1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumeBundleQueries.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Assumptions.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include <cassert>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "attributor"
52 
53 static cl::opt<bool> ManifestInternal(
54     "attributor-manifest-internal", cl::Hidden,
55     cl::desc("Manifest Attributor internal string attributes."),
56     cl::init(false));
57 
58 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
59                                        cl::Hidden);
60 
61 template <>
62 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
63 
64 static cl::opt<unsigned, true> MaxPotentialValues(
65     "attributor-max-potential-values", cl::Hidden,
66     cl::desc("Maximum number of potential values to be "
67              "tracked for each position."),
68     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
69     cl::init(7));
70 
71 STATISTIC(NumAAs, "Number of abstract attributes created");
72 
73 // Some helper macros to deal with statistics tracking.
74 //
75 // Usage:
76 // For simple IR attribute tracking overload trackStatistics in the abstract
77 // attribute and choose the right STATS_DECLTRACK_********* macro,
78 // e.g.,:
79 //  void trackStatistics() const override {
80 //    STATS_DECLTRACK_ARG_ATTR(returned)
81 //  }
82 // If there is a single "increment" side one can use the macro
83 // STATS_DECLTRACK with a custom message. If there are multiple increment
84 // sides, STATS_DECL and STATS_TRACK can also be used separately.
85 //
86 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
87   ("Number of " #TYPE " marked '" #NAME "'")
88 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
89 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
90 #define STATS_DECL(NAME, TYPE, MSG)                                            \
91   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
92 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
93 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
94   {                                                                            \
95     STATS_DECL(NAME, TYPE, MSG)                                                \
96     STATS_TRACK(NAME, TYPE)                                                    \
97   }
98 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
99   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
100 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
101   STATS_DECLTRACK(NAME, CSArguments,                                           \
102                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
103 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
105 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
106   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
107 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
108   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
109                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
110 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
111   STATS_DECLTRACK(NAME, CSReturn,                                              \
112                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
113 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
114   STATS_DECLTRACK(NAME, Floating,                                              \
115                   ("Number of floating values known to be '" #NAME "'"))
116 
117 // Specialization of the operator<< for abstract attributes subclasses. This
118 // disambiguates situations where multiple operators are applicable.
119 namespace llvm {
120 #define PIPE_OPERATOR(CLASS)                                                   \
121   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
122     return OS << static_cast<const AbstractAttribute &>(AA);                   \
123   }
124 
125 PIPE_OPERATOR(AAIsDead)
126 PIPE_OPERATOR(AANoUnwind)
127 PIPE_OPERATOR(AANoSync)
128 PIPE_OPERATOR(AANoRecurse)
129 PIPE_OPERATOR(AAWillReturn)
130 PIPE_OPERATOR(AANoReturn)
131 PIPE_OPERATOR(AAReturnedValues)
132 PIPE_OPERATOR(AANonNull)
133 PIPE_OPERATOR(AANoAlias)
134 PIPE_OPERATOR(AADereferenceable)
135 PIPE_OPERATOR(AAAlign)
136 PIPE_OPERATOR(AANoCapture)
137 PIPE_OPERATOR(AAValueSimplify)
138 PIPE_OPERATOR(AANoFree)
139 PIPE_OPERATOR(AAHeapToStack)
140 PIPE_OPERATOR(AAReachability)
141 PIPE_OPERATOR(AAMemoryBehavior)
142 PIPE_OPERATOR(AAMemoryLocation)
143 PIPE_OPERATOR(AAValueConstantRange)
144 PIPE_OPERATOR(AAPrivatizablePtr)
145 PIPE_OPERATOR(AAUndefinedBehavior)
146 PIPE_OPERATOR(AAPotentialValues)
147 PIPE_OPERATOR(AANoUndef)
148 PIPE_OPERATOR(AACallEdges)
149 PIPE_OPERATOR(AAFunctionReachability)
150 PIPE_OPERATOR(AAPointerInfo)
151 PIPE_OPERATOR(AAAssumptionInfo)
152 
153 #undef PIPE_OPERATOR
154 
155 template <>
156 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
157                                                      const DerefState &R) {
158   ChangeStatus CS0 =
159       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
160   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
161   return CS0 | CS1;
162 }
163 
164 } // namespace llvm
165 
166 /// Get pointer operand of memory accessing instruction. If \p I is
167 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
168 /// is set to false and the instruction is volatile, return nullptr.
169 static const Value *getPointerOperand(const Instruction *I,
170                                       bool AllowVolatile) {
171   if (!AllowVolatile && I->isVolatile())
172     return nullptr;
173 
174   if (auto *LI = dyn_cast<LoadInst>(I)) {
175     return LI->getPointerOperand();
176   }
177 
178   if (auto *SI = dyn_cast<StoreInst>(I)) {
179     return SI->getPointerOperand();
180   }
181 
182   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
183     return CXI->getPointerOperand();
184   }
185 
186   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
187     return RMWI->getPointerOperand();
188   }
189 
190   return nullptr;
191 }
192 
193 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
194 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
195 /// getelement pointer instructions that traverse the natural type of \p Ptr if
196 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
197 /// through a cast to i8*.
198 ///
199 /// TODO: This could probably live somewhere more prominantly if it doesn't
200 ///       already exist.
201 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
202                                int64_t Offset, IRBuilder<NoFolder> &IRB,
203                                const DataLayout &DL) {
204   assert(Offset >= 0 && "Negative offset not supported yet!");
205   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
206                     << "-bytes as " << *ResTy << "\n");
207 
208   if (Offset) {
209     Type *Ty = PtrElemTy;
210     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
211     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
212 
213     SmallVector<Value *, 4> ValIndices;
214     std::string GEPName = Ptr->getName().str();
215     for (const APInt &Index : IntIndices) {
216       ValIndices.push_back(IRB.getInt(Index));
217       GEPName += "." + std::to_string(Index.getZExtValue());
218     }
219 
220     // Create a GEP for the indices collected above.
221     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
222 
223     // If an offset is left we use byte-wise adjustment.
224     if (IntOffset != 0) {
225       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
226       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
227                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
228     }
229   }
230 
231   // Ensure the result has the requested type.
232   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
233 
234   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
235   return Ptr;
236 }
237 
238 /// Recursively visit all values that might become \p IRP at some point. This
239 /// will be done by looking through cast instructions, selects, phis, and calls
240 /// with the "returned" attribute. Once we cannot look through the value any
241 /// further, the callback \p VisitValueCB is invoked and passed the current
242 /// value, the \p State, and a flag to indicate if we stripped anything.
243 /// Stripped means that we unpacked the value associated with \p IRP at least
244 /// once. Note that the value used for the callback may still be the value
245 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
246 /// we will never visit more values than specified by \p MaxValues.
247 template <typename StateTy>
248 static bool genericValueTraversal(
249     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
250     StateTy &State,
251     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
252         VisitValueCB,
253     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
254     function_ref<Value *(Value *)> StripCB = nullptr) {
255 
256   const AAIsDead *LivenessAA = nullptr;
257   if (IRP.getAnchorScope())
258     LivenessAA = &A.getAAFor<AAIsDead>(
259         QueryingAA,
260         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
261         DepClassTy::NONE);
262   bool AnyDead = false;
263 
264   Value *InitialV = &IRP.getAssociatedValue();
265   using Item = std::pair<Value *, const Instruction *>;
266   SmallSet<Item, 16> Visited;
267   SmallVector<Item, 16> Worklist;
268   Worklist.push_back({InitialV, CtxI});
269 
270   int Iteration = 0;
271   do {
272     Item I = Worklist.pop_back_val();
273     Value *V = I.first;
274     CtxI = I.second;
275     if (StripCB)
276       V = StripCB(V);
277 
278     // Check if we should process the current value. To prevent endless
279     // recursion keep a record of the values we followed!
280     if (!Visited.insert(I).second)
281       continue;
282 
283     // Make sure we limit the compile time for complex expressions.
284     if (Iteration++ >= MaxValues)
285       return false;
286 
287     // Explicitly look through calls with a "returned" attribute if we do
288     // not have a pointer as stripPointerCasts only works on them.
289     Value *NewV = nullptr;
290     if (V->getType()->isPointerTy()) {
291       NewV = V->stripPointerCasts();
292     } else {
293       auto *CB = dyn_cast<CallBase>(V);
294       if (CB && CB->getCalledFunction()) {
295         for (Argument &Arg : CB->getCalledFunction()->args())
296           if (Arg.hasReturnedAttr()) {
297             NewV = CB->getArgOperand(Arg.getArgNo());
298             break;
299           }
300       }
301     }
302     if (NewV && NewV != V) {
303       Worklist.push_back({NewV, CtxI});
304       continue;
305     }
306 
307     // Look through select instructions, visit assumed potential values.
308     if (auto *SI = dyn_cast<SelectInst>(V)) {
309       bool UsedAssumedInformation = false;
310       Optional<Constant *> C = A.getAssumedConstant(
311           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
312       bool NoValueYet = !C.hasValue();
313       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
314         continue;
315       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
316         if (CI->isZero())
317           Worklist.push_back({SI->getFalseValue(), CtxI});
318         else
319           Worklist.push_back({SI->getTrueValue(), CtxI});
320         continue;
321       }
322       // We could not simplify the condition, assume both values.(
323       Worklist.push_back({SI->getTrueValue(), CtxI});
324       Worklist.push_back({SI->getFalseValue(), CtxI});
325       continue;
326     }
327 
328     // Look through phi nodes, visit all live operands.
329     if (auto *PHI = dyn_cast<PHINode>(V)) {
330       assert(LivenessAA &&
331              "Expected liveness in the presence of instructions!");
332       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
333         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
334         bool UsedAssumedInformation = false;
335         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
336                             LivenessAA, UsedAssumedInformation,
337                             /* CheckBBLivenessOnly */ true)) {
338           AnyDead = true;
339           continue;
340         }
341         Worklist.push_back(
342             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
343       }
344       continue;
345     }
346 
347     if (UseValueSimplify && !isa<Constant>(V)) {
348       bool UsedAssumedInformation = false;
349       Optional<Value *> SimpleV =
350           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
351       if (!SimpleV.hasValue())
352         continue;
353       if (!SimpleV.getValue())
354         return false;
355       Value *NewV = SimpleV.getValue();
356       if (NewV != V) {
357         Worklist.push_back({NewV, CtxI});
358         continue;
359       }
360     }
361 
362     // Once a leaf is reached we inform the user through the callback.
363     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
364       return false;
365   } while (!Worklist.empty());
366 
367   // If we actually used liveness information so we have to record a dependence.
368   if (AnyDead)
369     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
370 
371   // All values have been visited.
372   return true;
373 }
374 
375 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
376                                      SmallVectorImpl<Value *> &Objects,
377                                      const AbstractAttribute &QueryingAA,
378                                      const Instruction *CtxI) {
379   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
380   SmallPtrSet<Value *, 8> SeenObjects;
381   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
382                                      SmallVectorImpl<Value *> &Objects,
383                                      bool) -> bool {
384     if (SeenObjects.insert(&Val).second)
385       Objects.push_back(&Val);
386     return true;
387   };
388   if (!genericValueTraversal<decltype(Objects)>(
389           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
390           true, 32, StripCB))
391     return false;
392   return true;
393 }
394 
395 const Value *stripAndAccumulateMinimalOffsets(
396     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
397     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
398     bool UseAssumed = false) {
399 
400   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
401     const IRPosition &Pos = IRPosition::value(V);
402     // Only track dependence if we are going to use the assumed info.
403     const AAValueConstantRange &ValueConstantRangeAA =
404         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
405                                          UseAssumed ? DepClassTy::OPTIONAL
406                                                     : DepClassTy::NONE);
407     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
408                                      : ValueConstantRangeAA.getKnown();
409     // We can only use the lower part of the range because the upper part can
410     // be higher than what the value can really be.
411     ROffset = Range.getSignedMin();
412     return true;
413   };
414 
415   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
416                                                 /* AllowInvariant */ false,
417                                                 AttributorAnalysis);
418 }
419 
420 static const Value *
421 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
422                         const Value *Ptr, int64_t &BytesOffset,
423                         const DataLayout &DL, bool AllowNonInbounds = false) {
424   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
425   const Value *Base = stripAndAccumulateMinimalOffsets(
426       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
427 
428   BytesOffset = OffsetAPInt.getSExtValue();
429   return Base;
430 }
431 
432 /// Clamp the information known for all returned values of a function
433 /// (identified by \p QueryingAA) into \p S.
434 template <typename AAType, typename StateType = typename AAType::StateType>
435 static void clampReturnedValueStates(
436     Attributor &A, const AAType &QueryingAA, StateType &S,
437     const IRPosition::CallBaseContext *CBContext = nullptr) {
438   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
439                     << QueryingAA << " into " << S << "\n");
440 
441   assert((QueryingAA.getIRPosition().getPositionKind() ==
442               IRPosition::IRP_RETURNED ||
443           QueryingAA.getIRPosition().getPositionKind() ==
444               IRPosition::IRP_CALL_SITE_RETURNED) &&
445          "Can only clamp returned value states for a function returned or call "
446          "site returned position!");
447 
448   // Use an optional state as there might not be any return values and we want
449   // to join (IntegerState::operator&) the state of all there are.
450   Optional<StateType> T;
451 
452   // Callback for each possibly returned value.
453   auto CheckReturnValue = [&](Value &RV) -> bool {
454     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
455     const AAType &AA =
456         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
457     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
458                       << " @ " << RVPos << "\n");
459     const StateType &AAS = AA.getState();
460     if (T.hasValue())
461       *T &= AAS;
462     else
463       T = AAS;
464     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
465                       << "\n");
466     return T->isValidState();
467   };
468 
469   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
470     S.indicatePessimisticFixpoint();
471   else if (T.hasValue())
472     S ^= *T;
473 }
474 
475 namespace {
476 /// Helper class for generic deduction: return value -> returned position.
477 template <typename AAType, typename BaseType,
478           typename StateType = typename BaseType::StateType,
479           bool PropagateCallBaseContext = false>
480 struct AAReturnedFromReturnedValues : public BaseType {
481   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
482       : BaseType(IRP, A) {}
483 
484   /// See AbstractAttribute::updateImpl(...).
485   ChangeStatus updateImpl(Attributor &A) override {
486     StateType S(StateType::getBestState(this->getState()));
487     clampReturnedValueStates<AAType, StateType>(
488         A, *this, S,
489         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
490     // TODO: If we know we visited all returned values, thus no are assumed
491     // dead, we can take the known information from the state T.
492     return clampStateAndIndicateChange<StateType>(this->getState(), S);
493   }
494 };
495 
496 /// Clamp the information known at all call sites for a given argument
497 /// (identified by \p QueryingAA) into \p S.
498 template <typename AAType, typename StateType = typename AAType::StateType>
499 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
500                                         StateType &S) {
501   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
502                     << QueryingAA << " into " << S << "\n");
503 
504   assert(QueryingAA.getIRPosition().getPositionKind() ==
505              IRPosition::IRP_ARGUMENT &&
506          "Can only clamp call site argument states for an argument position!");
507 
508   // Use an optional state as there might not be any return values and we want
509   // to join (IntegerState::operator&) the state of all there are.
510   Optional<StateType> T;
511 
512   // The argument number which is also the call site argument number.
513   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
514 
515   auto CallSiteCheck = [&](AbstractCallSite ACS) {
516     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
517     // Check if a coresponding argument was found or if it is on not associated
518     // (which can happen for callback calls).
519     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
520       return false;
521 
522     const AAType &AA =
523         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
524     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
525                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
526     const StateType &AAS = AA.getState();
527     if (T.hasValue())
528       *T &= AAS;
529     else
530       T = AAS;
531     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
532                       << "\n");
533     return T->isValidState();
534   };
535 
536   bool AllCallSitesKnown;
537   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
538                               AllCallSitesKnown))
539     S.indicatePessimisticFixpoint();
540   else if (T.hasValue())
541     S ^= *T;
542 }
543 
544 /// This function is the bridge between argument position and the call base
545 /// context.
546 template <typename AAType, typename BaseType,
547           typename StateType = typename AAType::StateType>
548 bool getArgumentStateFromCallBaseContext(Attributor &A,
549                                          BaseType &QueryingAttribute,
550                                          IRPosition &Pos, StateType &State) {
551   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
552          "Expected an 'argument' position !");
553   const CallBase *CBContext = Pos.getCallBaseContext();
554   if (!CBContext)
555     return false;
556 
557   int ArgNo = Pos.getCallSiteArgNo();
558   assert(ArgNo >= 0 && "Invalid Arg No!");
559 
560   const auto &AA = A.getAAFor<AAType>(
561       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
562       DepClassTy::REQUIRED);
563   const StateType &CBArgumentState =
564       static_cast<const StateType &>(AA.getState());
565 
566   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
567                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
568                     << "\n");
569 
570   // NOTE: If we want to do call site grouping it should happen here.
571   State ^= CBArgumentState;
572   return true;
573 }
574 
575 /// Helper class for generic deduction: call site argument -> argument position.
576 template <typename AAType, typename BaseType,
577           typename StateType = typename AAType::StateType,
578           bool BridgeCallBaseContext = false>
579 struct AAArgumentFromCallSiteArguments : public BaseType {
580   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
581       : BaseType(IRP, A) {}
582 
583   /// See AbstractAttribute::updateImpl(...).
584   ChangeStatus updateImpl(Attributor &A) override {
585     StateType S = StateType::getBestState(this->getState());
586 
587     if (BridgeCallBaseContext) {
588       bool Success =
589           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
590               A, *this, this->getIRPosition(), S);
591       if (Success)
592         return clampStateAndIndicateChange<StateType>(this->getState(), S);
593     }
594     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
595 
596     // TODO: If we know we visited all incoming values, thus no are assumed
597     // dead, we can take the known information from the state T.
598     return clampStateAndIndicateChange<StateType>(this->getState(), S);
599   }
600 };
601 
602 /// Helper class for generic replication: function returned -> cs returned.
603 template <typename AAType, typename BaseType,
604           typename StateType = typename BaseType::StateType,
605           bool IntroduceCallBaseContext = false>
606 struct AACallSiteReturnedFromReturned : public BaseType {
607   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
608       : BaseType(IRP, A) {}
609 
610   /// See AbstractAttribute::updateImpl(...).
611   ChangeStatus updateImpl(Attributor &A) override {
612     assert(this->getIRPosition().getPositionKind() ==
613                IRPosition::IRP_CALL_SITE_RETURNED &&
614            "Can only wrap function returned positions for call site returned "
615            "positions!");
616     auto &S = this->getState();
617 
618     const Function *AssociatedFunction =
619         this->getIRPosition().getAssociatedFunction();
620     if (!AssociatedFunction)
621       return S.indicatePessimisticFixpoint();
622 
623     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
624     if (IntroduceCallBaseContext)
625       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
626                         << CBContext << "\n");
627 
628     IRPosition FnPos = IRPosition::returned(
629         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
630     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
631     return clampStateAndIndicateChange(S, AA.getState());
632   }
633 };
634 } // namespace
635 
636 /// Helper function to accumulate uses.
637 template <class AAType, typename StateType = typename AAType::StateType>
638 static void followUsesInContext(AAType &AA, Attributor &A,
639                                 MustBeExecutedContextExplorer &Explorer,
640                                 const Instruction *CtxI,
641                                 SetVector<const Use *> &Uses,
642                                 StateType &State) {
643   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
644   for (unsigned u = 0; u < Uses.size(); ++u) {
645     const Use *U = Uses[u];
646     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
647       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
648       if (Found && AA.followUseInMBEC(A, U, UserI, State))
649         for (const Use &Us : UserI->uses())
650           Uses.insert(&Us);
651     }
652   }
653 }
654 
655 /// Use the must-be-executed-context around \p I to add information into \p S.
656 /// The AAType class is required to have `followUseInMBEC` method with the
657 /// following signature and behaviour:
658 ///
659 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
660 /// U - Underlying use.
661 /// I - The user of the \p U.
662 /// Returns true if the value should be tracked transitively.
663 ///
664 template <class AAType, typename StateType = typename AAType::StateType>
665 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
666                              Instruction &CtxI) {
667 
668   // Container for (transitive) uses of the associated value.
669   SetVector<const Use *> Uses;
670   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
671     Uses.insert(&U);
672 
673   MustBeExecutedContextExplorer &Explorer =
674       A.getInfoCache().getMustBeExecutedContextExplorer();
675 
676   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
677 
678   if (S.isAtFixpoint())
679     return;
680 
681   SmallVector<const BranchInst *, 4> BrInsts;
682   auto Pred = [&](const Instruction *I) {
683     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
684       if (Br->isConditional())
685         BrInsts.push_back(Br);
686     return true;
687   };
688 
689   // Here, accumulate conditional branch instructions in the context. We
690   // explore the child paths and collect the known states. The disjunction of
691   // those states can be merged to its own state. Let ParentState_i be a state
692   // to indicate the known information for an i-th branch instruction in the
693   // context. ChildStates are created for its successors respectively.
694   //
695   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
696   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
697   //      ...
698   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
699   //
700   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
701   //
702   // FIXME: Currently, recursive branches are not handled. For example, we
703   // can't deduce that ptr must be dereferenced in below function.
704   //
705   // void f(int a, int c, int *ptr) {
706   //    if(a)
707   //      if (b) {
708   //        *ptr = 0;
709   //      } else {
710   //        *ptr = 1;
711   //      }
712   //    else {
713   //      if (b) {
714   //        *ptr = 0;
715   //      } else {
716   //        *ptr = 1;
717   //      }
718   //    }
719   // }
720 
721   Explorer.checkForAllContext(&CtxI, Pred);
722   for (const BranchInst *Br : BrInsts) {
723     StateType ParentState;
724 
725     // The known state of the parent state is a conjunction of children's
726     // known states so it is initialized with a best state.
727     ParentState.indicateOptimisticFixpoint();
728 
729     for (const BasicBlock *BB : Br->successors()) {
730       StateType ChildState;
731 
732       size_t BeforeSize = Uses.size();
733       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
734 
735       // Erase uses which only appear in the child.
736       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
737         It = Uses.erase(It);
738 
739       ParentState &= ChildState;
740     }
741 
742     // Use only known state.
743     S += ParentState;
744   }
745 }
746 
747 /// ------------------------ PointerInfo ---------------------------------------
748 
749 namespace llvm {
750 namespace AA {
751 namespace PointerInfo {
752 
753 /// An access kind description as used by AAPointerInfo.
754 struct OffsetAndSize;
755 
756 struct State;
757 
758 } // namespace PointerInfo
759 } // namespace AA
760 
761 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
762 template <>
763 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
764   using Access = AAPointerInfo::Access;
765   static inline Access getEmptyKey();
766   static inline Access getTombstoneKey();
767   static unsigned getHashValue(const Access &A);
768   static bool isEqual(const Access &LHS, const Access &RHS);
769 };
770 
771 /// Helper that allows OffsetAndSize as a key in a DenseMap.
772 template <>
773 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
774     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
775 
776 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
777 /// but the instruction
778 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
779   using Base = DenseMapInfo<Instruction *>;
780   using Access = AAPointerInfo::Access;
781   static inline Access getEmptyKey();
782   static inline Access getTombstoneKey();
783   static unsigned getHashValue(const Access &A);
784   static bool isEqual(const Access &LHS, const Access &RHS);
785 };
786 
787 } // namespace llvm
788 
789 /// Helper to represent an access offset and size, with logic to deal with
790 /// uncertainty and check for overlapping accesses.
791 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
792   using BaseTy = std::pair<int64_t, int64_t>;
793   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
794   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
795   int64_t getOffset() const { return first; }
796   int64_t getSize() const { return second; }
797   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
798 
799   /// Return true if offset or size are unknown.
800   bool offsetOrSizeAreUnknown() const {
801     return getOffset() == OffsetAndSize::Unknown ||
802            getSize() == OffsetAndSize::Unknown;
803   }
804 
805   /// Return true if this offset and size pair might describe an address that
806   /// overlaps with \p OAS.
807   bool mayOverlap(const OffsetAndSize &OAS) const {
808     // Any unknown value and we are giving up -> overlap.
809     if (offsetOrSizeAreUnknown() || OAS.offsetOrSizeAreUnknown())
810       return true;
811 
812     // Check if one offset point is in the other interval [offset, offset+size].
813     return OAS.getOffset() + OAS.getSize() > getOffset() &&
814            OAS.getOffset() < getOffset() + getSize();
815   }
816 
817   /// Constant used to represent unknown offset or sizes.
818   static constexpr int64_t Unknown = 1 << 31;
819 };
820 
821 /// Implementation of the DenseMapInfo.
822 ///
823 ///{
824 inline llvm::AccessAsInstructionInfo::Access
825 llvm::AccessAsInstructionInfo::getEmptyKey() {
826   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
827 }
828 inline llvm::AccessAsInstructionInfo::Access
829 llvm::AccessAsInstructionInfo::getTombstoneKey() {
830   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
831                 nullptr);
832 }
833 unsigned llvm::AccessAsInstructionInfo::getHashValue(
834     const llvm::AccessAsInstructionInfo::Access &A) {
835   return Base::getHashValue(A.getRemoteInst());
836 }
837 bool llvm::AccessAsInstructionInfo::isEqual(
838     const llvm::AccessAsInstructionInfo::Access &LHS,
839     const llvm::AccessAsInstructionInfo::Access &RHS) {
840   return LHS.getRemoteInst() == RHS.getRemoteInst();
841 }
842 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
843 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
844   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
845                                nullptr);
846 }
847 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
848 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
849   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
850                                nullptr);
851 }
852 
853 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
854     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
855   return detail::combineHashValue(
856              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
857              (A.isWrittenValueYetUndetermined()
858                   ? ~0
859                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
860          A.getKind();
861 }
862 
863 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
864     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
865     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
866   return LHS == RHS;
867 }
868 ///}
869 
870 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
871 struct AA::PointerInfo::State : public AbstractState {
872 
873   /// Return the best possible representable state.
874   static State getBestState(const State &SIS) { return State(); }
875 
876   /// Return the worst possible representable state.
877   static State getWorstState(const State &SIS) {
878     State R;
879     R.indicatePessimisticFixpoint();
880     return R;
881   }
882 
883   State() {}
884   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
885   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
886 
887   const State &getAssumed() const { return *this; }
888 
889   /// See AbstractState::isValidState().
890   bool isValidState() const override { return BS.isValidState(); }
891 
892   /// See AbstractState::isAtFixpoint().
893   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
894 
895   /// See AbstractState::indicateOptimisticFixpoint().
896   ChangeStatus indicateOptimisticFixpoint() override {
897     BS.indicateOptimisticFixpoint();
898     return ChangeStatus::UNCHANGED;
899   }
900 
901   /// See AbstractState::indicatePessimisticFixpoint().
902   ChangeStatus indicatePessimisticFixpoint() override {
903     BS.indicatePessimisticFixpoint();
904     return ChangeStatus::CHANGED;
905   }
906 
907   State &operator=(const State &R) {
908     if (this == &R)
909       return *this;
910     BS = R.BS;
911     AccessBins = R.AccessBins;
912     return *this;
913   }
914 
915   State &operator=(State &&R) {
916     if (this == &R)
917       return *this;
918     std::swap(BS, R.BS);
919     std::swap(AccessBins, R.AccessBins);
920     return *this;
921   }
922 
923   bool operator==(const State &R) const {
924     if (BS != R.BS)
925       return false;
926     if (AccessBins.size() != R.AccessBins.size())
927       return false;
928     auto It = begin(), RIt = R.begin(), E = end();
929     while (It != E) {
930       if (It->getFirst() != RIt->getFirst())
931         return false;
932       auto &Accs = It->getSecond();
933       auto &RAccs = RIt->getSecond();
934       if (Accs.size() != RAccs.size())
935         return false;
936       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
937       while (AccIt != AccE) {
938         if (*AccIt != *RAccIt)
939           return false;
940         ++AccIt;
941         ++RAccIt;
942       }
943       ++It;
944       ++RIt;
945     }
946     return true;
947   }
948   bool operator!=(const State &R) const { return !(*this == R); }
949 
950   /// We store accesses in a set with the instruction as key.
951   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
952 
953   /// We store all accesses in bins denoted by their offset and size.
954   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
955 
956   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
957   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
958 
959 protected:
960   /// The bins with all the accesses for the associated pointer.
961   DenseMap<OffsetAndSize, Accesses> AccessBins;
962 
963   /// Add a new access to the state at offset \p Offset and with size \p Size.
964   /// The access is associated with \p I, writes \p Content (if anything), and
965   /// is of kind \p Kind.
966   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
967   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
968                          Optional<Value *> Content,
969                          AAPointerInfo::AccessKind Kind, Type *Ty,
970                          Instruction *RemoteI = nullptr,
971                          Accesses *BinPtr = nullptr) {
972     OffsetAndSize Key{Offset, Size};
973     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
974     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
975     // Check if we have an access for this instruction in this bin, if not,
976     // simply add it.
977     auto It = Bin.find(Acc);
978     if (It == Bin.end()) {
979       Bin.insert(Acc);
980       return ChangeStatus::CHANGED;
981     }
982     // If the existing access is the same as then new one, nothing changed.
983     AAPointerInfo::Access Before = *It;
984     // The new one will be combined with the existing one.
985     *It &= Acc;
986     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
987   }
988 
989   /// See AAPointerInfo::forallInterferingAccesses.
990   bool forallInterferingAccesses(
991       Instruction &I,
992       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
993     if (!isValidState())
994       return false;
995     // First find the offset and size of I.
996     OffsetAndSize OAS(-1, -1);
997     for (auto &It : AccessBins) {
998       for (auto &Access : It.getSecond()) {
999         if (Access.getRemoteInst() == &I) {
1000           OAS = It.getFirst();
1001           break;
1002         }
1003       }
1004       if (OAS.getSize() != -1)
1005         break;
1006     }
1007     if (OAS.getSize() == -1)
1008       return true;
1009 
1010     // Now that we have an offset and size, find all overlapping ones and use
1011     // the callback on the accesses.
1012     for (auto &It : AccessBins) {
1013       OffsetAndSize ItOAS = It.getFirst();
1014       if (!OAS.mayOverlap(ItOAS))
1015         continue;
1016       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
1017       for (auto &Access : It.getSecond())
1018         if (!CB(Access, IsExact))
1019           return false;
1020     }
1021     return true;
1022   }
1023 
1024 private:
1025   /// State to track fixpoint and validity.
1026   BooleanState BS;
1027 };
1028 
1029 namespace {
1030 struct AAPointerInfoImpl
1031     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1032   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1033   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1034 
1035   /// See AbstractAttribute::initialize(...).
1036   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1037 
1038   /// See AbstractAttribute::getAsStr().
1039   const std::string getAsStr() const override {
1040     return std::string("PointerInfo ") +
1041            (isValidState() ? (std::string("#") +
1042                               std::to_string(AccessBins.size()) + " bins")
1043                            : "<invalid>");
1044   }
1045 
1046   /// See AbstractAttribute::manifest(...).
1047   ChangeStatus manifest(Attributor &A) override {
1048     return AAPointerInfo::manifest(A);
1049   }
1050 
1051   bool forallInterferingAccesses(
1052       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1053       const override {
1054     return State::forallInterferingAccesses(LI, CB);
1055   }
1056   bool forallInterferingAccesses(
1057       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1058       const override {
1059     return State::forallInterferingAccesses(SI, CB);
1060   }
1061 
1062   ChangeStatus translateAndAddCalleeState(Attributor &A,
1063                                           const AAPointerInfo &CalleeAA,
1064                                           int64_t CallArgOffset, CallBase &CB) {
1065     using namespace AA::PointerInfo;
1066     if (!CalleeAA.getState().isValidState() || !isValidState())
1067       return indicatePessimisticFixpoint();
1068 
1069     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1070     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1071 
1072     // Combine the accesses bin by bin.
1073     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1074     for (auto &It : CalleeImplAA.getState()) {
1075       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1076       if (CallArgOffset != OffsetAndSize::Unknown)
1077         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1078                             It.first.getSize());
1079       Accesses &Bin = AccessBins[OAS];
1080       for (const AAPointerInfo::Access &RAcc : It.second) {
1081         if (IsByval && !RAcc.isRead())
1082           continue;
1083         bool UsedAssumedInformation = false;
1084         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1085             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1086         AccessKind AK =
1087             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1088                                                  : AccessKind::AK_READ_WRITE));
1089         Changed =
1090             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1091                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1092       }
1093     }
1094     return Changed;
1095   }
1096 
1097   /// Statistic tracking for all AAPointerInfo implementations.
1098   /// See AbstractAttribute::trackStatistics().
1099   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1100 };
1101 
1102 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1103   using AccessKind = AAPointerInfo::AccessKind;
1104   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1105       : AAPointerInfoImpl(IRP, A) {}
1106 
1107   /// See AbstractAttribute::initialize(...).
1108   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1109 
1110   /// Deal with an access and signal if it was handled successfully.
1111   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1112                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1113                     ChangeStatus &Changed, Type *Ty,
1114                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1115     using namespace AA::PointerInfo;
1116     // No need to find a size if one is given or the offset is unknown.
1117     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1118         Ty) {
1119       const DataLayout &DL = A.getDataLayout();
1120       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1121       if (!AccessSize.isScalable())
1122         Size = AccessSize.getFixedSize();
1123     }
1124     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1125     return true;
1126   };
1127 
1128   /// Helper struct, will support ranges eventually.
1129   struct OffsetInfo {
1130     int64_t Offset = AA::PointerInfo::OffsetAndSize::Unknown;
1131 
1132     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1133   };
1134 
1135   /// See AbstractAttribute::updateImpl(...).
1136   ChangeStatus updateImpl(Attributor &A) override {
1137     using namespace AA::PointerInfo;
1138     State S = getState();
1139     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1140     Value &AssociatedValue = getAssociatedValue();
1141 
1142     const DataLayout &DL = A.getDataLayout();
1143     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1144     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1145 
1146     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1147                                      bool &Follow) {
1148       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1149       UsrOI = PtrOI;
1150       Follow = true;
1151       return true;
1152     };
1153 
1154     const auto *TLI = getAnchorScope()
1155                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1156                                 *getAnchorScope())
1157                           : nullptr;
1158     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1159       Value *CurPtr = U.get();
1160       User *Usr = U.getUser();
1161       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1162                         << *Usr << "\n");
1163       assert(OffsetInfoMap.count(CurPtr) &&
1164              "The current pointer offset should have been seeded!");
1165 
1166       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1167         if (CE->isCast())
1168           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1169         if (CE->isCompare())
1170           return true;
1171         if (!isa<GEPOperator>(CE)) {
1172           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1173                             << "\n");
1174           return false;
1175         }
1176       }
1177       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1178         // Note the order here, the Usr access might change the map, CurPtr is
1179         // already in it though.
1180         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1181         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1182         UsrOI = PtrOI;
1183 
1184         // TODO: Use range information.
1185         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1186             !GEP->hasAllConstantIndices()) {
1187           UsrOI.Offset = OffsetAndSize::Unknown;
1188           Follow = true;
1189           return true;
1190         }
1191 
1192         SmallVector<Value *, 8> Indices;
1193         for (Use &Idx : GEP->indices()) {
1194           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1195             Indices.push_back(CIdx);
1196             continue;
1197           }
1198 
1199           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1200                             << " : " << *Idx << "\n");
1201           return false;
1202         }
1203         UsrOI.Offset = PtrOI.Offset +
1204                        DL.getIndexedOffsetInType(
1205                            GEP->getSourceElementType(), Indices);
1206         Follow = true;
1207         return true;
1208       }
1209       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1210         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1211 
1212       // For PHIs we need to take care of the recurrence explicitly as the value
1213       // might change while we iterate through a loop. For now, we give up if
1214       // the PHI is not invariant.
1215       if (isa<PHINode>(Usr)) {
1216         // Note the order here, the Usr access might change the map, CurPtr is
1217         // already in it though.
1218         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1219         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1220         // Check if the PHI is invariant (so far).
1221         if (UsrOI == PtrOI)
1222           return true;
1223 
1224         // Check if the PHI operand has already an unknown offset as we can't
1225         // improve on that anymore.
1226         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1227           UsrOI = PtrOI;
1228           Follow = true;
1229           return true;
1230         }
1231 
1232         // Check if the PHI operand is not dependent on the PHI itself.
1233         // TODO: This is not great as we look at the pointer type. However, it
1234         // is unclear where the Offset size comes from with typeless pointers.
1235         APInt Offset(
1236             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1237             0);
1238         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1239                                     DL, Offset, /* AllowNonInbounds */ true)) {
1240           if (Offset != PtrOI.Offset) {
1241             LLVM_DEBUG(dbgs()
1242                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1243                        << *CurPtr << " in " << *Usr << "\n");
1244             return false;
1245           }
1246           return HandlePassthroughUser(Usr, PtrOI, Follow);
1247         }
1248 
1249         // TODO: Approximate in case we know the direction of the recurrence.
1250         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1251                           << *CurPtr << " in " << *Usr << "\n");
1252         UsrOI = PtrOI;
1253         UsrOI.Offset = OffsetAndSize::Unknown;
1254         Follow = true;
1255         return true;
1256       }
1257 
1258       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1259         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1260                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1261                             Changed, LoadI->getType());
1262       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1263         if (StoreI->getValueOperand() == CurPtr) {
1264           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1265                             << *StoreI << "\n");
1266           return false;
1267         }
1268         bool UsedAssumedInformation = false;
1269         Optional<Value *> Content = A.getAssumedSimplified(
1270             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1271         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1272                             OffsetInfoMap[CurPtr].Offset, Changed,
1273                             StoreI->getValueOperand()->getType());
1274       }
1275       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1276         if (CB->isLifetimeStartOrEnd())
1277           return true;
1278         if (TLI && isFreeCall(CB, TLI))
1279           return true;
1280         if (CB->isArgOperand(&U)) {
1281           unsigned ArgNo = CB->getArgOperandNo(&U);
1282           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1283               *this, IRPosition::callsite_argument(*CB, ArgNo),
1284               DepClassTy::REQUIRED);
1285           Changed = translateAndAddCalleeState(
1286                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1287                     Changed;
1288           return true;
1289         }
1290         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1291                           << "\n");
1292         // TODO: Allow some call uses
1293         return false;
1294       }
1295 
1296       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1297       return false;
1298     };
1299     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1300       if (OffsetInfoMap.count(NewU))
1301         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1302       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1303       return true;
1304     };
1305     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1306                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1307                            EquivalentUseCB))
1308       return indicatePessimisticFixpoint();
1309 
1310     LLVM_DEBUG({
1311       dbgs() << "Accesses by bin after update:\n";
1312       for (auto &It : AccessBins) {
1313         dbgs() << "[" << It.first.getOffset() << "-"
1314                << It.first.getOffset() + It.first.getSize()
1315                << "] : " << It.getSecond().size() << "\n";
1316         for (auto &Acc : It.getSecond()) {
1317           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1318                  << "\n";
1319           if (Acc.getLocalInst() != Acc.getRemoteInst())
1320             dbgs() << "     -->                         "
1321                    << *Acc.getRemoteInst() << "\n";
1322           if (!Acc.isWrittenValueYetUndetermined())
1323             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1324         }
1325       }
1326     });
1327 
1328     return Changed;
1329   }
1330 
1331   /// See AbstractAttribute::trackStatistics()
1332   void trackStatistics() const override {
1333     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1334   }
1335 };
1336 
1337 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1338   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1339       : AAPointerInfoImpl(IRP, A) {}
1340 
1341   /// See AbstractAttribute::updateImpl(...).
