1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumeBundleQueries.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/Support/Alignment.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 static cl::opt<bool> ManifestInternal(
52     "attributor-manifest-internal", cl::Hidden,
53     cl::desc("Manifest Attributor internal string attributes."),
54     cl::init(false));
55 
56 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
57                                        cl::Hidden);
58 
59 template <>
60 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
61 
62 static cl::opt<unsigned, true> MaxPotentialValues(
63     "attributor-max-potential-values", cl::Hidden,
64     cl::desc("Maximum number of potential values to be "
65              "tracked for each position."),
66     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
67     cl::init(7));
68 
69 STATISTIC(NumAAs, "Number of abstract attributes created");
70 
71 // Some helper macros to deal with statistics tracking.
72 //
73 // Usage:
74 // For simple IR attribute tracking overload trackStatistics in the abstract
75 // attribute and choose the right STATS_DECLTRACK_********* macro,
76 // e.g.,:
77 //  void trackStatistics() const override {
78 //    STATS_DECLTRACK_ARG_ATTR(returned)
79 //  }
80 // If there is a single "increment" side one can use the macro
81 // STATS_DECLTRACK with a custom message. If there are multiple increment
82 // sides, STATS_DECL and STATS_TRACK can also be used separately.
83 //
84 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
85   ("Number of " #TYPE " marked '" #NAME "'")
86 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
87 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
88 #define STATS_DECL(NAME, TYPE, MSG)                                            \
89   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
90 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
91 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
92   {                                                                            \
93     STATS_DECL(NAME, TYPE, MSG)                                                \
94     STATS_TRACK(NAME, TYPE)                                                    \
95   }
96 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
97   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
98 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
99   STATS_DECLTRACK(NAME, CSArguments,                                           \
100                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
101 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
102   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
103 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
105 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
106   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
107                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
108 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
109   STATS_DECLTRACK(NAME, CSReturn,                                              \
110                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
111 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
112   STATS_DECLTRACK(NAME, Floating,                                              \
113                   ("Number of floating values known to be '" #NAME "'"))
114 
115 // Specialization of the operator<< for abstract attributes subclasses. This
116 // disambiguates situations where multiple operators are applicable.
117 namespace llvm {
118 #define PIPE_OPERATOR(CLASS)                                                   \
119   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
120     return OS << static_cast<const AbstractAttribute &>(AA);                   \
121   }
122 
123 PIPE_OPERATOR(AAIsDead)
124 PIPE_OPERATOR(AANoUnwind)
125 PIPE_OPERATOR(AANoSync)
126 PIPE_OPERATOR(AANoRecurse)
127 PIPE_OPERATOR(AAWillReturn)
128 PIPE_OPERATOR(AANoReturn)
129 PIPE_OPERATOR(AAReturnedValues)
130 PIPE_OPERATOR(AANonNull)
131 PIPE_OPERATOR(AANoAlias)
132 PIPE_OPERATOR(AADereferenceable)
133 PIPE_OPERATOR(AAAlign)
134 PIPE_OPERATOR(AANoCapture)
135 PIPE_OPERATOR(AAValueSimplify)
136 PIPE_OPERATOR(AANoFree)
137 PIPE_OPERATOR(AAHeapToStack)
138 PIPE_OPERATOR(AAReachability)
139 PIPE_OPERATOR(AAMemoryBehavior)
140 PIPE_OPERATOR(AAMemoryLocation)
141 PIPE_OPERATOR(AAValueConstantRange)
142 PIPE_OPERATOR(AAPrivatizablePtr)
143 PIPE_OPERATOR(AAUndefinedBehavior)
144 PIPE_OPERATOR(AAPotentialValues)
145 PIPE_OPERATOR(AANoUndef)
146 PIPE_OPERATOR(AACallEdges)
147 PIPE_OPERATOR(AAFunctionReachability)
148 PIPE_OPERATOR(AAPointerInfo)
149 
150 #undef PIPE_OPERATOR
151 
152 template <>
153 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
154                                                      const DerefState &R) {
155   ChangeStatus CS0 =
156       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
157   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
158   return CS0 | CS1;
159 }
160 
161 } // namespace llvm
162 
163 /// Get pointer operand of memory accessing instruction. If \p I is
164 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
165 /// is set to false and the instruction is volatile, return nullptr.
166 static const Value *getPointerOperand(const Instruction *I,
167                                       bool AllowVolatile) {
168   if (!AllowVolatile && I->isVolatile())
169     return nullptr;
170 
171   if (auto *LI = dyn_cast<LoadInst>(I)) {
172     return LI->getPointerOperand();
173   }
174 
175   if (auto *SI = dyn_cast<StoreInst>(I)) {
176     return SI->getPointerOperand();
177   }
178 
179   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
180     return CXI->getPointerOperand();
181   }
182 
183   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
184     return RMWI->getPointerOperand();
185   }
186 
187   return nullptr;
188 }
189 
190 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
191 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
192 /// getelement pointer instructions that traverse the natural type of \p Ptr if
193 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
194 /// through a cast to i8*.
195 ///
196 /// TODO: This could probably live somewhere more prominantly if it doesn't
197 ///       already exist.
198 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
199                                int64_t Offset, IRBuilder<NoFolder> &IRB,
200                                const DataLayout &DL) {
201   assert(Offset >= 0 && "Negative offset not supported yet!");
202   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
203                     << "-bytes as " << *ResTy << "\n");
204 
205   if (Offset) {
206     Type *Ty = PtrElemTy;
207     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
208     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
209 
210     SmallVector<Value *, 4> ValIndices;
211     std::string GEPName = Ptr->getName().str();
212     for (const APInt &Index : IntIndices) {
213       ValIndices.push_back(IRB.getInt(Index));
214       GEPName += "." + std::to_string(Index.getZExtValue());
215     }
216 
217     // Create a GEP for the indices collected above.
218     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
219 
220     // If an offset is left we use byte-wise adjustment.
221     if (IntOffset != 0) {
222       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
223       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
224                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
225     }
226   }
227 
228   // Ensure the result has the requested type.
229   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
230 
231   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
232   return Ptr;
233 }
234 
235 /// Recursively visit all values that might become \p IRP at some point. This
236 /// will be done by looking through cast instructions, selects, phis, and calls
237 /// with the "returned" attribute. Once we cannot look through the value any
238 /// further, the callback \p VisitValueCB is invoked and passed the current
239 /// value, the \p State, and a flag to indicate if we stripped anything.
240 /// Stripped means that we unpacked the value associated with \p IRP at least
241 /// once. Note that the value used for the callback may still be the value
242 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
243 /// we will never visit more values than specified by \p MaxValues.
244 template <typename StateTy>
245 static bool genericValueTraversal(
246     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
247     StateTy &State,
248     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
249         VisitValueCB,
250     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
251     function_ref<Value *(Value *)> StripCB = nullptr) {
252 
253   const AAIsDead *LivenessAA = nullptr;
254   if (IRP.getAnchorScope())
255     LivenessAA = &A.getAAFor<AAIsDead>(
256         QueryingAA,
257         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
258         DepClassTy::NONE);
259   bool AnyDead = false;
260 
261   Value *InitialV = &IRP.getAssociatedValue();
262   using Item = std::pair<Value *, const Instruction *>;
263   SmallSet<Item, 16> Visited;
264   SmallVector<Item, 16> Worklist;
265   Worklist.push_back({InitialV, CtxI});
266 
267   int Iteration = 0;
268   do {
269     Item I = Worklist.pop_back_val();
270     Value *V = I.first;
271     CtxI = I.second;
272     if (StripCB)
273       V = StripCB(V);
274 
275     // Check if we should process the current value. To prevent endless
276     // recursion keep a record of the values we followed!
277     if (!Visited.insert(I).second)
278       continue;
279 
280     // Make sure we limit the compile time for complex expressions.
281     if (Iteration++ >= MaxValues)
282       return false;
283 
284     // Explicitly look through calls with a "returned" attribute if we do
285     // not have a pointer as stripPointerCasts only works on them.
286     Value *NewV = nullptr;
287     if (V->getType()->isPointerTy()) {
288       NewV = V->stripPointerCasts();
289     } else {
290       auto *CB = dyn_cast<CallBase>(V);
291       if (CB && CB->getCalledFunction()) {
292         for (Argument &Arg : CB->getCalledFunction()->args())
293           if (Arg.hasReturnedAttr()) {
294             NewV = CB->getArgOperand(Arg.getArgNo());
295             break;
296           }
297       }
298     }
299     if (NewV && NewV != V) {
300       Worklist.push_back({NewV, CtxI});
301       continue;
302     }
303 
304     // Look through select instructions, visit assumed potential values.
305     if (auto *SI = dyn_cast<SelectInst>(V)) {
306       bool UsedAssumedInformation = false;
307       Optional<Constant *> C = A.getAssumedConstant(
308           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
309       bool NoValueYet = !C.hasValue();
310       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
311         continue;
312       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
313         if (CI->isZero())
314           Worklist.push_back({SI->getFalseValue(), CtxI});
315         else
316           Worklist.push_back({SI->getTrueValue(), CtxI});
317         continue;
318       }
319       // We could not simplify the condition, assume both values.(
320       Worklist.push_back({SI->getTrueValue(), CtxI});
321       Worklist.push_back({SI->getFalseValue(), CtxI});
322       continue;
323     }
324 
325     // Look through phi nodes, visit all live operands.
326     if (auto *PHI = dyn_cast<PHINode>(V)) {
327       assert(LivenessAA &&
328              "Expected liveness in the presence of instructions!");
329       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
330         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
331         bool UsedAssumedInformation = false;
332         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
333                             LivenessAA, UsedAssumedInformation,
334                             /* CheckBBLivenessOnly */ true)) {
335           AnyDead = true;
336           continue;
337         }
338         Worklist.push_back(
339             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
340       }
341       continue;
342     }
343 
344     if (UseValueSimplify && !isa<Constant>(V)) {
345       bool UsedAssumedInformation = false;
346       Optional<Value *> SimpleV =
347           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
348       if (!SimpleV.hasValue())
349         continue;
350       if (!SimpleV.getValue())
351         return false;
352       Value *NewV = SimpleV.getValue();
353       if (NewV != V) {
354         Worklist.push_back({NewV, CtxI});
355         continue;
356       }
357     }
358 
359     // Once a leaf is reached we inform the user through the callback.
360     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
361       return false;
362   } while (!Worklist.empty());
363 
364   // If we actually used liveness information so we have to record a dependence.
365   if (AnyDead)
366     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
367 
368   // All values have been visited.
369   return true;
370 }
371 
372 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
373                                      SmallVectorImpl<Value *> &Objects,
374                                      const AbstractAttribute &QueryingAA,
375                                      const Instruction *CtxI) {
376   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
377   SmallPtrSet<Value *, 8> SeenObjects;
378   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
379                                      SmallVectorImpl<Value *> &Objects,
380                                      bool) -> bool {
381     if (SeenObjects.insert(&Val).second)
382       Objects.push_back(&Val);
383     return true;
384   };
385   if (!genericValueTraversal<decltype(Objects)>(
386           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
387           true, 32, StripCB))
388     return false;
389   return true;
390 }
391 
392 const Value *stripAndAccumulateMinimalOffsets(
393     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
394     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
395     bool UseAssumed = false) {
396 
397   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
398     const IRPosition &Pos = IRPosition::value(V);
399     // Only track dependence if we are going to use the assumed info.
400     const AAValueConstantRange &ValueConstantRangeAA =
401         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
402                                          UseAssumed ? DepClassTy::OPTIONAL
403                                                     : DepClassTy::NONE);
404     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
405                                      : ValueConstantRangeAA.getKnown();
406     // We can only use the lower part of the range because the upper part can
407     // be higher than what the value can really be.
408     ROffset = Range.getSignedMin();
409     return true;
410   };
411 
412   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
413                                                 /* AllowInvariant */ false,
414                                                 AttributorAnalysis);
415 }
416 
417 static const Value *getMinimalBaseOfAccsesPointerOperand(
418     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
419     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
420   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
421   if (!Ptr)
422     return nullptr;
423   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
424   const Value *Base = stripAndAccumulateMinimalOffsets(
425       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
426 
427   BytesOffset = OffsetAPInt.getSExtValue();
428   return Base;
429 }
430 
431 static const Value *
432 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
433                                      const DataLayout &DL,
434                                      bool AllowNonInbounds = false) {
435   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
436   if (!Ptr)
437     return nullptr;
438 
439   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
440                                           AllowNonInbounds);
441 }
442 
443 /// Clamp the information known for all returned values of a function
444 /// (identified by \p QueryingAA) into \p S.
445 template <typename AAType, typename StateType = typename AAType::StateType>
446 static void clampReturnedValueStates(
447     Attributor &A, const AAType &QueryingAA, StateType &S,
448     const IRPosition::CallBaseContext *CBContext = nullptr) {
449   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
450                     << QueryingAA << " into " << S << "\n");
451 
452   assert((QueryingAA.getIRPosition().getPositionKind() ==
453               IRPosition::IRP_RETURNED ||
454           QueryingAA.getIRPosition().getPositionKind() ==
455               IRPosition::IRP_CALL_SITE_RETURNED) &&
456          "Can only clamp returned value states for a function returned or call "
457          "site returned position!");
458 
459   // Use an optional state as there might not be any return values and we want
460   // to join (IntegerState::operator&) the state of all there are.
461   Optional<StateType> T;
462 
463   // Callback for each possibly returned value.
464   auto CheckReturnValue = [&](Value &RV) -> bool {
465     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
466     const AAType &AA =
467         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
468     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
469                       << " @ " << RVPos << "\n");
470     const StateType &AAS = AA.getState();
471     if (T.hasValue())
472       *T &= AAS;
473     else
474       T = AAS;
475     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
476                       << "\n");
477     return T->isValidState();
478   };
479 
480   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
481     S.indicatePessimisticFixpoint();
482   else if (T.hasValue())
483     S ^= *T;
484 }
485 
486 /// Helper class for generic deduction: return value -> returned position.
487 template <typename AAType, typename BaseType,
488           typename StateType = typename BaseType::StateType,
489           bool PropagateCallBaseContext = false>
490 struct AAReturnedFromReturnedValues : public BaseType {
491   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
492       : BaseType(IRP, A) {}
493 
494   /// See AbstractAttribute::updateImpl(...).
495   ChangeStatus updateImpl(Attributor &A) override {
496     StateType S(StateType::getBestState(this->getState()));
497     clampReturnedValueStates<AAType, StateType>(
498         A, *this, S,
499         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
500     // TODO: If we know we visited all returned values, thus no are assumed
501     // dead, we can take the known information from the state T.
502     return clampStateAndIndicateChange<StateType>(this->getState(), S);
503   }
504 };
505 
506 /// Clamp the information known at all call sites for a given argument
507 /// (identified by \p QueryingAA) into \p S.
508 template <typename AAType, typename StateType = typename AAType::StateType>
509 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
510                                         StateType &S) {
511   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
512                     << QueryingAA << " into " << S << "\n");
513 
514   assert(QueryingAA.getIRPosition().getPositionKind() ==
515              IRPosition::IRP_ARGUMENT &&
516          "Can only clamp call site argument states for an argument position!");
517 
518   // Use an optional state as there might not be any return values and we want
519   // to join (IntegerState::operator&) the state of all there are.
520   Optional<StateType> T;
521 
522   // The argument number which is also the call site argument number.
523   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
524 
525   auto CallSiteCheck = [&](AbstractCallSite ACS) {
526     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
527     // Check if a coresponding argument was found or if it is on not associated
528     // (which can happen for callback calls).
529     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
530       return false;
531 
532     const AAType &AA =
533         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
534     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
535                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
536     const StateType &AAS = AA.getState();
537     if (T.hasValue())
538       *T &= AAS;
539     else
540       T = AAS;
541     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
542                       << "\n");
543     return T->isValidState();
544   };
545 
546   bool AllCallSitesKnown;
547   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
548                               AllCallSitesKnown))
549     S.indicatePessimisticFixpoint();
550   else if (T.hasValue())
551     S ^= *T;
552 }
553 
554 /// This function is the bridge between argument position and the call base
555 /// context.
556 template <typename AAType, typename BaseType,
557           typename StateType = typename AAType::StateType>
558 bool getArgumentStateFromCallBaseContext(Attributor &A,
559                                          BaseType &QueryingAttribute,
560                                          IRPosition &Pos, StateType &State) {
561   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
562          "Expected an 'argument' position !");
563   const CallBase *CBContext = Pos.getCallBaseContext();
564   if (!CBContext)
565     return false;
566 
567   int ArgNo = Pos.getCallSiteArgNo();
568   assert(ArgNo >= 0 && "Invalid Arg No!");
569 
570   const auto &AA = A.getAAFor<AAType>(
571       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
572       DepClassTy::REQUIRED);
573   const StateType &CBArgumentState =
574       static_cast<const StateType &>(AA.getState());
575 
576   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
577                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
578                     << "\n");
579 
580   // NOTE: If we want to do call site grouping it should happen here.
581   State ^= CBArgumentState;
582   return true;
583 }
584 
585 /// Helper class for generic deduction: call site argument -> argument position.
586 template <typename AAType, typename BaseType,
587           typename StateType = typename AAType::StateType,
588           bool BridgeCallBaseContext = false>
589 struct AAArgumentFromCallSiteArguments : public BaseType {
590   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
591       : BaseType(IRP, A) {}
592 
593   /// See AbstractAttribute::updateImpl(...).
594   ChangeStatus updateImpl(Attributor &A) override {
595     StateType S = StateType::getBestState(this->getState());
596 
597     if (BridgeCallBaseContext) {
598       bool Success =
599           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
600               A, *this, this->getIRPosition(), S);
601       if (Success)
602         return clampStateAndIndicateChange<StateType>(this->getState(), S);
603     }
604     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
605 
606     // TODO: If we know we visited all incoming values, thus no are assumed
607     // dead, we can take the known information from the state T.
608     return clampStateAndIndicateChange<StateType>(this->getState(), S);
609   }
610 };
611 
612 /// Helper class for generic replication: function returned -> cs returned.
613 template <typename AAType, typename BaseType,
614           typename StateType = typename BaseType::StateType,
615           bool IntroduceCallBaseContext = false>
616 struct AACallSiteReturnedFromReturned : public BaseType {
617   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
618       : BaseType(IRP, A) {}
619 
620   /// See AbstractAttribute::updateImpl(...).
621   ChangeStatus updateImpl(Attributor &A) override {
622     assert(this->getIRPosition().getPositionKind() ==
623                IRPosition::IRP_CALL_SITE_RETURNED &&
624            "Can only wrap function returned positions for call site returned "
625            "positions!");
626     auto &S = this->getState();
627 
628     const Function *AssociatedFunction =
629         this->getIRPosition().getAssociatedFunction();
630     if (!AssociatedFunction)
631       return S.indicatePessimisticFixpoint();
632 
633     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
634     if (IntroduceCallBaseContext)
635       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
636                         << CBContext << "\n");
637 
638     IRPosition FnPos = IRPosition::returned(
639         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
640     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
641     return clampStateAndIndicateChange(S, AA.getState());
642   }
643 };
644 
645 /// Helper function to accumulate uses.
646 template <class AAType, typename StateType = typename AAType::StateType>
647 static void followUsesInContext(AAType &AA, Attributor &A,
648                                 MustBeExecutedContextExplorer &Explorer,
649                                 const Instruction *CtxI,
650                                 SetVector<const Use *> &Uses,
651                                 StateType &State) {
652   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
653   for (unsigned u = 0; u < Uses.size(); ++u) {
654     const Use *U = Uses[u];
655     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
656       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
657       if (Found && AA.followUseInMBEC(A, U, UserI, State))
658         for (const Use &Us : UserI->uses())
659           Uses.insert(&Us);
660     }
661   }
662 }
663 
664 /// Use the must-be-executed-context around \p I to add information into \p S.
665 /// The AAType class is required to have `followUseInMBEC` method with the
666 /// following signature and behaviour:
667 ///
668 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
669 /// U - Underlying use.
670 /// I - The user of the \p U.
671 /// Returns true if the value should be tracked transitively.
672 ///
673 template <class AAType, typename StateType = typename AAType::StateType>
674 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
675                              Instruction &CtxI) {
676 
677   // Container for (transitive) uses of the associated value.
678   SetVector<const Use *> Uses;
679   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
680     Uses.insert(&U);
681 
682   MustBeExecutedContextExplorer &Explorer =
683       A.getInfoCache().getMustBeExecutedContextExplorer();
684 
685   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
686 
687   if (S.isAtFixpoint())
688     return;
689 
690   SmallVector<const BranchInst *, 4> BrInsts;
691   auto Pred = [&](const Instruction *I) {
692     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
693       if (Br->isConditional())
694         BrInsts.push_back(Br);
695     return true;
696   };
697 
698   // Here, accumulate conditional branch instructions in the context. We
699   // explore the child paths and collect the known states. The disjunction of
700   // those states can be merged to its own state. Let ParentState_i be a state
701   // to indicate the known information for an i-th branch instruction in the
702   // context. ChildStates are created for its successors respectively.
703   //
704   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
705   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
706   //      ...
707   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
708   //
709   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
710   //
711   // FIXME: Currently, recursive branches are not handled. For example, we
712   // can't deduce that ptr must be dereferenced in below function.
713   //
714   // void f(int a, int c, int *ptr) {
715   //    if(a)
716   //      if (b) {
717   //        *ptr = 0;
718   //      } else {
719   //        *ptr = 1;
720   //      }
721   //    else {
722   //      if (b) {
723   //        *ptr = 0;
724   //      } else {
725   //        *ptr = 1;
726   //      }
727   //    }
728   // }
729 
730   Explorer.checkForAllContext(&CtxI, Pred);
731   for (const BranchInst *Br : BrInsts) {
732     StateType ParentState;
733 
734     // The known state of the parent state is a conjunction of children's
735     // known states so it is initialized with a best state.
736     ParentState.indicateOptimisticFixpoint();
737 
738     for (const BasicBlock *BB : Br->successors()) {
739       StateType ChildState;
740 
741       size_t BeforeSize = Uses.size();
742       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
743 
744       // Erase uses which only appear in the child.
745       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
746         It = Uses.erase(It);
747 
748       ParentState &= ChildState;
749     }
750 
751     // Use only known state.
752     S += ParentState;
753   }
754 }
755 
756 /// ------------------------ PointerInfo ---------------------------------------
757 
758 namespace llvm {
759 namespace AA {
760 namespace PointerInfo {
761 
762 /// An access kind description as used by AAPointerInfo.
763 struct OffsetAndSize;
764 
765 struct State;
766 
767 } // namespace PointerInfo
768 } // namespace AA
769 
770 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
771 template <>
772 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
773   using Access = AAPointerInfo::Access;
774   static inline Access getEmptyKey();
775   static inline Access getTombstoneKey();
776   static unsigned getHashValue(const Access &A);
777   static bool isEqual(const Access &LHS, const Access &RHS);
778 };
779 
780 /// Helper that allows OffsetAndSize as a key in a DenseMap.
781 template <>
782 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
783     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
784 
785 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
786 /// but the instruction
787 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
788   using Base = DenseMapInfo<Instruction *>;
789   using Access = AAPointerInfo::Access;
790   static inline Access getEmptyKey();
791   static inline Access getTombstoneKey();
792   static unsigned getHashValue(const Access &A);
793   static bool isEqual(const Access &LHS, const Access &RHS);
794 };
795 
796 } // namespace llvm
797 
798 /// Helper to represent an access offset and size, with logic to deal with
799 /// uncertainty and check for overlapping accesses.
800 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
801   using BaseTy = std::pair<int64_t, int64_t>;
802   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
803   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
804   int64_t getOffset() const { return first; }
805   int64_t getSize() const { return second; }
806   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
807 
808   /// Return true if this offset and size pair might describe an address that
809   /// overlaps with \p OAS.
810   bool mayOverlap(const OffsetAndSize &OAS) const {
811     // Any unknown value and we are giving up -> overlap.
812     if (OAS.getOffset() == OffsetAndSize::Unknown ||
813         OAS.getSize() == OffsetAndSize::Unknown ||
814         getOffset() == OffsetAndSize::Unknown ||
815         getSize() == OffsetAndSize::Unknown)
816       return true;
817 
818     // Check if one offset point is in the other interval [offset, offset+size].
819     return OAS.getOffset() + OAS.getSize() > getOffset() &&
820            OAS.getOffset() < getOffset() + getSize();
821   }
822 
823   /// Constant used to represent unknown offset or sizes.
824   static constexpr int64_t Unknown = 1 << 31;
825 };
826 
827 /// Implementation of the DenseMapInfo.
828 ///
829 ///{
830 inline llvm::AccessAsInstructionInfo::Access
831 llvm::AccessAsInstructionInfo::getEmptyKey() {
832   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
833 }
834 inline llvm::AccessAsInstructionInfo::Access
835 llvm::AccessAsInstructionInfo::getTombstoneKey() {
836   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
837                 nullptr);
838 }
839 unsigned llvm::AccessAsInstructionInfo::getHashValue(
840     const llvm::AccessAsInstructionInfo::Access &A) {
841   return Base::getHashValue(A.getRemoteInst());
842 }
843 bool llvm::AccessAsInstructionInfo::isEqual(
844     const llvm::AccessAsInstructionInfo::Access &LHS,
845     const llvm::AccessAsInstructionInfo::Access &RHS) {
846   return LHS.getRemoteInst() == RHS.getRemoteInst();
847 }
848 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
849 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
850   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
851                                nullptr);
852 }
853 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
854 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
855   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
856                                nullptr);
857 }
858 
859 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
860     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
861   return detail::combineHashValue(
862              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
863              (A.isWrittenValueYetUndetermined()
864                   ? ~0
865                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
866          A.getKind();
867 }
868 
869 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
870     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
871     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
872   return LHS == RHS;
873 }
874 ///}
875 
876 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
877 struct AA::PointerInfo::State : public AbstractState {
878 
879   /// Return the best possible representable state.
880   static State getBestState(const State &SIS) { return State(); }
881 
882   /// Return the worst possible representable state.
883   static State getWorstState(const State &SIS) {
884     State R;
885     R.indicatePessimisticFixpoint();
886     return R;
887   }
888 
889   State() {}
890   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
891   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
892 
893   const State &getAssumed() const { return *this; }
894 
895   /// See AbstractState::isValidState().
896   bool isValidState() const override { return BS.isValidState(); }
897 
898   /// See AbstractState::isAtFixpoint().
899   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
900 
901   /// See AbstractState::indicateOptimisticFixpoint().
902   ChangeStatus indicateOptimisticFixpoint() override {
903     BS.indicateOptimisticFixpoint();
904     return ChangeStatus::UNCHANGED;
905   }
906 
907   /// See AbstractState::indicatePessimisticFixpoint().
908   ChangeStatus indicatePessimisticFixpoint() override {
909     BS.indicatePessimisticFixpoint();
910     return ChangeStatus::CHANGED;
911   }
912 
913   State &operator=(const State &R) {
914     if (this == &R)
915       return *this;
916     BS = R.BS;
917     AccessBins = R.AccessBins;
918     return *this;
919   }
920 
921   State &operator=(State &&R) {
922     if (this == &R)
923       return *this;
924     std::swap(BS, R.BS);
925     std::swap(AccessBins, R.AccessBins);
926     return *this;
927   }
928 
929   bool operator==(const State &R) const {
930     if (BS != R.BS)
931       return false;
932     if (AccessBins.size() != R.AccessBins.size())
933       return false;
934     auto It = begin(), RIt = R.begin(), E = end();
935     while (It != E) {
936       if (It->getFirst() != RIt->getFirst())
937         return false;
938       auto &Accs = It->getSecond();
939       auto &RAccs = RIt->getSecond();
940       if (Accs.size() != RAccs.size())
941         return false;
942       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
943       while (AccIt != AccE) {
944         if (*AccIt != *RAccIt)
945           return false;
946         ++AccIt;
947         ++RAccIt;
948       }
949       ++It;
950       ++RIt;
951     }
952     return true;
953   }
954   bool operator!=(const State &R) const { return !(*this == R); }
955 
956   /// We store accesses in a set with the instruction as key.
957   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
958 
959   /// We store all accesses in bins denoted by their offset and size.
960   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
961 
962   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
963   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
964 
965 protected:
966   /// The bins with all the accesses for the associated pointer.
967   DenseMap<OffsetAndSize, Accesses> AccessBins;
968 
969   /// Add a new access to the state at offset \p Offset and with size \p Size.
970   /// The access is associated with \p I, writes \p Content (if anything), and
971   /// is of kind \p Kind.
972   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
973   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
974                          Optional<Value *> Content,
975                          AAPointerInfo::AccessKind Kind, Type *Ty,
976                          Instruction *RemoteI = nullptr,
977                          Accesses *BinPtr = nullptr) {
978     OffsetAndSize Key{Offset, Size};
979     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
980     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
981     // Check if we have an access for this instruction in this bin, if not,
982     // simply add it.
983     auto It = Bin.find(Acc);
984     if (It == Bin.end()) {
985       Bin.insert(Acc);
986       return ChangeStatus::CHANGED;
987     }
988     // If the existing access is the same as then new one, nothing changed.
989     AAPointerInfo::Access Before = *It;
990     // The new one will be combined with the existing one.
991     *It &= Acc;
992     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
993   }
994 
995   /// See AAPointerInfo::forallInterferingAccesses.
996   bool forallInterferingAccesses(
997       Instruction &I,
998       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
999     if (!isValidState())
1000       return false;
1001     // First find the offset and size of I.
1002     OffsetAndSize OAS(-1, -1);
1003     for (auto &It : AccessBins) {
1004       for (auto &Access : It.getSecond()) {
1005         if (Access.getRemoteInst() == &I) {
1006           OAS = It.getFirst();
1007           break;
1008         }
1009       }
1010       if (OAS.getSize() != -1)
1011         break;
1012     }
1013     if (OAS.getSize() == -1)
1014       return true;
1015 
1016     // Now that we have an offset and size, find all overlapping ones and use
1017     // the callback on the accesses.
1018     for (auto &It : AccessBins) {
1019       OffsetAndSize ItOAS = It.getFirst();
1020       if (!OAS.mayOverlap(ItOAS))
1021         continue;
1022       for (auto &Access : It.getSecond())
1023         if (!CB(Access, OAS == ItOAS))
1024           return false;
1025     }
1026     return true;
1027   }
1028 
1029 private:
1030   /// State to track fixpoint and validity.
1031   BooleanState BS;
1032 };
1033 
1034 struct AAPointerInfoImpl
1035     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1036   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1037   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1038 
1039   /// See AbstractAttribute::initialize(...).
1040   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1041 
1042   /// See AbstractAttribute::getAsStr().
1043   const std::string getAsStr() const override {
1044     return std::string("PointerInfo ") +
1045            (isValidState() ? (std::string("#") +
1046                               std::to_string(AccessBins.size()) + " bins")
1047                            : "<invalid>");
1048   }
1049 
1050   /// See AbstractAttribute::manifest(...).
1051   ChangeStatus manifest(Attributor &A) override {
1052     return AAPointerInfo::manifest(A);
1053   }
1054 
1055   bool forallInterferingAccesses(
1056       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1057       const override {
1058     return State::forallInterferingAccesses(LI, CB);
1059   }
1060   bool forallInterferingAccesses(
1061       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1062       const override {
1063     return State::forallInterferingAccesses(SI, CB);
1064   }
1065 
1066   ChangeStatus translateAndAddCalleeState(Attributor &A,
1067                                           const AAPointerInfo &CalleeAA,
1068                                           int64_t CallArgOffset, CallBase &CB) {
1069     using namespace AA::PointerInfo;
1070     if (!CalleeAA.getState().isValidState() || !isValidState())
1071       return indicatePessimisticFixpoint();
1072 
1073     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1074     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1075 
1076     // Combine the accesses bin by bin.
1077     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1078     for (auto &It : CalleeImplAA.getState()) {
1079       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1080       if (CallArgOffset != OffsetAndSize::Unknown)
1081         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1082                             It.first.getSize());
1083       Accesses &Bin = AccessBins[OAS];
1084       for (const AAPointerInfo::Access &RAcc : It.second) {
1085         if (IsByval && !RAcc.isRead())
1086           continue;
1087         bool UsedAssumedInformation = false;
1088         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1089             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1090         AccessKind AK =
1091             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1092                                                  : AccessKind::AK_READ_WRITE));
1093         Changed =
1094             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1095                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1096       }
1097     }
1098     return Changed;
1099   }
1100 
1101   /// Statistic tracking for all AAPointerInfo implementations.
1102   /// See AbstractAttribute::trackStatistics().
1103   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1104 };
1105 
1106 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1107   using AccessKind = AAPointerInfo::AccessKind;
1108   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1109       : AAPointerInfoImpl(IRP, A) {}
1110 
1111   /// See AbstractAttribute::initialize(...).
1112   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1113 
1114   /// Deal with an access and signal if it was handled successfully.
1115   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1116                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1117                     ChangeStatus &Changed, Type *Ty,
1118                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1119     using namespace AA::PointerInfo;
1120     // No need to find a size if one is given or the offset is unknown.
1121     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1122         Ty) {
1123       const DataLayout &DL = A.getDataLayout();
1124       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1125       if (!AccessSize.isScalable())
1126         Size = AccessSize.getFixedSize();
1127     }
1128     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1129     return true;
1130   };
1131 
1132   /// Helper struct, will support ranges eventually.
1133   struct OffsetInfo {
1134     int64_t Offset = AA::PointerInfo::OffsetAndSize::Unknown;
1135 
1136     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1137   };
1138 
1139   /// See AbstractAttribute::updateImpl(...).
1140   ChangeStatus updateImpl(Attributor &A) override {
1141     using namespace AA::PointerInfo;
1142     State S = getState();
1143     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1144     Value &AssociatedValue = getAssociatedValue();
1145 
1146     const DataLayout &DL = A.getDataLayout();
1147     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1148     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1149 
1150     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1151                                      bool &Follow) {
1152       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1153       UsrOI = PtrOI;
1154       Follow = true;
1155       return true;
1156     };
1157 
1158     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1159       Value *CurPtr = U.get();
1160       User *Usr = U.getUser();
1161       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1162                         << *Usr << "\n");
1163 
1164       OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1165 
1166       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1167         if (CE->isCast())
1168           return HandlePassthroughUser(Usr, PtrOI, Follow);
1169         if (CE->isCompare())
1170           return true;
1171         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1172           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1173                             << "\n");
1174           return false;
1175         }
1176       }
1177       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1178         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1179         UsrOI = PtrOI;
1180 
1181         // TODO: Use range information.
1182         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1183             !GEP->hasAllConstantIndices()) {
1184           UsrOI.Offset = OffsetAndSize::Unknown;
1185           Follow = true;
1186           return true;
1187         }
1188 
1189         SmallVector<Value *, 8> Indices;
1190         for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) {
1191           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1192             Indices.push_back(CIdx);
1193             continue;
1194           }
1195 
1196           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1197                             << " : " << *Idx << "\n");
1198           return false;
1199         }
1200         UsrOI.Offset = PtrOI.Offset +
1201                        DL.getIndexedOffsetInType(
1202                            CurPtr->getType()->getPointerElementType(), Indices);
1203         Follow = true;
1204         return true;
1205       }
1206       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1207         return HandlePassthroughUser(Usr, PtrOI, Follow);
1208 
1209       // For PHIs we need to take care of the recurrence explicitly as the value
1210       // might change while we iterate through a loop. For now, we give up if
1211       // the PHI is not invariant.
1212       if (isa<PHINode>(Usr)) {
1213         // Check if the PHI is invariant (so far).
1214         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1215         if (UsrOI == PtrOI)
1216           return true;
1217 
1218         // Check if the PHI operand has already an unknown offset as we can't
1219         // improve on that anymore.
1220         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1221           UsrOI = PtrOI;
1222           Follow = true;
1223           return true;
1224         }
1225 
1226         // Check if the PHI operand is not dependent on the PHI itself.
1227         APInt Offset(DL.getIndexTypeSizeInBits(AssociatedValue.getType()), 0);
1228         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1229                                     DL, Offset, /* AllowNonInbounds */ true)) {
1230           if (Offset != PtrOI.Offset) {
1231             LLVM_DEBUG(dbgs()
1232                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1233                        << *CurPtr << " in " << *Usr << "\n");
1234             return false;
1235           }
1236           return HandlePassthroughUser(Usr, PtrOI, Follow);
1237         }
1238 
1239         // TODO: Approximate in case we know the direction of the recurrence.
1240         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1241                           << *CurPtr << " in " << *Usr << "\n");
1242         UsrOI = PtrOI;
1243         UsrOI.Offset = OffsetAndSize::Unknown;
1244         Follow = true;
1245         return true;
1246       }
1247 
1248       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1249         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1250                             AccessKind::AK_READ, PtrOI.Offset, Changed,
1251                             LoadI->getType());
1252       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1253         if (StoreI->getValueOperand() == CurPtr) {
1254           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1255                             << *StoreI << "\n");
1256           return false;
1257         }
1258         bool UsedAssumedInformation = false;
1259         Optional<Value *> Content = A.getAssumedSimplified(
1260             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1261         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1262                             PtrOI.Offset, Changed,
1263                             StoreI->getValueOperand()->getType());
1264       }
1265       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1266         if (CB->isLifetimeStartOrEnd())
1267           return true;
1268         if (CB->isArgOperand(&U)) {
1269           unsigned ArgNo = CB->getArgOperandNo(&U);
1270           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1271               *this, IRPosition::callsite_argument(*CB, ArgNo),
1272               DepClassTy::REQUIRED);
1273           Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) |
1274                     Changed;
1275           return true;
1276         }
1277         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1278                           << "\n");
1279         // TODO: Allow some call uses
1280         return false;
1281       }
1282 
1283       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1284       return false;
1285     };
1286     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1287                            /* CheckBBLivenessOnly */ true))
1288       return indicatePessimisticFixpoint();
1289 
1290     LLVM_DEBUG({
1291       dbgs() << "Accesses by bin after update:\n";
1292       for (auto &It : AccessBins) {
1293         dbgs() << "[" << It.first.getOffset() << "-"
1294                << It.first.getOffset() + It.first.getSize()
1295                << "] : " << It.getSecond().size() << "\n";
1296         for (auto &Acc : It.getSecond()) {
1297           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1298                  << "\n";
1299           if (Acc.getLocalInst() != Acc.getRemoteInst())
1300             dbgs() << "     -->                         "
1301                    << *Acc.getRemoteInst() << "\n";
1302           if (!Acc.isWrittenValueYetUndetermined())
1303             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1304         }
1305       }
1306     });
1307 
1308     return Changed;
1309   }
1310 
1311   /// See AbstractAttribute::trackStatistics()
1312   void trackStatistics() const override {
1313     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1314   }
1315 };
1316 
1317 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1318   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1319       : AAPointerInfoImpl(IRP, A) {}
1320 
1321   /// See AbstractAttribute::updateImpl(...).
