1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumeBundleQueries.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/Support/Alignment.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 static cl::opt<bool> ManifestInternal(
52     "attributor-manifest-internal", cl::Hidden,
53     cl::desc("Manifest Attributor internal string attributes."),
54     cl::init(false));
55 
56 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
57                                        cl::Hidden);
58 
59 template <>
60 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
61 
62 static cl::opt<unsigned, true> MaxPotentialValues(
63     "attributor-max-potential-values", cl::Hidden,
64     cl::desc("Maximum number of potential values to be "
65              "tracked for each position."),
66     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
67     cl::init(7));
68 
69 STATISTIC(NumAAs, "Number of abstract attributes created");
70 
71 // Some helper macros to deal with statistics tracking.
72 //
73 // Usage:
74 // For simple IR attribute tracking overload trackStatistics in the abstract
75 // attribute and choose the right STATS_DECLTRACK_********* macro,
76 // e.g.,:
77 //  void trackStatistics() const override {
78 //    STATS_DECLTRACK_ARG_ATTR(returned)
79 //  }
80 // If there is a single "increment" side one can use the macro
81 // STATS_DECLTRACK with a custom message. If there are multiple increment
82 // sides, STATS_DECL and STATS_TRACK can also be used separately.
83 //
84 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
85   ("Number of " #TYPE " marked '" #NAME "'")
86 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
87 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
88 #define STATS_DECL(NAME, TYPE, MSG)                                            \
89   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
90 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
91 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
92   {                                                                            \
93     STATS_DECL(NAME, TYPE, MSG)                                                \
94     STATS_TRACK(NAME, TYPE)                                                    \
95   }
96 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
97   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
98 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
99   STATS_DECLTRACK(NAME, CSArguments,                                           \
100                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
101 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
102   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
103 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
105 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
106   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
107                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
108 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
109   STATS_DECLTRACK(NAME, CSReturn,                                              \
110                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
111 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
112   STATS_DECLTRACK(NAME, Floating,                                              \
113                   ("Number of floating values known to be '" #NAME "'"))
114 
115 // Specialization of the operator<< for abstract attributes subclasses. This
116 // disambiguates situations where multiple operators are applicable.
117 namespace llvm {
118 #define PIPE_OPERATOR(CLASS)                                                   \
119   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
120     return OS << static_cast<const AbstractAttribute &>(AA);                   \
121   }
122 
123 PIPE_OPERATOR(AAIsDead)
124 PIPE_OPERATOR(AANoUnwind)
125 PIPE_OPERATOR(AANoSync)
126 PIPE_OPERATOR(AANoRecurse)
127 PIPE_OPERATOR(AAWillReturn)
128 PIPE_OPERATOR(AANoReturn)
129 PIPE_OPERATOR(AAReturnedValues)
130 PIPE_OPERATOR(AANonNull)
131 PIPE_OPERATOR(AANoAlias)
132 PIPE_OPERATOR(AADereferenceable)
133 PIPE_OPERATOR(AAAlign)
134 PIPE_OPERATOR(AANoCapture)
135 PIPE_OPERATOR(AAValueSimplify)
136 PIPE_OPERATOR(AANoFree)
137 PIPE_OPERATOR(AAHeapToStack)
138 PIPE_OPERATOR(AAReachability)
139 PIPE_OPERATOR(AAMemoryBehavior)
140 PIPE_OPERATOR(AAMemoryLocation)
141 PIPE_OPERATOR(AAValueConstantRange)
142 PIPE_OPERATOR(AAPrivatizablePtr)
143 PIPE_OPERATOR(AAUndefinedBehavior)
144 PIPE_OPERATOR(AAPotentialValues)
145 PIPE_OPERATOR(AANoUndef)
146 PIPE_OPERATOR(AACallEdges)
147 PIPE_OPERATOR(AAFunctionReachability)
148 PIPE_OPERATOR(AAPointerInfo)
149 
150 #undef PIPE_OPERATOR
151 
152 template <>
153 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
154                                                      const DerefState &R) {
155   ChangeStatus CS0 =
156       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
157   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
158   return CS0 | CS1;
159 }
160 
161 } // namespace llvm
162 
163 /// Get pointer operand of memory accessing instruction. If \p I is
164 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
165 /// is set to false and the instruction is volatile, return nullptr.
166 static const Value *getPointerOperand(const Instruction *I,
167                                       bool AllowVolatile) {
168   if (!AllowVolatile && I->isVolatile())
169     return nullptr;
170 
171   if (auto *LI = dyn_cast<LoadInst>(I)) {
172     return LI->getPointerOperand();
173   }
174 
175   if (auto *SI = dyn_cast<StoreInst>(I)) {
176     return SI->getPointerOperand();
177   }
178 
179   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
180     return CXI->getPointerOperand();
181   }
182 
183   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
184     return RMWI->getPointerOperand();
185   }
186 
187   return nullptr;
188 }
189 
190 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
191 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
192 /// getelement pointer instructions that traverse the natural type of \p Ptr if
193 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
194 /// through a cast to i8*.
195 ///
196 /// TODO: This could probably live somewhere more prominantly if it doesn't
197 ///       already exist.
198 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
199                                int64_t Offset, IRBuilder<NoFolder> &IRB,
200                                const DataLayout &DL) {
201   assert(Offset >= 0 && "Negative offset not supported yet!");
202   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
203                     << "-bytes as " << *ResTy << "\n");
204 
205   if (Offset) {
206     SmallVector<Value *, 4> Indices;
207     std::string GEPName = Ptr->getName().str() + ".0";
208 
209     // Add 0 index to look through the pointer.
210     assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) &&
211            "Offset out of bounds");
212     Indices.push_back(Constant::getNullValue(IRB.getInt32Ty()));
213 
214     Type *Ty = PtrElemTy;
215     do {
216       auto *STy = dyn_cast<StructType>(Ty);
217       if (!STy)
218         // Non-aggregate type, we cast and make byte-wise progress now.
219         break;
220 
221       const StructLayout *SL = DL.getStructLayout(STy);
222       if (int64_t(SL->getSizeInBytes()) < Offset)
223         break;
224 
225       uint64_t Idx = SL->getElementContainingOffset(Offset);
226       assert(Idx < STy->getNumElements() && "Offset calculation error!");
227       uint64_t Rem = Offset - SL->getElementOffset(Idx);
228       Ty = STy->getElementType(Idx);
229 
230       LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
231                         << " Idx: " << Idx << " Rem: " << Rem << "\n");
232 
233       GEPName += "." + std::to_string(Idx);
234       Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
235       Offset = Rem;
236     } while (Offset);
237 
238     // Create a GEP for the indices collected above.
239     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName);
240 
241     // If an offset is left we use byte-wise adjustment.
242     if (Offset) {
243       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
244       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset),
245                           GEPName + ".b" + Twine(Offset));
246     }
247   }
248 
249   // Ensure the result has the requested type.
250   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
251 
252   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
253   return Ptr;
254 }
255 
256 /// Recursively visit all values that might become \p IRP at some point. This
257 /// will be done by looking through cast instructions, selects, phis, and calls
258 /// with the "returned" attribute. Once we cannot look through the value any
259 /// further, the callback \p VisitValueCB is invoked and passed the current
260 /// value, the \p State, and a flag to indicate if we stripped anything.
261 /// Stripped means that we unpacked the value associated with \p IRP at least
262 /// once. Note that the value used for the callback may still be the value
263 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
264 /// we will never visit more values than specified by \p MaxValues.
265 template <typename StateTy>
266 static bool genericValueTraversal(
267     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
268     StateTy &State,
269     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
270         VisitValueCB,
271     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
272     function_ref<Value *(Value *)> StripCB = nullptr) {
273 
274   const AAIsDead *LivenessAA = nullptr;
275   if (IRP.getAnchorScope())
276     LivenessAA = &A.getAAFor<AAIsDead>(
277         QueryingAA,
278         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
279         DepClassTy::NONE);
280   bool AnyDead = false;
281 
282   Value *InitialV = &IRP.getAssociatedValue();
283   using Item = std::pair<Value *, const Instruction *>;
284   SmallSet<Item, 16> Visited;
285   SmallVector<Item, 16> Worklist;
286   Worklist.push_back({InitialV, CtxI});
287 
288   int Iteration = 0;
289   do {
290     Item I = Worklist.pop_back_val();
291     Value *V = I.first;
292     CtxI = I.second;
293     if (StripCB)
294       V = StripCB(V);
295 
296     // Check if we should process the current value. To prevent endless
297     // recursion keep a record of the values we followed!
298     if (!Visited.insert(I).second)
299       continue;
300 
301     // Make sure we limit the compile time for complex expressions.
302     if (Iteration++ >= MaxValues)
303       return false;
304 
305     // Explicitly look through calls with a "returned" attribute if we do
306     // not have a pointer as stripPointerCasts only works on them.
307     Value *NewV = nullptr;
308     if (V->getType()->isPointerTy()) {
309       NewV = V->stripPointerCasts();
310     } else {
311       auto *CB = dyn_cast<CallBase>(V);
312       if (CB && CB->getCalledFunction()) {
313         for (Argument &Arg : CB->getCalledFunction()->args())
314           if (Arg.hasReturnedAttr()) {
315             NewV = CB->getArgOperand(Arg.getArgNo());
316             break;
317           }
318       }
319     }
320     if (NewV && NewV != V) {
321       Worklist.push_back({NewV, CtxI});
322       continue;
323     }
324 
325     // Look through select instructions, visit assumed potential values.
326     if (auto *SI = dyn_cast<SelectInst>(V)) {
327       bool UsedAssumedInformation = false;
328       Optional<Constant *> C = A.getAssumedConstant(
329           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
330       bool NoValueYet = !C.hasValue();
331       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
332         continue;
333       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
334         if (CI->isZero())
335           Worklist.push_back({SI->getFalseValue(), CtxI});
336         else
337           Worklist.push_back({SI->getTrueValue(), CtxI});
338         continue;
339       }
340       // We could not simplify the condition, assume both values.(
341       Worklist.push_back({SI->getTrueValue(), CtxI});
342       Worklist.push_back({SI->getFalseValue(), CtxI});
343       continue;
344     }
345 
346     // Look through phi nodes, visit all live operands.
347     if (auto *PHI = dyn_cast<PHINode>(V)) {
348       assert(LivenessAA &&
349              "Expected liveness in the presence of instructions!");
350       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
351         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
352         bool UsedAssumedInformation = false;
353         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
354                             LivenessAA, UsedAssumedInformation,
355                             /* CheckBBLivenessOnly */ true)) {
356           AnyDead = true;
357           continue;
358         }
359         Worklist.push_back(
360             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
361       }
362       continue;
363     }
364 
365     if (UseValueSimplify && !isa<Constant>(V)) {
366       bool UsedAssumedInformation = false;
367       Optional<Value *> SimpleV =
368           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
369       if (!SimpleV.hasValue())
370         continue;
371       if (!SimpleV.getValue())
372         return false;
373       Value *NewV = SimpleV.getValue();
374       if (NewV != V) {
375         Worklist.push_back({NewV, CtxI});
376         continue;
377       }
378     }
379 
380     // Once a leaf is reached we inform the user through the callback.