1342   ChangeStatus updateImpl(Attributor &A) override {
1343     return indicatePessimisticFixpoint();
1344   }
1345 
1346   /// See AbstractAttribute::trackStatistics()
1347   void trackStatistics() const override {
1348     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1349   }
1350 };
1351 
1352 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1353   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1354       : AAPointerInfoFloating(IRP, A) {}
1355 
1356   /// See AbstractAttribute::initialize(...).
1357   void initialize(Attributor &A) override {
1358     AAPointerInfoFloating::initialize(A);
1359     if (getAnchorScope()->isDeclaration())
1360       indicatePessimisticFixpoint();
1361   }
1362 
1363   /// See AbstractAttribute::trackStatistics()
1364   void trackStatistics() const override {
1365     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1366   }
1367 };
1368 
1369 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1370   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1371       : AAPointerInfoFloating(IRP, A) {}
1372 
1373   /// See AbstractAttribute::updateImpl(...).
1374   ChangeStatus updateImpl(Attributor &A) override {
1375     using namespace AA::PointerInfo;
1376     // We handle memory intrinsics explicitly, at least the first (=
1377     // destination) and second (=source) arguments as we know how they are
1378     // accessed.
1379     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1380       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1381       int64_t LengthVal = OffsetAndSize::Unknown;
1382       if (Length)
1383         LengthVal = Length->getSExtValue();
1384       Value &Ptr = getAssociatedValue();
1385       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1386       ChangeStatus Changed;
1387       if (ArgNo == 0) {
1388         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1389                      nullptr, LengthVal);
1390       } else if (ArgNo == 1) {
1391         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1392                      nullptr, LengthVal);
1393       } else {
1394         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1395                           << *MI << "\n");
1396         return indicatePessimisticFixpoint();
1397       }
1398       return Changed;
1399     }
1400 
1401     // TODO: Once we have call site specific value information we can provide
1402     //       call site specific liveness information and then it makes
1403     //       sense to specialize attributes for call sites arguments instead of
1404     //       redirecting requests to the callee argument.
1405     Argument *Arg = getAssociatedArgument();
1406     if (!Arg)
1407       return indicatePessimisticFixpoint();
1408     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1409     auto &ArgAA =
1410         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1411     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1412   }
1413 
1414   /// See AbstractAttribute::trackStatistics()
1415   void trackStatistics() const override {
1416     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1417   }
1418 };
1419 
1420 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1421   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1422       : AAPointerInfoFloating(IRP, A) {}
1423 
1424   /// See AbstractAttribute::trackStatistics()
1425   void trackStatistics() const override {
1426     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1427   }
1428 };
1429 
1430 /// -----------------------NoUnwind Function Attribute--------------------------
1431 
1432 struct AANoUnwindImpl : AANoUnwind {
1433   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1434 
1435   const std::string getAsStr() const override {
1436     return getAssumed() ? "nounwind" : "may-unwind";
1437   }
1438 
1439   /// See AbstractAttribute::updateImpl(...).
1440   ChangeStatus updateImpl(Attributor &A) override {
1441     auto Opcodes = {
1442         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1443         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1444         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1445 
1446     auto CheckForNoUnwind = [&](Instruction &I) {
1447       if (!I.mayThrow())
1448         return true;
1449 
1450       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1451         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1452             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1453         return NoUnwindAA.isAssumedNoUnwind();
1454       }
1455       return false;
1456     };
1457 
1458     bool UsedAssumedInformation = false;
1459     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1460                                    UsedAssumedInformation))
1461       return indicatePessimisticFixpoint();
1462 
1463     return ChangeStatus::UNCHANGED;
1464   }
1465 };
1466 
1467 struct AANoUnwindFunction final : public AANoUnwindImpl {
1468   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1469       : AANoUnwindImpl(IRP, A) {}
1470 
1471   /// See AbstractAttribute::trackStatistics()
1472   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1473 };
1474 
1475 /// NoUnwind attribute deduction for a call sites.
1476 struct AANoUnwindCallSite final : AANoUnwindImpl {
1477   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1478       : AANoUnwindImpl(IRP, A) {}
1479 
1480   /// See AbstractAttribute::initialize(...).
1481   void initialize(Attributor &A) override {
1482     AANoUnwindImpl::initialize(A);
1483     Function *F = getAssociatedFunction();
1484     if (!F || F->isDeclaration())
1485       indicatePessimisticFixpoint();
1486   }
1487 
1488   /// See AbstractAttribute::updateImpl(...).
1489   ChangeStatus updateImpl(Attributor &A) override {
1490     // TODO: Once we have call site specific value information we can provide
1491     //       call site specific liveness information and then it makes
1492     //       sense to specialize attributes for call sites arguments instead of
1493     //       redirecting requests to the callee argument.
1494     Function *F = getAssociatedFunction();
1495     const IRPosition &FnPos = IRPosition::function(*F);
1496     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1497     return clampStateAndIndicateChange(getState(), FnAA.getState());
1498   }
1499 
1500   /// See AbstractAttribute::trackStatistics()
1501   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1502 };
1503 
1504 /// --------------------- Function Return Values -------------------------------
1505 
1506 /// "Attribute" that collects all potential returned values and the return
1507 /// instructions that they arise from.
1508 ///
1509 /// If there is a unique returned value R, the manifest method will:
1510 ///   - mark R with the "returned" attribute, if R is an argument.
1511 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1512 
1513   /// Mapping of values potentially returned by the associated function to the
1514   /// return instructions that might return them.
1515   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1516 
1517   /// State flags
1518   ///
1519   ///{
1520   bool IsFixed = false;
1521   bool IsValidState = true;
1522   ///}
1523 
1524 public:
1525   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1526       : AAReturnedValues(IRP, A) {}
1527 
1528   /// See AbstractAttribute::initialize(...).
1529   void initialize(Attributor &A) override {
1530     // Reset the state.
1531     IsFixed = false;
1532     IsValidState = true;
1533     ReturnedValues.clear();
1534 
1535     Function *F = getAssociatedFunction();
1536     if (!F || F->isDeclaration()) {
1537       indicatePessimisticFixpoint();
1538       return;
1539     }
1540     assert(!F->getReturnType()->isVoidTy() &&
1541            "Did not expect a void return type!");
1542 
1543     // The map from instruction opcodes to those instructions in the function.
1544     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1545 
1546     // Look through all arguments, if one is marked as returned we are done.
1547     for (Argument &Arg : F->args()) {
1548       if (Arg.hasReturnedAttr()) {
1549         auto &ReturnInstSet = ReturnedValues[&Arg];
1550         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1551           for (Instruction *RI : *Insts)
1552             ReturnInstSet.insert(cast<ReturnInst>(RI));
1553 
1554         indicateOptimisticFixpoint();
1555         return;
1556       }
1557     }
1558 
1559     if (!A.isFunctionIPOAmendable(*F))
1560       indicatePessimisticFixpoint();
1561   }
1562 
1563   /// See AbstractAttribute::manifest(...).
1564   ChangeStatus manifest(Attributor &A) override;
1565 
1566   /// See AbstractAttribute::getState(...).
1567   AbstractState &getState() override { return *this; }
1568 
1569   /// See AbstractAttribute::getState(...).
1570   const AbstractState &getState() const override { return *this; }
1571 
1572   /// See AbstractAttribute::updateImpl(Attributor &A).
1573   ChangeStatus updateImpl(Attributor &A) override;
1574 
1575   llvm::iterator_range<iterator> returned_values() override {
1576     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1577   }
1578 
1579   llvm::iterator_range<const_iterator> returned_values() const override {
1580     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1581   }
1582 
1583   /// Return the number of potential return values, -1 if unknown.
1584   size_t getNumReturnValues() const override {
1585     return isValidState() ? ReturnedValues.size() : -1;
1586   }
1587 
1588   /// Return an assumed unique return value if a single candidate is found. If
1589   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1590   /// Optional::NoneType.
1591   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1592 
1593   /// See AbstractState::checkForAllReturnedValues(...).
1594   bool checkForAllReturnedValuesAndReturnInsts(
1595       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1596       const override;
1597 
1598   /// Pretty print the attribute similar to the IR representation.
1599   const std::string getAsStr() const override;
1600 
1601   /// See AbstractState::isAtFixpoint().
1602   bool isAtFixpoint() const override { return IsFixed; }
1603 
1604   /// See AbstractState::isValidState().
1605   bool isValidState() const override { return IsValidState; }
1606 
1607   /// See AbstractState::indicateOptimisticFixpoint(...).
1608   ChangeStatus indicateOptimisticFixpoint() override {
1609     IsFixed = true;
1610     return ChangeStatus::UNCHANGED;
1611   }
1612 
1613   ChangeStatus indicatePessimisticFixpoint() override {
1614     IsFixed = true;
1615     IsValidState = false;
1616     return ChangeStatus::CHANGED;
1617   }
1618 };
1619 
1620 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1621   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1622 
1623   // Bookkeeping.
1624   assert(isValidState());
1625   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1626                   "Number of function with known return values");
1627 
1628   // Check if we have an assumed unique return value that we could manifest.
1629   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1630 
1631   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1632     return Changed;
1633 
1634   // Bookkeeping.
1635   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1636                   "Number of function with unique return");
1637   // If the assumed unique return value is an argument, annotate it.
1638   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1639     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1640             getAssociatedFunction()->getReturnType())) {
1641       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1642       Changed = IRAttribute::manifest(A);
1643     }
1644   }
1645   return Changed;
1646 }
1647 
1648 const std::string AAReturnedValuesImpl::getAsStr() const {
1649   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1650          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1651 }
1652 
1653 Optional<Value *>
1654 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1655   // If checkForAllReturnedValues provides a unique value, ignoring potential
1656   // undef values that can also be present, it is assumed to be the actual
1657   // return value and forwarded to the caller of this method. If there are
1658   // multiple, a nullptr is returned indicating there cannot be a unique
1659   // returned value.
1660   Optional<Value *> UniqueRV;
1661   Type *Ty = getAssociatedFunction()->getReturnType();
1662 
1663   auto Pred = [&](Value &RV) -> bool {
1664     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1665     return UniqueRV != Optional<Value *>(nullptr);
1666   };
1667 
1668   if (!A.checkForAllReturnedValues(Pred, *this))
1669     UniqueRV = nullptr;
1670 
1671   return UniqueRV;
1672 }
1673 
1674 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1675     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1676     const {
1677   if (!isValidState())
1678     return false;
1679 
1680   // Check all returned values but ignore call sites as long as we have not
1681   // encountered an overdefined one during an update.
1682   for (auto &It : ReturnedValues) {
1683     Value *RV = It.first;
1684     if (!Pred(*RV, It.second))
1685       return false;
1686   }
1687 
1688   return true;
1689 }
1690 
1691 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1692   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1693 
1694   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1695                            bool) -> bool {
1696     bool UsedAssumedInformation = false;
1697     Optional<Value *> SimpleRetVal =
1698         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1699     if (!SimpleRetVal.hasValue())
1700       return true;
1701     if (!SimpleRetVal.getValue())
1702       return false;
1703     Value *RetVal = *SimpleRetVal;
1704     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1705            "Assumed returned value should be valid in function scope!");
1706     if (ReturnedValues[RetVal].insert(&Ret))
1707       Changed = ChangeStatus::CHANGED;
1708     return true;
1709   };
1710 
1711   auto ReturnInstCB = [&](Instruction &I) {
1712     ReturnInst &Ret = cast<ReturnInst>(I);
1713     return genericValueTraversal<ReturnInst>(
1714         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1715         &I);
1716   };
1717 
1718   // Discover returned values from all live returned instructions in the
1719   // associated function.
1720   bool UsedAssumedInformation = false;
1721   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1722                                  UsedAssumedInformation))
1723     return indicatePessimisticFixpoint();
1724   return Changed;
1725 }
1726 
1727 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1728   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1729       : AAReturnedValuesImpl(IRP, A) {}
1730 
1731   /// See AbstractAttribute::trackStatistics()
1732   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1733 };
1734 
1735 /// Returned values information for a call sites.
1736 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1737   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1738       : AAReturnedValuesImpl(IRP, A) {}
1739 
1740   /// See AbstractAttribute::initialize(...).
1741   void initialize(Attributor &A) override {
1742     // TODO: Once we have call site specific value information we can provide
1743     //       call site specific liveness information and then it makes
1744     //       sense to specialize attributes for call sites instead of
1745     //       redirecting requests to the callee.
1746     llvm_unreachable("Abstract attributes for returned values are not "
1747                      "supported for call sites yet!");
1748   }
1749 
1750   /// See AbstractAttribute::updateImpl(...).
1751   ChangeStatus updateImpl(Attributor &A) override {
1752     return indicatePessimisticFixpoint();
1753   }
1754 
1755   /// See AbstractAttribute::trackStatistics()
1756   void trackStatistics() const override {}
1757 };
1758 
1759 /// ------------------------ NoSync Function Attribute -------------------------
1760 
1761 struct AANoSyncImpl : AANoSync {
1762   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1763 
1764   const std::string getAsStr() const override {
1765     return getAssumed() ? "nosync" : "may-sync";
1766   }
1767 
1768   /// See AbstractAttribute::updateImpl(...).
1769   ChangeStatus updateImpl(Attributor &A) override;
1770 
1771   /// Helper function used to determine whether an instruction is non-relaxed
1772   /// atomic. In other words, if an atomic instruction does not have unordered
1773   /// or monotonic ordering
1774   static bool isNonRelaxedAtomic(Instruction *I);
1775 
1776   /// Helper function specific for intrinsics which are potentially volatile
1777   static bool isNoSyncIntrinsic(Instruction *I);
1778 };
1779 
1780 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1781   if (!I->isAtomic())
1782     return false;
1783 
1784   if (auto *FI = dyn_cast<FenceInst>(I))
1785     // All legal orderings for fence are stronger than monotonic.
1786     return FI->getSyncScopeID() != SyncScope::SingleThread;
1787   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1788     // Unordered is not a legal ordering for cmpxchg.
1789     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1790             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1791   }
1792 
1793   AtomicOrdering Ordering;
1794   switch (I->getOpcode()) {
1795   case Instruction::AtomicRMW:
1796     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1797     break;
1798   case Instruction::Store:
1799     Ordering = cast<StoreInst>(I)->getOrdering();
1800     break;
1801   case Instruction::Load:
1802     Ordering = cast<LoadInst>(I)->getOrdering();
1803     break;
1804   default:
1805     llvm_unreachable(
1806         "New atomic operations need to be known in the attributor.");
1807   }
1808 
1809   return (Ordering != AtomicOrdering::Unordered &&
1810           Ordering != AtomicOrdering::Monotonic);
1811 }
1812 
1813 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1814 /// which would be nosync except that they have a volatile flag.  All other
1815 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1816 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1817   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1818     return !MI->isVolatile();
1819   return false;
1820 }
1821 
1822 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1823 
1824   auto CheckRWInstForNoSync = [&](Instruction &I) {
1825     /// We are looking for volatile instructions or Non-Relaxed atomics.
1826 
1827     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1828       if (CB->hasFnAttr(Attribute::NoSync))
1829         return true;
1830 
1831       if (isNoSyncIntrinsic(&I))
1832         return true;
1833 
1834       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1835           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1836       return NoSyncAA.isAssumedNoSync();
1837     }
1838 
1839     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1840       return true;
1841 
1842     return false;
1843   };
1844 
1845   auto CheckForNoSync = [&](Instruction &I) {
1846     // At this point we handled all read/write effects and they are all
1847     // nosync, so they can be skipped.
1848     if (I.mayReadOrWriteMemory())
1849       return true;
1850 
1851     // non-convergent and readnone imply nosync.
1852     return !cast<CallBase>(I).isConvergent();
1853   };
1854 
1855   bool UsedAssumedInformation = false;
1856   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1857                                           UsedAssumedInformation) ||
1858       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1859                                          UsedAssumedInformation))
1860     return indicatePessimisticFixpoint();
1861 
1862   return ChangeStatus::UNCHANGED;
1863 }
1864 
1865 struct AANoSyncFunction final : public AANoSyncImpl {
1866   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1867       : AANoSyncImpl(IRP, A) {}
1868 
1869   /// See AbstractAttribute::trackStatistics()
1870   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1871 };
1872 
1873 /// NoSync attribute deduction for a call sites.
1874 struct AANoSyncCallSite final : AANoSyncImpl {
1875   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1876       : AANoSyncImpl(IRP, A) {}
1877 
1878   /// See AbstractAttribute::initialize(...).
1879   void initialize(Attributor &A) override {
1880     AANoSyncImpl::initialize(A);
1881     Function *F = getAssociatedFunction();
1882     if (!F || F->isDeclaration())
1883       indicatePessimisticFixpoint();
1884   }
1885 
1886   /// See AbstractAttribute::updateImpl(...).
1887   ChangeStatus updateImpl(Attributor &A) override {
1888     // TODO: Once we have call site specific value information we can provide
1889     //       call site specific liveness information and then it makes
1890     //       sense to specialize attributes for call sites arguments instead of
1891     //       redirecting requests to the callee argument.
1892     Function *F = getAssociatedFunction();
1893     const IRPosition &FnPos = IRPosition::function(*F);
1894     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1895     return clampStateAndIndicateChange(getState(), FnAA.getState());
1896   }
1897 
1898   /// See AbstractAttribute::trackStatistics()
1899   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1900 };
1901 
1902 /// ------------------------ No-Free Attributes ----------------------------
1903 
1904 struct AANoFreeImpl : public AANoFree {
1905   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1906 
1907   /// See AbstractAttribute::updateImpl(...).
1908   ChangeStatus updateImpl(Attributor &A) override {
1909     auto CheckForNoFree = [&](Instruction &I) {
1910       const auto &CB = cast<CallBase>(I);
1911       if (CB.hasFnAttr(Attribute::NoFree))
1912         return true;
1913 
1914       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1915           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1916       return NoFreeAA.isAssumedNoFree();
1917     };
1918 
1919     bool UsedAssumedInformation = false;
1920     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1921                                            UsedAssumedInformation))
1922       return indicatePessimisticFixpoint();
1923     return ChangeStatus::UNCHANGED;
1924   }
1925 
1926   /// See AbstractAttribute::getAsStr().
1927   const std::string getAsStr() const override {
1928     return getAssumed() ? "nofree" : "may-free";
1929   }
1930 };
1931 
1932 struct AANoFreeFunction final : public AANoFreeImpl {
1933   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1934       : AANoFreeImpl(IRP, A) {}
1935 
1936   /// See AbstractAttribute::trackStatistics()
1937   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1938 };
1939 
1940 /// NoFree attribute deduction for a call sites.
1941 struct AANoFreeCallSite final : AANoFreeImpl {
1942   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1943       : AANoFreeImpl(IRP, A) {}
1944 
1945   /// See AbstractAttribute::initialize(...).
1946   void initialize(Attributor &A) override {
1947     AANoFreeImpl::initialize(A);
1948     Function *F = getAssociatedFunction();
1949     if (!F || F->isDeclaration())
1950       indicatePessimisticFixpoint();
1951   }
1952 
1953   /// See AbstractAttribute::updateImpl(...).
1954   ChangeStatus updateImpl(Attributor &A) override {
1955     // TODO: Once we have call site specific value information we can provide
1956     //       call site specific liveness information and then it makes
1957     //       sense to specialize attributes for call sites arguments instead of
1958     //       redirecting requests to the callee argument.
1959     Function *F = getAssociatedFunction();
1960     const IRPosition &FnPos = IRPosition::function(*F);
1961     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1962     return clampStateAndIndicateChange(getState(), FnAA.getState());
1963   }
1964 
1965   /// See AbstractAttribute::trackStatistics()
1966   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1967 };
1968 
1969 /// NoFree attribute for floating values.
1970 struct AANoFreeFloating : AANoFreeImpl {
1971   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1972       : AANoFreeImpl(IRP, A) {}
1973 
1974   /// See AbstractAttribute::trackStatistics()
1975   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1976 
1977   /// See Abstract Attribute::updateImpl(...).
1978   ChangeStatus updateImpl(Attributor &A) override {
1979     const IRPosition &IRP = getIRPosition();
1980 
1981     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1982         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1983     if (NoFreeAA.isAssumedNoFree())
1984       return ChangeStatus::UNCHANGED;
1985 
1986     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1987     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1988       Instruction *UserI = cast<Instruction>(U.getUser());
1989       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1990         if (CB->isBundleOperand(&U))
1991           return false;
1992         if (!CB->isArgOperand(&U))
1993           return true;
1994         unsigned ArgNo = CB->getArgOperandNo(&U);
1995 
1996         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1997             *this, IRPosition::callsite_argument(*CB, ArgNo),
1998             DepClassTy::REQUIRED);
1999         return NoFreeArg.isAssumedNoFree();
2000       }
2001 
2002       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2003           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2004         Follow = true;
2005         return true;
2006       }
2007       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2008           isa<ReturnInst>(UserI))
2009         return true;
2010 
2011       // Unknown user.
2012       return false;
2013     };
2014     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2015       return indicatePessimisticFixpoint();
2016 
2017     return ChangeStatus::UNCHANGED;
2018   }
2019 };
2020 
2021 /// NoFree attribute for a call site argument.
2022 struct AANoFreeArgument final : AANoFreeFloating {
2023   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2024       : AANoFreeFloating(IRP, A) {}
2025 
2026   /// See AbstractAttribute::trackStatistics()
2027   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2028 };
2029 
2030 /// NoFree attribute for call site arguments.
2031 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2032   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2033       : AANoFreeFloating(IRP, A) {}
2034 
2035   /// See AbstractAttribute::updateImpl(...).
2036   ChangeStatus updateImpl(Attributor &A) override {
2037     // TODO: Once we have call site specific value information we can provide
2038     //       call site specific liveness information and then it makes
2039     //       sense to specialize attributes for call sites arguments instead of
2040     //       redirecting requests to the callee argument.
2041     Argument *Arg = getAssociatedArgument();
2042     if (!Arg)
2043       return indicatePessimisticFixpoint();
2044     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2045     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2046     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2047   }
2048 
2049   /// See AbstractAttribute::trackStatistics()
2050   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2051 };
2052 
2053 /// NoFree attribute for function return value.
2054 struct AANoFreeReturned final : AANoFreeFloating {
2055   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2056       : AANoFreeFloating(IRP, A) {
2057     llvm_unreachable("NoFree is not applicable to function returns!");
2058   }
2059 
2060   /// See AbstractAttribute::initialize(...).
2061   void initialize(Attributor &A) override {
2062     llvm_unreachable("NoFree is not applicable to function returns!");
2063   }
2064 
2065   /// See AbstractAttribute::updateImpl(...).
2066   ChangeStatus updateImpl(Attributor &A) override {
2067     llvm_unreachable("NoFree is not applicable to function returns!");
2068   }
2069 
2070   /// See AbstractAttribute::trackStatistics()
2071   void trackStatistics() const override {}
2072 };
2073 
2074 /// NoFree attribute deduction for a call site return value.
2075 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2076   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2077       : AANoFreeFloating(IRP, A) {}
2078 
2079   ChangeStatus manifest(Attributor &A) override {
2080     return ChangeStatus::UNCHANGED;
2081   }
2082   /// See AbstractAttribute::trackStatistics()
2083   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2084 };
2085 
2086 /// ------------------------ NonNull Argument Attribute ------------------------
2087 static int64_t getKnownNonNullAndDerefBytesForUse(
2088     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2089     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2090   TrackUse = false;
2091 
2092   const Value *UseV = U->get();
2093   if (!UseV->getType()->isPointerTy())
2094     return 0;
2095 
2096   // We need to follow common pointer manipulation uses to the accesses they
2097   // feed into. We can try to be smart to avoid looking through things we do not
2098   // like for now, e.g., non-inbounds GEPs.
2099   if (isa<CastInst>(I)) {
2100     TrackUse = true;
2101     return 0;
2102   }
2103 
2104   if (isa<GetElementPtrInst>(I)) {
2105     TrackUse = true;
2106     return 0;
2107   }
2108 
2109   Type *PtrTy = UseV->getType();
2110   const Function *F = I->getFunction();
2111   bool NullPointerIsDefined =
2112       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2113   const DataLayout &DL = A.getInfoCache().getDL();
2114   if (const auto *CB = dyn_cast<CallBase>(I)) {
2115     if (CB->isBundleOperand(U)) {
2116       if (RetainedKnowledge RK = getKnowledgeFromUse(
2117               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2118         IsNonNull |=
2119             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2120         return RK.ArgValue;
2121       }
2122       return 0;
2123     }
2124 
2125     if (CB->isCallee(U)) {
2126       IsNonNull |= !NullPointerIsDefined;
2127       return 0;
2128     }
2129 
2130     unsigned ArgNo = CB->getArgOperandNo(U);
2131     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2132     // As long as we only use known information there is no need to track
2133     // dependences here.
2134     auto &DerefAA =
2135         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2136     IsNonNull |= DerefAA.isKnownNonNull();
2137     return DerefAA.getKnownDereferenceableBytes();
2138   }
2139 
2140   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2141   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2142     return 0;
2143 
2144   int64_t Offset;
2145   const Value *Base =
2146       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2147   if (Base && Base == &AssociatedValue) {
2148     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2149     IsNonNull |= !NullPointerIsDefined;
2150     return std::max(int64_t(0), DerefBytes);
2151   }
2152 
2153   /// Corner case when an offset is 0.
2154   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2155                                           /*AllowNonInbounds*/ true);
2156   if (Base && Base == &AssociatedValue && Offset == 0) {
2157     int64_t DerefBytes = Loc->Size.getValue();
2158     IsNonNull |= !NullPointerIsDefined;
2159     return std::max(int64_t(0), DerefBytes);
2160   }
2161 
2162   return 0;
2163 }
2164 
2165 struct AANonNullImpl : AANonNull {
2166   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2167       : AANonNull(IRP, A),
2168         NullIsDefined(NullPointerIsDefined(
2169             getAnchorScope(),
2170             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2171 
2172   /// See AbstractAttribute::initialize(...).
2173   void initialize(Attributor &A) override {
2174     Value &V = getAssociatedValue();
2175     if (!NullIsDefined &&
2176         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2177                 /* IgnoreSubsumingPositions */ false, &A)) {
2178       indicateOptimisticFixpoint();
2179       return;
2180     }
2181 
2182     if (isa<ConstantPointerNull>(V)) {
2183       indicatePessimisticFixpoint();
2184       return;
2185     }
2186 
2187     AANonNull::initialize(A);
2188 
2189     bool CanBeNull, CanBeFreed;
2190     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2191                                          CanBeFreed)) {
2192       if (!CanBeNull) {
2193         indicateOptimisticFixpoint();
2194         return;
2195       }
2196     }
2197 
2198     if (isa<GlobalValue>(&getAssociatedValue())) {
2199       indicatePessimisticFixpoint();
2200       return;
2201     }
2202 
2203     if (Instruction *CtxI = getCtxI())
2204       followUsesInMBEC(*this, A, getState(), *CtxI);
2205   }
2206 
2207   /// See followUsesInMBEC
2208   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2209                        AANonNull::StateType &State) {
2210     bool IsNonNull = false;
2211     bool TrackUse = false;
2212     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2213                                        IsNonNull, TrackUse);
2214     State.setKnown(IsNonNull);
2215     return TrackUse;
2216   }
2217 
2218   /// See AbstractAttribute::getAsStr().
2219   const std::string getAsStr() const override {
2220     return getAssumed() ? "nonnull" : "may-null";
2221   }
2222 
2223   /// Flag to determine if the underlying value can be null and still allow
2224   /// valid accesses.
2225   const bool NullIsDefined;
2226 };
2227 
2228 /// NonNull attribute for a floating value.
2229 struct AANonNullFloating : public AANonNullImpl {
2230   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2231       : AANonNullImpl(IRP, A) {}
2232 
2233   /// See AbstractAttribute::updateImpl(...).
2234   ChangeStatus updateImpl(Attributor &A) override {
2235     const DataLayout &DL = A.getDataLayout();
2236 
2237     DominatorTree *DT = nullptr;
2238     AssumptionCache *AC = nullptr;
2239     InformationCache &InfoCache = A.getInfoCache();
2240     if (const Function *Fn = getAnchorScope()) {
2241       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2242       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2243     }
2244 
2245     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2246                             AANonNull::StateType &T, bool Stripped) -> bool {
2247       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2248                                              DepClassTy::REQUIRED);
2249       if (!Stripped && this == &AA) {
2250         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2251           T.indicatePessimisticFixpoint();
2252       } else {
2253         // Use abstract attribute information.
2254         const AANonNull::StateType &NS = AA.getState();
2255         T ^= NS;
2256       }
2257       return T.isValidState();
2258     };
2259 
2260     StateType T;
2261     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2262                                           VisitValueCB, getCtxI()))
2263       return indicatePessimisticFixpoint();
2264 
2265     return clampStateAndIndicateChange(getState(), T);
2266   }
2267 
2268   /// See AbstractAttribute::trackStatistics()
2269   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2270 };
2271 
2272 /// NonNull attribute for function return value.
2273 struct AANonNullReturned final
2274     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2275   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2276       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2277 
2278   /// See AbstractAttribute::getAsStr().
2279   const std::string getAsStr() const override {
2280     return getAssumed() ? "nonnull" : "may-null";
2281   }
2282 
2283   /// See AbstractAttribute::trackStatistics()
2284   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2285 };
2286 
2287 /// NonNull attribute for function argument.
2288 struct AANonNullArgument final
2289     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2290   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2291       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2292 
2293   /// See AbstractAttribute::trackStatistics()
2294   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2295 };
2296 
2297 struct AANonNullCallSiteArgument final : AANonNullFloating {
2298   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2299       : AANonNullFloating(IRP, A) {}
2300 
2301   /// See AbstractAttribute::trackStatistics()
2302   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2303 };
2304 
2305 /// NonNull attribute for a call site return position.
2306 struct AANonNullCallSiteReturned final
2307     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2308   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2309       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2310 
2311   /// See AbstractAttribute::trackStatistics()
2312   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2313 };
2314 
2315 /// ------------------------ No-Recurse Attributes ----------------------------
2316 
2317 struct AANoRecurseImpl : public AANoRecurse {
2318   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2319 
2320   /// See AbstractAttribute::getAsStr()
2321   const std::string getAsStr() const override {
2322     return getAssumed() ? "norecurse" : "may-recurse";
2323   }
2324 };
2325 
2326 struct AANoRecurseFunction final : AANoRecurseImpl {
2327   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2328       : AANoRecurseImpl(IRP, A) {}
2329 
2330   /// See AbstractAttribute::initialize(...).
2331   void initialize(Attributor &A) override {
2332     AANoRecurseImpl::initialize(A);
2333     // TODO: We should build a call graph ourselves to enable this in the module
2334     // pass as well.
2335     if (const Function *F = getAnchorScope())
2336       if (A.getInfoCache().getSccSize(*F) != 1)
2337         indicatePessimisticFixpoint();
2338   }
2339 
2340   /// See AbstractAttribute::updateImpl(...).
2341   ChangeStatus updateImpl(Attributor &A) override {
2342 
2343     // If all live call sites are known to be no-recurse, we are as well.
2344     auto CallSitePred = [&](AbstractCallSite ACS) {
2345       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2346           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2347           DepClassTy::NONE);
2348       return NoRecurseAA.isKnownNoRecurse();
2349     };
2350     bool AllCallSitesKnown;
2351     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2352       // If we know all call sites and all are known no-recurse, we are done.
2353       // If all known call sites, which might not be all that exist, are known
2354       // to be no-recurse, we are not done but we can continue to assume
2355       // no-recurse. If one of the call sites we have not visited will become
2356       // live, another update is triggered.
2357       if (AllCallSitesKnown)
2358         indicateOptimisticFixpoint();
2359       return ChangeStatus::UNCHANGED;
2360     }
2361 
2362     // If the above check does not hold anymore we look at the calls.
2363     auto CheckForNoRecurse = [&](Instruction &I) {
2364       const auto &CB = cast<CallBase>(I);
2365       if (CB.hasFnAttr(Attribute::NoRecurse))
2366         return true;
2367 
2368       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2369           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2370       if (!NoRecurseAA.isAssumedNoRecurse())
2371         return false;
2372 
2373       // Recursion to the same function
2374       if (CB.getCalledFunction() == getAnchorScope())
2375         return false;
2376 
2377       return true;
2378     };
2379 
2380     bool UsedAssumedInformation = false;
2381     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2382                                            UsedAssumedInformation))
2383       return indicatePessimisticFixpoint();
2384     return ChangeStatus::UNCHANGED;
2385   }
2386 
2387   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2388 };
2389 
2390 /// NoRecurse attribute deduction for a call sites.
2391 struct AANoRecurseCallSite final : AANoRecurseImpl {
2392   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2393       : AANoRecurseImpl(IRP, A) {}
2394 
2395   /// See AbstractAttribute::initialize(...).
2396   void initialize(Attributor &A) override {
2397     AANoRecurseImpl::initialize(A);
2398     Function *F = getAssociatedFunction();
2399     if (!F || F->isDeclaration())
2400       indicatePessimisticFixpoint();
2401   }
2402 
2403   /// See AbstractAttribute::updateImpl(...).
2404   ChangeStatus updateImpl(Attributor &A) override {
2405     // TODO: Once we have call site specific value information we can provide
2406     //       call site specific liveness information and then it makes
2407     //       sense to specialize attributes for call sites arguments instead of
2408     //       redirecting requests to the callee argument.
2409     Function *F = getAssociatedFunction();
2410     const IRPosition &FnPos = IRPosition::function(*F);
2411     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2412     return clampStateAndIndicateChange(getState(), FnAA.getState());
2413   }
2414 
2415   /// See AbstractAttribute::trackStatistics()
2416   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2417 };
2418 
2419 /// -------------------- Undefined-Behavior Attributes ------------------------
2420 
2421 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2422   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2423       : AAUndefinedBehavior(IRP, A) {}
2424 
2425   /// See AbstractAttribute::updateImpl(...).
2426   // through a pointer (i.e. also branches etc.)
2427   ChangeStatus updateImpl(Attributor &A) override {
2428     const size_t UBPrevSize = KnownUBInsts.size();
2429     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2430 
2431     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2432       // Lang ref now states volatile store is not UB, let's skip them.
2433       if (I.isVolatile() && I.mayWriteToMemory())
2434         return true;
2435 
2436       // Skip instructions that are already saved.
2437       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2438         return true;
2439 
2440       // If we reach here, we know we have an instruction
2441       // that accesses memory through a pointer operand,
2442       // for which getPointerOperand() should give it to us.
2443       Value *PtrOp =
2444           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2445       assert(PtrOp &&
2446              "Expected pointer operand of memory accessing instruction");
2447 
2448       // Either we stopped and the appropriate action was taken,
2449       // or we got back a simplified value to continue.
2450       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2451       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2452         return true;
2453       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2454 
2455       // A memory access through a pointer is considered UB
2456       // only if the pointer has constant null value.
2457       // TODO: Expand it to not only check constant values.
2458       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2459         AssumedNoUBInsts.insert(&I);
2460         return true;
2461       }
2462       const Type *PtrTy = PtrOpVal->getType();
2463 
2464       // Because we only consider instructions inside functions,
2465       // assume that a parent function exists.
2466       const Function *F = I.getFunction();
2467 
2468       // A memory access using constant null pointer is only considered UB
2469       // if null pointer is _not_ defined for the target platform.
2470       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2471         AssumedNoUBInsts.insert(&I);
2472       else
2473         KnownUBInsts.insert(&I);
2474       return true;
2475     };
2476 
2477     auto InspectBrInstForUB = [&](Instruction &I) {
2478       // A conditional branch instruction is considered UB if it has `undef`
2479       // condition.
2480 
2481       // Skip instructions that are already saved.
2482       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2483         return true;
2484 
2485       // We know we have a branch instruction.
2486       auto *BrInst = cast<BranchInst>(&I);
2487 
2488       // Unconditional branches are never considered UB.
2489       if (BrInst->isUnconditional())
2490         return true;
2491 
2492       // Either we stopped and the appropriate action was taken,
2493       // or we got back a simplified value to continue.
2494       Optional<Value *> SimplifiedCond =
2495           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2496       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2497         return true;
2498       AssumedNoUBInsts.insert(&I);
2499       return true;
2500     };
2501 
2502     auto InspectCallSiteForUB = [&](Instruction &I) {
2503       // Check whether a callsite always cause UB or not
2504 
2505       // Skip instructions that are already saved.
2506       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2507         return true;
2508 
2509       // Check nonnull and noundef argument attribute violation for each
2510       // callsite.
2511       CallBase &CB = cast<CallBase>(I);
2512       Function *Callee = CB.getCalledFunction();
2513       if (!Callee)
2514         return true;
2515       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2516         // If current argument is known to be simplified to null pointer and the
2517         // corresponding argument position is known to have nonnull attribute,
2518         // the argument is poison. Furthermore, if the argument is poison and
2519         // the position is known to have noundef attriubte, this callsite is
2520         // considered UB.
2521         if (idx >= Callee->arg_size())
2522           break;
2523         Value *ArgVal = CB.getArgOperand(idx);
2524         if (!ArgVal)
2525           continue;
2526         // Here, we handle three cases.
2527         //   (1) Not having a value means it is dead. (we can replace the value
2528         //       with undef)
2529         //   (2) Simplified to undef. The argument violate noundef attriubte.
2530         //   (3) Simplified to null pointer where known to be nonnull.
2531         //       The argument is a poison value and violate noundef attribute.
2532         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2533         auto &NoUndefAA =
2534             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2535         if (!NoUndefAA.isKnownNoUndef())
2536           continue;
2537         bool UsedAssumedInformation = false;
2538         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2539             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2540         if (UsedAssumedInformation)
2541           continue;
2542         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2543           return true;
2544         if (!SimplifiedVal.hasValue() ||
2545             isa<UndefValue>(*SimplifiedVal.getValue())) {
2546           KnownUBInsts.insert(&I);
2547           continue;
2548         }
2549         if (!ArgVal->getType()->isPointerTy() ||
2550             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2551           continue;
2552         auto &NonNullAA =
2553             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2554         if (NonNullAA.isKnownNonNull())
2555           KnownUBInsts.insert(&I);
2556       }
2557       return true;
2558     };
2559 
2560     auto InspectReturnInstForUB =
2561         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2562           // Check if a return instruction always cause UB or not
2563           // Note: It is guaranteed that the returned position of the anchor
2564           //       scope has noundef attribute when this is called.