1322   ChangeStatus updateImpl(Attributor &A) override {
1323     return indicatePessimisticFixpoint();
1324   }
1325 
1326   /// See AbstractAttribute::trackStatistics()
1327   void trackStatistics() const override {
1328     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1329   }
1330 };
1331 
1332 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1333   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1334       : AAPointerInfoFloating(IRP, A) {}
1335 
1336   /// See AbstractAttribute::initialize(...).
1337   void initialize(Attributor &A) override {
1338     AAPointerInfoFloating::initialize(A);
1339     if (getAnchorScope()->isDeclaration())
1340       indicatePessimisticFixpoint();
1341   }
1342 
1343   /// See AbstractAttribute::trackStatistics()
1344   void trackStatistics() const override {
1345     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1346   }
1347 };
1348 
1349 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1350   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1351       : AAPointerInfoFloating(IRP, A) {}
1352 
1353   /// See AbstractAttribute::updateImpl(...).
1354   ChangeStatus updateImpl(Attributor &A) override {
1355     using namespace AA::PointerInfo;
1356     // We handle memory intrinsics explicitly, at least the first (=
1357     // destination) and second (=source) arguments as we know how they are
1358     // accessed.
1359     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1360       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1361       int64_t LengthVal = OffsetAndSize::Unknown;
1362       if (Length)
1363         LengthVal = Length->getSExtValue();
1364       Value &Ptr = getAssociatedValue();
1365       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1366       ChangeStatus Changed;
1367       if (ArgNo == 0) {
1368         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1369                      nullptr, LengthVal);
1370       } else if (ArgNo == 1) {
1371         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1372                      nullptr, LengthVal);
1373       } else {
1374         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1375                           << *MI << "\n");
1376         return indicatePessimisticFixpoint();
1377       }
1378       return Changed;
1379     }
1380 
1381     // TODO: Once we have call site specific value information we can provide
1382     //       call site specific liveness information and then it makes
1383     //       sense to specialize attributes for call sites arguments instead of
1384     //       redirecting requests to the callee argument.
1385     Argument *Arg = getAssociatedArgument();
1386     if (!Arg)
1387       return indicatePessimisticFixpoint();
1388     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1389     auto &ArgAA =
1390         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1391     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1392   }
1393 
1394   /// See AbstractAttribute::trackStatistics()
1395   void trackStatistics() const override {
1396     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1397   }
1398 };
1399 
1400 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1401   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1402       : AAPointerInfoFloating(IRP, A) {}
1403 
1404   /// See AbstractAttribute::trackStatistics()
1405   void trackStatistics() const override {
1406     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1407   }
1408 };
1409 
1410 /// -----------------------NoUnwind Function Attribute--------------------------
1411 
1412 struct AANoUnwindImpl : AANoUnwind {
1413   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1414 
1415   const std::string getAsStr() const override {
1416     return getAssumed() ? "nounwind" : "may-unwind";
1417   }
1418 
1419   /// See AbstractAttribute::updateImpl(...).
1420   ChangeStatus updateImpl(Attributor &A) override {
1421     auto Opcodes = {
1422         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1423         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1424         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1425 
1426     auto CheckForNoUnwind = [&](Instruction &I) {
1427       if (!I.mayThrow())
1428         return true;
1429 
1430       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1431         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1432             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1433         return NoUnwindAA.isAssumedNoUnwind();
1434       }
1435       return false;
1436     };
1437 
1438     bool UsedAssumedInformation = false;
1439     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1440                                    UsedAssumedInformation))
1441       return indicatePessimisticFixpoint();
1442 
1443     return ChangeStatus::UNCHANGED;
1444   }
1445 };
1446 
1447 struct AANoUnwindFunction final : public AANoUnwindImpl {
1448   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1449       : AANoUnwindImpl(IRP, A) {}
1450 
1451   /// See AbstractAttribute::trackStatistics()
1452   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1453 };
1454 
1455 /// NoUnwind attribute deduction for a call sites.
1456 struct AANoUnwindCallSite final : AANoUnwindImpl {
1457   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1458       : AANoUnwindImpl(IRP, A) {}
1459 
1460   /// See AbstractAttribute::initialize(...).
1461   void initialize(Attributor &A) override {
1462     AANoUnwindImpl::initialize(A);
1463     Function *F = getAssociatedFunction();
1464     if (!F || F->isDeclaration())
1465       indicatePessimisticFixpoint();
1466   }
1467 
1468   /// See AbstractAttribute::updateImpl(...).
1469   ChangeStatus updateImpl(Attributor &A) override {
1470     // TODO: Once we have call site specific value information we can provide
1471     //       call site specific liveness information and then it makes
1472     //       sense to specialize attributes for call sites arguments instead of
1473     //       redirecting requests to the callee argument.
1474     Function *F = getAssociatedFunction();
1475     const IRPosition &FnPos = IRPosition::function(*F);
1476     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1477     return clampStateAndIndicateChange(getState(), FnAA.getState());
1478   }
1479 
1480   /// See AbstractAttribute::trackStatistics()
1481   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1482 };
1483 
1484 /// --------------------- Function Return Values -------------------------------
1485 
1486 /// "Attribute" that collects all potential returned values and the return
1487 /// instructions that they arise from.
1488 ///
1489 /// If there is a unique returned value R, the manifest method will:
1490 ///   - mark R with the "returned" attribute, if R is an argument.
1491 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1492 
1493   /// Mapping of values potentially returned by the associated function to the
1494   /// return instructions that might return them.
1495   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1496 
1497   /// State flags
1498   ///
1499   ///{
1500   bool IsFixed = false;
1501   bool IsValidState = true;
1502   ///}
1503 
1504 public:
1505   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1506       : AAReturnedValues(IRP, A) {}
1507 
1508   /// See AbstractAttribute::initialize(...).
1509   void initialize(Attributor &A) override {
1510     // Reset the state.
1511     IsFixed = false;
1512     IsValidState = true;
1513     ReturnedValues.clear();
1514 
1515     Function *F = getAssociatedFunction();
1516     if (!F || F->isDeclaration()) {
1517       indicatePessimisticFixpoint();
1518       return;
1519     }
1520     assert(!F->getReturnType()->isVoidTy() &&
1521            "Did not expect a void return type!");
1522 
1523     // The map from instruction opcodes to those instructions in the function.
1524     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1525 
1526     // Look through all arguments, if one is marked as returned we are done.
1527     for (Argument &Arg : F->args()) {
1528       if (Arg.hasReturnedAttr()) {
1529         auto &ReturnInstSet = ReturnedValues[&Arg];
1530         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1531           for (Instruction *RI : *Insts)
1532             ReturnInstSet.insert(cast<ReturnInst>(RI));
1533 
1534         indicateOptimisticFixpoint();
1535         return;
1536       }
1537     }
1538 
1539     if (!A.isFunctionIPOAmendable(*F))
1540       indicatePessimisticFixpoint();
1541   }
1542 
1543   /// See AbstractAttribute::manifest(...).
1544   ChangeStatus manifest(Attributor &A) override;
1545 
1546   /// See AbstractAttribute::getState(...).
1547   AbstractState &getState() override { return *this; }
1548 
1549   /// See AbstractAttribute::getState(...).
1550   const AbstractState &getState() const override { return *this; }
1551 
1552   /// See AbstractAttribute::updateImpl(Attributor &A).
1553   ChangeStatus updateImpl(Attributor &A) override;
1554 
1555   llvm::iterator_range<iterator> returned_values() override {
1556     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1557   }
1558 
1559   llvm::iterator_range<const_iterator> returned_values() const override {
1560     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1561   }
1562 
1563   /// Return the number of potential return values, -1 if unknown.
1564   size_t getNumReturnValues() const override {
1565     return isValidState() ? ReturnedValues.size() : -1;
1566   }
1567 
1568   /// Return an assumed unique return value if a single candidate is found. If
1569   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1570   /// Optional::NoneType.
1571   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1572 
1573   /// See AbstractState::checkForAllReturnedValues(...).
1574   bool checkForAllReturnedValuesAndReturnInsts(
1575       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1576       const override;
1577 
1578   /// Pretty print the attribute similar to the IR representation.
1579   const std::string getAsStr() const override;
1580 
1581   /// See AbstractState::isAtFixpoint().
1582   bool isAtFixpoint() const override { return IsFixed; }
1583 
1584   /// See AbstractState::isValidState().
1585   bool isValidState() const override { return IsValidState; }
1586 
1587   /// See AbstractState::indicateOptimisticFixpoint(...).
1588   ChangeStatus indicateOptimisticFixpoint() override {
1589     IsFixed = true;
1590     return ChangeStatus::UNCHANGED;
1591   }
1592 
1593   ChangeStatus indicatePessimisticFixpoint() override {
1594     IsFixed = true;
1595     IsValidState = false;
1596     return ChangeStatus::CHANGED;
1597   }
1598 };
1599 
1600 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1601   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1602 
1603   // Bookkeeping.
1604   assert(isValidState());
1605   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1606                   "Number of function with known return values");
1607 
1608   // Check if we have an assumed unique return value that we could manifest.
1609   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1610 
1611   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1612     return Changed;
1613 
1614   // Bookkeeping.
1615   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1616                   "Number of function with unique return");
1617   // If the assumed unique return value is an argument, annotate it.
1618   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1619     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1620             getAssociatedFunction()->getReturnType())) {
1621       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1622       Changed = IRAttribute::manifest(A);
1623     }
1624   }
1625   return Changed;
1626 }
1627 
1628 const std::string AAReturnedValuesImpl::getAsStr() const {
1629   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1630          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1631 }
1632 
1633 Optional<Value *>
1634 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1635   // If checkForAllReturnedValues provides a unique value, ignoring potential
1636   // undef values that can also be present, it is assumed to be the actual
1637   // return value and forwarded to the caller of this method. If there are
1638   // multiple, a nullptr is returned indicating there cannot be a unique
1639   // returned value.
1640   Optional<Value *> UniqueRV;
1641   Type *Ty = getAssociatedFunction()->getReturnType();
1642 
1643   auto Pred = [&](Value &RV) -> bool {
1644     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1645     return UniqueRV != Optional<Value *>(nullptr);
1646   };
1647 
1648   if (!A.checkForAllReturnedValues(Pred, *this))
1649     UniqueRV = nullptr;
1650 
1651   return UniqueRV;
1652 }
1653 
1654 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1655     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1656     const {
1657   if (!isValidState())
1658     return false;
1659 
1660   // Check all returned values but ignore call sites as long as we have not
1661   // encountered an overdefined one during an update.
1662   for (auto &It : ReturnedValues) {
1663     Value *RV = It.first;
1664     if (!Pred(*RV, It.second))
1665       return false;
1666   }
1667 
1668   return true;
1669 }
1670 
1671 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1672   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1673 
1674   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1675                            bool) -> bool {
1676     bool UsedAssumedInformation = false;
1677     Optional<Value *> SimpleRetVal =
1678         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1679     if (!SimpleRetVal.hasValue())
1680       return true;
1681     if (!SimpleRetVal.getValue())
1682       return false;
1683     Value *RetVal = *SimpleRetVal;
1684     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1685            "Assumed returned value should be valid in function scope!");
1686     if (ReturnedValues[RetVal].insert(&Ret))
1687       Changed = ChangeStatus::CHANGED;
1688     return true;
1689   };
1690 
1691   auto ReturnInstCB = [&](Instruction &I) {
1692     ReturnInst &Ret = cast<ReturnInst>(I);
1693     return genericValueTraversal<ReturnInst>(
1694         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1695         &I);
1696   };
1697 
1698   // Discover returned values from all live returned instructions in the
1699   // associated function.
1700   bool UsedAssumedInformation = false;
1701   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1702                                  UsedAssumedInformation))
1703     return indicatePessimisticFixpoint();
1704   return Changed;
1705 }
1706 
1707 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1708   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1709       : AAReturnedValuesImpl(IRP, A) {}
1710 
1711   /// See AbstractAttribute::trackStatistics()
1712   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1713 };
1714 
1715 /// Returned values information for a call sites.
1716 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1717   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1718       : AAReturnedValuesImpl(IRP, A) {}
1719 
1720   /// See AbstractAttribute::initialize(...).
1721   void initialize(Attributor &A) override {
1722     // TODO: Once we have call site specific value information we can provide
1723     //       call site specific liveness information and then it makes
1724     //       sense to specialize attributes for call sites instead of
1725     //       redirecting requests to the callee.
1726     llvm_unreachable("Abstract attributes for returned values are not "
1727                      "supported for call sites yet!");
1728   }
1729 
1730   /// See AbstractAttribute::updateImpl(...).
1731   ChangeStatus updateImpl(Attributor &A) override {
1732     return indicatePessimisticFixpoint();
1733   }
1734 
1735   /// See AbstractAttribute::trackStatistics()
1736   void trackStatistics() const override {}
1737 };
1738 
1739 /// ------------------------ NoSync Function Attribute -------------------------
1740 
1741 struct AANoSyncImpl : AANoSync {
1742   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1743 
1744   const std::string getAsStr() const override {
1745     return getAssumed() ? "nosync" : "may-sync";
1746   }
1747 
1748   /// See AbstractAttribute::updateImpl(...).
1749   ChangeStatus updateImpl(Attributor &A) override;
1750 
1751   /// Helper function used to determine whether an instruction is non-relaxed
1752   /// atomic. In other words, if an atomic instruction does not have unordered
1753   /// or monotonic ordering
1754   static bool isNonRelaxedAtomic(Instruction *I);
1755 
1756   /// Helper function specific for intrinsics which are potentially volatile
1757   static bool isNoSyncIntrinsic(Instruction *I);
1758 };
1759 
1760 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1761   if (!I->isAtomic())
1762     return false;
1763 
1764   if (auto *FI = dyn_cast<FenceInst>(I))
1765     // All legal orderings for fence are stronger than monotonic.
1766     return FI->getSyncScopeID() != SyncScope::SingleThread;
1767   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1768     // Unordered is not a legal ordering for cmpxchg.
1769     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1770             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1771   }
1772 
1773   AtomicOrdering Ordering;
1774   switch (I->getOpcode()) {
1775   case Instruction::AtomicRMW:
1776     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1777     break;
1778   case Instruction::Store:
1779     Ordering = cast<StoreInst>(I)->getOrdering();
1780     break;
1781   case Instruction::Load:
1782     Ordering = cast<LoadInst>(I)->getOrdering();
1783     break;
1784   default:
1785     llvm_unreachable(
1786         "New atomic operations need to be known in the attributor.");
1787   }
1788 
1789   return (Ordering != AtomicOrdering::Unordered &&
1790           Ordering != AtomicOrdering::Monotonic);
1791 }
1792 
1793 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1794 /// which would be nosync except that they have a volatile flag.  All other
1795 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1796 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1797   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1798     return !MI->isVolatile();
1799   return false;
1800 }
1801 
1802 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1803 
1804   auto CheckRWInstForNoSync = [&](Instruction &I) {
1805     /// We are looking for volatile instructions or Non-Relaxed atomics.
1806 
1807     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1808       if (CB->hasFnAttr(Attribute::NoSync))
1809         return true;
1810 
1811       if (isNoSyncIntrinsic(&I))
1812         return true;
1813 
1814       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1815           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1816       return NoSyncAA.isAssumedNoSync();
1817     }
1818 
1819     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1820       return true;
1821 
1822     return false;
1823   };
1824 
1825   auto CheckForNoSync = [&](Instruction &I) {
1826     // At this point we handled all read/write effects and they are all
1827     // nosync, so they can be skipped.
1828     if (I.mayReadOrWriteMemory())
1829       return true;
1830 
1831     // non-convergent and readnone imply nosync.
1832     return !cast<CallBase>(I).isConvergent();
1833   };
1834 
1835   bool UsedAssumedInformation = false;
1836   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1837                                           UsedAssumedInformation) ||
1838       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1839                                          UsedAssumedInformation))
1840     return indicatePessimisticFixpoint();
1841 
1842   return ChangeStatus::UNCHANGED;
1843 }
1844 
1845 struct AANoSyncFunction final : public AANoSyncImpl {
1846   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1847       : AANoSyncImpl(IRP, A) {}
1848 
1849   /// See AbstractAttribute::trackStatistics()
1850   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1851 };
1852 
1853 /// NoSync attribute deduction for a call sites.
1854 struct AANoSyncCallSite final : AANoSyncImpl {
1855   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1856       : AANoSyncImpl(IRP, A) {}
1857 
1858   /// See AbstractAttribute::initialize(...).
1859   void initialize(Attributor &A) override {
1860     AANoSyncImpl::initialize(A);
1861     Function *F = getAssociatedFunction();
1862     if (!F || F->isDeclaration())
1863       indicatePessimisticFixpoint();
1864   }
1865 
1866   /// See AbstractAttribute::updateImpl(...).
1867   ChangeStatus updateImpl(Attributor &A) override {
1868     // TODO: Once we have call site specific value information we can provide
1869     //       call site specific liveness information and then it makes
1870     //       sense to specialize attributes for call sites arguments instead of
1871     //       redirecting requests to the callee argument.
1872     Function *F = getAssociatedFunction();
1873     const IRPosition &FnPos = IRPosition::function(*F);
1874     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1875     return clampStateAndIndicateChange(getState(), FnAA.getState());
1876   }
1877 
1878   /// See AbstractAttribute::trackStatistics()
1879   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1880 };
1881 
1882 /// ------------------------ No-Free Attributes ----------------------------
1883 
1884 struct AANoFreeImpl : public AANoFree {
1885   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1886 
1887   /// See AbstractAttribute::updateImpl(...).
1888   ChangeStatus updateImpl(Attributor &A) override {
1889     auto CheckForNoFree = [&](Instruction &I) {
1890       const auto &CB = cast<CallBase>(I);
1891       if (CB.hasFnAttr(Attribute::NoFree))
1892         return true;
1893 
1894       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1895           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1896       return NoFreeAA.isAssumedNoFree();
1897     };
1898 
1899     bool UsedAssumedInformation = false;
1900     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1901                                            UsedAssumedInformation))
1902       return indicatePessimisticFixpoint();
1903     return ChangeStatus::UNCHANGED;
1904   }
1905 
1906   /// See AbstractAttribute::getAsStr().
1907   const std::string getAsStr() const override {
1908     return getAssumed() ? "nofree" : "may-free";
1909   }
1910 };
1911 
1912 struct AANoFreeFunction final : public AANoFreeImpl {
1913   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1914       : AANoFreeImpl(IRP, A) {}
1915 
1916   /// See AbstractAttribute::trackStatistics()
1917   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1918 };
1919 
1920 /// NoFree attribute deduction for a call sites.
1921 struct AANoFreeCallSite final : AANoFreeImpl {
1922   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1923       : AANoFreeImpl(IRP, A) {}
1924 
1925   /// See AbstractAttribute::initialize(...).
1926   void initialize(Attributor &A) override {
1927     AANoFreeImpl::initialize(A);
1928     Function *F = getAssociatedFunction();
1929     if (!F || F->isDeclaration())
1930       indicatePessimisticFixpoint();
1931   }
1932 
1933   /// See AbstractAttribute::updateImpl(...).
1934   ChangeStatus updateImpl(Attributor &A) override {
1935     // TODO: Once we have call site specific value information we can provide
1936     //       call site specific liveness information and then it makes
1937     //       sense to specialize attributes for call sites arguments instead of
1938     //       redirecting requests to the callee argument.
1939     Function *F = getAssociatedFunction();
1940     const IRPosition &FnPos = IRPosition::function(*F);
1941     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1942     return clampStateAndIndicateChange(getState(), FnAA.getState());
1943   }
1944 
1945   /// See AbstractAttribute::trackStatistics()
1946   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1947 };
1948 
1949 /// NoFree attribute for floating values.
1950 struct AANoFreeFloating : AANoFreeImpl {
1951   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1952       : AANoFreeImpl(IRP, A) {}
1953 
1954   /// See AbstractAttribute::trackStatistics()
1955   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1956 
1957   /// See Abstract Attribute::updateImpl(...).
1958   ChangeStatus updateImpl(Attributor &A) override {
1959     const IRPosition &IRP = getIRPosition();
1960 
1961     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1962         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1963     if (NoFreeAA.isAssumedNoFree())
1964       return ChangeStatus::UNCHANGED;
1965 
1966     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1967     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1968       Instruction *UserI = cast<Instruction>(U.getUser());
1969       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1970         if (CB->isBundleOperand(&U))
1971           return false;
1972         if (!CB->isArgOperand(&U))
1973           return true;
1974         unsigned ArgNo = CB->getArgOperandNo(&U);
1975 
1976         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1977             *this, IRPosition::callsite_argument(*CB, ArgNo),
1978             DepClassTy::REQUIRED);
1979         return NoFreeArg.isAssumedNoFree();
1980       }
1981 
1982       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1983           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1984         Follow = true;
1985         return true;
1986       }
1987       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
1988           isa<ReturnInst>(UserI))
1989         return true;
1990 
1991       // Unknown user.
1992       return false;
1993     };
1994     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1995       return indicatePessimisticFixpoint();
1996 
1997     return ChangeStatus::UNCHANGED;
1998   }
1999 };
2000 
2001 /// NoFree attribute for a call site argument.
2002 struct AANoFreeArgument final : AANoFreeFloating {
2003   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2004       : AANoFreeFloating(IRP, A) {}
2005 
2006   /// See AbstractAttribute::trackStatistics()
2007   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2008 };
2009 
2010 /// NoFree attribute for call site arguments.
2011 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2012   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2013       : AANoFreeFloating(IRP, A) {}
2014 
2015   /// See AbstractAttribute::updateImpl(...).
2016   ChangeStatus updateImpl(Attributor &A) override {
2017     // TODO: Once we have call site specific value information we can provide
2018     //       call site specific liveness information and then it makes
2019     //       sense to specialize attributes for call sites arguments instead of
2020     //       redirecting requests to the callee argument.
2021     Argument *Arg = getAssociatedArgument();
2022     if (!Arg)
2023       return indicatePessimisticFixpoint();
2024     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2025     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2026     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2027   }
2028 
2029   /// See AbstractAttribute::trackStatistics()
2030   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2031 };
2032 
2033 /// NoFree attribute for function return value.
2034 struct AANoFreeReturned final : AANoFreeFloating {
2035   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2036       : AANoFreeFloating(IRP, A) {
2037     llvm_unreachable("NoFree is not applicable to function returns!");
2038   }
2039 
2040   /// See AbstractAttribute::initialize(...).
2041   void initialize(Attributor &A) override {
2042     llvm_unreachable("NoFree is not applicable to function returns!");
2043   }
2044 
2045   /// See AbstractAttribute::updateImpl(...).
2046   ChangeStatus updateImpl(Attributor &A) override {
2047     llvm_unreachable("NoFree is not applicable to function returns!");
2048   }
2049 
2050   /// See AbstractAttribute::trackStatistics()
2051   void trackStatistics() const override {}
2052 };
2053 
2054 /// NoFree attribute deduction for a call site return value.
2055 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2056   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2057       : AANoFreeFloating(IRP, A) {}
2058 
2059   ChangeStatus manifest(Attributor &A) override {
2060     return ChangeStatus::UNCHANGED;
2061   }
2062   /// See AbstractAttribute::trackStatistics()
2063   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2064 };
2065 
2066 /// ------------------------ NonNull Argument Attribute ------------------------
2067 static int64_t getKnownNonNullAndDerefBytesForUse(
2068     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2069     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2070   TrackUse = false;
2071 
2072   const Value *UseV = U->get();
2073   if (!UseV->getType()->isPointerTy())
2074     return 0;
2075 
2076   // We need to follow common pointer manipulation uses to the accesses they
2077   // feed into. We can try to be smart to avoid looking through things we do not
2078   // like for now, e.g., non-inbounds GEPs.
2079   if (isa<CastInst>(I)) {
2080     TrackUse = true;
2081     return 0;
2082   }
2083 
2084   if (isa<GetElementPtrInst>(I)) {
2085     TrackUse = true;
2086     return 0;
2087   }
2088 
2089   Type *PtrTy = UseV->getType();
2090   const Function *F = I->getFunction();
2091   bool NullPointerIsDefined =
2092       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2093   const DataLayout &DL = A.getInfoCache().getDL();
2094   if (const auto *CB = dyn_cast<CallBase>(I)) {
2095     if (CB->isBundleOperand(U)) {
2096       if (RetainedKnowledge RK = getKnowledgeFromUse(
2097               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2098         IsNonNull |=
2099             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2100         return RK.ArgValue;
2101       }
2102       return 0;
2103     }
2104 
2105     if (CB->isCallee(U)) {
2106       IsNonNull |= !NullPointerIsDefined;
2107       return 0;
2108     }
2109 
2110     unsigned ArgNo = CB->getArgOperandNo(U);
2111     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2112     // As long as we only use known information there is no need to track
2113     // dependences here.
2114     auto &DerefAA =
2115         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2116     IsNonNull |= DerefAA.isKnownNonNull();
2117     return DerefAA.getKnownDereferenceableBytes();
2118   }
2119 
2120   int64_t Offset;
2121   const Value *Base =
2122       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
2123   if (Base) {
2124     if (Base == &AssociatedValue &&
2125         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2126       int64_t DerefBytes =
2127           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2128 
2129       IsNonNull |= !NullPointerIsDefined;
2130       return std::max(int64_t(0), DerefBytes);
2131     }
2132   }
2133 
2134   /// Corner case when an offset is 0.
2135   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2136                                               /*AllowNonInbounds*/ true);
2137   if (Base) {
2138     if (Offset == 0 && Base == &AssociatedValue &&
2139         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2140       int64_t DerefBytes =
2141           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2142       IsNonNull |= !NullPointerIsDefined;
2143       return std::max(int64_t(0), DerefBytes);
2144     }
2145   }
2146 
2147   return 0;
2148 }
2149 
2150 struct AANonNullImpl : AANonNull {
2151   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2152       : AANonNull(IRP, A),
2153         NullIsDefined(NullPointerIsDefined(
2154             getAnchorScope(),
2155             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2156 
2157   /// See AbstractAttribute::initialize(...).
2158   void initialize(Attributor &A) override {
2159     Value &V = getAssociatedValue();
2160     if (!NullIsDefined &&
2161         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2162                 /* IgnoreSubsumingPositions */ false, &A)) {
2163       indicateOptimisticFixpoint();
2164       return;
2165     }
2166 
2167     if (isa<ConstantPointerNull>(V)) {
2168       indicatePessimisticFixpoint();
2169       return;
2170     }
2171 
2172     AANonNull::initialize(A);
2173 
2174     bool CanBeNull, CanBeFreed;
2175     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2176                                          CanBeFreed)) {
2177       if (!CanBeNull) {
2178         indicateOptimisticFixpoint();
2179         return;
2180       }
2181     }
2182 
2183     if (isa<GlobalValue>(&getAssociatedValue())) {
2184       indicatePessimisticFixpoint();
2185       return;
2186     }
2187 
2188     if (Instruction *CtxI = getCtxI())
2189       followUsesInMBEC(*this, A, getState(), *CtxI);
2190   }
2191 
2192   /// See followUsesInMBEC
2193   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2194                        AANonNull::StateType &State) {
2195     bool IsNonNull = false;
2196     bool TrackUse = false;
2197     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2198                                        IsNonNull, TrackUse);
2199     State.setKnown(IsNonNull);
2200     return TrackUse;
2201   }
2202 
2203   /// See AbstractAttribute::getAsStr().
2204   const std::string getAsStr() const override {
2205     return getAssumed() ? "nonnull" : "may-null";
2206   }
2207 
2208   /// Flag to determine if the underlying value can be null and still allow
2209   /// valid accesses.
2210   const bool NullIsDefined;
2211 };
2212 
2213 /// NonNull attribute for a floating value.
2214 struct AANonNullFloating : public AANonNullImpl {
2215   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2216       : AANonNullImpl(IRP, A) {}
2217 
2218   /// See AbstractAttribute::updateImpl(...).
2219   ChangeStatus updateImpl(Attributor &A) override {
2220     const DataLayout &DL = A.getDataLayout();
2221 
2222     DominatorTree *DT = nullptr;
2223     AssumptionCache *AC = nullptr;
2224     InformationCache &InfoCache = A.getInfoCache();
2225     if (const Function *Fn = getAnchorScope()) {
2226       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2227       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2228     }
2229 
2230     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2231                             AANonNull::StateType &T, bool Stripped) -> bool {
2232       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2233                                              DepClassTy::REQUIRED);
2234       if (!Stripped && this == &AA) {
2235         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2236           T.indicatePessimisticFixpoint();
2237       } else {
2238         // Use abstract attribute information.
2239         const AANonNull::StateType &NS = AA.getState();
2240         T ^= NS;
2241       }
2242       return T.isValidState();
2243     };
2244 
2245     StateType T;
2246     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2247                                           VisitValueCB, getCtxI()))
2248       return indicatePessimisticFixpoint();
2249 
2250     return clampStateAndIndicateChange(getState(), T);
2251   }
2252 
2253   /// See AbstractAttribute::trackStatistics()
2254   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2255 };
2256 
2257 /// NonNull attribute for function return value.
2258 struct AANonNullReturned final
2259     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2260   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2261       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2262 
2263   /// See AbstractAttribute::getAsStr().
2264   const std::string getAsStr() const override {
2265     return getAssumed() ? "nonnull" : "may-null";
2266   }
2267 
2268   /// See AbstractAttribute::trackStatistics()
2269   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2270 };
2271 
2272 /// NonNull attribute for function argument.
2273 struct AANonNullArgument final
2274     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2275   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2276       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2277 
2278   /// See AbstractAttribute::trackStatistics()
2279   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2280 };
2281 
2282 struct AANonNullCallSiteArgument final : AANonNullFloating {
2283   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2284       : AANonNullFloating(IRP, A) {}
2285 
2286   /// See AbstractAttribute::trackStatistics()
2287   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2288 };
2289 
2290 /// NonNull attribute for a call site return position.
2291 struct AANonNullCallSiteReturned final
2292     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2293   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2294       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2295 
2296   /// See AbstractAttribute::trackStatistics()
2297   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2298 };
2299 
2300 /// ------------------------ No-Recurse Attributes ----------------------------
2301 
2302 struct AANoRecurseImpl : public AANoRecurse {
2303   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2304 
2305   /// See AbstractAttribute::getAsStr()
2306   const std::string getAsStr() const override {
2307     return getAssumed() ? "norecurse" : "may-recurse";
2308   }
2309 };
2310 
2311 struct AANoRecurseFunction final : AANoRecurseImpl {
2312   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2313       : AANoRecurseImpl(IRP, A) {}
2314 
2315   /// See AbstractAttribute::initialize(...).
2316   void initialize(Attributor &A) override {
2317     AANoRecurseImpl::initialize(A);
2318     if (const Function *F = getAnchorScope())
2319       if (A.getInfoCache().getSccSize(*F) != 1)
2320         indicatePessimisticFixpoint();
2321   }
2322 
2323   /// See AbstractAttribute::updateImpl(...).
2324   ChangeStatus updateImpl(Attributor &A) override {
2325 
2326     // If all live call sites are known to be no-recurse, we are as well.
2327     auto CallSitePred = [&](AbstractCallSite ACS) {
2328       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2329           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2330           DepClassTy::NONE);
2331       return NoRecurseAA.isKnownNoRecurse();
2332     };
2333     bool AllCallSitesKnown;
2334     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2335       // If we know all call sites and all are known no-recurse, we are done.
2336       // If all known call sites, which might not be all that exist, are known
2337       // to be no-recurse, we are not done but we can continue to assume
2338       // no-recurse. If one of the call sites we have not visited will become
2339       // live, another update is triggered.
2340       if (AllCallSitesKnown)
2341         indicateOptimisticFixpoint();
2342       return ChangeStatus::UNCHANGED;
2343     }
2344 
2345     // If the above check does not hold anymore we look at the calls.
2346     auto CheckForNoRecurse = [&](Instruction &I) {
2347       const auto &CB = cast<CallBase>(I);
2348       if (CB.hasFnAttr(Attribute::NoRecurse))
2349         return true;
2350 
2351       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2352           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2353       if (!NoRecurseAA.isAssumedNoRecurse())
2354         return false;
2355 
2356       // Recursion to the same function
2357       if (CB.getCalledFunction() == getAnchorScope())
2358         return false;
2359 
2360       return true;
2361     };
2362 
2363     bool UsedAssumedInformation = false;
2364     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2365                                            UsedAssumedInformation))
2366       return indicatePessimisticFixpoint();
2367     return ChangeStatus::UNCHANGED;
2368   }
2369 
2370   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2371 };
2372 
2373 /// NoRecurse attribute deduction for a call sites.
2374 struct AANoRecurseCallSite final : AANoRecurseImpl {
2375   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2376       : AANoRecurseImpl(IRP, A) {}
2377 
2378   /// See AbstractAttribute::initialize(...).
2379   void initialize(Attributor &A) override {
2380     AANoRecurseImpl::initialize(A);
2381     Function *F = getAssociatedFunction();
2382     if (!F || F->isDeclaration())
2383       indicatePessimisticFixpoint();
2384   }
2385 
2386   /// See AbstractAttribute::updateImpl(...).
2387   ChangeStatus updateImpl(Attributor &A) override {
2388     // TODO: Once we have call site specific value information we can provide
2389     //       call site specific liveness information and then it makes
2390     //       sense to specialize attributes for call sites arguments instead of
2391     //       redirecting requests to the callee argument.
2392     Function *F = getAssociatedFunction();
2393     const IRPosition &FnPos = IRPosition::function(*F);
2394     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2395     return clampStateAndIndicateChange(getState(), FnAA.getState());
2396   }
2397 
2398   /// See AbstractAttribute::trackStatistics()
2399   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2400 };
2401 
2402 /// -------------------- Undefined-Behavior Attributes ------------------------
2403 
2404 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2405   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2406       : AAUndefinedBehavior(IRP, A) {}
2407 
2408   /// See AbstractAttribute::updateImpl(...).
2409   // through a pointer (i.e. also branches etc.)
2410   ChangeStatus updateImpl(Attributor &A) override {
2411     const size_t UBPrevSize = KnownUBInsts.size();
2412     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2413 
2414     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2415       // Lang ref now states volatile store is not UB, let's skip them.
2416       if (I.isVolatile() && I.mayWriteToMemory())
2417         return true;
2418 
2419       // Skip instructions that are already saved.
2420       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2421         return true;
2422 
2423       // If we reach here, we know we have an instruction
2424       // that accesses memory through a pointer operand,
2425       // for which getPointerOperand() should give it to us.
2426       Value *PtrOp =
2427           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2428       assert(PtrOp &&
2429              "Expected pointer operand of memory accessing instruction");
2430 
2431       // Either we stopped and the appropriate action was taken,
2432       // or we got back a simplified value to continue.
2433       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2434       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2435         return true;
2436       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2437 
2438       // A memory access through a pointer is considered UB
2439       // only if the pointer has constant null value.
2440       // TODO: Expand it to not only check constant values.
2441       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2442         AssumedNoUBInsts.insert(&I);
2443         return true;
2444       }
2445       const Type *PtrTy = PtrOpVal->getType();
2446 
2447       // Because we only consider instructions inside functions,
2448       // assume that a parent function exists.
2449       const Function *F = I.getFunction();
2450 
2451       // A memory access using constant null pointer is only considered UB
2452       // if null pointer is _not_ defined for the target platform.
2453       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2454         AssumedNoUBInsts.insert(&I);
2455       else
2456         KnownUBInsts.insert(&I);
2457       return true;
2458     };
2459 
2460     auto InspectBrInstForUB = [&](Instruction &I) {
2461       // A conditional branch instruction is considered UB if it has `undef`
2462       // condition.
2463 
2464       // Skip instructions that are already saved.
2465       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2466         return true;
2467 
2468       // We know we have a branch instruction.
2469       auto *BrInst = cast<BranchInst>(&I);
2470 
2471       // Unconditional branches are never considered UB.
2472       if (BrInst->isUnconditional())
2473         return true;
2474 
2475       // Either we stopped and the appropriate action was taken,
2476       // or we got back a simplified value to continue.
2477       Optional<Value *> SimplifiedCond =
2478           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2479       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2480         return true;
2481       AssumedNoUBInsts.insert(&I);
2482       return true;
2483     };
2484 
2485     auto InspectCallSiteForUB = [&](Instruction &I) {
2486       // Check whether a callsite always cause UB or not
2487 
2488       // Skip instructions that are already saved.
2489       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2490         return true;
2491 
2492       // Check nonnull and noundef argument attribute violation for each
2493       // callsite.
2494       CallBase &CB = cast<CallBase>(I);
2495       Function *Callee = CB.getCalledFunction();
2496       if (!Callee)
2497         return true;
2498       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2499         // If current argument is known to be simplified to null pointer and the
2500         // corresponding argument position is known to have nonnull attribute,
2501         // the argument is poison. Furthermore, if the argument is poison and
2502         // the position is known to have noundef attriubte, this callsite is
2503         // considered UB.
2504         if (idx >= Callee->arg_size())
2505           break;
2506         Value *ArgVal = CB.getArgOperand(idx);
2507         if (!ArgVal)
2508           continue;
2509         // Here, we handle three cases.
2510         //   (1) Not having a value means it is dead. (we can replace the value
2511         //       with undef)
2512         //   (2) Simplified to undef. The argument violate noundef attriubte.