381     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
382       return false;
383   } while (!Worklist.empty());
384 
385   // If we actually used liveness information so we have to record a dependence.
386   if (AnyDead)
387     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
388 
389   // All values have been visited.
390   return true;
391 }
392 
393 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
394                                      SmallVectorImpl<Value *> &Objects,
395                                      const AbstractAttribute &QueryingAA,
396                                      const Instruction *CtxI) {
397   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
398   SmallPtrSet<Value *, 8> SeenObjects;
399   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
400                                      SmallVectorImpl<Value *> &Objects,
401                                      bool) -> bool {
402     if (SeenObjects.insert(&Val).second)
403       Objects.push_back(&Val);
404     return true;
405   };
406   if (!genericValueTraversal<decltype(Objects)>(
407           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
408           true, 32, StripCB))
409     return false;
410   return true;
411 }
412 
413 const Value *stripAndAccumulateMinimalOffsets(
414     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
415     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
416     bool UseAssumed = false) {
417 
418   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
419     const IRPosition &Pos = IRPosition::value(V);
420     // Only track dependence if we are going to use the assumed info.
421     const AAValueConstantRange &ValueConstantRangeAA =
422         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
423                                          UseAssumed ? DepClassTy::OPTIONAL
424                                                     : DepClassTy::NONE);
425     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
426                                      : ValueConstantRangeAA.getKnown();
427     // We can only use the lower part of the range because the upper part can
428     // be higher than what the value can really be.
429     ROffset = Range.getSignedMin();
430     return true;
431   };
432 
433   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
434                                                 AttributorAnalysis);
435 }
436 
437 static const Value *getMinimalBaseOfAccsesPointerOperand(
438     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
439     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
440   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
441   if (!Ptr)
442     return nullptr;
443   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
444   const Value *Base = stripAndAccumulateMinimalOffsets(
445       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
446 
447   BytesOffset = OffsetAPInt.getSExtValue();
448   return Base;
449 }
450 
451 static const Value *
452 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
453                                      const DataLayout &DL,
454                                      bool AllowNonInbounds = false) {
455   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
456   if (!Ptr)
457     return nullptr;
458 
459   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
460                                           AllowNonInbounds);
461 }
462 
463 /// Clamp the information known for all returned values of a function
464 /// (identified by \p QueryingAA) into \p S.
465 template <typename AAType, typename StateType = typename AAType::StateType>
466 static void clampReturnedValueStates(
467     Attributor &A, const AAType &QueryingAA, StateType &S,
468     const IRPosition::CallBaseContext *CBContext = nullptr) {
469   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
470                     << QueryingAA << " into " << S << "\n");
471 
472   assert((QueryingAA.getIRPosition().getPositionKind() ==
473               IRPosition::IRP_RETURNED ||
474           QueryingAA.getIRPosition().getPositionKind() ==
475               IRPosition::IRP_CALL_SITE_RETURNED) &&
476          "Can only clamp returned value states for a function returned or call "
477          "site returned position!");
478 
479   // Use an optional state as there might not be any return values and we want
480   // to join (IntegerState::operator&) the state of all there are.
481   Optional<StateType> T;
482 
483   // Callback for each possibly returned value.
484   auto CheckReturnValue = [&](Value &RV) -> bool {
485     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
486     const AAType &AA =
487         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
488     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
489                       << " @ " << RVPos << "\n");
490     const StateType &AAS = AA.getState();
491     if (T.hasValue())
492       *T &= AAS;
493     else
494       T = AAS;
495     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
496                       << "\n");
497     return T->isValidState();
498   };
499 
500   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
501     S.indicatePessimisticFixpoint();
502   else if (T.hasValue())
503     S ^= *T;
504 }
505 
506 /// Helper class for generic deduction: return value -> returned position.
507 template <typename AAType, typename BaseType,
508           typename StateType = typename BaseType::StateType,
509           bool PropagateCallBaseContext = false>
510 struct AAReturnedFromReturnedValues : public BaseType {
511   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
512       : BaseType(IRP, A) {}
513 
514   /// See AbstractAttribute::updateImpl(...).
515   ChangeStatus updateImpl(Attributor &A) override {
516     StateType S(StateType::getBestState(this->getState()));
517     clampReturnedValueStates<AAType, StateType>(
518         A, *this, S,
519         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
520     // TODO: If we know we visited all returned values, thus no are assumed
521     // dead, we can take the known information from the state T.
522     return clampStateAndIndicateChange<StateType>(this->getState(), S);
523   }
524 };
525 
526 /// Clamp the information known at all call sites for a given argument
527 /// (identified by \p QueryingAA) into \p S.
528 template <typename AAType, typename StateType = typename AAType::StateType>
529 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
530                                         StateType &S) {
531   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
532                     << QueryingAA << " into " << S << "\n");
533 
534   assert(QueryingAA.getIRPosition().getPositionKind() ==
535              IRPosition::IRP_ARGUMENT &&
536          "Can only clamp call site argument states for an argument position!");
537 
538   // Use an optional state as there might not be any return values and we want
539   // to join (IntegerState::operator&) the state of all there are.
540   Optional<StateType> T;
541 
542   // The argument number which is also the call site argument number.
543   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
544 
545   auto CallSiteCheck = [&](AbstractCallSite ACS) {
546     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
547     // Check if a coresponding argument was found or if it is on not associated
548     // (which can happen for callback calls).
549     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
550       return false;
551 
552     const AAType &AA =
553         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
554     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
555                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
556     const StateType &AAS = AA.getState();
557     if (T.hasValue())
558       *T &= AAS;
559     else
560       T = AAS;
561     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
562                       << "\n");
563     return T->isValidState();
564   };
565 
566   bool AllCallSitesKnown;
567   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
568                               AllCallSitesKnown))
569     S.indicatePessimisticFixpoint();
570   else if (T.hasValue())
571     S ^= *T;
572 }
573 
574 /// This function is the bridge between argument position and the call base
575 /// context.
576 template <typename AAType, typename BaseType,
577           typename StateType = typename AAType::StateType>
578 bool getArgumentStateFromCallBaseContext(Attributor &A,
579                                          BaseType &QueryingAttribute,
580                                          IRPosition &Pos, StateType &State) {
581   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
582          "Expected an 'argument' position !");
583   const CallBase *CBContext = Pos.getCallBaseContext();
584   if (!CBContext)
585     return false;
586 
587   int ArgNo = Pos.getCallSiteArgNo();
588   assert(ArgNo >= 0 && "Invalid Arg No!");
589 
590   const auto &AA = A.getAAFor<AAType>(
591       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
592       DepClassTy::REQUIRED);
593   const StateType &CBArgumentState =
594       static_cast<const StateType &>(AA.getState());
595 
596   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
597                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
598                     << "\n");
599 
600   // NOTE: If we want to do call site grouping it should happen here.
601   State ^= CBArgumentState;
602   return true;
603 }
604 
605 /// Helper class for generic deduction: call site argument -> argument position.
606 template <typename AAType, typename BaseType,
607           typename StateType = typename AAType::StateType,
608           bool BridgeCallBaseContext = false>
609 struct AAArgumentFromCallSiteArguments : public BaseType {
610   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
611       : BaseType(IRP, A) {}
612 
613   /// See AbstractAttribute::updateImpl(...).
614   ChangeStatus updateImpl(Attributor &A) override {
615     StateType S = StateType::getBestState(this->getState());
616 
617     if (BridgeCallBaseContext) {
618       bool Success =
619           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
620               A, *this, this->getIRPosition(), S);
621       if (Success)
622         return clampStateAndIndicateChange<StateType>(this->getState(), S);
623     }
624     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
625 
626     // TODO: If we know we visited all incoming values, thus no are assumed
627     // dead, we can take the known information from the state T.
628     return clampStateAndIndicateChange<StateType>(this->getState(), S);
629   }
630 };
631 
632 /// Helper class for generic replication: function returned -> cs returned.
633 template <typename AAType, typename BaseType,
634           typename StateType = typename BaseType::StateType,
635           bool IntroduceCallBaseContext = false>
636 struct AACallSiteReturnedFromReturned : public BaseType {
637   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
638       : BaseType(IRP, A) {}
639 
640   /// See AbstractAttribute::updateImpl(...).
641   ChangeStatus updateImpl(Attributor &A) override {
642     assert(this->getIRPosition().getPositionKind() ==
643                IRPosition::IRP_CALL_SITE_RETURNED &&
644            "Can only wrap function returned positions for call site returned "
645            "positions!");
646     auto &S = this->getState();
647 
648     const Function *AssociatedFunction =
649         this->getIRPosition().getAssociatedFunction();
650     if (!AssociatedFunction)
651       return S.indicatePessimisticFixpoint();
652 
653     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
654     if (IntroduceCallBaseContext)
655       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
656                         << CBContext << "\n");
657 
658     IRPosition FnPos = IRPosition::returned(
659         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
660     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
661     return clampStateAndIndicateChange(S, AA.getState());
662   }
663 };
664 
665 /// Helper function to accumulate uses.
666 template <class AAType, typename StateType = typename AAType::StateType>
667 static void followUsesInContext(AAType &AA, Attributor &A,
668                                 MustBeExecutedContextExplorer &Explorer,
669                                 const Instruction *CtxI,
670                                 SetVector<const Use *> &Uses,
671                                 StateType &State) {
672   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
673   for (unsigned u = 0; u < Uses.size(); ++u) {
674     const Use *U = Uses[u];
675     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
676       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
677       if (Found && AA.followUseInMBEC(A, U, UserI, State))
678         for (const Use &Us : UserI->uses())
679           Uses.insert(&Us);
680     }
681   }
682 }
683 
684 /// Use the must-be-executed-context around \p I to add information into \p S.
685 /// The AAType class is required to have `followUseInMBEC` method with the
686 /// following signature and behaviour:
687 ///
688 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
689 /// U - Underlying use.
690 /// I - The user of the \p U.
691 /// Returns true if the value should be tracked transitively.
692 ///
693 template <class AAType, typename StateType = typename AAType::StateType>
694 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
695                              Instruction &CtxI) {
696 
697   // Container for (transitive) uses of the associated value.