2565           //       We also ensure the return position is not "assumed dead"
2566           //       because the returned value was then potentially simplified to
2567           //       `undef` in AAReturnedValues without removing the `noundef`
2568           //       attribute yet.
2569 
2570           // When the returned position has noundef attriubte, UB occur in the
2571           // following cases.
2572           //   (1) Returned value is known to be undef.
2573           //   (2) The value is known to be a null pointer and the returned
2574           //       position has nonnull attribute (because the returned value is
2575           //       poison).
2576           bool FoundUB = false;
2577           if (isa<UndefValue>(V)) {
2578             FoundUB = true;
2579           } else {
2580             if (isa<ConstantPointerNull>(V)) {
2581               auto &NonNullAA = A.getAAFor<AANonNull>(
2582                   *this, IRPosition::returned(*getAnchorScope()),
2583                   DepClassTy::NONE);
2584               if (NonNullAA.isKnownNonNull())
2585                 FoundUB = true;
2586             }
2587           }
2588 
2589           if (FoundUB)
2590             for (ReturnInst *RI : RetInsts)
2591               KnownUBInsts.insert(RI);
2592           return true;
2593         };
2594 
2595     bool UsedAssumedInformation = false;
2596     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2597                               {Instruction::Load, Instruction::Store,
2598                                Instruction::AtomicCmpXchg,
2599                                Instruction::AtomicRMW},
2600                               UsedAssumedInformation,
2601                               /* CheckBBLivenessOnly */ true);
2602     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2603                               UsedAssumedInformation,
2604                               /* CheckBBLivenessOnly */ true);
2605     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2606                                       UsedAssumedInformation);
2607 
2608     // If the returned position of the anchor scope has noundef attriubte, check
2609     // all returned instructions.
2610     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2611       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2612       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2613         auto &RetPosNoUndefAA =
2614             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2615         if (RetPosNoUndefAA.isKnownNoUndef())
2616           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2617                                                     *this);
2618       }
2619     }
2620 
2621     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2622         UBPrevSize != KnownUBInsts.size())
2623       return ChangeStatus::CHANGED;
2624     return ChangeStatus::UNCHANGED;
2625   }
2626 
2627   bool isKnownToCauseUB(Instruction *I) const override {
2628     return KnownUBInsts.count(I);
2629   }
2630 
2631   bool isAssumedToCauseUB(Instruction *I) const override {
2632     // In simple words, if an instruction is not in the assumed to _not_
2633     // cause UB, then it is assumed UB (that includes those
2634     // in the KnownUBInsts set). The rest is boilerplate
2635     // is to ensure that it is one of the instructions we test
2636     // for UB.
2637 
2638     switch (I->getOpcode()) {
2639     case Instruction::Load:
2640     case Instruction::Store:
2641     case Instruction::AtomicCmpXchg:
2642     case Instruction::AtomicRMW:
2643       return !AssumedNoUBInsts.count(I);
2644     case Instruction::Br: {
2645       auto BrInst = cast<BranchInst>(I);
2646       if (BrInst->isUnconditional())
2647         return false;
2648       return !AssumedNoUBInsts.count(I);
2649     } break;
2650     default:
2651       return false;
2652     }
2653     return false;
2654   }
2655 
2656   ChangeStatus manifest(Attributor &A) override {
2657     if (KnownUBInsts.empty())
2658       return ChangeStatus::UNCHANGED;
2659     for (Instruction *I : KnownUBInsts)
2660       A.changeToUnreachableAfterManifest(I);
2661     return ChangeStatus::CHANGED;
2662   }
2663 
2664   /// See AbstractAttribute::getAsStr()
2665   const std::string getAsStr() const override {
2666     return getAssumed() ? "undefined-behavior" : "no-ub";
2667   }
2668 
2669   /// Note: The correctness of this analysis depends on the fact that the
2670   /// following 2 sets will stop changing after some point.
2671   /// "Change" here means that their size changes.
2672   /// The size of each set is monotonically increasing
2673   /// (we only add items to them) and it is upper bounded by the number of
2674   /// instructions in the processed function (we can never save more
2675   /// elements in either set than this number). Hence, at some point,
2676   /// they will stop increasing.
2677   /// Consequently, at some point, both sets will have stopped
2678   /// changing, effectively making the analysis reach a fixpoint.
2679 
2680   /// Note: These 2 sets are disjoint and an instruction can be considered
2681   /// one of 3 things:
2682   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2683   ///    the KnownUBInsts set.
2684   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2685   ///    has a reason to assume it).
2686   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2687   ///    could not find a reason to assume or prove that it can cause UB,
2688   ///    hence it assumes it doesn't. We have a set for these instructions
2689   ///    so that we don't reprocess them in every update.
2690   ///    Note however that instructions in this set may cause UB.
2691 
2692 protected:
2693   /// A set of all live instructions _known_ to cause UB.
2694   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2695 
2696 private:
2697   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2698   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2699 
2700   // Should be called on updates in which if we're processing an instruction
2701   // \p I that depends on a value \p V, one of the following has to happen:
2702   // - If the value is assumed, then stop.
2703   // - If the value is known but undef, then consider it UB.
2704   // - Otherwise, do specific processing with the simplified value.
2705   // We return None in the first 2 cases to signify that an appropriate
2706   // action was taken and the caller should stop.
2707   // Otherwise, we return the simplified value that the caller should
2708   // use for specific processing.
2709   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2710                                          Instruction *I) {
2711     bool UsedAssumedInformation = false;
2712     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2713         IRPosition::value(*V), *this, UsedAssumedInformation);
2714     if (!UsedAssumedInformation) {
2715       // Don't depend on assumed values.
2716       if (!SimplifiedV.hasValue()) {
2717         // If it is known (which we tested above) but it doesn't have a value,
2718         // then we can assume `undef` and hence the instruction is UB.
2719         KnownUBInsts.insert(I);
2720         return llvm::None;
2721       }
2722       if (!SimplifiedV.getValue())
2723         return nullptr;
2724       V = *SimplifiedV;
2725     }
2726     if (isa<UndefValue>(V)) {
2727       KnownUBInsts.insert(I);
2728       return llvm::None;
2729     }
2730     return V;
2731   }
2732 };
2733 
2734 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2735   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2736       : AAUndefinedBehaviorImpl(IRP, A) {}
2737 
2738   /// See AbstractAttribute::trackStatistics()
2739   void trackStatistics() const override {
2740     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2741                "Number of instructions known to have UB");
2742     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2743         KnownUBInsts.size();
2744   }
2745 };
2746 
2747 /// ------------------------ Will-Return Attributes ----------------------------
2748 
2749 // Helper function that checks whether a function has any cycle which we don't
2750 // know if it is bounded or not.
2751 // Loops with maximum trip count are considered bounded, any other cycle not.
2752 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2753   ScalarEvolution *SE =
2754       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2755   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2756   // If either SCEV or LoopInfo is not available for the function then we assume
2757   // any cycle to be unbounded cycle.
2758   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2759   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2760   if (!SE || !LI) {
2761     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2762       if (SCCI.hasCycle())
2763         return true;
2764     return false;
2765   }
2766 
2767   // If there's irreducible control, the function may contain non-loop cycles.
2768   if (mayContainIrreducibleControl(F, LI))
2769     return true;
2770 
2771   // Any loop that does not have a max trip count is considered unbounded cycle.
2772   for (auto *L : LI->getLoopsInPreorder()) {
2773     if (!SE->getSmallConstantMaxTripCount(L))
2774       return true;
2775   }
2776   return false;
2777 }
2778 
2779 struct AAWillReturnImpl : public AAWillReturn {
2780   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2781       : AAWillReturn(IRP, A) {}
2782 
2783   /// See AbstractAttribute::initialize(...).
2784   void initialize(Attributor &A) override {
2785     AAWillReturn::initialize(A);
2786 
2787     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2788       indicateOptimisticFixpoint();
2789       return;
2790     }
2791   }
2792 
2793   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2794   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2795     // Check for `mustprogress` in the scope and the associated function which
2796     // might be different if this is a call site.
2797     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2798         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2799       return false;
2800 
2801     const auto &MemAA =
2802         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2803     if (!MemAA.isAssumedReadOnly())
2804       return false;
2805     if (KnownOnly && !MemAA.isKnownReadOnly())
2806       return false;
2807     if (!MemAA.isKnownReadOnly())
2808       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2809 
2810     return true;
2811   }
2812 
2813   /// See AbstractAttribute::updateImpl(...).
2814   ChangeStatus updateImpl(Attributor &A) override {
2815     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2816       return ChangeStatus::UNCHANGED;
2817 
2818     auto CheckForWillReturn = [&](Instruction &I) {
2819       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2820       const auto &WillReturnAA =
2821           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2822       if (WillReturnAA.isKnownWillReturn())
2823         return true;
2824       if (!WillReturnAA.isAssumedWillReturn())
2825         return false;
2826       const auto &NoRecurseAA =
2827           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2828       return NoRecurseAA.isAssumedNoRecurse();
2829     };
2830 
2831     bool UsedAssumedInformation = false;
2832     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2833                                            UsedAssumedInformation))
2834       return indicatePessimisticFixpoint();
2835 
2836     return ChangeStatus::UNCHANGED;
2837   }
2838 
2839   /// See AbstractAttribute::getAsStr()
2840   const std::string getAsStr() const override {
2841     return getAssumed() ? "willreturn" : "may-noreturn";
2842   }
2843 };
2844 
2845 struct AAWillReturnFunction final : AAWillReturnImpl {
2846   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2847       : AAWillReturnImpl(IRP, A) {}
2848 
2849   /// See AbstractAttribute::initialize(...).
2850   void initialize(Attributor &A) override {
2851     AAWillReturnImpl::initialize(A);
2852 
2853     Function *F = getAnchorScope();
2854     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2855       indicatePessimisticFixpoint();
2856   }
2857 
2858   /// See AbstractAttribute::trackStatistics()
2859   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2860 };
2861 
2862 /// WillReturn attribute deduction for a call sites.
2863 struct AAWillReturnCallSite final : AAWillReturnImpl {
2864   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2865       : AAWillReturnImpl(IRP, A) {}
2866 
2867   /// See AbstractAttribute::initialize(...).
2868   void initialize(Attributor &A) override {
2869     AAWillReturnImpl::initialize(A);
2870     Function *F = getAssociatedFunction();
2871     if (!F || !A.isFunctionIPOAmendable(*F))
2872       indicatePessimisticFixpoint();
2873   }
2874 
2875   /// See AbstractAttribute::updateImpl(...).
2876   ChangeStatus updateImpl(Attributor &A) override {
2877     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2878       return ChangeStatus::UNCHANGED;
2879 
2880     // TODO: Once we have call site specific value information we can provide
2881     //       call site specific liveness information and then it makes
2882     //       sense to specialize attributes for call sites arguments instead of
2883     //       redirecting requests to the callee argument.
2884     Function *F = getAssociatedFunction();
2885     const IRPosition &FnPos = IRPosition::function(*F);
2886     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2887     return clampStateAndIndicateChange(getState(), FnAA.getState());
2888   }
2889 
2890   /// See AbstractAttribute::trackStatistics()
2891   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2892 };
2893 
2894 /// -------------------AAReachability Attribute--------------------------
2895 
2896 struct AAReachabilityImpl : AAReachability {
2897   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2898       : AAReachability(IRP, A) {}
2899 
2900   const std::string getAsStr() const override {
2901     // TODO: Return the number of reachable queries.
2902     return "reachable";
2903   }
2904 
2905   /// See AbstractAttribute::updateImpl(...).
2906   ChangeStatus updateImpl(Attributor &A) override {
2907     return ChangeStatus::UNCHANGED;
2908   }
2909 };
2910 
2911 struct AAReachabilityFunction final : public AAReachabilityImpl {
2912   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2913       : AAReachabilityImpl(IRP, A) {}
2914 
2915   /// See AbstractAttribute::trackStatistics()
2916   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2917 };
2918 
2919 /// ------------------------ NoAlias Argument Attribute ------------------------
2920 
2921 struct AANoAliasImpl : AANoAlias {
2922   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2923     assert(getAssociatedType()->isPointerTy() &&
2924            "Noalias is a pointer attribute");
2925   }
2926 
2927   const std::string getAsStr() const override {
2928     return getAssumed() ? "noalias" : "may-alias";
2929   }
2930 };
2931 
2932 /// NoAlias attribute for a floating value.
2933 struct AANoAliasFloating final : AANoAliasImpl {
2934   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2935       : AANoAliasImpl(IRP, A) {}
2936 
2937   /// See AbstractAttribute::initialize(...).
2938   void initialize(Attributor &A) override {
2939     AANoAliasImpl::initialize(A);
2940     Value *Val = &getAssociatedValue();
2941     do {
2942       CastInst *CI = dyn_cast<CastInst>(Val);
2943       if (!CI)
2944         break;
2945       Value *Base = CI->getOperand(0);
2946       if (!Base->hasOneUse())
2947         break;
2948       Val = Base;
2949     } while (true);
2950 
2951     if (!Val->getType()->isPointerTy()) {
2952       indicatePessimisticFixpoint();
2953       return;
2954     }
2955 
2956     if (isa<AllocaInst>(Val))
2957       indicateOptimisticFixpoint();
2958     else if (isa<ConstantPointerNull>(Val) &&
2959              !NullPointerIsDefined(getAnchorScope(),
2960                                    Val->getType()->getPointerAddressSpace()))
2961       indicateOptimisticFixpoint();
2962     else if (Val != &getAssociatedValue()) {
2963       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2964           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2965       if (ValNoAliasAA.isKnownNoAlias())
2966         indicateOptimisticFixpoint();
2967     }
2968   }
2969 
2970   /// See AbstractAttribute::updateImpl(...).
2971   ChangeStatus updateImpl(Attributor &A) override {
2972     // TODO: Implement this.
2973     return indicatePessimisticFixpoint();
2974   }
2975 
2976   /// See AbstractAttribute::trackStatistics()
2977   void trackStatistics() const override {
2978     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2979   }
2980 };
2981 
2982 /// NoAlias attribute for an argument.
2983 struct AANoAliasArgument final
2984     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2985   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2986   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2987 
2988   /// See AbstractAttribute::initialize(...).
2989   void initialize(Attributor &A) override {
2990     Base::initialize(A);
2991     // See callsite argument attribute and callee argument attribute.
2992     if (hasAttr({Attribute::ByVal}))
2993       indicateOptimisticFixpoint();
2994   }
2995 
2996   /// See AbstractAttribute::update(...).
2997   ChangeStatus updateImpl(Attributor &A) override {
2998     // We have to make sure no-alias on the argument does not break
2999     // synchronization when this is a callback argument, see also [1] below.
3000     // If synchronization cannot be affected, we delegate to the base updateImpl
3001     // function, otherwise we give up for now.
3002 
3003     // If the function is no-sync, no-alias cannot break synchronization.
3004     const auto &NoSyncAA =
3005         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3006                              DepClassTy::OPTIONAL);
3007     if (NoSyncAA.isAssumedNoSync())
3008       return Base::updateImpl(A);
3009 
3010     // If the argument is read-only, no-alias cannot break synchronization.
3011     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3012         *this, getIRPosition(), DepClassTy::OPTIONAL);
3013     if (MemBehaviorAA.isAssumedReadOnly())
3014       return Base::updateImpl(A);
3015 
3016     // If the argument is never passed through callbacks, no-alias cannot break
3017     // synchronization.
3018     bool AllCallSitesKnown;
3019     if (A.checkForAllCallSites(
3020             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3021             true, AllCallSitesKnown))
3022       return Base::updateImpl(A);
3023 
3024     // TODO: add no-alias but make sure it doesn't break synchronization by
3025     // introducing fake uses. See:
3026     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3027     //     International Workshop on OpenMP 2018,
3028     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3029 
3030     return indicatePessimisticFixpoint();
3031   }
3032 
3033   /// See AbstractAttribute::trackStatistics()
3034   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3035 };
3036 
3037 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3038   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3039       : AANoAliasImpl(IRP, A) {}
3040 
3041   /// See AbstractAttribute::initialize(...).
3042   void initialize(Attributor &A) override {
3043     // See callsite argument attribute and callee argument attribute.
3044     const auto &CB = cast<CallBase>(getAnchorValue());
3045     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3046       indicateOptimisticFixpoint();
3047     Value &Val = getAssociatedValue();
3048     if (isa<ConstantPointerNull>(Val) &&
3049         !NullPointerIsDefined(getAnchorScope(),
3050                               Val.getType()->getPointerAddressSpace()))
3051       indicateOptimisticFixpoint();
3052   }
3053 
3054   /// Determine if the underlying value may alias with the call site argument
3055   /// \p OtherArgNo of \p ICS (= the underlying call site).
3056   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3057                             const AAMemoryBehavior &MemBehaviorAA,
3058                             const CallBase &CB, unsigned OtherArgNo) {
3059     // We do not need to worry about aliasing with the underlying IRP.
3060     if (this->getCalleeArgNo() == (int)OtherArgNo)
3061       return false;
3062 
3063     // If it is not a pointer or pointer vector we do not alias.
3064     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3065     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3066       return false;
3067 
3068     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3069         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3070 
3071     // If the argument is readnone, there is no read-write aliasing.
3072     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3073       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3074       return false;
3075     }
3076 
3077     // If the argument is readonly and the underlying value is readonly, there
3078     // is no read-write aliasing.
3079     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3080     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3081       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3082       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3083       return false;
3084     }
3085 
3086     // We have to utilize actual alias analysis queries so we need the object.
3087     if (!AAR)
3088       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3089 
3090     // Try to rule it out at the call site.
3091     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3092     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3093                          "callsite arguments: "
3094                       << getAssociatedValue() << " " << *ArgOp << " => "
3095                       << (IsAliasing ? "" : "no-") << "alias \n");
3096 
3097     return IsAliasing;
3098   }
3099 
3100   bool
3101   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3102                                          const AAMemoryBehavior &MemBehaviorAA,
3103                                          const AANoAlias &NoAliasAA) {
3104     // We can deduce "noalias" if the following conditions hold.
3105     // (i)   Associated value is assumed to be noalias in the definition.
3106     // (ii)  Associated value is assumed to be no-capture in all the uses
3107     //       possibly executed before this callsite.
3108     // (iii) There is no other pointer argument which could alias with the
3109     //       value.
3110 
3111     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3112     if (!AssociatedValueIsNoAliasAtDef) {
3113       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3114                         << " is not no-alias at the definition\n");
3115       return false;
3116     }
3117 
3118     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3119 
3120     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3121     const Function *ScopeFn = VIRP.getAnchorScope();
3122     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3123     // Check whether the value is captured in the scope using AANoCapture.
3124     //      Look at CFG and check only uses possibly executed before this
3125     //      callsite.
3126     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3127       Instruction *UserI = cast<Instruction>(U.getUser());
3128 
3129       // If UserI is the curr instruction and there is a single potential use of
3130       // the value in UserI we allow the use.
3131       // TODO: We should inspect the operands and allow those that cannot alias
3132       //       with the value.
3133       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3134         return true;
3135 
3136       if (ScopeFn) {
3137         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3138             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3139 
3140         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3141           return true;
3142 
3143         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3144           if (CB->isArgOperand(&U)) {
3145 
3146             unsigned ArgNo = CB->getArgOperandNo(&U);
3147 
3148             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3149                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3150                 DepClassTy::OPTIONAL);
3151 
3152             if (NoCaptureAA.isAssumedNoCapture())
3153               return true;
3154           }
3155         }
3156       }
3157 
3158       // For cases which can potentially have more users
3159       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3160           isa<SelectInst>(U)) {
3161         Follow = true;
3162         return true;
3163       }
3164 
3165       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3166       return false;
3167     };
3168 
3169     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3170       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3171         LLVM_DEBUG(
3172             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3173                    << " cannot be noalias as it is potentially captured\n");
3174         return false;
3175       }
3176     }
3177     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3178 
3179     // Check there is no other pointer argument which could alias with the
3180     // value passed at this call site.
3181     // TODO: AbstractCallSite
3182     const auto &CB = cast<CallBase>(getAnchorValue());
3183     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3184       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3185         return false;
3186 
3187     return true;
3188   }
3189 
3190   /// See AbstractAttribute::updateImpl(...).
3191   ChangeStatus updateImpl(Attributor &A) override {
3192     // If the argument is readnone we are done as there are no accesses via the
3193     // argument.
3194     auto &MemBehaviorAA =
3195         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3196     if (MemBehaviorAA.isAssumedReadNone()) {
3197       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3198       return ChangeStatus::UNCHANGED;
3199     }
3200 
3201     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3202     const auto &NoAliasAA =
3203         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3204 
3205     AAResults *AAR = nullptr;
3206     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3207                                                NoAliasAA)) {
3208       LLVM_DEBUG(
3209           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3210       return ChangeStatus::UNCHANGED;
3211     }
3212 
3213     return indicatePessimisticFixpoint();
3214   }
3215 
3216   /// See AbstractAttribute::trackStatistics()
3217   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3218 };
3219 
3220 /// NoAlias attribute for function return value.
3221 struct AANoAliasReturned final : AANoAliasImpl {
3222   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3223       : AANoAliasImpl(IRP, A) {}
3224 
3225   /// See AbstractAttribute::initialize(...).
3226   void initialize(Attributor &A) override {
3227     AANoAliasImpl::initialize(A);
3228     Function *F = getAssociatedFunction();
3229     if (!F || F->isDeclaration())
3230       indicatePessimisticFixpoint();
3231   }
3232 
3233   /// See AbstractAttribute::updateImpl(...).
3234   virtual ChangeStatus updateImpl(Attributor &A) override {
3235 
3236     auto CheckReturnValue = [&](Value &RV) -> bool {
3237       if (Constant *C = dyn_cast<Constant>(&RV))
3238         if (C->isNullValue() || isa<UndefValue>(C))
3239           return true;
3240 
3241       /// For now, we can only deduce noalias if we have call sites.
3242       /// FIXME: add more support.
3243       if (!isa<CallBase>(&RV))
3244         return false;
3245 
3246       const IRPosition &RVPos = IRPosition::value(RV);
3247       const auto &NoAliasAA =
3248           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3249       if (!NoAliasAA.isAssumedNoAlias())
3250         return false;
3251 
3252       const auto &NoCaptureAA =
3253           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3254       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3255     };
3256 
3257     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3258       return indicatePessimisticFixpoint();
3259 
3260     return ChangeStatus::UNCHANGED;
3261   }
3262 
3263   /// See AbstractAttribute::trackStatistics()
3264   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3265 };
3266 
3267 /// NoAlias attribute deduction for a call site return value.
3268 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3269   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3270       : AANoAliasImpl(IRP, A) {}
3271 
3272   /// See AbstractAttribute::initialize(...).
3273   void initialize(Attributor &A) override {
3274     AANoAliasImpl::initialize(A);
3275     Function *F = getAssociatedFunction();
3276     if (!F || F->isDeclaration())
3277       indicatePessimisticFixpoint();
3278   }
3279 
3280   /// See AbstractAttribute::updateImpl(...).
3281   ChangeStatus updateImpl(Attributor &A) override {
3282     // TODO: Once we have call site specific value information we can provide
3283     //       call site specific liveness information and then it makes
3284     //       sense to specialize attributes for call sites arguments instead of
3285     //       redirecting requests to the callee argument.
3286     Function *F = getAssociatedFunction();
3287     const IRPosition &FnPos = IRPosition::returned(*F);
3288     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3289     return clampStateAndIndicateChange(getState(), FnAA.getState());
3290   }
3291 
3292   /// See AbstractAttribute::trackStatistics()
3293   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3294 };
3295 
3296 /// -------------------AAIsDead Function Attribute-----------------------
3297 
3298 struct AAIsDeadValueImpl : public AAIsDead {
3299   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3300 
3301   /// See AAIsDead::isAssumedDead().
3302   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3303 
3304   /// See AAIsDead::isKnownDead().
3305   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3306 
3307   /// See AAIsDead::isAssumedDead(BasicBlock *).
3308   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3309 
3310   /// See AAIsDead::isKnownDead(BasicBlock *).
3311   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3312 
3313   /// See AAIsDead::isAssumedDead(Instruction *I).
3314   bool isAssumedDead(const Instruction *I) const override {
3315     return I == getCtxI() && isAssumedDead();
3316   }
3317 
3318   /// See AAIsDead::isKnownDead(Instruction *I).
3319   bool isKnownDead(const Instruction *I) const override {
3320     return isAssumedDead(I) && isKnownDead();
3321   }
3322 
3323   /// See AbstractAttribute::getAsStr().
3324   const std::string getAsStr() const override {
3325     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3326   }
3327 
3328   /// Check if all uses are assumed dead.
3329   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3330     // Callers might not check the type, void has no uses.
3331     if (V.getType()->isVoidTy())
3332       return true;
3333 
3334     // If we replace a value with a constant there are no uses left afterwards.
3335     if (!isa<Constant>(V)) {
3336       bool UsedAssumedInformation = false;
3337       Optional<Constant *> C =
3338           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3339       if (!C.hasValue() || *C)
3340         return true;
3341     }
3342 
3343     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3344     // Explicitly set the dependence class to required because we want a long
3345     // chain of N dependent instructions to be considered live as soon as one is
3346     // without going through N update cycles. This is not required for
3347     // correctness.
3348     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3349                              DepClassTy::REQUIRED);
3350   }
3351 
3352   /// Determine if \p I is assumed to be side-effect free.
3353   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3354     if (!I || wouldInstructionBeTriviallyDead(I))
3355       return true;
3356 
3357     auto *CB = dyn_cast<CallBase>(I);
3358     if (!CB || isa<IntrinsicInst>(CB))
3359       return false;
3360 
3361     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3362     const auto &NoUnwindAA =
3363         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3364     if (!NoUnwindAA.isAssumedNoUnwind())
3365       return false;
3366     if (!NoUnwindAA.isKnownNoUnwind())
3367       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3368 
3369     const auto &MemBehaviorAA =
3370         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3371     if (MemBehaviorAA.isAssumedReadOnly()) {
3372       if (!MemBehaviorAA.isKnownReadOnly())
3373         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3374       return true;
3375     }
3376     return false;
3377   }
3378 };
3379 
3380 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3381   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3382       : AAIsDeadValueImpl(IRP, A) {}
3383 
3384   /// See AbstractAttribute::initialize(...).
3385   void initialize(Attributor &A) override {
3386     if (isa<UndefValue>(getAssociatedValue())) {
3387       indicatePessimisticFixpoint();
3388       return;
3389     }
3390 
3391     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3392     if (!isAssumedSideEffectFree(A, I)) {
3393       if (!isa_and_nonnull<StoreInst>(I))
3394         indicatePessimisticFixpoint();
3395       else
3396         removeAssumedBits(HAS_NO_EFFECT);
3397     }
3398   }
3399 
3400   bool isDeadStore(Attributor &A, StoreInst &SI) {
3401     // Lang ref now states volatile store is not UB/dead, let's skip them.
3402     if (SI.isVolatile())
3403       return false;
3404 
3405     bool UsedAssumedInformation = false;
3406     SmallSetVector<Value *, 4> PotentialCopies;
3407     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3408                                              UsedAssumedInformation))
3409       return false;
3410     return llvm::all_of(PotentialCopies, [&](Value *V) {
3411       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3412                              UsedAssumedInformation);
3413     });
3414   }
3415 
3416   /// See AbstractAttribute::updateImpl(...).
3417   ChangeStatus updateImpl(Attributor &A) override {
3418     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3419     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3420       if (!isDeadStore(A, *SI))
3421         return indicatePessimisticFixpoint();
3422     } else {
3423       if (!isAssumedSideEffectFree(A, I))
3424         return indicatePessimisticFixpoint();
3425       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3426         return indicatePessimisticFixpoint();
3427     }
3428     return ChangeStatus::UNCHANGED;
3429   }
3430 
3431   /// See AbstractAttribute::manifest(...).
3432   ChangeStatus manifest(Attributor &A) override {
3433     Value &V = getAssociatedValue();
3434     if (auto *I = dyn_cast<Instruction>(&V)) {
3435       // If we get here we basically know the users are all dead. We check if
3436       // isAssumedSideEffectFree returns true here again because it might not be
3437       // the case and only the users are dead but the instruction (=call) is
3438       // still needed.
3439       if (isa<StoreInst>(I) ||
3440           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3441         A.deleteAfterManifest(*I);
3442         return ChangeStatus::CHANGED;
3443       }
3444     }
3445     if (V.use_empty())
3446       return ChangeStatus::UNCHANGED;
3447 
3448     bool UsedAssumedInformation = false;
3449     Optional<Constant *> C =
3450         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3451     if (C.hasValue() && C.getValue())
3452       return ChangeStatus::UNCHANGED;
3453 
3454     // Replace the value with undef as it is dead but keep droppable uses around
3455     // as they provide information we don't want to give up on just yet.
3456     UndefValue &UV = *UndefValue::get(V.getType());
3457     bool AnyChange =
3458         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3459     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3460   }
3461 
3462   /// See AbstractAttribute::trackStatistics()
3463   void trackStatistics() const override {
3464     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3465   }
3466 };
3467 
3468 struct AAIsDeadArgument : public AAIsDeadFloating {
3469   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3470       : AAIsDeadFloating(IRP, A) {}
3471 
3472   /// See AbstractAttribute::initialize(...).
3473   void initialize(Attributor &A) override {
3474     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3475       indicatePessimisticFixpoint();
3476   }
3477 
3478   /// See AbstractAttribute::manifest(...).
3479   ChangeStatus manifest(Attributor &A) override {
3480     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3481     Argument &Arg = *getAssociatedArgument();
3482     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3483       if (A.registerFunctionSignatureRewrite(
3484               Arg, /* ReplacementTypes */ {},
3485               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3486               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3487         Arg.dropDroppableUses();
3488         return ChangeStatus::CHANGED;
3489       }
3490     return Changed;
3491   }
3492 
3493   /// See AbstractAttribute::trackStatistics()
3494   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3495 };
3496 
3497 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3498   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3499       : AAIsDeadValueImpl(IRP, A) {}
3500 
3501   /// See AbstractAttribute::initialize(...).
3502   void initialize(Attributor &A) override {
3503     if (isa<UndefValue>(getAssociatedValue()))
3504       indicatePessimisticFixpoint();
3505   }
3506 
3507   /// See AbstractAttribute::updateImpl(...).
3508   ChangeStatus updateImpl(Attributor &A) override {
3509     // TODO: Once we have call site specific value information we can provide
3510     //       call site specific liveness information and then it makes
3511     //       sense to specialize attributes for call sites arguments instead of
3512     //       redirecting requests to the callee argument.
3513     Argument *Arg = getAssociatedArgument();
3514     if (!Arg)
3515       return indicatePessimisticFixpoint();
3516     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3517     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3518     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3519   }
3520 
3521   /// See AbstractAttribute::manifest(...).
3522   ChangeStatus manifest(Attributor &A) override {
3523     CallBase &CB = cast<CallBase>(getAnchorValue());
3524     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3525     assert(!isa<UndefValue>(U.get()) &&
3526            "Expected undef values to be filtered out!");
3527     UndefValue &UV = *UndefValue::get(U->getType());
3528     if (A.changeUseAfterManifest(U, UV))
3529       return ChangeStatus::CHANGED;
3530     return ChangeStatus::UNCHANGED;
3531   }
3532 
3533   /// See AbstractAttribute::trackStatistics()
3534   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3535 };
3536 
3537 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3538   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3539       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3540 
3541   /// See AAIsDead::isAssumedDead().
3542   bool isAssumedDead() const override {
3543     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3544   }
3545 
3546   /// See AbstractAttribute::initialize(...).
3547   void initialize(Attributor &A) override {
3548     if (isa<UndefValue>(getAssociatedValue())) {
3549       indicatePessimisticFixpoint();
3550       return;
3551     }
3552 
3553     // We track this separately as a secondary state.
3554     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3555   }
3556 
3557   /// See AbstractAttribute::updateImpl(...).
3558   ChangeStatus updateImpl(Attributor &A) override {
3559     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3560     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3561       IsAssumedSideEffectFree = false;
3562       Changed = ChangeStatus::CHANGED;
3563     }
3564     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3565       return indicatePessimisticFixpoint();
3566     return Changed;
3567   }
3568 
3569   /// See AbstractAttribute::trackStatistics()
3570   void trackStatistics() const override {
3571     if (IsAssumedSideEffectFree)
3572       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3573     else
3574       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3575   }
3576 
3577   /// See AbstractAttribute::getAsStr().
3578   const std::string getAsStr() const override {
3579     return isAssumedDead()
3580                ? "assumed-dead"
3581                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3582   }
3583 
3584 private:
3585   bool IsAssumedSideEffectFree;
3586 };
3587 
3588 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3589   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3590       : AAIsDeadValueImpl(IRP, A) {}
3591 
3592   /// See AbstractAttribute::updateImpl(...).
3593   ChangeStatus updateImpl(Attributor &A) override {
3594 
3595     bool UsedAssumedInformation = false;
3596     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3597                               {Instruction::Ret}, UsedAssumedInformation);
3598 
3599     auto PredForCallSite = [&](AbstractCallSite ACS) {
3600       if (ACS.isCallbackCall() || !ACS.getInstruction())
3601         return false;
3602       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3603     };
3604 
3605     bool AllCallSitesKnown;
3606     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3607                                 AllCallSitesKnown))
3608       return indicatePessimisticFixpoint();
3609 
3610     return ChangeStatus::UNCHANGED;
3611   }
3612 
3613   /// See AbstractAttribute::manifest(...).
3614   ChangeStatus manifest(Attributor &A) override {
3615     // TODO: Rewrite the signature to return void?
3616     bool AnyChange = false;
3617     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3618     auto RetInstPred = [&](Instruction &I) {
3619       ReturnInst &RI = cast<ReturnInst>(I);
3620       if (!isa<UndefValue>(RI.getReturnValue()))
3621         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3622       return true;
3623     };
3624     bool UsedAssumedInformation = false;
3625     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3626                               UsedAssumedInformation);
3627     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3628   }
3629 
3630   /// See AbstractAttribute::trackStatistics()
3631   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3632 };
3633 
3634 struct AAIsDeadFunction : public AAIsDead {
3635   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3636 
3637   /// See AbstractAttribute::initialize(...).
3638   void initialize(Attributor &A) override {
3639     const Function *F = getAnchorScope();
3640     if (F && !F->isDeclaration()) {
3641       // We only want to compute liveness once. If the function is not part of
3642       // the SCC, skip it.
3643       if (A.isRunOn(*const_cast<Function *>(F))) {
3644         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3645         assumeLive(A, F->getEntryBlock());
3646       } else {
3647         indicatePessimisticFixpoint();
3648       }
3649     }
3650   }
3651 
3652   /// See AbstractAttribute::getAsStr().
3653   const std::string getAsStr() const override {
3654     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3655            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3656            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3657            std::to_string(KnownDeadEnds.size()) + "]";
3658   }
3659 
3660   /// See AbstractAttribute::manifest(...).
3661   ChangeStatus manifest(Attributor &A) override {
3662     assert(getState().isValidState() &&
3663            "Attempted to manifest an invalid state!");
3664 
3665     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3666     Function &F = *getAnchorScope();
3667 
3668     if (AssumedLiveBlocks.empty()) {
3669       A.deleteAfterManifest(F);
3670       return ChangeStatus::CHANGED;
3671     }
3672 
3673     // Flag to determine if we can change an invoke to a call assuming the
3674     // callee is nounwind. This is not possible if the personality of the
3675     // function allows to catch asynchronous exceptions.
3676     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3677 
3678     KnownDeadEnds.set_union(ToBeExploredFrom);
3679     for (const Instruction *DeadEndI : KnownDeadEnds) {
3680       auto *CB = dyn_cast<CallBase>(DeadEndI);
3681       if (!CB)
3682         continue;
3683       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3684           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3685       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3686       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3687         continue;
3688 
3689       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3690         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3691       else
3692         A.changeToUnreachableAfterManifest(
3693             const_cast<Instruction *>(DeadEndI->getNextNode()));
3694       HasChanged = ChangeStatus::CHANGED;
3695     }
3696 
3697     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3698     for (BasicBlock &BB : F)
3699       if (!AssumedLiveBlocks.count(&BB)) {
3700         A.deleteAfterManifest(BB);
3701         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3702       }
3703 
3704     return HasChanged;
3705   }
3706 
3707   /// See AbstractAttribute::updateImpl(...).
3708   ChangeStatus updateImpl(Attributor &A) override;
3709 
3710   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3711     return !AssumedLiveEdges.count(std::make_pair(From, To));
3712   }
3713 
3714   /// See AbstractAttribute::trackStatistics()
3715   void trackStatistics() const override {}
3716 
3717   /// Returns true if the function is assumed dead.
3718   bool isAssumedDead() const override { return false; }
3719 
3720   /// See AAIsDead::isKnownDead().
3721   bool isKnownDead() const override { return false; }
3722 
3723   /// See AAIsDead::isAssumedDead(BasicBlock *).
3724   bool isAssumedDead(const BasicBlock *BB) const override {
3725     assert(BB->getParent() == getAnchorScope() &&
3726            "BB must be in the same anchor scope function.");
3727 
3728     if (!getAssumed())
3729       return false;
3730     return !AssumedLiveBlocks.count(BB);
3731   }
3732 
3733   /// See AAIsDead::isKnownDead(BasicBlock *).
3734   bool isKnownDead(const BasicBlock *BB) const override {
3735     return getKnown() && isAssumedDead(BB);
3736   }
3737 
3738   /// See AAIsDead::isAssumed(Instruction *I).
3739   bool isAssumedDead(const Instruction *I) const override {
3740     assert(I->getParent()->getParent() == getAnchorScope() &&
3741            "Instruction must be in the same anchor scope function.");
3742 
3743     if (!getAssumed())
3744       return false;
3745 
3746     // If it is not in AssumedLiveBlocks then it for sure dead.
3747     // Otherwise, it can still be after noreturn call in a live block.
3748     if (!AssumedLiveBlocks.count(I->getParent()))
3749       return true;
3750 
3751     // If it is not after a liveness barrier it is live.
3752     const Instruction *PrevI = I->getPrevNode();
3753     while (PrevI) {
3754       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3755         return true;
3756       PrevI = PrevI->getPrevNode();
3757     }
3758     return false;
3759   }
3760 
3761   /// See AAIsDead::isKnownDead(Instruction *I).