2513         //   (3) Simplified to null pointer where known to be nonnull.
2514         //       The argument is a poison value and violate noundef attribute.
2515         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2516         auto &NoUndefAA =
2517             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2518         if (!NoUndefAA.isKnownNoUndef())
2519           continue;
2520         bool UsedAssumedInformation = false;
2521         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2522             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2523         if (UsedAssumedInformation)
2524           continue;
2525         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2526           return true;
2527         if (!SimplifiedVal.hasValue() ||
2528             isa<UndefValue>(*SimplifiedVal.getValue())) {
2529           KnownUBInsts.insert(&I);
2530           continue;
2531         }
2532         if (!ArgVal->getType()->isPointerTy() ||
2533             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2534           continue;
2535         auto &NonNullAA =
2536             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2537         if (NonNullAA.isKnownNonNull())
2538           KnownUBInsts.insert(&I);
2539       }
2540       return true;
2541     };
2542 
2543     auto InspectReturnInstForUB =
2544         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2545           // Check if a return instruction always cause UB or not
2546           // Note: It is guaranteed that the returned position of the anchor
2547           //       scope has noundef attribute when this is called.
2548           //       We also ensure the return position is not "assumed dead"
2549           //       because the returned value was then potentially simplified to
2550           //       `undef` in AAReturnedValues without removing the `noundef`
2551           //       attribute yet.
2552 
2553           // When the returned position has noundef attriubte, UB occur in the
2554           // following cases.
2555           //   (1) Returned value is known to be undef.
2556           //   (2) The value is known to be a null pointer and the returned
2557           //       position has nonnull attribute (because the returned value is
2558           //       poison).
2559           bool FoundUB = false;
2560           if (isa<UndefValue>(V)) {
2561             FoundUB = true;
2562           } else {
2563             if (isa<ConstantPointerNull>(V)) {
2564               auto &NonNullAA = A.getAAFor<AANonNull>(
2565                   *this, IRPosition::returned(*getAnchorScope()),
2566                   DepClassTy::NONE);
2567               if (NonNullAA.isKnownNonNull())
2568                 FoundUB = true;
2569             }
2570           }
2571 
2572           if (FoundUB)
2573             for (ReturnInst *RI : RetInsts)
2574               KnownUBInsts.insert(RI);
2575           return true;
2576         };
2577 
2578     bool UsedAssumedInformation = false;
2579     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2580                               {Instruction::Load, Instruction::Store,
2581                                Instruction::AtomicCmpXchg,
2582                                Instruction::AtomicRMW},
2583                               UsedAssumedInformation,
2584                               /* CheckBBLivenessOnly */ true);
2585     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2586                               UsedAssumedInformation,
2587                               /* CheckBBLivenessOnly */ true);
2588     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2589                                       UsedAssumedInformation);
2590 
2591     // If the returned position of the anchor scope has noundef attriubte, check
2592     // all returned instructions.
2593     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2594       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2595       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2596         auto &RetPosNoUndefAA =
2597             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2598         if (RetPosNoUndefAA.isKnownNoUndef())
2599           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2600                                                     *this);
2601       }
2602     }
2603 
2604     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2605         UBPrevSize != KnownUBInsts.size())
2606       return ChangeStatus::CHANGED;
2607     return ChangeStatus::UNCHANGED;
2608   }
2609 
2610   bool isKnownToCauseUB(Instruction *I) const override {
2611     return KnownUBInsts.count(I);
2612   }
2613 
2614   bool isAssumedToCauseUB(Instruction *I) const override {
2615     // In simple words, if an instruction is not in the assumed to _not_
2616     // cause UB, then it is assumed UB (that includes those
2617     // in the KnownUBInsts set). The rest is boilerplate
2618     // is to ensure that it is one of the instructions we test
2619     // for UB.
2620 
2621     switch (I->getOpcode()) {
2622     case Instruction::Load:
2623     case Instruction::Store:
2624     case Instruction::AtomicCmpXchg:
2625     case Instruction::AtomicRMW:
2626       return !AssumedNoUBInsts.count(I);
2627     case Instruction::Br: {
2628       auto BrInst = cast<BranchInst>(I);
2629       if (BrInst->isUnconditional())
2630         return false;
2631       return !AssumedNoUBInsts.count(I);
2632     } break;
2633     default:
2634       return false;
2635     }
2636     return false;
2637   }
2638 
2639   ChangeStatus manifest(Attributor &A) override {
2640     if (KnownUBInsts.empty())
2641       return ChangeStatus::UNCHANGED;
2642     for (Instruction *I : KnownUBInsts)
2643       A.changeToUnreachableAfterManifest(I);
2644     return ChangeStatus::CHANGED;
2645   }
2646 
2647   /// See AbstractAttribute::getAsStr()
2648   const std::string getAsStr() const override {
2649     return getAssumed() ? "undefined-behavior" : "no-ub";
2650   }
2651 
2652   /// Note: The correctness of this analysis depends on the fact that the
2653   /// following 2 sets will stop changing after some point.
2654   /// "Change" here means that their size changes.
2655   /// The size of each set is monotonically increasing
2656   /// (we only add items to them) and it is upper bounded by the number of
2657   /// instructions in the processed function (we can never save more
2658   /// elements in either set than this number). Hence, at some point,
2659   /// they will stop increasing.
2660   /// Consequently, at some point, both sets will have stopped
2661   /// changing, effectively making the analysis reach a fixpoint.
2662 
2663   /// Note: These 2 sets are disjoint and an instruction can be considered
2664   /// one of 3 things:
2665   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2666   ///    the KnownUBInsts set.
2667   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2668   ///    has a reason to assume it).
2669   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2670   ///    could not find a reason to assume or prove that it can cause UB,
2671   ///    hence it assumes it doesn't. We have a set for these instructions
2672   ///    so that we don't reprocess them in every update.
2673   ///    Note however that instructions in this set may cause UB.
2674 
2675 protected:
2676   /// A set of all live instructions _known_ to cause UB.
2677   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2678 
2679 private:
2680   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2681   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2682 
2683   // Should be called on updates in which if we're processing an instruction
2684   // \p I that depends on a value \p V, one of the following has to happen:
2685   // - If the value is assumed, then stop.
2686   // - If the value is known but undef, then consider it UB.
2687   // - Otherwise, do specific processing with the simplified value.
2688   // We return None in the first 2 cases to signify that an appropriate
2689   // action was taken and the caller should stop.
2690   // Otherwise, we return the simplified value that the caller should
2691   // use for specific processing.
2692   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2693                                          Instruction *I) {
2694     bool UsedAssumedInformation = false;
2695     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2696         IRPosition::value(*V), *this, UsedAssumedInformation);
2697     if (!UsedAssumedInformation) {
2698       // Don't depend on assumed values.
2699       if (!SimplifiedV.hasValue()) {
2700         // If it is known (which we tested above) but it doesn't have a value,
2701         // then we can assume `undef` and hence the instruction is UB.
2702         KnownUBInsts.insert(I);
2703         return llvm::None;
2704       }
2705       if (!SimplifiedV.getValue())
2706         return nullptr;
2707       V = *SimplifiedV;
2708     }
2709     if (isa<UndefValue>(V)) {
2710       KnownUBInsts.insert(I);
2711       return llvm::None;
2712     }
2713     return V;
2714   }
2715 };
2716 
2717 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2718   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2719       : AAUndefinedBehaviorImpl(IRP, A) {}
2720 
2721   /// See AbstractAttribute::trackStatistics()
2722   void trackStatistics() const override {
2723     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2724                "Number of instructions known to have UB");
2725     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2726         KnownUBInsts.size();
2727   }
2728 };
2729 
2730 /// ------------------------ Will-Return Attributes ----------------------------
2731 
2732 // Helper function that checks whether a function has any cycle which we don't
2733 // know if it is bounded or not.
2734 // Loops with maximum trip count are considered bounded, any other cycle not.
2735 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2736   ScalarEvolution *SE =
2737       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2738   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2739   // If either SCEV or LoopInfo is not available for the function then we assume
2740   // any cycle to be unbounded cycle.
2741   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2742   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2743   if (!SE || !LI) {
2744     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2745       if (SCCI.hasCycle())
2746         return true;
2747     return false;
2748   }
2749 
2750   // If there's irreducible control, the function may contain non-loop cycles.
2751   if (mayContainIrreducibleControl(F, LI))
2752     return true;
2753 
2754   // Any loop that does not have a max trip count is considered unbounded cycle.
2755   for (auto *L : LI->getLoopsInPreorder()) {
2756     if (!SE->getSmallConstantMaxTripCount(L))
2757       return true;
2758   }
2759   return false;
2760 }
2761 
2762 struct AAWillReturnImpl : public AAWillReturn {
2763   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2764       : AAWillReturn(IRP, A) {}
2765 
2766   /// See AbstractAttribute::initialize(...).
2767   void initialize(Attributor &A) override {
2768     AAWillReturn::initialize(A);
2769 
2770     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2771       indicateOptimisticFixpoint();
2772       return;
2773     }
2774   }
2775 
2776   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2777   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2778     // Check for `mustprogress` in the scope and the associated function which
2779     // might be different if this is a call site.
2780     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2781         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2782       return false;
2783 
2784     const auto &MemAA =
2785         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2786     if (!MemAA.isAssumedReadOnly())
2787       return false;
2788     if (KnownOnly && !MemAA.isKnownReadOnly())
2789       return false;
2790     if (!MemAA.isKnownReadOnly())
2791       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2792 
2793     return true;
2794   }
2795 
2796   /// See AbstractAttribute::updateImpl(...).
2797   ChangeStatus updateImpl(Attributor &A) override {
2798     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2799       return ChangeStatus::UNCHANGED;
2800 
2801     auto CheckForWillReturn = [&](Instruction &I) {
2802       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2803       const auto &WillReturnAA =
2804           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2805       if (WillReturnAA.isKnownWillReturn())
2806         return true;
2807       if (!WillReturnAA.isAssumedWillReturn())
2808         return false;
2809       const auto &NoRecurseAA =
2810           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2811       return NoRecurseAA.isAssumedNoRecurse();
2812     };
2813 
2814     bool UsedAssumedInformation = false;
2815     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2816                                            UsedAssumedInformation))
2817       return indicatePessimisticFixpoint();
2818 
2819     return ChangeStatus::UNCHANGED;
2820   }
2821 
2822   /// See AbstractAttribute::getAsStr()
2823   const std::string getAsStr() const override {
2824     return getAssumed() ? "willreturn" : "may-noreturn";
2825   }
2826 };
2827 
2828 struct AAWillReturnFunction final : AAWillReturnImpl {
2829   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2830       : AAWillReturnImpl(IRP, A) {}
2831 
2832   /// See AbstractAttribute::initialize(...).
2833   void initialize(Attributor &A) override {
2834     AAWillReturnImpl::initialize(A);
2835 
2836     Function *F = getAnchorScope();
2837     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2838       indicatePessimisticFixpoint();
2839   }
2840 
2841   /// See AbstractAttribute::trackStatistics()
2842   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2843 };
2844 
2845 /// WillReturn attribute deduction for a call sites.
2846 struct AAWillReturnCallSite final : AAWillReturnImpl {
2847   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2848       : AAWillReturnImpl(IRP, A) {}
2849 
2850   /// See AbstractAttribute::initialize(...).
2851   void initialize(Attributor &A) override {
2852     AAWillReturnImpl::initialize(A);
2853     Function *F = getAssociatedFunction();
2854     if (!F || !A.isFunctionIPOAmendable(*F))
2855       indicatePessimisticFixpoint();
2856   }
2857 
2858   /// See AbstractAttribute::updateImpl(...).
2859   ChangeStatus updateImpl(Attributor &A) override {
2860     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2861       return ChangeStatus::UNCHANGED;
2862 
2863     // TODO: Once we have call site specific value information we can provide
2864     //       call site specific liveness information and then it makes
2865     //       sense to specialize attributes for call sites arguments instead of
2866     //       redirecting requests to the callee argument.
2867     Function *F = getAssociatedFunction();
2868     const IRPosition &FnPos = IRPosition::function(*F);
2869     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2870     return clampStateAndIndicateChange(getState(), FnAA.getState());
2871   }
2872 
2873   /// See AbstractAttribute::trackStatistics()
2874   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2875 };
2876 
2877 /// -------------------AAReachability Attribute--------------------------
2878 
2879 struct AAReachabilityImpl : AAReachability {
2880   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2881       : AAReachability(IRP, A) {}
2882 
2883   const std::string getAsStr() const override {
2884     // TODO: Return the number of reachable queries.
2885     return "reachable";
2886   }
2887 
2888   /// See AbstractAttribute::updateImpl(...).
2889   ChangeStatus updateImpl(Attributor &A) override {
2890     return ChangeStatus::UNCHANGED;
2891   }
2892 };
2893 
2894 struct AAReachabilityFunction final : public AAReachabilityImpl {
2895   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2896       : AAReachabilityImpl(IRP, A) {}
2897 
2898   /// See AbstractAttribute::trackStatistics()
2899   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2900 };
2901 
2902 /// ------------------------ NoAlias Argument Attribute ------------------------
2903 
2904 struct AANoAliasImpl : AANoAlias {
2905   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2906     assert(getAssociatedType()->isPointerTy() &&
2907            "Noalias is a pointer attribute");
2908   }
2909 
2910   const std::string getAsStr() const override {
2911     return getAssumed() ? "noalias" : "may-alias";
2912   }
2913 };
2914 
2915 /// NoAlias attribute for a floating value.
2916 struct AANoAliasFloating final : AANoAliasImpl {
2917   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2918       : AANoAliasImpl(IRP, A) {}
2919 
2920   /// See AbstractAttribute::initialize(...).
2921   void initialize(Attributor &A) override {
2922     AANoAliasImpl::initialize(A);
2923     Value *Val = &getAssociatedValue();
2924     do {
2925       CastInst *CI = dyn_cast<CastInst>(Val);
2926       if (!CI)
2927         break;
2928       Value *Base = CI->getOperand(0);
2929       if (!Base->hasOneUse())
2930         break;
2931       Val = Base;
2932     } while (true);
2933 
2934     if (!Val->getType()->isPointerTy()) {
2935       indicatePessimisticFixpoint();
2936       return;
2937     }
2938 
2939     if (isa<AllocaInst>(Val))
2940       indicateOptimisticFixpoint();
2941     else if (isa<ConstantPointerNull>(Val) &&
2942              !NullPointerIsDefined(getAnchorScope(),
2943                                    Val->getType()->getPointerAddressSpace()))
2944       indicateOptimisticFixpoint();
2945     else if (Val != &getAssociatedValue()) {
2946       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2947           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2948       if (ValNoAliasAA.isKnownNoAlias())
2949         indicateOptimisticFixpoint();
2950     }
2951   }
2952 
2953   /// See AbstractAttribute::updateImpl(...).
2954   ChangeStatus updateImpl(Attributor &A) override {
2955     // TODO: Implement this.
2956     return indicatePessimisticFixpoint();
2957   }
2958 
2959   /// See AbstractAttribute::trackStatistics()
2960   void trackStatistics() const override {
2961     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2962   }
2963 };
2964 
2965 /// NoAlias attribute for an argument.
2966 struct AANoAliasArgument final
2967     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2968   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2969   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2970 
2971   /// See AbstractAttribute::initialize(...).
2972   void initialize(Attributor &A) override {
2973     Base::initialize(A);
2974     // See callsite argument attribute and callee argument attribute.
2975     if (hasAttr({Attribute::ByVal}))
2976       indicateOptimisticFixpoint();
2977   }
2978 
2979   /// See AbstractAttribute::update(...).
2980   ChangeStatus updateImpl(Attributor &A) override {
2981     // We have to make sure no-alias on the argument does not break
2982     // synchronization when this is a callback argument, see also [1] below.
2983     // If synchronization cannot be affected, we delegate to the base updateImpl
2984     // function, otherwise we give up for now.
2985 
2986     // If the function is no-sync, no-alias cannot break synchronization.
2987     const auto &NoSyncAA =
2988         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2989                              DepClassTy::OPTIONAL);
2990     if (NoSyncAA.isAssumedNoSync())
2991       return Base::updateImpl(A);
2992 
2993     // If the argument is read-only, no-alias cannot break synchronization.
2994     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2995         *this, getIRPosition(), DepClassTy::OPTIONAL);
2996     if (MemBehaviorAA.isAssumedReadOnly())
2997       return Base::updateImpl(A);
2998 
2999     // If the argument is never passed through callbacks, no-alias cannot break
3000     // synchronization.
3001     bool AllCallSitesKnown;
3002     if (A.checkForAllCallSites(
3003             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3004             true, AllCallSitesKnown))
3005       return Base::updateImpl(A);
3006 
3007     // TODO: add no-alias but make sure it doesn't break synchronization by
3008     // introducing fake uses. See:
3009     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3010     //     International Workshop on OpenMP 2018,
3011     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3012 
3013     return indicatePessimisticFixpoint();
3014   }
3015 
3016   /// See AbstractAttribute::trackStatistics()
3017   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3018 };
3019 
3020 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3021   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3022       : AANoAliasImpl(IRP, A) {}
3023 
3024   /// See AbstractAttribute::initialize(...).
3025   void initialize(Attributor &A) override {
3026     // See callsite argument attribute and callee argument attribute.
3027     const auto &CB = cast<CallBase>(getAnchorValue());
3028     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3029       indicateOptimisticFixpoint();
3030     Value &Val = getAssociatedValue();
3031     if (isa<ConstantPointerNull>(Val) &&
3032         !NullPointerIsDefined(getAnchorScope(),
3033                               Val.getType()->getPointerAddressSpace()))
3034       indicateOptimisticFixpoint();
3035   }
3036 
3037   /// Determine if the underlying value may alias with the call site argument
3038   /// \p OtherArgNo of \p ICS (= the underlying call site).
3039   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3040                             const AAMemoryBehavior &MemBehaviorAA,
3041                             const CallBase &CB, unsigned OtherArgNo) {
3042     // We do not need to worry about aliasing with the underlying IRP.
3043     if (this->getCalleeArgNo() == (int)OtherArgNo)
3044       return false;
3045 
3046     // If it is not a pointer or pointer vector we do not alias.
3047     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3048     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3049       return false;
3050 
3051     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3052         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3053 
3054     // If the argument is readnone, there is no read-write aliasing.
3055     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3056       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3057       return false;
3058     }
3059 
3060     // If the argument is readonly and the underlying value is readonly, there
3061     // is no read-write aliasing.
3062     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3063     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3064       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3065       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3066       return false;
3067     }
3068 
3069     // We have to utilize actual alias analysis queries so we need the object.
3070     if (!AAR)
3071       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3072 
3073     // Try to rule it out at the call site.
3074     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3075     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3076                          "callsite arguments: "
3077                       << getAssociatedValue() << " " << *ArgOp << " => "
3078                       << (IsAliasing ? "" : "no-") << "alias \n");
3079 
3080     return IsAliasing;
3081   }
3082 
3083   bool
3084   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3085                                          const AAMemoryBehavior &MemBehaviorAA,
3086                                          const AANoAlias &NoAliasAA) {
3087     // We can deduce "noalias" if the following conditions hold.
3088     // (i)   Associated value is assumed to be noalias in the definition.
3089     // (ii)  Associated value is assumed to be no-capture in all the uses
3090     //       possibly executed before this callsite.
3091     // (iii) There is no other pointer argument which could alias with the
3092     //       value.
3093 
3094     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3095     if (!AssociatedValueIsNoAliasAtDef) {
3096       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3097                         << " is not no-alias at the definition\n");
3098       return false;
3099     }
3100 
3101     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3102 
3103     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3104     const Function *ScopeFn = VIRP.getAnchorScope();
3105     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3106     // Check whether the value is captured in the scope using AANoCapture.
3107     //      Look at CFG and check only uses possibly executed before this
3108     //      callsite.
3109     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3110       Instruction *UserI = cast<Instruction>(U.getUser());
3111 
3112       // If UserI is the curr instruction and there is a single potential use of
3113       // the value in UserI we allow the use.
3114       // TODO: We should inspect the operands and allow those that cannot alias
3115       //       with the value.
3116       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3117         return true;
3118 
3119       if (ScopeFn) {
3120         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3121             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3122 
3123         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3124           return true;
3125 
3126         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3127           if (CB->isArgOperand(&U)) {
3128 
3129             unsigned ArgNo = CB->getArgOperandNo(&U);
3130 
3131             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3132                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3133                 DepClassTy::OPTIONAL);
3134 
3135             if (NoCaptureAA.isAssumedNoCapture())
3136               return true;
3137           }
3138         }
3139       }
3140 
3141       // For cases which can potentially have more users
3142       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3143           isa<SelectInst>(U)) {
3144         Follow = true;
3145         return true;
3146       }
3147 
3148       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3149       return false;
3150     };
3151 
3152     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3153       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3154         LLVM_DEBUG(
3155             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3156                    << " cannot be noalias as it is potentially captured\n");
3157         return false;
3158       }
3159     }
3160     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3161 
3162     // Check there is no other pointer argument which could alias with the
3163     // value passed at this call site.
3164     // TODO: AbstractCallSite
3165     const auto &CB = cast<CallBase>(getAnchorValue());
3166     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3167       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3168         return false;
3169 
3170     return true;
3171   }
3172 
3173   /// See AbstractAttribute::updateImpl(...).
3174   ChangeStatus updateImpl(Attributor &A) override {
3175     // If the argument is readnone we are done as there are no accesses via the
3176     // argument.
3177     auto &MemBehaviorAA =
3178         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3179     if (MemBehaviorAA.isAssumedReadNone()) {
3180       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3181       return ChangeStatus::UNCHANGED;
3182     }
3183 
3184     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3185     const auto &NoAliasAA =
3186         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3187 
3188     AAResults *AAR = nullptr;
3189     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3190                                                NoAliasAA)) {
3191       LLVM_DEBUG(
3192           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3193       return ChangeStatus::UNCHANGED;
3194     }
3195 
3196     return indicatePessimisticFixpoint();
3197   }
3198 
3199   /// See AbstractAttribute::trackStatistics()
3200   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3201 };
3202 
3203 /// NoAlias attribute for function return value.
3204 struct AANoAliasReturned final : AANoAliasImpl {
3205   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3206       : AANoAliasImpl(IRP, A) {}
3207 
3208   /// See AbstractAttribute::initialize(...).
3209   void initialize(Attributor &A) override {
3210     AANoAliasImpl::initialize(A);
3211     Function *F = getAssociatedFunction();
3212     if (!F || F->isDeclaration())
3213       indicatePessimisticFixpoint();
3214   }
3215 
3216   /// See AbstractAttribute::updateImpl(...).
3217   virtual ChangeStatus updateImpl(Attributor &A) override {
3218 
3219     auto CheckReturnValue = [&](Value &RV) -> bool {
3220       if (Constant *C = dyn_cast<Constant>(&RV))
3221         if (C->isNullValue() || isa<UndefValue>(C))
3222           return true;
3223 
3224       /// For now, we can only deduce noalias if we have call sites.
3225       /// FIXME: add more support.
3226       if (!isa<CallBase>(&RV))
3227         return false;
3228 
3229       const IRPosition &RVPos = IRPosition::value(RV);
3230       const auto &NoAliasAA =
3231           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3232       if (!NoAliasAA.isAssumedNoAlias())
3233         return false;
3234 
3235       const auto &NoCaptureAA =
3236           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3237       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3238     };
3239 
3240     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3241       return indicatePessimisticFixpoint();
3242 
3243     return ChangeStatus::UNCHANGED;
3244   }
3245 
3246   /// See AbstractAttribute::trackStatistics()
3247   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3248 };
3249 
3250 /// NoAlias attribute deduction for a call site return value.
3251 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3252   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3253       : AANoAliasImpl(IRP, A) {}
3254 
3255   /// See AbstractAttribute::initialize(...).
3256   void initialize(Attributor &A) override {
3257     AANoAliasImpl::initialize(A);
3258     Function *F = getAssociatedFunction();
3259     if (!F || F->isDeclaration())
3260       indicatePessimisticFixpoint();
3261   }
3262 
3263   /// See AbstractAttribute::updateImpl(...).
3264   ChangeStatus updateImpl(Attributor &A) override {
3265     // TODO: Once we have call site specific value information we can provide
3266     //       call site specific liveness information and then it makes
3267     //       sense to specialize attributes for call sites arguments instead of
3268     //       redirecting requests to the callee argument.
3269     Function *F = getAssociatedFunction();
3270     const IRPosition &FnPos = IRPosition::returned(*F);
3271     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3272     return clampStateAndIndicateChange(getState(), FnAA.getState());
3273   }
3274 
3275   /// See AbstractAttribute::trackStatistics()
3276   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3277 };
3278 
3279 /// -------------------AAIsDead Function Attribute-----------------------
3280 
3281 struct AAIsDeadValueImpl : public AAIsDead {
3282   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3283 
3284   /// See AAIsDead::isAssumedDead().
3285   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3286 
3287   /// See AAIsDead::isKnownDead().
3288   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3289 
3290   /// See AAIsDead::isAssumedDead(BasicBlock *).
3291   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3292 
3293   /// See AAIsDead::isKnownDead(BasicBlock *).
3294   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3295 
3296   /// See AAIsDead::isAssumedDead(Instruction *I).
3297   bool isAssumedDead(const Instruction *I) const override {
3298     return I == getCtxI() && isAssumedDead();
3299   }
3300 
3301   /// See AAIsDead::isKnownDead(Instruction *I).
3302   bool isKnownDead(const Instruction *I) const override {
3303     return isAssumedDead(I) && isKnownDead();
3304   }
3305 
3306   /// See AbstractAttribute::getAsStr().
3307   const std::string getAsStr() const override {
3308     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3309   }
3310 
3311   /// Check if all uses are assumed dead.
3312   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3313     // Callers might not check the type, void has no uses.
3314     if (V.getType()->isVoidTy())
3315       return true;
3316 
3317     // If we replace a value with a constant there are no uses left afterwards.
3318     if (!isa<Constant>(V)) {
3319       bool UsedAssumedInformation = false;
3320       Optional<Constant *> C =
3321           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3322       if (!C.hasValue() || *C)
3323         return true;
3324     }
3325 
3326     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3327     // Explicitly set the dependence class to required because we want a long
3328     // chain of N dependent instructions to be considered live as soon as one is
3329     // without going through N update cycles. This is not required for
3330     // correctness.
3331     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3332                              DepClassTy::REQUIRED);
3333   }
3334 
3335   /// Determine if \p I is assumed to be side-effect free.
3336   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3337     if (!I || wouldInstructionBeTriviallyDead(I))
3338       return true;
3339 
3340     auto *CB = dyn_cast<CallBase>(I);
3341     if (!CB || isa<IntrinsicInst>(CB))
3342       return false;
3343 
3344     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3345     const auto &NoUnwindAA =
3346         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3347     if (!NoUnwindAA.isAssumedNoUnwind())
3348       return false;
3349     if (!NoUnwindAA.isKnownNoUnwind())
3350       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3351 
3352     const auto &MemBehaviorAA =
3353         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3354     if (MemBehaviorAA.isAssumedReadOnly()) {
3355       if (!MemBehaviorAA.isKnownReadOnly())
3356         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3357       return true;
3358     }
3359     return false;
3360   }
3361 };
3362 
3363 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3364   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3365       : AAIsDeadValueImpl(IRP, A) {}
3366 
3367   /// See AbstractAttribute::initialize(...).
3368   void initialize(Attributor &A) override {
3369     if (isa<UndefValue>(getAssociatedValue())) {
3370       indicatePessimisticFixpoint();
3371       return;
3372     }
3373 
3374     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3375     if (!isAssumedSideEffectFree(A, I)) {
3376       if (!isa_and_nonnull<StoreInst>(I))
3377         indicatePessimisticFixpoint();
3378       else
3379         removeAssumedBits(HAS_NO_EFFECT);
3380     }
3381   }
3382 
3383   bool isDeadStore(Attributor &A, StoreInst &SI) {
3384     // Lang ref now states volatile store is not UB/dead, let's skip them.
3385     if (SI.isVolatile())
3386       return false;
3387 
3388     bool UsedAssumedInformation = false;
3389     SmallSetVector<Value *, 4> PotentialCopies;
3390     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3391                                              UsedAssumedInformation))
3392       return false;
3393     return llvm::all_of(PotentialCopies, [&](Value *V) {
3394       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3395                              UsedAssumedInformation);
3396     });
3397   }
3398 
3399   /// See AbstractAttribute::updateImpl(...).
3400   ChangeStatus updateImpl(Attributor &A) override {
3401     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3402     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3403       if (!isDeadStore(A, *SI))
3404         return indicatePessimisticFixpoint();
3405     } else {
3406       if (!isAssumedSideEffectFree(A, I))
3407         return indicatePessimisticFixpoint();
3408       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3409         return indicatePessimisticFixpoint();
3410     }
3411     return ChangeStatus::UNCHANGED;
3412   }
3413 
3414   /// See AbstractAttribute::manifest(...).
3415   ChangeStatus manifest(Attributor &A) override {
3416     Value &V = getAssociatedValue();
3417     if (auto *I = dyn_cast<Instruction>(&V)) {
3418       // If we get here we basically know the users are all dead. We check if
3419       // isAssumedSideEffectFree returns true here again because it might not be
3420       // the case and only the users are dead but the instruction (=call) is
3421       // still needed.
3422       if (isa<StoreInst>(I) ||
3423           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3424         A.deleteAfterManifest(*I);
3425         return ChangeStatus::CHANGED;
3426       }
3427     }
3428     if (V.use_empty())
3429       return ChangeStatus::UNCHANGED;
3430 
3431     bool UsedAssumedInformation = false;
3432     Optional<Constant *> C =
3433         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3434     if (C.hasValue() && C.getValue())
3435       return ChangeStatus::UNCHANGED;
3436 
3437     // Replace the value with undef as it is dead but keep droppable uses around
3438     // as they provide information we don't want to give up on just yet.
3439     UndefValue &UV = *UndefValue::get(V.getType());
3440     bool AnyChange =
3441         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3442     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3443   }
3444 
3445   /// See AbstractAttribute::trackStatistics()
3446   void trackStatistics() const override {
3447     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3448   }
3449 };
3450 
3451 struct AAIsDeadArgument : public AAIsDeadFloating {
3452   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3453       : AAIsDeadFloating(IRP, A) {}
3454 
3455   /// See AbstractAttribute::initialize(...).
3456   void initialize(Attributor &A) override {
3457     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3458       indicatePessimisticFixpoint();
3459   }
3460 
3461   /// See AbstractAttribute::manifest(...).
3462   ChangeStatus manifest(Attributor &A) override {
3463     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3464     Argument &Arg = *getAssociatedArgument();
3465     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3466       if (A.registerFunctionSignatureRewrite(
3467               Arg, /* ReplacementTypes */ {},
3468               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3469               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3470         Arg.dropDroppableUses();
3471         return ChangeStatus::CHANGED;
3472       }
3473     return Changed;
3474   }
3475 
3476   /// See AbstractAttribute::trackStatistics()
3477   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3478 };
3479 
3480 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3481   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3482       : AAIsDeadValueImpl(IRP, A) {}
3483 
3484   /// See AbstractAttribute::initialize(...).
3485   void initialize(Attributor &A) override {
3486     if (isa<UndefValue>(getAssociatedValue()))
3487       indicatePessimisticFixpoint();
3488   }
3489 
3490   /// See AbstractAttribute::updateImpl(...).
3491   ChangeStatus updateImpl(Attributor &A) override {
3492     // TODO: Once we have call site specific value information we can provide
3493     //       call site specific liveness information and then it makes
3494     //       sense to specialize attributes for call sites arguments instead of
3495     //       redirecting requests to the callee argument.
3496     Argument *Arg = getAssociatedArgument();
3497     if (!Arg)
3498       return indicatePessimisticFixpoint();
3499     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3500     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3501     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3502   }
3503 
3504   /// See AbstractAttribute::manifest(...).
3505   ChangeStatus manifest(Attributor &A) override {
3506     CallBase &CB = cast<CallBase>(getAnchorValue());
3507     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3508     assert(!isa<UndefValue>(U.get()) &&
3509            "Expected undef values to be filtered out!");
3510     UndefValue &UV = *UndefValue::get(U->getType());
3511     if (A.changeUseAfterManifest(U, UV))
3512       return ChangeStatus::CHANGED;
3513     return ChangeStatus::UNCHANGED;
3514   }
3515 
3516   /// See AbstractAttribute::trackStatistics()
3517   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3518 };
3519 
3520 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3521   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3522       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3523 
3524   /// See AAIsDead::isAssumedDead().
3525   bool isAssumedDead() const override {
3526     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3527   }
3528 
3529   /// See AbstractAttribute::initialize(...).
3530   void initialize(Attributor &A) override {
3531     if (isa<UndefValue>(getAssociatedValue())) {
3532       indicatePessimisticFixpoint();
3533       return;
3534     }
3535 
3536     // We track this separately as a secondary state.
3537     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3538   }
3539 
3540   /// See AbstractAttribute::updateImpl(...).
3541   ChangeStatus updateImpl(Attributor &A) override {
3542     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3543     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3544       IsAssumedSideEffectFree = false;
3545       Changed = ChangeStatus::CHANGED;
3546     }
3547     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3548       return indicatePessimisticFixpoint();
3549     return Changed;
3550   }
3551 
3552   /// See AbstractAttribute::trackStatistics()
3553   void trackStatistics() const override {
3554     if (IsAssumedSideEffectFree)
3555       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3556     else
3557       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3558   }
3559 
3560   /// See AbstractAttribute::getAsStr().
3561   const std::string getAsStr() const override {
3562     return isAssumedDead()
3563                ? "assumed-dead"
3564                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3565   }
3566 
3567 private:
3568   bool IsAssumedSideEffectFree;
3569 };
3570 
3571 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3572   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3573       : AAIsDeadValueImpl(IRP, A) {}
3574 
3575   /// See AbstractAttribute::updateImpl(...).
3576   ChangeStatus updateImpl(Attributor &A) override {
3577 
3578     bool UsedAssumedInformation = false;
3579     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3580                               {Instruction::Ret}, UsedAssumedInformation);
3581 
3582     auto PredForCallSite = [&](AbstractCallSite ACS) {
3583       if (ACS.isCallbackCall() || !ACS.getInstruction())
3584         return false;
3585       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3586     };
3587 
3588     bool AllCallSitesKnown;
3589     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3590                                 AllCallSitesKnown))
3591       return indicatePessimisticFixpoint();
3592 
3593     return ChangeStatus::UNCHANGED;
3594   }
3595 
3596   /// See AbstractAttribute::manifest(...).
3597   ChangeStatus manifest(Attributor &A) override {
3598     // TODO: Rewrite the signature to return void?
3599     bool AnyChange = false;
3600     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3601     auto RetInstPred = [&](Instruction &I) {
3602       ReturnInst &RI = cast<ReturnInst>(I);
3603       if (!isa<UndefValue>(RI.getReturnValue()))
3604         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3605       return true;
3606     };
3607     bool UsedAssumedInformation = false;
3608     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3609                               UsedAssumedInformation);
3610     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3611   }
3612 
3613   /// See AbstractAttribute::trackStatistics()
3614   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3615 };
3616 
3617 struct AAIsDeadFunction : public AAIsDead {
3618   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3619 
3620   /// See AbstractAttribute::initialize(...).
3621   void initialize(Attributor &A) override {
3622     const Function *F = getAnchorScope();
3623     if (F && !F->isDeclaration()) {
3624       // We only want to compute liveness once. If the function is not part of
3625       // the SCC, skip it.
3626       if (A.isRunOn(*const_cast<Function *>(F))) {
3627         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3628         assumeLive(A, F->getEntryBlock());
3629       } else {
3630         indicatePessimisticFixpoint();
3631       }
3632     }
3633   }
3634 
3635   /// See AbstractAttribute::getAsStr().
3636   const std::string getAsStr() const override {
3637     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3638            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3639            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3640            std::to_string(KnownDeadEnds.size()) + "]";
3641   }
3642 
3643   /// See AbstractAttribute::manifest(...).
3644   ChangeStatus manifest(Attributor &A) override {
3645     assert(getState().isValidState() &&
3646            "Attempted to manifest an invalid state!");
3647 
3648     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3649     Function &F = *getAnchorScope();
3650 
3651     if (AssumedLiveBlocks.empty()) {
3652       A.deleteAfterManifest(F);
3653       return ChangeStatus::CHANGED;
3654     }
3655 
3656     // Flag to determine if we can change an invoke to a call assuming the
3657     // callee is nounwind. This is not possible if the personality of the
3658     // function allows to catch asynchronous exceptions.
3659     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3660 
3661     KnownDeadEnds.set_union(ToBeExploredFrom);
3662     for (const Instruction *DeadEndI : KnownDeadEnds) {
3663       auto *CB = dyn_cast<CallBase>(DeadEndI);
3664       if (!CB)
3665         continue;
3666       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3667           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3668       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3669       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3670         continue;
3671 
3672       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3673         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3674       else
3675         A.changeToUnreachableAfterManifest(
3676             const_cast<Instruction *>(DeadEndI->getNextNode()));
3677       HasChanged = ChangeStatus::CHANGED;
3678     }
3679 
3680     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3681     for (BasicBlock &BB : F)
3682       if (!AssumedLiveBlocks.count(&BB)) {
3683         A.deleteAfterManifest(BB);
3684         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3685       }
3686 
3687     return HasChanged;
3688   }
3689 
3690   /// See AbstractAttribute::updateImpl(...).
3691   ChangeStatus updateImpl(Attributor &A) override;
3692 
3693   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3694     return !AssumedLiveEdges.count(std::make_pair(From, To));
3695   }
3696 
3697   /// See AbstractAttribute::trackStatistics()
3698   void trackStatistics() const override {}
3699 
3700   /// Returns true if the function is assumed dead.
3701   bool isAssumedDead() const override { return false; }
3702 
3703   /// See AAIsDead::isKnownDead().
3704   bool isKnownDead() const override { return false; }
3705 
3706   /// See AAIsDead::isAssumedDead(BasicBlock *).