698   SetVector<const Use *> Uses;
699   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
700     Uses.insert(&U);
701 
702   MustBeExecutedContextExplorer &Explorer =
703       A.getInfoCache().getMustBeExecutedContextExplorer();
704 
705   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
706 
707   if (S.isAtFixpoint())
708     return;
709 
710   SmallVector<const BranchInst *, 4> BrInsts;
711   auto Pred = [&](const Instruction *I) {
712     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
713       if (Br->isConditional())
714         BrInsts.push_back(Br);
715     return true;
716   };
717 
718   // Here, accumulate conditional branch instructions in the context. We
719   // explore the child paths and collect the known states. The disjunction of
720   // those states can be merged to its own state. Let ParentState_i be a state
721   // to indicate the known information for an i-th branch instruction in the
722   // context. ChildStates are created for its successors respectively.
723   //
724   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
725   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
726   //      ...
727   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
728   //
729   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
730   //
731   // FIXME: Currently, recursive branches are not handled. For example, we
732   // can't deduce that ptr must be dereferenced in below function.
733   //
734   // void f(int a, int c, int *ptr) {
735   //    if(a)
736   //      if (b) {
737   //        *ptr = 0;
738   //      } else {
739   //        *ptr = 1;
740   //      }
741   //    else {
742   //      if (b) {
743   //        *ptr = 0;
744   //      } else {
745   //        *ptr = 1;
746   //      }
747   //    }
748   // }
749 
750   Explorer.checkForAllContext(&CtxI, Pred);
751   for (const BranchInst *Br : BrInsts) {
752     StateType ParentState;
753 
754     // The known state of the parent state is a conjunction of children's
755     // known states so it is initialized with a best state.
756     ParentState.indicateOptimisticFixpoint();
757 
758     for (const BasicBlock *BB : Br->successors()) {
759       StateType ChildState;
760 
761       size_t BeforeSize = Uses.size();
762       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
763 
764       // Erase uses which only appear in the child.
765       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
766         It = Uses.erase(It);
767 
768       ParentState &= ChildState;
769     }
770 
771     // Use only known state.
772     S += ParentState;
773   }
774 }
775 
776 /// ------------------------ PointerInfo ---------------------------------------
777 
778 namespace llvm {
779 namespace AA {
780 namespace PointerInfo {
781 
782 /// An access kind description as used by AAPointerInfo.
783 struct OffsetAndSize;
784 
785 struct State;
786 
787 } // namespace PointerInfo
788 } // namespace AA
789 
790 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
791 template <>
792 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
793   using Access = AAPointerInfo::Access;
794   static inline Access getEmptyKey();
795   static inline Access getTombstoneKey();
796   static unsigned getHashValue(const Access &A);
797   static bool isEqual(const Access &LHS, const Access &RHS);
798 };
799 
800 /// Helper that allows OffsetAndSize as a key in a DenseMap.
801 template <>
802 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
803     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
804 
805 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
806 /// but the instruction
807 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
808   using Base = DenseMapInfo<Instruction *>;
809   using Access = AAPointerInfo::Access;
810   static inline Access getEmptyKey();
811   static inline Access getTombstoneKey();
812   static unsigned getHashValue(const Access &A);
813   static bool isEqual(const Access &LHS, const Access &RHS);
814 };
815 
816 } // namespace llvm
817 
818 /// Helper to represent an access offset and size, with logic to deal with
819 /// uncertainty and check for overlapping accesses.
820 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
821   using BaseTy = std::pair<int64_t, int64_t>;
822   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
823   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
824   int64_t getOffset() const { return first; }
825   int64_t getSize() const { return second; }
826   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
827 
828   /// Return true if this offset and size pair might describe an address that
829   /// overlaps with \p OAS.
830   bool mayOverlap(const OffsetAndSize &OAS) const {
831     // Any unknown value and we are giving up -> overlap.
832     if (OAS.getOffset() == OffsetAndSize::Unknown ||
833         OAS.getSize() == OffsetAndSize::Unknown ||
834         getOffset() == OffsetAndSize::Unknown ||
835         getSize() == OffsetAndSize::Unknown)
836       return true;
837 
838     // Check if one offset point is in the other interval [offset, offset+size].
839     return OAS.getOffset() + OAS.getSize() > getOffset() &&
840            OAS.getOffset() < getOffset() + getSize();
841   }
842 
843   /// Constant used to represent unknown offset or sizes.
844   static constexpr int64_t Unknown = 1 << 31;
845 };
846 
847 /// Implementation of the DenseMapInfo.
848 ///
849 ///{
850 inline llvm::AccessAsInstructionInfo::Access
851 llvm::AccessAsInstructionInfo::getEmptyKey() {
852   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
853 }
854 inline llvm::AccessAsInstructionInfo::Access
855 llvm::AccessAsInstructionInfo::getTombstoneKey() {
856   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
857                 nullptr);
858 }
859 unsigned llvm::AccessAsInstructionInfo::getHashValue(
860     const llvm::AccessAsInstructionInfo::Access &A) {
861   return Base::getHashValue(A.getRemoteInst());
862 }
863 bool llvm::AccessAsInstructionInfo::isEqual(
864     const llvm::AccessAsInstructionInfo::Access &LHS,
865     const llvm::AccessAsInstructionInfo::Access &RHS) {
866   return LHS.getRemoteInst() == RHS.getRemoteInst();
867 }
868 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
869 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
870   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
871                                nullptr);
872 }
873 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
874 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
875   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
876                                nullptr);
877 }
878 
879 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
880     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
881   return detail::combineHashValue(
882              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
883              (A.isWrittenValueYetUndetermined()
884                   ? ~0
885                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
886          A.getKind();
887 }
888 
889 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
890     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
891     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
892   return LHS == RHS;
893 }
894 ///}
895 
896 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
897 struct AA::PointerInfo::State : public AbstractState {
898 
899   /// Return the best possible representable state.
900   static State getBestState(const State &SIS) { return State(); }
901 
902   /// Return the worst possible representable state.
903   static State getWorstState(const State &SIS) {
904     State R;
905     R.indicatePessimisticFixpoint();
906     return R;
907   }
908 
909   State() {}
910   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
911   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
912 
913   const State &getAssumed() const { return *this; }
914 
915   /// See AbstractState::isValidState().
916   bool isValidState() const override { return BS.isValidState(); }
917 
918   /// See AbstractState::isAtFixpoint().
919   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
920 
921   /// See AbstractState::indicateOptimisticFixpoint().
922   ChangeStatus indicateOptimisticFixpoint() override {
923     BS.indicateOptimisticFixpoint();
924     return ChangeStatus::UNCHANGED;
925   }
926 
927   /// See AbstractState::indicatePessimisticFixpoint().
928   ChangeStatus indicatePessimisticFixpoint() override {
929     BS.indicatePessimisticFixpoint();
930     return ChangeStatus::CHANGED;
931   }
932 
933   State &operator=(const State &R) {
934     if (this == &R)
935       return *this;
936     BS = R.BS;
937     AccessBins = R.AccessBins;
938     return *this;
939   }
940 
941   State &operator=(State &&R) {
942     if (this == &R)
943       return *this;
944     std::swap(BS, R.BS);
945     std::swap(AccessBins, R.AccessBins);
946     return *this;
947   }
948 
949   bool operator==(const State &R) const {
950     if (BS != R.BS)
951       return false;
952     if (AccessBins.size() != R.AccessBins.size())
953       return false;
954     auto It = begin(), RIt = R.begin(), E = end();
955     while (It != E) {
956       if (It->getFirst() != RIt->getFirst())
957         return false;
958       auto &Accs = It->getSecond();
959       auto &RAccs = RIt->getSecond();
960       if (Accs.size() != RAccs.size())
961         return false;
962       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
963       while (AccIt != AccE) {
964         if (*AccIt != *RAccIt)
965           return false;
966         ++AccIt;
967         ++RAccIt;
968       }
969       ++It;
970       ++RIt;
971     }
972     return true;
973   }
974   bool operator!=(const State &R) const { return !(*this == R); }
975 
976   /// We store accesses in a set with the instruction as key.
977   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
978 
979   /// We store all accesses in bins denoted by their offset and size.
980   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
981 
982   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
983   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
984 
985 protected:
986   /// The bins with all the accesses for the associated pointer.
987   DenseMap<OffsetAndSize, Accesses> AccessBins;
988 
989   /// Add a new access to the state at offset \p Offset and with size \p Size.
990   /// The access is associated with \p I, writes \p Content (if anything), and
991   /// is of kind \p Kind.
992   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
993   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
994                          Optional<Value *> Content,
995                          AAPointerInfo::AccessKind Kind, Type *Ty,
996                          Instruction *RemoteI = nullptr,
997                          Accesses *BinPtr = nullptr) {
998     OffsetAndSize Key{Offset, Size};
999     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
1000     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1001     // Check if we have an access for this instruction in this bin, if not,
1002     // simply add it.
1003     auto It = Bin.find(Acc);
1004     if (It == Bin.end()) {
1005       Bin.insert(Acc);
1006       return ChangeStatus::CHANGED;
1007     }
1008     // If the existing access is the same as then new one, nothing changed.
1009     AAPointerInfo::Access Before = *It;
1010     // The new one will be combined with the existing one.
1011     *It &= Acc;
1012     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1013   }
1014 
1015   /// See AAPointerInfo::forallInterferingAccesses.
1016   bool forallInterferingAccesses(
1017       Instruction &I,
1018       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1019     if (!isValidState())
1020       return false;
1021     // First find the offset and size of I.
1022     OffsetAndSize OAS(-1, -1);
1023     for (auto &It : AccessBins) {
1024       for (auto &Access : It.getSecond()) {
1025         if (Access.getRemoteInst() == &I) {
1026           OAS = It.getFirst();
1027           break;
1028         }
1029       }
1030       if (OAS.getSize() != -1)
1031         break;
1032     }
1033     if (OAS.getSize() == -1)
1034       return true;
1035 
1036     // Now that we have an offset and size, find all overlapping ones and use
1037     // the callback on the accesses.
1038     for (auto &It : AccessBins) {
1039       OffsetAndSize ItOAS = It.getFirst();
1040       if (!OAS.mayOverlap(ItOAS))
1041         continue;
1042       for (auto &Access : It.getSecond())
1043         if (!CB(Access, OAS == ItOAS))
1044           return false;
1045     }
1046     return true;
1047   }
1048 
1049 private:
1050   /// State to track fixpoint and validity.
1051   BooleanState BS;
1052 };
1053 
1054 struct AAPointerInfoImpl
1055     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1056   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1057   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1058 
1059   /// See AbstractAttribute::initialize(...).
1060   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1061 
1062   /// See AbstractAttribute::getAsStr().
1063   const std::string getAsStr() const override {
1064     return std::string("PointerInfo ") +
1065            (isValidState() ? (std::string("#") +
1066                               std::to_string(AccessBins.size()) + " bins")
1067                            : "<invalid>");
1068   }
1069 
1070   /// See AbstractAttribute::manifest(...).