3762   bool isKnownDead(const Instruction *I) const override {
3763     return getKnown() && isAssumedDead(I);
3764   }
3765 
3766   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3767   /// that internal function called from \p BB should now be looked at.
3768   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3769     if (!AssumedLiveBlocks.insert(&BB).second)
3770       return false;
3771 
3772     // We assume that all of BB is (probably) live now and if there are calls to
3773     // internal functions we will assume that those are now live as well. This
3774     // is a performance optimization for blocks with calls to a lot of internal
3775     // functions. It can however cause dead functions to be treated as live.
3776     for (const Instruction &I : BB)
3777       if (const auto *CB = dyn_cast<CallBase>(&I))
3778         if (const Function *F = CB->getCalledFunction())
3779           if (F->hasLocalLinkage())
3780             A.markLiveInternalFunction(*F);
3781     return true;
3782   }
3783 
3784   /// Collection of instructions that need to be explored again, e.g., we
3785   /// did assume they do not transfer control to (one of their) successors.
3786   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3787 
3788   /// Collection of instructions that are known to not transfer control.
3789   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3790 
3791   /// Collection of all assumed live edges
3792   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3793 
3794   /// Collection of all assumed live BasicBlocks.
3795   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3796 };
3797 
3798 static bool
3799 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3800                         AbstractAttribute &AA,
3801                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3802   const IRPosition &IPos = IRPosition::callsite_function(CB);
3803 
3804   const auto &NoReturnAA =
3805       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3806   if (NoReturnAA.isAssumedNoReturn())
3807     return !NoReturnAA.isKnownNoReturn();
3808   if (CB.isTerminator())
3809     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3810   else
3811     AliveSuccessors.push_back(CB.getNextNode());
3812   return false;
3813 }
3814 
3815 static bool
3816 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3817                         AbstractAttribute &AA,
3818                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3819   bool UsedAssumedInformation =
3820       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3821 
3822   // First, determine if we can change an invoke to a call assuming the
3823   // callee is nounwind. This is not possible if the personality of the
3824   // function allows to catch asynchronous exceptions.
3825   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3826     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3827   } else {
3828     const IRPosition &IPos = IRPosition::callsite_function(II);
3829     const auto &AANoUnw =
3830         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3831     if (AANoUnw.isAssumedNoUnwind()) {
3832       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3833     } else {
3834       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3835     }
3836   }
3837   return UsedAssumedInformation;
3838 }
3839 
3840 static bool
3841 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3842                         AbstractAttribute &AA,
3843                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3844   bool UsedAssumedInformation = false;
3845   if (BI.getNumSuccessors() == 1) {
3846     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3847   } else {
3848     Optional<Constant *> C =
3849         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3850     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3851       // No value yet, assume both edges are dead.
3852     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3853       const BasicBlock *SuccBB =
3854           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3855       AliveSuccessors.push_back(&SuccBB->front());
3856     } else {
3857       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3858       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3859       UsedAssumedInformation = false;
3860     }
3861   }
3862   return UsedAssumedInformation;
3863 }
3864 
3865 static bool
3866 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3867                         AbstractAttribute &AA,
3868                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3869   bool UsedAssumedInformation = false;
3870   Optional<Constant *> C =
3871       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3872   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3873     // No value yet, assume all edges are dead.
3874   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3875     for (auto &CaseIt : SI.cases()) {
3876       if (CaseIt.getCaseValue() == C.getValue()) {
3877         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3878         return UsedAssumedInformation;
3879       }
3880     }
3881     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3882     return UsedAssumedInformation;
3883   } else {
3884     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3885       AliveSuccessors.push_back(&SuccBB->front());
3886   }
3887   return UsedAssumedInformation;
3888 }
3889 
3890 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3891   ChangeStatus Change = ChangeStatus::UNCHANGED;
3892 
3893   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3894                     << getAnchorScope()->size() << "] BBs and "
3895                     << ToBeExploredFrom.size() << " exploration points and "
3896                     << KnownDeadEnds.size() << " known dead ends\n");
3897 
3898   // Copy and clear the list of instructions we need to explore from. It is
3899   // refilled with instructions the next update has to look at.
3900   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3901                                                ToBeExploredFrom.end());
3902   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3903 
3904   SmallVector<const Instruction *, 8> AliveSuccessors;
3905   while (!Worklist.empty()) {
3906     const Instruction *I = Worklist.pop_back_val();
3907     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3908 
3909     // Fast forward for uninteresting instructions. We could look for UB here
3910     // though.
3911     while (!I->isTerminator() && !isa<CallBase>(I))
3912       I = I->getNextNode();
3913 
3914     AliveSuccessors.clear();
3915 
3916     bool UsedAssumedInformation = false;
3917     switch (I->getOpcode()) {
3918     // TODO: look for (assumed) UB to backwards propagate "deadness".
3919     default:
3920       assert(I->isTerminator() &&
3921              "Expected non-terminators to be handled already!");
3922       for (const BasicBlock *SuccBB : successors(I->getParent()))
3923         AliveSuccessors.push_back(&SuccBB->front());
3924       break;
3925     case Instruction::Call:
3926       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3927                                                        *this, AliveSuccessors);
3928       break;
3929     case Instruction::Invoke:
3930       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3931                                                        *this, AliveSuccessors);
3932       break;
3933     case Instruction::Br:
3934       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3935                                                        *this, AliveSuccessors);
3936       break;
3937     case Instruction::Switch:
3938       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3939                                                        *this, AliveSuccessors);
3940       break;
3941     }
3942 
3943     if (UsedAssumedInformation) {
3944       NewToBeExploredFrom.insert(I);
3945     } else if (AliveSuccessors.empty() ||
3946                (I->isTerminator() &&
3947                 AliveSuccessors.size() < I->getNumSuccessors())) {
3948       if (KnownDeadEnds.insert(I))
3949         Change = ChangeStatus::CHANGED;
3950     }
3951 
3952     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3953                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3954                       << UsedAssumedInformation << "\n");
3955 
3956     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3957       if (!I->isTerminator()) {
3958         assert(AliveSuccessors.size() == 1 &&
3959                "Non-terminator expected to have a single successor!");
3960         Worklist.push_back(AliveSuccessor);
3961       } else {
3962         // record the assumed live edge
3963         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3964         if (AssumedLiveEdges.insert(Edge).second)
3965           Change = ChangeStatus::CHANGED;
3966         if (assumeLive(A, *AliveSuccessor->getParent()))
3967           Worklist.push_back(AliveSuccessor);
3968       }
3969     }
3970   }
3971 
3972   // Check if the content of ToBeExploredFrom changed, ignore the order.
3973   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3974       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3975         return !ToBeExploredFrom.count(I);
3976       })) {
3977     Change = ChangeStatus::CHANGED;
3978     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3979   }
3980 
3981   // If we know everything is live there is no need to query for liveness.
3982   // Instead, indicating a pessimistic fixpoint will cause the state to be
3983   // "invalid" and all queries to be answered conservatively without lookups.
3984   // To be in this state we have to (1) finished the exploration and (3) not
3985   // discovered any non-trivial dead end and (2) not ruled unreachable code
3986   // dead.
3987   if (ToBeExploredFrom.empty() &&
3988       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3989       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3990         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3991       }))
3992     return indicatePessimisticFixpoint();
3993   return Change;
3994 }
3995 
3996 /// Liveness information for a call sites.
3997 struct AAIsDeadCallSite final : AAIsDeadFunction {
3998   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3999       : AAIsDeadFunction(IRP, A) {}
4000 
4001   /// See AbstractAttribute::initialize(...).
4002   void initialize(Attributor &A) override {
4003     // TODO: Once we have call site specific value information we can provide
4004     //       call site specific liveness information and then it makes
4005     //       sense to specialize attributes for call sites instead of
4006     //       redirecting requests to the callee.
4007     llvm_unreachable("Abstract attributes for liveness are not "
4008                      "supported for call sites yet!");
4009   }
4010 
4011   /// See AbstractAttribute::updateImpl(...).
4012   ChangeStatus updateImpl(Attributor &A) override {
4013     return indicatePessimisticFixpoint();
4014   }
4015 
4016   /// See AbstractAttribute::trackStatistics()
4017   void trackStatistics() const override {}
4018 };
4019 
4020 /// -------------------- Dereferenceable Argument Attribute --------------------
4021 
4022 struct AADereferenceableImpl : AADereferenceable {
4023   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4024       : AADereferenceable(IRP, A) {}
4025   using StateType = DerefState;
4026 
4027   /// See AbstractAttribute::initialize(...).
4028   void initialize(Attributor &A) override {
4029     SmallVector<Attribute, 4> Attrs;
4030     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4031              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4032     for (const Attribute &Attr : Attrs)
4033       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4034 
4035     const IRPosition &IRP = this->getIRPosition();
4036     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4037 
4038     bool CanBeNull, CanBeFreed;
4039     takeKnownDerefBytesMaximum(
4040         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4041             A.getDataLayout(), CanBeNull, CanBeFreed));
4042 
4043     bool IsFnInterface = IRP.isFnInterfaceKind();
4044     Function *FnScope = IRP.getAnchorScope();
4045     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4046       indicatePessimisticFixpoint();
4047       return;
4048     }
4049 
4050     if (Instruction *CtxI = getCtxI())
4051       followUsesInMBEC(*this, A, getState(), *CtxI);
4052   }
4053 
4054   /// See AbstractAttribute::getState()
4055   /// {
4056   StateType &getState() override { return *this; }
4057   const StateType &getState() const override { return *this; }
4058   /// }
4059 
4060   /// Helper function for collecting accessed bytes in must-be-executed-context
4061   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4062                               DerefState &State) {
4063     const Value *UseV = U->get();
4064     if (!UseV->getType()->isPointerTy())
4065       return;
4066 
4067     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4068     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4069       return;
4070 
4071     int64_t Offset;
4072     const Value *Base = GetPointerBaseWithConstantOffset(
4073         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4074     if (Base && Base == &getAssociatedValue())
4075       State.addAccessedBytes(Offset, Loc->Size.getValue());
4076   }
4077 
4078   /// See followUsesInMBEC
4079   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4080                        AADereferenceable::StateType &State) {
4081     bool IsNonNull = false;
4082     bool TrackUse = false;
4083     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4084         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4085     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4086                       << " for instruction " << *I << "\n");
4087 
4088     addAccessedBytesForUse(A, U, I, State);
4089     State.takeKnownDerefBytesMaximum(DerefBytes);
4090     return TrackUse;
4091   }
4092 
4093   /// See AbstractAttribute::manifest(...).
4094   ChangeStatus manifest(Attributor &A) override {
4095     ChangeStatus Change = AADereferenceable::manifest(A);
4096     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4097       removeAttrs({Attribute::DereferenceableOrNull});
4098       return ChangeStatus::CHANGED;
4099     }
4100     return Change;
4101   }
4102 
4103   void getDeducedAttributes(LLVMContext &Ctx,
4104                             SmallVectorImpl<Attribute> &Attrs) const override {
4105     // TODO: Add *_globally support
4106     if (isAssumedNonNull())
4107       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4108           Ctx, getAssumedDereferenceableBytes()));
4109     else
4110       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4111           Ctx, getAssumedDereferenceableBytes()));
4112   }
4113 
4114   /// See AbstractAttribute::getAsStr().
4115   const std::string getAsStr() const override {
4116     if (!getAssumedDereferenceableBytes())
4117       return "unknown-dereferenceable";
4118     return std::string("dereferenceable") +
4119            (isAssumedNonNull() ? "" : "_or_null") +
4120            (isAssumedGlobal() ? "_globally" : "") + "<" +
4121            std::to_string(getKnownDereferenceableBytes()) + "-" +
4122            std::to_string(getAssumedDereferenceableBytes()) + ">";
4123   }
4124 };
4125 
4126 /// Dereferenceable attribute for a floating value.
4127 struct AADereferenceableFloating : AADereferenceableImpl {
4128   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4129       : AADereferenceableImpl(IRP, A) {}
4130 
4131   /// See AbstractAttribute::updateImpl(...).
4132   ChangeStatus updateImpl(Attributor &A) override {
4133     const DataLayout &DL = A.getDataLayout();
4134 
4135     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4136                             bool Stripped) -> bool {
4137       unsigned IdxWidth =
4138           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4139       APInt Offset(IdxWidth, 0);
4140       const Value *Base =
4141           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4142 
4143       const auto &AA = A.getAAFor<AADereferenceable>(
4144           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4145       int64_t DerefBytes = 0;
4146       if (!Stripped && this == &AA) {
4147         // Use IR information if we did not strip anything.
4148         // TODO: track globally.
4149         bool CanBeNull, CanBeFreed;
4150         DerefBytes =
4151             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4152         T.GlobalState.indicatePessimisticFixpoint();
4153       } else {
4154         const DerefState &DS = AA.getState();
4155         DerefBytes = DS.DerefBytesState.getAssumed();
4156         T.GlobalState &= DS.GlobalState;
4157       }
4158 
4159       // For now we do not try to "increase" dereferenceability due to negative
4160       // indices as we first have to come up with code to deal with loops and
4161       // for overflows of the dereferenceable bytes.
4162       int64_t OffsetSExt = Offset.getSExtValue();
4163       if (OffsetSExt < 0)
4164         OffsetSExt = 0;
4165 
4166       T.takeAssumedDerefBytesMinimum(
4167           std::max(int64_t(0), DerefBytes - OffsetSExt));
4168 
4169       if (this == &AA) {
4170         if (!Stripped) {
4171           // If nothing was stripped IR information is all we got.
4172           T.takeKnownDerefBytesMaximum(
4173               std::max(int64_t(0), DerefBytes - OffsetSExt));
4174           T.indicatePessimisticFixpoint();
4175         } else if (OffsetSExt > 0) {
4176           // If something was stripped but there is circular reasoning we look
4177           // for the offset. If it is positive we basically decrease the
4178           // dereferenceable bytes in a circluar loop now, which will simply
4179           // drive them down to the known value in a very slow way which we
4180           // can accelerate.
4181           T.indicatePessimisticFixpoint();
4182         }
4183       }
4184 
4185       return T.isValidState();
4186     };
4187 
4188     DerefState T;
4189     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4190                                            VisitValueCB, getCtxI()))
4191       return indicatePessimisticFixpoint();
4192 
4193     return clampStateAndIndicateChange(getState(), T);
4194   }
4195 
4196   /// See AbstractAttribute::trackStatistics()
4197   void trackStatistics() const override {
4198     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4199   }
4200 };
4201 
4202 /// Dereferenceable attribute for a return value.
4203 struct AADereferenceableReturned final
4204     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4205   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4206       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4207             IRP, A) {}
4208 
4209   /// See AbstractAttribute::trackStatistics()
4210   void trackStatistics() const override {
4211     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4212   }
4213 };
4214 
4215 /// Dereferenceable attribute for an argument
4216 struct AADereferenceableArgument final
4217     : AAArgumentFromCallSiteArguments<AADereferenceable,
4218                                       AADereferenceableImpl> {
4219   using Base =
4220       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4221   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4222       : Base(IRP, A) {}
4223 
4224   /// See AbstractAttribute::trackStatistics()
4225   void trackStatistics() const override {
4226     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4227   }
4228 };
4229 
4230 /// Dereferenceable attribute for a call site argument.
4231 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4232   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4233       : AADereferenceableFloating(IRP, A) {}
4234 
4235   /// See AbstractAttribute::trackStatistics()
4236   void trackStatistics() const override {
4237     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4238   }
4239 };
4240 
4241 /// Dereferenceable attribute deduction for a call site return value.
4242 struct AADereferenceableCallSiteReturned final
4243     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4244   using Base =
4245       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4246   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4247       : Base(IRP, A) {}
4248 
4249   /// See AbstractAttribute::trackStatistics()
4250   void trackStatistics() const override {
4251     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4252   }
4253 };
4254 
4255 // ------------------------ Align Argument Attribute ------------------------
4256 
4257 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4258                                     Value &AssociatedValue, const Use *U,
4259                                     const Instruction *I, bool &TrackUse) {
4260   // We need to follow common pointer manipulation uses to the accesses they
4261   // feed into.
4262   if (isa<CastInst>(I)) {
4263     // Follow all but ptr2int casts.
4264     TrackUse = !isa<PtrToIntInst>(I);
4265     return 0;
4266   }
4267   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4268     if (GEP->hasAllConstantIndices())
4269       TrackUse = true;
4270     return 0;
4271   }
4272 
4273   MaybeAlign MA;
4274   if (const auto *CB = dyn_cast<CallBase>(I)) {
4275     if (CB->isBundleOperand(U) || CB->isCallee(U))
4276       return 0;
4277 
4278     unsigned ArgNo = CB->getArgOperandNo(U);
4279     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4280     // As long as we only use known information there is no need to track
4281     // dependences here.
4282     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4283     MA = MaybeAlign(AlignAA.getKnownAlign());
4284   }
4285 
4286   const DataLayout &DL = A.getDataLayout();
4287   const Value *UseV = U->get();
4288   if (auto *SI = dyn_cast<StoreInst>(I)) {
4289     if (SI->getPointerOperand() == UseV)
4290       MA = SI->getAlign();
4291   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4292     if (LI->getPointerOperand() == UseV)
4293       MA = LI->getAlign();
4294   }
4295 
4296   if (!MA || *MA <= QueryingAA.getKnownAlign())
4297     return 0;
4298 
4299   unsigned Alignment = MA->value();
4300   int64_t Offset;
4301 
4302   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4303     if (Base == &AssociatedValue) {
4304       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4305       // So we can say that the maximum power of two which is a divisor of
4306       // gcd(Offset, Alignment) is an alignment.
4307 
4308       uint32_t gcd =
4309           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4310       Alignment = llvm::PowerOf2Floor(gcd);
4311     }
4312   }
4313 
4314   return Alignment;
4315 }
4316 
4317 struct AAAlignImpl : AAAlign {
4318   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4319 
4320   /// See AbstractAttribute::initialize(...).
4321   void initialize(Attributor &A) override {
4322     SmallVector<Attribute, 4> Attrs;
4323     getAttrs({Attribute::Alignment}, Attrs);
4324     for (const Attribute &Attr : Attrs)
4325       takeKnownMaximum(Attr.getValueAsInt());
4326 
4327     Value &V = getAssociatedValue();
4328     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4329     //       use of the function pointer. This was caused by D73131. We want to
4330     //       avoid this for function pointers especially because we iterate
4331     //       their uses and int2ptr is not handled. It is not a correctness
4332     //       problem though!
4333     if (!V.getType()->getPointerElementType()->isFunctionTy())
4334       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4335 
4336     if (getIRPosition().isFnInterfaceKind() &&
4337         (!getAnchorScope() ||
4338          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4339       indicatePessimisticFixpoint();
4340       return;
4341     }
4342 
4343     if (Instruction *CtxI = getCtxI())
4344       followUsesInMBEC(*this, A, getState(), *CtxI);
4345   }
4346 
4347   /// See AbstractAttribute::manifest(...).
4348   ChangeStatus manifest(Attributor &A) override {
4349     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4350 
4351     // Check for users that allow alignment annotations.
4352     Value &AssociatedValue = getAssociatedValue();
4353     for (const Use &U : AssociatedValue.uses()) {
4354       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4355         if (SI->getPointerOperand() == &AssociatedValue)
4356           if (SI->getAlignment() < getAssumedAlign()) {
4357             STATS_DECLTRACK(AAAlign, Store,
4358                             "Number of times alignment added to a store");
4359             SI->setAlignment(Align(getAssumedAlign()));
4360             LoadStoreChanged = ChangeStatus::CHANGED;
4361           }
4362       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4363         if (LI->getPointerOperand() == &AssociatedValue)
4364           if (LI->getAlignment() < getAssumedAlign()) {
4365             LI->setAlignment(Align(getAssumedAlign()));
4366             STATS_DECLTRACK(AAAlign, Load,
4367                             "Number of times alignment added to a load");
4368             LoadStoreChanged = ChangeStatus::CHANGED;
4369           }
4370       }
4371     }
4372 
4373     ChangeStatus Changed = AAAlign::manifest(A);
4374 
4375     Align InheritAlign =
4376         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4377     if (InheritAlign >= getAssumedAlign())
4378       return LoadStoreChanged;
4379     return Changed | LoadStoreChanged;
4380   }
4381 
4382   // TODO: Provide a helper to determine the implied ABI alignment and check in
4383   //       the existing manifest method and a new one for AAAlignImpl that value
4384   //       to avoid making the alignment explicit if it did not improve.
4385 
4386   /// See AbstractAttribute::getDeducedAttributes
4387   virtual void
4388   getDeducedAttributes(LLVMContext &Ctx,
4389                        SmallVectorImpl<Attribute> &Attrs) const override {
4390     if (getAssumedAlign() > 1)
4391       Attrs.emplace_back(
4392           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4393   }
4394 
4395   /// See followUsesInMBEC
4396   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4397                        AAAlign::StateType &State) {
4398     bool TrackUse = false;
4399 
4400     unsigned int KnownAlign =
4401         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4402     State.takeKnownMaximum(KnownAlign);
4403 
4404     return TrackUse;
4405   }
4406 
4407   /// See AbstractAttribute::getAsStr().
4408   const std::string getAsStr() const override {
4409     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4410                                 "-" + std::to_string(getAssumedAlign()) + ">")
4411                              : "unknown-align";
4412   }
4413 };
4414 
4415 /// Align attribute for a floating value.
4416 struct AAAlignFloating : AAAlignImpl {
4417   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4418 
4419   /// See AbstractAttribute::updateImpl(...).
4420   ChangeStatus updateImpl(Attributor &A) override {
4421     const DataLayout &DL = A.getDataLayout();
4422 
4423     auto VisitValueCB = [&](Value &V, const Instruction *,
4424                             AAAlign::StateType &T, bool Stripped) -> bool {
4425       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4426                                            DepClassTy::REQUIRED);
4427       if (!Stripped && this == &AA) {
4428         int64_t Offset;
4429         unsigned Alignment = 1;
4430         if (const Value *Base =
4431                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4432           Align PA = Base->getPointerAlignment(DL);
4433           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4434           // So we can say that the maximum power of two which is a divisor of
4435           // gcd(Offset, Alignment) is an alignment.
4436 
4437           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4438                                                uint32_t(PA.value()));
4439           Alignment = llvm::PowerOf2Floor(gcd);
4440         } else {
4441           Alignment = V.getPointerAlignment(DL).value();
4442         }
4443         // Use only IR information if we did not strip anything.
4444         T.takeKnownMaximum(Alignment);
4445         T.indicatePessimisticFixpoint();
4446       } else {
4447         // Use abstract attribute information.
4448         const AAAlign::StateType &DS = AA.getState();
4449         T ^= DS;
4450       }
4451       return T.isValidState();
4452     };
4453 
4454     StateType T;
4455     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4456                                           VisitValueCB, getCtxI()))
4457       return indicatePessimisticFixpoint();
4458 
4459     // TODO: If we know we visited all incoming values, thus no are assumed
4460     // dead, we can take the known information from the state T.
4461     return clampStateAndIndicateChange(getState(), T);
4462   }
4463 
4464   /// See AbstractAttribute::trackStatistics()
4465   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4466 };
4467 
4468 /// Align attribute for function return value.
4469 struct AAAlignReturned final
4470     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4471   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4472   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4473 
4474   /// See AbstractAttribute::initialize(...).
4475   void initialize(Attributor &A) override {
4476     Base::initialize(A);
4477     Function *F = getAssociatedFunction();
4478     if (!F || F->isDeclaration())
4479       indicatePessimisticFixpoint();
4480   }
4481 
4482   /// See AbstractAttribute::trackStatistics()
4483   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4484 };
4485 
4486 /// Align attribute for function argument.
4487 struct AAAlignArgument final
4488     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4489   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4490   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4491 
4492   /// See AbstractAttribute::manifest(...).
4493   ChangeStatus manifest(Attributor &A) override {
4494     // If the associated argument is involved in a must-tail call we give up
4495     // because we would need to keep the argument alignments of caller and
4496     // callee in-sync. Just does not seem worth the trouble right now.
4497     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4498       return ChangeStatus::UNCHANGED;
4499     return Base::manifest(A);
4500   }
4501 
4502   /// See AbstractAttribute::trackStatistics()
4503   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4504 };
4505 
4506 struct AAAlignCallSiteArgument final : AAAlignFloating {
4507   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4508       : AAAlignFloating(IRP, A) {}
4509 
4510   /// See AbstractAttribute::manifest(...).
4511   ChangeStatus manifest(Attributor &A) override {
4512     // If the associated argument is involved in a must-tail call we give up
4513     // because we would need to keep the argument alignments of caller and
4514     // callee in-sync. Just does not seem worth the trouble right now.
4515     if (Argument *Arg = getAssociatedArgument())
4516       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4517         return ChangeStatus::UNCHANGED;
4518     ChangeStatus Changed = AAAlignImpl::manifest(A);
4519     Align InheritAlign =
4520         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4521     if (InheritAlign >= getAssumedAlign())
4522       Changed = ChangeStatus::UNCHANGED;
4523     return Changed;
4524   }
4525 
4526   /// See AbstractAttribute::updateImpl(Attributor &A).
4527   ChangeStatus updateImpl(Attributor &A) override {
4528     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4529     if (Argument *Arg = getAssociatedArgument()) {
4530       // We only take known information from the argument
4531       // so we do not need to track a dependence.
4532       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4533           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4534       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4535     }
4536     return Changed;
4537   }
4538 
4539   /// See AbstractAttribute::trackStatistics()
4540   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4541 };
4542 
4543 /// Align attribute deduction for a call site return value.
4544 struct AAAlignCallSiteReturned final
4545     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4546   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4547   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4548       : Base(IRP, A) {}
4549 
4550   /// See AbstractAttribute::initialize(...).
4551   void initialize(Attributor &A) override {
4552     Base::initialize(A);
4553     Function *F = getAssociatedFunction();
4554     if (!F || F->isDeclaration())
4555       indicatePessimisticFixpoint();
4556   }
4557 
4558   /// See AbstractAttribute::trackStatistics()
4559   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4560 };
4561 
4562 /// ------------------ Function No-Return Attribute ----------------------------
4563 struct AANoReturnImpl : public AANoReturn {
4564   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4565 
4566   /// See AbstractAttribute::initialize(...).
4567   void initialize(Attributor &A) override {
4568     AANoReturn::initialize(A);
4569     Function *F = getAssociatedFunction();
4570     if (!F || F->isDeclaration())
4571       indicatePessimisticFixpoint();
4572   }
4573 
4574   /// See AbstractAttribute::getAsStr().
4575   const std::string getAsStr() const override {
4576     return getAssumed() ? "noreturn" : "may-return";
4577   }
4578 
4579   /// See AbstractAttribute::updateImpl(Attributor &A).
4580   virtual ChangeStatus updateImpl(Attributor &A) override {
4581     auto CheckForNoReturn = [](Instruction &) { return false; };
4582     bool UsedAssumedInformation = false;
4583     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4584                                    {(unsigned)Instruction::Ret},
4585                                    UsedAssumedInformation))
4586       return indicatePessimisticFixpoint();
4587     return ChangeStatus::UNCHANGED;
4588   }
4589 };
4590 
4591 struct AANoReturnFunction final : AANoReturnImpl {
4592   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4593       : AANoReturnImpl(IRP, A) {}
4594 
4595   /// See AbstractAttribute::trackStatistics()
4596   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4597 };
4598 
4599 /// NoReturn attribute deduction for a call sites.
4600 struct AANoReturnCallSite final : AANoReturnImpl {
4601   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4602       : AANoReturnImpl(IRP, A) {}
4603 
4604   /// See AbstractAttribute::initialize(...).
4605   void initialize(Attributor &A) override {
4606     AANoReturnImpl::initialize(A);
4607     if (Function *F = getAssociatedFunction()) {
4608       const IRPosition &FnPos = IRPosition::function(*F);
4609       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4610       if (!FnAA.isAssumedNoReturn())
4611         indicatePessimisticFixpoint();
4612     }
4613   }
4614 
4615   /// See AbstractAttribute::updateImpl(...).
4616   ChangeStatus updateImpl(Attributor &A) override {
4617     // TODO: Once we have call site specific value information we can provide
4618     //       call site specific liveness information and then it makes
4619     //       sense to specialize attributes for call sites arguments instead of
4620     //       redirecting requests to the callee argument.
4621     Function *F = getAssociatedFunction();
4622     const IRPosition &FnPos = IRPosition::function(*F);
4623     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4624     return clampStateAndIndicateChange(getState(), FnAA.getState());
4625   }
4626 
4627   /// See AbstractAttribute::trackStatistics()
4628   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4629 };
4630 
4631 /// ----------------------- Variable Capturing ---------------------------------
4632 
4633 /// A class to hold the state of for no-capture attributes.
4634 struct AANoCaptureImpl : public AANoCapture {
4635   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4636 
4637   /// See AbstractAttribute::initialize(...).
4638   void initialize(Attributor &A) override {
4639     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4640       indicateOptimisticFixpoint();
4641       return;
4642     }
4643     Function *AnchorScope = getAnchorScope();
4644     if (isFnInterfaceKind() &&
4645         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4646       indicatePessimisticFixpoint();
4647       return;
4648     }
4649 
4650     // You cannot "capture" null in the default address space.
4651     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4652         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4653       indicateOptimisticFixpoint();
4654       return;
4655     }
4656 
4657     const Function *F =
4658         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4659 
4660     // Check what state the associated function can actually capture.
4661     if (F)
4662       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4663     else
4664       indicatePessimisticFixpoint();
4665   }
4666 
4667   /// See AbstractAttribute::updateImpl(...).
4668   ChangeStatus updateImpl(Attributor &A) override;
4669 
4670   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4671   virtual void
4672   getDeducedAttributes(LLVMContext &Ctx,
4673                        SmallVectorImpl<Attribute> &Attrs) const override {
4674     if (!isAssumedNoCaptureMaybeReturned())
4675       return;
4676 
4677     if (isArgumentPosition()) {
4678       if (isAssumedNoCapture())
4679         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4680       else if (ManifestInternal)
4681         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4682     }
4683   }
4684 
4685   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4686   /// depending on the ability of the function associated with \p IRP to capture
4687   /// state in memory and through "returning/throwing", respectively.
4688   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4689                                                    const Function &F,
4690                                                    BitIntegerState &State) {
4691     // TODO: Once we have memory behavior attributes we should use them here.
4692 
4693     // If we know we cannot communicate or write to memory, we do not care about
4694     // ptr2int anymore.
4695     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4696         F.getReturnType()->isVoidTy()) {
4697       State.addKnownBits(NO_CAPTURE);
4698       return;
4699     }
4700 
4701     // A function cannot capture state in memory if it only reads memory, it can
4702     // however return/throw state and the state might be influenced by the
4703     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4704     if (F.onlyReadsMemory())
4705       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4706 
4707     // A function cannot communicate state back if it does not through
4708     // exceptions and doesn not return values.
4709     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4710       State.addKnownBits(NOT_CAPTURED_IN_RET);
4711 
4712     // Check existing "returned" attributes.
4713     int ArgNo = IRP.getCalleeArgNo();
4714     if (F.doesNotThrow() && ArgNo >= 0) {
4715       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4716         if (F.hasParamAttribute(u, Attribute::Returned)) {
4717           if (u == unsigned(ArgNo))
4718             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4719           else if (F.onlyReadsMemory())
4720             State.addKnownBits(NO_CAPTURE);
4721           else
4722             State.addKnownBits(NOT_CAPTURED_IN_RET);
4723           break;
4724         }
4725     }
4726   }
4727 
4728   /// See AbstractState::getAsStr().
4729   const std::string getAsStr() const override {
4730     if (isKnownNoCapture())
4731       return "known not-captured";
4732     if (isAssumedNoCapture())
4733       return "assumed not-captured";
4734     if (isKnownNoCaptureMaybeReturned())
4735       return "known not-captured-maybe-returned";
4736     if (isAssumedNoCaptureMaybeReturned())
4737       return "assumed not-captured-maybe-returned";
4738     return "assumed-captured";
4739   }
4740 };
4741 
4742 /// Attributor-aware capture tracker.
4743 struct AACaptureUseTracker final : public CaptureTracker {
4744 
4745   /// Create a capture tracker that can lookup in-flight abstract attributes
4746   /// through the Attributor \p A.
4747   ///
4748   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4749   /// search is stopped. If a use leads to a return instruction,
4750   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4751   /// If a use leads to a ptr2int which may capture the value,
4752   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4753   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4754   /// set. All values in \p PotentialCopies are later tracked as well. For every
4755   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4756   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4757   /// conservatively set to true.
4758   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4759                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4760                       SmallSetVector<Value *, 4> &PotentialCopies,
4761                       unsigned &RemainingUsesToExplore)
4762       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4763         PotentialCopies(PotentialCopies),
4764         RemainingUsesToExplore(RemainingUsesToExplore) {}
4765 
4766   /// Determine if \p V maybe captured. *Also updates the state!*
4767   bool valueMayBeCaptured(const Value *V) {
4768     if (V->getType()->isPointerTy()) {
4769       PointerMayBeCaptured(V, this);
4770     } else {
4771       State.indicatePessimisticFixpoint();
4772     }
4773     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4774   }
4775 
4776   /// See CaptureTracker::tooManyUses().
4777   void tooManyUses() override {
4778     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4779   }
4780 
4781   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4782     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4783       return true;
4784     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4785         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4786     return DerefAA.getAssumedDereferenceableBytes();
4787   }
4788 
4789   /// See CaptureTracker::captured(...).
4790   bool captured(const Use *U) override {
4791     Instruction *UInst = cast<Instruction>(U->getUser());
4792     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4793                       << "\n");
4794 
4795     // Because we may reuse the tracker multiple times we keep track of the
4796     // number of explored uses ourselves as well.
4797     if (RemainingUsesToExplore-- == 0) {
4798       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4799       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4800                           /* Return */ true);
4801     }
4802 
4803     // Deal with ptr2int by following uses.
4804     if (isa<PtrToIntInst>(UInst)) {
4805       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4806       return valueMayBeCaptured(UInst);
4807     }
4808 
4809     // For stores we check if we can follow the value through memory or not.
4810     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4811       if (SI->isVolatile())
4812         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4813                             /* Return */ false);
4814       bool UsedAssumedInformation = false;
4815       if (!AA::getPotentialCopiesOfStoredValue(
4816               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4817         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4818                             /* Return */ false);
4819       // Not captured directly, potential copies will be checked.
4820       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4821                           /* Return */ false);
4822     }
4823 
4824     // Explicitly catch return instructions.
4825     if (isa<ReturnInst>(UInst)) {
4826       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4827         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4828                             /* Return */ true);
4829       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4830                           /* Return */ true);
4831     }
4832 
4833     // For now we only use special logic for call sites. However, the tracker
4834     // itself knows about a lot of other non-capturing cases already.
4835     auto *CB = dyn_cast<CallBase>(UInst);
4836     if (!CB || !CB->isArgOperand(U))
4837       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4838                           /* Return */ true);
4839 
4840     unsigned ArgNo = CB->getArgOperandNo(U);
4841     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4842     // If we have a abstract no-capture attribute for the argument we can use
4843     // it to justify a non-capture attribute here. This allows recursion!
4844     auto &ArgNoCaptureAA =
4845         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4846     if (ArgNoCaptureAA.isAssumedNoCapture())
4847       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4848                           /* Return */ false);
4849     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4850       addPotentialCopy(*CB);
4851       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4852                           /* Return */ false);
4853     }
4854 
4855     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4856     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4857                         /* Return */ true);
4858   }
4859 
4860   /// Register \p CS as potential copy of the value we are checking.
4861   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4862 
4863   /// See CaptureTracker::shouldExplore(...).
4864   bool shouldExplore(const Use *U) override {
4865     // Check liveness and ignore droppable users.
4866     bool UsedAssumedInformation = false;
4867     return !U->getUser()->isDroppable() &&
4868            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4869                             UsedAssumedInformation);
4870   }
4871 
4872   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4873   /// \p CapturedInRet, then return the appropriate value for use in the
4874   /// CaptureTracker::captured() interface.
4875   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4876                     bool CapturedInRet) {
4877     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4878                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4879     if (CapturedInMem)
4880       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4881     if (CapturedInInt)
4882       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4883     if (CapturedInRet)
4884       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4885     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4886   }
4887 
4888 private:
4889   /// The attributor providing in-flight abstract attributes.
4890   Attributor &A;
4891 
4892   /// The abstract attribute currently updated.
4893   AANoCapture &NoCaptureAA;
4894 
4895   /// The abstract liveness state.
4896   const AAIsDead &IsDeadAA;
4897 
4898   /// The state currently updated.
4899   AANoCapture::StateType &State;
4900 
4901   /// Set of potential copies of the tracked value.
4902   SmallSetVector<Value *, 4> &PotentialCopies;
4903 
4904   /// Global counter to limit the number of explored uses.
4905   unsigned &RemainingUsesToExplore;
4906 };
4907 
4908 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4909   const IRPosition &IRP = getIRPosition();
4910   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4911                                   : &IRP.getAssociatedValue();
4912   if (!V)
4913     return indicatePessimisticFixpoint();
4914 
4915   const Function *F =
4916       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4917   assert(F && "Expected a function!");
4918   const IRPosition &FnPos = IRPosition::function(*F);
4919   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4920 
4921   AANoCapture::StateType T;
4922 
4923   // Readonly means we cannot capture through memory.
4924   const auto &FnMemAA =
4925       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4926   if (FnMemAA.isAssumedReadOnly()) {
4927     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4928     if (FnMemAA.isKnownReadOnly())
4929       addKnownBits(NOT_CAPTURED_IN_MEM);
4930     else
4931       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4932   }
4933 
4934   // Make sure all returned values are different than the underlying value.
4935   // TODO: we could do this in a more sophisticated way inside
4936   //       AAReturnedValues, e.g., track all values that escape through returns
4937   //       directly somehow.
4938   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4939     bool SeenConstant = false;
4940     for (auto &It : RVAA.returned_values()) {
4941       if (isa<Constant>(It.first)) {
4942         if (SeenConstant)
4943           return false;
4944         SeenConstant = true;
4945       } else if (!isa<Argument>(It.first) ||
4946                  It.first == getAssociatedArgument())
4947         return false;
4948     }
4949     return true;
4950   };
4951 
4952   const auto &NoUnwindAA =
4953       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4954   if (NoUnwindAA.isAssumedNoUnwind()) {
4955     bool IsVoidTy = F->getReturnType()->isVoidTy();
4956     const AAReturnedValues *RVAA =
4957         IsVoidTy ? nullptr
4958                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4959 
4960                                                  DepClassTy::OPTIONAL);
4961     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4962       T.addKnownBits(NOT_CAPTURED_IN_RET);
4963       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4964         return ChangeStatus::UNCHANGED;
4965       if (NoUnwindAA.isKnownNoUnwind() &&
4966           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4967         addKnownBits(NOT_CAPTURED_IN_RET);
4968         if (isKnown(NOT_CAPTURED_IN_MEM))
4969           return indicateOptimisticFixpoint();
4970       }
4971     }
4972   }
4973 
4974   // Use the CaptureTracker interface and logic with the specialized tracker,
4975   // defined in AACaptureUseTracker, that can look at in-flight abstract
4976   // attributes and directly updates the assumed state.
