605 
2606       // Unconditional branches are never considered UB.
2607       if (BrInst->isUnconditional())
2608         return true;
2609 
2610       // Either we stopped and the appropriate action was taken,
2611       // or we got back a simplified value to continue.
2612       Optional<Value *> SimplifiedCond =
2613           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2614       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2615         return true;
2616       AssumedNoUBInsts.insert(&I);
2617       return true;
2618     };
2619 
2620     auto InspectCallSiteForUB = [&](Instruction &I) {
2621       // Check whether a callsite always cause UB or not
2622 
2623       // Skip instructions that are already saved.
2624       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2625         return true;
2626 
2627       // Check nonnull and noundef argument attribute violation for each
2628       // callsite.
2629       CallBase &CB = cast<CallBase>(I);
2630       Function *Callee = CB.getCalledFunction();
2631       if (!Callee)
2632         return true;
2633       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2634         // If current argument is known to be simplified to null pointer and the
2635         // corresponding argument position is known to have nonnull attribute,
2636         // the argument is poison. Furthermore, if the argument is poison and
2637         // the position is known to have noundef attriubte, this callsite is
2638         // considered UB.
2639         if (idx >= Callee->arg_size())
2640           break;
2641         Value *ArgVal = CB.getArgOperand(idx);
2642         if (!ArgVal)
2643           continue;
2644         // Here, we handle three cases.
2645         //   (1) Not having a value means it is dead. (we can replace the value
2646         //       with undef)
2647         //   (2) Simplified to undef. The argument violate noundef attriubte.
2648         //   (3) Simplified to null pointer where known to be nonnull.
2649         //       The argument is a poison value and violate noundef attribute.
2650         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2651         auto &NoUndefAA =
2652             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2653         if (!NoUndefAA.isKnownNoUndef())
2654           continue;
2655         bool UsedAssumedInformation = false;
2656         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2657             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2658         if (UsedAssumedInformation)
2659           continue;
2660         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2661           return true;
2662         if (!SimplifiedVal.hasValue() ||
2663             isa<UndefValue>(*SimplifiedVal.getValue())) {
2664           KnownUBInsts.insert(&I);
2665           continue;
2666         }
2667         if (!ArgVal->getType()->isPointerTy() ||
2668             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2669           continue;
2670         auto &NonNullAA =
2671             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2672         if (NonNullAA.isKnownNonNull())
2673           KnownUBInsts.insert(&I);
2674       }
2675       return true;
2676     };
2677 
2678     auto InspectReturnInstForUB = [&](Instruction &I) {
2679       auto &RI = cast<ReturnInst>(I);
2680       // Either we stopped and the appropriate action was taken,
2681       // or we got back a simplified return value to continue.
2682       Optional<Value *> SimplifiedRetValue =
2683           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2684       if (!SimplifiedRetValue.hasValue() || !SimplifiedRetValue.getValue())
2685         return true;
2686 
2687       // Check if a return instruction always cause UB or not
2688       // Note: It is guaranteed that the returned position of the anchor
2689       //       scope has noundef attribute when this is called.
2690       //       We also ensure the return position is not "assumed dead"
2691       //       because the returned value was then potentially simplified to
2692       //       `undef` in AAReturnedValues without removing the `noundef`
2693       //       attribute yet.
2694 
2695       // When the returned position has noundef attriubte, UB occurs in the
2696       // following cases.
2697       //   (1) Returned value is known to be undef.
2698       //   (2) The value is known to be a null pointer and the returned
2699       //       position has nonnull attribute (because the returned value is
2700       //       poison).
2701       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2702         auto &NonNullAA = A.getAAFor<AANonNull>(
2703             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2704         if (NonNullAA.isKnownNonNull())
2705           KnownUBInsts.insert(&I);
2706       }
2707 
2708       return true;
2709     };
2710 
2711     bool UsedAssumedInformation = false;
2712     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2713                               {Instruction::Load, Instruction::Store,
2714                                Instruction::AtomicCmpXchg,
2715                                Instruction::AtomicRMW},
2716                               UsedAssumedInformation,
2717                               /* CheckBBLivenessOnly */ true);
2718     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2719                               UsedAssumedInformation,
2720                               /* CheckBBLivenessOnly */ true);
2721     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2722                                       UsedAssumedInformation);
2723 
2724     // If the returned position of the anchor scope has noundef attriubte, check
2725     // all returned instructions.
2726     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2727       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2728       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2729         auto &RetPosNoUndefAA =
2730             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2731         if (RetPosNoUndefAA.isKnownNoUndef())
2732           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2733                                     {Instruction::Ret}, UsedAssumedInformation,
2734                                     /* CheckBBLivenessOnly */ true);
2735       }
2736     }
2737 
2738     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2739         UBPrevSize != KnownUBInsts.size())
2740       return ChangeStatus::CHANGED;
2741     return ChangeStatus::UNCHANGED;
2742   }
2743 
2744   bool isKnownToCauseUB(Instruction *I) const override {
2745     return KnownUBInsts.count(I);
2746   }
2747 
2748   bool isAssumedToCauseUB(Instruction *I) const override {
2749     // In simple words, if an instruction is not in the assumed to _not_
2750     // cause UB, then it is assumed UB (that includes those
2751     // in the KnownUBInsts set). The rest is boilerplate
2752     // is to ensure that it is one of the instructions we test
2753     // for UB.
2754 
2755     switch (I->getOpcode()) {
2756     case Instruction::Load:
2757     case Instruction::Store:
2758     case Instruction::AtomicCmpXchg:
2759     case Instruction::AtomicRMW:
2760       return !AssumedNoUBInsts.count(I);
2761     case Instruction::Br: {
2762       auto BrInst = cast<BranchInst>(I);
2763       if (BrInst->isUnconditional())
2764         return false;
2765       return !AssumedNoUBInsts.count(I);
2766     } break;
2767     default:
2768       return false;
2769     }
2770     return false;
2771   }
2772 
2773   ChangeStatus manifest(Attributor &A) override {
2774     if (KnownUBInsts.empty())
2775       return ChangeStatus::UNCHANGED;
2776     for (Instruction *I : KnownUBInsts)
2777       A.changeToUnreachableAfterManifest(I);
2778     return ChangeStatus::CHANGED;
2779   }
2780 
2781   /// See AbstractAttribute::getAsStr()
2782   const std::string getAsStr() const override {
2783     return getAssumed() ? "undefined-behavior" : "no-ub";
2784   }
2785 
2786   /// Note: The correctness of this analysis depends on the fact that the
2787   /// following 2 sets will stop changing after some point.
2788   /// "Change" here means that their size changes.
2789   /// The size of each set is monotonically increasing
2790   /// (we only add items to them) and it is upper bounded by the number of
2791   /// instructions in the processed function (we can never save more
2792   /// elements in either set than this number). Hence, at some point,
2793   /// they will stop increasing.
2794   /// Consequently, at some point, both sets will have stopped
2795   /// changing, effectively making the analysis reach a fixpoint.
2796 
2797   /// Note: These 2 sets are disjoint and an instruction can be considered
2798   /// one of 3 things:
2799   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2800   ///    the KnownUBInsts set.
2801   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2802   ///    has a reason to assume it).
2803   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2804   ///    could not find a reason to assume or prove that it can cause UB,
2805   ///    hence it assumes it doesn't. We have a set for these instructions
2806   ///    so that we don't reprocess them in every update.
2807   ///    Note however that instructions in this set may cause UB.
2808 
2809 protected:
2810   /// A set of all live instructions _known_ to cause UB.
2811   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2812 
2813 private:
2814   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2815   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2816 
2817   // Should be called on updates in which if we're processing an instruction
2818   // \p I that depends on a value \p V, one of the following has to happen:
2819   // - If the value is assumed, then stop.
2820   // - If the value is known but undef, then consider it UB.
2821   // - Otherwise, do specific processing with the simplified value.
2822   // We return None in the first 2 cases to signify that an appropriate
2823   // action was taken and the caller should stop.
2824   // Otherwise, we return the simplified value that the caller should
2825   // use for specific processing.
2826   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2827                                          Instruction *I) {
2828     bool UsedAssumedInformation = false;
2829     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2830         IRPosition::value(*V), *this, UsedAssumedInformation);
2831     if (!UsedAssumedInformation) {
2832       // Don't depend on assumed values.
2833       if (!SimplifiedV.hasValue()) {
2834         // If it is known (which we tested above) but it doesn't have a value,
2835         // then we can assume `undef` and hence the instruction is UB.
2836         KnownUBInsts.insert(I);
2837         return llvm::None;
2838       }
2839       if (!SimplifiedV.getValue())
2840         return nullptr;
2841       V = *SimplifiedV;
2842     }
2843     if (isa<UndefValue>(V)) {
2844       KnownUBInsts.insert(I);
2845       return llvm::None;
2846     }
2847     return V;
2848   }
2849 };
2850 
2851 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2852   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2853       : AAUndefinedBehaviorImpl(IRP, A) {}
2854 
2855   /// See AbstractAttribute::trackStatistics()
2856   void trackStatistics() const override {
2857     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2858                "Number of instructions known to have UB");
2859     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2860         KnownUBInsts.size();
2861   }
2862 };
2863 
2864 /// ------------------------ Will-Return Attributes ----------------------------
2865 
2866 // Helper function that checks whether a function has any cycle which we don't
2867 // know if it is bounded or not.
2868 // Loops with maximum trip count are considered bounded, any other cycle not.
2869 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2870   ScalarEvolution *SE =
2871       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2872   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2873   // If either SCEV or LoopInfo is not available for the function then we assume
2874   // any cycle to be unbounded cycle.
2875   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2876   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2877   if (!SE || !LI) {
2878     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2879       if (SCCI.hasCycle())
2880         return true;
2881     return false;
2882   }
2883 
2884   // If there's irreducible control, the function may contain non-loop cycles.
2885   if (mayContainIrreducibleControl(F, LI))
2886     return true;
2887 
2888   // Any loop that does not have a max trip count is considered unbounded cycle.
2889   for (auto *L : LI->getLoopsInPreorder()) {
2890     if (!SE->getSmallConstantMaxTripCount(L))
2891       return true;
2892   }
2893   return false;
2894 }
2895 
2896 struct AAWillReturnImpl : public AAWillReturn {
2897   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2898       : AAWillReturn(IRP, A) {}
2899 
2900   /// See AbstractAttribute::initialize(...).
2901   void initialize(Attributor &A) override {
2902     AAWillReturn::initialize(A);
2903 
2904     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2905       indicateOptimisticFixpoint();
2906       return;
2907     }
2908   }
2909 
2910   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2911   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2912     // Check for `mustprogress` in the scope and the associated function which
2913     // might be different if this is a call site.
2914     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2915         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2916       return false;
2917 
2918     bool IsKnown;
2919     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2920       return IsKnown || !KnownOnly;
2921     return false;
2922   }
2923 
2924   /// See AbstractAttribute::updateImpl(...).
2925   ChangeStatus updateImpl(Attributor &A) override {
2926     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2927       return ChangeStatus::UNCHANGED;
2928 
2929     auto CheckForWillReturn = [&](Instruction &I) {
2930       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2931       const auto &WillReturnAA =
2932           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2933       if (WillReturnAA.isKnownWillReturn())
2934         return true;
2935       if (!WillReturnAA.isAssumedWillReturn())
2936         return false;
2937       const auto &NoRecurseAA =
2938           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2939       return NoRecurseAA.isAssumedNoRecurse();
2940     };
2941 
2942     bool UsedAssumedInformation = false;
2943     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2944                                            UsedAssumedInformation))
2945       return indicatePessimisticFixpoint();
2946 
2947     return ChangeStatus::UNCHANGED;
2948   }
2949 
2950   /// See AbstractAttribute::getAsStr()
2951   const std::string getAsStr() const override {
2952     return getAssumed() ? "willreturn" : "may-noreturn";
2953   }
2954 };
2955 
2956 struct AAWillReturnFunction final : AAWillReturnImpl {
2957   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2958       : AAWillReturnImpl(IRP, A) {}
2959 
2960   /// See AbstractAttribute::initialize(...).
2961   void initialize(Attributor &A) override {
2962     AAWillReturnImpl::initialize(A);
2963 
2964     Function *F = getAnchorScope();
2965     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2966       indicatePessimisticFixpoint();
2967   }
2968 
2969   /// See AbstractAttribute::trackStatistics()
2970   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2971 };
2972 
2973 /// WillReturn attribute deduction for a call sites.
2974 struct AAWillReturnCallSite final : AAWillReturnImpl {
2975   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2976       : AAWillReturnImpl(IRP, A) {}
2977 
2978   /// See AbstractAttribute::initialize(...).
2979   void initialize(Attributor &A) override {
2980     AAWillReturnImpl::initialize(A);
2981     Function *F = getAssociatedFunction();
2982     if (!F || !A.isFunctionIPOAmendable(*F))
2983       indicatePessimisticFixpoint();
2984   }
2985 
2986   /// See AbstractAttribute::updateImpl(...).
2987   ChangeStatus updateImpl(Attributor &A) override {
2988     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2989       return ChangeStatus::UNCHANGED;
2990 
2991     // TODO: Once we have call site specific value information we can provide
2992     //       call site specific liveness information and then it makes
2993     //       sense to specialize attributes for call sites arguments instead of
2994     //       redirecting requests to the callee argument.
2995     Function *F = getAssociatedFunction();
2996     const IRPosition &FnPos = IRPosition::function(*F);
2997     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2998     return clampStateAndIndicateChange(getState(), FnAA.getState());
2999   }
3000 
3001   /// See AbstractAttribute::trackStatistics()
3002   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3003 };
3004 
3005 /// -------------------AAReachability Attribute--------------------------
3006 
3007 struct AAReachabilityImpl : AAReachability {
3008   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
3009       : AAReachability(IRP, A) {}
3010 
3011   const std::string getAsStr() const override {
3012     // TODO: Return the number of reachable queries.
3013     return "reachable";
3014   }
3015 
3016   /// See AbstractAttribute::updateImpl(...).
3017   ChangeStatus updateImpl(Attributor &A) override {
3018     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
3019         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
3020     if (!NoRecurseAA.isAssumedNoRecurse())
3021       return indicatePessimisticFixpoint();
3022     return ChangeStatus::UNCHANGED;
3023   }
3024 };
3025 
3026 struct AAReachabilityFunction final : public AAReachabilityImpl {
3027   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
3028       : AAReachabilityImpl(IRP, A) {}
3029 
3030   /// See AbstractAttribute::trackStatistics()
3031   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3032 };
3033 
3034 /// ------------------------ NoAlias Argument Attribute ------------------------
3035 
3036 struct AANoAliasImpl : AANoAlias {
3037   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3038     assert(getAssociatedType()->isPointerTy() &&
3039            "Noalias is a pointer attribute");
3040   }
3041 
3042   const std::string getAsStr() const override {
3043     return getAssumed() ? "noalias" : "may-alias";
3044   }
3045 };
3046 
3047 /// NoAlias attribute for a floating value.
3048 struct AANoAliasFloating final : AANoAliasImpl {
3049   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3050       : AANoAliasImpl(IRP, A) {}
3051 
3052   /// See AbstractAttribute::initialize(...).
3053   void initialize(Attributor &A) override {
3054     AANoAliasImpl::initialize(A);
3055     Value *Val = &getAssociatedValue();
3056     do {
3057       CastInst *CI = dyn_cast<CastInst>(Val);
3058       if (!CI)
3059         break;
3060       Value *Base = CI->getOperand(0);
3061       if (!Base->hasOneUse())
3062         break;
3063       Val = Base;
3064     } while (true);
3065 
3066     if (!Val->getType()->isPointerTy()) {
3067       indicatePessimisticFixpoint();
3068       return;
3069     }
3070 
3071     if (isa<AllocaInst>(Val))
3072       indicateOptimisticFixpoint();
3073     else if (isa<ConstantPointerNull>(Val) &&
3074              !NullPointerIsDefined(getAnchorScope(),
3075                                    Val->getType()->getPointerAddressSpace()))
3076       indicateOptimisticFixpoint();
3077     else if (Val != &getAssociatedValue()) {
3078       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3079           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3080       if (ValNoAliasAA.isKnownNoAlias())
3081         indicateOptimisticFixpoint();
3082     }
3083   }
3084 
3085   /// See AbstractAttribute::updateImpl(...).
3086   ChangeStatus updateImpl(Attributor &A) override {
3087     // TODO: Implement this.
3088     return indicatePessimisticFixpoint();
3089   }
3090 
3091   /// See AbstractAttribute::trackStatistics()
3092   void trackStatistics() const override {
3093     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3094   }
3095 };
3096 
3097 /// NoAlias attribute for an argument.
3098 struct AANoAliasArgument final
3099     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3100   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3101   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3102 
3103   /// See AbstractAttribute::initialize(...).
3104   void initialize(Attributor &A) override {
3105     Base::initialize(A);
3106     // See callsite argument attribute and callee argument attribute.
3107     if (hasAttr({Attribute::ByVal}))
3108       indicateOptimisticFixpoint();
3109   }
3110 
3111   /// See AbstractAttribute::update(...).
3112   ChangeStatus updateImpl(Attributor &A) override {
3113     // We have to make sure no-alias on the argument does not break
3114     // synchronization when this is a callback argument, see also [1] below.
3115     // If synchronization cannot be affected, we delegate to the base updateImpl
3116     // function, otherwise we give up for now.
3117 
3118     // If the function is no-sync, no-alias cannot break synchronization.
3119     const auto &NoSyncAA =
3120         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3121                              DepClassTy::OPTIONAL);
3122     if (NoSyncAA.isAssumedNoSync())
3123       return Base::updateImpl(A);
3124 
3125     // If the argument is read-only, no-alias cannot break synchronization.
3126     bool IsKnown;
3127     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3128       return Base::updateImpl(A);
3129 
3130     // If the argument is never passed through callbacks, no-alias cannot break
3131     // synchronization.
3132     bool AllCallSitesKnown;
3133     if (A.checkForAllCallSites(
3134             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3135             true, AllCallSitesKnown))
3136       return Base::updateImpl(A);
3137 
3138     // TODO: add no-alias but make sure it doesn't break synchronization by
3139     // introducing fake uses. See:
3140     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3141     //     International Workshop on OpenMP 2018,
3142     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3143 
3144     return indicatePessimisticFixpoint();
3145   }
3146 
3147   /// See AbstractAttribute::trackStatistics()
3148   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3149 };
3150 
3151 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3152   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3153       : AANoAliasImpl(IRP, A) {}
3154 
3155   /// See AbstractAttribute::initialize(...).
3156   void initialize(Attributor &A) override {
3157     // See callsite argument attribute and callee argument attribute.
3158     const auto &CB = cast<CallBase>(getAnchorValue());
3159     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3160       indicateOptimisticFixpoint();
3161     Value &Val = getAssociatedValue();
3162     if (isa<ConstantPointerNull>(Val) &&
3163         !NullPointerIsDefined(getAnchorScope(),
3164                               Val.getType()->getPointerAddressSpace()))
3165       indicateOptimisticFixpoint();
3166   }
3167 
3168   /// Determine if the underlying value may alias with the call site argument
3169   /// \p OtherArgNo of \p ICS (= the underlying call site).
3170   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3171                             const AAMemoryBehavior &MemBehaviorAA,
3172                             const CallBase &CB, unsigned OtherArgNo) {
3173     // We do not need to worry about aliasing with the underlying IRP.
3174     if (this->getCalleeArgNo() == (int)OtherArgNo)
3175       return false;
3176 
3177     // If it is not a pointer or pointer vector we do not alias.
3178     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3179     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3180       return false;
3181 
3182     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3183         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3184 
3185     // If the argument is readnone, there is no read-write aliasing.
3186     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3187       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3188       return false;
3189     }
3190 
3191     // If the argument is readonly and the underlying value is readonly, there
3192     // is no read-write aliasing.
3193     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3194     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3195       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3196       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3197       return false;
3198     }
3199 
3200     // We have to utilize actual alias analysis queries so we need the object.
3201     if (!AAR)
3202       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3203 
3204     // Try to rule it out at the call site.
3205     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3206     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3207                          "callsite arguments: "
3208                       << getAssociatedValue() << " " << *ArgOp << " => "
3209                       << (IsAliasing ? "" : "no-") << "alias \n");
3210 
3211     return IsAliasing;
3212   }
3213 
3214   bool
3215   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3216                                          const AAMemoryBehavior &MemBehaviorAA,
3217                                          const AANoAlias &NoAliasAA) {
3218     // We can deduce "noalias" if the following conditions hold.
3219     // (i)   Associated value is assumed to be noalias in the definition.
3220     // (ii)  Associated value is assumed to be no-capture in all the uses
3221     //       possibly executed before this callsite.
3222     // (iii) There is no other pointer argument which could alias with the
3223     //       value.
3224 
3225     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3226     if (!AssociatedValueIsNoAliasAtDef) {
3227       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3228                         << " is not no-alias at the definition\n");
3229       return false;
3230     }
3231 
3232     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3233 
3234     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3235     const Function *ScopeFn = VIRP.getAnchorScope();
3236     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3237     // Check whether the value is captured in the scope using AANoCapture.
3238     //      Look at CFG and check only uses possibly executed before this
3239     //      callsite.
3240     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3241       Instruction *UserI = cast<Instruction>(U.getUser());
3242 
3243       // If UserI is the curr instruction and there is a single potential use of
3244       // the value in UserI we allow the use.
3245       // TODO: We should inspect the operands and allow those that cannot alias
3246       //       with the value.
3247       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3248         return true;
3249 
3250       if (ScopeFn) {
3251         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3252             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3253 
3254         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3255           return true;
3256 
3257         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3258           if (CB->isArgOperand(&U)) {
3259 
3260             unsigned ArgNo = CB->getArgOperandNo(&U);
3261 
3262             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3263                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3264                 DepClassTy::OPTIONAL);
3265 
3266             if (NoCaptureAA.isAssumedNoCapture())
3267               return true;
3268           }
3269         }
3270       }
3271 
3272       // For cases which can potentially have more users
3273       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3274           isa<SelectInst>(U)) {
3275         Follow = true;
3276         return true;
3277       }
3278 
3279       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3280       return false;
3281     };
3282 
3283     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3284       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3285         LLVM_DEBUG(
3286             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3287                    << " cannot be noalias as it is potentially captured\n");
3288         return false;
3289       }
3290     }
3291     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3292 
3293     // Check there is no other pointer argument which could alias with the
3294     // value passed at this call site.
3295     // TODO: AbstractCallSite
3296     const auto &CB = cast<CallBase>(getAnchorValue());
3297     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3298       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3299         return false;
3300 
3301     return true;
3302   }
3303 
3304   /// See AbstractAttribute::updateImpl(...).
3305   ChangeStatus updateImpl(Attributor &A) override {
3306     // If the argument is readnone we are done as there are no accesses via the
3307     // argument.
3308     auto &MemBehaviorAA =
3309         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3310     if (MemBehaviorAA.isAssumedReadNone()) {
3311       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3312       return ChangeStatus::UNCHANGED;
3313     }
3314 
3315     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3316     const auto &NoAliasAA =
3317         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3318 
3319     AAResults *AAR = nullptr;
3320     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3321                                                NoAliasAA)) {
3322       LLVM_DEBUG(
3323           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3324       return ChangeStatus::UNCHANGED;
3325     }
3326 
3327     return indicatePessimisticFixpoint();
3328   }
3329 
3330   /// See AbstractAttribute::trackStatistics()
3331   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3332 };
3333 
3334 /// NoAlias attribute for function return value.
3335 struct AANoAliasReturned final : AANoAliasImpl {
3336   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3337       : AANoAliasImpl(IRP, A) {}
3338 
3339   /// See AbstractAttribute::initialize(...).
3340   void initialize(Attributor &A) override {
3341     AANoAliasImpl::initialize(A);
3342     Function *F = getAssociatedFunction();
3343     if (!F || F->isDeclaration())
3344       indicatePessimisticFixpoint();
3345   }
3346 
3347   /// See AbstractAttribute::updateImpl(...).
3348   virtual ChangeStatus updateImpl(Attributor &A) override {
3349 
3350     auto CheckReturnValue = [&](Value &RV) -> bool {
3351       if (Constant *C = dyn_cast<Constant>(&RV))
3352         if (C->isNullValue() || isa<UndefValue>(C))
3353           return true;
3354 
3355       /// For now, we can only deduce noalias if we have call sites.
3356       /// FIXME: add more support.
3357       if (!isa<CallBase>(&RV))
3358         return false;
3359 
3360       const IRPosition &RVPos = IRPosition::value(RV);
3361       const auto &NoAliasAA =
3362           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3363       if (!NoAliasAA.isAssumedNoAlias())
3364         return false;
3365 
3366       const auto &NoCaptureAA =
3367           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3368       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3369     };
3370 
3371     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3372       return indicatePessimisticFixpoint();
3373 
3374     return ChangeStatus::UNCHANGED;
3375   }
3376 
3377   /// See AbstractAttribute::trackStatistics()
3378   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3379 };
3380 
3381 /// NoAlias attribute deduction for a call site return value.
3382 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3383   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3384       : AANoAliasImpl(IRP, A) {}
3385 
3386   /// See AbstractAttribute::initialize(...).
3387   void initialize(Attributor &A) override {
3388     AANoAliasImpl::initialize(A);
3389     Function *F = getAssociatedFunction();
3390     if (!F || F->isDeclaration())
3391       indicatePessimisticFixpoint();
3392   }
3393 
3394   /// See AbstractAttribute::updateImpl(...).
3395   ChangeStatus updateImpl(Attributor &A) override {
3396     // TODO: Once we have call site specific value information we can provide
3397     //       call site specific liveness information and then it makes
3398     //       sense to specialize attributes for call sites arguments instead of
3399     //       redirecting requests to the callee argument.
3400     Function *F = getAssociatedFunction();
3401     const IRPosition &FnPos = IRPosition::returned(*F);
3402     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3403     return clampStateAndIndicateChange(getState(), FnAA.getState());
3404   }
3405 
3406   /// See AbstractAttribute::trackStatistics()
3407   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3408 };
3409 
3410 /// -------------------AAIsDead Function Attribute-----------------------
3411 
3412 struct AAIsDeadValueImpl : public AAIsDead {
3413   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3414 
3415   /// See AAIsDead::isAssumedDead().
3416   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3417 
3418   /// See AAIsDead::isKnownDead().
3419   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3420 
3421   /// See AAIsDead::isAssumedDead(BasicBlock *).
3422   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3423 
3424   /// See AAIsDead::isKnownDead(BasicBlock *).
3425   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3426 
3427   /// See AAIsDead::isAssumedDead(Instruction *I).
3428   bool isAssumedDead(const Instruction *I) const override {
3429     return I == getCtxI() && isAssumedDead();
3430   }
3431 
3432   /// See AAIsDead::isKnownDead(Instruction *I).
3433   bool isKnownDead(const Instruction *I) const override {
3434     return isAssumedDead(I) && isKnownDead();
3435   }
3436 
3437   /// See AbstractAttribute::getAsStr().
3438   const std::string getAsStr() const override {
3439     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3440   }
3441 
3442   /// Check if all uses are assumed dead.
3443   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3444     // Callers might not check the type, void has no uses.
3445     if (V.getType()->isVoidTy())
3446       return true;
3447 
3448     // If we replace a value with a constant there are no uses left afterwards.
3449     if (!isa<Constant>(V)) {
3450       bool UsedAssumedInformation = false;
3451       Optional<Constant *> C =
3452           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3453       if (!C.hasValue() || *C)
3454         return true;
3455     }
3456 
3457     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3458     // Explicitly set the dependence class to required because we want a long
3459     // chain of N dependent instructions to be considered live as soon as one is
3460     // without going through N update cycles. This is not required for
3461     // correctness.
3462     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3463                              DepClassTy::REQUIRED);
3464   }
3465 
3466   /// Determine if \p I is assumed to be side-effect free.
3467   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3468     if (!I || wouldInstructionBeTriviallyDead(I))
3469       return true;
3470 
3471     auto *CB = dyn_cast<CallBase>(I);
3472     if (!CB || isa<IntrinsicInst>(CB))
3473       return false;
3474 
3475     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3476     const auto &NoUnwindAA =
3477         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3478     if (!NoUnwindAA.isAssumedNoUnwind())
3479       return false;
3480     if (!NoUnwindAA.isKnownNoUnwind())
3481       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3482 
3483     bool IsKnown;
3484     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3485   }
3486 };
3487 
3488 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3489   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3490       : AAIsDeadValueImpl(IRP, A) {}
3491 
3492   /// See AbstractAttribute::initialize(...).
3493   void initialize(Attributor &A) override {
3494     if (isa<UndefValue>(getAssociatedValue())) {
3495       indicatePessimisticFixpoint();
3496       return;
3497     }
3498 
3499     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3500     if (!isAssumedSideEffectFree(A, I)) {
3501       if (!isa_and_nonnull<StoreInst>(I))
3502         indicatePessimisticFixpoint();
3503       else
3504         removeAssumedBits(HAS_NO_EFFECT);
3505     }
3506   }
3507 
3508   bool isDeadStore(Attributor &A, StoreInst &SI) {
3509     // Lang ref now states volatile store is not UB/dead, let's skip them.
3510     if (SI.isVolatile())
3511       return false;
3512 
3513     bool UsedAssumedInformation = false;
3514     SmallSetVector<Value *, 4> PotentialCopies;
3515     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3516                                              UsedAssumedInformation))
3517       return false;
3518     return llvm::all_of(PotentialCopies, [&](Value *V) {
3519       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3520                              UsedAssumedInformation);
3521     });
3522   }
3523 
3524   /// See AbstractAttribute::updateImpl(...).