3707   bool isAssumedDead(const BasicBlock *BB) const override {
3708     assert(BB->getParent() == getAnchorScope() &&
3709            "BB must be in the same anchor scope function.");
3710 
3711     if (!getAssumed())
3712       return false;
3713     return !AssumedLiveBlocks.count(BB);
3714   }
3715 
3716   /// See AAIsDead::isKnownDead(BasicBlock *).
3717   bool isKnownDead(const BasicBlock *BB) const override {
3718     return getKnown() && isAssumedDead(BB);
3719   }
3720 
3721   /// See AAIsDead::isAssumed(Instruction *I).
3722   bool isAssumedDead(const Instruction *I) const override {
3723     assert(I->getParent()->getParent() == getAnchorScope() &&
3724            "Instruction must be in the same anchor scope function.");
3725 
3726     if (!getAssumed())
3727       return false;
3728 
3729     // If it is not in AssumedLiveBlocks then it for sure dead.
3730     // Otherwise, it can still be after noreturn call in a live block.
3731     if (!AssumedLiveBlocks.count(I->getParent()))
3732       return true;
3733 
3734     // If it is not after a liveness barrier it is live.
3735     const Instruction *PrevI = I->getPrevNode();
3736     while (PrevI) {
3737       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3738         return true;
3739       PrevI = PrevI->getPrevNode();
3740     }
3741     return false;
3742   }
3743 
3744   /// See AAIsDead::isKnownDead(Instruction *I).
3745   bool isKnownDead(const Instruction *I) const override {
3746     return getKnown() && isAssumedDead(I);
3747   }
3748 
3749   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3750   /// that internal function called from \p BB should now be looked at.
3751   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3752     if (!AssumedLiveBlocks.insert(&BB).second)
3753       return false;
3754 
3755     // We assume that all of BB is (probably) live now and if there are calls to
3756     // internal functions we will assume that those are now live as well. This
3757     // is a performance optimization for blocks with calls to a lot of internal
3758     // functions. It can however cause dead functions to be treated as live.
3759     for (const Instruction &I : BB)
3760       if (const auto *CB = dyn_cast<CallBase>(&I))
3761         if (const Function *F = CB->getCalledFunction())
3762           if (F->hasLocalLinkage())
3763             A.markLiveInternalFunction(*F);
3764     return true;
3765   }
3766 
3767   /// Collection of instructions that need to be explored again, e.g., we
3768   /// did assume they do not transfer control to (one of their) successors.
3769   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3770 
3771   /// Collection of instructions that are known to not transfer control.
3772   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3773 
3774   /// Collection of all assumed live edges
3775   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3776 
3777   /// Collection of all assumed live BasicBlocks.
3778   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3779 };
3780 
3781 static bool
3782 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3783                         AbstractAttribute &AA,
3784                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3785   const IRPosition &IPos = IRPosition::callsite_function(CB);
3786 
3787   const auto &NoReturnAA =
3788       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3789   if (NoReturnAA.isAssumedNoReturn())
3790     return !NoReturnAA.isKnownNoReturn();
3791   if (CB.isTerminator())
3792     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3793   else
3794     AliveSuccessors.push_back(CB.getNextNode());
3795   return false;
3796 }
3797 
3798 static bool
3799 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3800                         AbstractAttribute &AA,
3801                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3802   bool UsedAssumedInformation =
3803       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3804 
3805   // First, determine if we can change an invoke to a call assuming the
3806   // callee is nounwind. This is not possible if the personality of the
3807   // function allows to catch asynchronous exceptions.
3808   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3809     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3810   } else {
3811     const IRPosition &IPos = IRPosition::callsite_function(II);
3812     const auto &AANoUnw =
3813         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3814     if (AANoUnw.isAssumedNoUnwind()) {
3815       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3816     } else {
3817       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3818     }
3819   }
3820   return UsedAssumedInformation;
3821 }
3822 
3823 static bool
3824 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3825                         AbstractAttribute &AA,
3826                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3827   bool UsedAssumedInformation = false;
3828   if (BI.getNumSuccessors() == 1) {
3829     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3830   } else {
3831     Optional<Constant *> C =
3832         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3833     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3834       // No value yet, assume both edges are dead.
3835     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3836       const BasicBlock *SuccBB =
3837           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3838       AliveSuccessors.push_back(&SuccBB->front());
3839     } else {
3840       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3841       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3842       UsedAssumedInformation = false;
3843     }
3844   }
3845   return UsedAssumedInformation;
3846 }
3847 
3848 static bool
3849 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3850                         AbstractAttribute &AA,
3851                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3852   bool UsedAssumedInformation = false;
3853   Optional<Constant *> C =
3854       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3855   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3856     // No value yet, assume all edges are dead.
3857   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3858     for (auto &CaseIt : SI.cases()) {
3859       if (CaseIt.getCaseValue() == C.getValue()) {
3860         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3861         return UsedAssumedInformation;
3862       }
3863     }
3864     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3865     return UsedAssumedInformation;
3866   } else {
3867     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3868       AliveSuccessors.push_back(&SuccBB->front());
3869   }
3870   return UsedAssumedInformation;
3871 }
3872 
3873 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3874   ChangeStatus Change = ChangeStatus::UNCHANGED;
3875 
3876   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3877                     << getAnchorScope()->size() << "] BBs and "
3878                     << ToBeExploredFrom.size() << " exploration points and "
3879                     << KnownDeadEnds.size() << " known dead ends\n");
3880 
3881   // Copy and clear the list of instructions we need to explore from. It is
3882   // refilled with instructions the next update has to look at.
3883   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3884                                                ToBeExploredFrom.end());
3885   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3886 
3887   SmallVector<const Instruction *, 8> AliveSuccessors;
3888   while (!Worklist.empty()) {
3889     const Instruction *I = Worklist.pop_back_val();
3890     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3891 
3892     // Fast forward for uninteresting instructions. We could look for UB here
3893     // though.
3894     while (!I->isTerminator() && !isa<CallBase>(I))
3895       I = I->getNextNode();
3896 
3897     AliveSuccessors.clear();
3898 
3899     bool UsedAssumedInformation = false;
3900     switch (I->getOpcode()) {
3901     // TODO: look for (assumed) UB to backwards propagate "deadness".
3902     default:
3903       assert(I->isTerminator() &&
3904              "Expected non-terminators to be handled already!");
3905       for (const BasicBlock *SuccBB : successors(I->getParent()))
3906         AliveSuccessors.push_back(&SuccBB->front());
3907       break;
3908     case Instruction::Call:
3909       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3910                                                        *this, AliveSuccessors);
3911       break;
3912     case Instruction::Invoke:
3913       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3914                                                        *this, AliveSuccessors);
3915       break;
3916     case Instruction::Br:
3917       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3918                                                        *this, AliveSuccessors);
3919       break;
3920     case Instruction::Switch:
3921       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3922                                                        *this, AliveSuccessors);
3923       break;
3924     }
3925 
3926     if (UsedAssumedInformation) {
3927       NewToBeExploredFrom.insert(I);
3928     } else if (AliveSuccessors.empty() ||
3929                (I->isTerminator() &&
3930                 AliveSuccessors.size() < I->getNumSuccessors())) {
3931       if (KnownDeadEnds.insert(I))
3932         Change = ChangeStatus::CHANGED;
3933     }
3934 
3935     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3936                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3937                       << UsedAssumedInformation << "\n");
3938 
3939     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3940       if (!I->isTerminator()) {
3941         assert(AliveSuccessors.size() == 1 &&
3942                "Non-terminator expected to have a single successor!");
3943         Worklist.push_back(AliveSuccessor);
3944       } else {
3945         // record the assumed live edge
3946         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3947         if (AssumedLiveEdges.insert(Edge).second)
3948           Change = ChangeStatus::CHANGED;
3949         if (assumeLive(A, *AliveSuccessor->getParent()))
3950           Worklist.push_back(AliveSuccessor);
3951       }
3952     }
3953   }
3954 
3955   // Check if the content of ToBeExploredFrom changed, ignore the order.
3956   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3957       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3958         return !ToBeExploredFrom.count(I);
3959       })) {
3960     Change = ChangeStatus::CHANGED;
3961     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3962   }
3963 
3964   // If we know everything is live there is no need to query for liveness.
3965   // Instead, indicating a pessimistic fixpoint will cause the state to be
3966   // "invalid" and all queries to be answered conservatively without lookups.
3967   // To be in this state we have to (1) finished the exploration and (3) not
3968   // discovered any non-trivial dead end and (2) not ruled unreachable code
3969   // dead.
3970   if (ToBeExploredFrom.empty() &&
3971       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3972       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3973         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3974       }))
3975     return indicatePessimisticFixpoint();
3976   return Change;
3977 }
3978 
3979 /// Liveness information for a call sites.
3980 struct AAIsDeadCallSite final : AAIsDeadFunction {
3981   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3982       : AAIsDeadFunction(IRP, A) {}
3983 
3984   /// See AbstractAttribute::initialize(...).
3985   void initialize(Attributor &A) override {
3986     // TODO: Once we have call site specific value information we can provide
3987     //       call site specific liveness information and then it makes
3988     //       sense to specialize attributes for call sites instead of
3989     //       redirecting requests to the callee.
3990     llvm_unreachable("Abstract attributes for liveness are not "
3991                      "supported for call sites yet!");
3992   }
3993 
3994   /// See AbstractAttribute::updateImpl(...).
3995   ChangeStatus updateImpl(Attributor &A) override {
3996     return indicatePessimisticFixpoint();
3997   }
3998 
3999   /// See AbstractAttribute::trackStatistics()
4000   void trackStatistics() const override {}
4001 };
4002 
4003 /// -------------------- Dereferenceable Argument Attribute --------------------
4004 
4005 struct AADereferenceableImpl : AADereferenceable {
4006   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4007       : AADereferenceable(IRP, A) {}
4008   using StateType = DerefState;
4009 
4010   /// See AbstractAttribute::initialize(...).
4011   void initialize(Attributor &A) override {
4012     SmallVector<Attribute, 4> Attrs;
4013     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4014              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4015     for (const Attribute &Attr : Attrs)
4016       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4017 
4018     const IRPosition &IRP = this->getIRPosition();
4019     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4020 
4021     bool CanBeNull, CanBeFreed;
4022     takeKnownDerefBytesMaximum(
4023         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4024             A.getDataLayout(), CanBeNull, CanBeFreed));
4025 
4026     bool IsFnInterface = IRP.isFnInterfaceKind();
4027     Function *FnScope = IRP.getAnchorScope();
4028     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4029       indicatePessimisticFixpoint();
4030       return;
4031     }
4032 
4033     if (Instruction *CtxI = getCtxI())
4034       followUsesInMBEC(*this, A, getState(), *CtxI);
4035   }
4036 
4037   /// See AbstractAttribute::getState()
4038   /// {
4039   StateType &getState() override { return *this; }
4040   const StateType &getState() const override { return *this; }
4041   /// }
4042 
4043   /// Helper function for collecting accessed bytes in must-be-executed-context
4044   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4045                               DerefState &State) {
4046     const Value *UseV = U->get();
4047     if (!UseV->getType()->isPointerTy())
4048       return;
4049 
4050     Type *PtrTy = UseV->getType();
4051     const DataLayout &DL = A.getDataLayout();
4052     int64_t Offset;
4053     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4054             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4055       if (Base == &getAssociatedValue() &&
4056           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4057         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4058         State.addAccessedBytes(Offset, Size);
4059       }
4060     }
4061   }
4062 
4063   /// See followUsesInMBEC
4064   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4065                        AADereferenceable::StateType &State) {
4066     bool IsNonNull = false;
4067     bool TrackUse = false;
4068     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4069         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4070     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4071                       << " for instruction " << *I << "\n");
4072 
4073     addAccessedBytesForUse(A, U, I, State);
4074     State.takeKnownDerefBytesMaximum(DerefBytes);
4075     return TrackUse;
4076   }
4077 
4078   /// See AbstractAttribute::manifest(...).
4079   ChangeStatus manifest(Attributor &A) override {
4080     ChangeStatus Change = AADereferenceable::manifest(A);
4081     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4082       removeAttrs({Attribute::DereferenceableOrNull});
4083       return ChangeStatus::CHANGED;
4084     }
4085     return Change;
4086   }
4087 
4088   void getDeducedAttributes(LLVMContext &Ctx,
4089                             SmallVectorImpl<Attribute> &Attrs) const override {
4090     // TODO: Add *_globally support
4091     if (isAssumedNonNull())
4092       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4093           Ctx, getAssumedDereferenceableBytes()));
4094     else
4095       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4096           Ctx, getAssumedDereferenceableBytes()));
4097   }
4098 
4099   /// See AbstractAttribute::getAsStr().
4100   const std::string getAsStr() const override {
4101     if (!getAssumedDereferenceableBytes())
4102       return "unknown-dereferenceable";
4103     return std::string("dereferenceable") +
4104            (isAssumedNonNull() ? "" : "_or_null") +
4105            (isAssumedGlobal() ? "_globally" : "") + "<" +
4106            std::to_string(getKnownDereferenceableBytes()) + "-" +
4107            std::to_string(getAssumedDereferenceableBytes()) + ">";
4108   }
4109 };
4110 
4111 /// Dereferenceable attribute for a floating value.
4112 struct AADereferenceableFloating : AADereferenceableImpl {
4113   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4114       : AADereferenceableImpl(IRP, A) {}
4115 
4116   /// See AbstractAttribute::updateImpl(...).
4117   ChangeStatus updateImpl(Attributor &A) override {
4118     const DataLayout &DL = A.getDataLayout();
4119 
4120     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4121                             bool Stripped) -> bool {
4122       unsigned IdxWidth =
4123           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4124       APInt Offset(IdxWidth, 0);
4125       const Value *Base =
4126           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4127 
4128       const auto &AA = A.getAAFor<AADereferenceable>(
4129           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4130       int64_t DerefBytes = 0;
4131       if (!Stripped && this == &AA) {
4132         // Use IR information if we did not strip anything.
4133         // TODO: track globally.
4134         bool CanBeNull, CanBeFreed;
4135         DerefBytes =
4136             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4137         T.GlobalState.indicatePessimisticFixpoint();
4138       } else {
4139         const DerefState &DS = AA.getState();
4140         DerefBytes = DS.DerefBytesState.getAssumed();
4141         T.GlobalState &= DS.GlobalState;
4142       }
4143 
4144       // For now we do not try to "increase" dereferenceability due to negative
4145       // indices as we first have to come up with code to deal with loops and
4146       // for overflows of the dereferenceable bytes.
4147       int64_t OffsetSExt = Offset.getSExtValue();
4148       if (OffsetSExt < 0)
4149         OffsetSExt = 0;
4150 
4151       T.takeAssumedDerefBytesMinimum(
4152           std::max(int64_t(0), DerefBytes - OffsetSExt));
4153 
4154       if (this == &AA) {
4155         if (!Stripped) {
4156           // If nothing was stripped IR information is all we got.
4157           T.takeKnownDerefBytesMaximum(
4158               std::max(int64_t(0), DerefBytes - OffsetSExt));
4159           T.indicatePessimisticFixpoint();
4160         } else if (OffsetSExt > 0) {
4161           // If something was stripped but there is circular reasoning we look
4162           // for the offset. If it is positive we basically decrease the
4163           // dereferenceable bytes in a circluar loop now, which will simply
4164           // drive them down to the known value in a very slow way which we
4165           // can accelerate.
4166           T.indicatePessimisticFixpoint();
4167         }
4168       }
4169 
4170       return T.isValidState();
4171     };
4172 
4173     DerefState T;
4174     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4175                                            VisitValueCB, getCtxI()))
4176       return indicatePessimisticFixpoint();
4177 
4178     return clampStateAndIndicateChange(getState(), T);
4179   }
4180 
4181   /// See AbstractAttribute::trackStatistics()
4182   void trackStatistics() const override {
4183     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4184   }
4185 };
4186 
4187 /// Dereferenceable attribute for a return value.
4188 struct AADereferenceableReturned final
4189     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4190   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4191       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4192             IRP, A) {}
4193 
4194   /// See AbstractAttribute::trackStatistics()
4195   void trackStatistics() const override {
4196     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4197   }
4198 };
4199 
4200 /// Dereferenceable attribute for an argument
4201 struct AADereferenceableArgument final
4202     : AAArgumentFromCallSiteArguments<AADereferenceable,
4203                                       AADereferenceableImpl> {
4204   using Base =
4205       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4206   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4207       : Base(IRP, A) {}
4208 
4209   /// See AbstractAttribute::trackStatistics()
4210   void trackStatistics() const override {
4211     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4212   }
4213 };
4214 
4215 /// Dereferenceable attribute for a call site argument.
4216 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4217   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4218       : AADereferenceableFloating(IRP, A) {}
4219 
4220   /// See AbstractAttribute::trackStatistics()
4221   void trackStatistics() const override {
4222     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4223   }
4224 };
4225 
4226 /// Dereferenceable attribute deduction for a call site return value.
4227 struct AADereferenceableCallSiteReturned final
4228     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4229   using Base =
4230       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4231   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4232       : Base(IRP, A) {}
4233 
4234   /// See AbstractAttribute::trackStatistics()
4235   void trackStatistics() const override {
4236     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4237   }
4238 };
4239 
4240 // ------------------------ Align Argument Attribute ------------------------
4241 
4242 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4243                                     Value &AssociatedValue, const Use *U,
4244                                     const Instruction *I, bool &TrackUse) {
4245   // We need to follow common pointer manipulation uses to the accesses they
4246   // feed into.
4247   if (isa<CastInst>(I)) {
4248     // Follow all but ptr2int casts.
4249     TrackUse = !isa<PtrToIntInst>(I);
4250     return 0;
4251   }
4252   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4253     if (GEP->hasAllConstantIndices())
4254       TrackUse = true;
4255     return 0;
4256   }
4257 
4258   MaybeAlign MA;
4259   if (const auto *CB = dyn_cast<CallBase>(I)) {
4260     if (CB->isBundleOperand(U) || CB->isCallee(U))
4261       return 0;
4262 
4263     unsigned ArgNo = CB->getArgOperandNo(U);
4264     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4265     // As long as we only use known information there is no need to track
4266     // dependences here.
4267     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4268     MA = MaybeAlign(AlignAA.getKnownAlign());
4269   }
4270 
4271   const DataLayout &DL = A.getDataLayout();
4272   const Value *UseV = U->get();
4273   if (auto *SI = dyn_cast<StoreInst>(I)) {
4274     if (SI->getPointerOperand() == UseV)
4275       MA = SI->getAlign();
4276   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4277     if (LI->getPointerOperand() == UseV)
4278       MA = LI->getAlign();
4279   }
4280 
4281   if (!MA || *MA <= QueryingAA.getKnownAlign())
4282     return 0;
4283 
4284   unsigned Alignment = MA->value();
4285   int64_t Offset;
4286 
4287   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4288     if (Base == &AssociatedValue) {
4289       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4290       // So we can say that the maximum power of two which is a divisor of
4291       // gcd(Offset, Alignment) is an alignment.
4292 
4293       uint32_t gcd =
4294           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4295       Alignment = llvm::PowerOf2Floor(gcd);
4296     }
4297   }
4298 
4299   return Alignment;
4300 }
4301 
4302 struct AAAlignImpl : AAAlign {
4303   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4304 
4305   /// See AbstractAttribute::initialize(...).
4306   void initialize(Attributor &A) override {
4307     SmallVector<Attribute, 4> Attrs;
4308     getAttrs({Attribute::Alignment}, Attrs);
4309     for (const Attribute &Attr : Attrs)
4310       takeKnownMaximum(Attr.getValueAsInt());
4311 
4312     Value &V = getAssociatedValue();
4313     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4314     //       use of the function pointer. This was caused by D73131. We want to
4315     //       avoid this for function pointers especially because we iterate
4316     //       their uses and int2ptr is not handled. It is not a correctness
4317     //       problem though!
4318     if (!V.getType()->getPointerElementType()->isFunctionTy())
4319       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4320 
4321     if (getIRPosition().isFnInterfaceKind() &&
4322         (!getAnchorScope() ||
4323          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4324       indicatePessimisticFixpoint();
4325       return;
4326     }
4327 
4328     if (Instruction *CtxI = getCtxI())
4329       followUsesInMBEC(*this, A, getState(), *CtxI);
4330   }
4331 
4332   /// See AbstractAttribute::manifest(...).
4333   ChangeStatus manifest(Attributor &A) override {
4334     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4335 
4336     // Check for users that allow alignment annotations.
4337     Value &AssociatedValue = getAssociatedValue();
4338     for (const Use &U : AssociatedValue.uses()) {
4339       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4340         if (SI->getPointerOperand() == &AssociatedValue)
4341           if (SI->getAlignment() < getAssumedAlign()) {
4342             STATS_DECLTRACK(AAAlign, Store,
4343                             "Number of times alignment added to a store");
4344             SI->setAlignment(Align(getAssumedAlign()));
4345             LoadStoreChanged = ChangeStatus::CHANGED;
4346           }
4347       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4348         if (LI->getPointerOperand() == &AssociatedValue)
4349           if (LI->getAlignment() < getAssumedAlign()) {
4350             LI->setAlignment(Align(getAssumedAlign()));
4351             STATS_DECLTRACK(AAAlign, Load,
4352                             "Number of times alignment added to a load");
4353             LoadStoreChanged = ChangeStatus::CHANGED;
4354           }
4355       }
4356     }
4357 
4358     ChangeStatus Changed = AAAlign::manifest(A);
4359 
4360     Align InheritAlign =
4361         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4362     if (InheritAlign >= getAssumedAlign())
4363       return LoadStoreChanged;
4364     return Changed | LoadStoreChanged;
4365   }
4366 
4367   // TODO: Provide a helper to determine the implied ABI alignment and check in
4368   //       the existing manifest method and a new one for AAAlignImpl that value
4369   //       to avoid making the alignment explicit if it did not improve.
4370 
4371   /// See AbstractAttribute::getDeducedAttributes
4372   virtual void
4373   getDeducedAttributes(LLVMContext &Ctx,
4374                        SmallVectorImpl<Attribute> &Attrs) const override {
4375     if (getAssumedAlign() > 1)
4376       Attrs.emplace_back(
4377           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4378   }
4379 
4380   /// See followUsesInMBEC
4381   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4382                        AAAlign::StateType &State) {
4383     bool TrackUse = false;
4384 
4385     unsigned int KnownAlign =
4386         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4387     State.takeKnownMaximum(KnownAlign);
4388 
4389     return TrackUse;
4390   }
4391 
4392   /// See AbstractAttribute::getAsStr().
4393   const std::string getAsStr() const override {
4394     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4395                                 "-" + std::to_string(getAssumedAlign()) + ">")
4396                              : "unknown-align";
4397   }
4398 };
4399 
4400 /// Align attribute for a floating value.
4401 struct AAAlignFloating : AAAlignImpl {
4402   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4403 
4404   /// See AbstractAttribute::updateImpl(...).
4405   ChangeStatus updateImpl(Attributor &A) override {
4406     const DataLayout &DL = A.getDataLayout();
4407 
4408     auto VisitValueCB = [&](Value &V, const Instruction *,
4409                             AAAlign::StateType &T, bool Stripped) -> bool {
4410       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4411                                            DepClassTy::REQUIRED);
4412       if (!Stripped && this == &AA) {
4413         int64_t Offset;
4414         unsigned Alignment = 1;
4415         if (const Value *Base =
4416                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4417           Align PA = Base->getPointerAlignment(DL);
4418           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4419           // So we can say that the maximum power of two which is a divisor of
4420           // gcd(Offset, Alignment) is an alignment.
4421 
4422           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4423                                                uint32_t(PA.value()));
4424           Alignment = llvm::PowerOf2Floor(gcd);
4425         } else {
4426           Alignment = V.getPointerAlignment(DL).value();
4427         }
4428         // Use only IR information if we did not strip anything.
4429         T.takeKnownMaximum(Alignment);
4430         T.indicatePessimisticFixpoint();
4431       } else {
4432         // Use abstract attribute information.
4433         const AAAlign::StateType &DS = AA.getState();
4434         T ^= DS;
4435       }
4436       return T.isValidState();
4437     };
4438 
4439     StateType T;
4440     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4441                                           VisitValueCB, getCtxI()))
4442       return indicatePessimisticFixpoint();
4443 
4444     // TODO: If we know we visited all incoming values, thus no are assumed
4445     // dead, we can take the known information from the state T.
4446     return clampStateAndIndicateChange(getState(), T);
4447   }
4448 
4449   /// See AbstractAttribute::trackStatistics()
4450   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4451 };
4452 
4453 /// Align attribute for function return value.
4454 struct AAAlignReturned final
4455     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4456   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4457   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4458 
4459   /// See AbstractAttribute::initialize(...).
4460   void initialize(Attributor &A) override {
4461     Base::initialize(A);
4462     Function *F = getAssociatedFunction();
4463     if (!F || F->isDeclaration())
4464       indicatePessimisticFixpoint();
4465   }
4466 
4467   /// See AbstractAttribute::trackStatistics()
4468   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4469 };
4470 
4471 /// Align attribute for function argument.
4472 struct AAAlignArgument final
4473     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4474   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4475   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4476 
4477   /// See AbstractAttribute::manifest(...).
4478   ChangeStatus manifest(Attributor &A) override {
4479     // If the associated argument is involved in a must-tail call we give up
4480     // because we would need to keep the argument alignments of caller and
4481     // callee in-sync. Just does not seem worth the trouble right now.
4482     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4483       return ChangeStatus::UNCHANGED;
4484     return Base::manifest(A);
4485   }
4486 
4487   /// See AbstractAttribute::trackStatistics()
4488   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4489 };
4490 
4491 struct AAAlignCallSiteArgument final : AAAlignFloating {
4492   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4493       : AAAlignFloating(IRP, A) {}
4494 
4495   /// See AbstractAttribute::manifest(...).
4496   ChangeStatus manifest(Attributor &A) override {
4497     // If the associated argument is involved in a must-tail call we give up
4498     // because we would need to keep the argument alignments of caller and
4499     // callee in-sync. Just does not seem worth the trouble right now.
4500     if (Argument *Arg = getAssociatedArgument())
4501       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4502         return ChangeStatus::UNCHANGED;
4503     ChangeStatus Changed = AAAlignImpl::manifest(A);
4504     Align InheritAlign =
4505         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4506     if (InheritAlign >= getAssumedAlign())
4507       Changed = ChangeStatus::UNCHANGED;
4508     return Changed;
4509   }
4510 
4511   /// See AbstractAttribute::updateImpl(Attributor &A).
4512   ChangeStatus updateImpl(Attributor &A) override {
4513     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4514     if (Argument *Arg = getAssociatedArgument()) {
4515       // We only take known information from the argument
4516       // so we do not need to track a dependence.
4517       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4518           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4519       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4520     }
4521     return Changed;
4522   }
4523 
4524   /// See AbstractAttribute::trackStatistics()
4525   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4526 };
4527 
4528 /// Align attribute deduction for a call site return value.
4529 struct AAAlignCallSiteReturned final
4530     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4531   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4532   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4533       : Base(IRP, A) {}
4534 
4535   /// See AbstractAttribute::initialize(...).
4536   void initialize(Attributor &A) override {
4537     Base::initialize(A);
4538     Function *F = getAssociatedFunction();
4539     if (!F || F->isDeclaration())
4540       indicatePessimisticFixpoint();
4541   }
4542 
4543   /// See AbstractAttribute::trackStatistics()
4544   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4545 };
4546 
4547 /// ------------------ Function No-Return Attribute ----------------------------
4548 struct AANoReturnImpl : public AANoReturn {
4549   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4550 
4551   /// See AbstractAttribute::initialize(...).
4552   void initialize(Attributor &A) override {
4553     AANoReturn::initialize(A);
4554     Function *F = getAssociatedFunction();
4555     if (!F || F->isDeclaration())
4556       indicatePessimisticFixpoint();
4557   }
4558 
4559   /// See AbstractAttribute::getAsStr().
4560   const std::string getAsStr() const override {
4561     return getAssumed() ? "noreturn" : "may-return";
4562   }
4563 
4564   /// See AbstractAttribute::updateImpl(Attributor &A).
4565   virtual ChangeStatus updateImpl(Attributor &A) override {
4566     auto CheckForNoReturn = [](Instruction &) { return false; };
4567     bool UsedAssumedInformation = false;
4568     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4569                                    {(unsigned)Instruction::Ret},
4570                                    UsedAssumedInformation))
4571       return indicatePessimisticFixpoint();
4572     return ChangeStatus::UNCHANGED;
4573   }
4574 };
4575 
4576 struct AANoReturnFunction final : AANoReturnImpl {
4577   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4578       : AANoReturnImpl(IRP, A) {}
4579 
4580   /// See AbstractAttribute::trackStatistics()
4581   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4582 };
4583 
4584 /// NoReturn attribute deduction for a call sites.
4585 struct AANoReturnCallSite final : AANoReturnImpl {
4586   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4587       : AANoReturnImpl(IRP, A) {}
4588 
4589   /// See AbstractAttribute::initialize(...).
4590   void initialize(Attributor &A) override {
4591     AANoReturnImpl::initialize(A);
4592     if (Function *F = getAssociatedFunction()) {
4593       const IRPosition &FnPos = IRPosition::function(*F);
4594       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4595       if (!FnAA.isAssumedNoReturn())
4596         indicatePessimisticFixpoint();
4597     }
4598   }
4599 
4600   /// See AbstractAttribute::updateImpl(...).
4601   ChangeStatus updateImpl(Attributor &A) override {
4602     // TODO: Once we have call site specific value information we can provide
4603     //       call site specific liveness information and then it makes
4604     //       sense to specialize attributes for call sites arguments instead of
4605     //       redirecting requests to the callee argument.
4606     Function *F = getAssociatedFunction();
4607     const IRPosition &FnPos = IRPosition::function(*F);
4608     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4609     return clampStateAndIndicateChange(getState(), FnAA.getState());
4610   }
4611 
4612   /// See AbstractAttribute::trackStatistics()
4613   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4614 };
4615 
4616 /// ----------------------- Variable Capturing ---------------------------------
4617 
4618 /// A class to hold the state of for no-capture attributes.
4619 struct AANoCaptureImpl : public AANoCapture {
4620   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4621 
4622   /// See AbstractAttribute::initialize(...).
4623   void initialize(Attributor &A) override {
4624     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4625       indicateOptimisticFixpoint();
4626       return;
4627     }
4628     Function *AnchorScope = getAnchorScope();
4629     if (isFnInterfaceKind() &&
4630         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4631       indicatePessimisticFixpoint();
4632       return;
4633     }
4634 
4635     // You cannot "capture" null in the default address space.
4636     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4637         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4638       indicateOptimisticFixpoint();
4639       return;
4640     }
4641 
4642     const Function *F =
4643         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4644 
4645     // Check what state the associated function can actually capture.
4646     if (F)
4647       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4648     else
4649       indicatePessimisticFixpoint();
4650   }
4651 
4652   /// See AbstractAttribute::updateImpl(...).
4653   ChangeStatus updateImpl(Attributor &A) override;
4654 
4655   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4656   virtual void
4657   getDeducedAttributes(LLVMContext &Ctx,
4658                        SmallVectorImpl<Attribute> &Attrs) const override {
4659     if (!isAssumedNoCaptureMaybeReturned())
4660       return;
4661 
4662     if (isArgumentPosition()) {
4663       if (isAssumedNoCapture())
4664         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4665       else if (ManifestInternal)
4666         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4667     }
4668   }
4669 
4670   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4671   /// depending on the ability of the function associated with \p IRP to capture
4672   /// state in memory and through "returning/throwing", respectively.
4673   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4674                                                    const Function &F,
4675                                                    BitIntegerState &State) {
4676     // TODO: Once we have memory behavior attributes we should use them here.
4677 
4678     // If we know we cannot communicate or write to memory, we do not care about
4679     // ptr2int anymore.
4680     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4681         F.getReturnType()->isVoidTy()) {
4682       State.addKnownBits(NO_CAPTURE);
4683       return;
4684     }
4685 
4686     // A function cannot capture state in memory if it only reads memory, it can
4687     // however return/throw state and the state might be influenced by the
4688     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4689     if (F.onlyReadsMemory())
4690       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4691 
4692     // A function cannot communicate state back if it does not through
4693     // exceptions and doesn not return values.
4694     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4695       State.addKnownBits(NOT_CAPTURED_IN_RET);
4696 
4697     // Check existing "returned" attributes.
4698     int ArgNo = IRP.getCalleeArgNo();
4699     if (F.doesNotThrow() && ArgNo >= 0) {
4700       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4701         if (F.hasParamAttribute(u, Attribute::Returned)) {
4702           if (u == unsigned(ArgNo))
4703             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4704           else if (F.onlyReadsMemory())
4705             State.addKnownBits(NO_CAPTURE);
4706           else
4707             State.addKnownBits(NOT_CAPTURED_IN_RET);
4708           break;
4709         }
4710     }
4711   }
4712 
4713   /// See AbstractState::getAsStr().
4714   const std::string getAsStr() const override {
4715     if (isKnownNoCapture())
4716       return "known not-captured";
4717     if (isAssumedNoCapture())
4718       return "assumed not-captured";
4719     if (isKnownNoCaptureMaybeReturned())
4720       return "known not-captured-maybe-returned";
4721     if (isAssumedNoCaptureMaybeReturned())
4722       return "assumed not-captured-maybe-returned";
4723     return "assumed-captured";
4724   }
4725 };
4726 
4727 /// Attributor-aware capture tracker.
4728 struct AACaptureUseTracker final : public CaptureTracker {
4729 
4730   /// Create a capture tracker that can lookup in-flight abstract attributes
4731   /// through the Attributor \p A.
4732   ///
4733   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4734   /// search is stopped. If a use leads to a return instruction,
4735   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4736   /// If a use leads to a ptr2int which may capture the value,
4737   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4738   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4739   /// set. All values in \p PotentialCopies are later tracked as well. For every
4740   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4741   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4742   /// conservatively set to true.
4743   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4744                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4745                       SmallSetVector<Value *, 4> &PotentialCopies,
4746                       unsigned &RemainingUsesToExplore)
4747       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4748         PotentialCopies(PotentialCopies),
4749         RemainingUsesToExplore(RemainingUsesToExplore) {}
4750 
4751   /// Determine if \p V maybe captured. *Also updates the state!*
4752   bool valueMayBeCaptured(const Value *V) {
4753     if (V->getType()->isPointerTy()) {
4754       PointerMayBeCaptured(V, this);
4755     } else {
4756       State.indicatePessimisticFixpoint();
4757     }
4758     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4759   }
4760 
4761   /// See CaptureTracker::tooManyUses().
4762   void tooManyUses() override {
4763     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4764   }
4765 
4766   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4767     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4768       return true;
4769     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4770         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4771     return DerefAA.getAssumedDereferenceableBytes();
4772   }
4773 
4774   /// See CaptureTracker::captured(...).
4775   bool captured(const Use *U) override {
4776     Instruction *UInst = cast<Instruction>(U->getUser());
4777     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4778                       << "\n");
4779 
4780     // Because we may reuse the tracker multiple times we keep track of the
4781     // number of explored uses ourselves as well.
4782     if (RemainingUsesToExplore-- == 0) {
4783       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4784       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4785                           /* Return */ true);
4786     }
4787 
4788     // Deal with ptr2int by following uses.
4789     if (isa<PtrToIntInst>(UInst)) {
4790       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4791       return valueMayBeCaptured(UInst);
4792     }
4793 
4794     // For stores we check if we can follow the value through memory or not.
4795     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4796       if (SI->isVolatile())
4797         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4798                             /* Return */ false);
4799       bool UsedAssumedInformation = false;
4800       if (!AA::getPotentialCopiesOfStoredValue(
4801               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4802         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4803                             /* Return */ false);
4804       // Not captured directly, potential copies will be checked.
4805       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4806                           /* Return */ false);
4807     }
4808 
4809     // Explicitly catch return instructions.
4810     if (isa<ReturnInst>(UInst)) {
4811       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4812         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4813                             /* Return */ true);
4814       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4815                           /* Return */ true);
4816     }
4817 
4818     // For now we only use special logic for call sites. However, the tracker
4819     // itself knows about a lot of other non-capturing cases already.
4820     auto *CB = dyn_cast<CallBase>(UInst);
4821     if (!CB || !CB->isArgOperand(U))
4822       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4823                           /* Return */ true);
4824 
4825     unsigned ArgNo = CB->getArgOperandNo(U);
4826     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4827     // If we have a abstract no-capture attribute for the argument we can use
4828     // it to justify a non-capture attribute here. This allows recursion!
4829     auto &ArgNoCaptureAA =
4830         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4831     if (ArgNoCaptureAA.isAssumedNoCapture())
4832       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4833                           /* Return */ false);
4834     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4835       addPotentialCopy(*CB);
4836       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4837                           /* Return */ false);
4838     }
4839 
4840     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4841     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4842                         /* Return */ true);
4843   }
4844 
4845   /// Register \p CS as potential copy of the value we are checking.
4846   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4847 
4848   /// See CaptureTracker::shouldExplore(...).
4849   bool shouldExplore(const Use *U) override {
4850     // Check liveness and ignore droppable users.
4851     bool UsedAssumedInformation = false;
4852     return !U->getUser()->isDroppable() &&
4853            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4854                             UsedAssumedInformation);
4855   }
4856 
4857   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4858   /// \p CapturedInRet, then return the appropriate value for use in the
4859   /// CaptureTracker::captured() interface.
4860   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4861                     bool CapturedInRet) {
4862     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4863                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4864     if (CapturedInMem)
4865       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4866     if (CapturedInInt)
4867       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4868     if (CapturedInRet)
4869       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4870     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4871   }
4872 
4873 private:
4874   /// The attributor providing in-flight abstract attributes.
4875   Attributor &A;
4876 
4877   /// The abstract attribute currently updated.
4878   AANoCapture &NoCaptureAA;
4879 
4880   /// The abstract liveness state.
4881   const AAIsDead &IsDeadAA;
4882 
4883   /// The state currently updated.
4884   AANoCapture::StateType &State;
4885 
4886   /// Set of potential copies of the tracked value.