4977   SmallSetVector<Value *, 4> PotentialCopies;
4978   unsigned RemainingUsesToExplore =
4979       getDefaultMaxUsesToExploreForCaptureTracking();
4980   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4981                               RemainingUsesToExplore);
4982 
4983   // Check all potential copies of the associated value until we can assume
4984   // none will be captured or we have to assume at least one might be.
4985   unsigned Idx = 0;
4986   PotentialCopies.insert(V);
4987   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4988     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4989 
4990   AANoCapture::StateType &S = getState();
4991   auto Assumed = S.getAssumed();
4992   S.intersectAssumedBits(T.getAssumed());
4993   if (!isAssumedNoCaptureMaybeReturned())
4994     return indicatePessimisticFixpoint();
4995   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4996                                    : ChangeStatus::CHANGED;
4997 }
4998 
4999 /// NoCapture attribute for function arguments.
5000 struct AANoCaptureArgument final : AANoCaptureImpl {
5001   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5002       : AANoCaptureImpl(IRP, A) {}
5003 
5004   /// See AbstractAttribute::trackStatistics()
5005   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5006 };
5007 
5008 /// NoCapture attribute for call site arguments.
5009 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5010   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5011       : AANoCaptureImpl(IRP, A) {}
5012 
5013   /// See AbstractAttribute::initialize(...).
5014   void initialize(Attributor &A) override {
5015     if (Argument *Arg = getAssociatedArgument())
5016       if (Arg->hasByValAttr())
5017         indicateOptimisticFixpoint();
5018     AANoCaptureImpl::initialize(A);
5019   }
5020 
5021   /// See AbstractAttribute::updateImpl(...).
5022   ChangeStatus updateImpl(Attributor &A) override {
5023     // TODO: Once we have call site specific value information we can provide
5024     //       call site specific liveness information and then it makes
5025     //       sense to specialize attributes for call sites arguments instead of
5026     //       redirecting requests to the callee argument.
5027     Argument *Arg = getAssociatedArgument();
5028     if (!Arg)
5029       return indicatePessimisticFixpoint();
5030     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5031     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5032     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5033   }
5034 
5035   /// See AbstractAttribute::trackStatistics()
5036   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5037 };
5038 
5039 /// NoCapture attribute for floating values.
5040 struct AANoCaptureFloating final : AANoCaptureImpl {
5041   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5042       : AANoCaptureImpl(IRP, A) {}
5043 
5044   /// See AbstractAttribute::trackStatistics()
5045   void trackStatistics() const override {
5046     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5047   }
5048 };
5049 
5050 /// NoCapture attribute for function return value.
5051 struct AANoCaptureReturned final : AANoCaptureImpl {
5052   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5053       : AANoCaptureImpl(IRP, A) {
5054     llvm_unreachable("NoCapture is not applicable to function returns!");
5055   }
5056 
5057   /// See AbstractAttribute::initialize(...).
5058   void initialize(Attributor &A) override {
5059     llvm_unreachable("NoCapture is not applicable to function returns!");
5060   }
5061 
5062   /// See AbstractAttribute::updateImpl(...).
5063   ChangeStatus updateImpl(Attributor &A) override {
5064     llvm_unreachable("NoCapture is not applicable to function returns!");
5065   }
5066 
5067   /// See AbstractAttribute::trackStatistics()
5068   void trackStatistics() const override {}
5069 };
5070 
5071 /// NoCapture attribute deduction for a call site return value.
5072 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5073   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5074       : AANoCaptureImpl(IRP, A) {}
5075 
5076   /// See AbstractAttribute::initialize(...).
5077   void initialize(Attributor &A) override {
5078     const Function *F = getAnchorScope();
5079     // Check what state the associated function can actually capture.
5080     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5081   }
5082 
5083   /// See AbstractAttribute::trackStatistics()
5084   void trackStatistics() const override {
5085     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5086   }
5087 };
5088 } // namespace
5089 
5090 /// ------------------ Value Simplify Attribute ----------------------------
5091 
5092 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5093   // FIXME: Add a typecast support.
5094   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5095       SimplifiedAssociatedValue, Other, Ty);
5096   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5097     return false;
5098 
5099   LLVM_DEBUG({
5100     if (SimplifiedAssociatedValue.hasValue())
5101       dbgs() << "[ValueSimplify] is assumed to be "
5102              << **SimplifiedAssociatedValue << "\n";
5103     else
5104       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5105   });
5106   return true;
5107 }
5108 
5109 namespace {
5110 struct AAValueSimplifyImpl : AAValueSimplify {
5111   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5112       : AAValueSimplify(IRP, A) {}
5113 
5114   /// See AbstractAttribute::initialize(...).
5115   void initialize(Attributor &A) override {
5116     if (getAssociatedValue().getType()->isVoidTy())
5117       indicatePessimisticFixpoint();
5118     if (A.hasSimplificationCallback(getIRPosition()))
5119       indicatePessimisticFixpoint();
5120   }
5121 
5122   /// See AbstractAttribute::getAsStr().
5123   const std::string getAsStr() const override {
5124     LLVM_DEBUG({
5125       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5126       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5127         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5128     });
5129     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5130                           : "not-simple";
5131   }
5132 
5133   /// See AbstractAttribute::trackStatistics()
5134   void trackStatistics() const override {}
5135 
5136   /// See AAValueSimplify::getAssumedSimplifiedValue()
5137   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5138     return SimplifiedAssociatedValue;
5139   }
5140 
5141   /// Return a value we can use as replacement for the associated one, or
5142   /// nullptr if we don't have one that makes sense.
5143   Value *getReplacementValue(Attributor &A) const {
5144     Value *NewV;
5145     NewV = SimplifiedAssociatedValue.hasValue()
5146                ? SimplifiedAssociatedValue.getValue()
5147                : UndefValue::get(getAssociatedType());
5148     if (!NewV)
5149       return nullptr;
5150     NewV = AA::getWithType(*NewV, *getAssociatedType());
5151     if (!NewV || NewV == &getAssociatedValue())
5152       return nullptr;
5153     const Instruction *CtxI = getCtxI();
5154     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5155       return nullptr;
5156     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5157       return nullptr;
5158     return NewV;
5159   }
5160 
5161   /// Helper function for querying AAValueSimplify and updating candicate.
5162   /// \param IRP The value position we are trying to unify with SimplifiedValue
5163   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5164                       const IRPosition &IRP, bool Simplify = true) {
5165     bool UsedAssumedInformation = false;
5166     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5167     if (Simplify)
5168       QueryingValueSimplified =
5169           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5170     return unionAssumed(QueryingValueSimplified);
5171   }
5172 
5173   /// Returns a candidate is found or not
5174   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5175     if (!getAssociatedValue().getType()->isIntegerTy())
5176       return false;
5177 
5178     // This will also pass the call base context.
5179     const auto &AA =
5180         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5181 
5182     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5183 
5184     if (!COpt.hasValue()) {
5185       SimplifiedAssociatedValue = llvm::None;
5186       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5187       return true;
5188     }
5189     if (auto *C = COpt.getValue()) {
5190       SimplifiedAssociatedValue = C;
5191       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5192       return true;
5193     }
5194     return false;
5195   }
5196 
5197   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5198     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5199       return true;
5200     if (askSimplifiedValueFor<AAPotentialValues>(A))
5201       return true;
5202     return false;
5203   }
5204 
5205   /// See AbstractAttribute::manifest(...).
5206   ChangeStatus manifest(Attributor &A) override {
5207     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5208     if (getAssociatedValue().user_empty())
5209       return Changed;
5210 
5211     if (auto *NewV = getReplacementValue(A)) {
5212       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5213                         << *NewV << " :: " << *this << "\n");
5214       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5215         Changed = ChangeStatus::CHANGED;
5216     }
5217 
5218     return Changed | AAValueSimplify::manifest(A);
5219   }
5220 
5221   /// See AbstractState::indicatePessimisticFixpoint(...).
5222   ChangeStatus indicatePessimisticFixpoint() override {
5223     SimplifiedAssociatedValue = &getAssociatedValue();
5224     return AAValueSimplify::indicatePessimisticFixpoint();
5225   }
5226 
5227   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5228                          LoadInst &L, function_ref<bool(Value &)> Union) {
5229     auto UnionWrapper = [&](Value &V, Value &Obj) {
5230       if (isa<AllocaInst>(Obj))
5231         return Union(V);
5232       if (!AA::isDynamicallyUnique(A, AA, V))
5233         return false;
5234       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5235         return false;
5236       return Union(V);
5237     };
5238 
5239     Value &Ptr = *L.getPointerOperand();
5240     SmallVector<Value *, 8> Objects;
5241     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5242       return false;
5243 
5244     const auto *TLI =
5245         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5246     for (Value *Obj : Objects) {
5247       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5248       if (isa<UndefValue>(Obj))
5249         continue;
5250       if (isa<ConstantPointerNull>(Obj)) {
5251         // A null pointer access can be undefined but any offset from null may
5252         // be OK. We do not try to optimize the latter.
5253         bool UsedAssumedInformation = false;
5254         if (!NullPointerIsDefined(L.getFunction(),
5255                                   Ptr.getType()->getPointerAddressSpace()) &&
5256             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5257           continue;
5258         return false;
5259       }
5260       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5261       if (!InitialVal || !Union(*InitialVal))
5262         return false;
5263 
5264       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5265                            "propagation, checking accesses next.\n");
5266 
5267       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5268         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5269         if (!Acc.isWrite())
5270           return true;
5271         if (Acc.isWrittenValueYetUndetermined())
5272           return true;
5273         Value *Content = Acc.getWrittenValue();
5274         if (!Content)
5275           return false;
5276         Value *CastedContent =
5277             AA::getWithType(*Content, *AA.getAssociatedType());
5278         if (!CastedContent)
5279           return false;
5280         if (IsExact)
5281           return UnionWrapper(*CastedContent, *Obj);
5282         if (auto *C = dyn_cast<Constant>(CastedContent))
5283           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5284             return UnionWrapper(*CastedContent, *Obj);
5285         return false;
5286       };
5287 
5288       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5289                                            DepClassTy::REQUIRED);
5290       if (!PI.forallInterferingAccesses(L, CheckAccess))
5291         return false;
5292     }
5293     return true;
5294   }
5295 };
5296 
5297 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5298   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5299       : AAValueSimplifyImpl(IRP, A) {}
5300 
5301   void initialize(Attributor &A) override {
5302     AAValueSimplifyImpl::initialize(A);
5303     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5304       indicatePessimisticFixpoint();
5305     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5306                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5307                 /* IgnoreSubsumingPositions */ true))
5308       indicatePessimisticFixpoint();
5309 
5310     // FIXME: This is a hack to prevent us from propagating function poiner in
5311     // the new pass manager CGSCC pass as it creates call edges the
5312     // CallGraphUpdater cannot handle yet.
5313     Value &V = getAssociatedValue();
5314     if (V.getType()->isPointerTy() &&
5315         V.getType()->getPointerElementType()->isFunctionTy() &&
5316         !A.isModulePass())
5317       indicatePessimisticFixpoint();
5318   }
5319 
5320   /// See AbstractAttribute::updateImpl(...).
5321   ChangeStatus updateImpl(Attributor &A) override {
5322     // Byval is only replacable if it is readonly otherwise we would write into
5323     // the replaced value and not the copy that byval creates implicitly.
5324     Argument *Arg = getAssociatedArgument();
5325     if (Arg->hasByValAttr()) {
5326       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5327       //       there is no race by not copying a constant byval.
5328       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5329                                                        DepClassTy::REQUIRED);
5330       if (!MemAA.isAssumedReadOnly())
5331         return indicatePessimisticFixpoint();
5332     }
5333 
5334     auto Before = SimplifiedAssociatedValue;
5335 
5336     auto PredForCallSite = [&](AbstractCallSite ACS) {
5337       const IRPosition &ACSArgPos =
5338           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5339       // Check if a coresponding argument was found or if it is on not
5340       // associated (which can happen for callback calls).
5341       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5342         return false;
5343 
5344       // Simplify the argument operand explicitly and check if the result is
5345       // valid in the current scope. This avoids refering to simplified values
5346       // in other functions, e.g., we don't want to say a an argument in a
5347       // static function is actually an argument in a different function.
5348       bool UsedAssumedInformation = false;
5349       Optional<Constant *> SimpleArgOp =
5350           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5351       if (!SimpleArgOp.hasValue())
5352         return true;
5353       if (!SimpleArgOp.getValue())
5354         return false;
5355       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5356         return false;
5357       return unionAssumed(*SimpleArgOp);
5358     };
5359 
5360     // Generate a answer specific to a call site context.
5361     bool Success;
5362     bool AllCallSitesKnown;
5363     if (hasCallBaseContext() &&
5364         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5365       Success = PredForCallSite(
5366           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5367     else
5368       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5369                                        AllCallSitesKnown);
5370 
5371     if (!Success)
5372       if (!askSimplifiedValueForOtherAAs(A))
5373         return indicatePessimisticFixpoint();
5374 
5375     // If a candicate was found in this update, return CHANGED.
5376     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5377                                                : ChangeStatus ::CHANGED;
5378   }
5379 
5380   /// See AbstractAttribute::trackStatistics()
5381   void trackStatistics() const override {
5382     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5383   }
5384 };
5385 
5386 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5387   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5388       : AAValueSimplifyImpl(IRP, A) {}
5389 
5390   /// See AAValueSimplify::getAssumedSimplifiedValue()
5391   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5392     if (!isValidState())
5393       return nullptr;
5394     return SimplifiedAssociatedValue;
5395   }
5396 
5397   /// See AbstractAttribute::updateImpl(...).
5398   ChangeStatus updateImpl(Attributor &A) override {
5399     auto Before = SimplifiedAssociatedValue;
5400 
5401     auto PredForReturned = [&](Value &V) {
5402       return checkAndUpdate(A, *this,
5403                             IRPosition::value(V, getCallBaseContext()));
5404     };
5405 
5406     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5407       if (!askSimplifiedValueForOtherAAs(A))
5408         return indicatePessimisticFixpoint();
5409 
5410     // If a candicate was found in this update, return CHANGED.
5411     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5412                                                : ChangeStatus ::CHANGED;
5413   }
5414 
5415   ChangeStatus manifest(Attributor &A) override {
5416     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5417 
5418     if (auto *NewV = getReplacementValue(A)) {
5419       auto PredForReturned =
5420           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5421             for (ReturnInst *RI : RetInsts) {
5422               Value *ReturnedVal = RI->getReturnValue();
5423               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5424                 return true;
5425               assert(RI->getFunction() == getAnchorScope() &&
5426                      "ReturnInst in wrong function!");
5427               LLVM_DEBUG(dbgs()
5428                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5429                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5430               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5431                 Changed = ChangeStatus::CHANGED;
5432             }
5433             return true;
5434           };
5435       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5436     }
5437 
5438     return Changed | AAValueSimplify::manifest(A);
5439   }
5440 
5441   /// See AbstractAttribute::trackStatistics()
5442   void trackStatistics() const override {
5443     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5444   }
5445 };
5446 
5447 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5448   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5449       : AAValueSimplifyImpl(IRP, A) {}
5450 
5451   /// See AbstractAttribute::initialize(...).
5452   void initialize(Attributor &A) override {
5453     AAValueSimplifyImpl::initialize(A);
5454     Value &V = getAnchorValue();
5455 
5456     // TODO: add other stuffs
5457     if (isa<Constant>(V))
5458       indicatePessimisticFixpoint();
5459   }
5460 
5461   /// Check if \p Cmp is a comparison we can simplify.
5462   ///
5463   /// We handle multiple cases, one in which at least one operand is an
5464   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5465   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5466   /// will be updated.
5467   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5468     auto Union = [&](Value &V) {
5469       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5470           SimplifiedAssociatedValue, &V, V.getType());
5471       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5472     };
5473 
5474     Value *LHS = Cmp.getOperand(0);
5475     Value *RHS = Cmp.getOperand(1);
5476 
5477     // Simplify the operands first.
5478     bool UsedAssumedInformation = false;
5479     const auto &SimplifiedLHS =
5480         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5481                                *this, UsedAssumedInformation);
5482     if (!SimplifiedLHS.hasValue())
5483       return true;
5484     if (!SimplifiedLHS.getValue())
5485       return false;
5486     LHS = *SimplifiedLHS;
5487 
5488     const auto &SimplifiedRHS =
5489         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5490                                *this, UsedAssumedInformation);
5491     if (!SimplifiedRHS.hasValue())
5492       return true;
5493     if (!SimplifiedRHS.getValue())
5494       return false;
5495     RHS = *SimplifiedRHS;
5496 
5497     LLVMContext &Ctx = Cmp.getContext();
5498     // Handle the trivial case first in which we don't even need to think about
5499     // null or non-null.
5500     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5501       Constant *NewVal =
5502           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5503       if (!Union(*NewVal))
5504         return false;
5505       if (!UsedAssumedInformation)
5506         indicateOptimisticFixpoint();
5507       return true;
5508     }
5509 
5510     // From now on we only handle equalities (==, !=).
5511     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5512     if (!ICmp || !ICmp->isEquality())
5513       return false;
5514 
5515     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5516     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5517     if (!LHSIsNull && !RHSIsNull)
5518       return false;
5519 
5520     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5521     // non-nullptr operand and if we assume it's non-null we can conclude the
5522     // result of the comparison.
5523     assert((LHSIsNull || RHSIsNull) &&
5524            "Expected nullptr versus non-nullptr comparison at this point");
5525 
5526     // The index is the operand that we assume is not null.
5527     unsigned PtrIdx = LHSIsNull;
5528     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5529         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5530         DepClassTy::REQUIRED);
5531     if (!PtrNonNullAA.isAssumedNonNull())
5532       return false;
5533     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5534 
5535     // The new value depends on the predicate, true for != and false for ==.
5536     Constant *NewVal = ConstantInt::get(
5537         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5538     if (!Union(*NewVal))
5539       return false;
5540 
5541     if (!UsedAssumedInformation)
5542       indicateOptimisticFixpoint();
5543 
5544     return true;
5545   }
5546 
5547   bool updateWithLoad(Attributor &A, LoadInst &L) {
5548     auto Union = [&](Value &V) {
5549       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5550           SimplifiedAssociatedValue, &V, L.getType());
5551       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5552     };
5553     return handleLoad(A, *this, L, Union);
5554   }
5555 
5556   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5557   /// simplify any operand of the instruction \p I. Return true if successful,
5558   /// in that case SimplifiedAssociatedValue will be updated.
5559   bool handleGenericInst(Attributor &A, Instruction &I) {
5560     bool SomeSimplified = false;
5561     bool UsedAssumedInformation = false;
5562 
5563     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5564     int Idx = 0;
5565     for (Value *Op : I.operands()) {
5566       const auto &SimplifiedOp =
5567           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5568                                  *this, UsedAssumedInformation);
5569       // If we are not sure about any operand we are not sure about the entire
5570       // instruction, we'll wait.
5571       if (!SimplifiedOp.hasValue())
5572         return true;
5573 
5574       if (SimplifiedOp.getValue())
5575         NewOps[Idx] = SimplifiedOp.getValue();
5576       else
5577         NewOps[Idx] = Op;
5578 
5579       SomeSimplified |= (NewOps[Idx] != Op);
5580       ++Idx;
5581     }
5582 
5583     // We won't bother with the InstSimplify interface if we didn't simplify any
5584     // operand ourselves.
5585     if (!SomeSimplified)
5586       return false;
5587 
5588     InformationCache &InfoCache = A.getInfoCache();
5589     Function *F = I.getFunction();
5590     const auto *DT =
5591         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5592     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5593     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5594     OptimizationRemarkEmitter *ORE = nullptr;
5595 
5596     const DataLayout &DL = I.getModule()->getDataLayout();
5597     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5598     if (Value *SimplifiedI =
5599             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5600       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5601           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5602       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5603     }
5604     return false;
5605   }
5606 
5607   /// See AbstractAttribute::updateImpl(...).
5608   ChangeStatus updateImpl(Attributor &A) override {
5609     auto Before = SimplifiedAssociatedValue;
5610 
5611     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5612                             bool Stripped) -> bool {
5613       auto &AA = A.getAAFor<AAValueSimplify>(
5614           *this, IRPosition::value(V, getCallBaseContext()),
5615           DepClassTy::REQUIRED);
5616       if (!Stripped && this == &AA) {
5617 
5618         if (auto *I = dyn_cast<Instruction>(&V)) {
5619           if (auto *LI = dyn_cast<LoadInst>(&V))
5620             if (updateWithLoad(A, *LI))
5621               return true;
5622           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5623             if (handleCmp(A, *Cmp))
5624               return true;
5625           if (handleGenericInst(A, *I))
5626             return true;
5627         }
5628         // TODO: Look the instruction and check recursively.
5629 
5630         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5631                           << "\n");
5632         return false;
5633       }
5634       return checkAndUpdate(A, *this,
5635                             IRPosition::value(V, getCallBaseContext()));
5636     };
5637 
5638     bool Dummy = false;
5639     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5640                                      VisitValueCB, getCtxI(),
5641                                      /* UseValueSimplify */ false))
5642       if (!askSimplifiedValueForOtherAAs(A))
5643         return indicatePessimisticFixpoint();
5644 
5645     // If a candicate was found in this update, return CHANGED.
5646     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5647                                                : ChangeStatus ::CHANGED;
5648   }
5649 
5650   /// See AbstractAttribute::trackStatistics()
5651   void trackStatistics() const override {
5652     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5653   }
5654 };
5655 
5656 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5657   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5658       : AAValueSimplifyImpl(IRP, A) {}
5659 
5660   /// See AbstractAttribute::initialize(...).
5661   void initialize(Attributor &A) override {
5662     SimplifiedAssociatedValue = nullptr;
5663     indicateOptimisticFixpoint();
5664   }
5665   /// See AbstractAttribute::initialize(...).
5666   ChangeStatus updateImpl(Attributor &A) override {
5667     llvm_unreachable(
5668         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5669   }
5670   /// See AbstractAttribute::trackStatistics()
5671   void trackStatistics() const override {
5672     STATS_DECLTRACK_FN_ATTR(value_simplify)
5673   }
5674 };
5675 
5676 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5677   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5678       : AAValueSimplifyFunction(IRP, A) {}
5679   /// See AbstractAttribute::trackStatistics()
5680   void trackStatistics() const override {
5681     STATS_DECLTRACK_CS_ATTR(value_simplify)
5682   }
5683 };
5684 
5685 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5686   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5687       : AAValueSimplifyImpl(IRP, A) {}
5688 
5689   void initialize(Attributor &A) override {
5690     AAValueSimplifyImpl::initialize(A);
5691     if (!getAssociatedFunction())
5692       indicatePessimisticFixpoint();
5693   }
5694 
5695   /// See AbstractAttribute::updateImpl(...).
5696   ChangeStatus updateImpl(Attributor &A) override {
5697     auto Before = SimplifiedAssociatedValue;
5698     auto &RetAA = A.getAAFor<AAReturnedValues>(
5699         *this, IRPosition::function(*getAssociatedFunction()),
5700         DepClassTy::REQUIRED);
5701     auto PredForReturned =
5702         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5703           bool UsedAssumedInformation = false;
5704           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5705               &RetVal, *cast<CallBase>(getCtxI()), *this,
5706               UsedAssumedInformation);
5707           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5708               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5709           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5710         };
5711     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5712       if (!askSimplifiedValueForOtherAAs(A))
5713         return indicatePessimisticFixpoint();
5714     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5715                                                : ChangeStatus ::CHANGED;
5716   }
5717 
5718   void trackStatistics() const override {
5719     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5720   }
5721 };
5722 
5723 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5724   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5725       : AAValueSimplifyFloating(IRP, A) {}
5726 
5727   /// See AbstractAttribute::manifest(...).
5728   ChangeStatus manifest(Attributor &A) override {
5729     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5730 
5731     if (auto *NewV = getReplacementValue(A)) {
5732       Use &U = cast<CallBase>(&getAnchorValue())
5733                    ->getArgOperandUse(getCallSiteArgNo());
5734       if (A.changeUseAfterManifest(U, *NewV))
5735         Changed = ChangeStatus::CHANGED;
5736     }
5737 
5738     return Changed | AAValueSimplify::manifest(A);
5739   }
5740 
5741   void trackStatistics() const override {
5742     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5743   }
5744 };
5745 
5746 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5747 struct AAHeapToStackFunction final : public AAHeapToStack {
5748 
5749   struct AllocationInfo {
5750     /// The call that allocates the memory.
5751     CallBase *const CB;
5752 
5753     /// The library function id for the allocation.
5754     LibFunc LibraryFunctionId = NotLibFunc;
5755 
5756     /// The status wrt. a rewrite.
5757     enum {
5758       STACK_DUE_TO_USE,
5759       STACK_DUE_TO_FREE,
5760       INVALID,
5761     } Status = STACK_DUE_TO_USE;
5762 
5763     /// Flag to indicate if we encountered a use that might free this allocation
5764     /// but which is not in the deallocation infos.
5765     bool HasPotentiallyFreeingUnknownUses = false;
5766 
5767     /// The set of free calls that use this allocation.
5768     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5769   };
5770 
5771   struct DeallocationInfo {
5772     /// The call that deallocates the memory.
5773     CallBase *const CB;
5774 
5775     /// Flag to indicate if we don't know all objects this deallocation might
5776     /// free.
5777     bool MightFreeUnknownObjects = false;
5778 
5779     /// The set of allocation calls that are potentially freed.
5780     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5781   };
5782 
5783   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5784       : AAHeapToStack(IRP, A) {}
5785 
5786   ~AAHeapToStackFunction() {
5787     // Ensure we call the destructor so we release any memory allocated in the
5788     // sets.
5789     for (auto &It : AllocationInfos)
5790       It.getSecond()->~AllocationInfo();
5791     for (auto &It : DeallocationInfos)
5792       It.getSecond()->~DeallocationInfo();
5793   }
5794 
5795   void initialize(Attributor &A) override {
5796     AAHeapToStack::initialize(A);
5797 
5798     const Function *F = getAnchorScope();
5799     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5800 
5801     auto AllocationIdentifierCB = [&](Instruction &I) {
5802       CallBase *CB = dyn_cast<CallBase>(&I);
5803       if (!CB)
5804         return true;
5805       if (isFreeCall(CB, TLI)) {
5806         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5807         return true;
5808       }
5809       // To do heap to stack, we need to know that the allocation itself is
5810       // removable once uses are rewritten, and that we can initialize the
5811       // alloca to the same pattern as the original allocation result.
5812       if (isAllocationFn(CB, TLI) && isAllocRemovable(CB, TLI)) {
5813         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5814         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5815           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5816           AllocationInfos[CB] = AI;
5817           TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5818         }
5819       }
5820       return true;
5821     };
5822 
5823     bool UsedAssumedInformation = false;
5824     bool Success = A.checkForAllCallLikeInstructions(
5825         AllocationIdentifierCB, *this, UsedAssumedInformation,
5826         /* CheckBBLivenessOnly */ false,
5827         /* CheckPotentiallyDead */ true);
5828     (void)Success;
5829     assert(Success && "Did not expect the call base visit callback to fail!");
5830   }
5831 
5832   const std::string getAsStr() const override {
5833     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5834     for (const auto &It : AllocationInfos) {
5835       if (It.second->Status == AllocationInfo::INVALID)
5836         ++NumInvalidMallocs;
5837       else
5838         ++NumH2SMallocs;
5839     }
5840     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5841            std::to_string(NumInvalidMallocs);
5842   }
5843 
5844   /// See AbstractAttribute::trackStatistics().
5845   void trackStatistics() const override {
5846     STATS_DECL(
5847         MallocCalls, Function,
5848         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5849     for (auto &It : AllocationInfos)
5850       if (It.second->Status != AllocationInfo::INVALID)
5851         ++BUILD_STAT_NAME(MallocCalls, Function);
5852   }
5853 
5854   bool isAssumedHeapToStack(const CallBase &CB) const override {
5855     if (isValidState())
5856       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5857         return AI->Status != AllocationInfo::INVALID;
5858     return false;
5859   }
5860 
5861   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5862     if (!isValidState())
5863       return false;
5864 
5865     for (auto &It : AllocationInfos) {
5866       AllocationInfo &AI = *It.second;
5867       if (AI.Status == AllocationInfo::INVALID)
5868         continue;
5869 
5870       if (AI.PotentialFreeCalls.count(&CB))
5871         return true;
5872     }
5873 
5874     return false;
5875   }
5876 
5877   ChangeStatus manifest(Attributor &A) override {
5878     assert(getState().isValidState() &&
5879            "Attempted to manifest an invalid state!");
5880 
5881     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5882     Function *F = getAnchorScope();
5883     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5884 
5885     for (auto &It : AllocationInfos) {
5886       AllocationInfo &AI = *It.second;
5887       if (AI.Status == AllocationInfo::INVALID)
5888         continue;
5889 
5890       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5891         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5892         A.deleteAfterManifest(*FreeCall);
5893         HasChanged = ChangeStatus::CHANGED;
5894       }
5895 
5896       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5897                         << "\n");
5898 
5899       auto Remark = [&](OptimizationRemark OR) {
5900         LibFunc IsAllocShared;
5901         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5902           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5903             return OR << "Moving globalized variable to the stack.";
5904         return OR << "Moving memory allocation from the heap to the stack.";
5905       };
5906       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5907         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5908       else
5909         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5910 
5911       Value *Size;
5912       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5913       if (SizeAPI.hasValue()) {
5914         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5915       } else {
5916         LLVMContext &Ctx = AI.CB->getContext();
5917         auto &DL = A.getInfoCache().getDL();
5918         ObjectSizeOpts Opts;
5919         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
5920         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
5921         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
5922                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
5923         Size = SizeOffsetPair.first;
5924       }
5925 
5926       Align Alignment(1);
5927       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5928         Alignment = max(Alignment, RetAlign);
5929       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
5930         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
5931         assert(AlignmentAPI.hasValue() &&
5932                "Expected an alignment during manifest!");
5933         Alignment =
5934             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5935       }
5936 
5937       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5938       Instruction *Alloca =
5939           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5940                          "", AI.CB->getNextNode());
5941 
5942       if (Alloca->getType() != AI.CB->getType())
5943         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5944                                  Alloca->getNextNode());
5945 
5946       auto *I8Ty = Type::getInt8Ty(F->getContext());
5947       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
5948       assert(InitVal &&
5949              "Must be able to materialize initial memory state of allocation");
5950 
5951       A.changeValueAfterManifest(*AI.CB, *Alloca);
5952 
5953       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5954         auto *NBB = II->getNormalDest();
5955         BranchInst::Create(NBB, AI.CB->getParent());
5956         A.deleteAfterManifest(*AI.CB);
5957       } else {
5958         A.deleteAfterManifest(*AI.CB);
5959       }
5960 
5961       // Initialize the alloca with the same value as used by the allocation
5962       // function.  We can skip undef as the initial value of an alloc is
5963       // undef, and the memset would simply end up being DSEd.
5964       if (!isa<UndefValue>(InitVal)) {
5965         IRBuilder<> Builder(Alloca->getNextNode());
5966         // TODO: Use alignment above if align!=1
5967         Builder.CreateMemSet(Alloca, InitVal, Size, None);
5968       }
5969       HasChanged = ChangeStatus::CHANGED;
5970     }
5971 
5972     return HasChanged;
5973   }
5974 
5975   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5976                            Value &V) {
5977     bool UsedAssumedInformation = false;
5978     Optional<Constant *> SimpleV =
5979         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5980     if (!SimpleV.hasValue())
5981       return APInt(64, 0);
5982     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5983       return CI->getValue();
5984     return llvm::None;
5985   }
5986 
5987   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5988                           AllocationInfo &AI) {
5989     auto Mapper = [&](const Value *V) -> const Value * {
5990       bool UsedAssumedInformation = false;
5991       if (Optional<Constant *> SimpleV =
5992               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
5993         if (*SimpleV)
5994           return *SimpleV;
5995       return V;
5996     };
5997 
5998     const Function *F = getAnchorScope();
5999     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6000     return getAllocSize(AI.CB, TLI, Mapper);
6001   }
6002 
6003   /// Collection of all malloc-like calls in a function with associated
6004   /// information.
6005   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6006 
6007   /// Collection of all free-like calls in a function with associated
6008   /// information.
6009   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6010 
6011   ChangeStatus updateImpl(Attributor &A) override;
6012 };
6013 
6014 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6015   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6016   const Function *F = getAnchorScope();
6017   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6018 
6019   const auto &LivenessAA =
6020       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6021 
6022   MustBeExecutedContextExplorer &Explorer =
6023       A.getInfoCache().getMustBeExecutedContextExplorer();
6024 
6025   bool StackIsAccessibleByOtherThreads =
6026       A.getInfoCache().stackIsAccessibleByOtherThreads();
6027 
6028   // Flag to ensure we update our deallocation information at most once per
6029   // updateImpl call and only if we use the free check reasoning.
6030   bool HasUpdatedFrees = false;
6031 
6032   auto UpdateFrees = [&]() {
6033     HasUpdatedFrees = true;
6034 
6035     for (auto &It : DeallocationInfos) {
6036       DeallocationInfo &DI = *It.second;
6037       // For now we cannot use deallocations that have unknown inputs, skip
6038       // them.
6039       if (DI.MightFreeUnknownObjects)
6040         continue;
6041 
6042       // No need to analyze dead calls, ignore them instead.
6043       bool UsedAssumedInformation = false;
6044       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6045                           /* CheckBBLivenessOnly */ true))
6046         continue;
6047 
6048       // Use the optimistic version to get the freed objects, ignoring dead
6049       // branches etc.
6050       SmallVector<Value *, 8> Objects;
6051       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6052                                            *this, DI.CB)) {
6053         LLVM_DEBUG(
6054             dbgs()
6055             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6056         DI.MightFreeUnknownObjects = true;
6057         continue;
6058       }
6059 
6060       // Check each object explicitly.
6061       for (auto *Obj : Objects) {
6062         // Free of null and undef can be ignored as no-ops (or UB in the latter
6063         // case).
6064         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6065           continue;
6066 
6067         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6068         if (!ObjCB) {
6069           LLVM_DEBUG(dbgs()
6070                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6071           DI.MightFreeUnknownObjects = true;
6072           continue;
6073         }
6074 
6075         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6076         if (!AI) {
6077           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6078                             << "\n");
6079           DI.MightFreeUnknownObjects = true;
6080           continue;
6081         }
6082 
6083         DI.PotentialAllocationCalls.insert(ObjCB);
6084       }
6085     }
6086   };
6087 
6088   auto FreeCheck = [&](AllocationInfo &AI) {
6089     // If the stack is not accessible by other threads, the "must-free" logic
6090     // doesn't apply as the pointer could be shared and needs to be places in
6091     // "shareable" memory.
6092     if (!StackIsAccessibleByOtherThreads) {
6093       auto &NoSyncAA =
6094           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6095       if (!NoSyncAA.isAssumedNoSync()) {
6096         LLVM_DEBUG(
6097             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6098                       "other threads and function is not nosync:\n");
6099         return false;
6100       }
6101     }
6102     if (!HasUpdatedFrees)
6103       UpdateFrees();
6104 
6105     // TODO: Allow multi exit functions that have different free calls.
6106     if (AI.PotentialFreeCalls.size() != 1) {
6107       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6108                         << AI.PotentialFreeCalls.size() << "\n");
6109       return false;
6110     }
6111     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6112     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6113     if (!DI) {
6114       LLVM_DEBUG(
6115           dbgs() << "[H2S] unique free call was not known as deallocation call "
6116                  << *UniqueFree << "\n");
6117       return false;
6118     }
6119     if (DI->MightFreeUnknownObjects) {
6120       LLVM_DEBUG(
6121           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6122       return false;
6123     }
6124     if (DI->PotentialAllocationCalls.size() > 1) {
6125       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6126                         << DI->PotentialAllocationCalls.size()
6127                         << " different allocations\n");
6128       return false;
6129     }
6130     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6131       LLVM_DEBUG(
6132           dbgs()
6133           << "[H2S] unique free call not known to free this allocation but "
6134           << **DI->PotentialAllocationCalls.begin() << "\n");
6135       return false;
6136     }
6137     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6138     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6139       LLVM_DEBUG(
6140           dbgs()
6141           << "[H2S] unique free call might not be executed with the allocation "
6142           << *UniqueFree << "\n");
6143       return false;
6144     }
6145     return true;
6146   };
6147 
6148   auto UsesCheck = [&](AllocationInfo &AI) {
6149     bool ValidUsesOnly = true;
6150 
6151     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6152       Instruction *UserI = cast<Instruction>(U.getUser());
6153       if (isa<LoadInst>(UserI))
6154         return true;
6155       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6156         if (SI->getValueOperand() == U.get()) {
6157           LLVM_DEBUG(dbgs()
6158                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6159           ValidUsesOnly = false;
6160         } else {
6161           // A store into the malloc'ed memory is fine.
6162         }
6163         return true;
6164       }
6165       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6166         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6167           return true;
6168         if (DeallocationInfos.count(CB)) {
6169           AI.PotentialFreeCalls.insert(CB);
6170           return true;
6171         }
6172 
6173         unsigned ArgNo = CB->getArgOperandNo(&U);
6174 
6175         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6176             *this, IRPosition::callsite_argument(*CB, ArgNo),
6177             DepClassTy::OPTIONAL);
6178 
6179         // If a call site argument use is nofree, we are fine.
6180         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6181             *this, IRPosition::callsite_argument(*CB, ArgNo),
6182             DepClassTy::OPTIONAL);
6183 
6184         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6185         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6186         if (MaybeCaptured ||
6187             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6188              MaybeFreed)) {
6189           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6190 
6191           // Emit a missed remark if this is missed OpenMP globalization.
6192           auto Remark = [&](OptimizationRemarkMissed ORM) {
6193             return ORM
6194                    << "Could not move globalized variable to the stack. "
6195                       "Variable is potentially captured in call. Mark "
6196                       "parameter as `__attribute__((noescape))` to override.";
6197           };
6198 
6199           if (ValidUsesOnly &&
6200               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6201             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6202 
6203           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6204           ValidUsesOnly = false;
6205         }
6206         return true;
6207       }
6208 
6209       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6210           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6211         Follow = true;
6212         return true;
6213       }
6214       // Unknown user for which we can not track uses further (in a way that
6215       // makes sense).