1071   ChangeStatus manifest(Attributor &A) override {
1072     return AAPointerInfo::manifest(A);
1073   }
1074 
1075   bool forallInterferingAccesses(
1076       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1077       const override {
1078     return State::forallInterferingAccesses(LI, CB);
1079   }
1080   bool forallInterferingAccesses(
1081       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1082       const override {
1083     return State::forallInterferingAccesses(SI, CB);
1084   }
1085 
1086   ChangeStatus translateAndAddCalleeState(Attributor &A,
1087                                           const AAPointerInfo &CalleeAA,
1088                                           int64_t CallArgOffset, CallBase &CB) {
1089     using namespace AA::PointerInfo;
1090     if (!CalleeAA.getState().isValidState() || !isValidState())
1091       return indicatePessimisticFixpoint();
1092 
1093     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1094     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1095 
1096     // Combine the accesses bin by bin.
1097     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1098     for (auto &It : CalleeImplAA.getState()) {
1099       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1100       if (CallArgOffset != OffsetAndSize::Unknown)
1101         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1102                             It.first.getSize());
1103       Accesses &Bin = AccessBins[OAS];
1104       for (const AAPointerInfo::Access &RAcc : It.second) {
1105         if (IsByval && !RAcc.isRead())
1106           continue;
1107         bool UsedAssumedInformation = false;
1108         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1109             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1110         AccessKind AK =
1111             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1112                                                  : AccessKind::AK_READ_WRITE));
1113         Changed =
1114             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1115                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1116       }
1117     }
1118     return Changed;
1119   }
1120 
1121   /// Statistic tracking for all AAPointerInfo implementations.
1122   /// See AbstractAttribute::trackStatistics().
1123   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1124 };
1125 
1126 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1127   using AccessKind = AAPointerInfo::AccessKind;
1128   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1129       : AAPointerInfoImpl(IRP, A) {}
1130 
1131   /// See AbstractAttribute::initialize(...).
1132   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1133 
1134   /// Deal with an access and signal if it was handled successfully.
1135   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1136                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1137                     ChangeStatus &Changed, Type *Ty,
1138                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1139     using namespace AA::PointerInfo;
1140     // No need to find a size if one is given or the offset is unknown.
1141     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1142         Ty) {
1143       const DataLayout &DL = A.getDataLayout();
1144       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1145       if (!AccessSize.isScalable())
1146         Size = AccessSize.getFixedSize();
1147     }
1148     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1149     return true;
1150   };
1151 
1152   /// See AbstractAttribute::updateImpl(...).
1153   ChangeStatus updateImpl(Attributor &A) override {
1154     using namespace AA::PointerInfo;
1155     State S = getState();
1156     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1157     Value &AssociatedValue = getAssociatedValue();
1158     struct OffsetInfo {
1159       int64_t Offset = 0;
1160     };
1161 
1162     const DataLayout &DL = A.getDataLayout();
1163     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1164     OffsetInfoMap[&AssociatedValue] = {};
1165 
1166     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1167                                      bool &Follow) {
1168       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1169       UsrOI = PtrOI;
1170       Follow = true;
1171       return true;
1172     };
1173 
1174     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1175       Value *CurPtr = U.get();
1176       User *Usr = U.getUser();
1177       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1178                         << *Usr << "\n");
1179 
1180       OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1181 
1182       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1183         if (CE->isCast())
1184           return HandlePassthroughUser(Usr, PtrOI, Follow);
1185         if (CE->isCompare())
1186           return true;
1187         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1188           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1189                             << "\n");
1190           return false;
1191         }
1192       }
1193       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1194         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1195         UsrOI = PtrOI;
1196 
1197         // TODO: Use range information.
1198         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1199             !GEP->hasAllConstantIndices()) {
1200           UsrOI.Offset = OffsetAndSize::Unknown;
1201           Follow = true;
1202           return true;
1203         }
1204 
1205         SmallVector<Value *, 8> Indices;
1206         for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) {
1207           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1208             Indices.push_back(CIdx);
1209             continue;
1210           }
1211 
1212           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1213                             << " : " << *Idx << "\n");
1214           return false;
1215         }
1216         UsrOI.Offset = PtrOI.Offset +
1217                        DL.getIndexedOffsetInType(
1218                            CurPtr->getType()->getPointerElementType(), Indices);
1219         Follow = true;
1220         return true;
1221       }
1222       if (isa<CastInst>(Usr) || isa<PHINode>(Usr) || isa<SelectInst>(Usr))
1223         return HandlePassthroughUser(Usr, PtrOI, Follow);
1224       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1225         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1226                             AccessKind::AK_READ, PtrOI.Offset, Changed,
1227                             LoadI->getType());
1228       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1229         if (StoreI->getValueOperand() == CurPtr) {
1230           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1231                             << *StoreI << "\n");
1232           return false;
1233         }
1234         bool UsedAssumedInformation = false;
1235         Optional<Value *> Content = A.getAssumedSimplified(
1236             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1237         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1238                             PtrOI.Offset, Changed,
1239                             StoreI->getValueOperand()->getType());
1240       }
1241       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1242         if (CB->isLifetimeStartOrEnd())
1243           return true;
1244         if (CB->isArgOperand(&U)) {
1245           unsigned ArgNo = CB->getArgOperandNo(&U);
1246           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1247               *this, IRPosition::callsite_argument(*CB, ArgNo),
1248               DepClassTy::REQUIRED);
1249           Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) |
1250                     Changed;
1251           return true;
1252         }
1253         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1254                           << "\n");
1255         // TODO: Allow some call uses
1256         return false;
1257       }
1258 
1259       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1260       return false;
1261     };
1262     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1263                            /* CheckBBLivenessOnly */ true))
1264       return indicatePessimisticFixpoint();
1265 
1266     LLVM_DEBUG({
1267       dbgs() << "Accesses by bin after update:\n";
1268       for (auto &It : AccessBins) {
1269         dbgs() << "[" << It.first.getOffset() << "-"
1270                << It.first.getOffset() + It.first.getSize()
1271                << "] : " << It.getSecond().size() << "\n";
1272         for (auto &Acc : It.getSecond()) {
1273           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1274                  << "\n";
1275           if (Acc.getLocalInst() != Acc.getRemoteInst())
1276             dbgs() << "     -->                         "
1277                    << *Acc.getRemoteInst() << "\n";
1278           if (!Acc.isWrittenValueYetUndetermined())
1279             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1280         }
1281       }
1282     });
1283 
1284     return Changed;
1285   }
1286 
1287   /// See AbstractAttribute::trackStatistics()
1288   void trackStatistics() const override {
1289     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1290   }
1291 };
1292 
1293 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1294   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1295       : AAPointerInfoImpl(IRP, A) {}
1296 
1297   /// See AbstractAttribute::updateImpl(...).
1298   ChangeStatus updateImpl(Attributor &A) override {
1299     return indicatePessimisticFixpoint();
1300   }
1301 
1302   /// See AbstractAttribute::trackStatistics()
1303   void trackStatistics() const override {
1304     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1305   }
1306 };
1307 
1308 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1309   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1310       : AAPointerInfoFloating(IRP, A) {}
1311 
1312   /// See AbstractAttribute::initialize(...).
1313   void initialize(Attributor &A) override {
1314     AAPointerInfoFloating::initialize(A);
1315     if (getAnchorScope()->isDeclaration())
1316       indicatePessimisticFixpoint();
1317   }
1318 
1319   /// See AbstractAttribute::trackStatistics()
1320   void trackStatistics() const override {
1321     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1322   }
1323 };
1324 
1325 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1326   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1327       : AAPointerInfoFloating(IRP, A) {}
1328 
1329   /// See AbstractAttribute::updateImpl(...).
1330   ChangeStatus updateImpl(Attributor &A) override {
1331     using namespace AA::PointerInfo;
1332     // We handle memory intrinsics explicitly, at least the first (=
1333     // destination) and second (=source) arguments as we know how they are
1334     // accessed.
1335     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1336       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1337       int64_t LengthVal = OffsetAndSize::Unknown;
1338       if (Length)
1339         LengthVal = Length->getSExtValue();
1340       Value &Ptr = getAssociatedValue();
1341       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1342       ChangeStatus Changed;
1343       if (ArgNo == 0) {
1344         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1345                      nullptr, LengthVal);
1346       } else if (ArgNo == 1) {
1347         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1348                      nullptr, LengthVal);
1349       } else {
1350         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1351                           << *MI << "\n");
1352         return indicatePessimisticFixpoint();
1353       }
1354       return Changed;
1355     }
1356 
1357     // TODO: Once we have call site specific value information we can provide
1358     //       call site specific liveness information and then it makes
1359     //       sense to specialize attributes for call sites arguments instead of
1360     //       redirecting requests to the callee argument.
1361     Argument *Arg = getAssociatedArgument();
1362     if (!Arg)
1363       return indicatePessimisticFixpoint();
1364     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1365     auto &ArgAA =
1366         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1367     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1368   }
1369 
1370   /// See AbstractAttribute::trackStatistics()
1371   void trackStatistics() const override {
1372     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1373   }
1374 };
1375 
1376 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1377   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1378       : AAPointerInfoFloating(IRP, A) {}
1379 
1380   /// See AbstractAttribute::trackStatistics()
1381   void trackStatistics() const override {
1382     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1383   }
1384 };
1385 
1386 /// -----------------------NoUnwind Function Attribute--------------------------
1387 
1388 struct AANoUnwindImpl : AANoUnwind {
1389   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1390 
1391   const std::string getAsStr() const override {
1392     return getAssumed() ? "nounwind" : "may-unwind";
1393   }
1394 
1395   /// See AbstractAttribute::updateImpl(...).
1396   ChangeStatus updateImpl(Attributor &A) override {
1397     auto Opcodes = {
1398         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1399         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1400         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1401 
1402     auto CheckForNoUnwind = [&](Instruction &I) {
1403       if (!I.mayThrow())
1404         return true;
1405 
1406       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1407         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1408             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1409         return NoUnwindAA.isAssumedNoUnwind();
1410       }
1411       return false;
1412     };
1413 
1414     bool UsedAssumedInformation = false;
1415     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1416                                    UsedAssumedInformation))
1417       return indicatePessimisticFixpoint();
1418 
1419     return ChangeStatus::UNCHANGED;
1420   }
1421 };
1422 
1423 struct AANoUnwindFunction final : public AANoUnwindImpl {
1424   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1425       : AANoUnwindImpl(IRP, A) {}
1426 
1427   /// See AbstractAttribute::trackStatistics()
1428   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1429 };
1430 
1431 /// NoUnwind attribute deduction for a call sites.