3525   ChangeStatus updateImpl(Attributor &A) override {
3526     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3527     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3528       if (!isDeadStore(A, *SI))
3529         return indicatePessimisticFixpoint();
3530     } else {
3531       if (!isAssumedSideEffectFree(A, I))
3532         return indicatePessimisticFixpoint();
3533       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3534         return indicatePessimisticFixpoint();
3535     }
3536     return ChangeStatus::UNCHANGED;
3537   }
3538 
3539   /// See AbstractAttribute::manifest(...).
3540   ChangeStatus manifest(Attributor &A) override {
3541     Value &V = getAssociatedValue();
3542     if (auto *I = dyn_cast<Instruction>(&V)) {
3543       // If we get here we basically know the users are all dead. We check if
3544       // isAssumedSideEffectFree returns true here again because it might not be
3545       // the case and only the users are dead but the instruction (=call) is
3546       // still needed.
3547       if (isa<StoreInst>(I) ||
3548           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3549         A.deleteAfterManifest(*I);
3550         return ChangeStatus::CHANGED;
3551       }
3552     }
3553     if (V.use_empty())
3554       return ChangeStatus::UNCHANGED;
3555 
3556     bool UsedAssumedInformation = false;
3557     Optional<Constant *> C =
3558         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3559     if (C.hasValue() && C.getValue())
3560       return ChangeStatus::UNCHANGED;
3561 
3562     // Replace the value with undef as it is dead but keep droppable uses around
3563     // as they provide information we don't want to give up on just yet.
3564     UndefValue &UV = *UndefValue::get(V.getType());
3565     bool AnyChange =
3566         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3567     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3568   }
3569 
3570   /// See AbstractAttribute::trackStatistics()
3571   void trackStatistics() const override {
3572     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3573   }
3574 };
3575 
3576 struct AAIsDeadArgument : public AAIsDeadFloating {
3577   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3578       : AAIsDeadFloating(IRP, A) {}
3579 
3580   /// See AbstractAttribute::initialize(...).
3581   void initialize(Attributor &A) override {
3582     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3583       indicatePessimisticFixpoint();
3584   }
3585 
3586   /// See AbstractAttribute::manifest(...).
3587   ChangeStatus manifest(Attributor &A) override {
3588     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3589     Argument &Arg = *getAssociatedArgument();
3590     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3591       if (A.registerFunctionSignatureRewrite(
3592               Arg, /* ReplacementTypes */ {},
3593               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3594               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3595         Arg.dropDroppableUses();
3596         return ChangeStatus::CHANGED;
3597       }
3598     return Changed;
3599   }
3600 
3601   /// See AbstractAttribute::trackStatistics()
3602   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3603 };
3604 
3605 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3606   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3607       : AAIsDeadValueImpl(IRP, A) {}
3608 
3609   /// See AbstractAttribute::initialize(...).
3610   void initialize(Attributor &A) override {
3611     if (isa<UndefValue>(getAssociatedValue()))
3612       indicatePessimisticFixpoint();
3613   }
3614 
3615   /// See AbstractAttribute::updateImpl(...).
3616   ChangeStatus updateImpl(Attributor &A) override {
3617     // TODO: Once we have call site specific value information we can provide
3618     //       call site specific liveness information and then it makes
3619     //       sense to specialize attributes for call sites arguments instead of
3620     //       redirecting requests to the callee argument.
3621     Argument *Arg = getAssociatedArgument();
3622     if (!Arg)
3623       return indicatePessimisticFixpoint();
3624     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3625     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3626     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3627   }
3628 
3629   /// See AbstractAttribute::manifest(...).
3630   ChangeStatus manifest(Attributor &A) override {
3631     CallBase &CB = cast<CallBase>(getAnchorValue());
3632     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3633     assert(!isa<UndefValue>(U.get()) &&
3634            "Expected undef values to be filtered out!");
3635     UndefValue &UV = *UndefValue::get(U->getType());
3636     if (A.changeUseAfterManifest(U, UV))
3637       return ChangeStatus::CHANGED;
3638     return ChangeStatus::UNCHANGED;
3639   }
3640 
3641   /// See AbstractAttribute::trackStatistics()
3642   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3643 };
3644 
3645 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3646   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3647       : AAIsDeadFloating(IRP, A) {}
3648 
3649   /// See AAIsDead::isAssumedDead().
3650   bool isAssumedDead() const override {
3651     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3652   }
3653 
3654   /// See AbstractAttribute::initialize(...).
3655   void initialize(Attributor &A) override {
3656     if (isa<UndefValue>(getAssociatedValue())) {
3657       indicatePessimisticFixpoint();
3658       return;
3659     }
3660 
3661     // We track this separately as a secondary state.
3662     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3663   }
3664 
3665   /// See AbstractAttribute::updateImpl(...).
3666   ChangeStatus updateImpl(Attributor &A) override {
3667     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3668     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3669       IsAssumedSideEffectFree = false;
3670       Changed = ChangeStatus::CHANGED;
3671     }
3672     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3673       return indicatePessimisticFixpoint();
3674     return Changed;
3675   }
3676 
3677   /// See AbstractAttribute::trackStatistics()
3678   void trackStatistics() const override {
3679     if (IsAssumedSideEffectFree)
3680       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3681     else
3682       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3683   }
3684 
3685   /// See AbstractAttribute::getAsStr().
3686   const std::string getAsStr() const override {
3687     return isAssumedDead()
3688                ? "assumed-dead"
3689                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3690   }
3691 
3692 private:
3693   bool IsAssumedSideEffectFree = true;
3694 };
3695 
3696 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3697   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3698       : AAIsDeadValueImpl(IRP, A) {}
3699 
3700   /// See AbstractAttribute::updateImpl(...).
3701   ChangeStatus updateImpl(Attributor &A) override {
3702 
3703     bool UsedAssumedInformation = false;
3704     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3705                               {Instruction::Ret}, UsedAssumedInformation);
3706 
3707     auto PredForCallSite = [&](AbstractCallSite ACS) {
3708       if (ACS.isCallbackCall() || !ACS.getInstruction())
3709         return false;
3710       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3711     };
3712 
3713     bool AllCallSitesKnown;
3714     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3715                                 AllCallSitesKnown))
3716       return indicatePessimisticFixpoint();
3717 
3718     return ChangeStatus::UNCHANGED;
3719   }
3720 
3721   /// See AbstractAttribute::manifest(...).
3722   ChangeStatus manifest(Attributor &A) override {
3723     // TODO: Rewrite the signature to return void?
3724     bool AnyChange = false;
3725     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3726     auto RetInstPred = [&](Instruction &I) {
3727       ReturnInst &RI = cast<ReturnInst>(I);
3728       if (!isa<UndefValue>(RI.getReturnValue()))
3729         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3730       return true;
3731     };
3732     bool UsedAssumedInformation = false;
3733     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3734                               UsedAssumedInformation);
3735     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3736   }
3737 
3738   /// See AbstractAttribute::trackStatistics()
3739   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3740 };
3741 
3742 struct AAIsDeadFunction : public AAIsDead {
3743   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3744 
3745   /// See AbstractAttribute::initialize(...).
3746   void initialize(Attributor &A) override {
3747     const Function *F = getAnchorScope();
3748     if (F && !F->isDeclaration()) {
3749       // We only want to compute liveness once. If the function is not part of
3750       // the SCC, skip it.
3751       if (A.isRunOn(*const_cast<Function *>(F))) {
3752         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3753         assumeLive(A, F->getEntryBlock());
3754       } else {
3755         indicatePessimisticFixpoint();
3756       }
3757     }
3758   }
3759 
3760   /// See AbstractAttribute::getAsStr().
3761   const std::string getAsStr() const override {
3762     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3763            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3764            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3765            std::to_string(KnownDeadEnds.size()) + "]";
3766   }
3767 
3768   /// See AbstractAttribute::manifest(...).
3769   ChangeStatus manifest(Attributor &A) override {
3770     assert(getState().isValidState() &&
3771            "Attempted to manifest an invalid state!");
3772 
3773     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3774     Function &F = *getAnchorScope();
3775 
3776     if (AssumedLiveBlocks.empty()) {
3777       A.deleteAfterManifest(F);
3778       return ChangeStatus::CHANGED;
3779     }
3780 
3781     // Flag to determine if we can change an invoke to a call assuming the
3782     // callee is nounwind. This is not possible if the personality of the
3783     // function allows to catch asynchronous exceptions.
3784     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3785 
3786     KnownDeadEnds.set_union(ToBeExploredFrom);
3787     for (const Instruction *DeadEndI : KnownDeadEnds) {
3788       auto *CB = dyn_cast<CallBase>(DeadEndI);
3789       if (!CB)
3790         continue;
3791       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3792           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3793       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3794       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3795         continue;
3796 
3797       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3798         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3799       else
3800         A.changeToUnreachableAfterManifest(
3801             const_cast<Instruction *>(DeadEndI->getNextNode()));
3802       HasChanged = ChangeStatus::CHANGED;
3803     }
3804 
3805     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3806     for (BasicBlock &BB : F)
3807       if (!AssumedLiveBlocks.count(&BB)) {
3808         A.deleteAfterManifest(BB);
3809         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3810         HasChanged = ChangeStatus::CHANGED;
3811       }
3812 
3813     return HasChanged;
3814   }
3815 
3816   /// See AbstractAttribute::updateImpl(...).
3817   ChangeStatus updateImpl(Attributor &A) override;
3818 
3819   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3820     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3821   }
3822 
3823   /// See AbstractAttribute::trackStatistics()
3824   void trackStatistics() const override {}
3825 
3826   /// Returns true if the function is assumed dead.
3827   bool isAssumedDead() const override { return false; }
3828 
3829   /// See AAIsDead::isKnownDead().
3830   bool isKnownDead() const override { return false; }
3831 
3832   /// See AAIsDead::isAssumedDead(BasicBlock *).
3833   bool isAssumedDead(const BasicBlock *BB) const override {
3834     assert(BB->getParent() == getAnchorScope() &&
3835            "BB must be in the same anchor scope function.");
3836 
3837     if (!getAssumed())
3838       return false;
3839     return !AssumedLiveBlocks.count(BB);
3840   }
3841 
3842   /// See AAIsDead::isKnownDead(BasicBlock *).
3843   bool isKnownDead(const BasicBlock *BB) const override {
3844     return getKnown() && isAssumedDead(BB);
3845   }
3846 
3847   /// See AAIsDead::isAssumed(Instruction *I).
3848   bool isAssumedDead(const Instruction *I) const override {
3849     assert(I->getParent()->getParent() == getAnchorScope() &&
3850            "Instruction must be in the same anchor scope function.");
3851 
3852     if (!getAssumed())
3853       return false;
3854 
3855     // If it is not in AssumedLiveBlocks then it for sure dead.
3856     // Otherwise, it can still be after noreturn call in a live block.
3857     if (!AssumedLiveBlocks.count(I->getParent()))
3858       return true;
3859 
3860     // If it is not after a liveness barrier it is live.
3861     const Instruction *PrevI = I->getPrevNode();
3862     while (PrevI) {
3863       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3864         return true;
3865       PrevI = PrevI->getPrevNode();
3866     }
3867     return false;
3868   }
3869 
3870   /// See AAIsDead::isKnownDead(Instruction *I).
3871   bool isKnownDead(const Instruction *I) const override {
3872     return getKnown() && isAssumedDead(I);
3873   }
3874 
3875   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3876   /// that internal function called from \p BB should now be looked at.
3877   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3878     if (!AssumedLiveBlocks.insert(&BB).second)
3879       return false;
3880 
3881     // We assume that all of BB is (probably) live now and if there are calls to
3882     // internal functions we will assume that those are now live as well. This
3883     // is a performance optimization for blocks with calls to a lot of internal
3884     // functions. It can however cause dead functions to be treated as live.
3885     for (const Instruction &I : BB)
3886       if (const auto *CB = dyn_cast<CallBase>(&I))
3887         if (const Function *F = CB->getCalledFunction())
3888           if (F->hasLocalLinkage())
3889             A.markLiveInternalFunction(*F);
3890     return true;
3891   }
3892 
3893   /// Collection of instructions that need to be explored again, e.g., we
3894   /// did assume they do not transfer control to (one of their) successors.
3895   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3896 
3897   /// Collection of instructions that are known to not transfer control.
3898   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3899 
3900   /// Collection of all assumed live edges
3901   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3902 
3903   /// Collection of all assumed live BasicBlocks.
3904   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3905 };
3906 
3907 static bool
3908 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3909                         AbstractAttribute &AA,
3910                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3911   const IRPosition &IPos = IRPosition::callsite_function(CB);
3912 
3913   const auto &NoReturnAA =
3914       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3915   if (NoReturnAA.isAssumedNoReturn())
3916     return !NoReturnAA.isKnownNoReturn();
3917   if (CB.isTerminator())
3918     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3919   else
3920     AliveSuccessors.push_back(CB.getNextNode());
3921   return false;
3922 }
3923 
3924 static bool
3925 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3926                         AbstractAttribute &AA,
3927                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3928   bool UsedAssumedInformation =
3929       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3930 
3931   // First, determine if we can change an invoke to a call assuming the
3932   // callee is nounwind. This is not possible if the personality of the
3933   // function allows to catch asynchronous exceptions.
3934   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3935     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3936   } else {
3937     const IRPosition &IPos = IRPosition::callsite_function(II);
3938     const auto &AANoUnw =
3939         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3940     if (AANoUnw.isAssumedNoUnwind()) {
3941       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3942     } else {
3943       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3944     }
3945   }
3946   return UsedAssumedInformation;
3947 }
3948 
3949 static bool
3950 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3951                         AbstractAttribute &AA,
3952                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3953   bool UsedAssumedInformation = false;
3954   if (BI.getNumSuccessors() == 1) {
3955     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3956   } else {
3957     Optional<Constant *> C =
3958         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3959     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3960       // No value yet, assume both edges are dead.
3961     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3962       const BasicBlock *SuccBB =
3963           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3964       AliveSuccessors.push_back(&SuccBB->front());
3965     } else {
3966       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3967       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3968       UsedAssumedInformation = false;
3969     }
3970   }
3971   return UsedAssumedInformation;
3972 }
3973 
3974 static bool
3975 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3976                         AbstractAttribute &AA,
3977                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3978   bool UsedAssumedInformation = false;
3979   Optional<Constant *> C =
3980       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3981   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3982     // No value yet, assume all edges are dead.
3983   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3984     for (auto &CaseIt : SI.cases()) {
3985       if (CaseIt.getCaseValue() == C.getValue()) {
3986         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3987         return UsedAssumedInformation;
3988       }
3989     }
3990     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3991     return UsedAssumedInformation;
3992   } else {
3993     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3994       AliveSuccessors.push_back(&SuccBB->front());
3995   }
3996   return UsedAssumedInformation;
3997 }
3998 
3999 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4000   ChangeStatus Change = ChangeStatus::UNCHANGED;
4001 
4002   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4003                     << getAnchorScope()->size() << "] BBs and "
4004                     << ToBeExploredFrom.size() << " exploration points and "
4005                     << KnownDeadEnds.size() << " known dead ends\n");
4006 
4007   // Copy and clear the list of instructions we need to explore from. It is
4008   // refilled with instructions the next update has to look at.
4009   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4010                                                ToBeExploredFrom.end());
4011   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4012 
4013   SmallVector<const Instruction *, 8> AliveSuccessors;
4014   while (!Worklist.empty()) {
4015     const Instruction *I = Worklist.pop_back_val();
4016     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4017 
4018     // Fast forward for uninteresting instructions. We could look for UB here
4019     // though.
4020     while (!I->isTerminator() && !isa<CallBase>(I))
4021       I = I->getNextNode();
4022 
4023     AliveSuccessors.clear();
4024 
4025     bool UsedAssumedInformation = false;
4026     switch (I->getOpcode()) {
4027     // TODO: look for (assumed) UB to backwards propagate "deadness".
4028     default:
4029       assert(I->isTerminator() &&
4030              "Expected non-terminators to be handled already!");
4031       for (const BasicBlock *SuccBB : successors(I->getParent()))
4032         AliveSuccessors.push_back(&SuccBB->front());
4033       break;
4034     case Instruction::Call:
4035       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4036                                                        *this, AliveSuccessors);
4037       break;
4038     case Instruction::Invoke:
4039       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4040                                                        *this, AliveSuccessors);
4041       break;
4042     case Instruction::Br:
4043       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4044                                                        *this, AliveSuccessors);
4045       break;
4046     case Instruction::Switch:
4047       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4048                                                        *this, AliveSuccessors);
4049       break;
4050     }
4051 
4052     if (UsedAssumedInformation) {
4053       NewToBeExploredFrom.insert(I);
4054     } else if (AliveSuccessors.empty() ||
4055                (I->isTerminator() &&
4056                 AliveSuccessors.size() < I->getNumSuccessors())) {
4057       if (KnownDeadEnds.insert(I))
4058         Change = ChangeStatus::CHANGED;
4059     }
4060 
4061     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4062                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4063                       << UsedAssumedInformation << "\n");
4064 
4065     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4066       if (!I->isTerminator()) {
4067         assert(AliveSuccessors.size() == 1 &&
4068                "Non-terminator expected to have a single successor!");
4069         Worklist.push_back(AliveSuccessor);
4070       } else {
4071         // record the assumed live edge
4072         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4073         if (AssumedLiveEdges.insert(Edge).second)
4074           Change = ChangeStatus::CHANGED;
4075         if (assumeLive(A, *AliveSuccessor->getParent()))
4076           Worklist.push_back(AliveSuccessor);
4077       }
4078     }
4079   }
4080 
4081   // Check if the content of ToBeExploredFrom changed, ignore the order.
4082   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4083       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4084         return !ToBeExploredFrom.count(I);
4085       })) {
4086     Change = ChangeStatus::CHANGED;
4087     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4088   }
4089 
4090   // If we know everything is live there is no need to query for liveness.
4091   // Instead, indicating a pessimistic fixpoint will cause the state to be
4092   // "invalid" and all queries to be answered conservatively without lookups.
4093   // To be in this state we have to (1) finished the exploration and (3) not
4094   // discovered any non-trivial dead end and (2) not ruled unreachable code
4095   // dead.
4096   if (ToBeExploredFrom.empty() &&
4097       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4098       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4099         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4100       }))
4101     return indicatePessimisticFixpoint();
4102   return Change;
4103 }
4104 
4105 /// Liveness information for a call sites.
4106 struct AAIsDeadCallSite final : AAIsDeadFunction {
4107   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4108       : AAIsDeadFunction(IRP, A) {}
4109 
4110   /// See AbstractAttribute::initialize(...).
4111   void initialize(Attributor &A) override {
4112     // TODO: Once we have call site specific value information we can provide
4113     //       call site specific liveness information and then it makes
4114     //       sense to specialize attributes for call sites instead of
4115     //       redirecting requests to the callee.
4116     llvm_unreachable("Abstract attributes for liveness are not "
4117                      "supported for call sites yet!");
4118   }
4119 
4120   /// See AbstractAttribute::updateImpl(...).
4121   ChangeStatus updateImpl(Attributor &A) override {
4122     return indicatePessimisticFixpoint();
4123   }
4124 
4125   /// See AbstractAttribute::trackStatistics()
4126   void trackStatistics() const override {}
4127 };
4128 
4129 /// -------------------- Dereferenceable Argument Attribute --------------------
4130 
4131 struct AADereferenceableImpl : AADereferenceable {
4132   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4133       : AADereferenceable(IRP, A) {}
4134   using StateType = DerefState;
4135 
4136   /// See AbstractAttribute::initialize(...).
4137   void initialize(Attributor &A) override {
4138     SmallVector<Attribute, 4> Attrs;
4139     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4140              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4141     for (const Attribute &Attr : Attrs)
4142       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4143 
4144     const IRPosition &IRP = this->getIRPosition();
4145     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4146 
4147     bool CanBeNull, CanBeFreed;
4148     takeKnownDerefBytesMaximum(
4149         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4150             A.getDataLayout(), CanBeNull, CanBeFreed));
4151 
4152     bool IsFnInterface = IRP.isFnInterfaceKind();
4153     Function *FnScope = IRP.getAnchorScope();
4154     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4155       indicatePessimisticFixpoint();
4156       return;
4157     }
4158 
4159     if (Instruction *CtxI = getCtxI())
4160       followUsesInMBEC(*this, A, getState(), *CtxI);
4161   }
4162 
4163   /// See AbstractAttribute::getState()
4164   /// {
4165   StateType &getState() override { return *this; }
4166   const StateType &getState() const override { return *this; }
4167   /// }
4168 
4169   /// Helper function for collecting accessed bytes in must-be-executed-context
4170   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4171                               DerefState &State) {
4172     const Value *UseV = U->get();
4173     if (!UseV->getType()->isPointerTy())
4174       return;
4175 
4176     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4177     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4178       return;
4179 
4180     int64_t Offset;
4181     const Value *Base = GetPointerBaseWithConstantOffset(
4182         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4183     if (Base && Base == &getAssociatedValue())
4184       State.addAccessedBytes(Offset, Loc->Size.getValue());
4185   }
4186 
4187   /// See followUsesInMBEC
4188   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4189                        AADereferenceable::StateType &State) {
4190     bool IsNonNull = false;
4191     bool TrackUse = false;
4192     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4193         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4194     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4195                       << " for instruction " << *I << "\n");
4196 
4197     addAccessedBytesForUse(A, U, I, State);
4198     State.takeKnownDerefBytesMaximum(DerefBytes);
4199     return TrackUse;
4200   }
4201 
4202   /// See AbstractAttribute::manifest(...).
4203   ChangeStatus manifest(Attributor &A) override {
4204     ChangeStatus Change = AADereferenceable::manifest(A);
4205     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4206       removeAttrs({Attribute::DereferenceableOrNull});
4207       return ChangeStatus::CHANGED;
4208     }
4209     return Change;
4210   }
4211 
4212   void getDeducedAttributes(LLVMContext &Ctx,
4213                             SmallVectorImpl<Attribute> &Attrs) const override {
4214     // TODO: Add *_globally support
4215     if (isAssumedNonNull())
4216       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4217           Ctx, getAssumedDereferenceableBytes()));
4218     else
4219       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4220           Ctx, getAssumedDereferenceableBytes()));
4221   }
4222 
4223   /// See AbstractAttribute::getAsStr().
4224   const std::string getAsStr() const override {
4225     if (!getAssumedDereferenceableBytes())
4226       return "unknown-dereferenceable";
4227     return std::string("dereferenceable") +
4228            (isAssumedNonNull() ? "" : "_or_null") +
4229            (isAssumedGlobal() ? "_globally" : "") + "<" +
4230            std::to_string(getKnownDereferenceableBytes()) + "-" +
4231            std::to_string(getAssumedDereferenceableBytes()) + ">";
4232   }
4233 };
4234 
4235 /// Dereferenceable attribute for a floating value.
4236 struct AADereferenceableFloating : AADereferenceableImpl {
4237   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4238       : AADereferenceableImpl(IRP, A) {}
4239 
4240   /// See AbstractAttribute::updateImpl(...).
4241   ChangeStatus updateImpl(Attributor &A) override {
4242     const DataLayout &DL = A.getDataLayout();
4243 
4244     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4245                             bool Stripped) -> bool {
4246       unsigned IdxWidth =
4247           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4248       APInt Offset(IdxWidth, 0);
4249       const Value *Base =
4250           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4251 
4252       const auto &AA = A.getAAFor<AADereferenceable>(
4253           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4254       int64_t DerefBytes = 0;
4255       if (!Stripped && this == &AA) {
4256         // Use IR information if we did not strip anything.
4257         // TODO: track globally.
4258         bool CanBeNull, CanBeFreed;
4259         DerefBytes =
4260             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4261         T.GlobalState.indicatePessimisticFixpoint();
4262       } else {
4263         const DerefState &DS = AA.getState();
4264         DerefBytes = DS.DerefBytesState.getAssumed();
4265         T.GlobalState &= DS.GlobalState;
4266       }
4267 
4268       // For now we do not try to "increase" dereferenceability due to negative
4269       // indices as we first have to come up with code to deal with loops and
4270       // for overflows of the dereferenceable bytes.
4271       int64_t OffsetSExt = Offset.getSExtValue();
4272       if (OffsetSExt < 0)
4273         OffsetSExt = 0;
4274 
4275       T.takeAssumedDerefBytesMinimum(
4276           std::max(int64_t(0), DerefBytes - OffsetSExt));
4277 
4278       if (this == &AA) {
4279         if (!Stripped) {
4280           // If nothing was stripped IR information is all we got.
4281           T.takeKnownDerefBytesMaximum(
4282               std::max(int64_t(0), DerefBytes - OffsetSExt));
4283           T.indicatePessimisticFixpoint();
4284         } else if (OffsetSExt > 0) {
4285           // If something was stripped but there is circular reasoning we look
4286           // for the offset. If it is positive we basically decrease the
4287           // dereferenceable bytes in a circluar loop now, which will simply
4288           // drive them down to the known value in a very slow way which we
4289           // can accelerate.
4290           T.indicatePessimisticFixpoint();
4291         }
4292       }
4293 
4294       return T.isValidState();
4295     };
4296 
4297     DerefState T;
4298     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4299                                            VisitValueCB, getCtxI()))
4300       return indicatePessimisticFixpoint();
4301 
4302     return clampStateAndIndicateChange(getState(), T);
4303   }
4304 
4305   /// See AbstractAttribute::trackStatistics()
4306   void trackStatistics() const override {
4307     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4308   }
4309 };
4310 
4311 /// Dereferenceable attribute for a return value.
4312 struct AADereferenceableReturned final
4313     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4314   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4315       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4316             IRP, A) {}
4317 
4318   /// See AbstractAttribute::trackStatistics()
4319   void trackStatistics() const override {
4320     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4321   }
4322 };
4323 
4324 /// Dereferenceable attribute for an argument
4325 struct AADereferenceableArgument final
4326     : AAArgumentFromCallSiteArguments<AADereferenceable,
4327                                       AADereferenceableImpl> {
4328   using Base =
4329       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4330   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4331       : Base(IRP, A) {}
4332 
4333   /// See AbstractAttribute::trackStatistics()
4334   void trackStatistics() const override {
4335     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4336   }
4337 };
4338 
4339 /// Dereferenceable attribute for a call site argument.
4340 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4341   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4342       : AADereferenceableFloating(IRP, A) {}
4343 
4344   /// See AbstractAttribute::trackStatistics()
4345   void trackStatistics() const override {
4346     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4347   }
4348 };
4349 
4350 /// Dereferenceable attribute deduction for a call site return value.
4351 struct AADereferenceableCallSiteReturned final
4352     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4353   using Base =
4354       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4355   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4356       : Base(IRP, A) {}
4357 
4358   /// See AbstractAttribute::trackStatistics()
4359   void trackStatistics() const override {
4360     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4361   }
4362 };
4363 
4364 // ------------------------ Align Argument Attribute ------------------------
4365 
4366 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4367                                     Value &AssociatedValue, const Use *U,
4368                                     const Instruction *I, bool &TrackUse) {
4369   // We need to follow common pointer manipulation uses to the accesses they
4370   // feed into.
4371   if (isa<CastInst>(I)) {
4372     // Follow all but ptr2int casts.
4373     TrackUse = !isa<PtrToIntInst>(I);
4374     return 0;
4375   }
4376   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4377     if (GEP->hasAllConstantIndices())
4378       TrackUse = true;
4379     return 0;
4380   }
4381 
4382   MaybeAlign MA;
4383   if (const auto *CB = dyn_cast<CallBase>(I)) {
4384     if (CB->isBundleOperand(U) || CB->isCallee(U))
4385       return 0;
4386 
4387     unsigned ArgNo = CB->getArgOperandNo(U);
4388     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4389     // As long as we only use known information there is no need to track
4390     // dependences here.
4391     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4392     MA = MaybeAlign(AlignAA.getKnownAlign());
4393   }
4394 
4395   const DataLayout &DL = A.getDataLayout();
4396   const Value *UseV = U->get();
4397   if (auto *SI = dyn_cast<StoreInst>(I)) {
4398     if (SI->getPointerOperand() == UseV)
4399       MA = SI->getAlign();
4400   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4401     if (LI->getPointerOperand() == UseV)
4402       MA = LI->getAlign();
4403   }
4404 
4405   if (!MA || *MA <= QueryingAA.getKnownAlign())
4406     return 0;
4407 
4408   unsigned Alignment = MA->value();
4409   int64_t Offset;
4410 
4411   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4412     if (Base == &AssociatedValue) {
4413       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4414       // So we can say that the maximum power of two which is a divisor of
4415       // gcd(Offset, Alignment) is an alignment.
4416 
4417       uint32_t gcd =
4418           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4419       Alignment = llvm::PowerOf2Floor(gcd);
4420     }
4421   }
4422 
4423   return Alignment;
4424 }
4425 
4426 struct AAAlignImpl : AAAlign {
4427   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4428 
4429   /// See AbstractAttribute::initialize(...).
4430   void initialize(Attributor &A) override {
4431     SmallVector<Attribute, 4> Attrs;
4432     getAttrs({Attribute::Alignment}, Attrs);
4433     for (const Attribute &Attr : Attrs)
4434       takeKnownMaximum(Attr.getValueAsInt());
4435 
4436     Value &V = getAssociatedValue();
4437     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4438     //       use of the function pointer. This was caused by D73131. We want to
4439     //       avoid this for function pointers especially because we iterate
4440     //       their uses and int2ptr is not handled. It is not a correctness
4441     //       problem though!