6216       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6217       ValidUsesOnly = false;
6218       return true;
6219     };
6220     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6221       return false;
6222     return ValidUsesOnly;
6223   };
6224 
6225   // The actual update starts here. We look at all allocations and depending on
6226   // their status perform the appropriate check(s).
6227   for (auto &It : AllocationInfos) {
6228     AllocationInfo &AI = *It.second;
6229     if (AI.Status == AllocationInfo::INVALID)
6230       continue;
6231 
6232     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6233       if (!getAPInt(A, *this, *Align)) {
6234         // Can't generate an alloca which respects the required alignment
6235         // on the allocation.
6236         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6237                           << "\n");
6238         AI.Status = AllocationInfo::INVALID;
6239         Changed = ChangeStatus::CHANGED;
6240         continue;
6241       }
6242     }
6243 
6244     if (MaxHeapToStackSize != -1) {
6245       Optional<APInt> Size = getSize(A, *this, AI);
6246       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6247         LLVM_DEBUG({
6248           if (!Size.hasValue())
6249             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6250           else
6251             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6252                    << MaxHeapToStackSize << "\n";
6253         });
6254 
6255         AI.Status = AllocationInfo::INVALID;
6256         Changed = ChangeStatus::CHANGED;
6257         continue;
6258       }
6259     }
6260 
6261     switch (AI.Status) {
6262     case AllocationInfo::STACK_DUE_TO_USE:
6263       if (UsesCheck(AI))
6264         continue;
6265       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6266       LLVM_FALLTHROUGH;
6267     case AllocationInfo::STACK_DUE_TO_FREE:
6268       if (FreeCheck(AI))
6269         continue;
6270       AI.Status = AllocationInfo::INVALID;
6271       Changed = ChangeStatus::CHANGED;
6272       continue;
6273     case AllocationInfo::INVALID:
6274       llvm_unreachable("Invalid allocations should never reach this point!");
6275     };
6276   }
6277 
6278   return Changed;
6279 }
6280 
6281 /// ----------------------- Privatizable Pointers ------------------------------
6282 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6283   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6284       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6285 
6286   ChangeStatus indicatePessimisticFixpoint() override {
6287     AAPrivatizablePtr::indicatePessimisticFixpoint();
6288     PrivatizableType = nullptr;
6289     return ChangeStatus::CHANGED;
6290   }
6291 
6292   /// Identify the type we can chose for a private copy of the underlying
6293   /// argument. None means it is not clear yet, nullptr means there is none.
6294   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6295 
6296   /// Return a privatizable type that encloses both T0 and T1.
6297   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6298   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6299     if (!T0.hasValue())
6300       return T1;
6301     if (!T1.hasValue())
6302       return T0;
6303     if (T0 == T1)
6304       return T0;
6305     return nullptr;
6306   }
6307 
6308   Optional<Type *> getPrivatizableType() const override {
6309     return PrivatizableType;
6310   }
6311 
6312   const std::string getAsStr() const override {
6313     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6314   }
6315 
6316 protected:
6317   Optional<Type *> PrivatizableType;
6318 };
6319 
6320 // TODO: Do this for call site arguments (probably also other values) as well.
6321 
6322 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6323   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6324       : AAPrivatizablePtrImpl(IRP, A) {}
6325 
6326   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6327   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6328     // If this is a byval argument and we know all the call sites (so we can
6329     // rewrite them), there is no need to check them explicitly.
6330     bool AllCallSitesKnown;
6331     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6332         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6333                                true, AllCallSitesKnown))
6334       return getAssociatedValue().getType()->getPointerElementType();
6335 
6336     Optional<Type *> Ty;
6337     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6338 
6339     // Make sure the associated call site argument has the same type at all call
6340     // sites and it is an allocation we know is safe to privatize, for now that
6341     // means we only allow alloca instructions.
6342     // TODO: We can additionally analyze the accesses in the callee to  create
6343     //       the type from that information instead. That is a little more
6344     //       involved and will be done in a follow up patch.
6345     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6346       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6347       // Check if a coresponding argument was found or if it is one not
6348       // associated (which can happen for callback calls).
6349       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6350         return false;
6351 
6352       // Check that all call sites agree on a type.
6353       auto &PrivCSArgAA =
6354           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6355       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6356 
6357       LLVM_DEBUG({
6358         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6359         if (CSTy.hasValue() && CSTy.getValue())
6360           CSTy.getValue()->print(dbgs());
6361         else if (CSTy.hasValue())
6362           dbgs() << "<nullptr>";
6363         else
6364           dbgs() << "<none>";
6365       });
6366 
6367       Ty = combineTypes(Ty, CSTy);
6368 
6369       LLVM_DEBUG({
6370         dbgs() << " : New Type: ";
6371         if (Ty.hasValue() && Ty.getValue())
6372           Ty.getValue()->print(dbgs());
6373         else if (Ty.hasValue())
6374           dbgs() << "<nullptr>";
6375         else
6376           dbgs() << "<none>";
6377         dbgs() << "\n";
6378       });
6379 
6380       return !Ty.hasValue() || Ty.getValue();
6381     };
6382 
6383     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6384       return nullptr;
6385     return Ty;
6386   }
6387 
6388   /// See AbstractAttribute::updateImpl(...).
6389   ChangeStatus updateImpl(Attributor &A) override {
6390     PrivatizableType = identifyPrivatizableType(A);
6391     if (!PrivatizableType.hasValue())
6392       return ChangeStatus::UNCHANGED;
6393     if (!PrivatizableType.getValue())
6394       return indicatePessimisticFixpoint();
6395 
6396     // The dependence is optional so we don't give up once we give up on the
6397     // alignment.
6398     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6399                         DepClassTy::OPTIONAL);
6400 
6401     // Avoid arguments with padding for now.
6402     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6403         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6404                                                 A.getInfoCache().getDL())) {
6405       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6406       return indicatePessimisticFixpoint();
6407     }
6408 
6409     // Collect the types that will replace the privatizable type in the function
6410     // signature.
6411     SmallVector<Type *, 16> ReplacementTypes;
6412     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6413 
6414     // Verify callee and caller agree on how the promoted argument would be
6415     // passed.
6416     Function &Fn = *getIRPosition().getAnchorScope();
6417     const auto *TTI =
6418         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6419     if (!TTI) {
6420       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6421                         << Fn.getName() << "\n");
6422       return indicatePessimisticFixpoint();
6423     }
6424 
6425     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6426       CallBase *CB = ACS.getInstruction();
6427       return TTI->areTypesABICompatible(
6428           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6429     };
6430     bool AllCallSitesKnown;
6431     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6432                                 AllCallSitesKnown)) {
6433       LLVM_DEBUG(
6434           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6435                  << Fn.getName() << "\n");
6436       return indicatePessimisticFixpoint();
6437     }
6438 
6439     // Register a rewrite of the argument.
6440     Argument *Arg = getAssociatedArgument();
6441     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6442       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6443       return indicatePessimisticFixpoint();
6444     }
6445 
6446     unsigned ArgNo = Arg->getArgNo();
6447 
6448     // Helper to check if for the given call site the associated argument is
6449     // passed to a callback where the privatization would be different.
6450     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6451       SmallVector<const Use *, 4> CallbackUses;
6452       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6453       for (const Use *U : CallbackUses) {
6454         AbstractCallSite CBACS(U);
6455         assert(CBACS && CBACS.isCallbackCall());
6456         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6457           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6458 
6459           LLVM_DEBUG({
6460             dbgs()
6461                 << "[AAPrivatizablePtr] Argument " << *Arg
6462                 << "check if can be privatized in the context of its parent ("
6463                 << Arg->getParent()->getName()
6464                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6465                    "callback ("
6466                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6467                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6468                 << CBACS.getCallArgOperand(CBArg) << " vs "
6469                 << CB.getArgOperand(ArgNo) << "\n"
6470                 << "[AAPrivatizablePtr] " << CBArg << " : "
6471                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6472           });
6473 
6474           if (CBArgNo != int(ArgNo))
6475             continue;
6476           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6477               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6478           if (CBArgPrivAA.isValidState()) {
6479             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6480             if (!CBArgPrivTy.hasValue())
6481               continue;
6482             if (CBArgPrivTy.getValue() == PrivatizableType)
6483               continue;
6484           }
6485 
6486           LLVM_DEBUG({
6487             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6488                    << " cannot be privatized in the context of its parent ("
6489                    << Arg->getParent()->getName()
6490                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6491                       "callback ("
6492                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6493                    << ").\n[AAPrivatizablePtr] for which the argument "
6494                       "privatization is not compatible.\n";
6495           });
6496           return false;
6497         }
6498       }
6499       return true;
6500     };
6501 
6502     // Helper to check if for the given call site the associated argument is
6503     // passed to a direct call where the privatization would be different.
6504     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6505       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6506       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6507       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6508              "Expected a direct call operand for callback call operand");
6509 
6510       LLVM_DEBUG({
6511         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6512                << " check if be privatized in the context of its parent ("
6513                << Arg->getParent()->getName()
6514                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6515                   "direct call of ("
6516                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6517                << ").\n";
6518       });
6519 
6520       Function *DCCallee = DC->getCalledFunction();
6521       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6522         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6523             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6524             DepClassTy::REQUIRED);
6525         if (DCArgPrivAA.isValidState()) {
6526           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6527           if (!DCArgPrivTy.hasValue())
6528             return true;
6529           if (DCArgPrivTy.getValue() == PrivatizableType)
6530             return true;
6531         }
6532       }
6533 
6534       LLVM_DEBUG({
6535         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6536                << " cannot be privatized in the context of its parent ("
6537                << Arg->getParent()->getName()
6538                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6539                   "direct call of ("
6540                << ACS.getInstruction()->getCalledFunction()->getName()
6541                << ").\n[AAPrivatizablePtr] for which the argument "
6542                   "privatization is not compatible.\n";
6543       });
6544       return false;
6545     };
6546 
6547     // Helper to check if the associated argument is used at the given abstract
6548     // call site in a way that is incompatible with the privatization assumed
6549     // here.
6550     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6551       if (ACS.isDirectCall())
6552         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6553       if (ACS.isCallbackCall())
6554         return IsCompatiblePrivArgOfDirectCS(ACS);
6555       return false;
6556     };
6557 
6558     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6559                                 AllCallSitesKnown))
6560       return indicatePessimisticFixpoint();
6561 
6562     return ChangeStatus::UNCHANGED;
6563   }
6564 
6565   /// Given a type to private \p PrivType, collect the constituates (which are
6566   /// used) in \p ReplacementTypes.
6567   static void
6568   identifyReplacementTypes(Type *PrivType,
6569                            SmallVectorImpl<Type *> &ReplacementTypes) {
6570     // TODO: For now we expand the privatization type to the fullest which can
6571     //       lead to dead arguments that need to be removed later.
6572     assert(PrivType && "Expected privatizable type!");
6573 
6574     // Traverse the type, extract constituate types on the outermost level.
6575     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6576       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6577         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6578     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6579       ReplacementTypes.append(PrivArrayType->getNumElements(),
6580                               PrivArrayType->getElementType());
6581     } else {
6582       ReplacementTypes.push_back(PrivType);
6583     }
6584   }
6585 
6586   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6587   /// The values needed are taken from the arguments of \p F starting at
6588   /// position \p ArgNo.
6589   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6590                                    unsigned ArgNo, Instruction &IP) {
6591     assert(PrivType && "Expected privatizable type!");
6592 
6593     IRBuilder<NoFolder> IRB(&IP);
6594     const DataLayout &DL = F.getParent()->getDataLayout();
6595 
6596     // Traverse the type, build GEPs and stores.
6597     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6598       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6599       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6600         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6601         Value *Ptr =
6602             constructPointer(PointeeTy, PrivType, &Base,
6603                              PrivStructLayout->getElementOffset(u), IRB, DL);
6604         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6605       }
6606     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6607       Type *PointeeTy = PrivArrayType->getElementType();
6608       Type *PointeePtrTy = PointeeTy->getPointerTo();
6609       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6610       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6611         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6612                                       u * PointeeTySize, IRB, DL);
6613         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6614       }
6615     } else {
6616       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6617     }
6618   }
6619 
6620   /// Extract values from \p Base according to the type \p PrivType at the
6621   /// call position \p ACS. The values are appended to \p ReplacementValues.
6622   void createReplacementValues(Align Alignment, Type *PrivType,
6623                                AbstractCallSite ACS, Value *Base,
6624                                SmallVectorImpl<Value *> &ReplacementValues) {
6625     assert(Base && "Expected base value!");
6626     assert(PrivType && "Expected privatizable type!");
6627     Instruction *IP = ACS.getInstruction();
6628 
6629     IRBuilder<NoFolder> IRB(IP);
6630     const DataLayout &DL = IP->getModule()->getDataLayout();
6631 
6632     Type *PrivPtrType = PrivType->getPointerTo();
6633     if (Base->getType() != PrivPtrType)
6634       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivPtrType, "",
6635                                                  ACS.getInstruction());
6636 
6637     // Traverse the type, build GEPs and loads.
6638     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6639       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6640       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6641         Type *PointeeTy = PrivStructType->getElementType(u);
6642         Value *Ptr =
6643             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6644                              PrivStructLayout->getElementOffset(u), IRB, DL);
6645         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6646         L->setAlignment(Alignment);
6647         ReplacementValues.push_back(L);
6648       }
6649     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6650       Type *PointeeTy = PrivArrayType->getElementType();
6651       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6652       Type *PointeePtrTy = PointeeTy->getPointerTo();
6653       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6654         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6655                                       u * PointeeTySize, IRB, DL);
6656         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6657         L->setAlignment(Alignment);
6658         ReplacementValues.push_back(L);
6659       }
6660     } else {
6661       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6662       L->setAlignment(Alignment);
6663       ReplacementValues.push_back(L);
6664     }
6665   }
6666 
6667   /// See AbstractAttribute::manifest(...)
6668   ChangeStatus manifest(Attributor &A) override {
6669     if (!PrivatizableType.hasValue())
6670       return ChangeStatus::UNCHANGED;
6671     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6672 
6673     // Collect all tail calls in the function as we cannot allow new allocas to
6674     // escape into tail recursion.
6675     // TODO: Be smarter about new allocas escaping into tail calls.
6676     SmallVector<CallInst *, 16> TailCalls;
6677     bool UsedAssumedInformation = false;
6678     if (!A.checkForAllInstructions(
6679             [&](Instruction &I) {
6680               CallInst &CI = cast<CallInst>(I);
6681               if (CI.isTailCall())
6682                 TailCalls.push_back(&CI);
6683               return true;
6684             },
6685             *this, {Instruction::Call}, UsedAssumedInformation))
6686       return ChangeStatus::UNCHANGED;
6687 
6688     Argument *Arg = getAssociatedArgument();
6689     // Query AAAlign attribute for alignment of associated argument to
6690     // determine the best alignment of loads.
6691     const auto &AlignAA =
6692         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6693 
6694     // Callback to repair the associated function. A new alloca is placed at the
6695     // beginning and initialized with the values passed through arguments. The
6696     // new alloca replaces the use of the old pointer argument.
6697     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6698         [=](const Attributor::ArgumentReplacementInfo &ARI,
6699             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6700           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6701           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6702           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6703                                            Arg->getName() + ".priv", IP);
6704           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6705                                ArgIt->getArgNo(), *IP);
6706 
6707           if (AI->getType() != Arg->getType())
6708             AI =
6709                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6710           Arg->replaceAllUsesWith(AI);
6711 
6712           for (CallInst *CI : TailCalls)
6713             CI->setTailCall(false);
6714         };
6715 
6716     // Callback to repair a call site of the associated function. The elements
6717     // of the privatizable type are loaded prior to the call and passed to the
6718     // new function version.
6719     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6720         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6721                       AbstractCallSite ACS,
6722                       SmallVectorImpl<Value *> &NewArgOperands) {
6723           // When no alignment is specified for the load instruction,
6724           // natural alignment is assumed.
6725           createReplacementValues(
6726               assumeAligned(AlignAA.getAssumedAlign()),
6727               PrivatizableType.getValue(), ACS,
6728               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6729               NewArgOperands);
6730         };
6731 
6732     // Collect the types that will replace the privatizable type in the function
6733     // signature.
6734     SmallVector<Type *, 16> ReplacementTypes;
6735     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6736 
6737     // Register a rewrite of the argument.
6738     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6739                                            std::move(FnRepairCB),
6740                                            std::move(ACSRepairCB)))
6741       return ChangeStatus::CHANGED;
6742     return ChangeStatus::UNCHANGED;
6743   }
6744 
6745   /// See AbstractAttribute::trackStatistics()
6746   void trackStatistics() const override {
6747     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6748   }
6749 };
6750 
6751 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6752   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6753       : AAPrivatizablePtrImpl(IRP, A) {}
6754 
6755   /// See AbstractAttribute::initialize(...).
6756   virtual void initialize(Attributor &A) override {
6757     // TODO: We can privatize more than arguments.
6758     indicatePessimisticFixpoint();
6759   }
6760 
6761   ChangeStatus updateImpl(Attributor &A) override {
6762     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6763                      "updateImpl will not be called");
6764   }
6765 
6766   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6767   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6768     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6769     if (!Obj) {
6770       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6771       return nullptr;
6772     }
6773 
6774     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6775       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6776         if (CI->isOne())
6777           return AI->getAllocatedType();
6778     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6779       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6780           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6781       if (PrivArgAA.isAssumedPrivatizablePtr())
6782         return Obj->getType()->getPointerElementType();
6783     }
6784 
6785     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6786                          "alloca nor privatizable argument: "
6787                       << *Obj << "!\n");
6788     return nullptr;
6789   }
6790 
6791   /// See AbstractAttribute::trackStatistics()
6792   void trackStatistics() const override {
6793     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6794   }
6795 };
6796 
6797 struct AAPrivatizablePtrCallSiteArgument final
6798     : public AAPrivatizablePtrFloating {
6799   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6800       : AAPrivatizablePtrFloating(IRP, A) {}
6801 
6802   /// See AbstractAttribute::initialize(...).
6803   void initialize(Attributor &A) override {
6804     if (getIRPosition().hasAttr(Attribute::ByVal))
6805       indicateOptimisticFixpoint();
6806   }
6807 
6808   /// See AbstractAttribute::updateImpl(...).
6809   ChangeStatus updateImpl(Attributor &A) override {
6810     PrivatizableType = identifyPrivatizableType(A);
6811     if (!PrivatizableType.hasValue())
6812       return ChangeStatus::UNCHANGED;
6813     if (!PrivatizableType.getValue())
6814       return indicatePessimisticFixpoint();
6815 
6816     const IRPosition &IRP = getIRPosition();
6817     auto &NoCaptureAA =
6818         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6819     if (!NoCaptureAA.isAssumedNoCapture()) {
6820       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6821       return indicatePessimisticFixpoint();
6822     }
6823 
6824     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6825     if (!NoAliasAA.isAssumedNoAlias()) {
6826       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6827       return indicatePessimisticFixpoint();
6828     }
6829 
6830     const auto &MemBehaviorAA =
6831         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6832     if (!MemBehaviorAA.isAssumedReadOnly()) {
6833       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6834       return indicatePessimisticFixpoint();
6835     }
6836 
6837     return ChangeStatus::UNCHANGED;
6838   }
6839 
6840   /// See AbstractAttribute::trackStatistics()
6841   void trackStatistics() const override {
6842     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6843   }
6844 };
6845 
6846 struct AAPrivatizablePtrCallSiteReturned final
6847     : public AAPrivatizablePtrFloating {
6848   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6849       : AAPrivatizablePtrFloating(IRP, A) {}
6850 
6851   /// See AbstractAttribute::initialize(...).
6852   void initialize(Attributor &A) override {
6853     // TODO: We can privatize more than arguments.
6854     indicatePessimisticFixpoint();
6855   }
6856 
6857   /// See AbstractAttribute::trackStatistics()
6858   void trackStatistics() const override {
6859     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6860   }
6861 };
6862 
6863 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6864   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6865       : AAPrivatizablePtrFloating(IRP, A) {}
6866 
6867   /// See AbstractAttribute::initialize(...).
6868   void initialize(Attributor &A) override {
6869     // TODO: We can privatize more than arguments.
6870     indicatePessimisticFixpoint();
6871   }
6872 
6873   /// See AbstractAttribute::trackStatistics()
6874   void trackStatistics() const override {
6875     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6876   }
6877 };
6878 
6879 /// -------------------- Memory Behavior Attributes ----------------------------
6880 /// Includes read-none, read-only, and write-only.
6881 /// ----------------------------------------------------------------------------
6882 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6883   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6884       : AAMemoryBehavior(IRP, A) {}
6885 
6886   /// See AbstractAttribute::initialize(...).
6887   void initialize(Attributor &A) override {
6888     intersectAssumedBits(BEST_STATE);
6889     getKnownStateFromValue(getIRPosition(), getState());
6890     AAMemoryBehavior::initialize(A);
6891   }
6892 
6893   /// Return the memory behavior information encoded in the IR for \p IRP.
6894   static void getKnownStateFromValue(const IRPosition &IRP,
6895                                      BitIntegerState &State,
6896                                      bool IgnoreSubsumingPositions = false) {
6897     SmallVector<Attribute, 2> Attrs;
6898     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6899     for (const Attribute &Attr : Attrs) {
6900       switch (Attr.getKindAsEnum()) {
6901       case Attribute::ReadNone:
6902         State.addKnownBits(NO_ACCESSES);
6903         break;
6904       case Attribute::ReadOnly:
6905         State.addKnownBits(NO_WRITES);
6906         break;
6907       case Attribute::WriteOnly:
6908         State.addKnownBits(NO_READS);
6909         break;
6910       default:
6911         llvm_unreachable("Unexpected attribute!");
6912       }
6913     }
6914 
6915     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6916       if (!I->mayReadFromMemory())
6917         State.addKnownBits(NO_READS);
6918       if (!I->mayWriteToMemory())
6919         State.addKnownBits(NO_WRITES);
6920     }
6921   }
6922 
6923   /// See AbstractAttribute::getDeducedAttributes(...).
6924   void getDeducedAttributes(LLVMContext &Ctx,
6925                             SmallVectorImpl<Attribute> &Attrs) const override {
6926     assert(Attrs.size() == 0);
6927     if (isAssumedReadNone())
6928       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6929     else if (isAssumedReadOnly())
6930       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6931     else if (isAssumedWriteOnly())
6932       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6933     assert(Attrs.size() <= 1);
6934   }
6935 
6936   /// See AbstractAttribute::manifest(...).
6937   ChangeStatus manifest(Attributor &A) override {
6938     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6939       return ChangeStatus::UNCHANGED;
6940 
6941     const IRPosition &IRP = getIRPosition();
6942 
6943     // Check if we would improve the existing attributes first.
6944     SmallVector<Attribute, 4> DeducedAttrs;
6945     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6946     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6947           return IRP.hasAttr(Attr.getKindAsEnum(),
6948                              /* IgnoreSubsumingPositions */ true);
6949         }))
6950       return ChangeStatus::UNCHANGED;
6951 
6952     // Clear existing attributes.
6953     IRP.removeAttrs(AttrKinds);
6954 
6955     // Use the generic manifest method.
6956     return IRAttribute::manifest(A);
6957   }
6958 
6959   /// See AbstractState::getAsStr().
6960   const std::string getAsStr() const override {
6961     if (isAssumedReadNone())
6962       return "readnone";
6963     if (isAssumedReadOnly())
6964       return "readonly";
6965     if (isAssumedWriteOnly())
6966       return "writeonly";
6967     return "may-read/write";
6968   }
6969 
6970   /// The set of IR attributes AAMemoryBehavior deals with.
6971   static const Attribute::AttrKind AttrKinds[3];
6972 };
6973 
6974 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6975     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6976 
6977 /// Memory behavior attribute for a floating value.
6978 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6979   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6980       : AAMemoryBehaviorImpl(IRP, A) {}
6981 
6982   /// See AbstractAttribute::updateImpl(...).
6983   ChangeStatus updateImpl(Attributor &A) override;
6984 
6985   /// See AbstractAttribute::trackStatistics()
6986   void trackStatistics() const override {
6987     if (isAssumedReadNone())
6988       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6989     else if (isAssumedReadOnly())
6990       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6991     else if (isAssumedWriteOnly())
6992       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6993   }
6994 
6995 private:
6996   /// Return true if users of \p UserI might access the underlying
6997   /// variable/location described by \p U and should therefore be analyzed.
6998   bool followUsersOfUseIn(Attributor &A, const Use &U,
6999                           const Instruction *UserI);
7000 
7001   /// Update the state according to the effect of use \p U in \p UserI.
7002   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7003 };
7004 
7005 /// Memory behavior attribute for function argument.
7006 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7007   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7008       : AAMemoryBehaviorFloating(IRP, A) {}
7009 
7010   /// See AbstractAttribute::initialize(...).
7011   void initialize(Attributor &A) override {
7012     intersectAssumedBits(BEST_STATE);
7013     const IRPosition &IRP = getIRPosition();
7014     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7015     // can query it when we use has/getAttr. That would allow us to reuse the
7016     // initialize of the base class here.
7017     bool HasByVal =
7018         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7019     getKnownStateFromValue(IRP, getState(),
7020                            /* IgnoreSubsumingPositions */ HasByVal);
7021 
7022     // Initialize the use vector with all direct uses of the associated value.
7023     Argument *Arg = getAssociatedArgument();
7024     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7025       indicatePessimisticFixpoint();
7026   }
7027 
7028   ChangeStatus manifest(Attributor &A) override {
7029     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7030     if (!getAssociatedValue().getType()->isPointerTy())
7031       return ChangeStatus::UNCHANGED;
7032 
7033     // TODO: From readattrs.ll: "inalloca parameters are always
7034     //                           considered written"
7035     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7036       removeKnownBits(NO_WRITES);
7037       removeAssumedBits(NO_WRITES);
7038     }
7039     return AAMemoryBehaviorFloating::manifest(A);
7040   }
7041 
7042   /// See AbstractAttribute::trackStatistics()
7043   void trackStatistics() const override {
7044     if (isAssumedReadNone())
7045       STATS_DECLTRACK_ARG_ATTR(readnone)
7046     else if (isAssumedReadOnly())
7047       STATS_DECLTRACK_ARG_ATTR(readonly)
7048     else if (isAssumedWriteOnly())
7049       STATS_DECLTRACK_ARG_ATTR(writeonly)
7050   }
7051 };
7052 
7053 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7054   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7055       : AAMemoryBehaviorArgument(IRP, A) {}
7056 
7057   /// See AbstractAttribute::initialize(...).
7058   void initialize(Attributor &A) override {
7059     // If we don't have an associated attribute this is either a variadic call
7060     // or an indirect call, either way, nothing to do here.
7061     Argument *Arg = getAssociatedArgument();
7062     if (!Arg) {
7063       indicatePessimisticFixpoint();
7064       return;
7065     }
7066     if (Arg->hasByValAttr()) {
7067       addKnownBits(NO_WRITES);
7068       removeKnownBits(NO_READS);
7069       removeAssumedBits(NO_READS);
7070     }
7071     AAMemoryBehaviorArgument::initialize(A);
7072     if (getAssociatedFunction()->isDeclaration())
7073       indicatePessimisticFixpoint();
7074   }
7075 
7076   /// See AbstractAttribute::updateImpl(...).
7077   ChangeStatus updateImpl(Attributor &A) override {
7078     // TODO: Once we have call site specific value information we can provide
7079     //       call site specific liveness liveness information and then it makes
7080     //       sense to specialize attributes for call sites arguments instead of
7081     //       redirecting requests to the callee argument.
7082     Argument *Arg = getAssociatedArgument();
7083     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7084     auto &ArgAA =
7085         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7086     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7087   }
7088 
7089   /// See AbstractAttribute::trackStatistics()
7090   void trackStatistics() const override {
7091     if (isAssumedReadNone())
7092       STATS_DECLTRACK_CSARG_ATTR(readnone)
7093     else if (isAssumedReadOnly())
7094       STATS_DECLTRACK_CSARG_ATTR(readonly)
7095     else if (isAssumedWriteOnly())
7096       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7097   }
7098 };
7099 
7100 /// Memory behavior attribute for a call site return position.
7101 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7102   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7103       : AAMemoryBehaviorFloating(IRP, A) {}
7104 
7105   /// See AbstractAttribute::initialize(...).
7106   void initialize(Attributor &A) override {
7107     AAMemoryBehaviorImpl::initialize(A);
7108     Function *F = getAssociatedFunction();
7109     if (!F || F->isDeclaration())
7110       indicatePessimisticFixpoint();
7111   }
7112 
7113   /// See AbstractAttribute::manifest(...).
7114   ChangeStatus manifest(Attributor &A) override {
7115     // We do not annotate returned values.
7116     return ChangeStatus::UNCHANGED;
7117   }
7118 
7119   /// See AbstractAttribute::trackStatistics()
7120   void trackStatistics() const override {}
7121 };
7122 
7123 /// An AA to represent the memory behavior function attributes.
7124 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7125   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7126       : AAMemoryBehaviorImpl(IRP, A) {}
7127 
7128   /// See AbstractAttribute::updateImpl(Attributor &A).
7129   virtual ChangeStatus updateImpl(Attributor &A) override;
7130 
7131   /// See AbstractAttribute::manifest(...).
7132   ChangeStatus manifest(Attributor &A) override {
7133     Function &F = cast<Function>(getAnchorValue());
7134     if (isAssumedReadNone()) {
7135       F.removeFnAttr(Attribute::ArgMemOnly);
7136       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7137       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7138     }
7139     return AAMemoryBehaviorImpl::manifest(A);
7140   }
7141 
7142   /// See AbstractAttribute::trackStatistics()
7143   void trackStatistics() const override {
7144     if (isAssumedReadNone())
7145       STATS_DECLTRACK_FN_ATTR(readnone)
7146     else if (isAssumedReadOnly())
7147       STATS_DECLTRACK_FN_ATTR(readonly)
7148     else if (isAssumedWriteOnly())
7149       STATS_DECLTRACK_FN_ATTR(writeonly)
7150   }
7151 };
7152 
7153 /// AAMemoryBehavior attribute for call sites.
7154 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7155   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7156       : AAMemoryBehaviorImpl(IRP, A) {}
7157 
7158   /// See AbstractAttribute::initialize(...).
7159   void initialize(Attributor &A) override {
7160     AAMemoryBehaviorImpl::initialize(A);
7161     Function *F = getAssociatedFunction();
7162     if (!F || F->isDeclaration())
7163       indicatePessimisticFixpoint();
7164   }
7165 
7166   /// See AbstractAttribute::updateImpl(...).
7167   ChangeStatus updateImpl(Attributor &A) override {
7168     // TODO: Once we have call site specific value information we can provide
7169     //       call site specific liveness liveness information and then it makes
7170     //       sense to specialize attributes for call sites arguments instead of
7171     //       redirecting requests to the callee argument.
7172     Function *F = getAssociatedFunction();
7173     const IRPosition &FnPos = IRPosition::function(*F);
7174     auto &FnAA =
7175         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7176     return clampStateAndIndicateChange(getState(), FnAA.getState());
7177   }
7178 
7179   /// See AbstractAttribute::trackStatistics()
7180   void trackStatistics() const override {
7181     if (isAssumedReadNone())
7182       STATS_DECLTRACK_CS_ATTR(readnone)
7183     else if (isAssumedReadOnly())
7184       STATS_DECLTRACK_CS_ATTR(readonly)
7185     else if (isAssumedWriteOnly())
7186       STATS_DECLTRACK_CS_ATTR(writeonly)
7187   }
7188 };
7189 
7190 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7191 
7192   // The current assumed state used to determine a change.
7193   auto AssumedState = getAssumed();
7194 
7195   auto CheckRWInst = [&](Instruction &I) {
7196     // If the instruction has an own memory behavior state, use it to restrict
7197     // the local state. No further analysis is required as the other memory
7198     // state is as optimistic as it gets.
7199     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7200       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7201           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7202       intersectAssumedBits(MemBehaviorAA.getAssumed());
7203       return !isAtFixpoint();
7204     }
7205 
7206     // Remove access kind modifiers if necessary.
7207     if (I.mayReadFromMemory())
7208       removeAssumedBits(NO_READS);
7209     if (I.mayWriteToMemory())
7210       removeAssumedBits(NO_WRITES);
7211     return !isAtFixpoint();
7212   };
7213 
7214   bool UsedAssumedInformation = false;
7215   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7216                                           UsedAssumedInformation))
7217     return indicatePessimisticFixpoint();
7218 
7219   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7220                                         : ChangeStatus::UNCHANGED;
7221 }
7222 
7223 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7224 
7225   const IRPosition &IRP = getIRPosition();
7226   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7227   AAMemoryBehavior::StateType &S = getState();
7228 
7229   // First, check the function scope. We take the known information and we avoid
7230   // work if the assumed information implies the current assumed information for
7231   // this attribute. This is a valid for all but byval arguments.
7232   Argument *Arg = IRP.getAssociatedArgument();
7233   AAMemoryBehavior::base_t FnMemAssumedState =
7234       AAMemoryBehavior::StateType::getWorstState();
7235   if (!Arg || !Arg->hasByValAttr()) {
7236     const auto &FnMemAA =
7237         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7238     FnMemAssumedState = FnMemAA.getAssumed();
7239     S.addKnownBits(FnMemAA.getKnown());
7240     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7241       return ChangeStatus::UNCHANGED;
7242   }
7243 
7244   // The current assumed state used to determine a change.
7245   auto AssumedState = S.getAssumed();
7246 
7247   // Make sure the value is not captured (except through "return"), if
7248   // it is, any information derived would be irrelevant anyway as we cannot
7249   // check the potential aliases introduced by the capture. However, no need
7250   // to fall back to anythign less optimistic than the function state.
7251   const auto &ArgNoCaptureAA =
7252       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7253   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7254     S.intersectAssumedBits(FnMemAssumedState);
7255     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7256                                           : ChangeStatus::UNCHANGED;
7257   }
7258 
7259   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7260   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7261     Instruction *UserI = cast<Instruction>(U.getUser());
7262     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7263                       << " \n");
7264 
7265     // Droppable users, e.g., llvm::assume does not actually perform any action.
7266     if (UserI->isDroppable())
7267       return true;
7268 
7269     // Check if the users of UserI should also be visited.
7270     Follow = followUsersOfUseIn(A, U, UserI);
7271 
7272     // If UserI might touch memory we analyze the use in detail.
7273     if (UserI->mayReadOrWriteMemory())
7274       analyzeUseIn(A, U, UserI);
7275 
7276     return !isAtFixpoint();
7277   };
7278 
7279   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7280     return indicatePessimisticFixpoint();
7281 
7282   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7283                                         : ChangeStatus::UNCHANGED;
7284 }
7285 
7286 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7287                                                   const Instruction *UserI) {
7288   // The loaded value is unrelated to the pointer argument, no need to
7289   // follow the users of the load.
7290   if (isa<LoadInst>(UserI))
7291     return false;
7292 
7293   // By default we follow all uses assuming UserI might leak information on U,
7294   // we have special handling for call sites operands though.
7295   const auto *CB = dyn_cast<CallBase>(UserI);
7296   if (!CB || !CB->isArgOperand(&U))
7297     return true;
7298 
7299   // If the use is a call argument known not to be captured, the users of
7300   // the call do not need to be visited because they have to be unrelated to
7301   // the input. Note that this check is not trivial even though we disallow
7302   // general capturing of the underlying argument. The reason is that the
7303   // call might the argument "through return", which we allow and for which we
7304   // need to check call users.
7305   if (U.get()->getType()->isPointerTy()) {
7306     unsigned ArgNo = CB->getArgOperandNo(&U);
7307     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7308         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7309     return !ArgNoCaptureAA.isAssumedNoCapture();
7310   }
7311 
7312   return true;
7313 }
7314 
7315 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7316                                             const Instruction *UserI) {
7317   assert(UserI->mayReadOrWriteMemory());
7318 
7319   switch (UserI->getOpcode()) {
7320   default:
7321     // TODO: Handle all atomics and other side-effect operations we know of.
7322     break;
7323   case Instruction::Load:
7324     // Loads cause the NO_READS property to disappear.
7325     removeAssumedBits(NO_READS);
7326     return;
7327 
7328   case Instruction::Store:
7329     // Stores cause the NO_WRITES property to disappear if the use is the
7330     // pointer operand. Note that while capturing was taken care of somewhere
7331     // else we need to deal with stores of the value that is not looked through.
7332     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7333       removeAssumedBits(NO_WRITES);
7334     else
7335       indicatePessimisticFixpoint();
7336     return;
7337 
7338   case Instruction::Call:
7339   case Instruction::CallBr:
7340   case Instruction::Invoke: {
7341     // For call sites we look at the argument memory behavior attribute (this
7342     // could be recursive!) in order to restrict our own state.
7343     const auto *CB = cast<CallBase>(UserI);
7344 
7345     // Give up on operand bundles.
7346     if (CB->isBundleOperand(&U)) {
7347       indicatePessimisticFixpoint();
7348       return;
7349     }
7350 
7351     // Calling a function does read the function pointer, maybe write it if the
7352     // function is self-modifying.
7353     if (CB->isCallee(&U)) {
7354       removeAssumedBits(NO_READS);
7355       break;
7356     }
7357 
7358     // Adjust the possible access behavior based on the information on the
7359     // argument.
7360     IRPosition Pos;
7361     if (U.get()->getType()->isPointerTy())
7362       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7363     else
7364       Pos = IRPosition::callsite_function(*CB);
7365     const auto &MemBehaviorAA =
7366         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7367     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7368     // and at least "known".
7369     intersectAssumedBits(MemBehaviorAA.getAssumed());
7370     return;
7371   }
7372   };
7373 
7374   // Generally, look at the "may-properties" and adjust the assumed state if we
7375   // did not trigger special handling before.
7376   if (UserI->mayReadFromMemory())
7377     removeAssumedBits(NO_READS);
7378   if (UserI->mayWriteToMemory())
7379     removeAssumedBits(NO_WRITES);
7380 }
7381 } // namespace
7382 
7383 /// -------------------- Memory Locations Attributes ---------------------------
7384 /// Includes read-none, argmemonly, inaccessiblememonly,
7385 /// inaccessiblememorargmemonly
7386 /// ----------------------------------------------------------------------------
7387 
7388 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7389     AAMemoryLocation::MemoryLocationsKind MLK) {
7390   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7391     return "all memory";
7392   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7393     return "no memory";
7394   std::string S = "memory:";
7395   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7396     S += "stack,";
7397   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7398     S += "constant,";
7399   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7400     S += "internal global,";
7401   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7402     S += "external global,";
7403   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7404     S += "argument,";
7405   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7406     S += "inaccessible,";
7407   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7408     S += "malloced,";
7409   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7410     S += "unknown,";
7411   S.pop_back();
7412   return S;
7413 }
7414 
7415 namespace {
7416 struct AAMemoryLocationImpl : public AAMemoryLocation {
7417 
7418   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7419       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7420     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7421       AccessKind2Accesses[u] = nullptr;
7422   }
7423 
7424   ~AAMemoryLocationImpl() {
7425     // The AccessSets are allocated via a BumpPtrAllocator, we call
7426     // the destructor manually.