4887   SmallSetVector<Value *, 4> &PotentialCopies;
4888 
4889   /// Global counter to limit the number of explored uses.
4890   unsigned &RemainingUsesToExplore;
4891 };
4892 
4893 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4894   const IRPosition &IRP = getIRPosition();
4895   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4896                                   : &IRP.getAssociatedValue();
4897   if (!V)
4898     return indicatePessimisticFixpoint();
4899 
4900   const Function *F =
4901       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4902   assert(F && "Expected a function!");
4903   const IRPosition &FnPos = IRPosition::function(*F);
4904   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4905 
4906   AANoCapture::StateType T;
4907 
4908   // Readonly means we cannot capture through memory.
4909   const auto &FnMemAA =
4910       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4911   if (FnMemAA.isAssumedReadOnly()) {
4912     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4913     if (FnMemAA.isKnownReadOnly())
4914       addKnownBits(NOT_CAPTURED_IN_MEM);
4915     else
4916       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4917   }
4918 
4919   // Make sure all returned values are different than the underlying value.
4920   // TODO: we could do this in a more sophisticated way inside
4921   //       AAReturnedValues, e.g., track all values that escape through returns
4922   //       directly somehow.
4923   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4924     bool SeenConstant = false;
4925     for (auto &It : RVAA.returned_values()) {
4926       if (isa<Constant>(It.first)) {
4927         if (SeenConstant)
4928           return false;
4929         SeenConstant = true;
4930       } else if (!isa<Argument>(It.first) ||
4931                  It.first == getAssociatedArgument())
4932         return false;
4933     }
4934     return true;
4935   };
4936 
4937   const auto &NoUnwindAA =
4938       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4939   if (NoUnwindAA.isAssumedNoUnwind()) {
4940     bool IsVoidTy = F->getReturnType()->isVoidTy();
4941     const AAReturnedValues *RVAA =
4942         IsVoidTy ? nullptr
4943                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4944 
4945                                                  DepClassTy::OPTIONAL);
4946     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4947       T.addKnownBits(NOT_CAPTURED_IN_RET);
4948       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4949         return ChangeStatus::UNCHANGED;
4950       if (NoUnwindAA.isKnownNoUnwind() &&
4951           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4952         addKnownBits(NOT_CAPTURED_IN_RET);
4953         if (isKnown(NOT_CAPTURED_IN_MEM))
4954           return indicateOptimisticFixpoint();
4955       }
4956     }
4957   }
4958 
4959   // Use the CaptureTracker interface and logic with the specialized tracker,
4960   // defined in AACaptureUseTracker, that can look at in-flight abstract
4961   // attributes and directly updates the assumed state.
4962   SmallSetVector<Value *, 4> PotentialCopies;
4963   unsigned RemainingUsesToExplore =
4964       getDefaultMaxUsesToExploreForCaptureTracking();
4965   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4966                               RemainingUsesToExplore);
4967 
4968   // Check all potential copies of the associated value until we can assume
4969   // none will be captured or we have to assume at least one might be.
4970   unsigned Idx = 0;
4971   PotentialCopies.insert(V);
4972   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4973     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4974 
4975   AANoCapture::StateType &S = getState();
4976   auto Assumed = S.getAssumed();
4977   S.intersectAssumedBits(T.getAssumed());
4978   if (!isAssumedNoCaptureMaybeReturned())
4979     return indicatePessimisticFixpoint();
4980   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4981                                    : ChangeStatus::CHANGED;
4982 }
4983 
4984 /// NoCapture attribute for function arguments.
4985 struct AANoCaptureArgument final : AANoCaptureImpl {
4986   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4987       : AANoCaptureImpl(IRP, A) {}
4988 
4989   /// See AbstractAttribute::trackStatistics()
4990   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4991 };
4992 
4993 /// NoCapture attribute for call site arguments.
4994 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4995   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4996       : AANoCaptureImpl(IRP, A) {}
4997 
4998   /// See AbstractAttribute::initialize(...).
4999   void initialize(Attributor &A) override {
5000     if (Argument *Arg = getAssociatedArgument())
5001       if (Arg->hasByValAttr())
5002         indicateOptimisticFixpoint();
5003     AANoCaptureImpl::initialize(A);
5004   }
5005 
5006   /// See AbstractAttribute::updateImpl(...).
5007   ChangeStatus updateImpl(Attributor &A) override {
5008     // TODO: Once we have call site specific value information we can provide
5009     //       call site specific liveness information and then it makes
5010     //       sense to specialize attributes for call sites arguments instead of
5011     //       redirecting requests to the callee argument.
5012     Argument *Arg = getAssociatedArgument();
5013     if (!Arg)
5014       return indicatePessimisticFixpoint();
5015     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5016     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5017     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5018   }
5019 
5020   /// See AbstractAttribute::trackStatistics()
5021   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5022 };
5023 
5024 /// NoCapture attribute for floating values.
5025 struct AANoCaptureFloating final : AANoCaptureImpl {
5026   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5027       : AANoCaptureImpl(IRP, A) {}
5028 
5029   /// See AbstractAttribute::trackStatistics()
5030   void trackStatistics() const override {
5031     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5032   }
5033 };
5034 
5035 /// NoCapture attribute for function return value.
5036 struct AANoCaptureReturned final : AANoCaptureImpl {
5037   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5038       : AANoCaptureImpl(IRP, A) {
5039     llvm_unreachable("NoCapture is not applicable to function returns!");
5040   }
5041 
5042   /// See AbstractAttribute::initialize(...).
5043   void initialize(Attributor &A) override {
5044     llvm_unreachable("NoCapture is not applicable to function returns!");
5045   }
5046 
5047   /// See AbstractAttribute::updateImpl(...).
5048   ChangeStatus updateImpl(Attributor &A) override {
5049     llvm_unreachable("NoCapture is not applicable to function returns!");
5050   }
5051 
5052   /// See AbstractAttribute::trackStatistics()
5053   void trackStatistics() const override {}
5054 };
5055 
5056 /// NoCapture attribute deduction for a call site return value.
5057 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5058   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5059       : AANoCaptureImpl(IRP, A) {}
5060 
5061   /// See AbstractAttribute::initialize(...).
5062   void initialize(Attributor &A) override {
5063     const Function *F = getAnchorScope();
5064     // Check what state the associated function can actually capture.
5065     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5066   }
5067 
5068   /// See AbstractAttribute::trackStatistics()
5069   void trackStatistics() const override {
5070     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5071   }
5072 };
5073 
5074 /// ------------------ Value Simplify Attribute ----------------------------
5075 
5076 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5077   // FIXME: Add a typecast support.
5078   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5079       SimplifiedAssociatedValue, Other, Ty);
5080   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5081     return false;
5082 
5083   LLVM_DEBUG({
5084     if (SimplifiedAssociatedValue.hasValue())
5085       dbgs() << "[ValueSimplify] is assumed to be "
5086              << **SimplifiedAssociatedValue << "\n";
5087     else
5088       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5089   });
5090   return true;
5091 }
5092 
5093 struct AAValueSimplifyImpl : AAValueSimplify {
5094   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5095       : AAValueSimplify(IRP, A) {}
5096 
5097   /// See AbstractAttribute::initialize(...).
5098   void initialize(Attributor &A) override {
5099     if (getAssociatedValue().getType()->isVoidTy())
5100       indicatePessimisticFixpoint();
5101     if (A.hasSimplificationCallback(getIRPosition()))
5102       indicatePessimisticFixpoint();
5103   }
5104 
5105   /// See AbstractAttribute::getAsStr().
5106   const std::string getAsStr() const override {
5107     LLVM_DEBUG({
5108       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5109       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5110         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5111     });
5112     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5113                           : "not-simple";
5114   }
5115 
5116   /// See AbstractAttribute::trackStatistics()
5117   void trackStatistics() const override {}
5118 
5119   /// See AAValueSimplify::getAssumedSimplifiedValue()
5120   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5121     return SimplifiedAssociatedValue;
5122   }
5123 
5124   /// Return a value we can use as replacement for the associated one, or
5125   /// nullptr if we don't have one that makes sense.
5126   Value *getReplacementValue(Attributor &A) const {
5127     Value *NewV;
5128     NewV = SimplifiedAssociatedValue.hasValue()
5129                ? SimplifiedAssociatedValue.getValue()
5130                : UndefValue::get(getAssociatedType());
5131     if (!NewV)
5132       return nullptr;
5133     NewV = AA::getWithType(*NewV, *getAssociatedType());
5134     if (!NewV || NewV == &getAssociatedValue())
5135       return nullptr;
5136     const Instruction *CtxI = getCtxI();
5137     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5138       return nullptr;
5139     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5140       return nullptr;
5141     return NewV;
5142   }
5143 
5144   /// Helper function for querying AAValueSimplify and updating candicate.
5145   /// \param IRP The value position we are trying to unify with SimplifiedValue
5146   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5147                       const IRPosition &IRP, bool Simplify = true) {
5148     bool UsedAssumedInformation = false;
5149     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5150     if (Simplify)
5151       QueryingValueSimplified =
5152           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5153     return unionAssumed(QueryingValueSimplified);
5154   }
5155 
5156   /// Returns a candidate is found or not
5157   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5158     if (!getAssociatedValue().getType()->isIntegerTy())
5159       return false;
5160 
5161     // This will also pass the call base context.
5162     const auto &AA =
5163         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5164 
5165     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5166 
5167     if (!COpt.hasValue()) {
5168       SimplifiedAssociatedValue = llvm::None;
5169       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5170       return true;
5171     }
5172     if (auto *C = COpt.getValue()) {
5173       SimplifiedAssociatedValue = C;
5174       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5175       return true;
5176     }
5177     return false;
5178   }
5179 
5180   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5181     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5182       return true;
5183     if (askSimplifiedValueFor<AAPotentialValues>(A))
5184       return true;
5185     return false;
5186   }
5187 
5188   /// See AbstractAttribute::manifest(...).
5189   ChangeStatus manifest(Attributor &A) override {
5190     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5191     if (getAssociatedValue().user_empty())
5192       return Changed;
5193 
5194     if (auto *NewV = getReplacementValue(A)) {
5195       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5196                         << *NewV << " :: " << *this << "\n");
5197       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5198         Changed = ChangeStatus::CHANGED;
5199     }
5200 
5201     return Changed | AAValueSimplify::manifest(A);
5202   }
5203 
5204   /// See AbstractState::indicatePessimisticFixpoint(...).
5205   ChangeStatus indicatePessimisticFixpoint() override {
5206     SimplifiedAssociatedValue = &getAssociatedValue();
5207     return AAValueSimplify::indicatePessimisticFixpoint();
5208   }
5209 
5210   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5211                          LoadInst &L, function_ref<bool(Value &)> Union) {
5212     auto UnionWrapper = [&](Value &V, Value &Obj) {
5213       if (isa<AllocaInst>(Obj))
5214         return Union(V);
5215       if (!AA::isDynamicallyUnique(A, AA, V))
5216         return false;
5217       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5218         return false;
5219       return Union(V);
5220     };
5221 
5222     Value &Ptr = *L.getPointerOperand();
5223     SmallVector<Value *, 8> Objects;
5224     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5225       return false;
5226 
5227     for (Value *Obj : Objects) {
5228       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5229       if (isa<UndefValue>(Obj))
5230         continue;
5231       if (isa<ConstantPointerNull>(Obj)) {
5232         // A null pointer access can be undefined but any offset from null may
5233         // be OK. We do not try to optimize the latter.
5234         bool UsedAssumedInformation = false;
5235         if (!NullPointerIsDefined(L.getFunction(),
5236                                   Ptr.getType()->getPointerAddressSpace()) &&
5237             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5238           continue;
5239         return false;
5240       }
5241       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj))
5242         return false;
5243       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType());
5244       if (!InitialVal || !Union(*InitialVal))
5245         return false;
5246 
5247       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5248                            "propagation, checking accesses next.\n");
5249 
5250       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5251         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5252         if (!Acc.isWrite())
5253           return true;
5254         if (Acc.isWrittenValueYetUndetermined())
5255           return true;
5256         Value *Content = Acc.getWrittenValue();
5257         if (!Content)
5258           return false;
5259         Value *CastedContent =
5260             AA::getWithType(*Content, *AA.getAssociatedType());
5261         if (!CastedContent)
5262           return false;
5263         if (IsExact)
5264           return UnionWrapper(*CastedContent, *Obj);
5265         if (auto *C = dyn_cast<Constant>(CastedContent))
5266           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5267             return UnionWrapper(*CastedContent, *Obj);
5268         return false;
5269       };
5270 
5271       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5272                                            DepClassTy::REQUIRED);
5273       if (!PI.forallInterferingAccesses(L, CheckAccess))
5274         return false;
5275     }
5276     return true;
5277   }
5278 };
5279 
5280 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5281   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5282       : AAValueSimplifyImpl(IRP, A) {}
5283 
5284   void initialize(Attributor &A) override {
5285     AAValueSimplifyImpl::initialize(A);
5286     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5287       indicatePessimisticFixpoint();
5288     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5289                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5290                 /* IgnoreSubsumingPositions */ true))
5291       indicatePessimisticFixpoint();
5292 
5293     // FIXME: This is a hack to prevent us from propagating function poiner in
5294     // the new pass manager CGSCC pass as it creates call edges the
5295     // CallGraphUpdater cannot handle yet.
5296     Value &V = getAssociatedValue();
5297     if (V.getType()->isPointerTy() &&
5298         V.getType()->getPointerElementType()->isFunctionTy() &&
5299         !A.isModulePass())
5300       indicatePessimisticFixpoint();
5301   }
5302 
5303   /// See AbstractAttribute::updateImpl(...).
5304   ChangeStatus updateImpl(Attributor &A) override {
5305     // Byval is only replacable if it is readonly otherwise we would write into
5306     // the replaced value and not the copy that byval creates implicitly.
5307     Argument *Arg = getAssociatedArgument();
5308     if (Arg->hasByValAttr()) {
5309       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5310       //       there is no race by not copying a constant byval.
5311       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5312                                                        DepClassTy::REQUIRED);
5313       if (!MemAA.isAssumedReadOnly())
5314         return indicatePessimisticFixpoint();
5315     }
5316 
5317     auto Before = SimplifiedAssociatedValue;
5318 
5319     auto PredForCallSite = [&](AbstractCallSite ACS) {
5320       const IRPosition &ACSArgPos =
5321           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5322       // Check if a coresponding argument was found or if it is on not
5323       // associated (which can happen for callback calls).
5324       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5325         return false;
5326 
5327       // Simplify the argument operand explicitly and check if the result is
5328       // valid in the current scope. This avoids refering to simplified values
5329       // in other functions, e.g., we don't want to say a an argument in a
5330       // static function is actually an argument in a different function.
5331       bool UsedAssumedInformation = false;
5332       Optional<Constant *> SimpleArgOp =
5333           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5334       if (!SimpleArgOp.hasValue())
5335         return true;
5336       if (!SimpleArgOp.getValue())
5337         return false;
5338       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5339         return false;
5340       return unionAssumed(*SimpleArgOp);
5341     };
5342 
5343     // Generate a answer specific to a call site context.
5344     bool Success;
5345     bool AllCallSitesKnown;
5346     if (hasCallBaseContext() &&
5347         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5348       Success = PredForCallSite(
5349           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5350     else
5351       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5352                                        AllCallSitesKnown);
5353 
5354     if (!Success)
5355       if (!askSimplifiedValueForOtherAAs(A))
5356         return indicatePessimisticFixpoint();
5357 
5358     // If a candicate was found in this update, return CHANGED.
5359     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5360                                                : ChangeStatus ::CHANGED;
5361   }
5362 
5363   /// See AbstractAttribute::trackStatistics()
5364   void trackStatistics() const override {
5365     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5366   }
5367 };
5368 
5369 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5370   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5371       : AAValueSimplifyImpl(IRP, A) {}
5372 
5373   /// See AAValueSimplify::getAssumedSimplifiedValue()
5374   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5375     if (!isValidState())
5376       return nullptr;
5377     return SimplifiedAssociatedValue;
5378   }
5379 
5380   /// See AbstractAttribute::updateImpl(...).
5381   ChangeStatus updateImpl(Attributor &A) override {
5382     auto Before = SimplifiedAssociatedValue;
5383 
5384     auto PredForReturned = [&](Value &V) {
5385       return checkAndUpdate(A, *this,
5386                             IRPosition::value(V, getCallBaseContext()));
5387     };
5388 
5389     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5390       if (!askSimplifiedValueForOtherAAs(A))
5391         return indicatePessimisticFixpoint();
5392 
5393     // If a candicate was found in this update, return CHANGED.
5394     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5395                                                : ChangeStatus ::CHANGED;
5396   }
5397 
5398   ChangeStatus manifest(Attributor &A) override {
5399     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5400 
5401     if (auto *NewV = getReplacementValue(A)) {
5402       auto PredForReturned =
5403           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5404             for (ReturnInst *RI : RetInsts) {
5405               Value *ReturnedVal = RI->getReturnValue();
5406               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5407                 return true;
5408               assert(RI->getFunction() == getAnchorScope() &&
5409                      "ReturnInst in wrong function!");
5410               LLVM_DEBUG(dbgs()
5411                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5412                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5413               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5414                 Changed = ChangeStatus::CHANGED;
5415             }
5416             return true;
5417           };
5418       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5419     }
5420 
5421     return Changed | AAValueSimplify::manifest(A);
5422   }
5423 
5424   /// See AbstractAttribute::trackStatistics()
5425   void trackStatistics() const override {
5426     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5427   }
5428 };
5429 
5430 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5431   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5432       : AAValueSimplifyImpl(IRP, A) {}
5433 
5434   /// See AbstractAttribute::initialize(...).
5435   void initialize(Attributor &A) override {
5436     AAValueSimplifyImpl::initialize(A);
5437     Value &V = getAnchorValue();
5438 
5439     // TODO: add other stuffs
5440     if (isa<Constant>(V))
5441       indicatePessimisticFixpoint();
5442   }
5443 
5444   /// Check if \p Cmp is a comparison we can simplify.
5445   ///
5446   /// We handle multiple cases, one in which at least one operand is an
5447   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5448   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5449   /// will be updated.
5450   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5451     auto Union = [&](Value &V) {
5452       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5453           SimplifiedAssociatedValue, &V, V.getType());
5454       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5455     };
5456 
5457     Value *LHS = Cmp.getOperand(0);
5458     Value *RHS = Cmp.getOperand(1);
5459 
5460     // Simplify the operands first.
5461     bool UsedAssumedInformation = false;
5462     const auto &SimplifiedLHS =
5463         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5464                                *this, UsedAssumedInformation);
5465     if (!SimplifiedLHS.hasValue())
5466       return true;
5467     if (!SimplifiedLHS.getValue())
5468       return false;
5469     LHS = *SimplifiedLHS;
5470 
5471     const auto &SimplifiedRHS =
5472         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5473                                *this, UsedAssumedInformation);
5474     if (!SimplifiedRHS.hasValue())
5475       return true;
5476     if (!SimplifiedRHS.getValue())
5477       return false;
5478     RHS = *SimplifiedRHS;
5479 
5480     LLVMContext &Ctx = Cmp.getContext();
5481     // Handle the trivial case first in which we don't even need to think about
5482     // null or non-null.
5483     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5484       Constant *NewVal =
5485           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5486       if (!Union(*NewVal))
5487         return false;
5488       if (!UsedAssumedInformation)
5489         indicateOptimisticFixpoint();
5490       return true;
5491     }
5492 
5493     // From now on we only handle equalities (==, !=).
5494     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5495     if (!ICmp || !ICmp->isEquality())
5496       return false;
5497 
5498     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5499     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5500     if (!LHSIsNull && !RHSIsNull)
5501       return false;
5502 
5503     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5504     // non-nullptr operand and if we assume it's non-null we can conclude the
5505     // result of the comparison.
5506     assert((LHSIsNull || RHSIsNull) &&
5507            "Expected nullptr versus non-nullptr comparison at this point");
5508 
5509     // The index is the operand that we assume is not null.
5510     unsigned PtrIdx = LHSIsNull;
5511     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5512         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5513         DepClassTy::REQUIRED);
5514     if (!PtrNonNullAA.isAssumedNonNull())
5515       return false;
5516     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5517 
5518     // The new value depends on the predicate, true for != and false for ==.
5519     Constant *NewVal = ConstantInt::get(
5520         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5521     if (!Union(*NewVal))
5522       return false;
5523 
5524     if (!UsedAssumedInformation)
5525       indicateOptimisticFixpoint();
5526 
5527     return true;
5528   }
5529 
5530   bool updateWithLoad(Attributor &A, LoadInst &L) {
5531     auto Union = [&](Value &V) {
5532       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5533           SimplifiedAssociatedValue, &V, L.getType());
5534       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5535     };
5536     return handleLoad(A, *this, L, Union);
5537   }
5538 
5539   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5540   /// simplify any operand of the instruction \p I. Return true if successful,
5541   /// in that case SimplifiedAssociatedValue will be updated.
5542   bool handleGenericInst(Attributor &A, Instruction &I) {
5543     bool SomeSimplified = false;
5544     bool UsedAssumedInformation = false;
5545 
5546     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5547     int Idx = 0;
5548     for (Value *Op : I.operands()) {
5549       const auto &SimplifiedOp =
5550           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5551                                  *this, UsedAssumedInformation);
5552       // If we are not sure about any operand we are not sure about the entire
5553       // instruction, we'll wait.
5554       if (!SimplifiedOp.hasValue())
5555         return true;
5556 
5557       if (SimplifiedOp.getValue())
5558         NewOps[Idx] = SimplifiedOp.getValue();
5559       else
5560         NewOps[Idx] = Op;
5561 
5562       SomeSimplified |= (NewOps[Idx] != Op);
5563       ++Idx;
5564     }
5565 
5566     // We won't bother with the InstSimplify interface if we didn't simplify any
5567     // operand ourselves.
5568     if (!SomeSimplified)
5569       return false;
5570 
5571     InformationCache &InfoCache = A.getInfoCache();
5572     Function *F = I.getFunction();
5573     const auto *DT =
5574         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5575     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5576     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5577     OptimizationRemarkEmitter *ORE = nullptr;
5578 
5579     const DataLayout &DL = I.getModule()->getDataLayout();
5580     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5581     if (Value *SimplifiedI =
5582             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5583       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5584           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5585       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5586     }
5587     return false;
5588   }
5589 
5590   /// See AbstractAttribute::updateImpl(...).
5591   ChangeStatus updateImpl(Attributor &A) override {
5592     auto Before = SimplifiedAssociatedValue;
5593 
5594     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5595                             bool Stripped) -> bool {
5596       auto &AA = A.getAAFor<AAValueSimplify>(
5597           *this, IRPosition::value(V, getCallBaseContext()),
5598           DepClassTy::REQUIRED);
5599       if (!Stripped && this == &AA) {
5600 
5601         if (auto *I = dyn_cast<Instruction>(&V)) {
5602           if (auto *LI = dyn_cast<LoadInst>(&V))
5603             if (updateWithLoad(A, *LI))
5604               return true;
5605           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5606             if (handleCmp(A, *Cmp))
5607               return true;
5608           if (handleGenericInst(A, *I))
5609             return true;
5610         }
5611         // TODO: Look the instruction and check recursively.
5612 
5613         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5614                           << "\n");
5615         return false;
5616       }
5617       return checkAndUpdate(A, *this,
5618                             IRPosition::value(V, getCallBaseContext()));
5619     };
5620 
5621     bool Dummy = false;
5622     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5623                                      VisitValueCB, getCtxI(),
5624                                      /* UseValueSimplify */ false))
5625       if (!askSimplifiedValueForOtherAAs(A))
5626         return indicatePessimisticFixpoint();
5627 
5628     // If a candicate was found in this update, return CHANGED.
5629     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5630                                                : ChangeStatus ::CHANGED;
5631   }
5632 
5633   /// See AbstractAttribute::trackStatistics()
5634   void trackStatistics() const override {
5635     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5636   }
5637 };
5638 
5639 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5640   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5641       : AAValueSimplifyImpl(IRP, A) {}
5642 
5643   /// See AbstractAttribute::initialize(...).
5644   void initialize(Attributor &A) override {
5645     SimplifiedAssociatedValue = nullptr;
5646     indicateOptimisticFixpoint();
5647   }
5648   /// See AbstractAttribute::initialize(...).
5649   ChangeStatus updateImpl(Attributor &A) override {
5650     llvm_unreachable(
5651         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5652   }
5653   /// See AbstractAttribute::trackStatistics()
5654   void trackStatistics() const override {
5655     STATS_DECLTRACK_FN_ATTR(value_simplify)
5656   }
5657 };
5658 
5659 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5660   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5661       : AAValueSimplifyFunction(IRP, A) {}
5662   /// See AbstractAttribute::trackStatistics()
5663   void trackStatistics() const override {
5664     STATS_DECLTRACK_CS_ATTR(value_simplify)
5665   }
5666 };
5667 
5668 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5669   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5670       : AAValueSimplifyImpl(IRP, A) {}
5671 
5672   void initialize(Attributor &A) override {
5673     AAValueSimplifyImpl::initialize(A);
5674     if (!getAssociatedFunction())
5675       indicatePessimisticFixpoint();
5676   }
5677 
5678   /// See AbstractAttribute::updateImpl(...).
5679   ChangeStatus updateImpl(Attributor &A) override {
5680     auto Before = SimplifiedAssociatedValue;
5681     auto &RetAA = A.getAAFor<AAReturnedValues>(
5682         *this, IRPosition::function(*getAssociatedFunction()),
5683         DepClassTy::REQUIRED);
5684     auto PredForReturned =
5685         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5686           bool UsedAssumedInformation = false;
5687           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5688               &RetVal, *cast<CallBase>(getCtxI()), *this,
5689               UsedAssumedInformation);
5690           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5691               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5692           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5693         };
5694     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5695       if (!askSimplifiedValueForOtherAAs(A))
5696         return indicatePessimisticFixpoint();
5697     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5698                                                : ChangeStatus ::CHANGED;
5699   }
5700 
5701   void trackStatistics() const override {
5702     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5703   }
5704 };
5705 
5706 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5707   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5708       : AAValueSimplifyFloating(IRP, A) {}
5709 
5710   /// See AbstractAttribute::manifest(...).
5711   ChangeStatus manifest(Attributor &A) override {
5712     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5713 
5714     if (auto *NewV = getReplacementValue(A)) {
5715       Use &U = cast<CallBase>(&getAnchorValue())
5716                    ->getArgOperandUse(getCallSiteArgNo());
5717       if (A.changeUseAfterManifest(U, *NewV))
5718         Changed = ChangeStatus::CHANGED;
5719     }
5720 
5721     return Changed | AAValueSimplify::manifest(A);
5722   }
5723 
5724   void trackStatistics() const override {
5725     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5726   }
5727 };
5728 
5729 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5730 struct AAHeapToStackFunction final : public AAHeapToStack {
5731 
5732   struct AllocationInfo {
5733     /// The call that allocates the memory.
5734     CallBase *const CB;
5735 
5736     /// The kind of allocation.
5737     const enum class AllocationKind {
5738       MALLOC,
5739       CALLOC,
5740       ALIGNED_ALLOC,
5741     } Kind;
5742 
5743     /// The library function id for the allocation.
5744     LibFunc LibraryFunctionId = NotLibFunc;
5745 
5746     /// The status wrt. a rewrite.
5747     enum {
5748       STACK_DUE_TO_USE,
5749       STACK_DUE_TO_FREE,
5750       INVALID,
5751     } Status = STACK_DUE_TO_USE;
5752 
5753     /// Flag to indicate if we encountered a use that might free this allocation
5754     /// but which is not in the deallocation infos.
5755     bool HasPotentiallyFreeingUnknownUses = false;
5756 
5757     /// The set of free calls that use this allocation.
5758     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5759   };
5760 
5761   struct DeallocationInfo {
5762     /// The call that deallocates the memory.
5763     CallBase *const CB;
5764 
5765     /// Flag to indicate if we don't know all objects this deallocation might
5766     /// free.
5767     bool MightFreeUnknownObjects = false;
5768 
5769     /// The set of allocation calls that are potentially freed.
5770     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5771   };
5772 
5773   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5774       : AAHeapToStack(IRP, A) {}
5775 
5776   ~AAHeapToStackFunction() {
5777     // Ensure we call the destructor so we release any memory allocated in the
5778     // sets.
5779     for (auto &It : AllocationInfos)
5780       It.getSecond()->~AllocationInfo();
5781     for (auto &It : DeallocationInfos)
5782       It.getSecond()->~DeallocationInfo();
5783   }
5784 
5785   void initialize(Attributor &A) override {
5786     AAHeapToStack::initialize(A);
5787 
5788     const Function *F = getAnchorScope();
5789     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5790 
5791     auto AllocationIdentifierCB = [&](Instruction &I) {
5792       CallBase *CB = dyn_cast<CallBase>(&I);
5793       if (!CB)
5794         return true;
5795       if (isFreeCall(CB, TLI)) {
5796         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5797         return true;
5798       }
5799       bool IsMalloc = isMallocLikeFn(CB, TLI);
5800       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5801       bool IsCalloc =
5802           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5803       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5804         return true;
5805       auto Kind =
5806           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5807                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5808                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5809 
5810       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5811       AllocationInfos[CB] = AI;
5812       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5813       return true;
5814     };
5815 
5816     bool UsedAssumedInformation = false;
5817     bool Success = A.checkForAllCallLikeInstructions(
5818         AllocationIdentifierCB, *this, UsedAssumedInformation,
5819         /* CheckBBLivenessOnly */ false,
5820         /* CheckPotentiallyDead */ true);
5821     (void)Success;
5822     assert(Success && "Did not expect the call base visit callback to fail!");
5823   }
5824 
5825   const std::string getAsStr() const override {
5826     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5827     for (const auto &It : AllocationInfos) {
5828       if (It.second->Status == AllocationInfo::INVALID)
5829         ++NumInvalidMallocs;
5830       else
5831         ++NumH2SMallocs;
5832     }
5833     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5834            std::to_string(NumInvalidMallocs);
5835   }
5836 
5837   /// See AbstractAttribute::trackStatistics().
5838   void trackStatistics() const override {
5839     STATS_DECL(
5840         MallocCalls, Function,
5841         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5842     for (auto &It : AllocationInfos)
5843       if (It.second->Status != AllocationInfo::INVALID)
5844         ++BUILD_STAT_NAME(MallocCalls, Function);
5845   }
5846 
5847   bool isAssumedHeapToStack(const CallBase &CB) const override {
5848     if (isValidState())
5849       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5850         return AI->Status != AllocationInfo::INVALID;
5851     return false;
5852   }
5853 
5854   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5855     if (!isValidState())
5856       return false;
5857 
5858     for (auto &It : AllocationInfos) {
5859       AllocationInfo &AI = *It.second;
5860       if (AI.Status == AllocationInfo::INVALID)
5861         continue;
5862 
5863       if (AI.PotentialFreeCalls.count(&CB))
5864         return true;
5865     }
5866 
5867     return false;
5868   }
5869 
5870   ChangeStatus manifest(Attributor &A) override {
5871     assert(getState().isValidState() &&
5872            "Attempted to manifest an invalid state!");
5873 
5874     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5875     Function *F = getAnchorScope();
5876     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5877 
5878     for (auto &It : AllocationInfos) {
5879       AllocationInfo &AI = *It.second;
5880       if (AI.Status == AllocationInfo::INVALID)
5881         continue;
5882 
5883       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5884         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5885         A.deleteAfterManifest(*FreeCall);
5886         HasChanged = ChangeStatus::CHANGED;
5887       }
5888 
5889       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5890                         << "\n");
5891 
5892       auto Remark = [&](OptimizationRemark OR) {
5893         LibFunc IsAllocShared;
5894         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5895           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5896             return OR << "Moving globalized variable to the stack.";
5897         return OR << "Moving memory allocation from the heap to the stack.";
5898       };
5899       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5900         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5901       else
5902         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5903 
5904       Value *Size;
5905       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5906       if (SizeAPI.hasValue()) {
5907         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5908       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5909         auto *Num = AI.CB->getOperand(0);
5910         auto *SizeT = AI.CB->getOperand(1);
5911         IRBuilder<> B(AI.CB);
5912         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5913       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5914         Size = AI.CB->getOperand(1);
5915       } else {
5916         Size = AI.CB->getOperand(0);
5917       }
5918 
5919       Align Alignment(1);
5920       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5921         Optional<APInt> AlignmentAPI =
5922             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5923         assert(AlignmentAPI.hasValue() &&
5924                "Expected an alignment during manifest!");
5925         Alignment =
5926             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5927       }
5928 
5929       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5930       Instruction *Alloca =
5931           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5932                          "", AI.CB->getNextNode());
5933 
5934       if (Alloca->getType() != AI.CB->getType())
5935         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5936                                  Alloca->getNextNode());
5937 
5938       A.changeValueAfterManifest(*AI.CB, *Alloca);
5939 
5940       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5941         auto *NBB = II->getNormalDest();
5942         BranchInst::Create(NBB, AI.CB->getParent());
5943         A.deleteAfterManifest(*AI.CB);
5944       } else {
5945         A.deleteAfterManifest(*AI.CB);
5946       }
5947 
5948       // Zero out the allocated memory if it was a calloc.
5949       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5950         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5951                                    Alloca->getNextNode());
5952         Value *Ops[] = {
5953             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5954             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5955 
5956         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5957         Module *M = F->getParent();
5958         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5959         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5960       }
5961       HasChanged = ChangeStatus::CHANGED;
5962     }
5963 
5964     return HasChanged;
5965   }
5966 
5967   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5968                            Value &V) {
5969     bool UsedAssumedInformation = false;
5970     Optional<Constant *> SimpleV =
5971         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5972     if (!SimpleV.hasValue())
5973       return APInt(64, 0);
5974     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5975       return CI->getValue();
5976     return llvm::None;
5977   }
5978 
5979   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5980                           AllocationInfo &AI) {
5981 
5982     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
5983       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
5984 
5985     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
5986       // Only if the alignment is also constant we return a size.
5987       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
5988                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
5989                  : llvm::None;
5990 
5991     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
5992            "Expected only callocs are left");
5993     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
5994     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
5995     if (!Num.hasValue() || !Size.hasValue())
5996       return llvm::None;
5997     bool Overflow = false;
5998     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
5999     return Overflow ? llvm::None : Size;
6000   }
6001 
6002   /// Collection of all malloc-like calls in a function with associated
6003   /// information.
6004   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6005 
6006   /// Collection of all free-like calls in a function with associated
6007   /// information.
6008   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6009 
6010   ChangeStatus updateImpl(Attributor &A) override;
6011 };
6012 
6013 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6014   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6015   const Function *F = getAnchorScope();
6016 
6017   const auto &LivenessAA =
6018       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6019 
6020   MustBeExecutedContextExplorer &Explorer =
6021       A.getInfoCache().getMustBeExecutedContextExplorer();
6022 
6023   bool StackIsAccessibleByOtherThreads =
6024       A.getInfoCache().stackIsAccessibleByOtherThreads();
6025 
6026   // Flag to ensure we update our deallocation information at most once per
6027   // updateImpl call and only if we use the free check reasoning.
6028   bool HasUpdatedFrees = false;
6029 
6030   auto UpdateFrees = [&]() {
6031     HasUpdatedFrees = true;
6032 
6033     for (auto &It : DeallocationInfos) {
6034       DeallocationInfo &DI = *It.second;
6035       // For now we cannot use deallocations that have unknown inputs, skip
6036       // them.
6037       if (DI.MightFreeUnknownObjects)
6038         continue;
6039 
6040       // No need to analyze dead calls, ignore them instead.
6041       bool UsedAssumedInformation = false;
6042       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6043                           /* CheckBBLivenessOnly */ true))
6044         continue;
6045 
6046       // Use the optimistic version to get the freed objects, ignoring dead
6047       // branches etc.
6048       SmallVector<Value *, 8> Objects;
6049       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6050                                            *this, DI.CB)) {
6051         LLVM_DEBUG(
6052             dbgs()
6053             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6054         DI.MightFreeUnknownObjects = true;
6055         continue;
6056       }
6057 
6058       // Check each object explicitly.
6059       for (auto *Obj : Objects) {
6060         // Free of null and undef can be ignored as no-ops (or UB in the latter
6061         // case).
6062         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6063           continue;
6064 
6065         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6066         if (!ObjCB) {
6067           LLVM_DEBUG(dbgs()
6068                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6069           DI.MightFreeUnknownObjects = true;
6070           continue;
6071         }
6072 
6073         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6074         if (!AI) {
6075           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6076                             << "\n");
6077           DI.MightFreeUnknownObjects = true;
6078           continue;
6079         }
6080 
6081         DI.PotentialAllocationCalls.insert(ObjCB);
6082       }
6083     }
6084   };
6085 
6086   auto FreeCheck = [&](AllocationInfo &AI) {
6087     // If the stack is not accessible by other threads, the "must-free" logic
6088     // doesn't apply as the pointer could be shared and needs to be places in
6089     // "shareable" memory.
6090     if (!StackIsAccessibleByOtherThreads) {
6091       auto &NoSyncAA =
6092           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6093       if (!NoSyncAA.isAssumedNoSync()) {
6094         LLVM_DEBUG(
6095             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6096                       "other threads and function is not nosync:\n");
6097         return false;
6098       }
6099     }
6100     if (!HasUpdatedFrees)
6101       UpdateFrees();
6102 
6103     // TODO: Allow multi exit functions that have different free calls.