4442     if (!V.getType()->getPointerElementType()->isFunctionTy())
4443       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4444 
4445     if (getIRPosition().isFnInterfaceKind() &&
4446         (!getAnchorScope() ||
4447          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4448       indicatePessimisticFixpoint();
4449       return;
4450     }
4451 
4452     if (Instruction *CtxI = getCtxI())
4453       followUsesInMBEC(*this, A, getState(), *CtxI);
4454   }
4455 
4456   /// See AbstractAttribute::manifest(...).
4457   ChangeStatus manifest(Attributor &A) override {
4458     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4459 
4460     // Check for users that allow alignment annotations.
4461     Value &AssociatedValue = getAssociatedValue();
4462     for (const Use &U : AssociatedValue.uses()) {
4463       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4464         if (SI->getPointerOperand() == &AssociatedValue)
4465           if (SI->getAlignment() < getAssumedAlign()) {
4466             STATS_DECLTRACK(AAAlign, Store,
4467                             "Number of times alignment added to a store");
4468             SI->setAlignment(Align(getAssumedAlign()));
4469             LoadStoreChanged = ChangeStatus::CHANGED;
4470           }
4471       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4472         if (LI->getPointerOperand() == &AssociatedValue)
4473           if (LI->getAlignment() < getAssumedAlign()) {
4474             LI->setAlignment(Align(getAssumedAlign()));
4475             STATS_DECLTRACK(AAAlign, Load,
4476                             "Number of times alignment added to a load");
4477             LoadStoreChanged = ChangeStatus::CHANGED;
4478           }
4479       }
4480     }
4481 
4482     ChangeStatus Changed = AAAlign::manifest(A);
4483 
4484     Align InheritAlign =
4485         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4486     if (InheritAlign >= getAssumedAlign())
4487       return LoadStoreChanged;
4488     return Changed | LoadStoreChanged;
4489   }
4490 
4491   // TODO: Provide a helper to determine the implied ABI alignment and check in
4492   //       the existing manifest method and a new one for AAAlignImpl that value
4493   //       to avoid making the alignment explicit if it did not improve.
4494 
4495   /// See AbstractAttribute::getDeducedAttributes
4496   virtual void
4497   getDeducedAttributes(LLVMContext &Ctx,
4498                        SmallVectorImpl<Attribute> &Attrs) const override {
4499     if (getAssumedAlign() > 1)
4500       Attrs.emplace_back(
4501           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4502   }
4503 
4504   /// See followUsesInMBEC
4505   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4506                        AAAlign::StateType &State) {
4507     bool TrackUse = false;
4508 
4509     unsigned int KnownAlign =
4510         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4511     State.takeKnownMaximum(KnownAlign);
4512 
4513     return TrackUse;
4514   }
4515 
4516   /// See AbstractAttribute::getAsStr().
4517   const std::string getAsStr() const override {
4518     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4519                                 "-" + std::to_string(getAssumedAlign()) + ">")
4520                              : "unknown-align";
4521   }
4522 };
4523 
4524 /// Align attribute for a floating value.
4525 struct AAAlignFloating : AAAlignImpl {
4526   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4527 
4528   /// See AbstractAttribute::updateImpl(...).
4529   ChangeStatus updateImpl(Attributor &A) override {
4530     const DataLayout &DL = A.getDataLayout();
4531 
4532     auto VisitValueCB = [&](Value &V, const Instruction *,
4533                             AAAlign::StateType &T, bool Stripped) -> bool {
4534       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4535                                            DepClassTy::REQUIRED);
4536       if (!Stripped && this == &AA) {
4537         int64_t Offset;
4538         unsigned Alignment = 1;
4539         if (const Value *Base =
4540                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4541           Align PA = Base->getPointerAlignment(DL);
4542           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4543           // So we can say that the maximum power of two which is a divisor of
4544           // gcd(Offset, Alignment) is an alignment.
4545 
4546           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4547                                                uint32_t(PA.value()));
4548           Alignment = llvm::PowerOf2Floor(gcd);
4549         } else {
4550           Alignment = V.getPointerAlignment(DL).value();
4551         }
4552         // Use only IR information if we did not strip anything.
4553         T.takeKnownMaximum(Alignment);
4554         T.indicatePessimisticFixpoint();
4555       } else {
4556         // Use abstract attribute information.
4557         const AAAlign::StateType &DS = AA.getState();
4558         T ^= DS;
4559       }
4560       return T.isValidState();
4561     };
4562 
4563     StateType T;
4564     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4565                                           VisitValueCB, getCtxI()))
4566       return indicatePessimisticFixpoint();
4567 
4568     // TODO: If we know we visited all incoming values, thus no are assumed
4569     // dead, we can take the known information from the state T.
4570     return clampStateAndIndicateChange(getState(), T);
4571   }
4572 
4573   /// See AbstractAttribute::trackStatistics()
4574   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4575 };
4576 
4577 /// Align attribute for function return value.
4578 struct AAAlignReturned final
4579     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4580   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4581   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4582 
4583   /// See AbstractAttribute::initialize(...).
4584   void initialize(Attributor &A) override {
4585     Base::initialize(A);
4586     Function *F = getAssociatedFunction();
4587     if (!F || F->isDeclaration())
4588       indicatePessimisticFixpoint();
4589   }
4590 
4591   /// See AbstractAttribute::trackStatistics()
4592   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4593 };
4594 
4595 /// Align attribute for function argument.
4596 struct AAAlignArgument final
4597     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4598   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4599   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4600 
4601   /// See AbstractAttribute::manifest(...).
4602   ChangeStatus manifest(Attributor &A) override {
4603     // If the associated argument is involved in a must-tail call we give up
4604     // because we would need to keep the argument alignments of caller and
4605     // callee in-sync. Just does not seem worth the trouble right now.
4606     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4607       return ChangeStatus::UNCHANGED;
4608     return Base::manifest(A);
4609   }
4610 
4611   /// See AbstractAttribute::trackStatistics()
4612   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4613 };
4614 
4615 struct AAAlignCallSiteArgument final : AAAlignFloating {
4616   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4617       : AAAlignFloating(IRP, A) {}
4618 
4619   /// See AbstractAttribute::manifest(...).
4620   ChangeStatus manifest(Attributor &A) override {
4621     // If the associated argument is involved in a must-tail call we give up
4622     // because we would need to keep the argument alignments of caller and
4623     // callee in-sync. Just does not seem worth the trouble right now.
4624     if (Argument *Arg = getAssociatedArgument())
4625       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4626         return ChangeStatus::UNCHANGED;
4627     ChangeStatus Changed = AAAlignImpl::manifest(A);
4628     Align InheritAlign =
4629         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4630     if (InheritAlign >= getAssumedAlign())
4631       Changed = ChangeStatus::UNCHANGED;
4632     return Changed;
4633   }
4634 
4635   /// See AbstractAttribute::updateImpl(Attributor &A).
4636   ChangeStatus updateImpl(Attributor &A) override {
4637     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4638     if (Argument *Arg = getAssociatedArgument()) {
4639       // We only take known information from the argument
4640       // so we do not need to track a dependence.
4641       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4642           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4643       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4644     }
4645     return Changed;
4646   }
4647 
4648   /// See AbstractAttribute::trackStatistics()
4649   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4650 };
4651 
4652 /// Align attribute deduction for a call site return value.
4653 struct AAAlignCallSiteReturned final
4654     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4655   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4656   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4657       : Base(IRP, A) {}
4658 
4659   /// See AbstractAttribute::initialize(...).
4660   void initialize(Attributor &A) override {
4661     Base::initialize(A);
4662     Function *F = getAssociatedFunction();
4663     if (!F || F->isDeclaration())
4664       indicatePessimisticFixpoint();
4665   }
4666 
4667   /// See AbstractAttribute::trackStatistics()
4668   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4669 };
4670 
4671 /// ------------------ Function No-Return Attribute ----------------------------
4672 struct AANoReturnImpl : public AANoReturn {
4673   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4674 
4675   /// See AbstractAttribute::initialize(...).
4676   void initialize(Attributor &A) override {
4677     AANoReturn::initialize(A);
4678     Function *F = getAssociatedFunction();
4679     if (!F || F->isDeclaration())
4680       indicatePessimisticFixpoint();
4681   }
4682 
4683   /// See AbstractAttribute::getAsStr().
4684   const std::string getAsStr() const override {
4685     return getAssumed() ? "noreturn" : "may-return";
4686   }
4687 
4688   /// See AbstractAttribute::updateImpl(Attributor &A).
4689   virtual ChangeStatus updateImpl(Attributor &A) override {
4690     auto CheckForNoReturn = [](Instruction &) { return false; };
4691     bool UsedAssumedInformation = false;
4692     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4693                                    {(unsigned)Instruction::Ret},
4694                                    UsedAssumedInformation))
4695       return indicatePessimisticFixpoint();
4696     return ChangeStatus::UNCHANGED;
4697   }
4698 };
4699 
4700 struct AANoReturnFunction final : AANoReturnImpl {
4701   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4702       : AANoReturnImpl(IRP, A) {}
4703 
4704   /// See AbstractAttribute::trackStatistics()
4705   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4706 };
4707 
4708 /// NoReturn attribute deduction for a call sites.
4709 struct AANoReturnCallSite final : AANoReturnImpl {
4710   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4711       : AANoReturnImpl(IRP, A) {}
4712 
4713   /// See AbstractAttribute::initialize(...).
4714   void initialize(Attributor &A) override {
4715     AANoReturnImpl::initialize(A);
4716     if (Function *F = getAssociatedFunction()) {
4717       const IRPosition &FnPos = IRPosition::function(*F);
4718       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4719       if (!FnAA.isAssumedNoReturn())
4720         indicatePessimisticFixpoint();
4721     }
4722   }
4723 
4724   /// See AbstractAttribute::updateImpl(...).
4725   ChangeStatus updateImpl(Attributor &A) override {
4726     // TODO: Once we have call site specific value information we can provide
4727     //       call site specific liveness information and then it makes
4728     //       sense to specialize attributes for call sites arguments instead of
4729     //       redirecting requests to the callee argument.
4730     Function *F = getAssociatedFunction();
4731     const IRPosition &FnPos = IRPosition::function(*F);
4732     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4733     return clampStateAndIndicateChange(getState(), FnAA.getState());
4734   }
4735 
4736   /// See AbstractAttribute::trackStatistics()
4737   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4738 };
4739 
4740 /// ----------------------- Variable Capturing ---------------------------------
4741 
4742 /// A class to hold the state of for no-capture attributes.
4743 struct AANoCaptureImpl : public AANoCapture {
4744   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4745 
4746   /// See AbstractAttribute::initialize(...).
4747   void initialize(Attributor &A) override {
4748     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4749       indicateOptimisticFixpoint();
4750       return;
4751     }
4752     Function *AnchorScope = getAnchorScope();
4753     if (isFnInterfaceKind() &&
4754         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4755       indicatePessimisticFixpoint();
4756       return;
4757     }
4758 
4759     // You cannot "capture" null in the default address space.
4760     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4761         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4762       indicateOptimisticFixpoint();
4763       return;
4764     }
4765 
4766     const Function *F =
4767         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4768 
4769     // Check what state the associated function can actually capture.
4770     if (F)
4771       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4772     else
4773       indicatePessimisticFixpoint();
4774   }
4775 
4776   /// See AbstractAttribute::updateImpl(...).
4777   ChangeStatus updateImpl(Attributor &A) override;
4778 
4779   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4780   virtual void
4781   getDeducedAttributes(LLVMContext &Ctx,
4782                        SmallVectorImpl<Attribute> &Attrs) const override {
4783     if (!isAssumedNoCaptureMaybeReturned())
4784       return;
4785 
4786     if (isArgumentPosition()) {
4787       if (isAssumedNoCapture())
4788         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4789       else if (ManifestInternal)
4790         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4791     }
4792   }
4793 
4794   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4795   /// depending on the ability of the function associated with \p IRP to capture
4796   /// state in memory and through "returning/throwing", respectively.
4797   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4798                                                    const Function &F,
4799                                                    BitIntegerState &State) {
4800     // TODO: Once we have memory behavior attributes we should use them here.
4801 
4802     // If we know we cannot communicate or write to memory, we do not care about
4803     // ptr2int anymore.
4804     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4805         F.getReturnType()->isVoidTy()) {
4806       State.addKnownBits(NO_CAPTURE);
4807       return;
4808     }
4809 
4810     // A function cannot capture state in memory if it only reads memory, it can
4811     // however return/throw state and the state might be influenced by the
4812     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4813     if (F.onlyReadsMemory())
4814       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4815 
4816     // A function cannot communicate state back if it does not through
4817     // exceptions and doesn not return values.
4818     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4819       State.addKnownBits(NOT_CAPTURED_IN_RET);
4820 
4821     // Check existing "returned" attributes.
4822     int ArgNo = IRP.getCalleeArgNo();
4823     if (F.doesNotThrow() && ArgNo >= 0) {
4824       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4825         if (F.hasParamAttribute(u, Attribute::Returned)) {
4826           if (u == unsigned(ArgNo))
4827             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4828           else if (F.onlyReadsMemory())
4829             State.addKnownBits(NO_CAPTURE);
4830           else
4831             State.addKnownBits(NOT_CAPTURED_IN_RET);
4832           break;
4833         }
4834     }
4835   }
4836 
4837   /// See AbstractState::getAsStr().
4838   const std::string getAsStr() const override {
4839     if (isKnownNoCapture())
4840       return "known not-captured";
4841     if (isAssumedNoCapture())
4842       return "assumed not-captured";
4843     if (isKnownNoCaptureMaybeReturned())
4844       return "known not-captured-maybe-returned";
4845     if (isAssumedNoCaptureMaybeReturned())
4846       return "assumed not-captured-maybe-returned";
4847     return "assumed-captured";
4848   }
4849 };
4850 
4851 /// Attributor-aware capture tracker.
4852 struct AACaptureUseTracker final : public CaptureTracker {
4853 
4854   /// Create a capture tracker that can lookup in-flight abstract attributes
4855   /// through the Attributor \p A.
4856   ///
4857   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4858   /// search is stopped. If a use leads to a return instruction,
4859   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4860   /// If a use leads to a ptr2int which may capture the value,
4861   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4862   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4863   /// set. All values in \p PotentialCopies are later tracked as well. For every
4864   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4865   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4866   /// conservatively set to true.
4867   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4868                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4869                       SmallSetVector<Value *, 4> &PotentialCopies,
4870                       unsigned &RemainingUsesToExplore)
4871       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4872         PotentialCopies(PotentialCopies),
4873         RemainingUsesToExplore(RemainingUsesToExplore) {}
4874 
4875   /// Determine if \p V maybe captured. *Also updates the state!*
4876   bool valueMayBeCaptured(const Value *V) {
4877     if (V->getType()->isPointerTy()) {
4878       PointerMayBeCaptured(V, this);
4879     } else {
4880       State.indicatePessimisticFixpoint();
4881     }
4882     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4883   }
4884 
4885   /// See CaptureTracker::tooManyUses().
4886   void tooManyUses() override {
4887     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4888   }
4889 
4890   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4891     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4892       return true;
4893     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4894         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4895     return DerefAA.getAssumedDereferenceableBytes();
4896   }
4897 
4898   /// See CaptureTracker::captured(...).
4899   bool captured(const Use *U) override {
4900     Instruction *UInst = cast<Instruction>(U->getUser());
4901     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4902                       << "\n");
4903 
4904     // Because we may reuse the tracker multiple times we keep track of the
4905     // number of explored uses ourselves as well.
4906     if (RemainingUsesToExplore-- == 0) {
4907       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4908       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4909                           /* Return */ true);
4910     }
4911 
4912     // Deal with ptr2int by following uses.
4913     if (isa<PtrToIntInst>(UInst)) {
4914       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4915       return valueMayBeCaptured(UInst);
4916     }
4917 
4918     // For stores we check if we can follow the value through memory or not.
4919     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4920       if (SI->isVolatile())
4921         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4922                             /* Return */ false);
4923       bool UsedAssumedInformation = false;
4924       if (!AA::getPotentialCopiesOfStoredValue(
4925               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4926         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4927                             /* Return */ false);
4928       // Not captured directly, potential copies will be checked.
4929       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4930                           /* Return */ false);
4931     }
4932 
4933     // Explicitly catch return instructions.
4934     if (isa<ReturnInst>(UInst)) {
4935       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4936         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4937                             /* Return */ true);
4938       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4939                           /* Return */ true);
4940     }
4941 
4942     // For now we only use special logic for call sites. However, the tracker
4943     // itself knows about a lot of other non-capturing cases already.
4944     auto *CB = dyn_cast<CallBase>(UInst);
4945     if (!CB || !CB->isArgOperand(U))
4946       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4947                           /* Return */ true);
4948 
4949     unsigned ArgNo = CB->getArgOperandNo(U);
4950     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4951     // If we have a abstract no-capture attribute for the argument we can use
4952     // it to justify a non-capture attribute here. This allows recursion!
4953     auto &ArgNoCaptureAA =
4954         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4955     if (ArgNoCaptureAA.isAssumedNoCapture())
4956       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4957                           /* Return */ false);
4958     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4959       addPotentialCopy(*CB);
4960       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4961                           /* Return */ false);
4962     }
4963 
4964     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4965     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4966                         /* Return */ true);
4967   }
4968 
4969   /// Register \p CS as potential copy of the value we are checking.
4970   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4971 
4972   /// See CaptureTracker::shouldExplore(...).
4973   bool shouldExplore(const Use *U) override {
4974     // Check liveness and ignore droppable users.
4975     bool UsedAssumedInformation = false;
4976     return !U->getUser()->isDroppable() &&
4977            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4978                             UsedAssumedInformation);
4979   }
4980 
4981   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4982   /// \p CapturedInRet, then return the appropriate value for use in the
4983   /// CaptureTracker::captured() interface.
4984   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4985                     bool CapturedInRet) {
4986     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4987                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4988     if (CapturedInMem)
4989       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4990     if (CapturedInInt)
4991       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4992     if (CapturedInRet)
4993       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4994     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4995   }
4996 
4997 private:
4998   /// The attributor providing in-flight abstract attributes.
4999   Attributor &A;
5000 
5001   /// The abstract attribute currently updated.
5002   AANoCapture &NoCaptureAA;
5003 
5004   /// The abstract liveness state.
5005   const AAIsDead &IsDeadAA;
5006 
5007   /// The state currently updated.
5008   AANoCapture::StateType &State;
5009 
5010   /// Set of potential copies of the tracked value.
5011   SmallSetVector<Value *, 4> &PotentialCopies;
5012 
5013   /// Global counter to limit the number of explored uses.
5014   unsigned &RemainingUsesToExplore;
5015 };
5016 
5017 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5018   const IRPosition &IRP = getIRPosition();
5019   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5020                                   : &IRP.getAssociatedValue();
5021   if (!V)
5022     return indicatePessimisticFixpoint();
5023 
5024   const Function *F =
5025       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5026   assert(F && "Expected a function!");
5027   const IRPosition &FnPos = IRPosition::function(*F);
5028   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
5029 
5030   AANoCapture::StateType T;
5031 
5032   // Readonly means we cannot capture through memory.
5033   bool IsKnown;
5034   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5035     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5036     if (IsKnown)
5037       addKnownBits(NOT_CAPTURED_IN_MEM);
5038   }
5039 
5040   // Make sure all returned values are different than the underlying value.
5041   // TODO: we could do this in a more sophisticated way inside
5042   //       AAReturnedValues, e.g., track all values that escape through returns
5043   //       directly somehow.
5044   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5045     bool SeenConstant = false;
5046     for (auto &It : RVAA.returned_values()) {
5047       if (isa<Constant>(It.first)) {
5048         if (SeenConstant)
5049           return false;
5050         SeenConstant = true;
5051       } else if (!isa<Argument>(It.first) ||
5052                  It.first == getAssociatedArgument())
5053         return false;
5054     }
5055     return true;
5056   };
5057 
5058   const auto &NoUnwindAA =
5059       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5060   if (NoUnwindAA.isAssumedNoUnwind()) {
5061     bool IsVoidTy = F->getReturnType()->isVoidTy();
5062     const AAReturnedValues *RVAA =
5063         IsVoidTy ? nullptr
5064                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5065 
5066                                                  DepClassTy::OPTIONAL);
5067     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5068       T.addKnownBits(NOT_CAPTURED_IN_RET);
5069       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5070         return ChangeStatus::UNCHANGED;
5071       if (NoUnwindAA.isKnownNoUnwind() &&
5072           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5073         addKnownBits(NOT_CAPTURED_IN_RET);
5074         if (isKnown(NOT_CAPTURED_IN_MEM))
5075           return indicateOptimisticFixpoint();
5076       }
5077     }
5078   }
5079 
5080   // Use the CaptureTracker interface and logic with the specialized tracker,
5081   // defined in AACaptureUseTracker, that can look at in-flight abstract
5082   // attributes and directly updates the assumed state.
5083   SmallSetVector<Value *, 4> PotentialCopies;
5084   unsigned RemainingUsesToExplore =
5085       getDefaultMaxUsesToExploreForCaptureTracking();
5086   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
5087                               RemainingUsesToExplore);
5088 
5089   // Check all potential copies of the associated value until we can assume
5090   // none will be captured or we have to assume at least one might be.
5091   unsigned Idx = 0;
5092   PotentialCopies.insert(V);
5093   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
5094     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
5095 
5096   AANoCapture::StateType &S = getState();
5097   auto Assumed = S.getAssumed();
5098   S.intersectAssumedBits(T.getAssumed());
5099   if (!isAssumedNoCaptureMaybeReturned())
5100     return indicatePessimisticFixpoint();
5101   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5102                                    : ChangeStatus::CHANGED;
5103 }
5104 
5105 /// NoCapture attribute for function arguments.
5106 struct AANoCaptureArgument final : AANoCaptureImpl {
5107   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5108       : AANoCaptureImpl(IRP, A) {}
5109 
5110   /// See AbstractAttribute::trackStatistics()
5111   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5112 };
5113 
5114 /// NoCapture attribute for call site arguments.
5115 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5116   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5117       : AANoCaptureImpl(IRP, A) {}
5118 
5119   /// See AbstractAttribute::initialize(...).
5120   void initialize(Attributor &A) override {
5121     if (Argument *Arg = getAssociatedArgument())
5122       if (Arg->hasByValAttr())
5123         indicateOptimisticFixpoint();
5124     AANoCaptureImpl::initialize(A);
5125   }
5126 
5127   /// See AbstractAttribute::updateImpl(...).
5128   ChangeStatus updateImpl(Attributor &A) override {
5129     // TODO: Once we have call site specific value information we can provide
5130     //       call site specific liveness information and then it makes
5131     //       sense to specialize attributes for call sites arguments instead of
5132     //       redirecting requests to the callee argument.
5133     Argument *Arg = getAssociatedArgument();
5134     if (!Arg)
5135       return indicatePessimisticFixpoint();
5136     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5137     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5138     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5139   }
5140 
5141   /// See AbstractAttribute::trackStatistics()
5142   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5143 };
5144 
5145 /// NoCapture attribute for floating values.
5146 struct AANoCaptureFloating final : AANoCaptureImpl {
5147   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5148       : AANoCaptureImpl(IRP, A) {}
5149 
5150   /// See AbstractAttribute::trackStatistics()
5151   void trackStatistics() const override {
5152     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5153   }
5154 };
5155 
5156 /// NoCapture attribute for function return value.
5157 struct AANoCaptureReturned final : AANoCaptureImpl {
5158   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5159       : AANoCaptureImpl(IRP, A) {
5160     llvm_unreachable("NoCapture is not applicable to function returns!");
5161   }
5162 
5163   /// See AbstractAttribute::initialize(...).
5164   void initialize(Attributor &A) override {
5165     llvm_unreachable("NoCapture is not applicable to function returns!");
5166   }
5167 
5168   /// See AbstractAttribute::updateImpl(...).
5169   ChangeStatus updateImpl(Attributor &A) override {
5170     llvm_unreachable("NoCapture is not applicable to function returns!");
5171   }
5172 
5173   /// See AbstractAttribute::trackStatistics()
5174   void trackStatistics() const override {}
5175 };
5176 
5177 /// NoCapture attribute deduction for a call site return value.
5178 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5179   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5180       : AANoCaptureImpl(IRP, A) {}
5181 
5182   /// See AbstractAttribute::initialize(...).
5183   void initialize(Attributor &A) override {
5184     const Function *F = getAnchorScope();
5185     // Check what state the associated function can actually capture.
5186     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5187   }
5188 
5189   /// See AbstractAttribute::trackStatistics()
5190   void trackStatistics() const override {
5191     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5192   }
5193 };
5194 
5195 /// ------------------ Value Simplify Attribute ----------------------------
5196 
5197 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5198   // FIXME: Add a typecast support.
5199   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5200       SimplifiedAssociatedValue, Other, Ty);
5201   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5202     return false;
5203 
5204   LLVM_DEBUG({
5205     if (SimplifiedAssociatedValue.hasValue())
5206       dbgs() << "[ValueSimplify] is assumed to be "
5207              << **SimplifiedAssociatedValue << "\n";
5208     else
5209       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5210   });
5211   return true;
5212 }
5213 
5214 struct AAValueSimplifyImpl : AAValueSimplify {
5215   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5216       : AAValueSimplify(IRP, A) {}
5217 
5218   /// See AbstractAttribute::initialize(...).
5219   void initialize(Attributor &A) override {
5220     if (getAssociatedValue().getType()->isVoidTy())
5221       indicatePessimisticFixpoint();
5222     if (A.hasSimplificationCallback(getIRPosition()))
5223       indicatePessimisticFixpoint();
5224   }
5225 
5226   /// See AbstractAttribute::getAsStr().
5227   const std::string getAsStr() const override {
5228     LLVM_DEBUG({
5229       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5230       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5231         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5232     });
5233     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5234                           : "not-simple";
5235   }
5236 
5237   /// See AbstractAttribute::trackStatistics()
5238   void trackStatistics() const override {}
5239 
5240   /// See AAValueSimplify::getAssumedSimplifiedValue()
5241   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5242     return SimplifiedAssociatedValue;
5243   }
5244 
5245   /// Return a value we can use as replacement for the associated one, or
5246   /// nullptr if we don't have one that makes sense.
5247   Value *getReplacementValue(Attributor &A) const {
5248     Value *NewV;
5249     NewV = SimplifiedAssociatedValue.hasValue()
5250                ? SimplifiedAssociatedValue.getValue()
5251                : UndefValue::get(getAssociatedType());
5252     if (!NewV)
5253       return nullptr;
5254     NewV = AA::getWithType(*NewV, *getAssociatedType());
5255     if (!NewV || NewV == &getAssociatedValue())
5256       return nullptr;
5257     const Instruction *CtxI = getCtxI();
5258     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5259       return nullptr;
5260     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5261       return nullptr;
5262     return NewV;
5263   }
5264 
5265   /// Helper function for querying AAValueSimplify and updating candicate.
5266   /// \param IRP The value position we are trying to unify with SimplifiedValue
5267   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5268                       const IRPosition &IRP, bool Simplify = true) {
5269     bool UsedAssumedInformation = false;
5270     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5271     if (Simplify)
5272       QueryingValueSimplified =
5273           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5274     return unionAssumed(QueryingValueSimplified);
5275   }
5276 
5277   /// Returns a candidate is found or not
5278   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5279     if (!getAssociatedValue().getType()->isIntegerTy())
5280       return false;
5281 
5282     // This will also pass the call base context.
5283     const auto &AA =
5284         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5285 
5286     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5287 
5288     if (!COpt.hasValue()) {
5289       SimplifiedAssociatedValue = llvm::None;
5290       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5291       return true;
5292     }
5293     if (auto *C = COpt.getValue()) {
5294       SimplifiedAssociatedValue = C;
5295       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5296       return true;
5297     }
5298     return false;
5299   }
5300 
5301   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5302     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5303       return true;
5304     if (askSimplifiedValueFor<AAPotentialValues>(A))
5305       return true;
5306     return false;
5307   }
5308 
5309   /// See AbstractAttribute::manifest(...).
5310   ChangeStatus manifest(Attributor &A) override {
5311     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5312     if (getAssociatedValue().user_empty())
5313       return Changed;
5314 
5315     if (auto *NewV = getReplacementValue(A)) {
5316       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5317                         << *NewV << " :: " << *this << "\n");
5318       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5319         Changed = ChangeStatus::CHANGED;
5320     }
5321 
5322     return Changed | AAValueSimplify::manifest(A);
5323   }
5324 
5325   /// See AbstractState::indicatePessimisticFixpoint(...).
5326   ChangeStatus indicatePessimisticFixpoint() override {
5327     SimplifiedAssociatedValue = &getAssociatedValue();
5328     return AAValueSimplify::indicatePessimisticFixpoint();
5329   }
5330 
5331   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5332                          LoadInst &L, function_ref<bool(Value &)> Union) {
5333     auto UnionWrapper = [&](Value &V, Value &Obj) {
5334       if (isa<AllocaInst>(Obj))
5335         return Union(V);
5336       if (!AA::isDynamicallyUnique(A, AA, V))
5337         return false;
5338       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5339         return false;
5340       return Union(V);
5341     };
5342 
5343     Value &Ptr = *L.getPointerOperand();
5344     SmallVector<Value *, 8> Objects;
5345     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5346       return false;
5347 
5348     const auto *TLI =
5349         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5350     for (Value *Obj : Objects) {
5351       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5352       if (isa<UndefValue>(Obj))
5353         continue;
5354       if (isa<ConstantPointerNull>(Obj)) {
5355         // A null pointer access can be undefined but any offset from null may
5356         // be OK. We do not try to optimize the latter.