7427     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7428       if (AccessKind2Accesses[u])
7429         AccessKind2Accesses[u]->~AccessSet();
7430   }
7431 
7432   /// See AbstractAttribute::initialize(...).
7433   void initialize(Attributor &A) override {
7434     intersectAssumedBits(BEST_STATE);
7435     getKnownStateFromValue(A, getIRPosition(), getState());
7436     AAMemoryLocation::initialize(A);
7437   }
7438 
7439   /// Return the memory behavior information encoded in the IR for \p IRP.
7440   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7441                                      BitIntegerState &State,
7442                                      bool IgnoreSubsumingPositions = false) {
7443     // For internal functions we ignore `argmemonly` and
7444     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7445     // constant propagation. It is unclear if this is the best way but it is
7446     // unlikely this will cause real performance problems. If we are deriving
7447     // attributes for the anchor function we even remove the attribute in
7448     // addition to ignoring it.
7449     bool UseArgMemOnly = true;
7450     Function *AnchorFn = IRP.getAnchorScope();
7451     if (AnchorFn && A.isRunOn(*AnchorFn))
7452       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7453 
7454     SmallVector<Attribute, 2> Attrs;
7455     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7456     for (const Attribute &Attr : Attrs) {
7457       switch (Attr.getKindAsEnum()) {
7458       case Attribute::ReadNone:
7459         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7460         break;
7461       case Attribute::InaccessibleMemOnly:
7462         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7463         break;
7464       case Attribute::ArgMemOnly:
7465         if (UseArgMemOnly)
7466           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7467         else
7468           IRP.removeAttrs({Attribute::ArgMemOnly});
7469         break;
7470       case Attribute::InaccessibleMemOrArgMemOnly:
7471         if (UseArgMemOnly)
7472           State.addKnownBits(inverseLocation(
7473               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7474         else
7475           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7476         break;
7477       default:
7478         llvm_unreachable("Unexpected attribute!");
7479       }
7480     }
7481   }
7482 
7483   /// See AbstractAttribute::getDeducedAttributes(...).
7484   void getDeducedAttributes(LLVMContext &Ctx,
7485                             SmallVectorImpl<Attribute> &Attrs) const override {
7486     assert(Attrs.size() == 0);
7487     if (isAssumedReadNone()) {
7488       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7489     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7490       if (isAssumedInaccessibleMemOnly())
7491         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7492       else if (isAssumedArgMemOnly())
7493         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7494       else if (isAssumedInaccessibleOrArgMemOnly())
7495         Attrs.push_back(
7496             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7497     }
7498     assert(Attrs.size() <= 1);
7499   }
7500 
7501   /// See AbstractAttribute::manifest(...).
7502   ChangeStatus manifest(Attributor &A) override {
7503     const IRPosition &IRP = getIRPosition();
7504 
7505     // Check if we would improve the existing attributes first.
7506     SmallVector<Attribute, 4> DeducedAttrs;
7507     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7508     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7509           return IRP.hasAttr(Attr.getKindAsEnum(),
7510                              /* IgnoreSubsumingPositions */ true);
7511         }))
7512       return ChangeStatus::UNCHANGED;
7513 
7514     // Clear existing attributes.
7515     IRP.removeAttrs(AttrKinds);
7516     if (isAssumedReadNone())
7517       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7518 
7519     // Use the generic manifest method.
7520     return IRAttribute::manifest(A);
7521   }
7522 
7523   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7524   bool checkForAllAccessesToMemoryKind(
7525       function_ref<bool(const Instruction *, const Value *, AccessKind,
7526                         MemoryLocationsKind)>
7527           Pred,
7528       MemoryLocationsKind RequestedMLK) const override {
7529     if (!isValidState())
7530       return false;
7531 
7532     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7533     if (AssumedMLK == NO_LOCATIONS)
7534       return true;
7535 
7536     unsigned Idx = 0;
7537     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7538          CurMLK *= 2, ++Idx) {
7539       if (CurMLK & RequestedMLK)
7540         continue;
7541 
7542       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7543         for (const AccessInfo &AI : *Accesses)
7544           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7545             return false;
7546     }
7547 
7548     return true;
7549   }
7550 
7551   ChangeStatus indicatePessimisticFixpoint() override {
7552     // If we give up and indicate a pessimistic fixpoint this instruction will
7553     // become an access for all potential access kinds:
7554     // TODO: Add pointers for argmemonly and globals to improve the results of
7555     //       checkForAllAccessesToMemoryKind.
7556     bool Changed = false;
7557     MemoryLocationsKind KnownMLK = getKnown();
7558     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7559     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7560       if (!(CurMLK & KnownMLK))
7561         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7562                                   getAccessKindFromInst(I));
7563     return AAMemoryLocation::indicatePessimisticFixpoint();
7564   }
7565 
7566 protected:
7567   /// Helper struct to tie together an instruction that has a read or write
7568   /// effect with the pointer it accesses (if any).
7569   struct AccessInfo {
7570 
7571     /// The instruction that caused the access.
7572     const Instruction *I;
7573 
7574     /// The base pointer that is accessed, or null if unknown.
7575     const Value *Ptr;
7576 
7577     /// The kind of access (read/write/read+write).
7578     AccessKind Kind;
7579 
7580     bool operator==(const AccessInfo &RHS) const {
7581       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7582     }
7583     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7584       if (LHS.I != RHS.I)
7585         return LHS.I < RHS.I;
7586       if (LHS.Ptr != RHS.Ptr)
7587         return LHS.Ptr < RHS.Ptr;
7588       if (LHS.Kind != RHS.Kind)
7589         return LHS.Kind < RHS.Kind;
7590       return false;
7591     }
7592   };
7593 
7594   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7595   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7596   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7597   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7598 
7599   /// Categorize the pointer arguments of CB that might access memory in
7600   /// AccessedLoc and update the state and access map accordingly.
7601   void
7602   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7603                                      AAMemoryLocation::StateType &AccessedLocs,
7604                                      bool &Changed);
7605 
7606   /// Return the kind(s) of location that may be accessed by \p V.
7607   AAMemoryLocation::MemoryLocationsKind
7608   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7609 
7610   /// Return the access kind as determined by \p I.
7611   AccessKind getAccessKindFromInst(const Instruction *I) {
7612     AccessKind AK = READ_WRITE;
7613     if (I) {
7614       AK = I->mayReadFromMemory() ? READ : NONE;
7615       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7616     }
7617     return AK;
7618   }
7619 
7620   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7621   /// an access of kind \p AK to a \p MLK memory location with the access
7622   /// pointer \p Ptr.
7623   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7624                                  MemoryLocationsKind MLK, const Instruction *I,
7625                                  const Value *Ptr, bool &Changed,
7626                                  AccessKind AK = READ_WRITE) {
7627 
7628     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7629     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7630     if (!Accesses)
7631       Accesses = new (Allocator) AccessSet();
7632     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7633     State.removeAssumedBits(MLK);
7634   }
7635 
7636   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7637   /// arguments, and update the state and access map accordingly.
7638   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7639                           AAMemoryLocation::StateType &State, bool &Changed);
7640 
7641   /// Used to allocate access sets.
7642   BumpPtrAllocator &Allocator;
7643 
7644   /// The set of IR attributes AAMemoryLocation deals with.
7645   static const Attribute::AttrKind AttrKinds[4];
7646 };
7647 
7648 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7649     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7650     Attribute::InaccessibleMemOrArgMemOnly};
7651 
7652 void AAMemoryLocationImpl::categorizePtrValue(
7653     Attributor &A, const Instruction &I, const Value &Ptr,
7654     AAMemoryLocation::StateType &State, bool &Changed) {
7655   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7656                     << Ptr << " ["
7657                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7658 
7659   SmallVector<Value *, 8> Objects;
7660   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7661     LLVM_DEBUG(
7662         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7663     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7664                               getAccessKindFromInst(&I));
7665     return;
7666   }
7667 
7668   for (Value *Obj : Objects) {
7669     // TODO: recognize the TBAA used for constant accesses.
7670     MemoryLocationsKind MLK = NO_LOCATIONS;
7671     if (isa<UndefValue>(Obj))
7672       continue;
7673     if (isa<Argument>(Obj)) {
7674       // TODO: For now we do not treat byval arguments as local copies performed
7675       // on the call edge, though, we should. To make that happen we need to
7676       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7677       // would also allow us to mark functions only accessing byval arguments as
7678       // readnone again, atguably their acceses have no effect outside of the
7679       // function, like accesses to allocas.
7680       MLK = NO_ARGUMENT_MEM;
7681     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7682       // Reading constant memory is not treated as a read "effect" by the
7683       // function attr pass so we won't neither. Constants defined by TBAA are
7684       // similar. (We know we do not write it because it is constant.)
7685       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7686         if (GVar->isConstant())
7687           continue;
7688 
7689       if (GV->hasLocalLinkage())
7690         MLK = NO_GLOBAL_INTERNAL_MEM;
7691       else
7692         MLK = NO_GLOBAL_EXTERNAL_MEM;
7693     } else if (isa<ConstantPointerNull>(Obj) &&
7694                !NullPointerIsDefined(getAssociatedFunction(),
7695                                      Ptr.getType()->getPointerAddressSpace())) {
7696       continue;
7697     } else if (isa<AllocaInst>(Obj)) {
7698       MLK = NO_LOCAL_MEM;
7699     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7700       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7701           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7702       if (NoAliasAA.isAssumedNoAlias())
7703         MLK = NO_MALLOCED_MEM;
7704       else
7705         MLK = NO_UNKOWN_MEM;
7706     } else {
7707       MLK = NO_UNKOWN_MEM;
7708     }
7709 
7710     assert(MLK != NO_LOCATIONS && "No location specified!");
7711     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7712                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7713                       << "\n");
7714     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7715                               getAccessKindFromInst(&I));
7716   }
7717 
7718   LLVM_DEBUG(
7719       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7720              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7721 }
7722 
7723 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7724     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7725     bool &Changed) {
7726   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7727 
7728     // Skip non-pointer arguments.
7729     const Value *ArgOp = CB.getArgOperand(ArgNo);
7730     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7731       continue;
7732 
7733     // Skip readnone arguments.
7734     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7735     const auto &ArgOpMemLocationAA =
7736         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7737 
7738     if (ArgOpMemLocationAA.isAssumedReadNone())
7739       continue;
7740 
7741     // Categorize potentially accessed pointer arguments as if there was an
7742     // access instruction with them as pointer.
7743     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7744   }
7745 }
7746 
7747 AAMemoryLocation::MemoryLocationsKind
7748 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7749                                                   bool &Changed) {
7750   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7751                     << I << "\n");
7752 
7753   AAMemoryLocation::StateType AccessedLocs;
7754   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7755 
7756   if (auto *CB = dyn_cast<CallBase>(&I)) {
7757 
7758     // First check if we assume any memory is access is visible.
7759     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7760         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7761     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7762                       << " [" << CBMemLocationAA << "]\n");
7763 
7764     if (CBMemLocationAA.isAssumedReadNone())
7765       return NO_LOCATIONS;
7766 
7767     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7768       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7769                                 Changed, getAccessKindFromInst(&I));
7770       return AccessedLocs.getAssumed();
7771     }
7772 
7773     uint32_t CBAssumedNotAccessedLocs =
7774         CBMemLocationAA.getAssumedNotAccessedLocation();
7775 
7776     // Set the argmemonly and global bit as we handle them separately below.
7777     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7778         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7779 
7780     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7781       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7782         continue;
7783       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7784                                 getAccessKindFromInst(&I));
7785     }
7786 
7787     // Now handle global memory if it might be accessed. This is slightly tricky
7788     // as NO_GLOBAL_MEM has multiple bits set.
7789     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7790     if (HasGlobalAccesses) {
7791       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7792                             AccessKind Kind, MemoryLocationsKind MLK) {
7793         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7794                                   getAccessKindFromInst(&I));
7795         return true;
7796       };
7797       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7798               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7799         return AccessedLocs.getWorstState();
7800     }
7801 
7802     LLVM_DEBUG(
7803         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7804                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7805 
7806     // Now handle argument memory if it might be accessed.
7807     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7808     if (HasArgAccesses)
7809       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7810 
7811     LLVM_DEBUG(
7812         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7813                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7814 
7815     return AccessedLocs.getAssumed();
7816   }
7817 
7818   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7819     LLVM_DEBUG(
7820         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7821                << I << " [" << *Ptr << "]\n");
7822     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7823     return AccessedLocs.getAssumed();
7824   }
7825 
7826   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7827                     << I << "\n");
7828   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7829                             getAccessKindFromInst(&I));
7830   return AccessedLocs.getAssumed();
7831 }
7832 
7833 /// An AA to represent the memory behavior function attributes.
7834 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7835   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7836       : AAMemoryLocationImpl(IRP, A) {}
7837 
7838   /// See AbstractAttribute::updateImpl(Attributor &A).
7839   virtual ChangeStatus updateImpl(Attributor &A) override {
7840 
7841     const auto &MemBehaviorAA =
7842         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7843     if (MemBehaviorAA.isAssumedReadNone()) {
7844       if (MemBehaviorAA.isKnownReadNone())
7845         return indicateOptimisticFixpoint();
7846       assert(isAssumedReadNone() &&
7847              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7848       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7849       return ChangeStatus::UNCHANGED;
7850     }
7851 
7852     // The current assumed state used to determine a change.
7853     auto AssumedState = getAssumed();
7854     bool Changed = false;
7855 
7856     auto CheckRWInst = [&](Instruction &I) {
7857       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7858       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7859                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7860       removeAssumedBits(inverseLocation(MLK, false, false));
7861       // Stop once only the valid bit set in the *not assumed location*, thus
7862       // once we don't actually exclude any memory locations in the state.
7863       return getAssumedNotAccessedLocation() != VALID_STATE;
7864     };
7865 
7866     bool UsedAssumedInformation = false;
7867     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7868                                             UsedAssumedInformation))
7869       return indicatePessimisticFixpoint();
7870 
7871     Changed |= AssumedState != getAssumed();
7872     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7873   }
7874 
7875   /// See AbstractAttribute::trackStatistics()
7876   void trackStatistics() const override {
7877     if (isAssumedReadNone())
7878       STATS_DECLTRACK_FN_ATTR(readnone)
7879     else if (isAssumedArgMemOnly())
7880       STATS_DECLTRACK_FN_ATTR(argmemonly)
7881     else if (isAssumedInaccessibleMemOnly())
7882       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7883     else if (isAssumedInaccessibleOrArgMemOnly())
7884       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7885   }
7886 };
7887 
7888 /// AAMemoryLocation attribute for call sites.
7889 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7890   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7891       : AAMemoryLocationImpl(IRP, A) {}
7892 
7893   /// See AbstractAttribute::initialize(...).
7894   void initialize(Attributor &A) override {
7895     AAMemoryLocationImpl::initialize(A);
7896     Function *F = getAssociatedFunction();
7897     if (!F || F->isDeclaration())
7898       indicatePessimisticFixpoint();
7899   }
7900 
7901   /// See AbstractAttribute::updateImpl(...).
7902   ChangeStatus updateImpl(Attributor &A) override {
7903     // TODO: Once we have call site specific value information we can provide
7904     //       call site specific liveness liveness information and then it makes
7905     //       sense to specialize attributes for call sites arguments instead of
7906     //       redirecting requests to the callee argument.
7907     Function *F = getAssociatedFunction();
7908     const IRPosition &FnPos = IRPosition::function(*F);
7909     auto &FnAA =
7910         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7911     bool Changed = false;
7912     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7913                           AccessKind Kind, MemoryLocationsKind MLK) {
7914       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7915                                 getAccessKindFromInst(I));
7916       return true;
7917     };
7918     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7919       return indicatePessimisticFixpoint();
7920     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7921   }
7922 
7923   /// See AbstractAttribute::trackStatistics()
7924   void trackStatistics() const override {
7925     if (isAssumedReadNone())
7926       STATS_DECLTRACK_CS_ATTR(readnone)
7927   }
7928 };
7929 
7930 /// ------------------ Value Constant Range Attribute -------------------------
7931 
7932 struct AAValueConstantRangeImpl : AAValueConstantRange {
7933   using StateType = IntegerRangeState;
7934   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7935       : AAValueConstantRange(IRP, A) {}
7936 
7937   /// See AbstractAttribute::initialize(..).
7938   void initialize(Attributor &A) override {
7939     if (A.hasSimplificationCallback(getIRPosition())) {
7940       indicatePessimisticFixpoint();
7941       return;
7942     }
7943 
7944     // Intersect a range given by SCEV.
7945     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7946 
7947     // Intersect a range given by LVI.
7948     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7949   }
7950 
7951   /// See AbstractAttribute::getAsStr().
7952   const std::string getAsStr() const override {
7953     std::string Str;
7954     llvm::raw_string_ostream OS(Str);
7955     OS << "range(" << getBitWidth() << ")<";
7956     getKnown().print(OS);
7957     OS << " / ";
7958     getAssumed().print(OS);
7959     OS << ">";
7960     return OS.str();
7961   }
7962 
7963   /// Helper function to get a SCEV expr for the associated value at program
7964   /// point \p I.
7965   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7966     if (!getAnchorScope())
7967       return nullptr;
7968 
7969     ScalarEvolution *SE =
7970         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7971             *getAnchorScope());
7972 
7973     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7974         *getAnchorScope());
7975 
7976     if (!SE || !LI)
7977       return nullptr;
7978 
7979     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7980     if (!I)
7981       return S;
7982 
7983     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7984   }
7985 
7986   /// Helper function to get a range from SCEV for the associated value at
7987   /// program point \p I.
7988   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7989                                          const Instruction *I = nullptr) const {
7990     if (!getAnchorScope())
7991       return getWorstState(getBitWidth());
7992 
7993     ScalarEvolution *SE =
7994         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7995             *getAnchorScope());
7996 
7997     const SCEV *S = getSCEV(A, I);
7998     if (!SE || !S)
7999       return getWorstState(getBitWidth());
8000 
8001     return SE->getUnsignedRange(S);
8002   }
8003 
8004   /// Helper function to get a range from LVI for the associated value at
8005   /// program point \p I.
8006   ConstantRange
8007   getConstantRangeFromLVI(Attributor &A,
8008                           const Instruction *CtxI = nullptr) const {
8009     if (!getAnchorScope())
8010       return getWorstState(getBitWidth());
8011 
8012     LazyValueInfo *LVI =
8013         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8014             *getAnchorScope());
8015 
8016     if (!LVI || !CtxI)
8017       return getWorstState(getBitWidth());
8018     return LVI->getConstantRange(&getAssociatedValue(),
8019                                  const_cast<Instruction *>(CtxI));
8020   }
8021 
8022   /// Return true if \p CtxI is valid for querying outside analyses.
8023   /// This basically makes sure we do not ask intra-procedural analysis
8024   /// about a context in the wrong function or a context that violates
8025   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8026   /// if the original context of this AA is OK or should be considered invalid.
8027   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8028                                                const Instruction *CtxI,
8029                                                bool AllowAACtxI) const {
8030     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8031       return false;
8032 
8033     // Our context might be in a different function, neither intra-procedural
8034     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8035     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8036       return false;
8037 
8038     // If the context is not dominated by the value there are paths to the
8039     // context that do not define the value. This cannot be handled by
8040     // LazyValueInfo so we need to bail.
8041     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8042       InformationCache &InfoCache = A.getInfoCache();
8043       const DominatorTree *DT =
8044           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8045               *I->getFunction());
8046       return DT && DT->dominates(I, CtxI);
8047     }
8048 
8049     return true;
8050   }
8051 
8052   /// See AAValueConstantRange::getKnownConstantRange(..).
8053   ConstantRange
8054   getKnownConstantRange(Attributor &A,
8055                         const Instruction *CtxI = nullptr) const override {
8056     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8057                                                  /* AllowAACtxI */ false))
8058       return getKnown();
8059 
8060     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8061     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8062     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8063   }
8064 
8065   /// See AAValueConstantRange::getAssumedConstantRange(..).
8066   ConstantRange
8067   getAssumedConstantRange(Attributor &A,
8068                           const Instruction *CtxI = nullptr) const override {
8069     // TODO: Make SCEV use Attributor assumption.
8070     //       We may be able to bound a variable range via assumptions in
8071     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8072     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8073     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8074                                                  /* AllowAACtxI */ false))
8075       return getAssumed();
8076 
8077     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8078     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8079     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8080   }
8081 
8082   /// Helper function to create MDNode for range metadata.
8083   static MDNode *
8084   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8085                             const ConstantRange &AssumedConstantRange) {
8086     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8087                                   Ty, AssumedConstantRange.getLower())),
8088                               ConstantAsMetadata::get(ConstantInt::get(
8089                                   Ty, AssumedConstantRange.getUpper()))};
8090     return MDNode::get(Ctx, LowAndHigh);
8091   }
8092 
8093   /// Return true if \p Assumed is included in \p KnownRanges.
8094   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8095 
8096     if (Assumed.isFullSet())
8097       return false;
8098 
8099     if (!KnownRanges)
8100       return true;
8101 
8102     // If multiple ranges are annotated in IR, we give up to annotate assumed
8103     // range for now.
8104 
8105     // TODO:  If there exists a known range which containts assumed range, we
8106     // can say assumed range is better.
8107     if (KnownRanges->getNumOperands() > 2)
8108       return false;
8109 
8110     ConstantInt *Lower =
8111         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8112     ConstantInt *Upper =
8113         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8114 
8115     ConstantRange Known(Lower->getValue(), Upper->getValue());
8116     return Known.contains(Assumed) && Known != Assumed;
8117   }
8118 
8119   /// Helper function to set range metadata.
8120   static bool
8121   setRangeMetadataIfisBetterRange(Instruction *I,
8122                                   const ConstantRange &AssumedConstantRange) {
8123     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8124     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8125       if (!AssumedConstantRange.isEmptySet()) {
8126         I->setMetadata(LLVMContext::MD_range,
8127                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8128                                                  AssumedConstantRange));
8129         return true;
8130       }
8131     }
8132     return false;
8133   }
8134 
8135   /// See AbstractAttribute::manifest()
8136   ChangeStatus manifest(Attributor &A) override {
8137     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8138     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8139     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8140 
8141     auto &V = getAssociatedValue();
8142     if (!AssumedConstantRange.isEmptySet() &&
8143         !AssumedConstantRange.isSingleElement()) {
8144       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8145         assert(I == getCtxI() && "Should not annotate an instruction which is "
8146                                  "not the context instruction");
8147         if (isa<CallInst>(I) || isa<LoadInst>(I))
8148           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8149             Changed = ChangeStatus::CHANGED;
8150       }
8151     }
8152 
8153     return Changed;
8154   }
8155 };
8156 
8157 struct AAValueConstantRangeArgument final
8158     : AAArgumentFromCallSiteArguments<
8159           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8160           true /* BridgeCallBaseContext */> {
8161   using Base = AAArgumentFromCallSiteArguments<
8162       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8163       true /* BridgeCallBaseContext */>;
8164   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8165       : Base(IRP, A) {}
8166 
8167   /// See AbstractAttribute::initialize(..).
8168   void initialize(Attributor &A) override {
8169     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8170       indicatePessimisticFixpoint();
8171     } else {
8172       Base::initialize(A);
8173     }
8174   }
8175 
8176   /// See AbstractAttribute::trackStatistics()
8177   void trackStatistics() const override {
8178     STATS_DECLTRACK_ARG_ATTR(value_range)
8179   }
8180 };
8181 
8182 struct AAValueConstantRangeReturned
8183     : AAReturnedFromReturnedValues<AAValueConstantRange,
8184                                    AAValueConstantRangeImpl,
8185                                    AAValueConstantRangeImpl::StateType,
8186                                    /* PropogateCallBaseContext */ true> {
8187   using Base =
8188       AAReturnedFromReturnedValues<AAValueConstantRange,
8189                                    AAValueConstantRangeImpl,
8190                                    AAValueConstantRangeImpl::StateType,
8191                                    /* PropogateCallBaseContext */ true>;
8192   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8193       : Base(IRP, A) {}
8194 
8195   /// See AbstractAttribute::initialize(...).
8196   void initialize(Attributor &A) override {}
8197 
8198   /// See AbstractAttribute::trackStatistics()
8199   void trackStatistics() const override {
8200     STATS_DECLTRACK_FNRET_ATTR(value_range)
8201   }
8202 };
8203 
8204 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8205   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8206       : AAValueConstantRangeImpl(IRP, A) {}
8207 
8208   /// See AbstractAttribute::initialize(...).
8209   void initialize(Attributor &A) override {
8210     AAValueConstantRangeImpl::initialize(A);
8211     if (isAtFixpoint())
8212       return;
8213 
8214     Value &V = getAssociatedValue();
8215 
8216     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8217       unionAssumed(ConstantRange(C->getValue()));
8218       indicateOptimisticFixpoint();
8219       return;
8220     }
8221 
8222     if (isa<UndefValue>(&V)) {
8223       // Collapse the undef state to 0.
8224       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8225       indicateOptimisticFixpoint();
8226       return;
8227     }
8228 
8229     if (isa<CallBase>(&V))
8230       return;
8231 
8232     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8233       return;
8234 
8235     // If it is a load instruction with range metadata, use it.
8236     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8237       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8238         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8239         return;
8240       }
8241 
8242     // We can work with PHI and select instruction as we traverse their operands
8243     // during update.
8244     if (isa<SelectInst>(V) || isa<PHINode>(V))
8245       return;
8246 
8247     // Otherwise we give up.
8248     indicatePessimisticFixpoint();
8249 
8250     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8251                       << getAssociatedValue() << "\n");
8252   }
8253 
8254   bool calculateBinaryOperator(
8255       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8256       const Instruction *CtxI,
8257       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8258     Value *LHS = BinOp->getOperand(0);
8259     Value *RHS = BinOp->getOperand(1);
8260 
8261     // Simplify the operands first.
8262     bool UsedAssumedInformation = false;
8263     const auto &SimplifiedLHS =
8264         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8265                                *this, UsedAssumedInformation);
8266     if (!SimplifiedLHS.hasValue())
8267       return true;
8268     if (!SimplifiedLHS.getValue())
8269       return false;
8270     LHS = *SimplifiedLHS;
8271 
8272     const auto &SimplifiedRHS =
8273         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8274                                *this, UsedAssumedInformation);
8275     if (!SimplifiedRHS.hasValue())
8276       return true;
8277     if (!SimplifiedRHS.getValue())
8278       return false;
8279     RHS = *SimplifiedRHS;
8280 
8281     // TODO: Allow non integers as well.
8282     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8283       return false;
8284 
8285     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8286         *this, IRPosition::value(*LHS, getCallBaseContext()),
8287         DepClassTy::REQUIRED);
8288     QuerriedAAs.push_back(&LHSAA);
8289     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8290 
8291     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8292         *this, IRPosition::value(*RHS, getCallBaseContext()),
8293         DepClassTy::REQUIRED);
8294     QuerriedAAs.push_back(&RHSAA);
8295     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8296 
8297     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8298 
8299     T.unionAssumed(AssumedRange);
8300 
8301     // TODO: Track a known state too.
8302 
8303     return T.isValidState();
8304   }
8305 
8306   bool calculateCastInst(
8307       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8308       const Instruction *CtxI,
8309       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8310     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8311     // TODO: Allow non integers as well.
8312     Value *OpV = CastI->getOperand(0);
8313 
8314     // Simplify the operand first.
8315     bool UsedAssumedInformation = false;
8316     const auto &SimplifiedOpV =
8317         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8318                                *this, UsedAssumedInformation);
8319     if (!SimplifiedOpV.hasValue())
8320       return true;
8321     if (!SimplifiedOpV.getValue())
8322       return false;
8323     OpV = *SimplifiedOpV;
8324 
8325     if (!OpV->getType()->isIntegerTy())
8326       return false;
8327 
8328     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8329         *this, IRPosition::value(*OpV, getCallBaseContext()),
8330         DepClassTy::REQUIRED);
8331     QuerriedAAs.push_back(&OpAA);
8332     T.unionAssumed(
8333         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8334     return T.isValidState();
8335   }
8336 
8337   bool
8338   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8339                    const Instruction *CtxI,
8340                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8341     Value *LHS = CmpI->getOperand(0);
8342     Value *RHS = CmpI->getOperand(1);
8343 
8344     // Simplify the operands first.
8345     bool UsedAssumedInformation = false;
8346     const auto &SimplifiedLHS =
8347         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8348                                *this, UsedAssumedInformation);
8349     if (!SimplifiedLHS.hasValue())
8350       return true;
8351     if (!SimplifiedLHS.getValue())
8352       return false;
8353     LHS = *SimplifiedLHS;
8354 
8355     const auto &SimplifiedRHS =
8356         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8357                                *this, UsedAssumedInformation);
8358     if (!SimplifiedRHS.hasValue())
8359       return true;
8360     if (!SimplifiedRHS.getValue())
8361       return false;
8362     RHS = *SimplifiedRHS;
8363 
8364     // TODO: Allow non integers as well.
8365     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8366       return false;
8367 
8368     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8369         *this, IRPosition::value(*LHS, getCallBaseContext()),
8370         DepClassTy::REQUIRED);
8371     QuerriedAAs.push_back(&LHSAA);
8372     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8373         *this, IRPosition::value(*RHS, getCallBaseContext()),
8374         DepClassTy::REQUIRED);
8375     QuerriedAAs.push_back(&RHSAA);
8376     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8377     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8378 
8379     // If one of them is empty set, we can't decide.
8380     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8381       return true;
8382 
8383     bool MustTrue = false, MustFalse = false;
8384 
8385     auto AllowedRegion =
8386         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8387 
8388     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8389       MustFalse = true;
8390 
8391     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8392       MustTrue = true;
8393 
8394     assert((!MustTrue || !MustFalse) &&
8395            "Either MustTrue or MustFalse should be false!");
8396 
8397     if (MustTrue)
8398       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8399     else if (MustFalse)
8400       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8401     else
8402       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8403 
8404     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8405                       << " " << RHSAA << "\n");
8406 
8407     // TODO: Track a known state too.
8408     return T.isValidState();
8409   }
8410 
8411   /// See AbstractAttribute::updateImpl(...).
8412   ChangeStatus updateImpl(Attributor &A) override {
8413     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8414                             IntegerRangeState &T, bool Stripped) -> bool {
8415       Instruction *I = dyn_cast<Instruction>(&V);
8416       if (!I || isa<CallBase>(I)) {
8417 
8418         // Simplify the operand first.
8419         bool UsedAssumedInformation = false;
8420         const auto &SimplifiedOpV =
8421             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8422                                    *this, UsedAssumedInformation);
8423         if (!SimplifiedOpV.hasValue())
8424           return true;
8425         if (!SimplifiedOpV.getValue())
8426           return false;
8427         Value *VPtr = *SimplifiedOpV;
8428 
8429         // If the value is not instruction, we query AA to Attributor.
8430         const auto &AA = A.getAAFor<AAValueConstantRange>(
8431             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8432             DepClassTy::REQUIRED);
8433 
8434         // Clamp operator is not used to utilize a program point CtxI.
8435         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8436 
8437         return T.isValidState();
8438       }
8439 
8440       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8441       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8442         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8443           return false;
8444       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8445         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8446           return false;
8447       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8448         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8449           return false;
8450       } else {
8451         // Give up with other instructions.
8452         // TODO: Add other instructions
8453 
8454         T.indicatePessimisticFixpoint();
8455         return false;
8456       }
8457 
8458       // Catch circular reasoning in a pessimistic way for now.
8459       // TODO: Check how the range evolves and if we stripped anything, see also
8460       //       AADereferenceable or AAAlign for similar situations.
8461       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8462         if (QueriedAA != this)
8463           continue;
8464         // If we are in a stady state we do not need to worry.
8465         if (T.getAssumed() == getState().getAssumed())
8466           continue;
8467         T.indicatePessimisticFixpoint();
8468       }
8469 
8470       return T.isValidState();
8471     };
8472 
8473     IntegerRangeState T(getBitWidth());
8474 
8475     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8476                                                   VisitValueCB, getCtxI(),
8477                                                   /* UseValueSimplify */ false))
8478       return indicatePessimisticFixpoint();
8479 
8480     // Ensure that long def-use chains can't cause circular reasoning either by
8481     // introducing a cutoff below.
8482     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8483       return ChangeStatus::UNCHANGED;
8484     if (++NumChanges > MaxNumChanges) {
8485       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8486                         << " but only " << MaxNumChanges
8487                         << " are allowed to avoid cyclic reasoning.");
8488       return indicatePessimisticFixpoint();
8489     }
8490     return ChangeStatus::CHANGED;
8491   }
8492 
8493   /// See AbstractAttribute::trackStatistics()
8494   void trackStatistics() const override {
8495     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8496   }
8497 
8498   /// Tracker to bail after too many widening steps of the constant range.
8499   int NumChanges = 0;
8500 
8501   /// Upper bound for the number of allowed changes (=widening steps) for the
8502   /// constant range before we give up.
8503   static constexpr int MaxNumChanges = 5;
8504 };
8505 
8506 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8507   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8508       : AAValueConstantRangeImpl(IRP, A) {}
8509 
8510   /// See AbstractAttribute::initialize(...).
8511   ChangeStatus updateImpl(Attributor &A) override {
8512     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8513                      "not be called");
8514   }
8515 
8516   /// See AbstractAttribute::trackStatistics()
8517   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8518 };
8519 
8520 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8521   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8522       : AAValueConstantRangeFunction(IRP, A) {}
8523 
8524   /// See AbstractAttribute::trackStatistics()
8525   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8526 };
8527 
8528 struct AAValueConstantRangeCallSiteReturned
8529     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8530                                      AAValueConstantRangeImpl,
8531                                      AAValueConstantRangeImpl::StateType,
8532                                      /* IntroduceCallBaseContext */ true> {
8533   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8534       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8535                                        AAValueConstantRangeImpl,
8536                                        AAValueConstantRangeImpl::StateType,
8537                                        /* IntroduceCallBaseContext */ true>(IRP,
8538                                                                             A) {
8539   }
8540 
8541   /// See AbstractAttribute::initialize(...).
8542   void initialize(Attributor &A) override {
8543     // If it is a load instruction with range metadata, use the metadata.
8544     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8545       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8546         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8547 
8548     AAValueConstantRangeImpl::initialize(A);
8549   }
8550 
8551   /// See AbstractAttribute::trackStatistics()
8552   void trackStatistics() const override {
8553     STATS_DECLTRACK_CSRET_ATTR(value_range)
8554   }
8555 };
8556 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8557   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8558       : AAValueConstantRangeFloating(IRP, A) {}
8559 
8560   /// See AbstractAttribute::manifest()
8561   ChangeStatus manifest(Attributor &A) override {
8562     return ChangeStatus::UNCHANGED;
8563   }
8564 
8565   /// See AbstractAttribute::trackStatistics()
8566   void trackStatistics() const override {
8567     STATS_DECLTRACK_CSARG_ATTR(value_range)
8568   }
8569 };
8570 
8571 /// ------------------ Potential Values Attribute -------------------------
8572 
8573 struct AAPotentialValuesImpl : AAPotentialValues {
8574   using StateType = PotentialConstantIntValuesState;
8575 
8576   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8577       : AAPotentialValues(IRP, A) {}
8578 
8579   /// See AbstractAttribute::initialize(..).
8580   void initialize(Attributor &A) override {
8581     if (A.hasSimplificationCallback(getIRPosition()))
8582       indicatePessimisticFixpoint();
8583     else
8584       AAPotentialValues::initialize(A);
8585   }
8586 
8587   /// See AbstractAttribute::getAsStr().
8588   const std::string getAsStr() const override {
8589     std::string Str;
8590     llvm::raw_string_ostream OS(Str);
8591     OS << getState();
8592     return OS.str();
8593   }
8594 
8595   /// See AbstractAttribute::updateImpl(...).
8596   ChangeStatus updateImpl(Attributor &A) override {
8597     return indicatePessimisticFixpoint();
8598   }
8599 };
8600 
8601 struct AAPotentialValuesArgument final
8602     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8603                                       PotentialConstantIntValuesState> {
8604   using Base =
8605       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8606                                       PotentialConstantIntValuesState>;
8607   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8608       : Base(IRP, A) {}
8609 
8610   /// See AbstractAttribute::initialize(..).
8611   void initialize(Attributor &A) override {
8612     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8613       indicatePessimisticFixpoint();
8614     } else {
8615       Base::initialize(A);
8616     }
8617   }
8618 
8619   /// See AbstractAttribute::trackStatistics()
8620   void trackStatistics() const override {
8621     STATS_DECLTRACK_ARG_ATTR(potential_values)
8622   }
8623 };
8624 
8625 struct AAPotentialValuesReturned
8626     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8627   using Base =
8628       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8629   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8630       : Base(IRP, A) {}
8631 
8632   /// See AbstractAttribute::trackStatistics()
8633   void trackStatistics() const override {
8634     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8635   }
8636 };
8637 
8638 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8639   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8640       : AAPotentialValuesImpl(IRP, A) {}
8641 
8642   /// See AbstractAttribute::initialize(..).
8643   void initialize(Attributor &A) override {
8644     AAPotentialValuesImpl::initialize(A);
8645     if (isAtFixpoint())
8646       return;
8647 
8648     Value &V = getAssociatedValue();
8649 
8650     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8651       unionAssumed(C->getValue());
8652       indicateOptimisticFixpoint();
8653       return;
8654     }
8655 
8656     if (isa<UndefValue>(&V)) {
8657       unionAssumedWithUndef();
8658       indicateOptimisticFixpoint();
8659       return;
8660     }
8661 
8662     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8663       return;
8664 
8665     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8666       return;
8667 
8668     indicatePessimisticFixpoint();
8669 
8670     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8671                       << getAssociatedValue() << "\n");
8672   }
8673 
8674   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8675                                 const APInt &RHS) {
8676     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8677   }
8678 
8679   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8680                                  uint32_t ResultBitWidth) {
8681     Instruction::CastOps CastOp = CI->getOpcode();
8682     switch (CastOp) {
8683     default:
8684       llvm_unreachable("unsupported or not integer cast");
8685     case Instruction::Trunc:
8686       return Src.trunc(ResultBitWidth);
8687     case Instruction::SExt:
8688       return Src.sext(ResultBitWidth);
8689     case Instruction::ZExt:
8690       return Src.zext(ResultBitWidth);
8691     case Instruction::BitCast:
8692       return Src;
8693     }
8694   }
8695 
8696   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8697                                        const APInt &LHS, const APInt &RHS,
8698                                        bool &SkipOperation, bool &Unsupported) {
8699     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8700     // Unsupported is set to true when the binary operator is not supported.