6104     if (AI.PotentialFreeCalls.size() != 1) {
6105       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6106                         << AI.PotentialFreeCalls.size() << "\n");
6107       return false;
6108     }
6109     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6110     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6111     if (!DI) {
6112       LLVM_DEBUG(
6113           dbgs() << "[H2S] unique free call was not known as deallocation call "
6114                  << *UniqueFree << "\n");
6115       return false;
6116     }
6117     if (DI->MightFreeUnknownObjects) {
6118       LLVM_DEBUG(
6119           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6120       return false;
6121     }
6122     if (DI->PotentialAllocationCalls.size() > 1) {
6123       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6124                         << DI->PotentialAllocationCalls.size()
6125                         << " different allocations\n");
6126       return false;
6127     }
6128     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6129       LLVM_DEBUG(
6130           dbgs()
6131           << "[H2S] unique free call not known to free this allocation but "
6132           << **DI->PotentialAllocationCalls.begin() << "\n");
6133       return false;
6134     }
6135     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6136     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6137       LLVM_DEBUG(
6138           dbgs()
6139           << "[H2S] unique free call might not be executed with the allocation "
6140           << *UniqueFree << "\n");
6141       return false;
6142     }
6143     return true;
6144   };
6145 
6146   auto UsesCheck = [&](AllocationInfo &AI) {
6147     bool ValidUsesOnly = true;
6148 
6149     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6150       Instruction *UserI = cast<Instruction>(U.getUser());
6151       if (isa<LoadInst>(UserI))
6152         return true;
6153       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6154         if (SI->getValueOperand() == U.get()) {
6155           LLVM_DEBUG(dbgs()
6156                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6157           ValidUsesOnly = false;
6158         } else {
6159           // A store into the malloc'ed memory is fine.
6160         }
6161         return true;
6162       }
6163       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6164         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6165           return true;
6166         if (DeallocationInfos.count(CB)) {
6167           AI.PotentialFreeCalls.insert(CB);
6168           return true;
6169         }
6170 
6171         unsigned ArgNo = CB->getArgOperandNo(&U);
6172 
6173         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6174             *this, IRPosition::callsite_argument(*CB, ArgNo),
6175             DepClassTy::OPTIONAL);
6176 
6177         // If a call site argument use is nofree, we are fine.
6178         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6179             *this, IRPosition::callsite_argument(*CB, ArgNo),
6180             DepClassTy::OPTIONAL);
6181 
6182         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6183         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6184         if (MaybeCaptured ||
6185             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6186              MaybeFreed)) {
6187           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6188 
6189           // Emit a missed remark if this is missed OpenMP globalization.
6190           auto Remark = [&](OptimizationRemarkMissed ORM) {
6191             return ORM
6192                    << "Could not move globalized variable to the stack. "
6193                       "Variable is potentially captured in call. Mark "
6194                       "parameter as `__attribute__((noescape))` to override.";
6195           };
6196 
6197           if (ValidUsesOnly &&
6198               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6199             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6200 
6201           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6202           ValidUsesOnly = false;
6203         }
6204         return true;
6205       }
6206 
6207       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6208           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6209         Follow = true;
6210         return true;
6211       }
6212       // Unknown user for which we can not track uses further (in a way that
6213       // makes sense).
6214       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6215       ValidUsesOnly = false;
6216       return true;
6217     };
6218     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6219       return false;
6220     return ValidUsesOnly;
6221   };
6222 
6223   // The actual update starts here. We look at all allocations and depending on
6224   // their status perform the appropriate check(s).
6225   for (auto &It : AllocationInfos) {
6226     AllocationInfo &AI = *It.second;
6227     if (AI.Status == AllocationInfo::INVALID)
6228       continue;
6229 
6230     if (MaxHeapToStackSize == -1) {
6231       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6232         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6233           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6234                             << "\n");
6235           AI.Status = AllocationInfo::INVALID;
6236           Changed = ChangeStatus::CHANGED;
6237           continue;
6238         }
6239     } else {
6240       Optional<APInt> Size = getSize(A, *this, AI);
6241       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6242         LLVM_DEBUG({
6243           if (!Size.hasValue())
6244             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6245                    << "\n";
6246           else
6247             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6248                    << MaxHeapToStackSize << "\n";
6249         });
6250 
6251         AI.Status = AllocationInfo::INVALID;
6252         Changed = ChangeStatus::CHANGED;
6253         continue;
6254       }
6255     }
6256 
6257     switch (AI.Status) {
6258     case AllocationInfo::STACK_DUE_TO_USE:
6259       if (UsesCheck(AI))
6260         continue;
6261       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6262       LLVM_FALLTHROUGH;
6263     case AllocationInfo::STACK_DUE_TO_FREE:
6264       if (FreeCheck(AI))
6265         continue;
6266       AI.Status = AllocationInfo::INVALID;
6267       Changed = ChangeStatus::CHANGED;
6268       continue;
6269     case AllocationInfo::INVALID:
6270       llvm_unreachable("Invalid allocations should never reach this point!");
6271     };
6272   }
6273 
6274   return Changed;
6275 }
6276 
6277 /// ----------------------- Privatizable Pointers ------------------------------
6278 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6279   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6280       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6281 
6282   ChangeStatus indicatePessimisticFixpoint() override {
6283     AAPrivatizablePtr::indicatePessimisticFixpoint();
6284     PrivatizableType = nullptr;
6285     return ChangeStatus::CHANGED;
6286   }
6287 
6288   /// Identify the type we can chose for a private copy of the underlying
6289   /// argument. None means it is not clear yet, nullptr means there is none.
6290   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6291 
6292   /// Return a privatizable type that encloses both T0 and T1.
6293   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6294   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6295     if (!T0.hasValue())
6296       return T1;
6297     if (!T1.hasValue())
6298       return T0;
6299     if (T0 == T1)
6300       return T0;
6301     return nullptr;
6302   }
6303 
6304   Optional<Type *> getPrivatizableType() const override {
6305     return PrivatizableType;
6306   }
6307 
6308   const std::string getAsStr() const override {
6309     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6310   }
6311 
6312 protected:
6313   Optional<Type *> PrivatizableType;
6314 };
6315 
6316 // TODO: Do this for call site arguments (probably also other values) as well.
6317 
6318 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6319   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6320       : AAPrivatizablePtrImpl(IRP, A) {}
6321 
6322   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6323   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6324     // If this is a byval argument and we know all the call sites (so we can
6325     // rewrite them), there is no need to check them explicitly.
6326     bool AllCallSitesKnown;
6327     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6328         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6329                                true, AllCallSitesKnown))
6330       return getAssociatedValue().getType()->getPointerElementType();
6331 
6332     Optional<Type *> Ty;
6333     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6334 
6335     // Make sure the associated call site argument has the same type at all call
6336     // sites and it is an allocation we know is safe to privatize, for now that
6337     // means we only allow alloca instructions.
6338     // TODO: We can additionally analyze the accesses in the callee to  create
6339     //       the type from that information instead. That is a little more
6340     //       involved and will be done in a follow up patch.
6341     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6342       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6343       // Check if a coresponding argument was found or if it is one not
6344       // associated (which can happen for callback calls).
6345       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6346         return false;
6347 
6348       // Check that all call sites agree on a type.
6349       auto &PrivCSArgAA =
6350           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6351       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6352 
6353       LLVM_DEBUG({
6354         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6355         if (CSTy.hasValue() && CSTy.getValue())
6356           CSTy.getValue()->print(dbgs());
6357         else if (CSTy.hasValue())
6358           dbgs() << "<nullptr>";
6359         else
6360           dbgs() << "<none>";
6361       });
6362 
6363       Ty = combineTypes(Ty, CSTy);
6364 
6365       LLVM_DEBUG({
6366         dbgs() << " : New Type: ";
6367         if (Ty.hasValue() && Ty.getValue())
6368           Ty.getValue()->print(dbgs());
6369         else if (Ty.hasValue())
6370           dbgs() << "<nullptr>";
6371         else
6372           dbgs() << "<none>";
6373         dbgs() << "\n";
6374       });
6375 
6376       return !Ty.hasValue() || Ty.getValue();
6377     };
6378 
6379     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6380       return nullptr;
6381     return Ty;
6382   }
6383 
6384   /// See AbstractAttribute::updateImpl(...).
6385   ChangeStatus updateImpl(Attributor &A) override {
6386     PrivatizableType = identifyPrivatizableType(A);
6387     if (!PrivatizableType.hasValue())
6388       return ChangeStatus::UNCHANGED;
6389     if (!PrivatizableType.getValue())
6390       return indicatePessimisticFixpoint();
6391 
6392     // The dependence is optional so we don't give up once we give up on the
6393     // alignment.
6394     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6395                         DepClassTy::OPTIONAL);
6396 
6397     // Avoid arguments with padding for now.
6398     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6399         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6400                                                 A.getInfoCache().getDL())) {
6401       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6402       return indicatePessimisticFixpoint();
6403     }
6404 
6405     // Verify callee and caller agree on how the promoted argument would be
6406     // passed.
6407     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
6408     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
6409     // which doesn't require the arguments ArgumentPromotion wanted to pass.
6410     Function &Fn = *getIRPosition().getAnchorScope();
6411     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
6412     ArgsToPromote.insert(getAssociatedArgument());
6413     const auto *TTI =
6414         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6415     if (!TTI ||
6416         !ArgumentPromotionPass::areFunctionArgsABICompatible(
6417             Fn, *TTI, ArgsToPromote, Dummy) ||
6418         ArgsToPromote.empty()) {
6419       LLVM_DEBUG(
6420           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6421                  << Fn.getName() << "\n");
6422       return indicatePessimisticFixpoint();
6423     }
6424 
6425     // Collect the types that will replace the privatizable type in the function
6426     // signature.
6427     SmallVector<Type *, 16> ReplacementTypes;
6428     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6429 
6430     // Register a rewrite of the argument.
6431     Argument *Arg = getAssociatedArgument();
6432     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6433       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6434       return indicatePessimisticFixpoint();
6435     }
6436 
6437     unsigned ArgNo = Arg->getArgNo();
6438 
6439     // Helper to check if for the given call site the associated argument is
6440     // passed to a callback where the privatization would be different.
6441     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6442       SmallVector<const Use *, 4> CallbackUses;
6443       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6444       for (const Use *U : CallbackUses) {
6445         AbstractCallSite CBACS(U);
6446         assert(CBACS && CBACS.isCallbackCall());
6447         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6448           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6449 
6450           LLVM_DEBUG({
6451             dbgs()
6452                 << "[AAPrivatizablePtr] Argument " << *Arg
6453                 << "check if can be privatized in the context of its parent ("
6454                 << Arg->getParent()->getName()
6455                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6456                    "callback ("
6457                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6458                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6459                 << CBACS.getCallArgOperand(CBArg) << " vs "
6460                 << CB.getArgOperand(ArgNo) << "\n"
6461                 << "[AAPrivatizablePtr] " << CBArg << " : "
6462                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6463           });
6464 
6465           if (CBArgNo != int(ArgNo))
6466             continue;
6467           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6468               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6469           if (CBArgPrivAA.isValidState()) {
6470             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6471             if (!CBArgPrivTy.hasValue())
6472               continue;
6473             if (CBArgPrivTy.getValue() == PrivatizableType)
6474               continue;
6475           }
6476 
6477           LLVM_DEBUG({
6478             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6479                    << " cannot be privatized in the context of its parent ("
6480                    << Arg->getParent()->getName()
6481                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6482                       "callback ("
6483                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6484                    << ").\n[AAPrivatizablePtr] for which the argument "
6485                       "privatization is not compatible.\n";
6486           });
6487           return false;
6488         }
6489       }
6490       return true;
6491     };
6492 
6493     // Helper to check if for the given call site the associated argument is
6494     // passed to a direct call where the privatization would be different.
6495     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6496       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6497       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6498       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6499              "Expected a direct call operand for callback call operand");
6500 
6501       LLVM_DEBUG({
6502         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6503                << " check if be privatized in the context of its parent ("
6504                << Arg->getParent()->getName()
6505                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6506                   "direct call of ("
6507                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6508                << ").\n";
6509       });
6510 
6511       Function *DCCallee = DC->getCalledFunction();
6512       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6513         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6514             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6515             DepClassTy::REQUIRED);
6516         if (DCArgPrivAA.isValidState()) {
6517           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6518           if (!DCArgPrivTy.hasValue())
6519             return true;
6520           if (DCArgPrivTy.getValue() == PrivatizableType)
6521             return true;
6522         }
6523       }
6524 
6525       LLVM_DEBUG({
6526         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6527                << " cannot be privatized in the context of its parent ("
6528                << Arg->getParent()->getName()
6529                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6530                   "direct call of ("
6531                << ACS.getInstruction()->getCalledFunction()->getName()
6532                << ").\n[AAPrivatizablePtr] for which the argument "
6533                   "privatization is not compatible.\n";
6534       });
6535       return false;
6536     };
6537 
6538     // Helper to check if the associated argument is used at the given abstract
6539     // call site in a way that is incompatible with the privatization assumed
6540     // here.
6541     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6542       if (ACS.isDirectCall())
6543         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6544       if (ACS.isCallbackCall())
6545         return IsCompatiblePrivArgOfDirectCS(ACS);
6546       return false;
6547     };
6548 
6549     bool AllCallSitesKnown;
6550     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6551                                 AllCallSitesKnown))
6552       return indicatePessimisticFixpoint();
6553 
6554     return ChangeStatus::UNCHANGED;
6555   }
6556 
6557   /// Given a type to private \p PrivType, collect the constituates (which are
6558   /// used) in \p ReplacementTypes.
6559   static void
6560   identifyReplacementTypes(Type *PrivType,
6561                            SmallVectorImpl<Type *> &ReplacementTypes) {
6562     // TODO: For now we expand the privatization type to the fullest which can
6563     //       lead to dead arguments that need to be removed later.
6564     assert(PrivType && "Expected privatizable type!");
6565 
6566     // Traverse the type, extract constituate types on the outermost level.
6567     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6568       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6569         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6570     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6571       ReplacementTypes.append(PrivArrayType->getNumElements(),
6572                               PrivArrayType->getElementType());
6573     } else {
6574       ReplacementTypes.push_back(PrivType);
6575     }
6576   }
6577 
6578   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6579   /// The values needed are taken from the arguments of \p F starting at
6580   /// position \p ArgNo.
6581   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6582                                    unsigned ArgNo, Instruction &IP) {
6583     assert(PrivType && "Expected privatizable type!");
6584 
6585     IRBuilder<NoFolder> IRB(&IP);
6586     const DataLayout &DL = F.getParent()->getDataLayout();
6587 
6588     // Traverse the type, build GEPs and stores.
6589     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6590       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6591       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6592         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6593         Value *Ptr =
6594             constructPointer(PointeeTy, PrivType, &Base,
6595                              PrivStructLayout->getElementOffset(u), IRB, DL);
6596         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6597       }
6598     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6599       Type *PointeeTy = PrivArrayType->getElementType();
6600       Type *PointeePtrTy = PointeeTy->getPointerTo();
6601       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6602       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6603         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6604                                       u * PointeeTySize, IRB, DL);
6605         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6606       }
6607     } else {
6608       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6609     }
6610   }
6611 
6612   /// Extract values from \p Base according to the type \p PrivType at the
6613   /// call position \p ACS. The values are appended to \p ReplacementValues.
6614   void createReplacementValues(Align Alignment, Type *PrivType,
6615                                AbstractCallSite ACS, Value *Base,
6616                                SmallVectorImpl<Value *> &ReplacementValues) {
6617     assert(Base && "Expected base value!");
6618     assert(PrivType && "Expected privatizable type!");
6619     Instruction *IP = ACS.getInstruction();
6620 
6621     IRBuilder<NoFolder> IRB(IP);
6622     const DataLayout &DL = IP->getModule()->getDataLayout();
6623 
6624     if (Base->getType()->getPointerElementType() != PrivType)
6625       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6626                                                  "", ACS.getInstruction());
6627 
6628     // Traverse the type, build GEPs and loads.
6629     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6630       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6631       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6632         Type *PointeeTy = PrivStructType->getElementType(u);
6633         Value *Ptr =
6634             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6635                              PrivStructLayout->getElementOffset(u), IRB, DL);
6636         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6637         L->setAlignment(Alignment);
6638         ReplacementValues.push_back(L);
6639       }
6640     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6641       Type *PointeeTy = PrivArrayType->getElementType();
6642       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6643       Type *PointeePtrTy = PointeeTy->getPointerTo();
6644       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6645         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6646                                       u * PointeeTySize, IRB, DL);
6647         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6648         L->setAlignment(Alignment);
6649         ReplacementValues.push_back(L);
6650       }
6651     } else {
6652       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6653       L->setAlignment(Alignment);
6654       ReplacementValues.push_back(L);
6655     }
6656   }
6657 
6658   /// See AbstractAttribute::manifest(...)
6659   ChangeStatus manifest(Attributor &A) override {
6660     if (!PrivatizableType.hasValue())
6661       return ChangeStatus::UNCHANGED;
6662     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6663 
6664     // Collect all tail calls in the function as we cannot allow new allocas to
6665     // escape into tail recursion.
6666     // TODO: Be smarter about new allocas escaping into tail calls.
6667     SmallVector<CallInst *, 16> TailCalls;
6668     bool UsedAssumedInformation = false;
6669     if (!A.checkForAllInstructions(
6670             [&](Instruction &I) {
6671               CallInst &CI = cast<CallInst>(I);
6672               if (CI.isTailCall())
6673                 TailCalls.push_back(&CI);
6674               return true;
6675             },
6676             *this, {Instruction::Call}, UsedAssumedInformation))
6677       return ChangeStatus::UNCHANGED;
6678 
6679     Argument *Arg = getAssociatedArgument();
6680     // Query AAAlign attribute for alignment of associated argument to
6681     // determine the best alignment of loads.
6682     const auto &AlignAA =
6683         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6684 
6685     // Callback to repair the associated function. A new alloca is placed at the
6686     // beginning and initialized with the values passed through arguments. The
6687     // new alloca replaces the use of the old pointer argument.
6688     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6689         [=](const Attributor::ArgumentReplacementInfo &ARI,
6690             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6691           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6692           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6693           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6694                                            Arg->getName() + ".priv", IP);
6695           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6696                                ArgIt->getArgNo(), *IP);
6697 
6698           if (AI->getType() != Arg->getType())
6699             AI =
6700                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6701           Arg->replaceAllUsesWith(AI);
6702 
6703           for (CallInst *CI : TailCalls)
6704             CI->setTailCall(false);
6705         };
6706 
6707     // Callback to repair a call site of the associated function. The elements
6708     // of the privatizable type are loaded prior to the call and passed to the
6709     // new function version.
6710     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6711         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6712                       AbstractCallSite ACS,
6713                       SmallVectorImpl<Value *> &NewArgOperands) {
6714           // When no alignment is specified for the load instruction,
6715           // natural alignment is assumed.
6716           createReplacementValues(
6717               assumeAligned(AlignAA.getAssumedAlign()),
6718               PrivatizableType.getValue(), ACS,
6719               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6720               NewArgOperands);
6721         };
6722 
6723     // Collect the types that will replace the privatizable type in the function
6724     // signature.
6725     SmallVector<Type *, 16> ReplacementTypes;
6726     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6727 
6728     // Register a rewrite of the argument.
6729     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6730                                            std::move(FnRepairCB),
6731                                            std::move(ACSRepairCB)))
6732       return ChangeStatus::CHANGED;
6733     return ChangeStatus::UNCHANGED;
6734   }
6735 
6736   /// See AbstractAttribute::trackStatistics()
6737   void trackStatistics() const override {
6738     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6739   }
6740 };
6741 
6742 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6743   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6744       : AAPrivatizablePtrImpl(IRP, A) {}
6745 
6746   /// See AbstractAttribute::initialize(...).
6747   virtual void initialize(Attributor &A) override {
6748     // TODO: We can privatize more than arguments.
6749     indicatePessimisticFixpoint();
6750   }
6751 
6752   ChangeStatus updateImpl(Attributor &A) override {
6753     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6754                      "updateImpl will not be called");
6755   }
6756 
6757   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6758   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6759     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6760     if (!Obj) {
6761       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6762       return nullptr;
6763     }
6764 
6765     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6766       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6767         if (CI->isOne())
6768           return Obj->getType()->getPointerElementType();
6769     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6770       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6771           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6772       if (PrivArgAA.isAssumedPrivatizablePtr())
6773         return Obj->getType()->getPointerElementType();
6774     }
6775 
6776     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6777                          "alloca nor privatizable argument: "
6778                       << *Obj << "!\n");
6779     return nullptr;
6780   }
6781 
6782   /// See AbstractAttribute::trackStatistics()
6783   void trackStatistics() const override {
6784     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6785   }
6786 };
6787 
6788 struct AAPrivatizablePtrCallSiteArgument final
6789     : public AAPrivatizablePtrFloating {
6790   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6791       : AAPrivatizablePtrFloating(IRP, A) {}
6792 
6793   /// See AbstractAttribute::initialize(...).
6794   void initialize(Attributor &A) override {
6795     if (getIRPosition().hasAttr(Attribute::ByVal))
6796       indicateOptimisticFixpoint();
6797   }
6798 
6799   /// See AbstractAttribute::updateImpl(...).
6800   ChangeStatus updateImpl(Attributor &A) override {
6801     PrivatizableType = identifyPrivatizableType(A);
6802     if (!PrivatizableType.hasValue())
6803       return ChangeStatus::UNCHANGED;
6804     if (!PrivatizableType.getValue())
6805       return indicatePessimisticFixpoint();
6806 
6807     const IRPosition &IRP = getIRPosition();
6808     auto &NoCaptureAA =
6809         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6810     if (!NoCaptureAA.isAssumedNoCapture()) {
6811       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6812       return indicatePessimisticFixpoint();
6813     }
6814 
6815     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6816     if (!NoAliasAA.isAssumedNoAlias()) {
6817       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6818       return indicatePessimisticFixpoint();
6819     }
6820 
6821     const auto &MemBehaviorAA =
6822         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6823     if (!MemBehaviorAA.isAssumedReadOnly()) {
6824       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6825       return indicatePessimisticFixpoint();
6826     }
6827 
6828     return ChangeStatus::UNCHANGED;
6829   }
6830 
6831   /// See AbstractAttribute::trackStatistics()
6832   void trackStatistics() const override {
6833     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6834   }
6835 };
6836 
6837 struct AAPrivatizablePtrCallSiteReturned final
6838     : public AAPrivatizablePtrFloating {
6839   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6840       : AAPrivatizablePtrFloating(IRP, A) {}
6841 
6842   /// See AbstractAttribute::initialize(...).
6843   void initialize(Attributor &A) override {
6844     // TODO: We can privatize more than arguments.
6845     indicatePessimisticFixpoint();
6846   }
6847 
6848   /// See AbstractAttribute::trackStatistics()
6849   void trackStatistics() const override {
6850     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6851   }
6852 };
6853 
6854 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6855   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6856       : AAPrivatizablePtrFloating(IRP, A) {}
6857 
6858   /// See AbstractAttribute::initialize(...).
6859   void initialize(Attributor &A) override {
6860     // TODO: We can privatize more than arguments.
6861     indicatePessimisticFixpoint();
6862   }
6863 
6864   /// See AbstractAttribute::trackStatistics()
6865   void trackStatistics() const override {
6866     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6867   }
6868 };
6869 
6870 /// -------------------- Memory Behavior Attributes ----------------------------
6871 /// Includes read-none, read-only, and write-only.
6872 /// ----------------------------------------------------------------------------
6873 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6874   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6875       : AAMemoryBehavior(IRP, A) {}
6876 
6877   /// See AbstractAttribute::initialize(...).
6878   void initialize(Attributor &A) override {
6879     intersectAssumedBits(BEST_STATE);
6880     getKnownStateFromValue(getIRPosition(), getState());
6881     AAMemoryBehavior::initialize(A);
6882   }
6883 
6884   /// Return the memory behavior information encoded in the IR for \p IRP.
6885   static void getKnownStateFromValue(const IRPosition &IRP,
6886                                      BitIntegerState &State,
6887                                      bool IgnoreSubsumingPositions = false) {
6888     SmallVector<Attribute, 2> Attrs;
6889     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6890     for (const Attribute &Attr : Attrs) {
6891       switch (Attr.getKindAsEnum()) {
6892       case Attribute::ReadNone:
6893         State.addKnownBits(NO_ACCESSES);
6894         break;
6895       case Attribute::ReadOnly:
6896         State.addKnownBits(NO_WRITES);
6897         break;
6898       case Attribute::WriteOnly:
6899         State.addKnownBits(NO_READS);
6900         break;
6901       default:
6902         llvm_unreachable("Unexpected attribute!");
6903       }
6904     }
6905 
6906     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6907       if (!I->mayReadFromMemory())
6908         State.addKnownBits(NO_READS);
6909       if (!I->mayWriteToMemory())
6910         State.addKnownBits(NO_WRITES);
6911     }
6912   }
6913 
6914   /// See AbstractAttribute::getDeducedAttributes(...).
6915   void getDeducedAttributes(LLVMContext &Ctx,
6916                             SmallVectorImpl<Attribute> &Attrs) const override {
6917     assert(Attrs.size() == 0);
6918     if (isAssumedReadNone())
6919       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6920     else if (isAssumedReadOnly())
6921       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6922     else if (isAssumedWriteOnly())
6923       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6924     assert(Attrs.size() <= 1);
6925   }
6926 
6927   /// See AbstractAttribute::manifest(...).
6928   ChangeStatus manifest(Attributor &A) override {
6929     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6930       return ChangeStatus::UNCHANGED;
6931 
6932     const IRPosition &IRP = getIRPosition();
6933 
6934     // Check if we would improve the existing attributes first.
6935     SmallVector<Attribute, 4> DeducedAttrs;
6936     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6937     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6938           return IRP.hasAttr(Attr.getKindAsEnum(),
6939                              /* IgnoreSubsumingPositions */ true);
6940         }))
6941       return ChangeStatus::UNCHANGED;
6942 
6943     // Clear existing attributes.
6944     IRP.removeAttrs(AttrKinds);
6945 
6946     // Use the generic manifest method.
6947     return IRAttribute::manifest(A);
6948   }
6949 
6950   /// See AbstractState::getAsStr().
6951   const std::string getAsStr() const override {
6952     if (isAssumedReadNone())
6953       return "readnone";
6954     if (isAssumedReadOnly())
6955       return "readonly";
6956     if (isAssumedWriteOnly())
6957       return "writeonly";
6958     return "may-read/write";
6959   }
6960 
6961   /// The set of IR attributes AAMemoryBehavior deals with.
6962   static const Attribute::AttrKind AttrKinds[3];
6963 };
6964 
6965 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6966     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6967 
6968 /// Memory behavior attribute for a floating value.
6969 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6970   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6971       : AAMemoryBehaviorImpl(IRP, A) {}
6972 
6973   /// See AbstractAttribute::updateImpl(...).
6974   ChangeStatus updateImpl(Attributor &A) override;
6975 
6976   /// See AbstractAttribute::trackStatistics()
6977   void trackStatistics() const override {
6978     if (isAssumedReadNone())
6979       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6980     else if (isAssumedReadOnly())
6981       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6982     else if (isAssumedWriteOnly())
6983       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6984   }
6985 
6986 private:
6987   /// Return true if users of \p UserI might access the underlying
6988   /// variable/location described by \p U and should therefore be analyzed.
6989   bool followUsersOfUseIn(Attributor &A, const Use &U,
6990                           const Instruction *UserI);
6991 
6992   /// Update the state according to the effect of use \p U in \p UserI.
6993   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
6994 };
6995 
6996 /// Memory behavior attribute for function argument.
6997 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6998   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6999       : AAMemoryBehaviorFloating(IRP, A) {}
7000 
7001   /// See AbstractAttribute::initialize(...).
7002   void initialize(Attributor &A) override {
7003     intersectAssumedBits(BEST_STATE);
7004     const IRPosition &IRP = getIRPosition();
7005     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7006     // can query it when we use has/getAttr. That would allow us to reuse the
7007     // initialize of the base class here.
7008     bool HasByVal =
7009         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7010     getKnownStateFromValue(IRP, getState(),
7011                            /* IgnoreSubsumingPositions */ HasByVal);
7012 
7013     // Initialize the use vector with all direct uses of the associated value.
7014     Argument *Arg = getAssociatedArgument();
7015     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7016       indicatePessimisticFixpoint();
7017   }
7018 
7019   ChangeStatus manifest(Attributor &A) override {
7020     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7021     if (!getAssociatedValue().getType()->isPointerTy())
7022       return ChangeStatus::UNCHANGED;
7023 
7024     // TODO: From readattrs.ll: "inalloca parameters are always
7025     //                           considered written"
7026     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7027       removeKnownBits(NO_WRITES);
7028       removeAssumedBits(NO_WRITES);
7029     }
7030     return AAMemoryBehaviorFloating::manifest(A);
7031   }
7032 
7033   /// See AbstractAttribute::trackStatistics()
7034   void trackStatistics() const override {
7035     if (isAssumedReadNone())
7036       STATS_DECLTRACK_ARG_ATTR(readnone)
7037     else if (isAssumedReadOnly())
7038       STATS_DECLTRACK_ARG_ATTR(readonly)
7039     else if (isAssumedWriteOnly())
7040       STATS_DECLTRACK_ARG_ATTR(writeonly)
7041   }
7042 };
7043 
7044 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7045   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7046       : AAMemoryBehaviorArgument(IRP, A) {}
7047 
7048   /// See AbstractAttribute::initialize(...).
7049   void initialize(Attributor &A) override {
7050     // If we don't have an associated attribute this is either a variadic call
7051     // or an indirect call, either way, nothing to do here.
7052     Argument *Arg = getAssociatedArgument();
7053     if (!Arg) {
7054       indicatePessimisticFixpoint();
7055       return;
7056     }
7057     if (Arg->hasByValAttr()) {
7058       addKnownBits(NO_WRITES);
7059       removeKnownBits(NO_READS);
7060       removeAssumedBits(NO_READS);
7061     }
7062     AAMemoryBehaviorArgument::initialize(A);
7063     if (getAssociatedFunction()->isDeclaration())
7064       indicatePessimisticFixpoint();
7065   }
7066 
7067   /// See AbstractAttribute::updateImpl(...).
7068   ChangeStatus updateImpl(Attributor &A) override {
7069     // TODO: Once we have call site specific value information we can provide
7070     //       call site specific liveness liveness information and then it makes
7071     //       sense to specialize attributes for call sites arguments instead of
7072     //       redirecting requests to the callee argument.
7073     Argument *Arg = getAssociatedArgument();
7074     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7075     auto &ArgAA =
7076         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7077     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7078   }
7079 
7080   /// See AbstractAttribute::trackStatistics()
7081   void trackStatistics() const override {
7082     if (isAssumedReadNone())
7083       STATS_DECLTRACK_CSARG_ATTR(readnone)
7084     else if (isAssumedReadOnly())
7085       STATS_DECLTRACK_CSARG_ATTR(readonly)
7086     else if (isAssumedWriteOnly())
7087       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7088   }
7089 };
7090 
7091 /// Memory behavior attribute for a call site return position.
7092 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7093   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7094       : AAMemoryBehaviorFloating(IRP, A) {}
7095 
7096   /// See AbstractAttribute::initialize(...).
7097   void initialize(Attributor &A) override {
7098     AAMemoryBehaviorImpl::initialize(A);
7099     Function *F = getAssociatedFunction();
7100     if (!F || F->isDeclaration())
7101       indicatePessimisticFixpoint();
7102   }
7103 
7104   /// See AbstractAttribute::manifest(...).
7105   ChangeStatus manifest(Attributor &A) override {
7106     // We do not annotate returned values.
7107     return ChangeStatus::UNCHANGED;
7108   }
7109 
7110   /// See AbstractAttribute::trackStatistics()
7111   void trackStatistics() const override {}
7112 };
7113 
7114 /// An AA to represent the memory behavior function attributes.
7115 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7116   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7117       : AAMemoryBehaviorImpl(IRP, A) {}
7118 
7119   /// See AbstractAttribute::updateImpl(Attributor &A).
7120   virtual ChangeStatus updateImpl(Attributor &A) override;
7121 
7122   /// See AbstractAttribute::manifest(...).
7123   ChangeStatus manifest(Attributor &A) override {
7124     Function &F = cast<Function>(getAnchorValue());
7125     if (isAssumedReadNone()) {
7126       F.removeFnAttr(Attribute::ArgMemOnly);
7127       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7128       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7129     }
7130     return AAMemoryBehaviorImpl::manifest(A);
7131   }
7132 
7133   /// See AbstractAttribute::trackStatistics()
7134   void trackStatistics() const override {
7135     if (isAssumedReadNone())
7136       STATS_DECLTRACK_FN_ATTR(readnone)
7137     else if (isAssumedReadOnly())
7138       STATS_DECLTRACK_FN_ATTR(readonly)
7139     else if (isAssumedWriteOnly())
7140       STATS_DECLTRACK_FN_ATTR(writeonly)
7141   }
7142 };
7143 
7144 /// AAMemoryBehavior attribute for call sites.
7145 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7146   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7147       : AAMemoryBehaviorImpl(IRP, A) {}
7148 
7149   /// See AbstractAttribute::initialize(...).
7150   void initialize(Attributor &A) override {
7151     AAMemoryBehaviorImpl::initialize(A);
7152     Function *F = getAssociatedFunction();
7153     if (!F || F->isDeclaration())
7154       indicatePessimisticFixpoint();
7155   }
7156 
7157   /// See AbstractAttribute::updateImpl(...).
7158   ChangeStatus updateImpl(Attributor &A) override {
7159     // TODO: Once we have call site specific value information we can provide
7160     //       call site specific liveness liveness information and then it makes
7161     //       sense to specialize attributes for call sites arguments instead of
7162     //       redirecting requests to the callee argument.
7163     Function *F = getAssociatedFunction();
7164     const IRPosition &FnPos = IRPosition::function(*F);
7165     auto &FnAA =
7166         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7167     return clampStateAndIndicateChange(getState(), FnAA.getState());
7168   }
7169 
7170   /// See AbstractAttribute::trackStatistics()
7171   void trackStatistics() const override {
7172     if (isAssumedReadNone())
7173       STATS_DECLTRACK_CS_ATTR(readnone)
7174     else if (isAssumedReadOnly())
7175       STATS_DECLTRACK_CS_ATTR(readonly)
7176     else if (isAssumedWriteOnly())
7177       STATS_DECLTRACK_CS_ATTR(writeonly)
7178   }
7179 };
7180 
7181 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7182 
7183   // The current assumed state used to determine a change.
7184   auto AssumedState = getAssumed();
7185 
7186   auto CheckRWInst = [&](Instruction &I) {
7187     // If the instruction has an own memory behavior state, use it to restrict
7188     // the local state. No further analysis is required as the other memory
7189     // state is as optimistic as it gets.
7190     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7191       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7192           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7193       intersectAssumedBits(MemBehaviorAA.getAssumed());
7194       return !isAtFixpoint();
7195     }
7196 
7197     // Remove access kind modifiers if necessary.
7198     if (I.mayReadFromMemory())
7199       removeAssumedBits(NO_READS);
7200     if (I.mayWriteToMemory())
7201       removeAssumedBits(NO_WRITES);
7202     return !isAtFixpoint();
7203   };
7204 
7205   bool UsedAssumedInformation = false;
7206   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7207                                           UsedAssumedInformation))
7208     return indicatePessimisticFixpoint();
7209 
7210   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7211                                         : ChangeStatus::UNCHANGED;
7212 }
7213 
7214 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7215 
7216   const IRPosition &IRP = getIRPosition();
7217   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7218   AAMemoryBehavior::StateType &S = getState();
7219 
7220   // First, check the function scope. We take the known information and we avoid
7221   // work if the assumed information implies the current assumed information for
7222   // this attribute. This is a valid for all but byval arguments.
7223   Argument *Arg = IRP.getAssociatedArgument();
7224   AAMemoryBehavior::base_t FnMemAssumedState =
7225       AAMemoryBehavior::StateType::getWorstState();
7226   if (!Arg || !Arg->hasByValAttr()) {
7227     const auto &FnMemAA =
7228         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7229     FnMemAssumedState = FnMemAA.getAssumed();
7230     S.addKnownBits(FnMemAA.getKnown());
7231     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7232       return ChangeStatus::UNCHANGED;
7233   }
7234 
7235   // The current assumed state used to determine a change.
7236   auto AssumedState = S.getAssumed();
7237 
7238   // Make sure the value is not captured (except through "return"), if
7239   // it is, any information derived would be irrelevant anyway as we cannot
7240   // check the potential aliases introduced by the capture. However, no need
7241   // to fall back to anythign less optimistic than the function state.
7242   const auto &ArgNoCaptureAA =
7243       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7244   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7245     S.intersectAssumedBits(FnMemAssumedState);
7246     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7247                                           : ChangeStatus::UNCHANGED;
7248   }
7249 
7250   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7251   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7252     Instruction *UserI = cast<Instruction>(U.getUser());
7253     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7254                       << " \n");
7255 
7256     // Droppable users, e.g., llvm::assume does not actually perform any action.
7257     if (UserI->isDroppable())
7258       return true;
7259 
7260     // Check if the users of UserI should also be visited.
7261     Follow = followUsersOfUseIn(A, U, UserI);
7262 
7263     // If UserI might touch memory we analyze the use in detail.
7264     if (UserI->mayReadOrWriteMemory())
7265       analyzeUseIn(A, U, UserI);
7266 
7267     return !isAtFixpoint();
7268   };
7269 
7270   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7271     return indicatePessimisticFixpoint();
7272 
7273   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7274                                         : ChangeStatus::UNCHANGED;
7275 }
7276 
7277 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7278                                                   const Instruction *UserI) {
7279   // The loaded value is unrelated to the pointer argument, no need to
7280   // follow the users of the load.
7281   if (isa<LoadInst>(UserI))
7282     return false;
7283 
7284   // By default we follow all uses assuming UserI might leak information on U,
7285   // we have special handling for call sites operands though.
7286   const auto *CB = dyn_cast<CallBase>(UserI);
7287   if (!CB || !CB->isArgOperand(&U))
7288     return true;
7289 
7290   // If the use is a call argument known not to be captured, the users of
7291   // the call do not need to be visited because they have to be unrelated to
7292   // the input. Note that this check is not trivial even though we disallow
7293   // general capturing of the underlying argument. The reason is that the
7294   // call might the argument "through return", which we allow and for which we
7295   // need to check call users.