5357         bool UsedAssumedInformation = false;
5358         if (!NullPointerIsDefined(L.getFunction(),
5359                                   Ptr.getType()->getPointerAddressSpace()) &&
5360             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5361           continue;
5362         return false;
5363       }
5364       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5365       if (!InitialVal || !Union(*InitialVal))
5366         return false;
5367 
5368       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5369                            "propagation, checking accesses next.\n");
5370 
5371       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5372         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5373         if (Acc.isWrittenValueYetUndetermined())
5374           return true;
5375         Value *Content = Acc.getWrittenValue();
5376         if (!Content)
5377           return false;
5378         Value *CastedContent =
5379             AA::getWithType(*Content, *AA.getAssociatedType());
5380         if (!CastedContent)
5381           return false;
5382         if (IsExact)
5383           return UnionWrapper(*CastedContent, *Obj);
5384         if (auto *C = dyn_cast<Constant>(CastedContent))
5385           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5386             return UnionWrapper(*CastedContent, *Obj);
5387         return false;
5388       };
5389 
5390       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5391                                            DepClassTy::REQUIRED);
5392       if (!PI.forallInterferingWrites(A, AA, L, CheckAccess))
5393         return false;
5394     }
5395     return true;
5396   }
5397 };
5398 
5399 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5400   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5401       : AAValueSimplifyImpl(IRP, A) {}
5402 
5403   void initialize(Attributor &A) override {
5404     AAValueSimplifyImpl::initialize(A);
5405     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5406       indicatePessimisticFixpoint();
5407     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5408                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5409                 /* IgnoreSubsumingPositions */ true))
5410       indicatePessimisticFixpoint();
5411 
5412     // FIXME: This is a hack to prevent us from propagating function poiner in
5413     // the new pass manager CGSCC pass as it creates call edges the
5414     // CallGraphUpdater cannot handle yet.
5415     Value &V = getAssociatedValue();
5416     if (V.getType()->isPointerTy() &&
5417         V.getType()->getPointerElementType()->isFunctionTy() &&
5418         !A.isModulePass())
5419       indicatePessimisticFixpoint();
5420   }
5421 
5422   /// See AbstractAttribute::updateImpl(...).
5423   ChangeStatus updateImpl(Attributor &A) override {
5424     // Byval is only replacable if it is readonly otherwise we would write into
5425     // the replaced value and not the copy that byval creates implicitly.
5426     Argument *Arg = getAssociatedArgument();
5427     if (Arg->hasByValAttr()) {
5428       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5429       //       there is no race by not copying a constant byval.
5430       bool IsKnown;
5431       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5432         return indicatePessimisticFixpoint();
5433     }
5434 
5435     auto Before = SimplifiedAssociatedValue;
5436 
5437     auto PredForCallSite = [&](AbstractCallSite ACS) {
5438       const IRPosition &ACSArgPos =
5439           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5440       // Check if a coresponding argument was found or if it is on not
5441       // associated (which can happen for callback calls).
5442       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5443         return false;
5444 
5445       // Simplify the argument operand explicitly and check if the result is
5446       // valid in the current scope. This avoids refering to simplified values
5447       // in other functions, e.g., we don't want to say a an argument in a
5448       // static function is actually an argument in a different function.
5449       bool UsedAssumedInformation = false;
5450       Optional<Constant *> SimpleArgOp =
5451           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5452       if (!SimpleArgOp.hasValue())
5453         return true;
5454       if (!SimpleArgOp.getValue())
5455         return false;
5456       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5457         return false;
5458       return unionAssumed(*SimpleArgOp);
5459     };
5460 
5461     // Generate a answer specific to a call site context.
5462     bool Success;
5463     bool AllCallSitesKnown;
5464     if (hasCallBaseContext() &&
5465         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5466       Success = PredForCallSite(
5467           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5468     else
5469       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5470                                        AllCallSitesKnown);
5471 
5472     if (!Success)
5473       if (!askSimplifiedValueForOtherAAs(A))
5474         return indicatePessimisticFixpoint();
5475 
5476     // If a candicate was found in this update, return CHANGED.
5477     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5478                                                : ChangeStatus ::CHANGED;
5479   }
5480 
5481   /// See AbstractAttribute::trackStatistics()
5482   void trackStatistics() const override {
5483     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5484   }
5485 };
5486 
5487 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5488   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5489       : AAValueSimplifyImpl(IRP, A) {}
5490 
5491   /// See AAValueSimplify::getAssumedSimplifiedValue()
5492   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5493     if (!isValidState())
5494       return nullptr;
5495     return SimplifiedAssociatedValue;
5496   }
5497 
5498   /// See AbstractAttribute::updateImpl(...).
5499   ChangeStatus updateImpl(Attributor &A) override {
5500     auto Before = SimplifiedAssociatedValue;
5501 
5502     auto PredForReturned = [&](Value &V) {
5503       return checkAndUpdate(A, *this,
5504                             IRPosition::value(V, getCallBaseContext()));
5505     };
5506 
5507     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5508       if (!askSimplifiedValueForOtherAAs(A))
5509         return indicatePessimisticFixpoint();
5510 
5511     // If a candicate was found in this update, return CHANGED.
5512     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5513                                                : ChangeStatus ::CHANGED;
5514   }
5515 
5516   ChangeStatus manifest(Attributor &A) override {
5517     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5518 
5519     if (auto *NewV = getReplacementValue(A)) {
5520       auto PredForReturned =
5521           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5522             for (ReturnInst *RI : RetInsts) {
5523               Value *ReturnedVal = RI->getReturnValue();
5524               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5525                 return true;
5526               assert(RI->getFunction() == getAnchorScope() &&
5527                      "ReturnInst in wrong function!");
5528               LLVM_DEBUG(dbgs()
5529                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5530                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5531               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5532                 Changed = ChangeStatus::CHANGED;
5533             }
5534             return true;
5535           };
5536       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5537     }
5538 
5539     return Changed | AAValueSimplify::manifest(A);
5540   }
5541 
5542   /// See AbstractAttribute::trackStatistics()
5543   void trackStatistics() const override {
5544     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5545   }
5546 };
5547 
5548 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5549   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5550       : AAValueSimplifyImpl(IRP, A) {}
5551 
5552   /// See AbstractAttribute::initialize(...).
5553   void initialize(Attributor &A) override {
5554     AAValueSimplifyImpl::initialize(A);
5555     Value &V = getAnchorValue();
5556 
5557     // TODO: add other stuffs
5558     if (isa<Constant>(V))
5559       indicatePessimisticFixpoint();
5560   }
5561 
5562   /// Check if \p Cmp is a comparison we can simplify.
5563   ///
5564   /// We handle multiple cases, one in which at least one operand is an
5565   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5566   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5567   /// will be updated.
5568   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5569     auto Union = [&](Value &V) {
5570       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5571           SimplifiedAssociatedValue, &V, V.getType());
5572       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5573     };
5574 
5575     Value *LHS = Cmp.getOperand(0);
5576     Value *RHS = Cmp.getOperand(1);
5577 
5578     // Simplify the operands first.
5579     bool UsedAssumedInformation = false;
5580     const auto &SimplifiedLHS =
5581         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5582                                *this, UsedAssumedInformation);
5583     if (!SimplifiedLHS.hasValue())
5584       return true;
5585     if (!SimplifiedLHS.getValue())
5586       return false;
5587     LHS = *SimplifiedLHS;
5588 
5589     const auto &SimplifiedRHS =
5590         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5591                                *this, UsedAssumedInformation);
5592     if (!SimplifiedRHS.hasValue())
5593       return true;
5594     if (!SimplifiedRHS.getValue())
5595       return false;
5596     RHS = *SimplifiedRHS;
5597 
5598     LLVMContext &Ctx = Cmp.getContext();
5599     // Handle the trivial case first in which we don't even need to think about
5600     // null or non-null.
5601     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5602       Constant *NewVal =
5603           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5604       if (!Union(*NewVal))
5605         return false;
5606       if (!UsedAssumedInformation)
5607         indicateOptimisticFixpoint();
5608       return true;
5609     }
5610 
5611     // From now on we only handle equalities (==, !=).
5612     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5613     if (!ICmp || !ICmp->isEquality())
5614       return false;
5615 
5616     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5617     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5618     if (!LHSIsNull && !RHSIsNull)
5619       return false;
5620 
5621     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5622     // non-nullptr operand and if we assume it's non-null we can conclude the
5623     // result of the comparison.
5624     assert((LHSIsNull || RHSIsNull) &&
5625            "Expected nullptr versus non-nullptr comparison at this point");
5626 
5627     // The index is the operand that we assume is not null.
5628     unsigned PtrIdx = LHSIsNull;
5629     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5630         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5631         DepClassTy::REQUIRED);
5632     if (!PtrNonNullAA.isAssumedNonNull())
5633       return false;
5634     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5635 
5636     // The new value depends on the predicate, true for != and false for ==.
5637     Constant *NewVal = ConstantInt::get(
5638         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5639     if (!Union(*NewVal))
5640       return false;
5641 
5642     if (!UsedAssumedInformation)
5643       indicateOptimisticFixpoint();
5644 
5645     return true;
5646   }
5647 
5648   bool updateWithLoad(Attributor &A, LoadInst &L) {
5649     auto Union = [&](Value &V) {
5650       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5651           SimplifiedAssociatedValue, &V, L.getType());
5652       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5653     };
5654     return handleLoad(A, *this, L, Union);
5655   }
5656 
5657   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5658   /// simplify any operand of the instruction \p I. Return true if successful,
5659   /// in that case SimplifiedAssociatedValue will be updated.
5660   bool handleGenericInst(Attributor &A, Instruction &I) {
5661     bool SomeSimplified = false;
5662     bool UsedAssumedInformation = false;
5663 
5664     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5665     int Idx = 0;
5666     for (Value *Op : I.operands()) {
5667       const auto &SimplifiedOp =
5668           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5669                                  *this, UsedAssumedInformation);
5670       // If we are not sure about any operand we are not sure about the entire
5671       // instruction, we'll wait.
5672       if (!SimplifiedOp.hasValue())
5673         return true;
5674 
5675       if (SimplifiedOp.getValue())
5676         NewOps[Idx] = SimplifiedOp.getValue();
5677       else
5678         NewOps[Idx] = Op;
5679 
5680       SomeSimplified |= (NewOps[Idx] != Op);
5681       ++Idx;
5682     }
5683 
5684     // We won't bother with the InstSimplify interface if we didn't simplify any
5685     // operand ourselves.
5686     if (!SomeSimplified)
5687       return false;
5688 
5689     InformationCache &InfoCache = A.getInfoCache();
5690     Function *F = I.getFunction();
5691     const auto *DT =
5692         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5693     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5694     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5695     OptimizationRemarkEmitter *ORE = nullptr;
5696 
5697     const DataLayout &DL = I.getModule()->getDataLayout();
5698     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5699     if (Value *SimplifiedI =
5700             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5701       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5702           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5703       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5704     }
5705     return false;
5706   }
5707 
5708   /// See AbstractAttribute::updateImpl(...).
5709   ChangeStatus updateImpl(Attributor &A) override {
5710     auto Before = SimplifiedAssociatedValue;
5711 
5712     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5713                             bool Stripped) -> bool {
5714       auto &AA = A.getAAFor<AAValueSimplify>(
5715           *this, IRPosition::value(V, getCallBaseContext()),
5716           DepClassTy::REQUIRED);
5717       if (!Stripped && this == &AA) {
5718 
5719         if (auto *I = dyn_cast<Instruction>(&V)) {
5720           if (auto *LI = dyn_cast<LoadInst>(&V))
5721             if (updateWithLoad(A, *LI))
5722               return true;
5723           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5724             if (handleCmp(A, *Cmp))
5725               return true;
5726           if (handleGenericInst(A, *I))
5727             return true;
5728         }
5729         // TODO: Look the instruction and check recursively.
5730 
5731         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5732                           << "\n");
5733         return false;
5734       }
5735       return checkAndUpdate(A, *this,
5736                             IRPosition::value(V, getCallBaseContext()));
5737     };
5738 
5739     bool Dummy = false;
5740     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5741                                      VisitValueCB, getCtxI(),
5742                                      /* UseValueSimplify */ false))
5743       if (!askSimplifiedValueForOtherAAs(A))
5744         return indicatePessimisticFixpoint();
5745 
5746     // If a candicate was found in this update, return CHANGED.
5747     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5748                                                : ChangeStatus ::CHANGED;
5749   }
5750 
5751   /// See AbstractAttribute::trackStatistics()
5752   void trackStatistics() const override {
5753     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5754   }
5755 };
5756 
5757 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5758   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5759       : AAValueSimplifyImpl(IRP, A) {}
5760 
5761   /// See AbstractAttribute::initialize(...).
5762   void initialize(Attributor &A) override {
5763     SimplifiedAssociatedValue = nullptr;
5764     indicateOptimisticFixpoint();
5765   }
5766   /// See AbstractAttribute::initialize(...).
5767   ChangeStatus updateImpl(Attributor &A) override {
5768     llvm_unreachable(
5769         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5770   }
5771   /// See AbstractAttribute::trackStatistics()
5772   void trackStatistics() const override {
5773     STATS_DECLTRACK_FN_ATTR(value_simplify)
5774   }
5775 };
5776 
5777 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5778   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5779       : AAValueSimplifyFunction(IRP, A) {}
5780   /// See AbstractAttribute::trackStatistics()
5781   void trackStatistics() const override {
5782     STATS_DECLTRACK_CS_ATTR(value_simplify)
5783   }
5784 };
5785 
5786 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5787   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5788       : AAValueSimplifyImpl(IRP, A) {}
5789 
5790   void initialize(Attributor &A) override {
5791     AAValueSimplifyImpl::initialize(A);
5792     if (!getAssociatedFunction())
5793       indicatePessimisticFixpoint();
5794   }
5795 
5796   /// See AbstractAttribute::updateImpl(...).
5797   ChangeStatus updateImpl(Attributor &A) override {
5798     auto Before = SimplifiedAssociatedValue;
5799     auto &RetAA = A.getAAFor<AAReturnedValues>(
5800         *this, IRPosition::function(*getAssociatedFunction()),
5801         DepClassTy::REQUIRED);
5802     auto PredForReturned =
5803         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5804           bool UsedAssumedInformation = false;
5805           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5806               &RetVal, *cast<CallBase>(getCtxI()), *this,
5807               UsedAssumedInformation);
5808           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5809               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5810           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5811         };
5812     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5813       if (!askSimplifiedValueForOtherAAs(A))
5814         return indicatePessimisticFixpoint();
5815     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5816                                                : ChangeStatus ::CHANGED;
5817   }
5818 
5819   void trackStatistics() const override {
5820     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5821   }
5822 };
5823 
5824 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5825   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5826       : AAValueSimplifyFloating(IRP, A) {}
5827 
5828   /// See AbstractAttribute::manifest(...).
5829   ChangeStatus manifest(Attributor &A) override {
5830     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5831 
5832     if (auto *NewV = getReplacementValue(A)) {
5833       Use &U = cast<CallBase>(&getAnchorValue())
5834                    ->getArgOperandUse(getCallSiteArgNo());
5835       if (A.changeUseAfterManifest(U, *NewV))
5836         Changed = ChangeStatus::CHANGED;
5837     }
5838 
5839     return Changed | AAValueSimplify::manifest(A);
5840   }
5841 
5842   void trackStatistics() const override {
5843     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5844   }
5845 };
5846 
5847 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5848 struct AAHeapToStackFunction final : public AAHeapToStack {
5849 
5850   struct AllocationInfo {
5851     /// The call that allocates the memory.
5852     CallBase *const CB;
5853 
5854     /// The library function id for the allocation.
5855     LibFunc LibraryFunctionId = NotLibFunc;
5856 
5857     /// The status wrt. a rewrite.
5858     enum {
5859       STACK_DUE_TO_USE,
5860       STACK_DUE_TO_FREE,
5861       INVALID,
5862     } Status = STACK_DUE_TO_USE;
5863 
5864     /// Flag to indicate if we encountered a use that might free this allocation
5865     /// but which is not in the deallocation infos.
5866     bool HasPotentiallyFreeingUnknownUses = false;
5867 
5868     /// The set of free calls that use this allocation.
5869     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5870   };
5871 
5872   struct DeallocationInfo {
5873     /// The call that deallocates the memory.
5874     CallBase *const CB;
5875 
5876     /// Flag to indicate if we don't know all objects this deallocation might
5877     /// free.
5878     bool MightFreeUnknownObjects = false;
5879 
5880     /// The set of allocation calls that are potentially freed.
5881     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5882   };
5883 
5884   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5885       : AAHeapToStack(IRP, A) {}
5886 
5887   ~AAHeapToStackFunction() {
5888     // Ensure we call the destructor so we release any memory allocated in the
5889     // sets.
5890     for (auto &It : AllocationInfos)
5891       It.getSecond()->~AllocationInfo();
5892     for (auto &It : DeallocationInfos)
5893       It.getSecond()->~DeallocationInfo();
5894   }
5895 
5896   void initialize(Attributor &A) override {
5897     AAHeapToStack::initialize(A);
5898 
5899     const Function *F = getAnchorScope();
5900     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5901 
5902     auto AllocationIdentifierCB = [&](Instruction &I) {
5903       CallBase *CB = dyn_cast<CallBase>(&I);
5904       if (!CB)
5905         return true;
5906       if (isFreeCall(CB, TLI)) {
5907         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5908         return true;
5909       }
5910       // To do heap to stack, we need to know that the allocation itself is
5911       // removable once uses are rewritten, and that we can initialize the
5912       // alloca to the same pattern as the original allocation result.
5913       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5914         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5915         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5916           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5917           AllocationInfos[CB] = AI;
5918           TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5919         }
5920       }
5921       return true;
5922     };
5923 
5924     bool UsedAssumedInformation = false;
5925     bool Success = A.checkForAllCallLikeInstructions(
5926         AllocationIdentifierCB, *this, UsedAssumedInformation,
5927         /* CheckBBLivenessOnly */ false,
5928         /* CheckPotentiallyDead */ true);
5929     (void)Success;
5930     assert(Success && "Did not expect the call base visit callback to fail!");
5931   }
5932 
5933   const std::string getAsStr() const override {
5934     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5935     for (const auto &It : AllocationInfos) {
5936       if (It.second->Status == AllocationInfo::INVALID)
5937         ++NumInvalidMallocs;
5938       else
5939         ++NumH2SMallocs;
5940     }
5941     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5942            std::to_string(NumInvalidMallocs);
5943   }
5944 
5945   /// See AbstractAttribute::trackStatistics().
5946   void trackStatistics() const override {
5947     STATS_DECL(
5948         MallocCalls, Function,
5949         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5950     for (auto &It : AllocationInfos)
5951       if (It.second->Status != AllocationInfo::INVALID)
5952         ++BUILD_STAT_NAME(MallocCalls, Function);
5953   }
5954 
5955   bool isAssumedHeapToStack(const CallBase &CB) const override {
5956     if (isValidState())
5957       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5958         return AI->Status != AllocationInfo::INVALID;
5959     return false;
5960   }
5961 
5962   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5963     if (!isValidState())
5964       return false;
5965 
5966     for (auto &It : AllocationInfos) {
5967       AllocationInfo &AI = *It.second;
5968       if (AI.Status == AllocationInfo::INVALID)
5969         continue;
5970 
5971       if (AI.PotentialFreeCalls.count(&CB))
5972         return true;
5973     }
5974 
5975     return false;
5976   }
5977 
5978   ChangeStatus manifest(Attributor &A) override {
5979     assert(getState().isValidState() &&
5980            "Attempted to manifest an invalid state!");
5981 
5982     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5983     Function *F = getAnchorScope();
5984     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5985 
5986     for (auto &It : AllocationInfos) {
5987       AllocationInfo &AI = *It.second;
5988       if (AI.Status == AllocationInfo::INVALID)
5989         continue;
5990 
5991       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5992         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5993         A.deleteAfterManifest(*FreeCall);
5994         HasChanged = ChangeStatus::CHANGED;
5995       }
5996 
5997       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5998                         << "\n");
5999 
6000       auto Remark = [&](OptimizationRemark OR) {
6001         LibFunc IsAllocShared;
6002         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6003           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6004             return OR << "Moving globalized variable to the stack.";
6005         return OR << "Moving memory allocation from the heap to the stack.";
6006       };
6007       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6008         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6009       else
6010         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6011 
6012       Value *Size;
6013       Optional<APInt> SizeAPI = getSize(A, *this, AI);
6014       if (SizeAPI.hasValue()) {
6015         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6016       } else {
6017         LLVMContext &Ctx = AI.CB->getContext();
6018         auto &DL = A.getInfoCache().getDL();
6019         ObjectSizeOpts Opts;
6020         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6021         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6022         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6023                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6024         Size = SizeOffsetPair.first;
6025       }
6026 
6027       Align Alignment(1);
6028       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6029         Alignment = max(Alignment, RetAlign);
6030       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6031         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6032         assert(AlignmentAPI.hasValue() &&
6033                "Expected an alignment during manifest!");
6034         Alignment =
6035             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
6036       }
6037 
6038       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
6039       Instruction *Alloca =
6040           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
6041                          "", AI.CB->getNextNode());
6042 
6043       if (Alloca->getType() != AI.CB->getType())
6044         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
6045                                  Alloca->getNextNode());
6046 
6047       auto *I8Ty = Type::getInt8Ty(F->getContext());
6048       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6049       assert(InitVal &&
6050              "Must be able to materialize initial memory state of allocation");
6051 
6052       A.changeValueAfterManifest(*AI.CB, *Alloca);
6053 
6054       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6055         auto *NBB = II->getNormalDest();
6056         BranchInst::Create(NBB, AI.CB->getParent());
6057         A.deleteAfterManifest(*AI.CB);
6058       } else {
6059         A.deleteAfterManifest(*AI.CB);
6060       }
6061 
6062       // Initialize the alloca with the same value as used by the allocation
6063       // function.  We can skip undef as the initial value of an alloc is
6064       // undef, and the memset would simply end up being DSEd.
6065       if (!isa<UndefValue>(InitVal)) {
6066         IRBuilder<> Builder(Alloca->getNextNode());
6067         // TODO: Use alignment above if align!=1
6068         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6069       }
6070       HasChanged = ChangeStatus::CHANGED;
6071     }
6072 
6073     return HasChanged;
6074   }
6075 
6076   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6077                            Value &V) {
6078     bool UsedAssumedInformation = false;
6079     Optional<Constant *> SimpleV =
6080         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6081     if (!SimpleV.hasValue())
6082       return APInt(64, 0);
6083     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6084       return CI->getValue();
6085     return llvm::None;
6086   }
6087 
6088   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6089                           AllocationInfo &AI) {
6090     auto Mapper = [&](const Value *V) -> const Value * {
6091       bool UsedAssumedInformation = false;
6092       if (Optional<Constant *> SimpleV =
6093               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6094         if (*SimpleV)
6095           return *SimpleV;
6096       return V;
6097     };
6098 
6099     const Function *F = getAnchorScope();
6100     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6101     return getAllocSize(AI.CB, TLI, Mapper);
6102   }
6103 
6104   /// Collection of all malloc-like calls in a function with associated
6105   /// information.
6106   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6107 
6108   /// Collection of all free-like calls in a function with associated
6109   /// information.
6110   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6111 
6112   ChangeStatus updateImpl(Attributor &A) override;
6113 };
6114 
6115 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6116   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6117   const Function *F = getAnchorScope();
6118   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6119 
6120   const auto &LivenessAA =
6121       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6122 
6123   MustBeExecutedContextExplorer &Explorer =
6124       A.getInfoCache().getMustBeExecutedContextExplorer();
6125 
6126   bool StackIsAccessibleByOtherThreads =
6127       A.getInfoCache().stackIsAccessibleByOtherThreads();
6128 
6129   // Flag to ensure we update our deallocation information at most once per
6130   // updateImpl call and only if we use the free check reasoning.
6131   bool HasUpdatedFrees = false;
6132 
6133   auto UpdateFrees = [&]() {
6134     HasUpdatedFrees = true;
6135 
6136     for (auto &It : DeallocationInfos) {
6137       DeallocationInfo &DI = *It.second;
6138       // For now we cannot use deallocations that have unknown inputs, skip
6139       // them.
6140       if (DI.MightFreeUnknownObjects)
6141         continue;
6142 
6143       // No need to analyze dead calls, ignore them instead.
6144       bool UsedAssumedInformation = false;
6145       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6146                           /* CheckBBLivenessOnly */ true))
6147         continue;
6148 
6149       // Use the optimistic version to get the freed objects, ignoring dead
6150       // branches etc.
6151       SmallVector<Value *, 8> Objects;
6152       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6153                                            *this, DI.CB)) {
6154         LLVM_DEBUG(
6155             dbgs()
6156             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6157         DI.MightFreeUnknownObjects = true;
6158         continue;
6159       }
6160 
6161       // Check each object explicitly.
6162       for (auto *Obj : Objects) {
6163         // Free of null and undef can be ignored as no-ops (or UB in the latter
6164         // case).
6165         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6166           continue;
6167 
6168         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6169         if (!ObjCB) {
6170           LLVM_DEBUG(dbgs()
6171                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6172           DI.MightFreeUnknownObjects = true;
6173           continue;
6174         }
6175 
6176         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6177         if (!AI) {
6178           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6179                             << "\n");
6180           DI.MightFreeUnknownObjects = true;
6181           continue;
6182         }
6183 
6184         DI.PotentialAllocationCalls.insert(ObjCB);
6185       }
6186     }
6187   };
6188 
6189   auto FreeCheck = [&](AllocationInfo &AI) {
6190     // If the stack is not accessible by other threads, the "must-free" logic
6191     // doesn't apply as the pointer could be shared and needs to be places in
6192     // "shareable" memory.
6193     if (!StackIsAccessibleByOtherThreads) {
6194       auto &NoSyncAA =
6195           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6196       if (!NoSyncAA.isAssumedNoSync()) {
6197         LLVM_DEBUG(
6198             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6199                       "other threads and function is not nosync:\n");
6200         return false;
6201       }
6202     }
6203     if (!HasUpdatedFrees)
6204       UpdateFrees();
6205 
6206     // TODO: Allow multi exit functions that have different free calls.
6207     if (AI.PotentialFreeCalls.size() != 1) {
6208       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6209                         << AI.PotentialFreeCalls.size() << "\n");
6210       return false;
6211     }
6212     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6213     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6214     if (!DI) {
6215       LLVM_DEBUG(
6216           dbgs() << "[H2S] unique free call was not known as deallocation call "
6217                  << *UniqueFree << "\n");
6218       return false;
6219     }
6220     if (DI->MightFreeUnknownObjects) {
6221       LLVM_DEBUG(
6222           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6223       return false;
6224     }
6225     if (DI->PotentialAllocationCalls.size() > 1) {
6226       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6227                         << DI->PotentialAllocationCalls.size()
6228                         << " different allocations\n");
6229       return false;
6230     }
6231     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6232       LLVM_DEBUG(
6233           dbgs()
6234           << "[H2S] unique free call not known to free this allocation but "
6235           << **DI->PotentialAllocationCalls.begin() << "\n");
6236       return false;
6237     }
6238     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6239     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6240       LLVM_DEBUG(
6241           dbgs()
6242           << "[H2S] unique free call might not be executed with the allocation "
6243           << *UniqueFree << "\n");
6244       return false;
6245     }
6246     return true;
6247   };
6248 
6249   auto UsesCheck = [&](AllocationInfo &AI) {
6250     bool ValidUsesOnly = true;
6251 
6252     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6253       Instruction *UserI = cast<Instruction>(U.getUser());
6254       if (isa<LoadInst>(UserI))
6255         return true;
6256       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6257         if (SI->getValueOperand() == U.get()) {
6258           LLVM_DEBUG(dbgs()
6259                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6260           ValidUsesOnly = false;
6261         } else {
6262           // A store into the malloc'ed memory is fine.
6263         }
6264         return true;
6265       }
6266       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6267         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6268           return true;
6269         if (DeallocationInfos.count(CB)) {
6270           AI.PotentialFreeCalls.insert(CB);
6271           return true;
6272         }
6273 
6274         unsigned ArgNo = CB->getArgOperandNo(&U);
6275 
6276         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6277             *this, IRPosition::callsite_argument(*CB, ArgNo),
6278             DepClassTy::OPTIONAL);
6279 
6280         // If a call site argument use is nofree, we are fine.
6281         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6282             *this, IRPosition::callsite_argument(*CB, ArgNo),
6283             DepClassTy::OPTIONAL);
6284 
6285         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6286         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6287         if (MaybeCaptured ||
6288             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6289              MaybeFreed)) {
6290           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6291 
6292           // Emit a missed remark if this is missed OpenMP globalization.
6293           auto Remark = [&](OptimizationRemarkMissed ORM) {
6294             return ORM
6295                    << "Could not move globalized variable to the stack. "
6296                       "Variable is potentially captured in call. Mark "
6297                       "parameter as `__attribute__((noescape))` to override.";
6298           };
6299 
6300           if (ValidUsesOnly &&
6301               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6302             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6303 
6304           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6305           ValidUsesOnly = false;
6306         }
6307         return true;
6308       }
6309 
6310       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6311           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6312         Follow = true;
6313         return true;
6314       }
6315       // Unknown user for which we can not track uses further (in a way that
6316       // makes sense).
6317       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6318       ValidUsesOnly = false;
6319       return true;
6320     };
6321     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6322       return false;
6323     return ValidUsesOnly;
6324   };
6325 
6326   // The actual update starts here. We look at all allocations and depending on
6327   // their status perform the appropriate check(s).
6328   for (auto &It : AllocationInfos) {
6329     AllocationInfo &AI = *It.second;
6330     if (AI.Status == AllocationInfo::INVALID)
6331       continue;
6332 
6333     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6334       if (!getAPInt(A, *this, *Align)) {
6335         // Can't generate an alloca which respects the required alignment
6336         // on the allocation.