1432 struct AANoUnwindCallSite final : AANoUnwindImpl {
1433   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1434       : AANoUnwindImpl(IRP, A) {}
1435 
1436   /// See AbstractAttribute::initialize(...).
1437   void initialize(Attributor &A) override {
1438     AANoUnwindImpl::initialize(A);
1439     Function *F = getAssociatedFunction();
1440     if (!F || F->isDeclaration())
1441       indicatePessimisticFixpoint();
1442   }
1443 
1444   /// See AbstractAttribute::updateImpl(...).
1445   ChangeStatus updateImpl(Attributor &A) override {
1446     // TODO: Once we have call site specific value information we can provide
1447     //       call site specific liveness information and then it makes
1448     //       sense to specialize attributes for call sites arguments instead of
1449     //       redirecting requests to the callee argument.
1450     Function *F = getAssociatedFunction();
1451     const IRPosition &FnPos = IRPosition::function(*F);
1452     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1453     return clampStateAndIndicateChange(getState(), FnAA.getState());
1454   }
1455 
1456   /// See AbstractAttribute::trackStatistics()
1457   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1458 };
1459 
1460 /// --------------------- Function Return Values -------------------------------
1461 
1462 /// "Attribute" that collects all potential returned values and the return
1463 /// instructions that they arise from.
1464 ///
1465 /// If there is a unique returned value R, the manifest method will:
1466 ///   - mark R with the "returned" attribute, if R is an argument.
1467 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1468 
1469   /// Mapping of values potentially returned by the associated function to the
1470   /// return instructions that might return them.
1471   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1472 
1473   /// State flags
1474   ///
1475   ///{
1476   bool IsFixed = false;
1477   bool IsValidState = true;
1478   ///}
1479 
1480 public:
1481   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1482       : AAReturnedValues(IRP, A) {}
1483 
1484   /// See AbstractAttribute::initialize(...).
1485   void initialize(Attributor &A) override {
1486     // Reset the state.
1487     IsFixed = false;
1488     IsValidState = true;
1489     ReturnedValues.clear();
1490 
1491     Function *F = getAssociatedFunction();
1492     if (!F || F->isDeclaration()) {
1493       indicatePessimisticFixpoint();
1494       return;
1495     }
1496     assert(!F->getReturnType()->isVoidTy() &&
1497            "Did not expect a void return type!");
1498 
1499     // The map from instruction opcodes to those instructions in the function.
1500     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1501 
1502     // Look through all arguments, if one is marked as returned we are done.
1503     for (Argument &Arg : F->args()) {
1504       if (Arg.hasReturnedAttr()) {
1505         auto &ReturnInstSet = ReturnedValues[&Arg];
1506         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1507           for (Instruction *RI : *Insts)
1508             ReturnInstSet.insert(cast<ReturnInst>(RI));
1509 
1510         indicateOptimisticFixpoint();
1511         return;
1512       }
1513     }
1514 
1515     if (!A.isFunctionIPOAmendable(*F))
1516       indicatePessimisticFixpoint();
1517   }
1518 
1519   /// See AbstractAttribute::manifest(...).
1520   ChangeStatus manifest(Attributor &A) override;
1521 
1522   /// See AbstractAttribute::getState(...).
1523   AbstractState &getState() override { return *this; }
1524 
1525   /// See AbstractAttribute::getState(...).
1526   const AbstractState &getState() const override { return *this; }
1527 
1528   /// See AbstractAttribute::updateImpl(Attributor &A).
1529   ChangeStatus updateImpl(Attributor &A) override;
1530 
1531   llvm::iterator_range<iterator> returned_values() override {
1532     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1533   }
1534 
1535   llvm::iterator_range<const_iterator> returned_values() const override {
1536     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1537   }
1538 
1539   /// Return the number of potential return values, -1 if unknown.
1540   size_t getNumReturnValues() const override {
1541     return isValidState() ? ReturnedValues.size() : -1;
1542   }
1543 
1544   /// Return an assumed unique return value if a single candidate is found. If
1545   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1546   /// Optional::NoneType.
1547   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1548 
1549   /// See AbstractState::checkForAllReturnedValues(...).
1550   bool checkForAllReturnedValuesAndReturnInsts(
1551       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1552       const override;
1553 
1554   /// Pretty print the attribute similar to the IR representation.
1555   const std::string getAsStr() const override;
1556 
1557   /// See AbstractState::isAtFixpoint().
1558   bool isAtFixpoint() const override { return IsFixed; }
1559 
1560   /// See AbstractState::isValidState().
1561   bool isValidState() const override { return IsValidState; }
1562 
1563   /// See AbstractState::indicateOptimisticFixpoint(...).
1564   ChangeStatus indicateOptimisticFixpoint() override {
1565     IsFixed = true;
1566     return ChangeStatus::UNCHANGED;
1567   }
1568 
1569   ChangeStatus indicatePessimisticFixpoint() override {
1570     IsFixed = true;
1571     IsValidState = false;
1572     return ChangeStatus::CHANGED;
1573   }
1574 };
1575 
1576 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1577   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1578 
1579   // Bookkeeping.
1580   assert(isValidState());
1581   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1582                   "Number of function with known return values");
1583 
1584   // Check if we have an assumed unique return value that we could manifest.
1585   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1586 
1587   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1588     return Changed;
1589 
1590   // Bookkeeping.
1591   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1592                   "Number of function with unique return");
1593   // If the assumed unique return value is an argument, annotate it.
1594   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1595     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1596             getAssociatedFunction()->getReturnType())) {
1597       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1598       Changed = IRAttribute::manifest(A);
1599     }
1600   }
1601   return Changed;
1602 }
1603 
1604 const std::string AAReturnedValuesImpl::getAsStr() const {
1605   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1606          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1607 }
1608 
1609 Optional<Value *>
1610 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1611   // If checkForAllReturnedValues provides a unique value, ignoring potential
1612   // undef values that can also be present, it is assumed to be the actual
1613   // return value and forwarded to the caller of this method. If there are
1614   // multiple, a nullptr is returned indicating there cannot be a unique
1615   // returned value.
1616   Optional<Value *> UniqueRV;
1617   Type *Ty = getAssociatedFunction()->getReturnType();
1618 
1619   auto Pred = [&](Value &RV) -> bool {
1620     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1621     return UniqueRV != Optional<Value *>(nullptr);
1622   };
1623 
1624   if (!A.checkForAllReturnedValues(Pred, *this))
1625     UniqueRV = nullptr;
1626 
1627   return UniqueRV;
1628 }
1629 
1630 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1631     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1632     const {
1633   if (!isValidState())
1634     return false;
1635 
1636   // Check all returned values but ignore call sites as long as we have not
1637   // encountered an overdefined one during an update.
1638   for (auto &It : ReturnedValues) {
1639     Value *RV = It.first;
1640     if (!Pred(*RV, It.second))
1641       return false;
1642   }
1643 
1644   return true;
1645 }
1646 
1647 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1648   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1649 
1650   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1651                            bool) -> bool {
1652     bool UsedAssumedInformation = false;
1653     Optional<Value *> SimpleRetVal =
1654         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1655     if (!SimpleRetVal.hasValue())
1656       return true;
1657     if (!SimpleRetVal.getValue())
1658       return false;
1659     Value *RetVal = *SimpleRetVal;
1660     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1661            "Assumed returned value should be valid in function scope!");
1662     if (ReturnedValues[RetVal].insert(&Ret))
1663       Changed = ChangeStatus::CHANGED;
1664     return true;
1665   };
1666 
1667   auto ReturnInstCB = [&](Instruction &I) {
1668     ReturnInst &Ret = cast<ReturnInst>(I);
1669     return genericValueTraversal<ReturnInst>(
1670         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1671         &I);
1672   };
1673 
1674   // Discover returned values from all live returned instructions in the
1675   // associated function.
1676   bool UsedAssumedInformation = false;
1677   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1678                                  UsedAssumedInformation))
1679     return indicatePessimisticFixpoint();
1680   return Changed;
1681 }
1682 
1683 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1684   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1685       : AAReturnedValuesImpl(IRP, A) {}
1686 
1687   /// See AbstractAttribute::trackStatistics()
1688   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1689 };
1690 
1691 /// Returned values information for a call sites.
1692 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1693   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1694       : AAReturnedValuesImpl(IRP, A) {}
1695 
1696   /// See AbstractAttribute::initialize(...).
1697   void initialize(Attributor &A) override {
1698     // TODO: Once we have call site specific value information we can provide
1699     //       call site specific liveness information and then it makes
1700     //       sense to specialize attributes for call sites instead of
1701     //       redirecting requests to the callee.
1702     llvm_unreachable("Abstract attributes for returned values are not "
1703                      "supported for call sites yet!");
1704   }
1705 
1706   /// See AbstractAttribute::updateImpl(...).
1707   ChangeStatus updateImpl(Attributor &A) override {
1708     return indicatePessimisticFixpoint();
1709   }
1710 
1711   /// See AbstractAttribute::trackStatistics()
1712   void trackStatistics() const override {}
1713 };
1714 
1715 /// ------------------------ NoSync Function Attribute -------------------------
1716 
1717 struct AANoSyncImpl : AANoSync {
1718   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1719 
1720   const std::string getAsStr() const override {
1721     return getAssumed() ? "nosync" : "may-sync";
1722   }
1723 
1724   /// See AbstractAttribute::updateImpl(...).
1725   ChangeStatus updateImpl(Attributor &A) override;
1726 
1727   /// Helper function used to determine whether an instruction is non-relaxed
1728   /// atomic. In other words, if an atomic instruction does not have unordered
1729   /// or monotonic ordering
1730   static bool isNonRelaxedAtomic(Instruction *I);
1731 
1732   /// Helper function specific for intrinsics which are potentially volatile
1733   static bool isNoSyncIntrinsic(Instruction *I);
1734 };
1735 
1736 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1737   if (!I->isAtomic())
1738     return false;
1739 
1740   if (auto *FI = dyn_cast<FenceInst>(I))
1741     // All legal orderings for fence are stronger than monotonic.
1742     return FI->getSyncScopeID() != SyncScope::SingleThread;
1743   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1744     // Unordered is not a legal ordering for cmpxchg.
1745     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1746             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1747   }
1748 
1749   AtomicOrdering Ordering;
1750   switch (I->getOpcode()) {
1751   case Instruction::AtomicRMW:
1752     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1753     break;
1754   case Instruction::Store:
1755     Ordering = cast<StoreInst>(I)->getOrdering();
1756     break;
1757   case Instruction::Load:
1758     Ordering = cast<LoadInst>(I)->getOrdering();
1759     break;
1760   default:
1761     llvm_unreachable(
1762         "New atomic operations need to be known in the attributor.");
1763   }
1764 
1765   return (Ordering != AtomicOrdering::Unordered &&
1766           Ordering != AtomicOrdering::Monotonic);
1767 }
1768 
1769 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1770 /// which would be nosync except that they have a volatile flag.  All other
1771 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1772 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1773   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1774     return !MI->isVolatile();
1775   return false;
1776 }
1777 
1778 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1779 
1780   auto CheckRWInstForNoSync = [&](Instruction &I) {
1781     /// We are looking for volatile instructions or Non-Relaxed atomics.