7296   if (U.get()->getType()->isPointerTy()) {
7297     unsigned ArgNo = CB->getArgOperandNo(&U);
7298     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7299         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7300     return !ArgNoCaptureAA.isAssumedNoCapture();
7301   }
7302 
7303   return true;
7304 }
7305 
7306 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7307                                             const Instruction *UserI) {
7308   assert(UserI->mayReadOrWriteMemory());
7309 
7310   switch (UserI->getOpcode()) {
7311   default:
7312     // TODO: Handle all atomics and other side-effect operations we know of.
7313     break;
7314   case Instruction::Load:
7315     // Loads cause the NO_READS property to disappear.
7316     removeAssumedBits(NO_READS);
7317     return;
7318 
7319   case Instruction::Store:
7320     // Stores cause the NO_WRITES property to disappear if the use is the
7321     // pointer operand. Note that we do assume that capturing was taken care of
7322     // somewhere else.
7323     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7324       removeAssumedBits(NO_WRITES);
7325     return;
7326 
7327   case Instruction::Call:
7328   case Instruction::CallBr:
7329   case Instruction::Invoke: {
7330     // For call sites we look at the argument memory behavior attribute (this
7331     // could be recursive!) in order to restrict our own state.
7332     const auto *CB = cast<CallBase>(UserI);
7333 
7334     // Give up on operand bundles.
7335     if (CB->isBundleOperand(&U)) {
7336       indicatePessimisticFixpoint();
7337       return;
7338     }
7339 
7340     // Calling a function does read the function pointer, maybe write it if the
7341     // function is self-modifying.
7342     if (CB->isCallee(&U)) {
7343       removeAssumedBits(NO_READS);
7344       break;
7345     }
7346 
7347     // Adjust the possible access behavior based on the information on the
7348     // argument.
7349     IRPosition Pos;
7350     if (U.get()->getType()->isPointerTy())
7351       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7352     else
7353       Pos = IRPosition::callsite_function(*CB);
7354     const auto &MemBehaviorAA =
7355         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7356     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7357     // and at least "known".
7358     intersectAssumedBits(MemBehaviorAA.getAssumed());
7359     return;
7360   }
7361   };
7362 
7363   // Generally, look at the "may-properties" and adjust the assumed state if we
7364   // did not trigger special handling before.
7365   if (UserI->mayReadFromMemory())
7366     removeAssumedBits(NO_READS);
7367   if (UserI->mayWriteToMemory())
7368     removeAssumedBits(NO_WRITES);
7369 }
7370 
7371 /// -------------------- Memory Locations Attributes ---------------------------
7372 /// Includes read-none, argmemonly, inaccessiblememonly,
7373 /// inaccessiblememorargmemonly
7374 /// ----------------------------------------------------------------------------
7375 
7376 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7377     AAMemoryLocation::MemoryLocationsKind MLK) {
7378   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7379     return "all memory";
7380   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7381     return "no memory";
7382   std::string S = "memory:";
7383   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7384     S += "stack,";
7385   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7386     S += "constant,";
7387   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7388     S += "internal global,";
7389   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7390     S += "external global,";
7391   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7392     S += "argument,";
7393   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7394     S += "inaccessible,";
7395   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7396     S += "malloced,";
7397   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7398     S += "unknown,";
7399   S.pop_back();
7400   return S;
7401 }
7402 
7403 namespace {
7404 struct AAMemoryLocationImpl : public AAMemoryLocation {
7405 
7406   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7407       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7408     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7409       AccessKind2Accesses[u] = nullptr;
7410   }
7411 
7412   ~AAMemoryLocationImpl() {
7413     // The AccessSets are allocated via a BumpPtrAllocator, we call
7414     // the destructor manually.
7415     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7416       if (AccessKind2Accesses[u])
7417         AccessKind2Accesses[u]->~AccessSet();
7418   }
7419 
7420   /// See AbstractAttribute::initialize(...).
7421   void initialize(Attributor &A) override {
7422     intersectAssumedBits(BEST_STATE);
7423     getKnownStateFromValue(A, getIRPosition(), getState());
7424     AAMemoryLocation::initialize(A);
7425   }
7426 
7427   /// Return the memory behavior information encoded in the IR for \p IRP.
7428   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7429                                      BitIntegerState &State,
7430                                      bool IgnoreSubsumingPositions = false) {
7431     // For internal functions we ignore `argmemonly` and
7432     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7433     // constant propagation. It is unclear if this is the best way but it is
7434     // unlikely this will cause real performance problems. If we are deriving
7435     // attributes for the anchor function we even remove the attribute in
7436     // addition to ignoring it.
7437     bool UseArgMemOnly = true;
7438     Function *AnchorFn = IRP.getAnchorScope();
7439     if (AnchorFn && A.isRunOn(*AnchorFn))
7440       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7441 
7442     SmallVector<Attribute, 2> Attrs;
7443     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7444     for (const Attribute &Attr : Attrs) {
7445       switch (Attr.getKindAsEnum()) {
7446       case Attribute::ReadNone:
7447         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7448         break;
7449       case Attribute::InaccessibleMemOnly:
7450         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7451         break;
7452       case Attribute::ArgMemOnly:
7453         if (UseArgMemOnly)
7454           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7455         else
7456           IRP.removeAttrs({Attribute::ArgMemOnly});
7457         break;
7458       case Attribute::InaccessibleMemOrArgMemOnly:
7459         if (UseArgMemOnly)
7460           State.addKnownBits(inverseLocation(
7461               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7462         else
7463           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7464         break;
7465       default:
7466         llvm_unreachable("Unexpected attribute!");
7467       }
7468     }
7469   }
7470 
7471   /// See AbstractAttribute::getDeducedAttributes(...).
7472   void getDeducedAttributes(LLVMContext &Ctx,
7473                             SmallVectorImpl<Attribute> &Attrs) const override {
7474     assert(Attrs.size() == 0);
7475     if (isAssumedReadNone()) {
7476       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7477     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7478       if (isAssumedInaccessibleMemOnly())
7479         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7480       else if (isAssumedArgMemOnly())
7481         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7482       else if (isAssumedInaccessibleOrArgMemOnly())
7483         Attrs.push_back(
7484             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7485     }
7486     assert(Attrs.size() <= 1);
7487   }
7488 
7489   /// See AbstractAttribute::manifest(...).
7490   ChangeStatus manifest(Attributor &A) override {
7491     const IRPosition &IRP = getIRPosition();
7492 
7493     // Check if we would improve the existing attributes first.
7494     SmallVector<Attribute, 4> DeducedAttrs;
7495     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7496     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7497           return IRP.hasAttr(Attr.getKindAsEnum(),
7498                              /* IgnoreSubsumingPositions */ true);
7499         }))
7500       return ChangeStatus::UNCHANGED;
7501 
7502     // Clear existing attributes.
7503     IRP.removeAttrs(AttrKinds);
7504     if (isAssumedReadNone())
7505       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7506 
7507     // Use the generic manifest method.
7508     return IRAttribute::manifest(A);
7509   }
7510 
7511   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7512   bool checkForAllAccessesToMemoryKind(
7513       function_ref<bool(const Instruction *, const Value *, AccessKind,
7514                         MemoryLocationsKind)>
7515           Pred,
7516       MemoryLocationsKind RequestedMLK) const override {
7517     if (!isValidState())
7518       return false;
7519 
7520     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7521     if (AssumedMLK == NO_LOCATIONS)
7522       return true;
7523 
7524     unsigned Idx = 0;
7525     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7526          CurMLK *= 2, ++Idx) {
7527       if (CurMLK & RequestedMLK)
7528         continue;
7529 
7530       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7531         for (const AccessInfo &AI : *Accesses)
7532           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7533             return false;
7534     }
7535 
7536     return true;
7537   }
7538 
7539   ChangeStatus indicatePessimisticFixpoint() override {
7540     // If we give up and indicate a pessimistic fixpoint this instruction will
7541     // become an access for all potential access kinds:
7542     // TODO: Add pointers for argmemonly and globals to improve the results of
7543     //       checkForAllAccessesToMemoryKind.
7544     bool Changed = false;
7545     MemoryLocationsKind KnownMLK = getKnown();
7546     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7547     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7548       if (!(CurMLK & KnownMLK))
7549         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7550                                   getAccessKindFromInst(I));
7551     return AAMemoryLocation::indicatePessimisticFixpoint();
7552   }
7553 
7554 protected:
7555   /// Helper struct to tie together an instruction that has a read or write
7556   /// effect with the pointer it accesses (if any).
7557   struct AccessInfo {
7558 
7559     /// The instruction that caused the access.
7560     const Instruction *I;
7561 
7562     /// The base pointer that is accessed, or null if unknown.
7563     const Value *Ptr;
7564 
7565     /// The kind of access (read/write/read+write).
7566     AccessKind Kind;
7567 
7568     bool operator==(const AccessInfo &RHS) const {
7569       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7570     }
7571     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7572       if (LHS.I != RHS.I)
7573         return LHS.I < RHS.I;
7574       if (LHS.Ptr != RHS.Ptr)
7575         return LHS.Ptr < RHS.Ptr;
7576       if (LHS.Kind != RHS.Kind)
7577         return LHS.Kind < RHS.Kind;
7578       return false;
7579     }
7580   };
7581 
7582   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7583   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7584   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7585   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7586 
7587   /// Categorize the pointer arguments of CB that might access memory in
7588   /// AccessedLoc and update the state and access map accordingly.
7589   void
7590   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7591                                      AAMemoryLocation::StateType &AccessedLocs,
7592                                      bool &Changed);
7593 
7594   /// Return the kind(s) of location that may be accessed by \p V.
7595   AAMemoryLocation::MemoryLocationsKind
7596   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7597 
7598   /// Return the access kind as determined by \p I.
7599   AccessKind getAccessKindFromInst(const Instruction *I) {
7600     AccessKind AK = READ_WRITE;
7601     if (I) {
7602       AK = I->mayReadFromMemory() ? READ : NONE;
7603       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7604     }
7605     return AK;
7606   }
7607 
7608   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7609   /// an access of kind \p AK to a \p MLK memory location with the access
7610   /// pointer \p Ptr.
7611   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7612                                  MemoryLocationsKind MLK, const Instruction *I,
7613                                  const Value *Ptr, bool &Changed,
7614                                  AccessKind AK = READ_WRITE) {
7615 
7616     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7617     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7618     if (!Accesses)
7619       Accesses = new (Allocator) AccessSet();
7620     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7621     State.removeAssumedBits(MLK);
7622   }
7623 
7624   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7625   /// arguments, and update the state and access map accordingly.
7626   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7627                           AAMemoryLocation::StateType &State, bool &Changed);
7628 
7629   /// Used to allocate access sets.
7630   BumpPtrAllocator &Allocator;
7631 
7632   /// The set of IR attributes AAMemoryLocation deals with.
7633   static const Attribute::AttrKind AttrKinds[4];
7634 };
7635 
7636 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7637     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7638     Attribute::InaccessibleMemOrArgMemOnly};
7639 
7640 void AAMemoryLocationImpl::categorizePtrValue(
7641     Attributor &A, const Instruction &I, const Value &Ptr,
7642     AAMemoryLocation::StateType &State, bool &Changed) {
7643   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7644                     << Ptr << " ["
7645                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7646 
7647   SmallVector<Value *, 8> Objects;
7648   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7649     LLVM_DEBUG(
7650         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7651     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7652                               getAccessKindFromInst(&I));
7653     return;
7654   }
7655 
7656   for (Value *Obj : Objects) {
7657     // TODO: recognize the TBAA used for constant accesses.
7658     MemoryLocationsKind MLK = NO_LOCATIONS;
7659     assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped.");
7660     if (isa<UndefValue>(Obj))
7661       continue;
7662     if (isa<Argument>(Obj)) {
7663       // TODO: For now we do not treat byval arguments as local copies performed
7664       // on the call edge, though, we should. To make that happen we need to
7665       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7666       // would also allow us to mark functions only accessing byval arguments as
7667       // readnone again, atguably their acceses have no effect outside of the
7668       // function, like accesses to allocas.
7669       MLK = NO_ARGUMENT_MEM;
7670     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7671       // Reading constant memory is not treated as a read "effect" by the
7672       // function attr pass so we won't neither. Constants defined by TBAA are
7673       // similar. (We know we do not write it because it is constant.)
7674       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7675         if (GVar->isConstant())
7676           continue;
7677 
7678       if (GV->hasLocalLinkage())
7679         MLK = NO_GLOBAL_INTERNAL_MEM;
7680       else
7681         MLK = NO_GLOBAL_EXTERNAL_MEM;
7682     } else if (isa<ConstantPointerNull>(Obj) &&
7683                !NullPointerIsDefined(getAssociatedFunction(),
7684                                      Ptr.getType()->getPointerAddressSpace())) {
7685       continue;
7686     } else if (isa<AllocaInst>(Obj)) {
7687       MLK = NO_LOCAL_MEM;
7688     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7689       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7690           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7691       if (NoAliasAA.isAssumedNoAlias())
7692         MLK = NO_MALLOCED_MEM;
7693       else
7694         MLK = NO_UNKOWN_MEM;
7695     } else {
7696       MLK = NO_UNKOWN_MEM;
7697     }
7698 
7699     assert(MLK != NO_LOCATIONS && "No location specified!");
7700     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7701                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7702                       << "\n");
7703     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7704                               getAccessKindFromInst(&I));
7705   }
7706 
7707   LLVM_DEBUG(
7708       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7709              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7710 }
7711 
7712 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7713     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7714     bool &Changed) {
7715   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7716 
7717     // Skip non-pointer arguments.
7718     const Value *ArgOp = CB.getArgOperand(ArgNo);
7719     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7720       continue;
7721 
7722     // Skip readnone arguments.
7723     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7724     const auto &ArgOpMemLocationAA =
7725         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7726 
7727     if (ArgOpMemLocationAA.isAssumedReadNone())
7728       continue;
7729 
7730     // Categorize potentially accessed pointer arguments as if there was an
7731     // access instruction with them as pointer.
7732     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7733   }
7734 }
7735 
7736 AAMemoryLocation::MemoryLocationsKind
7737 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7738                                                   bool &Changed) {
7739   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7740                     << I << "\n");
7741 
7742   AAMemoryLocation::StateType AccessedLocs;
7743   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7744 
7745   if (auto *CB = dyn_cast<CallBase>(&I)) {
7746 
7747     // First check if we assume any memory is access is visible.
7748     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7749         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7750     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7751                       << " [" << CBMemLocationAA << "]\n");
7752 
7753     if (CBMemLocationAA.isAssumedReadNone())
7754       return NO_LOCATIONS;
7755 
7756     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7757       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7758                                 Changed, getAccessKindFromInst(&I));
7759       return AccessedLocs.getAssumed();
7760     }
7761 
7762     uint32_t CBAssumedNotAccessedLocs =
7763         CBMemLocationAA.getAssumedNotAccessedLocation();
7764 
7765     // Set the argmemonly and global bit as we handle them separately below.
7766     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7767         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7768 
7769     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7770       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7771         continue;
7772       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7773                                 getAccessKindFromInst(&I));
7774     }
7775 
7776     // Now handle global memory if it might be accessed. This is slightly tricky
7777     // as NO_GLOBAL_MEM has multiple bits set.
7778     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7779     if (HasGlobalAccesses) {
7780       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7781                             AccessKind Kind, MemoryLocationsKind MLK) {
7782         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7783                                   getAccessKindFromInst(&I));
7784         return true;
7785       };
7786       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7787               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7788         return AccessedLocs.getWorstState();
7789     }
7790 
7791     LLVM_DEBUG(
7792         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7793                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7794 
7795     // Now handle argument memory if it might be accessed.
7796     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7797     if (HasArgAccesses)
7798       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7799 
7800     LLVM_DEBUG(
7801         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7802                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7803 
7804     return AccessedLocs.getAssumed();
7805   }
7806 
7807   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7808     LLVM_DEBUG(
7809         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7810                << I << " [" << *Ptr << "]\n");
7811     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7812     return AccessedLocs.getAssumed();
7813   }
7814 
7815   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7816                     << I << "\n");
7817   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7818                             getAccessKindFromInst(&I));
7819   return AccessedLocs.getAssumed();
7820 }
7821 
7822 /// An AA to represent the memory behavior function attributes.
7823 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7824   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7825       : AAMemoryLocationImpl(IRP, A) {}
7826 
7827   /// See AbstractAttribute::updateImpl(Attributor &A).
7828   virtual ChangeStatus updateImpl(Attributor &A) override {
7829 
7830     const auto &MemBehaviorAA =
7831         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7832     if (MemBehaviorAA.isAssumedReadNone()) {
7833       if (MemBehaviorAA.isKnownReadNone())
7834         return indicateOptimisticFixpoint();
7835       assert(isAssumedReadNone() &&
7836              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7837       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7838       return ChangeStatus::UNCHANGED;
7839     }
7840 
7841     // The current assumed state used to determine a change.
7842     auto AssumedState = getAssumed();
7843     bool Changed = false;
7844 
7845     auto CheckRWInst = [&](Instruction &I) {
7846       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7847       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7848                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7849       removeAssumedBits(inverseLocation(MLK, false, false));
7850       // Stop once only the valid bit set in the *not assumed location*, thus
7851       // once we don't actually exclude any memory locations in the state.
7852       return getAssumedNotAccessedLocation() != VALID_STATE;
7853     };
7854 
7855     bool UsedAssumedInformation = false;
7856     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7857                                             UsedAssumedInformation))
7858       return indicatePessimisticFixpoint();
7859 
7860     Changed |= AssumedState != getAssumed();
7861     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7862   }
7863 
7864   /// See AbstractAttribute::trackStatistics()
7865   void trackStatistics() const override {
7866     if (isAssumedReadNone())
7867       STATS_DECLTRACK_FN_ATTR(readnone)
7868     else if (isAssumedArgMemOnly())
7869       STATS_DECLTRACK_FN_ATTR(argmemonly)
7870     else if (isAssumedInaccessibleMemOnly())
7871       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7872     else if (isAssumedInaccessibleOrArgMemOnly())
7873       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7874   }
7875 };
7876 
7877 /// AAMemoryLocation attribute for call sites.
7878 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7879   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7880       : AAMemoryLocationImpl(IRP, A) {}
7881 
7882   /// See AbstractAttribute::initialize(...).
7883   void initialize(Attributor &A) override {
7884     AAMemoryLocationImpl::initialize(A);
7885     Function *F = getAssociatedFunction();
7886     if (!F || F->isDeclaration())
7887       indicatePessimisticFixpoint();
7888   }
7889 
7890   /// See AbstractAttribute::updateImpl(...).
7891   ChangeStatus updateImpl(Attributor &A) override {
7892     // TODO: Once we have call site specific value information we can provide
7893     //       call site specific liveness liveness information and then it makes
7894     //       sense to specialize attributes for call sites arguments instead of
7895     //       redirecting requests to the callee argument.
7896     Function *F = getAssociatedFunction();
7897     const IRPosition &FnPos = IRPosition::function(*F);
7898     auto &FnAA =
7899         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7900     bool Changed = false;
7901     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7902                           AccessKind Kind, MemoryLocationsKind MLK) {
7903       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7904                                 getAccessKindFromInst(I));
7905       return true;
7906     };
7907     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7908       return indicatePessimisticFixpoint();
7909     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7910   }
7911 
7912   /// See AbstractAttribute::trackStatistics()
7913   void trackStatistics() const override {
7914     if (isAssumedReadNone())
7915       STATS_DECLTRACK_CS_ATTR(readnone)
7916   }
7917 };
7918 
7919 /// ------------------ Value Constant Range Attribute -------------------------
7920 
7921 struct AAValueConstantRangeImpl : AAValueConstantRange {
7922   using StateType = IntegerRangeState;
7923   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7924       : AAValueConstantRange(IRP, A) {}
7925 
7926   /// See AbstractAttribute::initialize(..).
7927   void initialize(Attributor &A) override {
7928     if (A.hasSimplificationCallback(getIRPosition())) {
7929       indicatePessimisticFixpoint();
7930       return;
7931     }
7932 
7933     // Intersect a range given by SCEV.
7934     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7935 
7936     // Intersect a range given by LVI.
7937     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7938   }
7939 
7940   /// See AbstractAttribute::getAsStr().
7941   const std::string getAsStr() const override {
7942     std::string Str;
7943     llvm::raw_string_ostream OS(Str);
7944     OS << "range(" << getBitWidth() << ")<";
7945     getKnown().print(OS);
7946     OS << " / ";
7947     getAssumed().print(OS);
7948     OS << ">";
7949     return OS.str();
7950   }
7951 
7952   /// Helper function to get a SCEV expr for the associated value at program
7953   /// point \p I.
7954   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7955     if (!getAnchorScope())
7956       return nullptr;
7957 
7958     ScalarEvolution *SE =
7959         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7960             *getAnchorScope());
7961 
7962     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7963         *getAnchorScope());
7964 
7965     if (!SE || !LI)
7966       return nullptr;
7967 
7968     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7969     if (!I)
7970       return S;
7971 
7972     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7973   }
7974 
7975   /// Helper function to get a range from SCEV for the associated value at
7976   /// program point \p I.
7977   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7978                                          const Instruction *I = nullptr) const {
7979     if (!getAnchorScope())
7980       return getWorstState(getBitWidth());
7981 
7982     ScalarEvolution *SE =
7983         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7984             *getAnchorScope());
7985 
7986     const SCEV *S = getSCEV(A, I);
7987     if (!SE || !S)
7988       return getWorstState(getBitWidth());
7989 
7990     return SE->getUnsignedRange(S);
7991   }
7992 
7993   /// Helper function to get a range from LVI for the associated value at
7994   /// program point \p I.
7995   ConstantRange
7996   getConstantRangeFromLVI(Attributor &A,
7997                           const Instruction *CtxI = nullptr) const {
7998     if (!getAnchorScope())
7999       return getWorstState(getBitWidth());
8000 
8001     LazyValueInfo *LVI =
8002         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8003             *getAnchorScope());
8004 
8005     if (!LVI || !CtxI)
8006       return getWorstState(getBitWidth());
8007     return LVI->getConstantRange(&getAssociatedValue(),
8008                                  const_cast<Instruction *>(CtxI));
8009   }
8010 
8011   /// Return true if \p CtxI is valid for querying outside analyses.
8012   /// This basically makes sure we do not ask intra-procedural analysis
8013   /// about a context in the wrong function or a context that violates
8014   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8015   /// if the original context of this AA is OK or should be considered invalid.
8016   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8017                                                const Instruction *CtxI,
8018                                                bool AllowAACtxI) const {
8019     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8020       return false;
8021 
8022     // Our context might be in a different function, neither intra-procedural
8023     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8024     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8025       return false;
8026 
8027     // If the context is not dominated by the value there are paths to the
8028     // context that do not define the value. This cannot be handled by
8029     // LazyValueInfo so we need to bail.
8030     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8031       InformationCache &InfoCache = A.getInfoCache();
8032       const DominatorTree *DT =
8033           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8034               *I->getFunction());
8035       return DT && DT->dominates(I, CtxI);
8036     }
8037 
8038     return true;
8039   }
8040 
8041   /// See AAValueConstantRange::getKnownConstantRange(..).
8042   ConstantRange
8043   getKnownConstantRange(Attributor &A,
8044                         const Instruction *CtxI = nullptr) const override {
8045     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8046                                                  /* AllowAACtxI */ false))
8047       return getKnown();
8048 
8049     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8050     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8051     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8052   }
8053 
8054   /// See AAValueConstantRange::getAssumedConstantRange(..).
8055   ConstantRange
8056   getAssumedConstantRange(Attributor &A,
8057                           const Instruction *CtxI = nullptr) const override {
8058     // TODO: Make SCEV use Attributor assumption.
8059     //       We may be able to bound a variable range via assumptions in
8060     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8061     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8062     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8063                                                  /* AllowAACtxI */ false))
8064       return getAssumed();
8065 
8066     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8067     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8068     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8069   }
8070 
8071   /// Helper function to create MDNode for range metadata.
8072   static MDNode *
8073   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8074                             const ConstantRange &AssumedConstantRange) {
8075     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8076                                   Ty, AssumedConstantRange.getLower())),
8077                               ConstantAsMetadata::get(ConstantInt::get(
8078                                   Ty, AssumedConstantRange.getUpper()))};
8079     return MDNode::get(Ctx, LowAndHigh);
8080   }
8081 
8082   /// Return true if \p Assumed is included in \p KnownRanges.
8083   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8084 
8085     if (Assumed.isFullSet())
8086       return false;
8087 
8088     if (!KnownRanges)
8089       return true;
8090 
8091     // If multiple ranges are annotated in IR, we give up to annotate assumed
8092     // range for now.
8093 
8094     // TODO:  If there exists a known range which containts assumed range, we
8095     // can say assumed range is better.
8096     if (KnownRanges->getNumOperands() > 2)
8097       return false;
8098 
8099     ConstantInt *Lower =
8100         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8101     ConstantInt *Upper =
8102         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8103 
8104     ConstantRange Known(Lower->getValue(), Upper->getValue());
8105     return Known.contains(Assumed) && Known != Assumed;
8106   }
8107 
8108   /// Helper function to set range metadata.
8109   static bool
8110   setRangeMetadataIfisBetterRange(Instruction *I,
8111                                   const ConstantRange &AssumedConstantRange) {
8112     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8113     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8114       if (!AssumedConstantRange.isEmptySet()) {
8115         I->setMetadata(LLVMContext::MD_range,
8116                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8117                                                  AssumedConstantRange));
8118         return true;
8119       }
8120     }
8121     return false;
8122   }
8123 
8124   /// See AbstractAttribute::manifest()
8125   ChangeStatus manifest(Attributor &A) override {
8126     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8127     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8128     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8129 
8130     auto &V = getAssociatedValue();
8131     if (!AssumedConstantRange.isEmptySet() &&
8132         !AssumedConstantRange.isSingleElement()) {
8133       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8134         assert(I == getCtxI() && "Should not annotate an instruction which is "
8135                                  "not the context instruction");
8136         if (isa<CallInst>(I) || isa<LoadInst>(I))
8137           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8138             Changed = ChangeStatus::CHANGED;
8139       }
8140     }
8141 
8142     return Changed;
8143   }
8144 };
8145 
8146 struct AAValueConstantRangeArgument final
8147     : AAArgumentFromCallSiteArguments<
8148           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8149           true /* BridgeCallBaseContext */> {
8150   using Base = AAArgumentFromCallSiteArguments<
8151       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8152       true /* BridgeCallBaseContext */>;
8153   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8154       : Base(IRP, A) {}
8155 
8156   /// See AbstractAttribute::initialize(..).
8157   void initialize(Attributor &A) override {
8158     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8159       indicatePessimisticFixpoint();
8160     } else {
8161       Base::initialize(A);
8162     }
8163   }
8164 
8165   /// See AbstractAttribute::trackStatistics()
8166   void trackStatistics() const override {
8167     STATS_DECLTRACK_ARG_ATTR(value_range)
8168   }
8169 };
8170 
8171 struct AAValueConstantRangeReturned
8172     : AAReturnedFromReturnedValues<AAValueConstantRange,
8173                                    AAValueConstantRangeImpl,
8174                                    AAValueConstantRangeImpl::StateType,
8175                                    /* PropogateCallBaseContext */ true> {
8176   using Base =
8177       AAReturnedFromReturnedValues<AAValueConstantRange,
8178                                    AAValueConstantRangeImpl,
8179                                    AAValueConstantRangeImpl::StateType,
8180                                    /* PropogateCallBaseContext */ true>;
8181   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8182       : Base(IRP, A) {}
8183 
8184   /// See AbstractAttribute::initialize(...).
8185   void initialize(Attributor &A) override {}
8186 
8187   /// See AbstractAttribute::trackStatistics()
8188   void trackStatistics() const override {
8189     STATS_DECLTRACK_FNRET_ATTR(value_range)
8190   }
8191 };
8192 
8193 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8194   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8195       : AAValueConstantRangeImpl(IRP, A) {}
8196 
8197   /// See AbstractAttribute::initialize(...).
8198   void initialize(Attributor &A) override {
8199     AAValueConstantRangeImpl::initialize(A);
8200     if (isAtFixpoint())
8201       return;
8202 
8203     Value &V = getAssociatedValue();
8204 
8205     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8206       unionAssumed(ConstantRange(C->getValue()));
8207       indicateOptimisticFixpoint();
8208       return;
8209     }
8210 
8211     if (isa<UndefValue>(&V)) {
8212       // Collapse the undef state to 0.
8213       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8214       indicateOptimisticFixpoint();
8215       return;
8216     }
8217 
8218     if (isa<CallBase>(&V))
8219       return;
8220 
8221     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8222       return;
8223 
8224     // If it is a load instruction with range metadata, use it.
8225     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8226       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8227         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8228         return;
8229       }
8230 
8231     // We can work with PHI and select instruction as we traverse their operands
8232     // during update.
8233     if (isa<SelectInst>(V) || isa<PHINode>(V))
8234       return;
8235 
8236     // Otherwise we give up.
8237     indicatePessimisticFixpoint();
8238 
8239     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8240                       << getAssociatedValue() << "\n");
8241   }
8242 
8243   bool calculateBinaryOperator(
8244       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8245       const Instruction *CtxI,
8246       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8247     Value *LHS = BinOp->getOperand(0);
8248     Value *RHS = BinOp->getOperand(1);
8249 
8250     // Simplify the operands first.
8251     bool UsedAssumedInformation = false;
8252     const auto &SimplifiedLHS =
8253         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8254                                *this, UsedAssumedInformation);
8255     if (!SimplifiedLHS.hasValue())
8256       return true;
8257     if (!SimplifiedLHS.getValue())
8258       return false;
8259     LHS = *SimplifiedLHS;
8260 
8261     const auto &SimplifiedRHS =
8262         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8263                                *this, UsedAssumedInformation);
8264     if (!SimplifiedRHS.hasValue())
8265       return true;
8266     if (!SimplifiedRHS.getValue())
8267       return false;
8268     RHS = *SimplifiedRHS;
8269 
8270     // TODO: Allow non integers as well.
8271     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8272       return false;
8273 
8274     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8275         *this, IRPosition::value(*LHS, getCallBaseContext()),
8276         DepClassTy::REQUIRED);
8277     QuerriedAAs.push_back(&LHSAA);
8278     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8279 
8280     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8281         *this, IRPosition::value(*RHS, getCallBaseContext()),
8282         DepClassTy::REQUIRED);
8283     QuerriedAAs.push_back(&RHSAA);
8284     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8285 
8286     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8287 
8288     T.unionAssumed(AssumedRange);
8289 
8290     // TODO: Track a known state too.
8291 
8292     return T.isValidState();
8293   }
8294 
8295   bool calculateCastInst(
8296       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8297       const Instruction *CtxI,
8298       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8299     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8300     // TODO: Allow non integers as well.
8301     Value *OpV = CastI->getOperand(0);
8302 
8303     // Simplify the operand first.
8304     bool UsedAssumedInformation = false;
8305     const auto &SimplifiedOpV =
8306         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8307                                *this, UsedAssumedInformation);
8308     if (!SimplifiedOpV.hasValue())
8309       return true;
8310     if (!SimplifiedOpV.getValue())
8311       return false;
8312     OpV = *SimplifiedOpV;
8313 
8314     if (!OpV->getType()->isIntegerTy())
8315       return false;
8316 
8317     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8318         *this, IRPosition::value(*OpV, getCallBaseContext()),
8319         DepClassTy::REQUIRED);
8320     QuerriedAAs.push_back(&OpAA);
8321     T.unionAssumed(
8322         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8323     return T.isValidState();
8324   }
8325 
8326   bool
8327   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8328                    const Instruction *CtxI,
8329                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8330     Value *LHS = CmpI->getOperand(0);
8331     Value *RHS = CmpI->getOperand(1);
8332 
8333     // Simplify the operands first.
8334     bool UsedAssumedInformation = false;
8335     const auto &SimplifiedLHS =
8336         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8337                                *this, UsedAssumedInformation);
8338     if (!SimplifiedLHS.hasValue())
8339       return true;
8340     if (!SimplifiedLHS.getValue())
8341       return false;
8342     LHS = *SimplifiedLHS;
8343 
8344     const auto &SimplifiedRHS =
8345         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8346                                *this, UsedAssumedInformation);
8347     if (!SimplifiedRHS.hasValue())
8348       return true;
8349     if (!SimplifiedRHS.getValue())
8350       return false;
8351     RHS = *SimplifiedRHS;
8352 
8353     // TODO: Allow non integers as well.
8354     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8355       return false;
8356 
8357     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8358         *this, IRPosition::value(*LHS, getCallBaseContext()),
8359         DepClassTy::REQUIRED);
8360     QuerriedAAs.push_back(&LHSAA);
8361     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8362         *this, IRPosition::value(*RHS, getCallBaseContext()),
8363         DepClassTy::REQUIRED);
8364     QuerriedAAs.push_back(&RHSAA);
8365     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8366     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8367 
8368     // If one of them is empty set, we can't decide.
8369     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8370       return true;
8371 
8372     bool MustTrue = false, MustFalse = false;
8373 
8374     auto AllowedRegion =
8375         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8376 
8377     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8378       MustFalse = true;
8379 
8380     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8381       MustTrue = true;
8382 
8383     assert((!MustTrue || !MustFalse) &&
8384            "Either MustTrue or MustFalse should be false!");
8385 
8386     if (MustTrue)
8387       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8388     else if (MustFalse)
8389       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8390     else
8391       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8392 
8393     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8394                       << " " << RHSAA << "\n");
8395 
8396     // TODO: Track a known state too.
8397     return T.isValidState();
8398   }
8399 
8400   /// See AbstractAttribute::updateImpl(...).
8401   ChangeStatus updateImpl(Attributor &A) override {
8402     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8403                             IntegerRangeState &T, bool Stripped) -> bool {
8404       Instruction *I = dyn_cast<Instruction>(&V);
8405       if (!I || isa<CallBase>(I)) {
8406 
8407         // Simplify the operand first.
8408         bool UsedAssumedInformation = false;
8409         const auto &SimplifiedOpV =
8410             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8411                                    *this, UsedAssumedInformation);
8412         if (!SimplifiedOpV.hasValue())
8413           return true;
8414         if (!SimplifiedOpV.getValue())
8415           return false;
8416         Value *VPtr = *SimplifiedOpV;
8417 
8418         // If the value is not instruction, we query AA to Attributor.
8419         const auto &AA = A.getAAFor<AAValueConstantRange>(
8420             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8421             DepClassTy::REQUIRED);
8422 
8423         // Clamp operator is not used to utilize a program point CtxI.
8424         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8425 
8426         return T.isValidState();
8427       }
8428 
8429       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8430       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8431         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8432           return false;
8433       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8434         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8435           return false;
8436       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8437         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8438           return false;
8439       } else {
8440         // Give up with other instructions.
8441         // TODO: Add other instructions
8442 
8443         T.indicatePessimisticFixpoint();
8444         return false;
8445       }
8446 
8447       // Catch circular reasoning in a pessimistic way for now.
8448       // TODO: Check how the range evolves and if we stripped anything, see also
8449       //       AADereferenceable or AAAlign for similar situations.
8450       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8451         if (QueriedAA != this)
8452           continue;
8453         // If we are in a stady state we do not need to worry.
8454         if (T.getAssumed() == getState().getAssumed())
8455           continue;
8456         T.indicatePessimisticFixpoint();
8457       }
8458 
8459       return T.isValidState();
8460     };
8461 
8462     IntegerRangeState T(getBitWidth());
8463 
8464     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8465                                                   VisitValueCB, getCtxI(),
8466                                                   /* UseValueSimplify */ false))
8467       return indicatePessimisticFixpoint();
8468 
8469     return clampStateAndIndicateChange(getState(), T);
8470   }
8471 
8472   /// See AbstractAttribute::trackStatistics()
8473   void trackStatistics() const override {
8474     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8475   }
8476 };
8477 
8478 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8479   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8480       : AAValueConstantRangeImpl(IRP, A) {}
8481 
8482   /// See AbstractAttribute::initialize(...).
8483   ChangeStatus updateImpl(Attributor &A) override {
8484     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8485                      "not be called");
8486   }
8487 
8488   /// See AbstractAttribute::trackStatistics()
8489   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8490 };
8491 
8492 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8493   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8494       : AAValueConstantRangeFunction(IRP, A) {}
8495 
8496   /// See AbstractAttribute::trackStatistics()
8497   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8498 };
8499 
8500 struct AAValueConstantRangeCallSiteReturned
8501     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8502                                      AAValueConstantRangeImpl,
8503                                      AAValueConstantRangeImpl::StateType,
8504                                      /* IntroduceCallBaseContext */ true> {
8505   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8506       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8507                                        AAValueConstantRangeImpl,
8508                                        AAValueConstantRangeImpl::StateType,
8509                                        /* IntroduceCallBaseContext */ true>(IRP,
8510                                                                             A) {
8511   }
8512 
8513   /// See AbstractAttribute::initialize(...).
8514   void initialize(Attributor &A) override {
8515     // If it is a load instruction with range metadata, use the metadata.
8516     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8517       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8518         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8519 
8520     AAValueConstantRangeImpl::initialize(A);
8521   }
8522 
8523   /// See AbstractAttribute::trackStatistics()
8524   void trackStatistics() const override {
8525     STATS_DECLTRACK_CSRET_ATTR(value_range)
8526   }
8527 };
8528 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8529   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8530       : AAValueConstantRangeFloating(IRP, A) {}
8531 
8532   /// See AbstractAttribute::manifest()
8533   ChangeStatus manifest(Attributor &A) override {
8534     return ChangeStatus::UNCHANGED;
8535   }
8536 
8537   /// See AbstractAttribute::trackStatistics()
8538   void trackStatistics() const override {
8539     STATS_DECLTRACK_CSARG_ATTR(value_range)
8540   }
8541 };
8542 
8543 /// ------------------ Potential Values Attribute -------------------------
8544 
8545 struct AAPotentialValuesImpl : AAPotentialValues {
8546   using StateType = PotentialConstantIntValuesState;
8547 
8548   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8549       : AAPotentialValues(IRP, A) {}
8550 
8551   /// See AbstractAttribute::initialize(..).
8552   void initialize(Attributor &A) override {
8553     if (A.hasSimplificationCallback(getIRPosition()))
8554       indicatePessimisticFixpoint();
8555     else
8556       AAPotentialValues::initialize(A);
8557   }
8558 
8559   /// See AbstractAttribute::getAsStr().