6337         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6338                           << "\n");
6339         AI.Status = AllocationInfo::INVALID;
6340         Changed = ChangeStatus::CHANGED;
6341         continue;
6342       }
6343     }
6344 
6345     if (MaxHeapToStackSize != -1) {
6346       Optional<APInt> Size = getSize(A, *this, AI);
6347       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6348         LLVM_DEBUG({
6349           if (!Size.hasValue())
6350             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6351           else
6352             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6353                    << MaxHeapToStackSize << "\n";
6354         });
6355 
6356         AI.Status = AllocationInfo::INVALID;
6357         Changed = ChangeStatus::CHANGED;
6358         continue;
6359       }
6360     }
6361 
6362     switch (AI.Status) {
6363     case AllocationInfo::STACK_DUE_TO_USE:
6364       if (UsesCheck(AI))
6365         continue;
6366       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6367       LLVM_FALLTHROUGH;
6368     case AllocationInfo::STACK_DUE_TO_FREE:
6369       if (FreeCheck(AI))
6370         continue;
6371       AI.Status = AllocationInfo::INVALID;
6372       Changed = ChangeStatus::CHANGED;
6373       continue;
6374     case AllocationInfo::INVALID:
6375       llvm_unreachable("Invalid allocations should never reach this point!");
6376     };
6377   }
6378 
6379   return Changed;
6380 }
6381 
6382 /// ----------------------- Privatizable Pointers ------------------------------
6383 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6384   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6385       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6386 
6387   ChangeStatus indicatePessimisticFixpoint() override {
6388     AAPrivatizablePtr::indicatePessimisticFixpoint();
6389     PrivatizableType = nullptr;
6390     return ChangeStatus::CHANGED;
6391   }
6392 
6393   /// Identify the type we can chose for a private copy of the underlying
6394   /// argument. None means it is not clear yet, nullptr means there is none.
6395   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6396 
6397   /// Return a privatizable type that encloses both T0 and T1.
6398   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6399   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6400     if (!T0.hasValue())
6401       return T1;
6402     if (!T1.hasValue())
6403       return T0;
6404     if (T0 == T1)
6405       return T0;
6406     return nullptr;
6407   }
6408 
6409   Optional<Type *> getPrivatizableType() const override {
6410     return PrivatizableType;
6411   }
6412 
6413   const std::string getAsStr() const override {
6414     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6415   }
6416 
6417 protected:
6418   Optional<Type *> PrivatizableType;
6419 };
6420 
6421 // TODO: Do this for call site arguments (probably also other values) as well.
6422 
6423 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6424   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6425       : AAPrivatizablePtrImpl(IRP, A) {}
6426 
6427   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6428   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6429     // If this is a byval argument and we know all the call sites (so we can
6430     // rewrite them), there is no need to check them explicitly.
6431     bool AllCallSitesKnown;
6432     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6433         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6434                                true, AllCallSitesKnown))
6435       return getAssociatedValue().getType()->getPointerElementType();
6436 
6437     Optional<Type *> Ty;
6438     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6439 
6440     // Make sure the associated call site argument has the same type at all call
6441     // sites and it is an allocation we know is safe to privatize, for now that
6442     // means we only allow alloca instructions.
6443     // TODO: We can additionally analyze the accesses in the callee to  create
6444     //       the type from that information instead. That is a little more
6445     //       involved and will be done in a follow up patch.
6446     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6447       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6448       // Check if a coresponding argument was found or if it is one not
6449       // associated (which can happen for callback calls).
6450       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6451         return false;
6452 
6453       // Check that all call sites agree on a type.
6454       auto &PrivCSArgAA =
6455           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6456       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6457 
6458       LLVM_DEBUG({
6459         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6460         if (CSTy.hasValue() && CSTy.getValue())
6461           CSTy.getValue()->print(dbgs());
6462         else if (CSTy.hasValue())
6463           dbgs() << "<nullptr>";
6464         else
6465           dbgs() << "<none>";
6466       });
6467 
6468       Ty = combineTypes(Ty, CSTy);
6469 
6470       LLVM_DEBUG({
6471         dbgs() << " : New Type: ";
6472         if (Ty.hasValue() && Ty.getValue())
6473           Ty.getValue()->print(dbgs());
6474         else if (Ty.hasValue())
6475           dbgs() << "<nullptr>";
6476         else
6477           dbgs() << "<none>";
6478         dbgs() << "\n";
6479       });
6480 
6481       return !Ty.hasValue() || Ty.getValue();
6482     };
6483 
6484     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6485       return nullptr;
6486     return Ty;
6487   }
6488 
6489   /// See AbstractAttribute::updateImpl(...).
6490   ChangeStatus updateImpl(Attributor &A) override {
6491     PrivatizableType = identifyPrivatizableType(A);
6492     if (!PrivatizableType.hasValue())
6493       return ChangeStatus::UNCHANGED;
6494     if (!PrivatizableType.getValue())
6495       return indicatePessimisticFixpoint();
6496 
6497     // The dependence is optional so we don't give up once we give up on the
6498     // alignment.
6499     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6500                         DepClassTy::OPTIONAL);
6501 
6502     // Avoid arguments with padding for now.
6503     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6504         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6505                                                 A.getInfoCache().getDL())) {
6506       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6507       return indicatePessimisticFixpoint();
6508     }
6509 
6510     // Collect the types that will replace the privatizable type in the function
6511     // signature.
6512     SmallVector<Type *, 16> ReplacementTypes;
6513     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6514 
6515     // Verify callee and caller agree on how the promoted argument would be
6516     // passed.
6517     Function &Fn = *getIRPosition().getAnchorScope();
6518     const auto *TTI =
6519         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6520     if (!TTI) {
6521       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6522                         << Fn.getName() << "\n");
6523       return indicatePessimisticFixpoint();
6524     }
6525 
6526     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6527       CallBase *CB = ACS.getInstruction();
6528       return TTI->areTypesABICompatible(
6529           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6530     };
6531     bool AllCallSitesKnown;
6532     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6533                                 AllCallSitesKnown)) {
6534       LLVM_DEBUG(
6535           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6536                  << Fn.getName() << "\n");
6537       return indicatePessimisticFixpoint();
6538     }
6539 
6540     // Register a rewrite of the argument.
6541     Argument *Arg = getAssociatedArgument();
6542     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6543       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6544       return indicatePessimisticFixpoint();
6545     }
6546 
6547     unsigned ArgNo = Arg->getArgNo();
6548 
6549     // Helper to check if for the given call site the associated argument is
6550     // passed to a callback where the privatization would be different.
6551     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6552       SmallVector<const Use *, 4> CallbackUses;
6553       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6554       for (const Use *U : CallbackUses) {
6555         AbstractCallSite CBACS(U);
6556         assert(CBACS && CBACS.isCallbackCall());
6557         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6558           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6559 
6560           LLVM_DEBUG({
6561             dbgs()
6562                 << "[AAPrivatizablePtr] Argument " << *Arg
6563                 << "check if can be privatized in the context of its parent ("
6564                 << Arg->getParent()->getName()
6565                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6566                    "callback ("
6567                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6568                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6569                 << CBACS.getCallArgOperand(CBArg) << " vs "
6570                 << CB.getArgOperand(ArgNo) << "\n"
6571                 << "[AAPrivatizablePtr] " << CBArg << " : "
6572                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6573           });
6574 
6575           if (CBArgNo != int(ArgNo))
6576             continue;
6577           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6578               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6579           if (CBArgPrivAA.isValidState()) {
6580             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6581             if (!CBArgPrivTy.hasValue())
6582               continue;
6583             if (CBArgPrivTy.getValue() == PrivatizableType)
6584               continue;
6585           }
6586 
6587           LLVM_DEBUG({
6588             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6589                    << " cannot be privatized in the context of its parent ("
6590                    << Arg->getParent()->getName()
6591                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6592                       "callback ("
6593                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6594                    << ").\n[AAPrivatizablePtr] for which the argument "
6595                       "privatization is not compatible.\n";
6596           });
6597           return false;
6598         }
6599       }
6600       return true;
6601     };
6602 
6603     // Helper to check if for the given call site the associated argument is
6604     // passed to a direct call where the privatization would be different.
6605     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6606       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6607       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6608       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6609              "Expected a direct call operand for callback call operand");
6610 
6611       LLVM_DEBUG({
6612         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6613                << " check if be privatized in the context of its parent ("
6614                << Arg->getParent()->getName()
6615                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6616                   "direct call of ("
6617                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6618                << ").\n";
6619       });
6620 
6621       Function *DCCallee = DC->getCalledFunction();
6622       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6623         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6624             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6625             DepClassTy::REQUIRED);
6626         if (DCArgPrivAA.isValidState()) {
6627           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6628           if (!DCArgPrivTy.hasValue())
6629             return true;
6630           if (DCArgPrivTy.getValue() == PrivatizableType)
6631             return true;
6632         }
6633       }
6634 
6635       LLVM_DEBUG({
6636         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6637                << " cannot be privatized in the context of its parent ("
6638                << Arg->getParent()->getName()
6639                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6640                   "direct call of ("
6641                << ACS.getInstruction()->getCalledFunction()->getName()
6642                << ").\n[AAPrivatizablePtr] for which the argument "
6643                   "privatization is not compatible.\n";
6644       });
6645       return false;
6646     };
6647 
6648     // Helper to check if the associated argument is used at the given abstract
6649     // call site in a way that is incompatible with the privatization assumed
6650     // here.
6651     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6652       if (ACS.isDirectCall())
6653         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6654       if (ACS.isCallbackCall())
6655         return IsCompatiblePrivArgOfDirectCS(ACS);
6656       return false;
6657     };
6658 
6659     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6660                                 AllCallSitesKnown))
6661       return indicatePessimisticFixpoint();
6662 
6663     return ChangeStatus::UNCHANGED;
6664   }
6665 
6666   /// Given a type to private \p PrivType, collect the constituates (which are
6667   /// used) in \p ReplacementTypes.
6668   static void
6669   identifyReplacementTypes(Type *PrivType,
6670                            SmallVectorImpl<Type *> &ReplacementTypes) {
6671     // TODO: For now we expand the privatization type to the fullest which can
6672     //       lead to dead arguments that need to be removed later.
6673     assert(PrivType && "Expected privatizable type!");
6674 
6675     // Traverse the type, extract constituate types on the outermost level.
6676     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6677       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6678         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6679     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6680       ReplacementTypes.append(PrivArrayType->getNumElements(),
6681                               PrivArrayType->getElementType());
6682     } else {
6683       ReplacementTypes.push_back(PrivType);
6684     }
6685   }
6686 
6687   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6688   /// The values needed are taken from the arguments of \p F starting at
6689   /// position \p ArgNo.
6690   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6691                                    unsigned ArgNo, Instruction &IP) {
6692     assert(PrivType && "Expected privatizable type!");
6693 
6694     IRBuilder<NoFolder> IRB(&IP);
6695     const DataLayout &DL = F.getParent()->getDataLayout();
6696 
6697     // Traverse the type, build GEPs and stores.
6698     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6699       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6700       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6701         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6702         Value *Ptr =
6703             constructPointer(PointeeTy, PrivType, &Base,
6704                              PrivStructLayout->getElementOffset(u), IRB, DL);
6705         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6706       }
6707     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6708       Type *PointeeTy = PrivArrayType->getElementType();
6709       Type *PointeePtrTy = PointeeTy->getPointerTo();
6710       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6711       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6712         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6713                                       u * PointeeTySize, IRB, DL);
6714         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6715       }
6716     } else {
6717       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6718     }
6719   }
6720 
6721   /// Extract values from \p Base according to the type \p PrivType at the
6722   /// call position \p ACS. The values are appended to \p ReplacementValues.
6723   void createReplacementValues(Align Alignment, Type *PrivType,
6724                                AbstractCallSite ACS, Value *Base,
6725                                SmallVectorImpl<Value *> &ReplacementValues) {
6726     assert(Base && "Expected base value!");
6727     assert(PrivType && "Expected privatizable type!");
6728     Instruction *IP = ACS.getInstruction();
6729 
6730     IRBuilder<NoFolder> IRB(IP);
6731     const DataLayout &DL = IP->getModule()->getDataLayout();
6732 
6733     Type *PrivPtrType = PrivType->getPointerTo();
6734     if (Base->getType() != PrivPtrType)
6735       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6736           Base, PrivPtrType, "", ACS.getInstruction());
6737 
6738     // Traverse the type, build GEPs and loads.
6739     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6740       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6741       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6742         Type *PointeeTy = PrivStructType->getElementType(u);
6743         Value *Ptr =
6744             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6745                              PrivStructLayout->getElementOffset(u), IRB, DL);
6746         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6747         L->setAlignment(Alignment);
6748         ReplacementValues.push_back(L);
6749       }
6750     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6751       Type *PointeeTy = PrivArrayType->getElementType();
6752       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6753       Type *PointeePtrTy = PointeeTy->getPointerTo();
6754       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6755         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6756                                       u * PointeeTySize, IRB, DL);
6757         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6758         L->setAlignment(Alignment);
6759         ReplacementValues.push_back(L);
6760       }
6761     } else {
6762       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6763       L->setAlignment(Alignment);
6764       ReplacementValues.push_back(L);
6765     }
6766   }
6767 
6768   /// See AbstractAttribute::manifest(...)
6769   ChangeStatus manifest(Attributor &A) override {
6770     if (!PrivatizableType.hasValue())
6771       return ChangeStatus::UNCHANGED;
6772     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6773 
6774     // Collect all tail calls in the function as we cannot allow new allocas to
6775     // escape into tail recursion.
6776     // TODO: Be smarter about new allocas escaping into tail calls.
6777     SmallVector<CallInst *, 16> TailCalls;
6778     bool UsedAssumedInformation = false;
6779     if (!A.checkForAllInstructions(
6780             [&](Instruction &I) {
6781               CallInst &CI = cast<CallInst>(I);
6782               if (CI.isTailCall())
6783                 TailCalls.push_back(&CI);
6784               return true;
6785             },
6786             *this, {Instruction::Call}, UsedAssumedInformation))
6787       return ChangeStatus::UNCHANGED;
6788 
6789     Argument *Arg = getAssociatedArgument();
6790     // Query AAAlign attribute for alignment of associated argument to
6791     // determine the best alignment of loads.
6792     const auto &AlignAA =
6793         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6794 
6795     // Callback to repair the associated function. A new alloca is placed at the
6796     // beginning and initialized with the values passed through arguments. The
6797     // new alloca replaces the use of the old pointer argument.
6798     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6799         [=](const Attributor::ArgumentReplacementInfo &ARI,
6800             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6801           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6802           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6803           const DataLayout &DL = IP->getModule()->getDataLayout();
6804           unsigned AS = DL.getAllocaAddrSpace();
6805           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), AS,
6806                                            Arg->getName() + ".priv", IP);
6807           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6808                                ArgIt->getArgNo(), *IP);
6809 
6810           if (AI->getType() != Arg->getType())
6811             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6812                 AI, Arg->getType(), "", IP);
6813           Arg->replaceAllUsesWith(AI);
6814 
6815           for (CallInst *CI : TailCalls)
6816             CI->setTailCall(false);
6817         };
6818 
6819     // Callback to repair a call site of the associated function. The elements
6820     // of the privatizable type are loaded prior to the call and passed to the
6821     // new function version.
6822     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6823         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6824                       AbstractCallSite ACS,
6825                       SmallVectorImpl<Value *> &NewArgOperands) {
6826           // When no alignment is specified for the load instruction,
6827           // natural alignment is assumed.
6828           createReplacementValues(
6829               assumeAligned(AlignAA.getAssumedAlign()),
6830               PrivatizableType.getValue(), ACS,
6831               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6832               NewArgOperands);
6833         };
6834 
6835     // Collect the types that will replace the privatizable type in the function
6836     // signature.
6837     SmallVector<Type *, 16> ReplacementTypes;
6838     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6839 
6840     // Register a rewrite of the argument.
6841     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6842                                            std::move(FnRepairCB),
6843                                            std::move(ACSRepairCB)))
6844       return ChangeStatus::CHANGED;
6845     return ChangeStatus::UNCHANGED;
6846   }
6847 
6848   /// See AbstractAttribute::trackStatistics()
6849   void trackStatistics() const override {
6850     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6851   }
6852 };
6853 
6854 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6855   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6856       : AAPrivatizablePtrImpl(IRP, A) {}
6857 
6858   /// See AbstractAttribute::initialize(...).
6859   virtual void initialize(Attributor &A) override {
6860     // TODO: We can privatize more than arguments.
6861     indicatePessimisticFixpoint();
6862   }
6863 
6864   ChangeStatus updateImpl(Attributor &A) override {
6865     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6866                      "updateImpl will not be called");
6867   }
6868 
6869   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6870   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6871     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6872     if (!Obj) {
6873       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6874       return nullptr;
6875     }
6876 
6877     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6878       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6879         if (CI->isOne())
6880           return AI->getAllocatedType();
6881     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6882       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6883           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6884       if (PrivArgAA.isAssumedPrivatizablePtr())
6885         return Obj->getType()->getPointerElementType();
6886     }
6887 
6888     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6889                          "alloca nor privatizable argument: "
6890                       << *Obj << "!\n");
6891     return nullptr;
6892   }
6893 
6894   /// See AbstractAttribute::trackStatistics()
6895   void trackStatistics() const override {
6896     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6897   }
6898 };
6899 
6900 struct AAPrivatizablePtrCallSiteArgument final
6901     : public AAPrivatizablePtrFloating {
6902   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6903       : AAPrivatizablePtrFloating(IRP, A) {}
6904 
6905   /// See AbstractAttribute::initialize(...).
6906   void initialize(Attributor &A) override {
6907     if (getIRPosition().hasAttr(Attribute::ByVal))
6908       indicateOptimisticFixpoint();
6909   }
6910 
6911   /// See AbstractAttribute::updateImpl(...).
6912   ChangeStatus updateImpl(Attributor &A) override {
6913     PrivatizableType = identifyPrivatizableType(A);
6914     if (!PrivatizableType.hasValue())
6915       return ChangeStatus::UNCHANGED;
6916     if (!PrivatizableType.getValue())
6917       return indicatePessimisticFixpoint();
6918 
6919     const IRPosition &IRP = getIRPosition();
6920     auto &NoCaptureAA =
6921         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6922     if (!NoCaptureAA.isAssumedNoCapture()) {
6923       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6924       return indicatePessimisticFixpoint();
6925     }
6926 
6927     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6928     if (!NoAliasAA.isAssumedNoAlias()) {
6929       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6930       return indicatePessimisticFixpoint();
6931     }
6932 
6933     bool IsKnown;
6934     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
6935       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6936       return indicatePessimisticFixpoint();
6937     }
6938 
6939     return ChangeStatus::UNCHANGED;
6940   }
6941 
6942   /// See AbstractAttribute::trackStatistics()
6943   void trackStatistics() const override {
6944     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6945   }
6946 };
6947 
6948 struct AAPrivatizablePtrCallSiteReturned final
6949     : public AAPrivatizablePtrFloating {
6950   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6951       : AAPrivatizablePtrFloating(IRP, A) {}
6952 
6953   /// See AbstractAttribute::initialize(...).
6954   void initialize(Attributor &A) override {
6955     // TODO: We can privatize more than arguments.
6956     indicatePessimisticFixpoint();
6957   }
6958 
6959   /// See AbstractAttribute::trackStatistics()
6960   void trackStatistics() const override {
6961     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6962   }
6963 };
6964 
6965 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6966   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6967       : AAPrivatizablePtrFloating(IRP, A) {}
6968 
6969   /// See AbstractAttribute::initialize(...).
6970   void initialize(Attributor &A) override {
6971     // TODO: We can privatize more than arguments.
6972     indicatePessimisticFixpoint();
6973   }
6974 
6975   /// See AbstractAttribute::trackStatistics()
6976   void trackStatistics() const override {
6977     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6978   }
6979 };
6980 
6981 /// -------------------- Memory Behavior Attributes ----------------------------
6982 /// Includes read-none, read-only, and write-only.
6983 /// ----------------------------------------------------------------------------
6984 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6985   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6986       : AAMemoryBehavior(IRP, A) {}
6987 
6988   /// See AbstractAttribute::initialize(...).
6989   void initialize(Attributor &A) override {
6990     intersectAssumedBits(BEST_STATE);
6991     getKnownStateFromValue(getIRPosition(), getState());
6992     AAMemoryBehavior::initialize(A);
6993   }
6994 
6995   /// Return the memory behavior information encoded in the IR for \p IRP.
6996   static void getKnownStateFromValue(const IRPosition &IRP,
6997                                      BitIntegerState &State,
6998                                      bool IgnoreSubsumingPositions = false) {
6999     SmallVector<Attribute, 2> Attrs;
7000     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7001     for (const Attribute &Attr : Attrs) {
7002       switch (Attr.getKindAsEnum()) {
7003       case Attribute::ReadNone:
7004         State.addKnownBits(NO_ACCESSES);
7005         break;
7006       case Attribute::ReadOnly:
7007         State.addKnownBits(NO_WRITES);
7008         break;
7009       case Attribute::WriteOnly:
7010         State.addKnownBits(NO_READS);
7011         break;
7012       default:
7013         llvm_unreachable("Unexpected attribute!");
7014       }
7015     }
7016 
7017     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7018       if (!I->mayReadFromMemory())
7019         State.addKnownBits(NO_READS);
7020       if (!I->mayWriteToMemory())
7021         State.addKnownBits(NO_WRITES);
7022     }
7023   }
7024 
7025   /// See AbstractAttribute::getDeducedAttributes(...).
7026   void getDeducedAttributes(LLVMContext &Ctx,
7027                             SmallVectorImpl<Attribute> &Attrs) const override {
7028     assert(Attrs.size() == 0);
7029     if (isAssumedReadNone())
7030       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7031     else if (isAssumedReadOnly())
7032       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7033     else if (isAssumedWriteOnly())
7034       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7035     assert(Attrs.size() <= 1);
7036   }
7037 
7038   /// See AbstractAttribute::manifest(...).
7039   ChangeStatus manifest(Attributor &A) override {
7040     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7041       return ChangeStatus::UNCHANGED;
7042 
7043     const IRPosition &IRP = getIRPosition();
7044 
7045     // Check if we would improve the existing attributes first.
7046     SmallVector<Attribute, 4> DeducedAttrs;
7047     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7048     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7049           return IRP.hasAttr(Attr.getKindAsEnum(),
7050                              /* IgnoreSubsumingPositions */ true);
7051         }))
7052       return ChangeStatus::UNCHANGED;
7053 
7054     // Clear existing attributes.
7055     IRP.removeAttrs(AttrKinds);
7056 
7057     // Use the generic manifest method.
7058     return IRAttribute::manifest(A);
7059   }
7060 
7061   /// See AbstractState::getAsStr().
7062   const std::string getAsStr() const override {
7063     if (isAssumedReadNone())
7064       return "readnone";
7065     if (isAssumedReadOnly())
7066       return "readonly";
7067     if (isAssumedWriteOnly())
7068       return "writeonly";
7069     return "may-read/write";
7070   }
7071 
7072   /// The set of IR attributes AAMemoryBehavior deals with.
7073   static const Attribute::AttrKind AttrKinds[3];
7074 };
7075 
7076 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7077     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7078 
7079 /// Memory behavior attribute for a floating value.
7080 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7081   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7082       : AAMemoryBehaviorImpl(IRP, A) {}
7083 
7084   /// See AbstractAttribute::updateImpl(...).
7085   ChangeStatus updateImpl(Attributor &A) override;
7086 
7087   /// See AbstractAttribute::trackStatistics()
7088   void trackStatistics() const override {
7089     if (isAssumedReadNone())
7090       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7091     else if (isAssumedReadOnly())
7092       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7093     else if (isAssumedWriteOnly())
7094       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7095   }
7096 
7097 private:
7098   /// Return true if users of \p UserI might access the underlying
7099   /// variable/location described by \p U and should therefore be analyzed.
7100   bool followUsersOfUseIn(Attributor &A, const Use &U,
7101                           const Instruction *UserI);
7102 
7103   /// Update the state according to the effect of use \p U in \p UserI.
7104   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7105 };
7106 
7107 /// Memory behavior attribute for function argument.
7108 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7109   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7110       : AAMemoryBehaviorFloating(IRP, A) {}
7111 
7112   /// See AbstractAttribute::initialize(...).
7113   void initialize(Attributor &A) override {
7114     intersectAssumedBits(BEST_STATE);
7115     const IRPosition &IRP = getIRPosition();
7116     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7117     // can query it when we use has/getAttr. That would allow us to reuse the
7118     // initialize of the base class here.
7119     bool HasByVal =
7120         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7121     getKnownStateFromValue(IRP, getState(),
7122                            /* IgnoreSubsumingPositions */ HasByVal);
7123 
7124     // Initialize the use vector with all direct uses of the associated value.
7125     Argument *Arg = getAssociatedArgument();
7126     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7127       indicatePessimisticFixpoint();
7128   }
7129 
7130   ChangeStatus manifest(Attributor &A) override {
7131     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7132     if (!getAssociatedValue().getType()->isPointerTy())
7133       return ChangeStatus::UNCHANGED;
7134 
7135     // TODO: From readattrs.ll: "inalloca parameters are always
7136     //                           considered written"
7137     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7138       removeKnownBits(NO_WRITES);
7139       removeAssumedBits(NO_WRITES);
7140     }
7141     return AAMemoryBehaviorFloating::manifest(A);
7142   }
7143 
7144   /// See AbstractAttribute::trackStatistics()
7145   void trackStatistics() const override {
7146     if (isAssumedReadNone())
7147       STATS_DECLTRACK_ARG_ATTR(readnone)
7148     else if (isAssumedReadOnly())
7149       STATS_DECLTRACK_ARG_ATTR(readonly)
7150     else if (isAssumedWriteOnly())
7151       STATS_DECLTRACK_ARG_ATTR(writeonly)
7152   }
7153 };
7154 
7155 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7156   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7157       : AAMemoryBehaviorArgument(IRP, A) {}
7158 
7159   /// See AbstractAttribute::initialize(...).
7160   void initialize(Attributor &A) override {
7161     // If we don't have an associated attribute this is either a variadic call
7162     // or an indirect call, either way, nothing to do here.
7163     Argument *Arg = getAssociatedArgument();
7164     if (!Arg) {
7165       indicatePessimisticFixpoint();
7166       return;
7167     }
7168     if (Arg->hasByValAttr()) {
7169       addKnownBits(NO_WRITES);
7170       removeKnownBits(NO_READS);
7171       removeAssumedBits(NO_READS);
7172     }
7173     AAMemoryBehaviorArgument::initialize(A);
7174     if (getAssociatedFunction()->isDeclaration())
7175       indicatePessimisticFixpoint();
7176   }
7177 
7178   /// See AbstractAttribute::updateImpl(...).
7179   ChangeStatus updateImpl(Attributor &A) override {
7180     // TODO: Once we have call site specific value information we can provide
7181     //       call site specific liveness liveness information and then it makes
7182     //       sense to specialize attributes for call sites arguments instead of
7183     //       redirecting requests to the callee argument.
7184     Argument *Arg = getAssociatedArgument();
7185     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7186     auto &ArgAA =
7187         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7188     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7189   }
7190 
7191   /// See AbstractAttribute::trackStatistics()
7192   void trackStatistics() const override {
7193     if (isAssumedReadNone())
7194       STATS_DECLTRACK_CSARG_ATTR(readnone)
7195     else if (isAssumedReadOnly())
7196       STATS_DECLTRACK_CSARG_ATTR(readonly)
7197     else if (isAssumedWriteOnly())
7198       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7199   }
7200 };
7201 
7202 /// Memory behavior attribute for a call site return position.
7203 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7204   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7205       : AAMemoryBehaviorFloating(IRP, A) {}
7206 
7207   /// See AbstractAttribute::initialize(...).
7208   void initialize(Attributor &A) override {
7209     AAMemoryBehaviorImpl::initialize(A);
7210     Function *F = getAssociatedFunction();
7211     if (!F || F->isDeclaration())
7212       indicatePessimisticFixpoint();
7213   }
7214 
7215   /// See AbstractAttribute::manifest(...).
7216   ChangeStatus manifest(Attributor &A) override {
7217     // We do not annotate returned values.
7218     return ChangeStatus::UNCHANGED;
7219   }
7220 
7221   /// See AbstractAttribute::trackStatistics()
7222   void trackStatistics() const override {}
7223 };
7224 
7225 /// An AA to represent the memory behavior function attributes.
7226 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7227   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7228       : AAMemoryBehaviorImpl(IRP, A) {}
7229 
7230   /// See AbstractAttribute::updateImpl(Attributor &A).
7231   virtual ChangeStatus updateImpl(Attributor &A) override;
7232 
7233   /// See AbstractAttribute::manifest(...).
7234   ChangeStatus manifest(Attributor &A) override {
7235     Function &F = cast<Function>(getAnchorValue());
7236     if (isAssumedReadNone()) {
7237       F.removeFnAttr(Attribute::ArgMemOnly);
7238       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7239       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7240     }
7241     return AAMemoryBehaviorImpl::manifest(A);
7242   }
7243 
7244   /// See AbstractAttribute::trackStatistics()
7245   void trackStatistics() const override {
7246     if (isAssumedReadNone())
7247       STATS_DECLTRACK_FN_ATTR(readnone)
7248     else if (isAssumedReadOnly())
7249       STATS_DECLTRACK_FN_ATTR(readonly)
7250     else if (isAssumedWriteOnly())
7251       STATS_DECLTRACK_FN_ATTR(writeonly)
7252   }
7253 };
7254 
7255 /// AAMemoryBehavior attribute for call sites.