1782 
1783     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1784       if (CB->hasFnAttr(Attribute::NoSync))
1785         return true;
1786 
1787       if (isNoSyncIntrinsic(&I))
1788         return true;
1789 
1790       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1791           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1792       return NoSyncAA.isAssumedNoSync();
1793     }
1794 
1795     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1796       return true;
1797 
1798     return false;
1799   };
1800 
1801   auto CheckForNoSync = [&](Instruction &I) {
1802     // At this point we handled all read/write effects and they are all
1803     // nosync, so they can be skipped.
1804     if (I.mayReadOrWriteMemory())
1805       return true;
1806 
1807     // non-convergent and readnone imply nosync.
1808     return !cast<CallBase>(I).isConvergent();
1809   };
1810 
1811   bool UsedAssumedInformation = false;
1812   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1813                                           UsedAssumedInformation) ||
1814       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1815                                          UsedAssumedInformation))
1816     return indicatePessimisticFixpoint();
1817 
1818   return ChangeStatus::UNCHANGED;
1819 }
1820 
1821 struct AANoSyncFunction final : public AANoSyncImpl {
1822   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1823       : AANoSyncImpl(IRP, A) {}
1824 
1825   /// See AbstractAttribute::trackStatistics()
1826   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1827 };
1828 
1829 /// NoSync attribute deduction for a call sites.
1830 struct AANoSyncCallSite final : AANoSyncImpl {
1831   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1832       : AANoSyncImpl(IRP, A) {}
1833 
1834   /// See AbstractAttribute::initialize(...).
1835   void initialize(Attributor &A) override {
1836     AANoSyncImpl::initialize(A);
1837     Function *F = getAssociatedFunction();
1838     if (!F || F->isDeclaration())
1839       indicatePessimisticFixpoint();
1840   }
1841 
1842   /// See AbstractAttribute::updateImpl(...).
1843   ChangeStatus updateImpl(Attributor &A) override {
1844     // TODO: Once we have call site specific value information we can provide
1845     //       call site specific liveness information and then it makes
1846     //       sense to specialize attributes for call sites arguments instead of
1847     //       redirecting requests to the callee argument.
1848     Function *F = getAssociatedFunction();
1849     const IRPosition &FnPos = IRPosition::function(*F);
1850     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1851     return clampStateAndIndicateChange(getState(), FnAA.getState());
1852   }
1853 
1854   /// See AbstractAttribute::trackStatistics()
1855   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1856 };
1857 
1858 /// ------------------------ No-Free Attributes ----------------------------
1859 
1860 struct AANoFreeImpl : public AANoFree {
1861   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1862 
1863   /// See AbstractAttribute::updateImpl(...).
1864   ChangeStatus updateImpl(Attributor &A) override {
1865     auto CheckForNoFree = [&](Instruction &I) {
1866       const auto &CB = cast<CallBase>(I);
1867       if (CB.hasFnAttr(Attribute::NoFree))
1868         return true;
1869 
1870       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1871           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1872       return NoFreeAA.isAssumedNoFree();
1873     };
1874 
1875     bool UsedAssumedInformation = false;
1876     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1877                                            UsedAssumedInformation))
1878       return indicatePessimisticFixpoint();
1879     return ChangeStatus::UNCHANGED;
1880   }
1881 
1882   /// See AbstractAttribute::getAsStr().
1883   const std::string getAsStr() const override {
1884     return getAssumed() ? "nofree" : "may-free";
1885   }
1886 };
1887 
1888 struct AANoFreeFunction final : public AANoFreeImpl {
1889   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1890       : AANoFreeImpl(IRP, A) {}
1891 
1892   /// See AbstractAttribute::trackStatistics()
1893   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1894 };
1895 
1896 /// NoFree attribute deduction for a call sites.
1897 struct AANoFreeCallSite final : AANoFreeImpl {
1898   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1899       : AANoFreeImpl(IRP, A) {}
1900 
1901   /// See AbstractAttribute::initialize(...).
1902   void initialize(Attributor &A) override {
1903     AANoFreeImpl::initialize(A);
1904     Function *F = getAssociatedFunction();
1905     if (!F || F->isDeclaration())
1906       indicatePessimisticFixpoint();
1907   }
1908 
1909   /// See AbstractAttribute::updateImpl(...).
1910   ChangeStatus updateImpl(Attributor &A) override {
1911     // TODO: Once we have call site specific value information we can provide
1912     //       call site specific liveness information and then it makes
1913     //       sense to specialize attributes for call sites arguments instead of
1914     //       redirecting requests to the callee argument.
1915     Function *F = getAssociatedFunction();
1916     const IRPosition &FnPos = IRPosition::function(*F);
1917     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1918     return clampStateAndIndicateChange(getState(), FnAA.getState());
1919   }
1920 
1921   /// See AbstractAttribute::trackStatistics()
1922   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1923 };
1924 
1925 /// NoFree attribute for floating values.
1926 struct AANoFreeFloating : AANoFreeImpl {
1927   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1928       : AANoFreeImpl(IRP, A) {}
1929 
1930   /// See AbstractAttribute::trackStatistics()
1931   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1932 
1933   /// See Abstract Attribute::updateImpl(...).
1934   ChangeStatus updateImpl(Attributor &A) override {
1935     const IRPosition &IRP = getIRPosition();
1936 
1937     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1938         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1939     if (NoFreeAA.isAssumedNoFree())
1940       return ChangeStatus::UNCHANGED;
1941 
1942     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1943     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1944       Instruction *UserI = cast<Instruction>(U.getUser());
1945       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1946         if (CB->isBundleOperand(&U))
1947           return false;
1948         if (!CB->isArgOperand(&U))
1949           return true;
1950         unsigned ArgNo = CB->getArgOperandNo(&U);
1951 
1952         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1953             *this, IRPosition::callsite_argument(*CB, ArgNo),
1954             DepClassTy::REQUIRED);
1955         return NoFreeArg.isAssumedNoFree();
1956       }
1957 
1958       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1959           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1960         Follow = true;
1961         return true;
1962       }
1963       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
1964           isa<ReturnInst>(UserI))
1965         return true;
1966 
1967       // Unknown user.
1968       return false;
1969     };
1970     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1971       return indicatePessimisticFixpoint();
1972 
1973     return ChangeStatus::UNCHANGED;
1974   }
1975 };
1976 
1977 /// NoFree attribute for a call site argument.
1978 struct AANoFreeArgument final : AANoFreeFloating {
1979   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1980       : AANoFreeFloating(IRP, A) {}
1981 
1982   /// See AbstractAttribute::trackStatistics()
1983   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1984 };
1985 
1986 /// NoFree attribute for call site arguments.
1987 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1988   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1989       : AANoFreeFloating(IRP, A) {}
1990 
1991   /// See AbstractAttribute::updateImpl(...).
1992   ChangeStatus updateImpl(Attributor &A) override {
1993     // TODO: Once we have call site specific value information we can provide
1994     //       call site specific liveness information and then it makes
1995     //       sense to specialize attributes for call sites arguments instead of
1996     //       redirecting requests to the callee argument.
1997     Argument *Arg = getAssociatedArgument();
1998     if (!Arg)
1999       return indicatePessimisticFixpoint();
2000     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2001     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2002     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2003   }
2004 
2005   /// See AbstractAttribute::trackStatistics()
2006   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2007 };
2008 
2009 /// NoFree attribute for function return value.
2010 struct AANoFreeReturned final : AANoFreeFloating {
2011   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2012       : AANoFreeFloating(IRP, A) {
2013     llvm_unreachable("NoFree is not applicable to function returns!");
2014   }
2015 
2016   /// See AbstractAttribute::initialize(...).
2017   void initialize(Attributor &A) override {
2018     llvm_unreachable("NoFree is not applicable to function returns!");
2019   }
2020 
2021   /// See AbstractAttribute::updateImpl(...).
2022   ChangeStatus updateImpl(Attributor &A) override {
2023     llvm_unreachable("NoFree is not applicable to function returns!");
2024   }
2025 
2026   /// See AbstractAttribute::trackStatistics()
2027   void trackStatistics() const override {}
2028 };
2029 
2030 /// NoFree attribute deduction for a call site return value.
2031 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2032   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2033       : AANoFreeFloating(IRP, A) {}
2034 
2035   ChangeStatus manifest(Attributor &A) override {
2036     return ChangeStatus::UNCHANGED;
2037   }
2038   /// See AbstractAttribute::trackStatistics()
2039   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2040 };
2041 
2042 /// ------------------------ NonNull Argument Attribute ------------------------
2043 static int64_t getKnownNonNullAndDerefBytesForUse(
2044     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2045     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2046   TrackUse = false;
2047 
2048   const Value *UseV = U->get();
2049   if (!UseV->getType()->isPointerTy())
2050     return 0;
2051 
2052   // We need to follow common pointer manipulation uses to the accesses they
2053   // feed into. We can try to be smart to avoid looking through things we do not
2054   // like for now, e.g., non-inbounds GEPs.
2055   if (isa<CastInst>(I)) {
2056     TrackUse = true;
2057     return 0;
2058   }
2059 
2060   if (isa<GetElementPtrInst>(I)) {
2061     TrackUse = true;
2062     return 0;
2063   }
2064 
2065   Type *PtrTy = UseV->getType();
2066   const Function *F = I->getFunction();
2067   bool NullPointerIsDefined =
2068       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2069   const DataLayout &DL = A.getInfoCache().getDL();
2070   if (const auto *CB = dyn_cast<CallBase>(I)) {
2071     if (CB->isBundleOperand(U)) {
2072       if (RetainedKnowledge RK = getKnowledgeFromUse(
2073               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2074         IsNonNull |=
2075             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2076         return RK.ArgValue;
2077       }
2078       return 0;
2079     }
2080 
2081     if (CB->isCallee(U)) {
2082       IsNonNull |= !NullPointerIsDefined;
2083       return 0;
2084     }
2085 
2086     unsigned ArgNo = CB->getArgOperandNo(U);
2087     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2088     // As long as we only use known information there is no need to track
2089     // dependences here.