8560   const std::string getAsStr() const override {
8561     std::string Str;
8562     llvm::raw_string_ostream OS(Str);
8563     OS << getState();
8564     return OS.str();
8565   }
8566 
8567   /// See AbstractAttribute::updateImpl(...).
8568   ChangeStatus updateImpl(Attributor &A) override {
8569     return indicatePessimisticFixpoint();
8570   }
8571 };
8572 
8573 struct AAPotentialValuesArgument final
8574     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8575                                       PotentialConstantIntValuesState> {
8576   using Base =
8577       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8578                                       PotentialConstantIntValuesState>;
8579   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8580       : Base(IRP, A) {}
8581 
8582   /// See AbstractAttribute::initialize(..).
8583   void initialize(Attributor &A) override {
8584     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8585       indicatePessimisticFixpoint();
8586     } else {
8587       Base::initialize(A);
8588     }
8589   }
8590 
8591   /// See AbstractAttribute::trackStatistics()
8592   void trackStatistics() const override {
8593     STATS_DECLTRACK_ARG_ATTR(potential_values)
8594   }
8595 };
8596 
8597 struct AAPotentialValuesReturned
8598     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8599   using Base =
8600       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8601   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8602       : Base(IRP, A) {}
8603 
8604   /// See AbstractAttribute::trackStatistics()
8605   void trackStatistics() const override {
8606     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8607   }
8608 };
8609 
8610 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8611   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8612       : AAPotentialValuesImpl(IRP, A) {}
8613 
8614   /// See AbstractAttribute::initialize(..).
8615   void initialize(Attributor &A) override {
8616     AAPotentialValuesImpl::initialize(A);
8617     if (isAtFixpoint())
8618       return;
8619 
8620     Value &V = getAssociatedValue();
8621 
8622     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8623       unionAssumed(C->getValue());
8624       indicateOptimisticFixpoint();
8625       return;
8626     }
8627 
8628     if (isa<UndefValue>(&V)) {
8629       unionAssumedWithUndef();
8630       indicateOptimisticFixpoint();
8631       return;
8632     }
8633 
8634     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8635       return;
8636 
8637     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8638       return;
8639 
8640     indicatePessimisticFixpoint();
8641 
8642     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8643                       << getAssociatedValue() << "\n");
8644   }
8645 
8646   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8647                                 const APInt &RHS) {
8648     ICmpInst::Predicate Pred = ICI->getPredicate();
8649     switch (Pred) {
8650     case ICmpInst::ICMP_UGT:
8651       return LHS.ugt(RHS);
8652     case ICmpInst::ICMP_SGT:
8653       return LHS.sgt(RHS);
8654     case ICmpInst::ICMP_EQ:
8655       return LHS.eq(RHS);
8656     case ICmpInst::ICMP_UGE:
8657       return LHS.uge(RHS);
8658     case ICmpInst::ICMP_SGE:
8659       return LHS.sge(RHS);
8660     case ICmpInst::ICMP_ULT:
8661       return LHS.ult(RHS);
8662     case ICmpInst::ICMP_SLT:
8663       return LHS.slt(RHS);
8664     case ICmpInst::ICMP_NE:
8665       return LHS.ne(RHS);
8666     case ICmpInst::ICMP_ULE:
8667       return LHS.ule(RHS);
8668     case ICmpInst::ICMP_SLE:
8669       return LHS.sle(RHS);
8670     default:
8671       llvm_unreachable("Invalid ICmp predicate!");
8672     }
8673   }
8674 
8675   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8676                                  uint32_t ResultBitWidth) {
8677     Instruction::CastOps CastOp = CI->getOpcode();
8678     switch (CastOp) {
8679     default:
8680       llvm_unreachable("unsupported or not integer cast");
8681     case Instruction::Trunc:
8682       return Src.trunc(ResultBitWidth);
8683     case Instruction::SExt:
8684       return Src.sext(ResultBitWidth);
8685     case Instruction::ZExt:
8686       return Src.zext(ResultBitWidth);
8687     case Instruction::BitCast:
8688       return Src;
8689     }
8690   }
8691 
8692   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8693                                        const APInt &LHS, const APInt &RHS,
8694                                        bool &SkipOperation, bool &Unsupported) {
8695     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8696     // Unsupported is set to true when the binary operator is not supported.
8697     // SkipOperation is set to true when UB occur with the given operand pair
8698     // (LHS, RHS).
8699     // TODO: we should look at nsw and nuw keywords to handle operations
8700     //       that create poison or undef value.
8701     switch (BinOpcode) {
8702     default:
8703       Unsupported = true;
8704       return LHS;
8705     case Instruction::Add:
8706       return LHS + RHS;
8707     case Instruction::Sub:
8708       return LHS - RHS;
8709     case Instruction::Mul:
8710       return LHS * RHS;
8711     case Instruction::UDiv:
8712       if (RHS.isZero()) {
8713         SkipOperation = true;
8714         return LHS;
8715       }
8716       return LHS.udiv(RHS);
8717     case Instruction::SDiv:
8718       if (RHS.isZero()) {
8719         SkipOperation = true;
8720         return LHS;
8721       }
8722       return LHS.sdiv(RHS);
8723     case Instruction::URem:
8724       if (RHS.isZero()) {
8725         SkipOperation = true;
8726         return LHS;
8727       }
8728       return LHS.urem(RHS);
8729     case Instruction::SRem:
8730       if (RHS.isZero()) {
8731         SkipOperation = true;
8732         return LHS;
8733       }
8734       return LHS.srem(RHS);
8735     case Instruction::Shl:
8736       return LHS.shl(RHS);
8737     case Instruction::LShr:
8738       return LHS.lshr(RHS);
8739     case Instruction::AShr:
8740       return LHS.ashr(RHS);
8741     case Instruction::And:
8742       return LHS & RHS;
8743     case Instruction::Or:
8744       return LHS | RHS;
8745     case Instruction::Xor:
8746       return LHS ^ RHS;
8747     }
8748   }
8749 
8750   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8751                                            const APInt &LHS, const APInt &RHS) {
8752     bool SkipOperation = false;
8753     bool Unsupported = false;
8754     APInt Result =
8755         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8756     if (Unsupported)
8757       return false;
8758     // If SkipOperation is true, we can ignore this operand pair (L, R).
8759     if (!SkipOperation)
8760       unionAssumed(Result);
8761     return isValidState();
8762   }
8763 
8764   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8765     auto AssumedBefore = getAssumed();
8766     Value *LHS = ICI->getOperand(0);
8767     Value *RHS = ICI->getOperand(1);
8768 
8769     // Simplify the operands first.
8770     bool UsedAssumedInformation = false;
8771     const auto &SimplifiedLHS =
8772         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8773                                *this, UsedAssumedInformation);
8774     if (!SimplifiedLHS.hasValue())
8775       return ChangeStatus::UNCHANGED;
8776     if (!SimplifiedLHS.getValue())
8777       return indicatePessimisticFixpoint();
8778     LHS = *SimplifiedLHS;
8779 
8780     const auto &SimplifiedRHS =
8781         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8782                                *this, UsedAssumedInformation);
8783     if (!SimplifiedRHS.hasValue())
8784       return ChangeStatus::UNCHANGED;
8785     if (!SimplifiedRHS.getValue())
8786       return indicatePessimisticFixpoint();
8787     RHS = *SimplifiedRHS;
8788 
8789     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8790       return indicatePessimisticFixpoint();
8791 
8792     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8793                                                 DepClassTy::REQUIRED);
8794     if (!LHSAA.isValidState())
8795       return indicatePessimisticFixpoint();
8796 
8797     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8798                                                 DepClassTy::REQUIRED);
8799     if (!RHSAA.isValidState())
8800       return indicatePessimisticFixpoint();
8801 
8802     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8803     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8804 
8805     // TODO: make use of undef flag to limit potential values aggressively.
8806     bool MaybeTrue = false, MaybeFalse = false;
8807     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8808     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8809       // The result of any comparison between undefs can be soundly replaced
8810       // with undef.
8811       unionAssumedWithUndef();
8812     } else if (LHSAA.undefIsContained()) {
8813       for (const APInt &R : RHSAAPVS) {
8814         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8815         MaybeTrue |= CmpResult;
8816         MaybeFalse |= !CmpResult;
8817         if (MaybeTrue & MaybeFalse)
8818           return indicatePessimisticFixpoint();
8819       }
8820     } else if (RHSAA.undefIsContained()) {
8821       for (const APInt &L : LHSAAPVS) {
8822         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8823         MaybeTrue |= CmpResult;
8824         MaybeFalse |= !CmpResult;
8825         if (MaybeTrue & MaybeFalse)
8826           return indicatePessimisticFixpoint();
8827       }
8828     } else {
8829       for (const APInt &L : LHSAAPVS) {
8830         for (const APInt &R : RHSAAPVS) {
8831           bool CmpResult = calculateICmpInst(ICI, L, R);
8832           MaybeTrue |= CmpResult;
8833           MaybeFalse |= !CmpResult;
8834           if (MaybeTrue & MaybeFalse)
8835             return indicatePessimisticFixpoint();
8836         }
8837       }
8838     }
8839     if (MaybeTrue)
8840       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8841     if (MaybeFalse)
8842       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8843     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8844                                          : ChangeStatus::CHANGED;
8845   }
8846 
8847   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8848     auto AssumedBefore = getAssumed();
8849     Value *LHS = SI->getTrueValue();
8850     Value *RHS = SI->getFalseValue();
8851 
8852     // Simplify the operands first.
8853     bool UsedAssumedInformation = false;
8854     const auto &SimplifiedLHS =
8855         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8856                                *this, UsedAssumedInformation);
8857     if (!SimplifiedLHS.hasValue())
8858       return ChangeStatus::UNCHANGED;
8859     if (!SimplifiedLHS.getValue())
8860       return indicatePessimisticFixpoint();
8861     LHS = *SimplifiedLHS;
8862 
8863     const auto &SimplifiedRHS =
8864         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8865                                *this, UsedAssumedInformation);
8866     if (!SimplifiedRHS.hasValue())
8867       return ChangeStatus::UNCHANGED;
8868     if (!SimplifiedRHS.getValue())
8869       return indicatePessimisticFixpoint();
8870     RHS = *SimplifiedRHS;
8871 
8872     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8873       return indicatePessimisticFixpoint();
8874 
8875     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8876                                                   UsedAssumedInformation);
8877 
8878     // Check if we only need one operand.
8879     bool OnlyLeft = false, OnlyRight = false;
8880     if (C.hasValue() && *C && (*C)->isOneValue())
8881       OnlyLeft = true;
8882     else if (C.hasValue() && *C && (*C)->isZeroValue())
8883       OnlyRight = true;
8884 
8885     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8886     if (!OnlyRight) {
8887       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8888                                              DepClassTy::REQUIRED);
8889       if (!LHSAA->isValidState())
8890         return indicatePessimisticFixpoint();
8891     }
8892     if (!OnlyLeft) {
8893       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8894                                              DepClassTy::REQUIRED);
8895       if (!RHSAA->isValidState())
8896         return indicatePessimisticFixpoint();
8897     }
8898 
8899     if (!LHSAA || !RHSAA) {
8900       // select (true/false), lhs, rhs
8901       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8902 
8903       if (OpAA->undefIsContained())
8904         unionAssumedWithUndef();
8905       else
8906         unionAssumed(*OpAA);
8907 
8908     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8909       // select i1 *, undef , undef => undef
8910       unionAssumedWithUndef();
8911     } else {
8912       unionAssumed(*LHSAA);
8913       unionAssumed(*RHSAA);
8914     }
8915     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8916                                          : ChangeStatus::CHANGED;
8917   }
8918 
8919   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8920     auto AssumedBefore = getAssumed();
8921     if (!CI->isIntegerCast())
8922       return indicatePessimisticFixpoint();
8923     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8924     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8925     Value *Src = CI->getOperand(0);
8926 
8927     // Simplify the operand first.
8928     bool UsedAssumedInformation = false;
8929     const auto &SimplifiedSrc =
8930         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8931                                *this, UsedAssumedInformation);
8932     if (!SimplifiedSrc.hasValue())
8933       return ChangeStatus::UNCHANGED;
8934     if (!SimplifiedSrc.getValue())
8935       return indicatePessimisticFixpoint();
8936     Src = *SimplifiedSrc;
8937 
8938     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8939                                                 DepClassTy::REQUIRED);
8940     if (!SrcAA.isValidState())
8941       return indicatePessimisticFixpoint();
8942     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8943     if (SrcAA.undefIsContained())
8944       unionAssumedWithUndef();
8945     else {
8946       for (const APInt &S : SrcAAPVS) {
8947         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8948         unionAssumed(T);
8949       }
8950     }
8951     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8952                                          : ChangeStatus::CHANGED;
8953   }
8954 
8955   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8956     auto AssumedBefore = getAssumed();
8957     Value *LHS = BinOp->getOperand(0);
8958     Value *RHS = BinOp->getOperand(1);
8959 
8960     // Simplify the operands first.
8961     bool UsedAssumedInformation = false;
8962     const auto &SimplifiedLHS =
8963         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8964                                *this, UsedAssumedInformation);
8965     if (!SimplifiedLHS.hasValue())
8966       return ChangeStatus::UNCHANGED;
8967     if (!SimplifiedLHS.getValue())
8968       return indicatePessimisticFixpoint();
8969     LHS = *SimplifiedLHS;
8970 
8971     const auto &SimplifiedRHS =
8972         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8973                                *this, UsedAssumedInformation);
8974     if (!SimplifiedRHS.hasValue())
8975       return ChangeStatus::UNCHANGED;
8976     if (!SimplifiedRHS.getValue())
8977       return indicatePessimisticFixpoint();
8978     RHS = *SimplifiedRHS;
8979 
8980     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8981       return indicatePessimisticFixpoint();
8982 
8983     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8984                                                 DepClassTy::REQUIRED);
8985     if (!LHSAA.isValidState())
8986       return indicatePessimisticFixpoint();
8987 
8988     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8989                                                 DepClassTy::REQUIRED);
8990     if (!RHSAA.isValidState())
8991       return indicatePessimisticFixpoint();
8992 
8993     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8994     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8995     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
8996 
8997     // TODO: make use of undef flag to limit potential values aggressively.
8998     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8999       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9000         return indicatePessimisticFixpoint();
9001     } else if (LHSAA.undefIsContained()) {
9002       for (const APInt &R : RHSAAPVS) {
9003         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9004           return indicatePessimisticFixpoint();
9005       }
9006     } else if (RHSAA.undefIsContained()) {
9007       for (const APInt &L : LHSAAPVS) {
9008         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9009           return indicatePessimisticFixpoint();
9010       }
9011     } else {
9012       for (const APInt &L : LHSAAPVS) {
9013         for (const APInt &R : RHSAAPVS) {
9014           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9015             return indicatePessimisticFixpoint();
9016         }
9017       }
9018     }
9019     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9020                                          : ChangeStatus::CHANGED;
9021   }
9022 
9023   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9024     auto AssumedBefore = getAssumed();
9025     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9026       Value *IncomingValue = PHI->getIncomingValue(u);
9027 
9028       // Simplify the operand first.
9029       bool UsedAssumedInformation = false;
9030       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9031           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9032           UsedAssumedInformation);
9033       if (!SimplifiedIncomingValue.hasValue())
9034         continue;
9035       if (!SimplifiedIncomingValue.getValue())
9036         return indicatePessimisticFixpoint();
9037       IncomingValue = *SimplifiedIncomingValue;
9038 
9039       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9040           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9041       if (!PotentialValuesAA.isValidState())
9042         return indicatePessimisticFixpoint();
9043       if (PotentialValuesAA.undefIsContained())
9044         unionAssumedWithUndef();
9045       else
9046         unionAssumed(PotentialValuesAA.getAssumed());
9047     }
9048     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9049                                          : ChangeStatus::CHANGED;
9050   }
9051 
9052   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9053     if (!L.getType()->isIntegerTy())
9054       return indicatePessimisticFixpoint();
9055 
9056     auto Union = [&](Value &V) {
9057       if (isa<UndefValue>(V)) {
9058         unionAssumedWithUndef();
9059         return true;
9060       }
9061       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9062         unionAssumed(CI->getValue());
9063         return true;
9064       }
9065       return false;
9066     };
9067     auto AssumedBefore = getAssumed();
9068 
9069     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9070       return indicatePessimisticFixpoint();
9071 
9072     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9073                                          : ChangeStatus::CHANGED;
9074   }
9075 
9076   /// See AbstractAttribute::updateImpl(...).
9077   ChangeStatus updateImpl(Attributor &A) override {
9078     Value &V = getAssociatedValue();
9079     Instruction *I = dyn_cast<Instruction>(&V);
9080 
9081     if (auto *ICI = dyn_cast<ICmpInst>(I))
9082       return updateWithICmpInst(A, ICI);
9083 
9084     if (auto *SI = dyn_cast<SelectInst>(I))
9085       return updateWithSelectInst(A, SI);
9086 
9087     if (auto *CI = dyn_cast<CastInst>(I))
9088       return updateWithCastInst(A, CI);
9089 
9090     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9091       return updateWithBinaryOperator(A, BinOp);
9092 
9093     if (auto *PHI = dyn_cast<PHINode>(I))
9094       return updateWithPHINode(A, PHI);
9095 
9096     if (auto *L = dyn_cast<LoadInst>(I))
9097       return updateWithLoad(A, *L);
9098 
9099     return indicatePessimisticFixpoint();
9100   }
9101 
9102   /// See AbstractAttribute::trackStatistics()
9103   void trackStatistics() const override {
9104     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9105   }
9106 };
9107 
9108 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9109   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9110       : AAPotentialValuesImpl(IRP, A) {}
9111 
9112   /// See AbstractAttribute::initialize(...).
9113   ChangeStatus updateImpl(Attributor &A) override {
9114     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9115                      "not be called");
9116   }
9117 
9118   /// See AbstractAttribute::trackStatistics()
9119   void trackStatistics() const override {
9120     STATS_DECLTRACK_FN_ATTR(potential_values)
9121   }
9122 };
9123 
9124 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9125   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9126       : AAPotentialValuesFunction(IRP, A) {}
9127 
9128   /// See AbstractAttribute::trackStatistics()
9129   void trackStatistics() const override {
9130     STATS_DECLTRACK_CS_ATTR(potential_values)
9131   }
9132 };
9133 
9134 struct AAPotentialValuesCallSiteReturned
9135     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9136   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9137       : AACallSiteReturnedFromReturned<AAPotentialValues,
9138                                        AAPotentialValuesImpl>(IRP, A) {}
9139 
9140   /// See AbstractAttribute::trackStatistics()
9141   void trackStatistics() const override {
9142     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9143   }
9144 };
9145 
9146 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9147   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9148       : AAPotentialValuesFloating(IRP, A) {}
9149 
9150   /// See AbstractAttribute::initialize(..).
9151   void initialize(Attributor &A) override {
9152     AAPotentialValuesImpl::initialize(A);
9153     if (isAtFixpoint())
9154       return;
9155 
9156     Value &V = getAssociatedValue();
9157 
9158     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9159       unionAssumed(C->getValue());
9160       indicateOptimisticFixpoint();
9161       return;
9162     }
9163 
9164     if (isa<UndefValue>(&V)) {
9165       unionAssumedWithUndef();
9166       indicateOptimisticFixpoint();
9167       return;
9168     }
9169   }
9170 
9171   /// See AbstractAttribute::updateImpl(...).
9172   ChangeStatus updateImpl(Attributor &A) override {
9173     Value &V = getAssociatedValue();
9174     auto AssumedBefore = getAssumed();
9175     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9176                                              DepClassTy::REQUIRED);
9177     const auto &S = AA.getAssumed();
9178     unionAssumed(S);
9179     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9180                                          : ChangeStatus::CHANGED;
9181   }
9182 
9183   /// See AbstractAttribute::trackStatistics()
9184   void trackStatistics() const override {
9185     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9186   }
9187 };
9188 
9189 /// ------------------------ NoUndef Attribute ---------------------------------
9190 struct AANoUndefImpl : AANoUndef {
9191   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9192 
9193   /// See AbstractAttribute::initialize(...).
9194   void initialize(Attributor &A) override {
9195     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9196       indicateOptimisticFixpoint();
9197       return;
9198     }
9199     Value &V = getAssociatedValue();
9200     if (isa<UndefValue>(V))
9201       indicatePessimisticFixpoint();
9202     else if (isa<FreezeInst>(V))
9203       indicateOptimisticFixpoint();
9204     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9205              isGuaranteedNotToBeUndefOrPoison(&V))
9206       indicateOptimisticFixpoint();
9207     else
9208       AANoUndef::initialize(A);
9209   }
9210 
9211   /// See followUsesInMBEC
9212   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9213                        AANoUndef::StateType &State) {
9214     const Value *UseV = U->get();
9215     const DominatorTree *DT = nullptr;
9216     AssumptionCache *AC = nullptr;
9217     InformationCache &InfoCache = A.getInfoCache();
9218     if (Function *F = getAnchorScope()) {
9219       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9220       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9221     }
9222     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9223     bool TrackUse = false;
9224     // Track use for instructions which must produce undef or poison bits when
9225     // at least one operand contains such bits.
9226     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9227       TrackUse = true;
9228     return TrackUse;
9229   }
9230 
9231   /// See AbstractAttribute::getAsStr().
9232   const std::string getAsStr() const override {
9233     return getAssumed() ? "noundef" : "may-undef-or-poison";
9234   }
9235 
9236   ChangeStatus manifest(Attributor &A) override {
9237     // We don't manifest noundef attribute for dead positions because the
9238     // associated values with dead positions would be replaced with undef
9239     // values.
9240     bool UsedAssumedInformation = false;
9241     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9242                         UsedAssumedInformation))
9243       return ChangeStatus::UNCHANGED;
9244     // A position whose simplified value does not have any value is
9245     // considered to be dead. We don't manifest noundef in such positions for
9246     // the same reason above.
9247     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9248              .hasValue())
9249       return ChangeStatus::UNCHANGED;
9250     return AANoUndef::manifest(A);
9251   }
9252 };
9253 
9254 struct AANoUndefFloating : public AANoUndefImpl {
9255   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9256       : AANoUndefImpl(IRP, A) {}
9257 
9258   /// See AbstractAttribute::initialize(...).
9259   void initialize(Attributor &A) override {
9260     AANoUndefImpl::initialize(A);
9261     if (!getState().isAtFixpoint())
9262       if (Instruction *CtxI = getCtxI())
9263         followUsesInMBEC(*this, A, getState(), *CtxI);
9264   }
9265 
9266   /// See AbstractAttribute::updateImpl(...).
9267   ChangeStatus updateImpl(Attributor &A) override {
9268     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9269                             AANoUndef::StateType &T, bool Stripped) -> bool {
9270       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9271                                              DepClassTy::REQUIRED);
9272       if (!Stripped && this == &AA) {
9273         T.indicatePessimisticFixpoint();
9274       } else {
9275         const AANoUndef::StateType &S =
9276             static_cast<const AANoUndef::StateType &>(AA.getState());
9277         T ^= S;
9278       }
9279       return T.isValidState();
9280     };
9281 
9282     StateType T;
9283     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9284                                           VisitValueCB, getCtxI()))
9285       return indicatePessimisticFixpoint();
9286 
9287     return clampStateAndIndicateChange(getState(), T);
9288   }
9289 
9290   /// See AbstractAttribute::trackStatistics()
9291   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9292 };
9293 
9294 struct AANoUndefReturned final
9295     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9296   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9297       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9298 
9299   /// See AbstractAttribute::trackStatistics()
9300   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9301 };
9302 
9303 struct AANoUndefArgument final
9304     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9305   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9306       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9307 
9308   /// See AbstractAttribute::trackStatistics()
9309   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9310 };
9311 
9312 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9313   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9314       : AANoUndefFloating(IRP, A) {}
9315 
9316   /// See AbstractAttribute::trackStatistics()
9317   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9318 };
9319 
9320 struct AANoUndefCallSiteReturned final
9321     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9322   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9323       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9324 
9325   /// See AbstractAttribute::trackStatistics()
9326   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9327 };
9328 
9329 struct AACallEdgesImpl : public AACallEdges {
9330   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9331 
9332   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9333     return CalledFunctions;
9334   }
9335 
9336   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9337 
9338   virtual bool hasNonAsmUnknownCallee() const override {
9339     return HasUnknownCalleeNonAsm;
9340   }
9341 
9342   const std::string getAsStr() const override {
9343     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9344            std::to_string(CalledFunctions.size()) + "]";
9345   }
9346 
9347   void trackStatistics() const override {}
9348 
9349 protected:
9350   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9351     if (CalledFunctions.insert(Fn)) {
9352       Change = ChangeStatus::CHANGED;
9353       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9354                         << "\n");
9355     }
9356   }
9357 
9358   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9359     if (!HasUnknownCallee)
9360       Change = ChangeStatus::CHANGED;
9361     if (NonAsm && !HasUnknownCalleeNonAsm)
9362       Change = ChangeStatus::CHANGED;
9363     HasUnknownCalleeNonAsm |= NonAsm;
9364     HasUnknownCallee = true;
9365   }
9366 
9367 private:
9368   /// Optimistic set of functions that might be called by this position.
9369   SetVector<Function *> CalledFunctions;
9370 
9371   /// Is there any call with a unknown callee.
9372   bool HasUnknownCallee = false;
9373 
9374   /// Is there any call with a unknown callee, excluding any inline asm.
9375   bool HasUnknownCalleeNonAsm = false;
9376 };
9377 
9378 struct AACallEdgesCallSite : public AACallEdgesImpl {
9379   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9380       : AACallEdgesImpl(IRP, A) {}
9381   /// See AbstractAttribute::updateImpl(...).
9382   ChangeStatus updateImpl(Attributor &A) override {
9383     ChangeStatus Change = ChangeStatus::UNCHANGED;
9384 
9385     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9386                           bool Stripped) -> bool {
9387       if (Function *Fn = dyn_cast<Function>(&V)) {
9388         addCalledFunction(Fn, Change);
9389       } else {
9390         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9391         setHasUnknownCallee(true, Change);
9392       }
9393 
9394       // Explore all values.
9395       return true;
9396     };
9397 
9398     // Process any value that we might call.
9399     auto ProcessCalledOperand = [&](Value *V) {
9400       bool DummyValue = false;
9401       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9402                                        DummyValue, VisitValue, nullptr,
9403                                        false)) {
9404         // If we haven't gone through all values, assume that there are unknown
9405         // callees.
9406         setHasUnknownCallee(true, Change);
9407       }
9408     };
9409 
9410     CallBase *CB = static_cast<CallBase *>(getCtxI());
9411 
9412     if (CB->isInlineAsm()) {
9413       setHasUnknownCallee(false, Change);
9414       return Change;
9415     }
9416 
9417     // Process callee metadata if available.
9418     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9419       for (auto &Op : MD->operands()) {
9420         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9421         if (Callee)
9422           addCalledFunction(Callee, Change);
9423       }
9424       return Change;
9425     }
9426 
9427     // The most simple case.
9428     ProcessCalledOperand(CB->getCalledOperand());
9429 
9430     // Process callback functions.
9431     SmallVector<const Use *, 4u> CallbackUses;
9432     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9433     for (const Use *U : CallbackUses)
9434       ProcessCalledOperand(U->get());
9435 
9436     return Change;
9437   }
9438 };
9439 
9440 struct AACallEdgesFunction : public AACallEdgesImpl {
9441   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9442       : AACallEdgesImpl(IRP, A) {}
9443 
9444   /// See AbstractAttribute::updateImpl(...).
9445   ChangeStatus updateImpl(Attributor &A) override {
9446     ChangeStatus Change = ChangeStatus::UNCHANGED;
9447 
9448     auto ProcessCallInst = [&](Instruction &Inst) {
9449       CallBase &CB = static_cast<CallBase &>(Inst);
9450 
9451       auto &CBEdges = A.getAAFor<AACallEdges>(
9452           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9453       if (CBEdges.hasNonAsmUnknownCallee())
9454         setHasUnknownCallee(true, Change);
9455       if (CBEdges.hasUnknownCallee())
9456         setHasUnknownCallee(false, Change);
9457 
9458       for (Function *F : CBEdges.getOptimisticEdges())
9459         addCalledFunction(F, Change);
9460 
9461       return true;
9462     };
9463 
9464     // Visit all callable instructions.
9465     bool UsedAssumedInformation = false;
9466     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9467                                            UsedAssumedInformation)) {
9468       // If we haven't looked at all call like instructions, assume that there
9469       // are unknown callees.
9470       setHasUnknownCallee(true, Change);
9471     }
9472 
9473     return Change;
9474   }
9475 };
9476 
9477 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9478 private:
9479   struct QuerySet {
9480     void markReachable(Function *Fn) {
9481       Reachable.insert(Fn);
9482       Unreachable.erase(Fn);
9483     }
9484 
9485     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9486                         ArrayRef<const AACallEdges *> AAEdgesList) {
9487       ChangeStatus Change = ChangeStatus::UNCHANGED;
9488 
9489       for (auto *AAEdges : AAEdgesList) {
9490         if (AAEdges->hasUnknownCallee()) {
9491           if (!CanReachUnknownCallee)
9492             Change = ChangeStatus::CHANGED;
9493           CanReachUnknownCallee = true;
9494           return Change;
9495         }
9496       }
9497 
9498       for (Function *Fn : make_early_inc_range(Unreachable)) {
9499         if (checkIfReachable(A, AA, AAEdgesList, Fn)) {
9500           Change = ChangeStatus::CHANGED;
9501           markReachable(Fn);
9502         }
9503       }
9504       return Change;
9505     }
9506 
9507     bool isReachable(Attributor &A, const AAFunctionReachability &AA,
9508                      ArrayRef<const AACallEdges *> AAEdgesList, Function *Fn) {
9509       // Assume that we can reach the function.
9510       // TODO: Be more specific with the unknown callee.
9511       if (CanReachUnknownCallee)
9512         return true;
9513 
9514       if (Reachable.count(Fn))
9515         return true;
9516 
9517       if (Unreachable.count(Fn))
9518         return false;
9519 
9520       // We need to assume that this function can't reach Fn to prevent
9521       // an infinite loop if this function is recursive.
9522       Unreachable.insert(Fn);
9523 
9524       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9525       if (Result)
9526         markReachable(Fn);
9527       return Result;
9528     }
9529 
9530     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9531                           ArrayRef<const AACallEdges *> AAEdgesList,
9532                           Function *Fn) const {
9533 
9534       // Handle the most trivial case first.
9535       for (auto *AAEdges : AAEdgesList) {
9536         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9537 
9538         if (Edges.count(Fn))
9539           return true;
9540       }
9541 
9542       SmallVector<const AAFunctionReachability *, 8> Deps;
9543       for (auto &AAEdges : AAEdgesList) {
9544         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9545 
9546         for (Function *Edge : Edges) {
9547           // We don't need a dependency if the result is reachable.
9548           const AAFunctionReachability &EdgeReachability =
9549               A.getAAFor<AAFunctionReachability>(
9550                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9551           Deps.push_back(&EdgeReachability);
9552 
9553           if (EdgeReachability.canReach(A, Fn))
9554             return true;
9555         }
9556       }
9557 
9558       // The result is false for now, set dependencies and leave.
9559       for (auto Dep : Deps)
9560         A.recordDependence(AA, *Dep, DepClassTy::REQUIRED);
9561 
9562       return false;
9563     }
9564 
9565     /// Set of functions that we know for sure is reachable.
9566     DenseSet<Function *> Reachable;
9567 
9568     /// Set of functions that are unreachable, but might become reachable.
9569     DenseSet<Function *> Unreachable;
9570 
9571     /// If we can reach a function with a call to a unknown function we assume
9572     /// that we can reach any function.
9573     bool CanReachUnknownCallee = false;
9574   };
9575 
9576 public:
9577   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9578       : AAFunctionReachability(IRP, A) {}
9579 
9580   bool canReach(Attributor &A, Function *Fn) const override {
9581     const AACallEdges &AAEdges =
9582         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9583 
9584     // Attributor returns attributes as const, so this function has to be
9585     // const for users of this attribute to use it without having to do
9586     // a const_cast.
9587     // This is a hack for us to be able to cache queries.
9588     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9589     bool Result =
9590         NonConstThis->WholeFunction.isReachable(A, *this, {&AAEdges}, Fn);
9591 
9592     return Result;
9593   }
9594 
9595   /// Can \p CB reach \p Fn
9596   bool canReach(Attributor &A, CallBase &CB, Function *Fn) const override {
9597     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9598         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9599 
9600     // Attributor returns attributes as const, so this function has to be
9601     // const for users of this attribute to use it without having to do
9602     // a const_cast.
9603     // This is a hack for us to be able to cache queries.
9604     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9605     QuerySet &CBQuery = NonConstThis->CBQueries[&CB];
9606 
9607     bool Result = CBQuery.isReachable(A, *this, {&AAEdges}, Fn);
9608 
9609     return Result;
9610   }
9611 
9612   /// See AbstractAttribute::updateImpl(...).
9613   ChangeStatus updateImpl(Attributor &A) override {
9614     const AACallEdges &AAEdges =
9615         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9616     ChangeStatus Change = ChangeStatus::UNCHANGED;
9617 
9618     Change |= WholeFunction.update(A, *this, {&AAEdges});
9619 
9620     for (auto CBPair : CBQueries) {
9621       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9622           *this, IRPosition::callsite_function(*CBPair.first),
9623           DepClassTy::REQUIRED);
9624 
9625       Change |= CBPair.second.update(A, *this, {&AAEdges});
9626     }
9627 
9628     return Change;
9629   }
9630 
9631   const std::string getAsStr() const override {
9632     size_t QueryCount =
9633         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9634 
9635     return "FunctionReachability [" +
9636            std::to_string(WholeFunction.Reachable.size()) + "," +
9637            std::to_string(QueryCount) + "]";
9638   }
9639 
9640   void trackStatistics() const override {}
9641 private:
9642   bool canReachUnknownCallee() const override {
9643     return WholeFunction.CanReachUnknownCallee;
9644   }
9645 
9646   /// Used to answer if a the whole function can reacha a specific function.
9647   QuerySet WholeFunction;
9648 
9649   /// Used to answer if a call base inside this function can reach a specific
9650   /// function.
9651   DenseMap<CallBase *, QuerySet> CBQueries;
9652 };
9653 
9654 } // namespace
9655 
9656 AACallGraphNode *AACallEdgeIterator::operator*() const {
9657   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9658       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9659 }
9660 
9661 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9662 
9663 const char AAReturnedValues::ID = 0;
9664 const char AANoUnwind::ID = 0;
9665 const char AANoSync::ID = 0;
9666 const char AANoFree::ID = 0;
9667 const char AANonNull::ID = 0;
9668 const char AANoRecurse::ID = 0;
9669 const char AAWillReturn::ID = 0;
9670 const char AAUndefinedBehavior::ID = 0;
9671 const char AANoAlias::ID = 0;
9672 const char AAReachability::ID = 0;
9673 const char AANoReturn::ID = 0;
9674 const char AAIsDead::ID = 0;
9675 const char AADereferenceable::ID = 0;
9676 const char AAAlign::ID = 0;
9677 const char AANoCapture::ID = 0;
9678 const char AAValueSimplify::ID = 0;
9679 const char AAHeapToStack::ID = 0;
9680 const char AAPrivatizablePtr::ID = 0;
9681 const char AAMemoryBehavior::ID = 0;
9682 const char AAMemoryLocation::ID = 0;
9683 const char AAValueConstantRange::ID = 0;
9684 const char AAPotentialValues::ID = 0;
9685 const char AANoUndef::ID = 0;
9686 const char AACallEdges::ID = 0;
9687 const char AAFunctionReachability::ID = 0;
9688 const char AAPointerInfo::ID = 0;
9689 
9690 // Macro magic to create the static generator function for attributes that
9691 // follow the naming scheme.
9692 
9693 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9694   case IRPosition::PK:                                                         \
9695     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9696 
9697 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9698   case IRPosition::PK:                                                         \
9699     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9700     ++NumAAs;                                                                  \
9701     break;
9702 
9703 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9704   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9705     CLASS *AA = nullptr;                                                       \
9706     switch (IRP.getPositionKind()) {                                           \
9707       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9708       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9709       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9710       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9711       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9712       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9713       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9714       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9715     }                                                                          \
9716     return *AA;                                                                \
9717   }
9718 
9719 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9720   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9721     CLASS *AA = nullptr;                                                       \
9722     switch (IRP.getPositionKind()) {                                           \
9723       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9724       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9725       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9726       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9727       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9728       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9729       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9730       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9731     }                                                                          \
9732     return *AA;                                                                \
9733   }
9734 
9735 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9736   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9737     CLASS *AA = nullptr;                                                       \
9738     switch (IRP.getPositionKind()) {                                           \
9739       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9740       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9741       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9742       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9743       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9744       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9745       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9746       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9747     }                                                                          \
9748     return *AA;                                                                \
9749   }
9750 
9751 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9752   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9753     CLASS *AA = nullptr;                                                       \
9754     switch (IRP.getPositionKind()) {                                           \
9755       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9756       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9757       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9758       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9759       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9760       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9761       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9762       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9763     }                                                                          \
9764     return *AA;                                                                \
9765   }
9766 
9767 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9768   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9769     CLASS *AA = nullptr;                                                       \
9770     switch (IRP.getPositionKind()) {                                           \
9771       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9772       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9773       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9774       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9775       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9776       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9777       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9778       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9779     }                                                                          \
9780     return *AA;                                                                \
9781   }
9782 
9783 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9784 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9785 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9786 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9787 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9788 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9789 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9790 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9791 
9792 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9793 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9794 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9795 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9796 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9797 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9798 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9799 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9800 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9801 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9802 
9803 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9804 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9805 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9806 
9807 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9808 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9809 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9810 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9811 
9812 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9813 
9814 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9815 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9816 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9817 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9818 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9819 #undef SWITCH_PK_CREATE
9820 #undef SWITCH_PK_INV
9821