7256 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7257   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7258       : AAMemoryBehaviorImpl(IRP, A) {}
7259 
7260   /// See AbstractAttribute::initialize(...).
7261   void initialize(Attributor &A) override {
7262     AAMemoryBehaviorImpl::initialize(A);
7263     Function *F = getAssociatedFunction();
7264     if (!F || F->isDeclaration())
7265       indicatePessimisticFixpoint();
7266   }
7267 
7268   /// See AbstractAttribute::updateImpl(...).
7269   ChangeStatus updateImpl(Attributor &A) override {
7270     // TODO: Once we have call site specific value information we can provide
7271     //       call site specific liveness liveness information and then it makes
7272     //       sense to specialize attributes for call sites arguments instead of
7273     //       redirecting requests to the callee argument.
7274     Function *F = getAssociatedFunction();
7275     const IRPosition &FnPos = IRPosition::function(*F);
7276     auto &FnAA =
7277         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7278     return clampStateAndIndicateChange(getState(), FnAA.getState());
7279   }
7280 
7281   /// See AbstractAttribute::trackStatistics()
7282   void trackStatistics() const override {
7283     if (isAssumedReadNone())
7284       STATS_DECLTRACK_CS_ATTR(readnone)
7285     else if (isAssumedReadOnly())
7286       STATS_DECLTRACK_CS_ATTR(readonly)
7287     else if (isAssumedWriteOnly())
7288       STATS_DECLTRACK_CS_ATTR(writeonly)
7289   }
7290 };
7291 
7292 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7293 
7294   // The current assumed state used to determine a change.
7295   auto AssumedState = getAssumed();
7296 
7297   auto CheckRWInst = [&](Instruction &I) {
7298     // If the instruction has an own memory behavior state, use it to restrict
7299     // the local state. No further analysis is required as the other memory
7300     // state is as optimistic as it gets.
7301     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7302       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7303           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7304       intersectAssumedBits(MemBehaviorAA.getAssumed());
7305       return !isAtFixpoint();
7306     }
7307 
7308     // Remove access kind modifiers if necessary.
7309     if (I.mayReadFromMemory())
7310       removeAssumedBits(NO_READS);
7311     if (I.mayWriteToMemory())
7312       removeAssumedBits(NO_WRITES);
7313     return !isAtFixpoint();
7314   };
7315 
7316   bool UsedAssumedInformation = false;
7317   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7318                                           UsedAssumedInformation))
7319     return indicatePessimisticFixpoint();
7320 
7321   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7322                                         : ChangeStatus::UNCHANGED;
7323 }
7324 
7325 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7326 
7327   const IRPosition &IRP = getIRPosition();
7328   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7329   AAMemoryBehavior::StateType &S = getState();
7330 
7331   // First, check the function scope. We take the known information and we avoid
7332   // work if the assumed information implies the current assumed information for
7333   // this attribute. This is a valid for all but byval arguments.
7334   Argument *Arg = IRP.getAssociatedArgument();
7335   AAMemoryBehavior::base_t FnMemAssumedState =
7336       AAMemoryBehavior::StateType::getWorstState();
7337   if (!Arg || !Arg->hasByValAttr()) {
7338     const auto &FnMemAA =
7339         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7340     FnMemAssumedState = FnMemAA.getAssumed();
7341     S.addKnownBits(FnMemAA.getKnown());
7342     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7343       return ChangeStatus::UNCHANGED;
7344   }
7345 
7346   // The current assumed state used to determine a change.
7347   auto AssumedState = S.getAssumed();
7348 
7349   // Make sure the value is not captured (except through "return"), if
7350   // it is, any information derived would be irrelevant anyway as we cannot
7351   // check the potential aliases introduced by the capture. However, no need
7352   // to fall back to anythign less optimistic than the function state.
7353   const auto &ArgNoCaptureAA =
7354       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7355   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7356     S.intersectAssumedBits(FnMemAssumedState);
7357     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7358                                           : ChangeStatus::UNCHANGED;
7359   }
7360 
7361   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7362   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7363     Instruction *UserI = cast<Instruction>(U.getUser());
7364     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7365                       << " \n");
7366 
7367     // Droppable users, e.g., llvm::assume does not actually perform any action.
7368     if (UserI->isDroppable())
7369       return true;
7370 
7371     // Check if the users of UserI should also be visited.
7372     Follow = followUsersOfUseIn(A, U, UserI);
7373 
7374     // If UserI might touch memory we analyze the use in detail.
7375     if (UserI->mayReadOrWriteMemory())
7376       analyzeUseIn(A, U, UserI);
7377 
7378     return !isAtFixpoint();
7379   };
7380 
7381   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7382     return indicatePessimisticFixpoint();
7383 
7384   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7385                                         : ChangeStatus::UNCHANGED;
7386 }
7387 
7388 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7389                                                   const Instruction *UserI) {
7390   // The loaded value is unrelated to the pointer argument, no need to
7391   // follow the users of the load.
7392   if (isa<LoadInst>(UserI))
7393     return false;
7394 
7395   // By default we follow all uses assuming UserI might leak information on U,
7396   // we have special handling for call sites operands though.
7397   const auto *CB = dyn_cast<CallBase>(UserI);
7398   if (!CB || !CB->isArgOperand(&U))
7399     return true;
7400 
7401   // If the use is a call argument known not to be captured, the users of
7402   // the call do not need to be visited because they have to be unrelated to
7403   // the input. Note that this check is not trivial even though we disallow
7404   // general capturing of the underlying argument. The reason is that the
7405   // call might the argument "through return", which we allow and for which we
7406   // need to check call users.
7407   if (U.get()->getType()->isPointerTy()) {
7408     unsigned ArgNo = CB->getArgOperandNo(&U);
7409     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7410         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7411     return !ArgNoCaptureAA.isAssumedNoCapture();
7412   }
7413 
7414   return true;
7415 }
7416 
7417 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7418                                             const Instruction *UserI) {
7419   assert(UserI->mayReadOrWriteMemory());
7420 
7421   switch (UserI->getOpcode()) {
7422   default:
7423     // TODO: Handle all atomics and other side-effect operations we know of.
7424     break;
7425   case Instruction::Load:
7426     // Loads cause the NO_READS property to disappear.
7427     removeAssumedBits(NO_READS);
7428     return;
7429 
7430   case Instruction::Store:
7431     // Stores cause the NO_WRITES property to disappear if the use is the
7432     // pointer operand. Note that while capturing was taken care of somewhere
7433     // else we need to deal with stores of the value that is not looked through.
7434     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7435       removeAssumedBits(NO_WRITES);
7436     else
7437       indicatePessimisticFixpoint();
7438     return;
7439 
7440   case Instruction::Call:
7441   case Instruction::CallBr:
7442   case Instruction::Invoke: {
7443     // For call sites we look at the argument memory behavior attribute (this
7444     // could be recursive!) in order to restrict our own state.
7445     const auto *CB = cast<CallBase>(UserI);
7446 
7447     // Give up on operand bundles.
7448     if (CB->isBundleOperand(&U)) {
7449       indicatePessimisticFixpoint();
7450       return;
7451     }
7452 
7453     // Calling a function does read the function pointer, maybe write it if the
7454     // function is self-modifying.
7455     if (CB->isCallee(&U)) {
7456       removeAssumedBits(NO_READS);
7457       break;
7458     }
7459 
7460     // Adjust the possible access behavior based on the information on the
7461     // argument.
7462     IRPosition Pos;
7463     if (U.get()->getType()->isPointerTy())
7464       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7465     else
7466       Pos = IRPosition::callsite_function(*CB);
7467     const auto &MemBehaviorAA =
7468         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7469     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7470     // and at least "known".
7471     intersectAssumedBits(MemBehaviorAA.getAssumed());
7472     return;
7473   }
7474   };
7475 
7476   // Generally, look at the "may-properties" and adjust the assumed state if we
7477   // did not trigger special handling before.
7478   if (UserI->mayReadFromMemory())
7479     removeAssumedBits(NO_READS);
7480   if (UserI->mayWriteToMemory())
7481     removeAssumedBits(NO_WRITES);
7482 }
7483 
7484 /// -------------------- Memory Locations Attributes ---------------------------
7485 /// Includes read-none, argmemonly, inaccessiblememonly,
7486 /// inaccessiblememorargmemonly
7487 /// ----------------------------------------------------------------------------
7488 
7489 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7490     AAMemoryLocation::MemoryLocationsKind MLK) {
7491   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7492     return "all memory";
7493   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7494     return "no memory";
7495   std::string S = "memory:";
7496   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7497     S += "stack,";
7498   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7499     S += "constant,";
7500   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7501     S += "internal global,";
7502   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7503     S += "external global,";
7504   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7505     S += "argument,";
7506   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7507     S += "inaccessible,";
7508   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7509     S += "malloced,";
7510   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7511     S += "unknown,";
7512   S.pop_back();
7513   return S;
7514 }
7515 
7516 struct AAMemoryLocationImpl : public AAMemoryLocation {
7517 
7518   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7519       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7520     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7521       AccessKind2Accesses[u] = nullptr;
7522   }
7523 
7524   ~AAMemoryLocationImpl() {
7525     // The AccessSets are allocated via a BumpPtrAllocator, we call
7526     // the destructor manually.
7527     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7528       if (AccessKind2Accesses[u])
7529         AccessKind2Accesses[u]->~AccessSet();
7530   }
7531 
7532   /// See AbstractAttribute::initialize(...).
7533   void initialize(Attributor &A) override {
7534     intersectAssumedBits(BEST_STATE);
7535     getKnownStateFromValue(A, getIRPosition(), getState());
7536     AAMemoryLocation::initialize(A);
7537   }
7538 
7539   /// Return the memory behavior information encoded in the IR for \p IRP.
7540   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7541                                      BitIntegerState &State,
7542                                      bool IgnoreSubsumingPositions = false) {
7543     // For internal functions we ignore `argmemonly` and
7544     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7545     // constant propagation. It is unclear if this is the best way but it is
7546     // unlikely this will cause real performance problems. If we are deriving
7547     // attributes for the anchor function we even remove the attribute in
7548     // addition to ignoring it.
7549     bool UseArgMemOnly = true;
7550     Function *AnchorFn = IRP.getAnchorScope();
7551     if (AnchorFn && A.isRunOn(*AnchorFn))
7552       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7553 
7554     SmallVector<Attribute, 2> Attrs;
7555     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7556     for (const Attribute &Attr : Attrs) {
7557       switch (Attr.getKindAsEnum()) {
7558       case Attribute::ReadNone:
7559         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7560         break;
7561       case Attribute::InaccessibleMemOnly:
7562         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7563         break;
7564       case Attribute::ArgMemOnly:
7565         if (UseArgMemOnly)
7566           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7567         else
7568           IRP.removeAttrs({Attribute::ArgMemOnly});
7569         break;
7570       case Attribute::InaccessibleMemOrArgMemOnly:
7571         if (UseArgMemOnly)
7572           State.addKnownBits(inverseLocation(
7573               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7574         else
7575           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7576         break;
7577       default:
7578         llvm_unreachable("Unexpected attribute!");
7579       }
7580     }
7581   }
7582 
7583   /// See AbstractAttribute::getDeducedAttributes(...).
7584   void getDeducedAttributes(LLVMContext &Ctx,
7585                             SmallVectorImpl<Attribute> &Attrs) const override {
7586     assert(Attrs.size() == 0);
7587     if (isAssumedReadNone()) {
7588       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7589     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7590       if (isAssumedInaccessibleMemOnly())
7591         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7592       else if (isAssumedArgMemOnly())
7593         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7594       else if (isAssumedInaccessibleOrArgMemOnly())
7595         Attrs.push_back(
7596             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7597     }
7598     assert(Attrs.size() <= 1);
7599   }
7600 
7601   /// See AbstractAttribute::manifest(...).
7602   ChangeStatus manifest(Attributor &A) override {
7603     const IRPosition &IRP = getIRPosition();
7604 
7605     // Check if we would improve the existing attributes first.
7606     SmallVector<Attribute, 4> DeducedAttrs;
7607     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7608     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7609           return IRP.hasAttr(Attr.getKindAsEnum(),
7610                              /* IgnoreSubsumingPositions */ true);
7611         }))
7612       return ChangeStatus::UNCHANGED;
7613 
7614     // Clear existing attributes.
7615     IRP.removeAttrs(AttrKinds);
7616     if (isAssumedReadNone())
7617       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7618 
7619     // Use the generic manifest method.
7620     return IRAttribute::manifest(A);
7621   }
7622 
7623   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7624   bool checkForAllAccessesToMemoryKind(
7625       function_ref<bool(const Instruction *, const Value *, AccessKind,
7626                         MemoryLocationsKind)>
7627           Pred,
7628       MemoryLocationsKind RequestedMLK) const override {
7629     if (!isValidState())
7630       return false;
7631 
7632     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7633     if (AssumedMLK == NO_LOCATIONS)
7634       return true;
7635 
7636     unsigned Idx = 0;
7637     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7638          CurMLK *= 2, ++Idx) {
7639       if (CurMLK & RequestedMLK)
7640         continue;
7641 
7642       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7643         for (const AccessInfo &AI : *Accesses)
7644           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7645             return false;
7646     }
7647 
7648     return true;
7649   }
7650 
7651   ChangeStatus indicatePessimisticFixpoint() override {
7652     // If we give up and indicate a pessimistic fixpoint this instruction will
7653     // become an access for all potential access kinds:
7654     // TODO: Add pointers for argmemonly and globals to improve the results of
7655     //       checkForAllAccessesToMemoryKind.
7656     bool Changed = false;
7657     MemoryLocationsKind KnownMLK = getKnown();
7658     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7659     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7660       if (!(CurMLK & KnownMLK))
7661         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7662                                   getAccessKindFromInst(I));
7663     return AAMemoryLocation::indicatePessimisticFixpoint();
7664   }
7665 
7666 protected:
7667   /// Helper struct to tie together an instruction that has a read or write
7668   /// effect with the pointer it accesses (if any).
7669   struct AccessInfo {
7670 
7671     /// The instruction that caused the access.
7672     const Instruction *I;
7673 
7674     /// The base pointer that is accessed, or null if unknown.
7675     const Value *Ptr;
7676 
7677     /// The kind of access (read/write/read+write).
7678     AccessKind Kind;
7679 
7680     bool operator==(const AccessInfo &RHS) const {
7681       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7682     }
7683     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7684       if (LHS.I != RHS.I)
7685         return LHS.I < RHS.I;
7686       if (LHS.Ptr != RHS.Ptr)
7687         return LHS.Ptr < RHS.Ptr;
7688       if (LHS.Kind != RHS.Kind)
7689         return LHS.Kind < RHS.Kind;
7690       return false;
7691     }
7692   };
7693 
7694   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7695   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7696   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7697   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7698 
7699   /// Categorize the pointer arguments of CB that might access memory in
7700   /// AccessedLoc and update the state and access map accordingly.
7701   void
7702   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7703                                      AAMemoryLocation::StateType &AccessedLocs,
7704                                      bool &Changed);
7705 
7706   /// Return the kind(s) of location that may be accessed by \p V.
7707   AAMemoryLocation::MemoryLocationsKind
7708   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7709 
7710   /// Return the access kind as determined by \p I.
7711   AccessKind getAccessKindFromInst(const Instruction *I) {
7712     AccessKind AK = READ_WRITE;
7713     if (I) {
7714       AK = I->mayReadFromMemory() ? READ : NONE;
7715       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7716     }
7717     return AK;
7718   }
7719 
7720   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7721   /// an access of kind \p AK to a \p MLK memory location with the access
7722   /// pointer \p Ptr.
7723   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7724                                  MemoryLocationsKind MLK, const Instruction *I,
7725                                  const Value *Ptr, bool &Changed,
7726                                  AccessKind AK = READ_WRITE) {
7727 
7728     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7729     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7730     if (!Accesses)
7731       Accesses = new (Allocator) AccessSet();
7732     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7733     State.removeAssumedBits(MLK);
7734   }
7735 
7736   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7737   /// arguments, and update the state and access map accordingly.
7738   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7739                           AAMemoryLocation::StateType &State, bool &Changed);
7740 
7741   /// Used to allocate access sets.
7742   BumpPtrAllocator &Allocator;
7743 
7744   /// The set of IR attributes AAMemoryLocation deals with.
7745   static const Attribute::AttrKind AttrKinds[4];
7746 };
7747 
7748 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7749     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7750     Attribute::InaccessibleMemOrArgMemOnly};
7751 
7752 void AAMemoryLocationImpl::categorizePtrValue(
7753     Attributor &A, const Instruction &I, const Value &Ptr,
7754     AAMemoryLocation::StateType &State, bool &Changed) {
7755   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7756                     << Ptr << " ["
7757                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7758 
7759   SmallVector<Value *, 8> Objects;
7760   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7761                                        /* Intraprocedural */ true)) {
7762     LLVM_DEBUG(
7763         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7764     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7765                               getAccessKindFromInst(&I));
7766     return;
7767   }
7768 
7769   for (Value *Obj : Objects) {
7770     // TODO: recognize the TBAA used for constant accesses.
7771     MemoryLocationsKind MLK = NO_LOCATIONS;
7772     if (isa<UndefValue>(Obj))
7773       continue;
7774     if (isa<Argument>(Obj)) {
7775       // TODO: For now we do not treat byval arguments as local copies performed
7776       // on the call edge, though, we should. To make that happen we need to
7777       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7778       // would also allow us to mark functions only accessing byval arguments as
7779       // readnone again, atguably their acceses have no effect outside of the
7780       // function, like accesses to allocas.
7781       MLK = NO_ARGUMENT_MEM;
7782     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7783       // Reading constant memory is not treated as a read "effect" by the
7784       // function attr pass so we won't neither. Constants defined by TBAA are
7785       // similar. (We know we do not write it because it is constant.)
7786       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7787         if (GVar->isConstant())
7788           continue;
7789 
7790       if (GV->hasLocalLinkage())
7791         MLK = NO_GLOBAL_INTERNAL_MEM;
7792       else
7793         MLK = NO_GLOBAL_EXTERNAL_MEM;
7794     } else if (isa<ConstantPointerNull>(Obj) &&
7795                !NullPointerIsDefined(getAssociatedFunction(),
7796                                      Ptr.getType()->getPointerAddressSpace())) {
7797       continue;
7798     } else if (isa<AllocaInst>(Obj)) {
7799       MLK = NO_LOCAL_MEM;
7800     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7801       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7802           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7803       if (NoAliasAA.isAssumedNoAlias())
7804         MLK = NO_MALLOCED_MEM;
7805       else
7806         MLK = NO_UNKOWN_MEM;
7807     } else {
7808       MLK = NO_UNKOWN_MEM;
7809     }
7810 
7811     assert(MLK != NO_LOCATIONS && "No location specified!");
7812     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7813                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7814                       << "\n");
7815     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7816                               getAccessKindFromInst(&I));
7817   }
7818 
7819   LLVM_DEBUG(
7820       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7821              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7822 }
7823 
7824 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7825     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7826     bool &Changed) {
7827   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7828 
7829     // Skip non-pointer arguments.
7830     const Value *ArgOp = CB.getArgOperand(ArgNo);
7831     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7832       continue;
7833 
7834     // Skip readnone arguments.
7835     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7836     const auto &ArgOpMemLocationAA =
7837         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7838 
7839     if (ArgOpMemLocationAA.isAssumedReadNone())
7840       continue;
7841 
7842     // Categorize potentially accessed pointer arguments as if there was an
7843     // access instruction with them as pointer.
7844     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7845   }
7846 }
7847 
7848 AAMemoryLocation::MemoryLocationsKind
7849 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7850                                                   bool &Changed) {
7851   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7852                     << I << "\n");
7853 
7854   AAMemoryLocation::StateType AccessedLocs;
7855   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7856 
7857   if (auto *CB = dyn_cast<CallBase>(&I)) {
7858 
7859     // First check if we assume any memory is access is visible.
7860     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7861         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7862     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7863                       << " [" << CBMemLocationAA << "]\n");
7864 
7865     if (CBMemLocationAA.isAssumedReadNone())
7866       return NO_LOCATIONS;
7867 
7868     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7869       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7870                                 Changed, getAccessKindFromInst(&I));
7871       return AccessedLocs.getAssumed();
7872     }
7873 
7874     uint32_t CBAssumedNotAccessedLocs =
7875         CBMemLocationAA.getAssumedNotAccessedLocation();
7876 
7877     // Set the argmemonly and global bit as we handle them separately below.
7878     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7879         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7880 
7881     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7882       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7883         continue;
7884       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7885                                 getAccessKindFromInst(&I));
7886     }
7887 
7888     // Now handle global memory if it might be accessed. This is slightly tricky
7889     // as NO_GLOBAL_MEM has multiple bits set.
7890     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7891     if (HasGlobalAccesses) {
7892       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7893                             AccessKind Kind, MemoryLocationsKind MLK) {
7894         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7895                                   getAccessKindFromInst(&I));
7896         return true;
7897       };
7898       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7899               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7900         return AccessedLocs.getWorstState();
7901     }
7902 
7903     LLVM_DEBUG(
7904         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7905                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7906 
7907     // Now handle argument memory if it might be accessed.
7908     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7909     if (HasArgAccesses)
7910       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7911 
7912     LLVM_DEBUG(
7913         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7914                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7915 
7916     return AccessedLocs.getAssumed();
7917   }
7918 
7919   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7920     LLVM_DEBUG(
7921         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7922                << I << " [" << *Ptr << "]\n");
7923     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7924     return AccessedLocs.getAssumed();
7925   }
7926 
7927   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7928                     << I << "\n");
7929   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7930                             getAccessKindFromInst(&I));
7931   return AccessedLocs.getAssumed();
7932 }
7933 
7934 /// An AA to represent the memory behavior function attributes.
7935 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7936   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7937       : AAMemoryLocationImpl(IRP, A) {}
7938 
7939   /// See AbstractAttribute::updateImpl(Attributor &A).
7940   virtual ChangeStatus updateImpl(Attributor &A) override {
7941 
7942     const auto &MemBehaviorAA =
7943         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7944     if (MemBehaviorAA.isAssumedReadNone()) {
7945       if (MemBehaviorAA.isKnownReadNone())
7946         return indicateOptimisticFixpoint();
7947       assert(isAssumedReadNone() &&
7948              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7949       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7950       return ChangeStatus::UNCHANGED;
7951     }
7952 
7953     // The current assumed state used to determine a change.
7954     auto AssumedState = getAssumed();
7955     bool Changed = false;
7956 
7957     auto CheckRWInst = [&](Instruction &I) {
7958       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7959       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7960                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7961       removeAssumedBits(inverseLocation(MLK, false, false));
7962       // Stop once only the valid bit set in the *not assumed location*, thus
7963       // once we don't actually exclude any memory locations in the state.
7964       return getAssumedNotAccessedLocation() != VALID_STATE;
7965     };
7966 
7967     bool UsedAssumedInformation = false;
7968     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7969                                             UsedAssumedInformation))
7970       return indicatePessimisticFixpoint();
7971 
7972     Changed |= AssumedState != getAssumed();
7973     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7974   }
7975 
7976   /// See AbstractAttribute::trackStatistics()
7977   void trackStatistics() const override {
7978     if (isAssumedReadNone())
7979       STATS_DECLTRACK_FN_ATTR(readnone)
7980     else if (isAssumedArgMemOnly())
7981       STATS_DECLTRACK_FN_ATTR(argmemonly)
7982     else if (isAssumedInaccessibleMemOnly())
7983       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7984     else if (isAssumedInaccessibleOrArgMemOnly())
7985       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7986   }
7987 };
7988 
7989 /// AAMemoryLocation attribute for call sites.
7990 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7991   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7992       : AAMemoryLocationImpl(IRP, A) {}
7993 
7994   /// See AbstractAttribute::initialize(...).
7995   void initialize(Attributor &A) override {
7996     AAMemoryLocationImpl::initialize(A);
7997     Function *F = getAssociatedFunction();
7998     if (!F || F->isDeclaration())
7999       indicatePessimisticFixpoint();
8000   }
8001 
8002   /// See AbstractAttribute::updateImpl(...).
8003   ChangeStatus updateImpl(Attributor &A) override {
8004     // TODO: Once we have call site specific value information we can provide
8005     //       call site specific liveness liveness information and then it makes
8006     //       sense to specialize attributes for call sites arguments instead of
8007     //       redirecting requests to the callee argument.
8008     Function *F = getAssociatedFunction();
8009     const IRPosition &FnPos = IRPosition::function(*F);
8010     auto &FnAA =
8011         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8012     bool Changed = false;
8013     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8014                           AccessKind Kind, MemoryLocationsKind MLK) {
8015       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8016                                 getAccessKindFromInst(I));
8017       return true;
8018     };
8019     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8020       return indicatePessimisticFixpoint();
8021     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8022   }
8023 
8024   /// See AbstractAttribute::trackStatistics()
8025   void trackStatistics() const override {
8026     if (isAssumedReadNone())
8027       STATS_DECLTRACK_CS_ATTR(readnone)
8028   }
8029 };
8030 
8031 /// ------------------ Value Constant Range Attribute -------------------------
8032 
8033 struct AAValueConstantRangeImpl : AAValueConstantRange {
8034   using StateType = IntegerRangeState;
8035   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8036       : AAValueConstantRange(IRP, A) {}
8037 
8038   /// See AbstractAttribute::initialize(..).
8039   void initialize(Attributor &A) override {
8040     if (A.hasSimplificationCallback(getIRPosition())) {
8041       indicatePessimisticFixpoint();
8042       return;
8043     }
8044 
8045     // Intersect a range given by SCEV.
8046     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8047 
8048     // Intersect a range given by LVI.
8049     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8050   }
8051 
8052   /// See AbstractAttribute::getAsStr().
8053   const std::string getAsStr() const override {
8054     std::string Str;
8055     llvm::raw_string_ostream OS(Str);
8056     OS << "range(" << getBitWidth() << ")<";
8057     getKnown().print(OS);
8058     OS << " / ";
8059     getAssumed().print(OS);
8060     OS << ">";
8061     return OS.str();
8062   }
8063 
8064   /// Helper function to get a SCEV expr for the associated value at program
8065   /// point \p I.
8066   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8067     if (!getAnchorScope())
8068       return nullptr;
8069 
8070     ScalarEvolution *SE =
8071         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8072             *getAnchorScope());
8073 
8074     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8075         *getAnchorScope());
8076 
8077     if (!SE || !LI)
8078       return nullptr;
8079 
8080     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8081     if (!I)
8082       return S;
8083 
8084     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8085   }
8086 
8087   /// Helper function to get a range from SCEV for the associated value at
8088   /// program point \p I.
8089   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8090                                          const Instruction *I = nullptr) const {
8091     if (!getAnchorScope())
8092       return getWorstState(getBitWidth());
8093 
8094     ScalarEvolution *SE =
8095         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8096             *getAnchorScope());
8097 
8098     const SCEV *S = getSCEV(A, I);
8099     if (!SE || !S)
8100       return getWorstState(getBitWidth());
8101 
8102     return SE->getUnsignedRange(S);
8103   }
8104 
8105   /// Helper function to get a range from LVI for the associated value at
8106   /// program point \p I.
8107   ConstantRange
8108   getConstantRangeFromLVI(Attributor &A,
8109                           const Instruction *CtxI = nullptr) const {
8110     if (!getAnchorScope())
8111       return getWorstState(getBitWidth());
8112 
8113     LazyValueInfo *LVI =
8114         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8115             *getAnchorScope());
8116 
8117     if (!LVI || !CtxI)
8118       return getWorstState(getBitWidth());
8119     return LVI->getConstantRange(&getAssociatedValue(),
8120                                  const_cast<Instruction *>(CtxI));
8121   }
8122 
8123   /// Return true if \p CtxI is valid for querying outside analyses.
8124   /// This basically makes sure we do not ask intra-procedural analysis
8125   /// about a context in the wrong function or a context that violates
8126   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8127   /// if the original context of this AA is OK or should be considered invalid.
8128   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8129                                                const Instruction *CtxI,
8130                                                bool AllowAACtxI) const {
8131     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8132       return false;
8133 
8134     // Our context might be in a different function, neither intra-procedural
8135     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8136     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8137       return false;
8138 
8139     // If the context is not dominated by the value there are paths to the
8140     // context that do not define the value. This cannot be handled by
8141     // LazyValueInfo so we need to bail.
8142     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8143       InformationCache &InfoCache = A.getInfoCache();
8144       const DominatorTree *DT =
8145           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8146               *I->getFunction());
8147       return DT && DT->dominates(I, CtxI);
8148     }
8149 
8150     return true;
8151   }
8152 
8153   /// See AAValueConstantRange::getKnownConstantRange(..).
8154   ConstantRange
8155   getKnownConstantRange(Attributor &A,
8156                         const Instruction *CtxI = nullptr) const override {
8157     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8158                                                  /* AllowAACtxI */ false))
8159       return getKnown();
8160 
8161     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8162     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8163     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8164   }
8165 
8166   /// See AAValueConstantRange::getAssumedConstantRange(..).
8167   ConstantRange
8168   getAssumedConstantRange(Attributor &A,
8169                           const Instruction *CtxI = nullptr) const override {
8170     // TODO: Make SCEV use Attributor assumption.
8171     //       We may be able to bound a variable range via assumptions in
8172     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8173     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8174     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8175                                                  /* AllowAACtxI */ false))
8176       return getAssumed();
8177 
8178     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8179     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8180     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8181   }
8182 
8183   /// Helper function to create MDNode for range metadata.