2090     auto &DerefAA =
2091         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2092     IsNonNull |= DerefAA.isKnownNonNull();
2093     return DerefAA.getKnownDereferenceableBytes();
2094   }
2095 
2096   int64_t Offset;
2097   const Value *Base =
2098       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
2099   if (Base) {
2100     if (Base == &AssociatedValue &&
2101         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2102       int64_t DerefBytes =
2103           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2104 
2105       IsNonNull |= !NullPointerIsDefined;
2106       return std::max(int64_t(0), DerefBytes);
2107     }
2108   }
2109 
2110   /// Corner case when an offset is 0.
2111   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2112                                               /*AllowNonInbounds*/ true);
2113   if (Base) {
2114     if (Offset == 0 && Base == &AssociatedValue &&
2115         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2116       int64_t DerefBytes =
2117           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2118       IsNonNull |= !NullPointerIsDefined;
2119       return std::max(int64_t(0), DerefBytes);
2120     }
2121   }
2122 
2123   return 0;
2124 }
2125 
2126 struct AANonNullImpl : AANonNull {
2127   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2128       : AANonNull(IRP, A),
2129         NullIsDefined(NullPointerIsDefined(
2130             getAnchorScope(),
2131             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2132 
2133   /// See AbstractAttribute::initialize(...).
2134   void initialize(Attributor &A) override {
2135     Value &V = getAssociatedValue();
2136     if (!NullIsDefined &&
2137         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2138                 /* IgnoreSubsumingPositions */ false, &A)) {
2139       indicateOptimisticFixpoint();
2140       return;
2141     }
2142 
2143     if (isa<ConstantPointerNull>(V)) {
2144       indicatePessimisticFixpoint();
2145       return;
2146     }
2147 
2148     AANonNull::initialize(A);
2149 
2150     bool CanBeNull, CanBeFreed;
2151     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2152                                          CanBeFreed)) {
2153       if (!CanBeNull) {
2154         indicateOptimisticFixpoint();
2155         return;
2156       }
2157     }
2158 
2159     if (isa<GlobalValue>(&getAssociatedValue())) {
2160       indicatePessimisticFixpoint();
2161       return;
2162     }
2163 
2164     if (Instruction *CtxI = getCtxI())
2165       followUsesInMBEC(*this, A, getState(), *CtxI);
2166   }
2167 
2168   /// See followUsesInMBEC
2169   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2170                        AANonNull::StateType &State) {
2171     bool IsNonNull = false;
2172     bool TrackUse = false;
2173     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2174                                        IsNonNull, TrackUse);
2175     State.setKnown(IsNonNull);
2176     return TrackUse;
2177   }
2178 
2179   /// See AbstractAttribute::getAsStr().
2180   const std::string getAsStr() const override {
2181     return getAssumed() ? "nonnull" : "may-null";
2182   }
2183 
2184   /// Flag to determine if the underlying value can be null and still allow
2185   /// valid accesses.
2186   const bool NullIsDefined;
2187 };
2188 
2189 /// NonNull attribute for a floating value.
2190 struct AANonNullFloating : public AANonNullImpl {
2191   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2192       : AANonNullImpl(IRP, A) {}
2193 
2194   /// See AbstractAttribute::updateImpl(...).
2195   ChangeStatus updateImpl(Attributor &A) override {
2196     const DataLayout &DL = A.getDataLayout();
2197 
2198     DominatorTree *DT = nullptr;
2199     AssumptionCache *AC = nullptr;
2200     InformationCache &InfoCache = A.getInfoCache();
2201     if (const Function *Fn = getAnchorScope()) {
2202       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2203       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2204     }
2205 
2206     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2207                             AANonNull::StateType &T, bool Stripped) -> bool {
2208       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2209                                              DepClassTy::REQUIRED);
2210       if (!Stripped && this == &AA) {
2211         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2212           T.indicatePessimisticFixpoint();
2213       } else {
2214         // Use abstract attribute information.
2215         const AANonNull::StateType &NS = AA.getState();
2216         T ^= NS;
2217       }
2218       return T.isValidState();
2219     };
2220 
2221     StateType T;
2222     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2223                                           VisitValueCB, getCtxI()))
2224       return indicatePessimisticFixpoint();
2225 
2226     return clampStateAndIndicateChange(getState(), T);
2227   }
2228 
2229   /// See AbstractAttribute::trackStatistics()
2230   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2231 };
2232 
2233 /// NonNull attribute for function return value.
2234 struct AANonNullReturned final
2235     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2236   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2237       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2238 
2239   /// See AbstractAttribute::getAsStr().
2240   const std::string getAsStr() const override {
2241     return getAssumed() ? "nonnull" : "may-null";
2242   }
2243 
2244   /// See AbstractAttribute::trackStatistics()
2245   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2246 };
2247 
2248 /// NonNull attribute for function argument.
2249 struct AANonNullArgument final
2250     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2251   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2252       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2253 
2254   /// See AbstractAttribute::trackStatistics()
2255   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2256 };
2257 
2258 struct AANonNullCallSiteArgument final : AANonNullFloating {
2259   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2260       : AANonNullFloating(IRP, A) {}
2261 
2262   /// See AbstractAttribute::trackStatistics()
2263   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2264 };
2265 
2266 /// NonNull attribute for a call site return position.
2267 struct AANonNullCallSiteReturned final
2268     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2269   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2270       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2271 
2272   /// See AbstractAttribute::trackStatistics()
2273   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2274 };
2275 
2276 /// ------------------------ No-Recurse Attributes ----------------------------
2277 
2278 struct AANoRecurseImpl : public AANoRecurse {
2279   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2280 
2281   /// See AbstractAttribute::getAsStr()
2282   const std::string getAsStr() const override {
2283     return getAssumed() ? "norecurse" : "may-recurse";
2284   }
2285 };
2286 
2287 struct AANoRecurseFunction final : AANoRecurseImpl {
2288   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2289       : AANoRecurseImpl(IRP, A) {}
2290 
2291   /// See AbstractAttribute::initialize(...).
2292   void initialize(Attributor &A) override {
2293     AANoRecurseImpl::initialize(A);
2294     if (const Function *F = getAnchorScope())
2295       if (A.getInfoCache().getSccSize(*F) != 1)
2296         indicatePessimisticFixpoint();
2297   }
2298 
2299   /// See AbstractAttribute::updateImpl(...).
2300   ChangeStatus updateImpl(Attributor &A) override {
2301 
2302     // If all live call sites are known to be no-recurse, we are as well.
2303     auto CallSitePred = [&](AbstractCallSite ACS) {
2304       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2305           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2306           DepClassTy::NONE);
2307       return NoRecurseAA.isKnownNoRecurse();
2308     };
2309     bool AllCallSitesKnown;
2310     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2311       // If we know all call sites and all are known no-recurse, we are done.
2312       // If all known call sites, which might not be all that exist, are known
2313       // to be no-recurse, we are not done but we can continue to assume
2314       // no-recurse. If one of the call sites we have not visited will become
2315       // live, another update is triggered.
2316       if (AllCallSitesKnown)
2317         indicateOptimisticFixpoint();
2318       return ChangeStatus::UNCHANGED;
2319     }
2320 
2321     // If the above check does not hold anymore we look at the calls.
2322     auto CheckForNoRecurse = [&](Instruction &I) {
2323       const auto &CB = cast<CallBase>(I);
2324       if (CB.hasFnAttr(Attribute::NoRecurse))
2325         return true;
2326 
2327       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2328           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2329       if (!NoRecurseAA.isAssumedNoRecurse())
2330         return false;
2331 
2332       // Recursion to the same function
2333       if (CB.getCalledFunction() == getAnchorScope())
2334         return false;
2335 
2336       return true;
2337     };
2338 
2339     bool UsedAssumedInformation = false;
2340     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2341                                            UsedAssumedInformation))
2342       return indicatePessimisticFixpoint();
2343     return ChangeStatus::UNCHANGED;
2344   }
2345 
2346   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2347 };
2348 
2349 /// NoRecurse attribute deduction for a call sites.
2350 struct AANoRecurseCallSite final : AANoRecurseImpl {
2351   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2352       : AANoRecurseImpl(IRP, A) {}
2353 
2354   /// See AbstractAttribute::initialize(...).
2355   void initialize(Attributor &A) override {
2356     AANoRecurseImpl::initialize(A);
2357     Function *F = getAssociatedFunction();
2358     if (!F || F->isDeclaration())
2359       indicatePessimisticFixpoint();
2360   }
2361 
2362   /// See AbstractAttribute::updateImpl(...).
2363   ChangeStatus updateImpl(Attributor &A) override {
2364     // TODO: Once we have call site specific value information we can provide
2365     //       call site specific liveness information and then it makes
2366     //       sense to specialize attributes for call sites arguments instead of
2367     //       redirecting requests to the callee argument.
2368     Function *F = getAssociatedFunction();
2369     const IRPosition &FnPos = IRPosition::function(*F);
2370     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2371     return clampStateAndIndicateChange(getState(), FnAA.getState());
2372   }
2373 
2374   /// See AbstractAttribute::trackStatistics()
2375   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2376 };
2377 
2378 /// -------------------- Undefined-Behavior Attributes ------------------------
2379 
2380 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2381   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2382       : AAUndefinedBehavior(IRP, A) {}
2383 
2384   /// See AbstractAttribute::updateImpl(...).
2385   // through a pointer (i.e. also branches etc.)
2386   ChangeStatus updateImpl(Attributor &A) override {
2387     const size_t UBPrevSize = KnownUBInsts.size();
2388     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2389 
2390     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2391       // Skip instructions that are already saved.
2392       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2393         return true;
2394 
2395       // If we reach here, we know we have an instruction
2396       // that accesses memory through a pointer operand,
2397       // for which getPointerOperand() should give it to us.
2398       Value *PtrOp =
2399           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2400       assert(PtrOp &&
2401              "Expected pointer operand of memory accessing instruction");
2402 
2403       // Either we stopped and the appropriate action was taken,
2404       // or we got back a simplified value to continue.
2405       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2406       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2407         return true;
2408       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2409 
2410       // A memory access through a pointer is considered UB
2411       // only if the pointer has constant null value.
2412       // TODO: Expand it to not only check constant values.
2413       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2414         AssumedNoUBInsts.insert(&I);
2415         return true;
2416       }
2417       const Type *PtrTy = PtrOpVal->getType();
2418 
2419       // Because we only consider instructions inside functions,
2420       // assume that a parent function exists.
2421       const Function *F = I.getFunction();
2422 
2423       // A memory access using constant null pointer is only considered UB
2424       // if null pointer is _not_ defined for the target platform.
2425       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2426         AssumedNoUBInsts.insert(&I);
2427       else
2428         KnownUBInsts.insert(&I);
2429       return true;
2430     };
2431 
2432     auto InspectBrInstForUB = [&](Instruction &I) {
2433       // A conditional branch instruction is considered UB if it has `undef`
2434       // condition.
2435 
2436       // Skip instructions that are already saved.