8701     // SkipOperation is set to true when UB occur with the given operand pair
8702     // (LHS, RHS).
8703     // TODO: we should look at nsw and nuw keywords to handle operations
8704     //       that create poison or undef value.
8705     switch (BinOpcode) {
8706     default:
8707       Unsupported = true;
8708       return LHS;
8709     case Instruction::Add:
8710       return LHS + RHS;
8711     case Instruction::Sub:
8712       return LHS - RHS;
8713     case Instruction::Mul:
8714       return LHS * RHS;
8715     case Instruction::UDiv:
8716       if (RHS.isZero()) {
8717         SkipOperation = true;
8718         return LHS;
8719       }
8720       return LHS.udiv(RHS);
8721     case Instruction::SDiv:
8722       if (RHS.isZero()) {
8723         SkipOperation = true;
8724         return LHS;
8725       }
8726       return LHS.sdiv(RHS);
8727     case Instruction::URem:
8728       if (RHS.isZero()) {
8729         SkipOperation = true;
8730         return LHS;
8731       }
8732       return LHS.urem(RHS);
8733     case Instruction::SRem:
8734       if (RHS.isZero()) {
8735         SkipOperation = true;
8736         return LHS;
8737       }
8738       return LHS.srem(RHS);
8739     case Instruction::Shl:
8740       return LHS.shl(RHS);
8741     case Instruction::LShr:
8742       return LHS.lshr(RHS);
8743     case Instruction::AShr:
8744       return LHS.ashr(RHS);
8745     case Instruction::And:
8746       return LHS & RHS;
8747     case Instruction::Or:
8748       return LHS | RHS;
8749     case Instruction::Xor:
8750       return LHS ^ RHS;
8751     }
8752   }
8753 
8754   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8755                                            const APInt &LHS, const APInt &RHS) {
8756     bool SkipOperation = false;
8757     bool Unsupported = false;
8758     APInt Result =
8759         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8760     if (Unsupported)
8761       return false;
8762     // If SkipOperation is true, we can ignore this operand pair (L, R).
8763     if (!SkipOperation)
8764       unionAssumed(Result);
8765     return isValidState();
8766   }
8767 
8768   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8769     auto AssumedBefore = getAssumed();
8770     Value *LHS = ICI->getOperand(0);
8771     Value *RHS = ICI->getOperand(1);
8772 
8773     // Simplify the operands first.
8774     bool UsedAssumedInformation = false;
8775     const auto &SimplifiedLHS =
8776         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8777                                *this, UsedAssumedInformation);
8778     if (!SimplifiedLHS.hasValue())
8779       return ChangeStatus::UNCHANGED;
8780     if (!SimplifiedLHS.getValue())
8781       return indicatePessimisticFixpoint();
8782     LHS = *SimplifiedLHS;
8783 
8784     const auto &SimplifiedRHS =
8785         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8786                                *this, UsedAssumedInformation);
8787     if (!SimplifiedRHS.hasValue())
8788       return ChangeStatus::UNCHANGED;
8789     if (!SimplifiedRHS.getValue())
8790       return indicatePessimisticFixpoint();
8791     RHS = *SimplifiedRHS;
8792 
8793     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8794       return indicatePessimisticFixpoint();
8795 
8796     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8797                                                 DepClassTy::REQUIRED);
8798     if (!LHSAA.isValidState())
8799       return indicatePessimisticFixpoint();
8800 
8801     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8802                                                 DepClassTy::REQUIRED);
8803     if (!RHSAA.isValidState())
8804       return indicatePessimisticFixpoint();
8805 
8806     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8807     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8808 
8809     // TODO: make use of undef flag to limit potential values aggressively.
8810     bool MaybeTrue = false, MaybeFalse = false;
8811     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8812     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8813       // The result of any comparison between undefs can be soundly replaced
8814       // with undef.
8815       unionAssumedWithUndef();
8816     } else if (LHSAA.undefIsContained()) {
8817       for (const APInt &R : RHSAAPVS) {
8818         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8819         MaybeTrue |= CmpResult;
8820         MaybeFalse |= !CmpResult;
8821         if (MaybeTrue & MaybeFalse)
8822           return indicatePessimisticFixpoint();
8823       }
8824     } else if (RHSAA.undefIsContained()) {
8825       for (const APInt &L : LHSAAPVS) {
8826         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8827         MaybeTrue |= CmpResult;
8828         MaybeFalse |= !CmpResult;
8829         if (MaybeTrue & MaybeFalse)
8830           return indicatePessimisticFixpoint();
8831       }
8832     } else {
8833       for (const APInt &L : LHSAAPVS) {
8834         for (const APInt &R : RHSAAPVS) {
8835           bool CmpResult = calculateICmpInst(ICI, L, R);
8836           MaybeTrue |= CmpResult;
8837           MaybeFalse |= !CmpResult;
8838           if (MaybeTrue & MaybeFalse)
8839             return indicatePessimisticFixpoint();
8840         }
8841       }
8842     }
8843     if (MaybeTrue)
8844       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8845     if (MaybeFalse)
8846       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8847     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8848                                          : ChangeStatus::CHANGED;
8849   }
8850 
8851   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8852     auto AssumedBefore = getAssumed();
8853     Value *LHS = SI->getTrueValue();
8854     Value *RHS = SI->getFalseValue();
8855 
8856     // Simplify the operands first.
8857     bool UsedAssumedInformation = false;
8858     const auto &SimplifiedLHS =
8859         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8860                                *this, UsedAssumedInformation);
8861     if (!SimplifiedLHS.hasValue())
8862       return ChangeStatus::UNCHANGED;
8863     if (!SimplifiedLHS.getValue())
8864       return indicatePessimisticFixpoint();
8865     LHS = *SimplifiedLHS;
8866 
8867     const auto &SimplifiedRHS =
8868         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8869                                *this, UsedAssumedInformation);
8870     if (!SimplifiedRHS.hasValue())
8871       return ChangeStatus::UNCHANGED;
8872     if (!SimplifiedRHS.getValue())
8873       return indicatePessimisticFixpoint();
8874     RHS = *SimplifiedRHS;
8875 
8876     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8877       return indicatePessimisticFixpoint();
8878 
8879     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8880                                                   UsedAssumedInformation);
8881 
8882     // Check if we only need one operand.
8883     bool OnlyLeft = false, OnlyRight = false;
8884     if (C.hasValue() && *C && (*C)->isOneValue())
8885       OnlyLeft = true;
8886     else if (C.hasValue() && *C && (*C)->isZeroValue())
8887       OnlyRight = true;
8888 
8889     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8890     if (!OnlyRight) {
8891       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8892                                              DepClassTy::REQUIRED);
8893       if (!LHSAA->isValidState())
8894         return indicatePessimisticFixpoint();
8895     }
8896     if (!OnlyLeft) {
8897       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8898                                              DepClassTy::REQUIRED);
8899       if (!RHSAA->isValidState())
8900         return indicatePessimisticFixpoint();
8901     }
8902 
8903     if (!LHSAA || !RHSAA) {
8904       // select (true/false), lhs, rhs
8905       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8906 
8907       if (OpAA->undefIsContained())
8908         unionAssumedWithUndef();
8909       else
8910         unionAssumed(*OpAA);
8911 
8912     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8913       // select i1 *, undef , undef => undef
8914       unionAssumedWithUndef();
8915     } else {
8916       unionAssumed(*LHSAA);
8917       unionAssumed(*RHSAA);
8918     }
8919     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8920                                          : ChangeStatus::CHANGED;
8921   }
8922 
8923   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8924     auto AssumedBefore = getAssumed();
8925     if (!CI->isIntegerCast())
8926       return indicatePessimisticFixpoint();
8927     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8928     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8929     Value *Src = CI->getOperand(0);
8930 
8931     // Simplify the operand first.
8932     bool UsedAssumedInformation = false;
8933     const auto &SimplifiedSrc =
8934         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8935                                *this, UsedAssumedInformation);
8936     if (!SimplifiedSrc.hasValue())
8937       return ChangeStatus::UNCHANGED;
8938     if (!SimplifiedSrc.getValue())
8939       return indicatePessimisticFixpoint();
8940     Src = *SimplifiedSrc;
8941 
8942     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8943                                                 DepClassTy::REQUIRED);
8944     if (!SrcAA.isValidState())
8945       return indicatePessimisticFixpoint();
8946     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8947     if (SrcAA.undefIsContained())
8948       unionAssumedWithUndef();
8949     else {
8950       for (const APInt &S : SrcAAPVS) {
8951         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8952         unionAssumed(T);
8953       }
8954     }
8955     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8956                                          : ChangeStatus::CHANGED;
8957   }
8958 
8959   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8960     auto AssumedBefore = getAssumed();
8961     Value *LHS = BinOp->getOperand(0);
8962     Value *RHS = BinOp->getOperand(1);
8963 
8964     // Simplify the operands first.
8965     bool UsedAssumedInformation = false;
8966     const auto &SimplifiedLHS =
8967         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8968                                *this, UsedAssumedInformation);
8969     if (!SimplifiedLHS.hasValue())
8970       return ChangeStatus::UNCHANGED;
8971     if (!SimplifiedLHS.getValue())
8972       return indicatePessimisticFixpoint();
8973     LHS = *SimplifiedLHS;
8974 
8975     const auto &SimplifiedRHS =
8976         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8977                                *this, UsedAssumedInformation);
8978     if (!SimplifiedRHS.hasValue())
8979       return ChangeStatus::UNCHANGED;
8980     if (!SimplifiedRHS.getValue())
8981       return indicatePessimisticFixpoint();
8982     RHS = *SimplifiedRHS;
8983 
8984     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8985       return indicatePessimisticFixpoint();
8986 
8987     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8988                                                 DepClassTy::REQUIRED);
8989     if (!LHSAA.isValidState())
8990       return indicatePessimisticFixpoint();
8991 
8992     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8993                                                 DepClassTy::REQUIRED);
8994     if (!RHSAA.isValidState())
8995       return indicatePessimisticFixpoint();
8996 
8997     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8998     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8999     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9000 
9001     // TODO: make use of undef flag to limit potential values aggressively.
9002     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9003       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9004         return indicatePessimisticFixpoint();
9005     } else if (LHSAA.undefIsContained()) {
9006       for (const APInt &R : RHSAAPVS) {
9007         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9008           return indicatePessimisticFixpoint();
9009       }
9010     } else if (RHSAA.undefIsContained()) {
9011       for (const APInt &L : LHSAAPVS) {
9012         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9013           return indicatePessimisticFixpoint();
9014       }
9015     } else {
9016       for (const APInt &L : LHSAAPVS) {
9017         for (const APInt &R : RHSAAPVS) {
9018           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9019             return indicatePessimisticFixpoint();
9020         }
9021       }
9022     }
9023     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9024                                          : ChangeStatus::CHANGED;
9025   }
9026 
9027   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9028     auto AssumedBefore = getAssumed();
9029     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9030       Value *IncomingValue = PHI->getIncomingValue(u);
9031 
9032       // Simplify the operand first.
9033       bool UsedAssumedInformation = false;
9034       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9035           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9036           UsedAssumedInformation);
9037       if (!SimplifiedIncomingValue.hasValue())
9038         continue;
9039       if (!SimplifiedIncomingValue.getValue())
9040         return indicatePessimisticFixpoint();
9041       IncomingValue = *SimplifiedIncomingValue;
9042 
9043       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9044           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9045       if (!PotentialValuesAA.isValidState())
9046         return indicatePessimisticFixpoint();
9047       if (PotentialValuesAA.undefIsContained())
9048         unionAssumedWithUndef();
9049       else
9050         unionAssumed(PotentialValuesAA.getAssumed());
9051     }
9052     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9053                                          : ChangeStatus::CHANGED;
9054   }
9055 
9056   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9057     if (!L.getType()->isIntegerTy())
9058       return indicatePessimisticFixpoint();
9059 
9060     auto Union = [&](Value &V) {
9061       if (isa<UndefValue>(V)) {
9062         unionAssumedWithUndef();
9063         return true;
9064       }
9065       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9066         unionAssumed(CI->getValue());
9067         return true;
9068       }
9069       return false;
9070     };
9071     auto AssumedBefore = getAssumed();
9072 
9073     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9074       return indicatePessimisticFixpoint();
9075 
9076     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9077                                          : ChangeStatus::CHANGED;
9078   }
9079 
9080   /// See AbstractAttribute::updateImpl(...).
9081   ChangeStatus updateImpl(Attributor &A) override {
9082     Value &V = getAssociatedValue();
9083     Instruction *I = dyn_cast<Instruction>(&V);
9084 
9085     if (auto *ICI = dyn_cast<ICmpInst>(I))
9086       return updateWithICmpInst(A, ICI);
9087 
9088     if (auto *SI = dyn_cast<SelectInst>(I))
9089       return updateWithSelectInst(A, SI);
9090 
9091     if (auto *CI = dyn_cast<CastInst>(I))
9092       return updateWithCastInst(A, CI);
9093 
9094     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9095       return updateWithBinaryOperator(A, BinOp);
9096 
9097     if (auto *PHI = dyn_cast<PHINode>(I))
9098       return updateWithPHINode(A, PHI);
9099 
9100     if (auto *L = dyn_cast<LoadInst>(I))
9101       return updateWithLoad(A, *L);
9102 
9103     return indicatePessimisticFixpoint();
9104   }
9105 
9106   /// See AbstractAttribute::trackStatistics()
9107   void trackStatistics() const override {
9108     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9109   }
9110 };
9111 
9112 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9113   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9114       : AAPotentialValuesImpl(IRP, A) {}
9115 
9116   /// See AbstractAttribute::initialize(...).
9117   ChangeStatus updateImpl(Attributor &A) override {
9118     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9119                      "not be called");
9120   }
9121 
9122   /// See AbstractAttribute::trackStatistics()
9123   void trackStatistics() const override {
9124     STATS_DECLTRACK_FN_ATTR(potential_values)
9125   }
9126 };
9127 
9128 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9129   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9130       : AAPotentialValuesFunction(IRP, A) {}
9131 
9132   /// See AbstractAttribute::trackStatistics()
9133   void trackStatistics() const override {
9134     STATS_DECLTRACK_CS_ATTR(potential_values)
9135   }
9136 };
9137 
9138 struct AAPotentialValuesCallSiteReturned
9139     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9140   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9141       : AACallSiteReturnedFromReturned<AAPotentialValues,
9142                                        AAPotentialValuesImpl>(IRP, A) {}
9143 
9144   /// See AbstractAttribute::trackStatistics()
9145   void trackStatistics() const override {
9146     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9147   }
9148 };
9149 
9150 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9151   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9152       : AAPotentialValuesFloating(IRP, A) {}
9153 
9154   /// See AbstractAttribute::initialize(..).
9155   void initialize(Attributor &A) override {
9156     AAPotentialValuesImpl::initialize(A);
9157     if (isAtFixpoint())
9158       return;
9159 
9160     Value &V = getAssociatedValue();
9161 
9162     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9163       unionAssumed(C->getValue());
9164       indicateOptimisticFixpoint();
9165       return;
9166     }
9167 
9168     if (isa<UndefValue>(&V)) {
9169       unionAssumedWithUndef();
9170       indicateOptimisticFixpoint();
9171       return;
9172     }
9173   }
9174 
9175   /// See AbstractAttribute::updateImpl(...).
9176   ChangeStatus updateImpl(Attributor &A) override {
9177     Value &V = getAssociatedValue();
9178     auto AssumedBefore = getAssumed();
9179     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9180                                              DepClassTy::REQUIRED);
9181     const auto &S = AA.getAssumed();
9182     unionAssumed(S);
9183     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9184                                          : ChangeStatus::CHANGED;
9185   }
9186 
9187   /// See AbstractAttribute::trackStatistics()
9188   void trackStatistics() const override {
9189     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9190   }
9191 };
9192 
9193 /// ------------------------ NoUndef Attribute ---------------------------------
9194 struct AANoUndefImpl : AANoUndef {
9195   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9196 
9197   /// See AbstractAttribute::initialize(...).
9198   void initialize(Attributor &A) override {
9199     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9200       indicateOptimisticFixpoint();
9201       return;
9202     }
9203     Value &V = getAssociatedValue();
9204     if (isa<UndefValue>(V))
9205       indicatePessimisticFixpoint();
9206     else if (isa<FreezeInst>(V))
9207       indicateOptimisticFixpoint();
9208     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9209              isGuaranteedNotToBeUndefOrPoison(&V))
9210       indicateOptimisticFixpoint();
9211     else
9212       AANoUndef::initialize(A);
9213   }
9214 
9215   /// See followUsesInMBEC
9216   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9217                        AANoUndef::StateType &State) {
9218     const Value *UseV = U->get();
9219     const DominatorTree *DT = nullptr;
9220     AssumptionCache *AC = nullptr;
9221     InformationCache &InfoCache = A.getInfoCache();
9222     if (Function *F = getAnchorScope()) {
9223       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9224       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9225     }
9226     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9227     bool TrackUse = false;
9228     // Track use for instructions which must produce undef or poison bits when
9229     // at least one operand contains such bits.
9230     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9231       TrackUse = true;
9232     return TrackUse;
9233   }
9234 
9235   /// See AbstractAttribute::getAsStr().
9236   const std::string getAsStr() const override {
9237     return getAssumed() ? "noundef" : "may-undef-or-poison";
9238   }
9239 
9240   ChangeStatus manifest(Attributor &A) override {
9241     // We don't manifest noundef attribute for dead positions because the
9242     // associated values with dead positions would be replaced with undef
9243     // values.
9244     bool UsedAssumedInformation = false;
9245     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9246                         UsedAssumedInformation))
9247       return ChangeStatus::UNCHANGED;
9248     // A position whose simplified value does not have any value is
9249     // considered to be dead. We don't manifest noundef in such positions for
9250     // the same reason above.
9251     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9252              .hasValue())
9253       return ChangeStatus::UNCHANGED;
9254     return AANoUndef::manifest(A);
9255   }
9256 };
9257 
9258 struct AANoUndefFloating : public AANoUndefImpl {
9259   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9260       : AANoUndefImpl(IRP, A) {}
9261 
9262   /// See AbstractAttribute::initialize(...).
9263   void initialize(Attributor &A) override {
9264     AANoUndefImpl::initialize(A);
9265     if (!getState().isAtFixpoint())
9266       if (Instruction *CtxI = getCtxI())
9267         followUsesInMBEC(*this, A, getState(), *CtxI);
9268   }
9269 
9270   /// See AbstractAttribute::updateImpl(...).
9271   ChangeStatus updateImpl(Attributor &A) override {
9272     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9273                             AANoUndef::StateType &T, bool Stripped) -> bool {
9274       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9275                                              DepClassTy::REQUIRED);
9276       if (!Stripped && this == &AA) {
9277         T.indicatePessimisticFixpoint();
9278       } else {
9279         const AANoUndef::StateType &S =
9280             static_cast<const AANoUndef::StateType &>(AA.getState());
9281         T ^= S;
9282       }
9283       return T.isValidState();
9284     };
9285 
9286     StateType T;
9287     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9288                                           VisitValueCB, getCtxI()))
9289       return indicatePessimisticFixpoint();
9290 
9291     return clampStateAndIndicateChange(getState(), T);
9292   }
9293 
9294   /// See AbstractAttribute::trackStatistics()
9295   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9296 };
9297 
9298 struct AANoUndefReturned final
9299     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9300   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9301       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9302 
9303   /// See AbstractAttribute::trackStatistics()
9304   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9305 };
9306 
9307 struct AANoUndefArgument final
9308     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9309   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9310       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9311 
9312   /// See AbstractAttribute::trackStatistics()
9313   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9314 };
9315 
9316 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9317   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9318       : AANoUndefFloating(IRP, A) {}
9319 
9320   /// See AbstractAttribute::trackStatistics()
9321   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9322 };
9323 
9324 struct AANoUndefCallSiteReturned final
9325     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9326   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9327       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9328 
9329   /// See AbstractAttribute::trackStatistics()
9330   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9331 };
9332 
9333 struct AACallEdgesImpl : public AACallEdges {
9334   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9335 
9336   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9337     return CalledFunctions;
9338   }
9339 
9340   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9341 
9342   virtual bool hasNonAsmUnknownCallee() const override {
9343     return HasUnknownCalleeNonAsm;
9344   }
9345 
9346   const std::string getAsStr() const override {
9347     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9348            std::to_string(CalledFunctions.size()) + "]";
9349   }
9350 
9351   void trackStatistics() const override {}
9352 
9353 protected:
9354   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9355     if (CalledFunctions.insert(Fn)) {
9356       Change = ChangeStatus::CHANGED;
9357       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9358                         << "\n");
9359     }
9360   }
9361 
9362   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9363     if (!HasUnknownCallee)
9364       Change = ChangeStatus::CHANGED;
9365     if (NonAsm && !HasUnknownCalleeNonAsm)
9366       Change = ChangeStatus::CHANGED;
9367     HasUnknownCalleeNonAsm |= NonAsm;
9368     HasUnknownCallee = true;
9369   }
9370 
9371 private:
9372   /// Optimistic set of functions that might be called by this position.
9373   SetVector<Function *> CalledFunctions;
9374 
9375   /// Is there any call with a unknown callee.
9376   bool HasUnknownCallee = false;
9377 
9378   /// Is there any call with a unknown callee, excluding any inline asm.
9379   bool HasUnknownCalleeNonAsm = false;
9380 };
9381 
9382 struct AACallEdgesCallSite : public AACallEdgesImpl {
9383   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9384       : AACallEdgesImpl(IRP, A) {}
9385   /// See AbstractAttribute::updateImpl(...).
9386   ChangeStatus updateImpl(Attributor &A) override {
9387     ChangeStatus Change = ChangeStatus::UNCHANGED;
9388 
9389     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9390                           bool Stripped) -> bool {
9391       if (Function *Fn = dyn_cast<Function>(&V)) {
9392         addCalledFunction(Fn, Change);
9393       } else {
9394         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9395         setHasUnknownCallee(true, Change);
9396       }
9397 
9398       // Explore all values.
9399       return true;
9400     };
9401 
9402     // Process any value that we might call.
9403     auto ProcessCalledOperand = [&](Value *V) {
9404       bool DummyValue = false;
9405       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9406                                        DummyValue, VisitValue, nullptr,
9407                                        false)) {
9408         // If we haven't gone through all values, assume that there are unknown
9409         // callees.
9410         setHasUnknownCallee(true, Change);
9411       }
9412     };
9413 
9414     CallBase *CB = static_cast<CallBase *>(getCtxI());
9415 
9416     if (CB->isInlineAsm()) {
9417       setHasUnknownCallee(false, Change);
9418       return Change;
9419     }
9420 
9421     // Process callee metadata if available.
9422     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9423       for (auto &Op : MD->operands()) {
9424         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9425         if (Callee)
9426           addCalledFunction(Callee, Change);
9427       }
9428       return Change;
9429     }
9430 
9431     // The most simple case.
9432     ProcessCalledOperand(CB->getCalledOperand());
9433 
9434     // Process callback functions.
9435     SmallVector<const Use *, 4u> CallbackUses;
9436     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9437     for (const Use *U : CallbackUses)
9438       ProcessCalledOperand(U->get());
9439 
9440     return Change;
9441   }
9442 };
9443 
9444 struct AACallEdgesFunction : public AACallEdgesImpl {
9445   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9446       : AACallEdgesImpl(IRP, A) {}
9447 
9448   /// See AbstractAttribute::updateImpl(...).
9449   ChangeStatus updateImpl(Attributor &A) override {
9450     ChangeStatus Change = ChangeStatus::UNCHANGED;
9451 
9452     auto ProcessCallInst = [&](Instruction &Inst) {
9453       CallBase &CB = static_cast<CallBase &>(Inst);
9454 
9455       auto &CBEdges = A.getAAFor<AACallEdges>(
9456           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9457       if (CBEdges.hasNonAsmUnknownCallee())
9458         setHasUnknownCallee(true, Change);
9459       if (CBEdges.hasUnknownCallee())
9460         setHasUnknownCallee(false, Change);
9461 
9462       for (Function *F : CBEdges.getOptimisticEdges())
9463         addCalledFunction(F, Change);
9464 
9465       return true;
9466     };
9467 
9468     // Visit all callable instructions.
9469     bool UsedAssumedInformation = false;
9470     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9471                                            UsedAssumedInformation)) {
9472       // If we haven't looked at all call like instructions, assume that there
9473       // are unknown callees.
9474       setHasUnknownCallee(true, Change);
9475     }
9476 
9477     return Change;
9478   }
9479 };
9480 
9481 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9482 private:
9483   struct QuerySet {
9484     void markReachable(Function *Fn) {
9485       Reachable.insert(Fn);
9486       Unreachable.erase(Fn);
9487     }
9488 
9489     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9490                         ArrayRef<const AACallEdges *> AAEdgesList) {
9491       ChangeStatus Change = ChangeStatus::UNCHANGED;
9492 
9493       for (auto *AAEdges : AAEdgesList) {
9494         if (AAEdges->hasUnknownCallee()) {
9495           if (!CanReachUnknownCallee)
9496             Change = ChangeStatus::CHANGED;
9497           CanReachUnknownCallee = true;
9498           return Change;
9499         }
9500       }
9501 
9502       for (Function *Fn : make_early_inc_range(Unreachable)) {
9503         if (checkIfReachable(A, AA, AAEdgesList, Fn)) {
9504           Change = ChangeStatus::CHANGED;
9505           markReachable(Fn);
9506         }
9507       }
9508       return Change;
9509     }
9510 
9511     bool isReachable(Attributor &A, const AAFunctionReachability &AA,
9512                      ArrayRef<const AACallEdges *> AAEdgesList, Function *Fn) {
9513       // Assume that we can reach the function.
9514       // TODO: Be more specific with the unknown callee.
9515       if (CanReachUnknownCallee)
9516         return true;
9517 
9518       if (Reachable.count(Fn))
9519         return true;
9520 
9521       if (Unreachable.count(Fn))
9522         return false;
9523 
9524       // We need to assume that this function can't reach Fn to prevent
9525       // an infinite loop if this function is recursive.
9526       Unreachable.insert(Fn);
9527 
9528       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9529       if (Result)
9530         markReachable(Fn);
9531       return Result;
9532     }
9533 
9534     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9535                           ArrayRef<const AACallEdges *> AAEdgesList,
9536                           Function *Fn) const {
9537 
9538       // Handle the most trivial case first.
9539       for (auto *AAEdges : AAEdgesList) {
9540         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9541 
9542         if (Edges.count(Fn))
9543           return true;
9544       }
9545 
9546       SmallVector<const AAFunctionReachability *, 8> Deps;
9547       for (auto &AAEdges : AAEdgesList) {
9548         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9549 
9550         for (Function *Edge : Edges) {
9551           // We don't need a dependency if the result is reachable.
9552           const AAFunctionReachability &EdgeReachability =
9553               A.getAAFor<AAFunctionReachability>(
9554                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9555           Deps.push_back(&EdgeReachability);
9556 
9557           if (EdgeReachability.canReach(A, Fn))
9558             return true;
9559         }
9560       }
9561 
9562       // The result is false for now, set dependencies and leave.
9563       for (auto Dep : Deps)
9564         A.recordDependence(AA, *Dep, DepClassTy::REQUIRED);
9565 
9566       return false;
9567     }
9568 
9569     /// Set of functions that we know for sure is reachable.
9570     DenseSet<Function *> Reachable;
9571 
9572     /// Set of functions that are unreachable, but might become reachable.
9573     DenseSet<Function *> Unreachable;
9574 
9575     /// If we can reach a function with a call to a unknown function we assume
9576     /// that we can reach any function.
9577     bool CanReachUnknownCallee = false;
9578   };
9579 
9580 public:
9581   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9582       : AAFunctionReachability(IRP, A) {}
9583 
9584   bool canReach(Attributor &A, Function *Fn) const override {
9585     const AACallEdges &AAEdges =
9586         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9587 
9588     // Attributor returns attributes as const, so this function has to be
9589     // const for users of this attribute to use it without having to do
9590     // a const_cast.
9591     // This is a hack for us to be able to cache queries.
9592     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9593     bool Result =
9594         NonConstThis->WholeFunction.isReachable(A, *this, {&AAEdges}, Fn);
9595 
9596     return Result;
9597   }
9598 
9599   /// Can \p CB reach \p Fn
9600   bool canReach(Attributor &A, CallBase &CB, Function *Fn) const override {
9601     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9602         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9603 
9604     // Attributor returns attributes as const, so this function has to be
9605     // const for users of this attribute to use it without having to do
9606     // a const_cast.
9607     // This is a hack for us to be able to cache queries.
9608     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9609     QuerySet &CBQuery = NonConstThis->CBQueries[&CB];
9610 
9611     bool Result = CBQuery.isReachable(A, *this, {&AAEdges}, Fn);
9612 
9613     return Result;
9614   }
9615 
9616   /// See AbstractAttribute::updateImpl(...).
9617   ChangeStatus updateImpl(Attributor &A) override {
9618     const AACallEdges &AAEdges =
9619         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9620     ChangeStatus Change = ChangeStatus::UNCHANGED;
9621 
9622     Change |= WholeFunction.update(A, *this, {&AAEdges});
9623 
9624     for (auto CBPair : CBQueries) {
9625       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9626           *this, IRPosition::callsite_function(*CBPair.first),
9627           DepClassTy::REQUIRED);
9628 
9629       Change |= CBPair.second.update(A, *this, {&AAEdges});
9630     }
9631 
9632     return Change;
9633   }
9634 
9635   const std::string getAsStr() const override {
9636     size_t QueryCount =
9637         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9638 
9639     return "FunctionReachability [" +
9640            std::to_string(WholeFunction.Reachable.size()) + "," +
9641            std::to_string(QueryCount) + "]";
9642   }
9643 
9644   void trackStatistics() const override {}
9645 
9646 private:
9647   bool canReachUnknownCallee() const override {
9648     return WholeFunction.CanReachUnknownCallee;
9649   }
9650 
9651   /// Used to answer if a the whole function can reacha a specific function.
9652   QuerySet WholeFunction;
9653 
9654   /// Used to answer if a call base inside this function can reach a specific
9655   /// function.
9656   DenseMap<CallBase *, QuerySet> CBQueries;
9657 };
9658 
9659 /// ---------------------- Assumption Propagation ------------------------------
9660 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9661   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9662                        const DenseSet<StringRef> &Known)
9663       : AAAssumptionInfo(IRP, A, Known) {}
9664 
9665   bool hasAssumption(const StringRef Assumption) const override {
9666     return isValidState() && setContains(Assumption);
9667   }
9668 
9669   /// See AbstractAttribute::getAsStr()
9670   const std::string getAsStr() const override {
9671     const SetContents &Known = getKnown();
9672     const SetContents &Assumed = getAssumed();
9673 
9674     const std::string KnownStr =
9675         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9676     const std::string AssumedStr =
9677         (Assumed.isUniversal())
9678             ? "Universal"
9679             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9680 
9681     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9682   }
9683 };
9684 
9685 /// Propagates assumption information from parent functions to all of their
9686 /// successors. An assumption can be propagated if the containing function
9687 /// dominates the called function.
9688 ///
9689 /// We start with a "known" set of assumptions already valid for the associated
9690 /// function and an "assumed" set that initially contains all possible
9691 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
9692 /// contents as concrete values are known. The concrete values are seeded by the
9693 /// first nodes that are either entries into the call graph, or contains no
9694 /// assumptions. Each node is updated as the intersection of the assumed state
9695 /// with all of its predecessors.
9696 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
9697   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
9698       : AAAssumptionInfoImpl(IRP, A,
9699                              getAssumptions(*IRP.getAssociatedFunction())) {}
9700 
9701   /// See AbstractAttribute::manifest(...).
9702   ChangeStatus manifest(Attributor &A) override {
9703     const auto &Assumptions = getKnown();
9704 
9705     // Don't manifest a universal set if it somehow made it here.
9706     if (Assumptions.isUniversal())
9707       return ChangeStatus::UNCHANGED;
9708 
9709     Function *AssociatedFunction = getAssociatedFunction();
9710 
9711     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
9712 
9713     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9714   }
9715 
9716   /// See AbstractAttribute::updateImpl(...).
9717   ChangeStatus updateImpl(Attributor &A) override {
9718     bool Changed = false;
9719 
9720     auto CallSitePred = [&](AbstractCallSite ACS) {
9721       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
9722           *this, IRPosition::callsite_function(*ACS.getInstruction()),
9723           DepClassTy::REQUIRED);
9724       // Get the set of assumptions shared by all of this function's callers.
9725       Changed |= getIntersection(AssumptionAA.getAssumed());
9726       return !getAssumed().empty() || !getKnown().empty();
9727     };
9728 
9729     bool AllCallSitesKnown;
9730     // Get the intersection of all assumptions held by this node's predecessors.
9731     // If we don't know all the call sites then this is either an entry into the
9732     // call graph or an empty node. This node is known to only contain its own
9733     // assumptions and can be propagated to its successors.
9734     if (!A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown))
9735       return indicatePessimisticFixpoint();
9736 
9737     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9738   }
9739 
9740   void trackStatistics() const override {}
9741 };
9742 
9743 /// Assumption Info defined for call sites.
9744 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
9745 
9746   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
9747       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
9748 
9749   /// See AbstractAttribute::initialize(...).
9750   void initialize(Attributor &A) override {
9751     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9752     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9753   }
9754 
9755   /// See AbstractAttribute::manifest(...).
9756   ChangeStatus manifest(Attributor &A) override {
9757     // Don't manifest a universal set if it somehow made it here.
9758     if (getKnown().isUniversal())
9759       return ChangeStatus::UNCHANGED;
9760 
9761     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
9762     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
9763 
9764     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9765   }
9766 
9767   /// See AbstractAttribute::updateImpl(...).
9768   ChangeStatus updateImpl(Attributor &A) override {
9769     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9770     auto &AssumptionAA =
9771         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9772     bool Changed = getIntersection(AssumptionAA.getAssumed());
9773     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9774   }
9775 
9776   /// See AbstractAttribute::trackStatistics()
9777   void trackStatistics() const override {}
9778 
9779 private:
9780   /// Helper to initialized the known set as all the assumptions this call and
9781   /// the callee contain.
9782   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
9783     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
9784     auto Assumptions = getAssumptions(CB);
9785     if (Function *F = IRP.getAssociatedFunction())
9786       set_union(Assumptions, getAssumptions(*F));
9787     if (Function *F = IRP.getAssociatedFunction())
9788       set_union(Assumptions, getAssumptions(*F));
9789     return Assumptions;
9790   }
9791 };
9792 
9793 } // namespace
9794 
9795 AACallGraphNode *AACallEdgeIterator::operator*() const {
9796   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9797       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9798 }
9799 
9800 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9801 
9802 const char AAReturnedValues::ID = 0;
9803 const char AANoUnwind::ID = 0;
9804 const char AANoSync::ID = 0;
9805 const char AANoFree::ID = 0;
9806 const char AANonNull::ID = 0;
9807 const char AANoRecurse::ID = 0;
9808 const char AAWillReturn::ID = 0;
9809 const char AAUndefinedBehavior::ID = 0;
9810 const char AANoAlias::ID = 0;
9811 const char AAReachability::ID = 0;
9812 const char AANoReturn::ID = 0;
9813 const char AAIsDead::ID = 0;
9814 const char AADereferenceable::ID = 0;
9815 const char AAAlign::ID = 0;
9816 const char AANoCapture::ID = 0;
9817 const char AAValueSimplify::ID = 0;
9818 const char AAHeapToStack::ID = 0;
9819 const char AAPrivatizablePtr::ID = 0;
9820 const char AAMemoryBehavior::ID = 0;
9821 const char AAMemoryLocation::ID = 0;
9822 const char AAValueConstantRange::ID = 0;
9823 const char AAPotentialValues::ID = 0;
9824 const char AANoUndef::ID = 0;
9825 const char AACallEdges::ID = 0;
9826 const char AAFunctionReachability::ID = 0;
9827 const char AAPointerInfo::ID = 0;
9828 const char AAAssumptionInfo::ID = 0;
9829 
9830 // Macro magic to create the static generator function for attributes that
9831 // follow the naming scheme.
9832 
9833 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9834   case IRPosition::PK:                                                         \
9835     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9836 
9837 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9838   case IRPosition::PK:                                                         \
9839     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9840     ++NumAAs;                                                                  \
9841     break;
9842 
9843 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9844   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9845     CLASS *AA = nullptr;                                                       \
9846     switch (IRP.getPositionKind()) {                                           \
9847       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9848       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9849       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9850       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9851       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9852       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9853       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9854       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9855     }                                                                          \
9856     return *AA;                                                                \
9857   }
9858 
9859 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9860   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9861     CLASS *AA = nullptr;                                                       \
9862     switch (IRP.getPositionKind()) {                                           \
9863       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9864       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9865       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9866       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9867       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9868       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9869       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9870       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9871     }                                                                          \
9872     return *AA;                                                                \
9873   }
9874 
9875 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9876   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9877     CLASS *AA = nullptr;                                                       \
9878     switch (IRP.getPositionKind()) {                                           \
9879       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9880       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9881       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9882       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9883       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9884       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9885       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9886       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9887     }                                                                          \
9888     return *AA;                                                                \
9889   }
9890 
9891 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9892   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9893     CLASS *AA = nullptr;                                                       \
9894     switch (IRP.getPositionKind()) {                                           \
9895       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9896       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9897       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9898       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9899       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9900       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9901       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9902       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9903     }                                                                          \
9904     return *AA;                                                                \
9905   }
9906 
9907 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9908   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9909     CLASS *AA = nullptr;                                                       \
9910     switch (IRP.getPositionKind()) {                                           \
9911       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9912       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9913       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9914       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9915       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9916       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9917       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9918       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9919     }                                                                          \
9920     return *AA;                                                                \
9921   }
9922 
9923 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9924 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9925 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9926 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9927 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9928 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9929 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9930 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9931 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
9932 
9933 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9934 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9935 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9936 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9937 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9938 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9939 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9940 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9941 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9942 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9943 
9944 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9945 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9946 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9947 
9948 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9949 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9950 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9951 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9952 
9953 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9954 
9955 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9956 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9957 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9958 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9959 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9960 #undef SWITCH_PK_CREATE
9961 #undef SWITCH_PK_INV
9962