8184   static MDNode *
8185   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8186                             const ConstantRange &AssumedConstantRange) {
8187     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8188                                   Ty, AssumedConstantRange.getLower())),
8189                               ConstantAsMetadata::get(ConstantInt::get(
8190                                   Ty, AssumedConstantRange.getUpper()))};
8191     return MDNode::get(Ctx, LowAndHigh);
8192   }
8193 
8194   /// Return true if \p Assumed is included in \p KnownRanges.
8195   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8196 
8197     if (Assumed.isFullSet())
8198       return false;
8199 
8200     if (!KnownRanges)
8201       return true;
8202 
8203     // If multiple ranges are annotated in IR, we give up to annotate assumed
8204     // range for now.
8205 
8206     // TODO:  If there exists a known range which containts assumed range, we
8207     // can say assumed range is better.
8208     if (KnownRanges->getNumOperands() > 2)
8209       return false;
8210 
8211     ConstantInt *Lower =
8212         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8213     ConstantInt *Upper =
8214         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8215 
8216     ConstantRange Known(Lower->getValue(), Upper->getValue());
8217     return Known.contains(Assumed) && Known != Assumed;
8218   }
8219 
8220   /// Helper function to set range metadata.
8221   static bool
8222   setRangeMetadataIfisBetterRange(Instruction *I,
8223                                   const ConstantRange &AssumedConstantRange) {
8224     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8225     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8226       if (!AssumedConstantRange.isEmptySet()) {
8227         I->setMetadata(LLVMContext::MD_range,
8228                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8229                                                  AssumedConstantRange));
8230         return true;
8231       }
8232     }
8233     return false;
8234   }
8235 
8236   /// See AbstractAttribute::manifest()
8237   ChangeStatus manifest(Attributor &A) override {
8238     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8239     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8240     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8241 
8242     auto &V = getAssociatedValue();
8243     if (!AssumedConstantRange.isEmptySet() &&
8244         !AssumedConstantRange.isSingleElement()) {
8245       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8246         assert(I == getCtxI() && "Should not annotate an instruction which is "
8247                                  "not the context instruction");
8248         if (isa<CallInst>(I) || isa<LoadInst>(I))
8249           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8250             Changed = ChangeStatus::CHANGED;
8251       }
8252     }
8253 
8254     return Changed;
8255   }
8256 };
8257 
8258 struct AAValueConstantRangeArgument final
8259     : AAArgumentFromCallSiteArguments<
8260           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8261           true /* BridgeCallBaseContext */> {
8262   using Base = AAArgumentFromCallSiteArguments<
8263       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8264       true /* BridgeCallBaseContext */>;
8265   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8266       : Base(IRP, A) {}
8267 
8268   /// See AbstractAttribute::initialize(..).
8269   void initialize(Attributor &A) override {
8270     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8271       indicatePessimisticFixpoint();
8272     } else {
8273       Base::initialize(A);
8274     }
8275   }
8276 
8277   /// See AbstractAttribute::trackStatistics()
8278   void trackStatistics() const override {
8279     STATS_DECLTRACK_ARG_ATTR(value_range)
8280   }
8281 };
8282 
8283 struct AAValueConstantRangeReturned
8284     : AAReturnedFromReturnedValues<AAValueConstantRange,
8285                                    AAValueConstantRangeImpl,
8286                                    AAValueConstantRangeImpl::StateType,
8287                                    /* PropogateCallBaseContext */ true> {
8288   using Base =
8289       AAReturnedFromReturnedValues<AAValueConstantRange,
8290                                    AAValueConstantRangeImpl,
8291                                    AAValueConstantRangeImpl::StateType,
8292                                    /* PropogateCallBaseContext */ true>;
8293   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8294       : Base(IRP, A) {}
8295 
8296   /// See AbstractAttribute::initialize(...).
8297   void initialize(Attributor &A) override {}
8298 
8299   /// See AbstractAttribute::trackStatistics()
8300   void trackStatistics() const override {
8301     STATS_DECLTRACK_FNRET_ATTR(value_range)
8302   }
8303 };
8304 
8305 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8306   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8307       : AAValueConstantRangeImpl(IRP, A) {}
8308 
8309   /// See AbstractAttribute::initialize(...).
8310   void initialize(Attributor &A) override {
8311     AAValueConstantRangeImpl::initialize(A);
8312     if (isAtFixpoint())
8313       return;
8314 
8315     Value &V = getAssociatedValue();
8316 
8317     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8318       unionAssumed(ConstantRange(C->getValue()));
8319       indicateOptimisticFixpoint();
8320       return;
8321     }
8322 
8323     if (isa<UndefValue>(&V)) {
8324       // Collapse the undef state to 0.
8325       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8326       indicateOptimisticFixpoint();
8327       return;
8328     }
8329 
8330     if (isa<CallBase>(&V))
8331       return;
8332 
8333     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8334       return;
8335 
8336     // If it is a load instruction with range metadata, use it.
8337     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8338       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8339         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8340         return;
8341       }
8342 
8343     // We can work with PHI and select instruction as we traverse their operands
8344     // during update.
8345     if (isa<SelectInst>(V) || isa<PHINode>(V))
8346       return;
8347 
8348     // Otherwise we give up.
8349     indicatePessimisticFixpoint();
8350 
8351     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8352                       << getAssociatedValue() << "\n");
8353   }
8354 
8355   bool calculateBinaryOperator(
8356       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8357       const Instruction *CtxI,
8358       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8359     Value *LHS = BinOp->getOperand(0);
8360     Value *RHS = BinOp->getOperand(1);
8361 
8362     // Simplify the operands first.
8363     bool UsedAssumedInformation = false;
8364     const auto &SimplifiedLHS =
8365         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8366                                *this, UsedAssumedInformation);
8367     if (!SimplifiedLHS.hasValue())
8368       return true;
8369     if (!SimplifiedLHS.getValue())
8370       return false;
8371     LHS = *SimplifiedLHS;
8372 
8373     const auto &SimplifiedRHS =
8374         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8375                                *this, UsedAssumedInformation);
8376     if (!SimplifiedRHS.hasValue())
8377       return true;
8378     if (!SimplifiedRHS.getValue())
8379       return false;
8380     RHS = *SimplifiedRHS;
8381 
8382     // TODO: Allow non integers as well.
8383     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8384       return false;
8385 
8386     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8387         *this, IRPosition::value(*LHS, getCallBaseContext()),
8388         DepClassTy::REQUIRED);
8389     QuerriedAAs.push_back(&LHSAA);
8390     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8391 
8392     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8393         *this, IRPosition::value(*RHS, getCallBaseContext()),
8394         DepClassTy::REQUIRED);
8395     QuerriedAAs.push_back(&RHSAA);
8396     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8397 
8398     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8399 
8400     T.unionAssumed(AssumedRange);
8401 
8402     // TODO: Track a known state too.
8403 
8404     return T.isValidState();
8405   }
8406 
8407   bool calculateCastInst(
8408       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8409       const Instruction *CtxI,
8410       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8411     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8412     // TODO: Allow non integers as well.
8413     Value *OpV = CastI->getOperand(0);
8414 
8415     // Simplify the operand first.
8416     bool UsedAssumedInformation = false;
8417     const auto &SimplifiedOpV =
8418         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8419                                *this, UsedAssumedInformation);
8420     if (!SimplifiedOpV.hasValue())
8421       return true;
8422     if (!SimplifiedOpV.getValue())
8423       return false;
8424     OpV = *SimplifiedOpV;
8425 
8426     if (!OpV->getType()->isIntegerTy())
8427       return false;
8428 
8429     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8430         *this, IRPosition::value(*OpV, getCallBaseContext()),
8431         DepClassTy::REQUIRED);
8432     QuerriedAAs.push_back(&OpAA);
8433     T.unionAssumed(
8434         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8435     return T.isValidState();
8436   }
8437 
8438   bool
8439   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8440                    const Instruction *CtxI,
8441                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8442     Value *LHS = CmpI->getOperand(0);
8443     Value *RHS = CmpI->getOperand(1);
8444 
8445     // Simplify the operands first.
8446     bool UsedAssumedInformation = false;
8447     const auto &SimplifiedLHS =
8448         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8449                                *this, UsedAssumedInformation);
8450     if (!SimplifiedLHS.hasValue())
8451       return true;
8452     if (!SimplifiedLHS.getValue())
8453       return false;
8454     LHS = *SimplifiedLHS;
8455 
8456     const auto &SimplifiedRHS =
8457         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8458                                *this, UsedAssumedInformation);
8459     if (!SimplifiedRHS.hasValue())
8460       return true;
8461     if (!SimplifiedRHS.getValue())
8462       return false;
8463     RHS = *SimplifiedRHS;
8464 
8465     // TODO: Allow non integers as well.
8466     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8467       return false;
8468 
8469     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8470         *this, IRPosition::value(*LHS, getCallBaseContext()),
8471         DepClassTy::REQUIRED);
8472     QuerriedAAs.push_back(&LHSAA);
8473     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8474         *this, IRPosition::value(*RHS, getCallBaseContext()),
8475         DepClassTy::REQUIRED);
8476     QuerriedAAs.push_back(&RHSAA);
8477     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8478     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8479 
8480     // If one of them is empty set, we can't decide.
8481     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8482       return true;
8483 
8484     bool MustTrue = false, MustFalse = false;
8485 
8486     auto AllowedRegion =
8487         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8488 
8489     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8490       MustFalse = true;
8491 
8492     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8493       MustTrue = true;
8494 
8495     assert((!MustTrue || !MustFalse) &&
8496            "Either MustTrue or MustFalse should be false!");
8497 
8498     if (MustTrue)
8499       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8500     else if (MustFalse)
8501       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8502     else
8503       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8504 
8505     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8506                       << " " << RHSAA << "\n");
8507 
8508     // TODO: Track a known state too.
8509     return T.isValidState();
8510   }
8511 
8512   /// See AbstractAttribute::updateImpl(...).
8513   ChangeStatus updateImpl(Attributor &A) override {
8514     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8515                             IntegerRangeState &T, bool Stripped) -> bool {
8516       Instruction *I = dyn_cast<Instruction>(&V);
8517       if (!I || isa<CallBase>(I)) {
8518 
8519         // Simplify the operand first.
8520         bool UsedAssumedInformation = false;
8521         const auto &SimplifiedOpV =
8522             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8523                                    *this, UsedAssumedInformation);
8524         if (!SimplifiedOpV.hasValue())
8525           return true;
8526         if (!SimplifiedOpV.getValue())
8527           return false;
8528         Value *VPtr = *SimplifiedOpV;
8529 
8530         // If the value is not instruction, we query AA to Attributor.
8531         const auto &AA = A.getAAFor<AAValueConstantRange>(
8532             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8533             DepClassTy::REQUIRED);
8534 
8535         // Clamp operator is not used to utilize a program point CtxI.
8536         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8537 
8538         return T.isValidState();
8539       }
8540 
8541       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8542       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8543         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8544           return false;
8545       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8546         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8547           return false;
8548       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8549         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8550           return false;
8551       } else {
8552         // Give up with other instructions.
8553         // TODO: Add other instructions
8554 
8555         T.indicatePessimisticFixpoint();
8556         return false;
8557       }
8558 
8559       // Catch circular reasoning in a pessimistic way for now.
8560       // TODO: Check how the range evolves and if we stripped anything, see also
8561       //       AADereferenceable or AAAlign for similar situations.
8562       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8563         if (QueriedAA != this)
8564           continue;
8565         // If we are in a stady state we do not need to worry.
8566         if (T.getAssumed() == getState().getAssumed())
8567           continue;
8568         T.indicatePessimisticFixpoint();
8569       }
8570 
8571       return T.isValidState();
8572     };
8573 
8574     IntegerRangeState T(getBitWidth());
8575 
8576     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8577                                                   VisitValueCB, getCtxI(),
8578                                                   /* UseValueSimplify */ false))
8579       return indicatePessimisticFixpoint();
8580 
8581     // Ensure that long def-use chains can't cause circular reasoning either by
8582     // introducing a cutoff below.
8583     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8584       return ChangeStatus::UNCHANGED;
8585     if (++NumChanges > MaxNumChanges) {
8586       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8587                         << " but only " << MaxNumChanges
8588                         << " are allowed to avoid cyclic reasoning.");
8589       return indicatePessimisticFixpoint();
8590     }
8591     return ChangeStatus::CHANGED;
8592   }
8593 
8594   /// See AbstractAttribute::trackStatistics()
8595   void trackStatistics() const override {
8596     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8597   }
8598 
8599   /// Tracker to bail after too many widening steps of the constant range.
8600   int NumChanges = 0;
8601 
8602   /// Upper bound for the number of allowed changes (=widening steps) for the
8603   /// constant range before we give up.
8604   static constexpr int MaxNumChanges = 5;
8605 };
8606 
8607 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8608   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8609       : AAValueConstantRangeImpl(IRP, A) {}
8610 
8611   /// See AbstractAttribute::initialize(...).
8612   ChangeStatus updateImpl(Attributor &A) override {
8613     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8614                      "not be called");
8615   }
8616 
8617   /// See AbstractAttribute::trackStatistics()
8618   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8619 };
8620 
8621 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8622   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8623       : AAValueConstantRangeFunction(IRP, A) {}
8624 
8625   /// See AbstractAttribute::trackStatistics()
8626   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8627 };
8628 
8629 struct AAValueConstantRangeCallSiteReturned
8630     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8631                                      AAValueConstantRangeImpl,
8632                                      AAValueConstantRangeImpl::StateType,
8633                                      /* IntroduceCallBaseContext */ true> {
8634   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8635       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8636                                        AAValueConstantRangeImpl,
8637                                        AAValueConstantRangeImpl::StateType,
8638                                        /* IntroduceCallBaseContext */ true>(IRP,
8639                                                                             A) {
8640   }
8641 
8642   /// See AbstractAttribute::initialize(...).
8643   void initialize(Attributor &A) override {
8644     // If it is a load instruction with range metadata, use the metadata.
8645     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8646       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8647         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8648 
8649     AAValueConstantRangeImpl::initialize(A);
8650   }
8651 
8652   /// See AbstractAttribute::trackStatistics()
8653   void trackStatistics() const override {
8654     STATS_DECLTRACK_CSRET_ATTR(value_range)
8655   }
8656 };
8657 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8658   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8659       : AAValueConstantRangeFloating(IRP, A) {}
8660 
8661   /// See AbstractAttribute::manifest()
8662   ChangeStatus manifest(Attributor &A) override {
8663     return ChangeStatus::UNCHANGED;
8664   }
8665 
8666   /// See AbstractAttribute::trackStatistics()
8667   void trackStatistics() const override {
8668     STATS_DECLTRACK_CSARG_ATTR(value_range)
8669   }
8670 };
8671 
8672 /// ------------------ Potential Values Attribute -------------------------
8673 
8674 struct AAPotentialValuesImpl : AAPotentialValues {
8675   using StateType = PotentialConstantIntValuesState;
8676 
8677   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8678       : AAPotentialValues(IRP, A) {}
8679 
8680   /// See AbstractAttribute::initialize(..).
8681   void initialize(Attributor &A) override {
8682     if (A.hasSimplificationCallback(getIRPosition()))
8683       indicatePessimisticFixpoint();
8684     else
8685       AAPotentialValues::initialize(A);
8686   }
8687 
8688   /// See AbstractAttribute::getAsStr().
8689   const std::string getAsStr() const override {
8690     std::string Str;
8691     llvm::raw_string_ostream OS(Str);
8692     OS << getState();
8693     return OS.str();
8694   }
8695 
8696   /// See AbstractAttribute::updateImpl(...).
8697   ChangeStatus updateImpl(Attributor &A) override {
8698     return indicatePessimisticFixpoint();
8699   }
8700 };
8701 
8702 struct AAPotentialValuesArgument final
8703     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8704                                       PotentialConstantIntValuesState> {
8705   using Base =
8706       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8707                                       PotentialConstantIntValuesState>;
8708   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8709       : Base(IRP, A) {}
8710 
8711   /// See AbstractAttribute::initialize(..).
8712   void initialize(Attributor &A) override {
8713     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8714       indicatePessimisticFixpoint();
8715     } else {
8716       Base::initialize(A);
8717     }
8718   }
8719 
8720   /// See AbstractAttribute::trackStatistics()
8721   void trackStatistics() const override {
8722     STATS_DECLTRACK_ARG_ATTR(potential_values)
8723   }
8724 };
8725 
8726 struct AAPotentialValuesReturned
8727     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8728   using Base =
8729       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8730   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8731       : Base(IRP, A) {}
8732 
8733   /// See AbstractAttribute::trackStatistics()
8734   void trackStatistics() const override {
8735     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8736   }
8737 };
8738 
8739 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8740   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8741       : AAPotentialValuesImpl(IRP, A) {}
8742 
8743   /// See AbstractAttribute::initialize(..).
8744   void initialize(Attributor &A) override {
8745     AAPotentialValuesImpl::initialize(A);
8746     if (isAtFixpoint())
8747       return;
8748 
8749     Value &V = getAssociatedValue();
8750 
8751     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8752       unionAssumed(C->getValue());
8753       indicateOptimisticFixpoint();
8754       return;
8755     }
8756 
8757     if (isa<UndefValue>(&V)) {
8758       unionAssumedWithUndef();
8759       indicateOptimisticFixpoint();
8760       return;
8761     }
8762 
8763     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8764       return;
8765 
8766     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8767       return;
8768 
8769     indicatePessimisticFixpoint();
8770 
8771     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8772                       << getAssociatedValue() << "\n");
8773   }
8774 
8775   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8776                                 const APInt &RHS) {
8777     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8778   }
8779 
8780   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8781                                  uint32_t ResultBitWidth) {
8782     Instruction::CastOps CastOp = CI->getOpcode();
8783     switch (CastOp) {
8784     default:
8785       llvm_unreachable("unsupported or not integer cast");
8786     case Instruction::Trunc:
8787       return Src.trunc(ResultBitWidth);
8788     case Instruction::SExt:
8789       return Src.sext(ResultBitWidth);
8790     case Instruction::ZExt:
8791       return Src.zext(ResultBitWidth);
8792     case Instruction::BitCast:
8793       return Src;
8794     }
8795   }
8796 
8797   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8798                                        const APInt &LHS, const APInt &RHS,
8799                                        bool &SkipOperation, bool &Unsupported) {
8800     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8801     // Unsupported is set to true when the binary operator is not supported.
8802     // SkipOperation is set to true when UB occur with the given operand pair
8803     // (LHS, RHS).
8804     // TODO: we should look at nsw and nuw keywords to handle operations
8805     //       that create poison or undef value.
8806     switch (BinOpcode) {
8807     default:
8808       Unsupported = true;
8809       return LHS;
8810     case Instruction::Add:
8811       return LHS + RHS;
8812     case Instruction::Sub:
8813       return LHS - RHS;
8814     case Instruction::Mul:
8815       return LHS * RHS;
8816     case Instruction::UDiv:
8817       if (RHS.isZero()) {
8818         SkipOperation = true;
8819         return LHS;
8820       }
8821       return LHS.udiv(RHS);
8822     case Instruction::SDiv:
8823       if (RHS.isZero()) {
8824         SkipOperation = true;
8825         return LHS;
8826       }
8827       return LHS.sdiv(RHS);
8828     case Instruction::URem:
8829       if (RHS.isZero()) {
8830         SkipOperation = true;
8831         return LHS;
8832       }
8833       return LHS.urem(RHS);
8834     case Instruction::SRem:
8835       if (RHS.isZero()) {
8836         SkipOperation = true;
8837         return LHS;
8838       }
8839       return LHS.srem(RHS);
8840     case Instruction::Shl:
8841       return LHS.shl(RHS);
8842     case Instruction::LShr:
8843       return LHS.lshr(RHS);
8844     case Instruction::AShr:
8845       return LHS.ashr(RHS);
8846     case Instruction::And:
8847       return LHS & RHS;
8848     case Instruction::Or:
8849       return LHS | RHS;
8850     case Instruction::Xor:
8851       return LHS ^ RHS;
8852     }
8853   }
8854 
8855   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8856                                            const APInt &LHS, const APInt &RHS) {
8857     bool SkipOperation = false;
8858     bool Unsupported = false;
8859     APInt Result =
8860         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8861     if (Unsupported)
8862       return false;
8863     // If SkipOperation is true, we can ignore this operand pair (L, R).
8864     if (!SkipOperation)
8865       unionAssumed(Result);
8866     return isValidState();
8867   }
8868 
8869   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8870     auto AssumedBefore = getAssumed();
8871     Value *LHS = ICI->getOperand(0);
8872     Value *RHS = ICI->getOperand(1);
8873 
8874     // Simplify the operands first.
8875     bool UsedAssumedInformation = false;
8876     const auto &SimplifiedLHS =
8877         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8878                                *this, UsedAssumedInformation);
8879     if (!SimplifiedLHS.hasValue())
8880       return ChangeStatus::UNCHANGED;
8881     if (!SimplifiedLHS.getValue())
8882       return indicatePessimisticFixpoint();
8883     LHS = *SimplifiedLHS;
8884 
8885     const auto &SimplifiedRHS =
8886         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8887                                *this, UsedAssumedInformation);
8888     if (!SimplifiedRHS.hasValue())
8889       return ChangeStatus::UNCHANGED;
8890     if (!SimplifiedRHS.getValue())
8891       return indicatePessimisticFixpoint();
8892     RHS = *SimplifiedRHS;
8893 
8894     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8895       return indicatePessimisticFixpoint();
8896 
8897     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8898                                                 DepClassTy::REQUIRED);
8899     if (!LHSAA.isValidState())
8900       return indicatePessimisticFixpoint();
8901 
8902     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8903                                                 DepClassTy::REQUIRED);
8904     if (!RHSAA.isValidState())
8905       return indicatePessimisticFixpoint();
8906 
8907     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8908     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8909 
8910     // TODO: make use of undef flag to limit potential values aggressively.
8911     bool MaybeTrue = false, MaybeFalse = false;
8912     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8913     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8914       // The result of any comparison between undefs can be soundly replaced
8915       // with undef.
8916       unionAssumedWithUndef();
8917     } else if (LHSAA.undefIsContained()) {
8918       for (const APInt &R : RHSAAPVS) {
8919         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8920         MaybeTrue |= CmpResult;
8921         MaybeFalse |= !CmpResult;
8922         if (MaybeTrue & MaybeFalse)
8923           return indicatePessimisticFixpoint();
8924       }
8925     } else if (RHSAA.undefIsContained()) {
8926       for (const APInt &L : LHSAAPVS) {
8927         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8928         MaybeTrue |= CmpResult;
8929         MaybeFalse |= !CmpResult;
8930         if (MaybeTrue & MaybeFalse)
8931           return indicatePessimisticFixpoint();
8932       }
8933     } else {
8934       for (const APInt &L : LHSAAPVS) {
8935         for (const APInt &R : RHSAAPVS) {
8936           bool CmpResult = calculateICmpInst(ICI, L, R);
8937           MaybeTrue |= CmpResult;
8938           MaybeFalse |= !CmpResult;
8939           if (MaybeTrue & MaybeFalse)
8940             return indicatePessimisticFixpoint();
8941         }
8942       }
8943     }
8944     if (MaybeTrue)
8945       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8946     if (MaybeFalse)
8947       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8948     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8949                                          : ChangeStatus::CHANGED;
8950   }
8951 
8952   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8953     auto AssumedBefore = getAssumed();
8954     Value *LHS = SI->getTrueValue();
8955     Value *RHS = SI->getFalseValue();
8956 
8957     // Simplify the operands first.
8958     bool UsedAssumedInformation = false;
8959     const auto &SimplifiedLHS =
8960         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8961                                *this, UsedAssumedInformation);
8962     if (!SimplifiedLHS.hasValue())
8963       return ChangeStatus::UNCHANGED;
8964     if (!SimplifiedLHS.getValue())
8965       return indicatePessimisticFixpoint();
8966     LHS = *SimplifiedLHS;
8967 
8968     const auto &SimplifiedRHS =
8969         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8970                                *this, UsedAssumedInformation);
8971     if (!SimplifiedRHS.hasValue())
8972       return ChangeStatus::UNCHANGED;
8973     if (!SimplifiedRHS.getValue())
8974       return indicatePessimisticFixpoint();
8975     RHS = *SimplifiedRHS;
8976 
8977     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8978       return indicatePessimisticFixpoint();
8979 
8980     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8981                                                   UsedAssumedInformation);
8982 
8983     // Check if we only need one operand.
8984     bool OnlyLeft = false, OnlyRight = false;
8985     if (C.hasValue() && *C && (*C)->isOneValue())
8986       OnlyLeft = true;
8987     else if (C.hasValue() && *C && (*C)->isZeroValue())
8988       OnlyRight = true;
8989 
8990     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8991     if (!OnlyRight) {
8992       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8993                                              DepClassTy::REQUIRED);
8994       if (!LHSAA->isValidState())
8995         return indicatePessimisticFixpoint();
8996     }
8997     if (!OnlyLeft) {
8998       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8999                                              DepClassTy::REQUIRED);
9000       if (!RHSAA->isValidState())
9001         return indicatePessimisticFixpoint();
9002     }
9003 
9004     if (!LHSAA || !RHSAA) {
9005       // select (true/false), lhs, rhs
9006       auto *OpAA = LHSAA ? LHSAA : RHSAA;
9007 
9008       if (OpAA->undefIsContained())
9009         unionAssumedWithUndef();
9010       else
9011         unionAssumed(*OpAA);
9012 
9013     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
9014       // select i1 *, undef , undef => undef
9015       unionAssumedWithUndef();
9016     } else {
9017       unionAssumed(*LHSAA);
9018       unionAssumed(*RHSAA);
9019     }
9020     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9021                                          : ChangeStatus::CHANGED;
9022   }
9023 
9024   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9025     auto AssumedBefore = getAssumed();
9026     if (!CI->isIntegerCast())
9027       return indicatePessimisticFixpoint();
9028     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9029     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9030     Value *Src = CI->getOperand(0);
9031 
9032     // Simplify the operand first.
9033     bool UsedAssumedInformation = false;
9034     const auto &SimplifiedSrc =
9035         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
9036                                *this, UsedAssumedInformation);
9037     if (!SimplifiedSrc.hasValue())
9038       return ChangeStatus::UNCHANGED;
9039     if (!SimplifiedSrc.getValue())
9040       return indicatePessimisticFixpoint();
9041     Src = *SimplifiedSrc;
9042 
9043     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
9044                                                 DepClassTy::REQUIRED);
9045     if (!SrcAA.isValidState())
9046       return indicatePessimisticFixpoint();
9047     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
9048     if (SrcAA.undefIsContained())
9049       unionAssumedWithUndef();
9050     else {
9051       for (const APInt &S : SrcAAPVS) {
9052         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9053         unionAssumed(T);
9054       }
9055     }
9056     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9057                                          : ChangeStatus::CHANGED;
9058   }
9059 
9060   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9061     auto AssumedBefore = getAssumed();
9062     Value *LHS = BinOp->getOperand(0);
9063     Value *RHS = BinOp->getOperand(1);
9064 
9065     // Simplify the operands first.
9066     bool UsedAssumedInformation = false;
9067     const auto &SimplifiedLHS =
9068         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
9069                                *this, UsedAssumedInformation);
9070     if (!SimplifiedLHS.hasValue())
9071       return ChangeStatus::UNCHANGED;
9072     if (!SimplifiedLHS.getValue())
9073       return indicatePessimisticFixpoint();
9074     LHS = *SimplifiedLHS;
9075 
9076     const auto &SimplifiedRHS =
9077         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
9078                                *this, UsedAssumedInformation);
9079     if (!SimplifiedRHS.hasValue())
9080       return ChangeStatus::UNCHANGED;
9081     if (!SimplifiedRHS.getValue())
9082       return indicatePessimisticFixpoint();
9083     RHS = *SimplifiedRHS;
9084 
9085     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9086       return indicatePessimisticFixpoint();
9087 
9088     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9089                                                 DepClassTy::REQUIRED);
9090     if (!LHSAA.isValidState())
9091       return indicatePessimisticFixpoint();
9092 
9093     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9094                                                 DepClassTy::REQUIRED);
9095     if (!RHSAA.isValidState())
9096       return indicatePessimisticFixpoint();
9097 
9098     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9099     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9100     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9101 
9102     // TODO: make use of undef flag to limit potential values aggressively.
9103     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9104       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9105         return indicatePessimisticFixpoint();
9106     } else if (LHSAA.undefIsContained()) {
9107       for (const APInt &R : RHSAAPVS) {
9108         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9109           return indicatePessimisticFixpoint();
9110       }
9111     } else if (RHSAA.undefIsContained()) {
9112       for (const APInt &L : LHSAAPVS) {
9113         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9114           return indicatePessimisticFixpoint();
9115       }
9116     } else {
9117       for (const APInt &L : LHSAAPVS) {
9118         for (const APInt &R : RHSAAPVS) {
9119           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9120             return indicatePessimisticFixpoint();
9121         }
9122       }
9123     }
9124     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9125                                          : ChangeStatus::CHANGED;
9126   }
9127 
9128   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9129     auto AssumedBefore = getAssumed();
9130     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9131       Value *IncomingValue = PHI->getIncomingValue(u);
9132 
9133       // Simplify the operand first.
9134       bool UsedAssumedInformation = false;
9135       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9136           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9137           UsedAssumedInformation);
9138       if (!SimplifiedIncomingValue.hasValue())
9139         continue;
9140       if (!SimplifiedIncomingValue.getValue())
9141         return indicatePessimisticFixpoint();
9142       IncomingValue = *SimplifiedIncomingValue;
9143 
9144       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9145           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9146       if (!PotentialValuesAA.isValidState())
9147         return indicatePessimisticFixpoint();
9148       if (PotentialValuesAA.undefIsContained())
9149         unionAssumedWithUndef();
9150       else
9151         unionAssumed(PotentialValuesAA.getAssumed());
9152     }
9153     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9154                                          : ChangeStatus::CHANGED;
9155   }
9156 
9157   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9158     if (!L.getType()->isIntegerTy())
9159       return indicatePessimisticFixpoint();
9160 
9161     auto Union = [&](Value &V) {
9162       if (isa<UndefValue>(V)) {
9163         unionAssumedWithUndef();
9164         return true;
9165       }
9166       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9167         unionAssumed(CI->getValue());
9168         return true;
9169       }
9170       return false;
9171     };
9172     auto AssumedBefore = getAssumed();
9173 
9174     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9175       return indicatePessimisticFixpoint();
9176 
9177     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9178                                          : ChangeStatus::CHANGED;
9179   }
9180 
9181   /// See AbstractAttribute::updateImpl(...).
9182   ChangeStatus updateImpl(Attributor &A) override {
9183     Value &V = getAssociatedValue();
9184     Instruction *I = dyn_cast<Instruction>(&V);
9185 
9186     if (auto *ICI = dyn_cast<ICmpInst>(I))
9187       return updateWithICmpInst(A, ICI);
9188 
9189     if (auto *SI = dyn_cast<SelectInst>(I))
9190       return updateWithSelectInst(A, SI);
9191 
9192     if (auto *CI = dyn_cast<CastInst>(I))
9193       return updateWithCastInst(A, CI);
9194 
9195     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9196       return updateWithBinaryOperator(A, BinOp);
9197 
9198     if (auto *PHI = dyn_cast<PHINode>(I))
9199       return updateWithPHINode(A, PHI);
9200 
9201     if (auto *L = dyn_cast<LoadInst>(I))
9202       return updateWithLoad(A, *L);
9203 
9204     return indicatePessimisticFixpoint();
9205   }
9206 
9207   /// See AbstractAttribute::trackStatistics()
9208   void trackStatistics() const override {
9209     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9210   }
9211 };
9212 
9213 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9214   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9215       : AAPotentialValuesImpl(IRP, A) {}
9216 
9217   /// See AbstractAttribute::initialize(...).
9218   ChangeStatus updateImpl(Attributor &A) override {
9219     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9220                      "not be called");
9221   }
9222 
9223   /// See AbstractAttribute::trackStatistics()
9224   void trackStatistics() const override {
9225     STATS_DECLTRACK_FN_ATTR(potential_values)
9226   }
9227 };
9228 
9229 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9230   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9231       : AAPotentialValuesFunction(IRP, A) {}
9232 
9233   /// See AbstractAttribute::trackStatistics()
9234   void trackStatistics() const override {
9235     STATS_DECLTRACK_CS_ATTR(potential_values)
9236   }
9237 };
9238 
9239 struct AAPotentialValuesCallSiteReturned
9240     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9241   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9242       : AACallSiteReturnedFromReturned<AAPotentialValues,
9243                                        AAPotentialValuesImpl>(IRP, A) {}
9244 
9245   /// See AbstractAttribute::trackStatistics()
9246   void trackStatistics() const override {
9247     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9248   }
9249 };
9250 
9251 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9252   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9253       : AAPotentialValuesFloating(IRP, A) {}
9254 
9255   /// See AbstractAttribute::initialize(..).
9256   void initialize(Attributor &A) override {
9257     AAPotentialValuesImpl::initialize(A);
9258     if (isAtFixpoint())
9259       return;
9260 
9261     Value &V = getAssociatedValue();
9262 
9263     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9264       unionAssumed(C->getValue());
9265       indicateOptimisticFixpoint();
9266       return;
9267     }
9268 
9269     if (isa<UndefValue>(&V)) {
9270       unionAssumedWithUndef();
9271       indicateOptimisticFixpoint();
9272       return;
9273     }
9274   }
9275 
9276   /// See AbstractAttribute::updateImpl(...).
9277   ChangeStatus updateImpl(Attributor &A) override {
9278     Value &V = getAssociatedValue();
9279     auto AssumedBefore = getAssumed();
9280     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9281                                              DepClassTy::REQUIRED);
9282     const auto &S = AA.getAssumed();
9283     unionAssumed(S);
9284     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9285                                          : ChangeStatus::CHANGED;
9286   }
9287 
9288   /// See AbstractAttribute::trackStatistics()
9289   void trackStatistics() const override {
9290     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9291   }
9292 };
9293 
9294 /// ------------------------ NoUndef Attribute ---------------------------------
9295 struct AANoUndefImpl : AANoUndef {
9296   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9297 
9298   /// See AbstractAttribute::initialize(...).
9299   void initialize(Attributor &A) override {
9300     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9301       indicateOptimisticFixpoint();
9302       return;
9303     }
9304     Value &V = getAssociatedValue();
9305     if (isa<UndefValue>(V))
9306       indicatePessimisticFixpoint();
9307     else if (isa<FreezeInst>(V))
9308       indicateOptimisticFixpoint();
9309     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9310              isGuaranteedNotToBeUndefOrPoison(&V))
9311       indicateOptimisticFixpoint();
9312     else
9313       AANoUndef::initialize(A);
9314   }
9315 
9316   /// See followUsesInMBEC
9317   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9318                        AANoUndef::StateType &State) {
9319     const Value *UseV = U->get();
9320     const DominatorTree *DT = nullptr;
9321     AssumptionCache *AC = nullptr;
9322     InformationCache &InfoCache = A.getInfoCache();
9323     if (Function *F = getAnchorScope()) {
9324       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9325       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9326     }
9327     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9328     bool TrackUse = false;
9329     // Track use for instructions which must produce undef or poison bits when
9330     // at least one operand contains such bits.
9331     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9332       TrackUse = true;
9333     return TrackUse;
9334   }
9335 
9336   /// See AbstractAttribute::getAsStr().
9337   const std::string getAsStr() const override {
9338     return getAssumed() ? "noundef" : "may-undef-or-poison";
9339   }
9340 
9341   ChangeStatus manifest(Attributor &A) override {
9342     // We don't manifest noundef attribute for dead positions because the
9343     // associated values with dead positions would be replaced with undef
9344     // values.
9345     bool UsedAssumedInformation = false;
9346     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9347                         UsedAssumedInformation))
9348       return ChangeStatus::UNCHANGED;
9349     // A position whose simplified value does not have any value is
9350     // considered to be dead. We don't manifest noundef in such positions for
9351     // the same reason above.
9352     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9353              .hasValue())
9354       return ChangeStatus::UNCHANGED;
9355     return AANoUndef::manifest(A);
9356   }
9357 };
9358 
9359 struct AANoUndefFloating : public AANoUndefImpl {
9360   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9361       : AANoUndefImpl(IRP, A) {}
9362 
9363   /// See AbstractAttribute::initialize(...).
9364   void initialize(Attributor &A) override {
9365     AANoUndefImpl::initialize(A);
9366     if (!getState().isAtFixpoint())
9367       if (Instruction *CtxI = getCtxI())
9368         followUsesInMBEC(*this, A, getState(), *CtxI);
9369   }
9370 
9371   /// See AbstractAttribute::updateImpl(...).
9372   ChangeStatus updateImpl(Attributor &A) override {
9373     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9374                             AANoUndef::StateType &T, bool Stripped) -> bool {
9375       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9376                                              DepClassTy::REQUIRED);
9377       if (!Stripped && this == &AA) {
9378         T.indicatePessimisticFixpoint();
9379       } else {
9380         const AANoUndef::StateType &S =
9381             static_cast<const AANoUndef::StateType &>(AA.getState());
9382         T ^= S;
9383       }
9384       return T.isValidState();
9385     };
9386 
9387     StateType T;
9388     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9389                                           VisitValueCB, getCtxI()))
9390       return indicatePessimisticFixpoint();
9391 
9392     return clampStateAndIndicateChange(getState(), T);
9393   }
9394 
9395   /// See AbstractAttribute::trackStatistics()
9396   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9397 };
9398 
9399 struct AANoUndefReturned final
9400     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9401   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9402       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9403 
9404   /// See AbstractAttribute::trackStatistics()
9405   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9406 };
9407 
9408 struct AANoUndefArgument final
9409     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9410   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9411       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9412 
9413   /// See AbstractAttribute::trackStatistics()
9414   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9415 };
9416 
9417 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9418   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9419       : AANoUndefFloating(IRP, A) {}
9420 
9421   /// See AbstractAttribute::trackStatistics()
9422   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9423 };
9424 
9425 struct AANoUndefCallSiteReturned final
9426     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9427   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9428       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9429 
9430   /// See AbstractAttribute::trackStatistics()
9431   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9432 };
9433 
9434 struct AACallEdgesImpl : public AACallEdges {
9435   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9436 
9437   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9438     return CalledFunctions;
9439   }
9440 
9441   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9442 
9443   virtual bool hasNonAsmUnknownCallee() const override {
9444     return HasUnknownCalleeNonAsm;
9445   }
9446 
9447   const std::string getAsStr() const override {
9448     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9449            std::to_string(CalledFunctions.size()) + "]";
9450   }
9451 
9452   void trackStatistics() const override {}
9453 
9454 protected:
9455   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9456     if (CalledFunctions.insert(Fn)) {
9457       Change = ChangeStatus::CHANGED;
9458       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9459                         << "\n");
9460     }
9461   }
9462 
9463   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9464     if (!HasUnknownCallee)
9465       Change = ChangeStatus::CHANGED;
9466     if (NonAsm && !HasUnknownCalleeNonAsm)
9467       Change = ChangeStatus::CHANGED;
9468     HasUnknownCalleeNonAsm |= NonAsm;
9469     HasUnknownCallee = true;
9470   }
9471 
9472 private:
9473   /// Optimistic set of functions that might be called by this position.
9474   SetVector<Function *> CalledFunctions;
9475 
9476   /// Is there any call with a unknown callee.
9477   bool HasUnknownCallee = false;
9478 
9479   /// Is there any call with a unknown callee, excluding any inline asm.
9480   bool HasUnknownCalleeNonAsm = false;
9481 };
9482 
9483 struct AACallEdgesCallSite : public AACallEdgesImpl {
9484   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9485       : AACallEdgesImpl(IRP, A) {}
9486   /// See AbstractAttribute::updateImpl(...).
9487   ChangeStatus updateImpl(Attributor &A) override {
9488     ChangeStatus Change = ChangeStatus::UNCHANGED;
9489 
9490     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9491                           bool Stripped) -> bool {
9492       if (Function *Fn = dyn_cast<Function>(&V)) {
9493         addCalledFunction(Fn, Change);
9494       } else {
9495         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9496         setHasUnknownCallee(true, Change);
9497       }
9498 
9499       // Explore all values.
9500       return true;
9501     };
9502 
9503     // Process any value that we might call.
9504     auto ProcessCalledOperand = [&](Value *V) {
9505       bool DummyValue = false;
9506       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9507                                        DummyValue, VisitValue, nullptr,
9508                                        false)) {
9509         // If we haven't gone through all values, assume that there are unknown
9510         // callees.
9511         setHasUnknownCallee(true, Change);
9512       }
9513     };
9514 
9515     CallBase *CB = cast<CallBase>(getCtxI());
9516 
9517     if (CB->isInlineAsm()) {
9518       setHasUnknownCallee(false, Change);
9519       return Change;
9520     }
9521 
9522     // Process callee metadata if available.
9523     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9524       for (auto &Op : MD->operands()) {
9525         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9526         if (Callee)
9527           addCalledFunction(Callee, Change);
9528       }
9529       return Change;
9530     }
9531 
9532     // The most simple case.
9533     ProcessCalledOperand(CB->getCalledOperand());
9534 
9535     // Process callback functions.
9536     SmallVector<const Use *, 4u> CallbackUses;
9537     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9538     for (const Use *U : CallbackUses)
9539       ProcessCalledOperand(U->get());
9540 
9541     return Change;
9542   }
9543 };
9544 
9545 struct AACallEdgesFunction : public AACallEdgesImpl {
9546   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9547       : AACallEdgesImpl(IRP, A) {}
9548 
9549   /// See AbstractAttribute::updateImpl(...).
9550   ChangeStatus updateImpl(Attributor &A) override {
9551     ChangeStatus Change = ChangeStatus::UNCHANGED;
9552 
9553     auto ProcessCallInst = [&](Instruction &Inst) {
9554       CallBase &CB = cast<CallBase>(Inst);
9555 
9556       auto &CBEdges = A.getAAFor<AACallEdges>(
9557           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9558       if (CBEdges.hasNonAsmUnknownCallee())
9559         setHasUnknownCallee(true, Change);
9560       if (CBEdges.hasUnknownCallee())
9561         setHasUnknownCallee(false, Change);
9562 
9563       for (Function *F : CBEdges.getOptimisticEdges())
9564         addCalledFunction(F, Change);
9565 
9566       return true;
9567     };
9568 
9569     // Visit all callable instructions.
9570     bool UsedAssumedInformation = false;
9571     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9572                                            UsedAssumedInformation,
9573                                            /* CheckBBLivenessOnly */ true)) {
9574       // If we haven't looked at all call like instructions, assume that there
9575       // are unknown callees.
9576       setHasUnknownCallee(true, Change);
9577     }
9578 
9579     return Change;
9580   }
9581 };
9582 
9583 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9584 private:
9585   struct QuerySet {
9586     void markReachable(const Function &Fn) {
9587       Reachable.insert(&Fn);
9588       Unreachable.erase(&Fn);
9589     }
9590 
9591     /// If there is no information about the function None is returned.
9592     Optional<bool> isCachedReachable(const Function &Fn) {
9593       // Assume that we can reach the function.
9594       // TODO: Be more specific with the unknown callee.
9595       if (CanReachUnknownCallee)
9596         return true;
9597 
9598       if (Reachable.count(&Fn))
9599         return true;
9600 
9601       if (Unreachable.count(&Fn))
9602         return false;
9603 
9604       return llvm::None;
9605     }
9606 
9607     /// Set of functions that we know for sure is reachable.
9608     DenseSet<const Function *> Reachable;
9609 
9610     /// Set of functions that are unreachable, but might become reachable.
9611     DenseSet<const Function *> Unreachable;
9612 
9613     /// If we can reach a function with a call to a unknown function we assume
9614     /// that we can reach any function.
9615     bool CanReachUnknownCallee = false;
9616   };
9617 
9618   struct QueryResolver : public QuerySet {
9619     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9620                         ArrayRef<const AACallEdges *> AAEdgesList) {
9621       ChangeStatus Change = ChangeStatus::UNCHANGED;
9622 
9623       for (auto *AAEdges : AAEdgesList) {
9624         if (AAEdges->hasUnknownCallee()) {
9625           if (!CanReachUnknownCallee)
9626             Change = ChangeStatus::CHANGED;
9627           CanReachUnknownCallee = true;
9628           return Change;
9629         }
9630       }
9631 
9632       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9633         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9634           Change = ChangeStatus::CHANGED;
9635           markReachable(*Fn);
9636         }
9637       }
9638       return Change;
9639     }
9640 
9641     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9642                      ArrayRef<const AACallEdges *> AAEdgesList,
9643                      const Function &Fn) {
9644       Optional<bool> Cached = isCachedReachable(Fn);
9645       if (Cached.hasValue())
9646         return Cached.getValue();
9647 
9648       // The query was not cached, thus it is new. We need to request an update
9649       // explicitly to make sure this the information is properly run to a
9650       // fixpoint.
9651       A.registerForUpdate(AA);
9652 
9653       // We need to assume that this function can't reach Fn to prevent
9654       // an infinite loop if this function is recursive.
9655       Unreachable.insert(&Fn);
9656 
9657       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9658       if (Result)
9659         markReachable(Fn);
9660       return Result;
9661     }
9662 
9663     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9664                           ArrayRef<const AACallEdges *> AAEdgesList,
9665                           const Function &Fn) const {
9666 
9667       // Handle the most trivial case first.
9668       for (auto *AAEdges : AAEdgesList) {
9669         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9670 
9671         if (Edges.count(const_cast<Function *>(&Fn)))
9672           return true;
9673       }
9674 
9675       SmallVector<const AAFunctionReachability *, 8> Deps;
9676       for (auto &AAEdges : AAEdgesList) {
9677         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9678 
9679         for (Function *Edge : Edges) {
9680           // We don't need a dependency if the result is reachable.
9681           const AAFunctionReachability &EdgeReachability =
9682               A.getAAFor<AAFunctionReachability>(
9683                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9684           Deps.push_back(&EdgeReachability);
9685 
9686           if (EdgeReachability.canReach(A, Fn))
9687             return true;
9688         }
9689       }
9690 
9691       // The result is false for now, set dependencies and leave.
9692       for (auto *Dep : Deps)
9693         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9694 
9695       return false;
9696     }
9697   };
9698 
9699   /// Get call edges that can be reached by this instruction.
9700   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9701                              const Instruction &Inst,
9702                              SmallVector<const AACallEdges *> &Result) const {
9703     // Determine call like instructions that we can reach from the inst.
9704     auto CheckCallBase = [&](Instruction &CBInst) {
9705       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9706         return true;
9707 
9708       auto &CB = cast<CallBase>(CBInst);
9709       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9710           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9711 
9712       Result.push_back(&AAEdges);
9713       return true;
9714     };
9715 
9716     bool UsedAssumedInformation = false;
9717     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9718                                              UsedAssumedInformation,
9719                                              /* CheckBBLivenessOnly */ true);
9720   }
9721 
9722 public:
9723   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9724       : AAFunctionReachability(IRP, A) {}
9725 
9726   bool canReach(Attributor &A, const Function &Fn) const override {
9727     if (!isValidState())
9728       return true;
9729 
9730     const AACallEdges &AAEdges =
9731         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9732 
9733     // Attributor returns attributes as const, so this function has to be
9734     // const for users of this attribute to use it without having to do
9735     // a const_cast.
9736     // This is a hack for us to be able to cache queries.
9737     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9738     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9739                                                           {&AAEdges}, Fn);
9740 
9741     return Result;
9742   }
9743 
9744   /// Can \p CB reach \p Fn
9745   bool canReach(Attributor &A, CallBase &CB,
9746                 const Function &Fn) const override {
9747     if (!isValidState())
9748       return true;
9749 
9750     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9751         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9752 
9753     // Attributor returns attributes as const, so this function has to be
9754     // const for users of this attribute to use it without having to do
9755     // a const_cast.
9756     // This is a hack for us to be able to cache queries.
9757     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9758     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9759 
9760     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9761 
9762     return Result;
9763   }
9764 
9765   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9766                            const Function &Fn,
9767                            bool UseBackwards) const override {
9768     if (!isValidState())
9769       return true;
9770 
9771     if (UseBackwards)
9772       return AA::isPotentiallyReachable(A, Inst, Fn, *this, nullptr);
9773 
9774     const auto &Reachability = A.getAAFor<AAReachability>(
9775         *this, IRPosition::function(*getAssociatedFunction()),
9776         DepClassTy::REQUIRED);
9777 
9778     SmallVector<const AACallEdges *> CallEdges;
9779     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9780     // Attributor returns attributes as const, so this function has to be
9781     // const for users of this attribute to use it without having to do
9782     // a const_cast.
9783     // This is a hack for us to be able to cache queries.
9784     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9785     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9786     if (!AllKnown)
9787       InstQSet.CanReachUnknownCallee = true;
9788 
9789     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9790   }
9791 
9792   /// See AbstractAttribute::updateImpl(...).
9793   ChangeStatus updateImpl(Attributor &A) override {
9794     const AACallEdges &AAEdges =
9795         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9796     ChangeStatus Change = ChangeStatus::UNCHANGED;
9797 
9798     Change |= WholeFunction.update(A, *this, {&AAEdges});
9799 
9800     for (auto &CBPair : CBQueries) {
9801       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9802           *this, IRPosition::callsite_function(*CBPair.first),
9803           DepClassTy::REQUIRED);
9804 
9805       Change |= CBPair.second.update(A, *this, {&AAEdges});
9806     }
9807 
9808     // Update the Instruction queries.
9809     const AAReachability *Reachability;
9810     if (!InstQueries.empty()) {
9811       Reachability = &A.getAAFor<AAReachability>(
9812           *this, IRPosition::function(*getAssociatedFunction()),
9813           DepClassTy::REQUIRED);
9814     }
9815 
9816     // Check for local callbases first.
9817     for (auto &InstPair : InstQueries) {
9818       SmallVector<const AACallEdges *> CallEdges;
9819       bool AllKnown =
9820           getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9821       // Update will return change if we this effects any queries.
9822       if (!AllKnown)
9823         InstPair.second.CanReachUnknownCallee = true;
9824       Change |= InstPair.second.update(A, *this, CallEdges);
9825     }
9826 
9827     return Change;
9828   }
9829 
9830   const std::string getAsStr() const override {
9831     size_t QueryCount =
9832         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9833 
9834     return "FunctionReachability [" +
9835            std::to_string(WholeFunction.Reachable.size()) + "," +
9836            std::to_string(QueryCount) + "]";
9837   }
9838 
9839   void trackStatistics() const override {}
9840 
9841 private:
9842   bool canReachUnknownCallee() const override {
9843     return WholeFunction.CanReachUnknownCallee;
9844   }
9845 
9846   /// Used to answer if a the whole function can reacha a specific function.
9847   QueryResolver WholeFunction;
9848 
9849   /// Used to answer if a call base inside this function can reach a specific
9850   /// function.
9851   DenseMap<const CallBase *, QueryResolver> CBQueries;
9852 
9853   /// This is for instruction queries than scan "forward".
9854   DenseMap<const Instruction *, QueryResolver> InstQueries;
9855 };
9856 
9857 /// ---------------------- Assumption Propagation ------------------------------
9858 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9859   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9860                        const DenseSet<StringRef> &Known)
9861       : AAAssumptionInfo(IRP, A, Known) {}
9862 
9863   bool hasAssumption(const StringRef Assumption) const override {
9864     return isValidState() && setContains(Assumption);
9865   }
9866 
9867   /// See AbstractAttribute::getAsStr()
9868   const std::string getAsStr() const override {
9869     const SetContents &Known = getKnown();
9870     const SetContents &Assumed = getAssumed();
9871 
9872     const std::string KnownStr =
9873         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9874     const std::string AssumedStr =
9875         (Assumed.isUniversal())
9876             ? "Universal"
9877             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9878 
9879     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9880   }
9881 };
9882 
9883 /// Propagates assumption information from parent functions to all of their
9884 /// successors. An assumption can be propagated if the containing function
9885 /// dominates the called function.
9886 ///
9887 /// We start with a "known" set of assumptions already valid for the associated
9888 /// function and an "assumed" set that initially contains all possible
9889 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
9890 /// contents as concrete values are known. The concrete values are seeded by the
9891 /// first nodes that are either entries into the call graph, or contains no
9892 /// assumptions. Each node is updated as the intersection of the assumed state
9893 /// with all of its predecessors.
9894 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
9895   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
9896       : AAAssumptionInfoImpl(IRP, A,
9897                              getAssumptions(*IRP.getAssociatedFunction())) {}
9898 
9899   /// See AbstractAttribute::manifest(...).
9900   ChangeStatus manifest(Attributor &A) override {
9901     const auto &Assumptions = getKnown();
9902 
9903     // Don't manifest a universal set if it somehow made it here.
9904     if (Assumptions.isUniversal())
9905       return ChangeStatus::UNCHANGED;
9906 
9907     Function *AssociatedFunction = getAssociatedFunction();
9908 
9909     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
9910 
9911     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9912   }
9913 
9914   /// See AbstractAttribute::updateImpl(...).
9915   ChangeStatus updateImpl(Attributor &A) override {
9916     bool Changed = false;
9917 
9918     auto CallSitePred = [&](AbstractCallSite ACS) {
9919       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
9920           *this, IRPosition::callsite_function(*ACS.getInstruction()),
9921           DepClassTy::REQUIRED);
9922       // Get the set of assumptions shared by all of this function's callers.
9923       Changed |= getIntersection(AssumptionAA.getAssumed());
9924       return !getAssumed().empty() || !getKnown().empty();
9925     };
9926 
9927     bool AllCallSitesKnown;
9928     // Get the intersection of all assumptions held by this node's predecessors.
9929     // If we don't know all the call sites then this is either an entry into the
9930     // call graph or an empty node. This node is known to only contain its own
9931     // assumptions and can be propagated to its successors.
9932     if (!A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown))
9933       return indicatePessimisticFixpoint();
9934 
9935     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9936   }
9937 
9938   void trackStatistics() const override {}
9939 };
9940 
9941 /// Assumption Info defined for call sites.
9942 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
9943 
9944   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
9945       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
9946 
9947   /// See AbstractAttribute::initialize(...).
9948   void initialize(Attributor &A) override {
9949     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9950     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9951   }
9952 
9953   /// See AbstractAttribute::manifest(...).
9954   ChangeStatus manifest(Attributor &A) override {
9955     // Don't manifest a universal set if it somehow made it here.
9956     if (getKnown().isUniversal())
9957       return ChangeStatus::UNCHANGED;
9958 
9959     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
9960     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
9961 
9962     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9963   }
9964 
9965   /// See AbstractAttribute::updateImpl(...).
9966   ChangeStatus updateImpl(Attributor &A) override {
9967     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9968     auto &AssumptionAA =
9969         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9970     bool Changed = getIntersection(AssumptionAA.getAssumed());
9971     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9972   }
9973 
9974   /// See AbstractAttribute::trackStatistics()
9975   void trackStatistics() const override {}
9976 
9977 private:
9978   /// Helper to initialized the known set as all the assumptions this call and
9979   /// the callee contain.
9980   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
9981     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
9982     auto Assumptions = getAssumptions(CB);
9983     if (Function *F = IRP.getAssociatedFunction())
9984       set_union(Assumptions, getAssumptions(*F));
9985     if (Function *F = IRP.getAssociatedFunction())
9986       set_union(Assumptions, getAssumptions(*F));
9987     return Assumptions;
9988   }
9989 };
9990 
9991 AACallGraphNode *AACallEdgeIterator::operator*() const {
9992   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9993       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9994 }
9995 
9996 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9997 
9998 const char AAReturnedValues::ID = 0;
9999 const char AANoUnwind::ID = 0;
10000 const char AANoSync::ID = 0;
10001 const char AANoFree::ID = 0;
10002 const char AANonNull::ID = 0;
10003 const char AANoRecurse::ID = 0;
10004 const char AAWillReturn::ID = 0;
10005 const char AAUndefinedBehavior::ID = 0;
10006 const char AANoAlias::ID = 0;
10007 const char AAReachability::ID = 0;
10008 const char AANoReturn::ID = 0;
10009 const char AAIsDead::ID = 0;
10010 const char AADereferenceable::ID = 0;
10011 const char AAAlign::ID = 0;
10012 const char AANoCapture::ID = 0;
10013 const char AAValueSimplify::ID = 0;
10014 const char AAHeapToStack::ID = 0;
10015 const char AAPrivatizablePtr::ID = 0;
10016 const char AAMemoryBehavior::ID = 0;
10017 const char AAMemoryLocation::ID = 0;
10018 const char AAValueConstantRange::ID = 0;
10019 const char AAPotentialValues::ID = 0;
10020 const char AANoUndef::ID = 0;
10021 const char AACallEdges::ID = 0;
10022 const char AAFunctionReachability::ID = 0;
10023 const char AAPointerInfo::ID = 0;
10024 const char AAAssumptionInfo::ID = 0;
10025 
10026 // Macro magic to create the static generator function for attributes that
10027 // follow the naming scheme.
10028 
10029 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10030   case IRPosition::PK:                                                         \
10031     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10032 
10033 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10034   case IRPosition::PK:                                                         \
10035     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10036     ++NumAAs;                                                                  \
10037     break;
10038 
10039 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10040   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10041     CLASS *AA = nullptr;                                                       \
10042     switch (IRP.getPositionKind()) {                                           \
10043       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10044       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10045       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10046       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10047       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10048       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10049       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10050       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10051     }                                                                          \
10052     return *AA;                                                                \
10053   }
10054 
10055 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10056   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10057     CLASS *AA = nullptr;                                                       \
10058     switch (IRP.getPositionKind()) {                                           \
10059       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10060       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10061       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10062       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10063       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10064       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10065       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10066       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10067     }                                                                          \
10068     return *AA;                                                                \
10069   }
10070 
10071 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10072   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10073     CLASS *AA = nullptr;                                                       \
10074     switch (IRP.getPositionKind()) {                                           \
10075       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10076       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10077       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10078       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10079       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10080       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10081       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10082       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10083     }                                                                          \
10084     return *AA;                                                                \
10085   }
10086 
10087 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10088   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10089     CLASS *AA = nullptr;                                                       \
10090     switch (IRP.getPositionKind()) {                                           \
10091       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10092       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10093       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10094       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10095       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10096       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10097       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10098       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10099     }                                                                          \
10100     return *AA;                                                                \
10101   }
10102 
10103 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10104   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10105     CLASS *AA = nullptr;                                                       \
10106     switch (IRP.getPositionKind()) {                                           \
10107       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10108       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10109       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10110       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10111       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10112       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10113       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10114       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10115     }                                                                          \
10116     return *AA;                                                                \
10117   }
10118 
10119 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10120 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10121 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10122 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10123 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10124 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10125 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10126 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10127 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10128 
10129 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10130 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10131 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10132 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10133 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10134 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10135 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10136 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10137 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10138 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10139 
10140 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10141 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10142 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10143 
10144 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10145 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10146 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10147 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10148 
10149 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10150 
10151 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10152 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10153 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10154 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10155 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10156 #undef SWITCH_PK_CREATE
10157 #undef SWITCH_PK_INV
10158