2437       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2438         return true;
2439 
2440       // We know we have a branch instruction.
2441       auto *BrInst = cast<BranchInst>(&I);
2442 
2443       // Unconditional branches are never considered UB.
2444       if (BrInst->isUnconditional())
2445         return true;
2446 
2447       // Either we stopped and the appropriate action was taken,
2448       // or we got back a simplified value to continue.
2449       Optional<Value *> SimplifiedCond =
2450           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2451       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2452         return true;
2453       AssumedNoUBInsts.insert(&I);
2454       return true;
2455     };
2456 
2457     auto InspectCallSiteForUB = [&](Instruction &I) {
2458       // Check whether a callsite always cause UB or not
2459 
2460       // Skip instructions that are already saved.
2461       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2462         return true;
2463 
2464       // Check nonnull and noundef argument attribute violation for each
2465       // callsite.
2466       CallBase &CB = cast<CallBase>(I);
2467       Function *Callee = CB.getCalledFunction();
2468       if (!Callee)
2469         return true;
2470       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2471         // If current argument is known to be simplified to null pointer and the
2472         // corresponding argument position is known to have nonnull attribute,
2473         // the argument is poison. Furthermore, if the argument is poison and
2474         // the position is known to have noundef attriubte, this callsite is
2475         // considered UB.
2476         if (idx >= Callee->arg_size())
2477           break;
2478         Value *ArgVal = CB.getArgOperand(idx);
2479         if (!ArgVal)
2480           continue;
2481         // Here, we handle three cases.
2482         //   (1) Not having a value means it is dead. (we can replace the value
2483         //       with undef)
2484         //   (2) Simplified to undef. The argument violate noundef attriubte.
2485         //   (3) Simplified to null pointer where known to be nonnull.
2486         //       The argument is a poison value and violate noundef attribute.
2487         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2488         auto &NoUndefAA =
2489             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2490         if (!NoUndefAA.isKnownNoUndef())
2491           continue;
2492         bool UsedAssumedInformation = false;
2493         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2494             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2495         if (UsedAssumedInformation)
2496           continue;
2497         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2498           return true;
2499         if (!SimplifiedVal.hasValue() ||
2500             isa<UndefValue>(*SimplifiedVal.getValue())) {
2501           KnownUBInsts.insert(&I);
2502           continue;
2503         }
2504         if (!ArgVal->getType()->isPointerTy() ||
2505             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2506           continue;
2507         auto &NonNullAA =
2508             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2509         if (NonNullAA.isKnownNonNull())
2510           KnownUBInsts.insert(&I);
2511       }
2512       return true;
2513     };
2514 
2515     auto InspectReturnInstForUB =
2516         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2517           // Check if a return instruction always cause UB or not
2518           // Note: It is guaranteed that the returned position of the anchor
2519           //       scope has noundef attribute when this is called.
2520           //       We also ensure the return position is not "assumed dead"
2521           //       because the returned value was then potentially simplified to
2522           //       `undef` in AAReturnedValues without removing the `noundef`
2523           //       attribute yet.
2524 
2525           // When the returned position has noundef attriubte, UB occur in the
2526           // following cases.
2527           //   (1) Returned value is known to be undef.
2528           //   (2) The value is known to be a null pointer and the returned
2529           //       position has nonnull attribute (because the returned value is
2530           //       poison).
2531           bool FoundUB = false;
2532           if (isa<UndefValue>(V)) {
2533             FoundUB = true;
2534           } else {
2535             if (isa<ConstantPointerNull>(V)) {
2536               auto &NonNullAA = A.getAAFor<AANonNull>(
2537                   *this, IRPosition::returned(*getAnchorScope()),
2538                   DepClassTy::NONE);
2539               if (NonNullAA.isKnownNonNull())
2540                 FoundUB = true;
2541             }
2542           }
2543 
2544           if (FoundUB)
2545             for (ReturnInst *RI : RetInsts)
2546               KnownUBInsts.insert(RI);
2547           return true;
2548         };
2549 
2550     bool UsedAssumedInformation = false;
2551     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2552                               {Instruction::Load, Instruction::Store,
2553                                Instruction::AtomicCmpXchg,
2554                                Instruction::AtomicRMW},
2555                               UsedAssumedInformation,
2556                               /* CheckBBLivenessOnly */ true);
2557     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2558                               UsedAssumedInformation,
2559                               /* CheckBBLivenessOnly */ true);
2560     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2561                                       UsedAssumedInformation);
2562 
2563     // If the returned position of the anchor scope has noundef attriubte, check
2564     // all returned instructions.
2565     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2566       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2567       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2568         auto &RetPosNoUndefAA =
2569             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2570         if (RetPosNoUndefAA.isKnownNoUndef())
2571           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2572                                                     *this);
2573       }
2574     }
2575 
2576     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2577         UBPrevSize != KnownUBInsts.size())
2578       return ChangeStatus::CHANGED;
2579     return ChangeStatus::UNCHANGED;
2580   }
2581 
2582   bool isKnownToCauseUB(Instruction *I) const override {
2583     return KnownUBInsts.count(I);
2584   }
2585 
2586   bool isAssumedToCauseUB(Instruction *I) const override {
2587     // In simple words, if an instruction is not in the assumed to _not_
2588     // cause UB, then it is assumed UB (that includes those
2589     // in the KnownUBInsts set). The rest is boilerplate
2590     // is to ensure that it is one of the instructions we test
2591     // for UB.
2592 
2593     switch (I->getOpcode()) {
2594     case Instruction::Load:
2595     case Instruction::Store:
2596     case Instruction::AtomicCmpXchg:
2597     case Instruction::AtomicRMW:
2598       return !AssumedNoUBInsts.count(I);
2599     case Instruction::Br: {
2600       auto BrInst = cast<BranchInst>(I);
2601       if (BrInst->isUnconditional())
2602         return false;
2603       return !AssumedNoUBInsts.count(I);
2604     } break;
2605     default:
2606       return false;
2607     }
2608     return false;
2609   }
2610 
2611   ChangeStatus manifest(Attributor &A) override {
2612     if (KnownUBInsts.empty())
2613       return ChangeStatus::UNCHANGED;
2614     for (Instruction *I : KnownUBInsts)
2615       A.changeToUnreachableAfterManifest(I);
2616     return ChangeStatus::CHANGED;
2617   }
2618 
2619   /// See AbstractAttribute::getAsStr()
2620   const std::string getAsStr() const override {
2621     return getAssumed() ? "undefined-behavior" : "no-ub";
2622   }
2623 
2624   /// Note: The correctness of this analysis depends on the fact that the
2625   /// following 2 sets will stop changing after some point.
2626   /// "Change" here means that their size changes.
2627   /// The size of each set is monotonically increasing
2628   /// (we only add items to them) and it is upper bounded by the number of
2629   /// instructions in the processed function (we can never save more
2630   /// elements in either set than this number). Hence, at some point,
2631   /// they will stop increasing.
2632   /// Consequently, at some point, both sets will have stopped
2633   /// changing, effectively making the analysis reach a fixpoint.
2634 
2635   /// Note: These 2 sets are disjoint and an instruction can be considered
2636   /// one of 3 things:
2637   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2638   ///    the KnownUBInsts set.
2639   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2640   ///    has a reason to assume it).
2641   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2642   ///    could not find a reason to assume or prove that it can cause UB,
2643   ///    hence it assumes it doesn't. We have a set for these instructions
2644   ///    so that we don't reprocess them in every update.
2645   ///    Note however that instructions in this set may cause UB.
2646 
2647 protected:
2648   /// A set of all live instructions _known_ to cause UB.
2649   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2650 
2651 private:
2652   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2653   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2654 
2655   // Should be called on updates in which if we're processing an instruction
2656   // \p I that depends on a value \p V, one of the following has to happen:
2657   // - If the value is assumed, then stop.
2658   // - If the value is known but undef, then consider it UB.
2659   // - Otherwise, do specific processing with the simplified value.
2660   // We return None in the first 2 cases to signify that an appropriate
2661   // action was taken and the caller should stop.
2662   // Otherwise, we return the simplified value that the caller should
2663   // use for specific processing.
2664   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2665                                          Instruction *I) {
2666     bool UsedAssumedInformation = false;
2667     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2668         IRPosition::value(*V), *this, UsedAssumedInformation);
2669     if (!UsedAssumedInformation) {
2670       // Don't depend on assumed values.
2671       if (!SimplifiedV.hasValue()) {
2672         // If it is known (which we tested above) but it doesn't have a value,
2673         // then we can assume `undef` and hence the instruction is UB.
2674         KnownUBInsts.insert(I);
2675         return llvm::None;
2676       }
2677       if (!SimplifiedV.getValue())
2678         return nullptr;
2679       V = *SimplifiedV;
2680     }
2681     if (isa<UndefValue>(V)) {
2682       KnownUBInsts.insert(I);
2683       return llvm::None;
2684     }
2685     return V;
2686   }
2687 };
2688 
2689 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2690   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2691       : AAUndefinedBehaviorImpl(IRP, A) {}
2692 
2693   /// See AbstractAttribute::trackStatistics()
2694   void trackStatistics() const override {
2695     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2696                "Number of instructions known to have UB");
2697     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2698         KnownUBInsts.size();
2699   }
2700 };
2701 
2702 /// ------------------------ Will-Return Attributes ----------------------------
2703 
2704 // Helper function that checks whether a function has any cycle which we don't
2705 // know if it is bounded or not.
2706 // Loops with maximum trip count are considered bounded, any other cycle not.
2707 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2708   ScalarEvolution *SE =
2709       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2710   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2711   // If either SCEV or LoopInfo is not available for the function then we assume
2712   // any cycle to be unbounded cycle.
2713   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2714   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2715   if (!SE || !LI) {
2716     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2717       if (SCCI.hasCycle())
2718         return true;
2719     return false;
2720   }
2721 
2722   // If there's irreducible control, the function may contain non-loop cycles.
2723   if (mayContainIrreducibleControl(F, LI))
2724     return true;
2725 
2726   // Any loop that does not have a max trip count is considered unbounded cycle.
2727   for (auto *L : LI->getLoopsInPreorder()) {
2728     if (!SE->getSmallConstantMaxTripCount(L))
2729       return true;
2730   }
2731   return false;
2732 }
2733 
2734 struct AAWillReturnImpl : public AAWillReturn {
2735   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2736       : AAWillReturn(IRP, A) {}
2737 
2738   /// See AbstractAttribute::initialize(...).
2739   void initialize(Attributor &A) override {
2740     AAWillReturn::initialize(A);
2741 
2742     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2743       indicateOptimisticFixpoint();
2744       return;
2745     }
2746   }
2747 
2748   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2749   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2750     // Check for `mustprogress` in the scope and the associated function which
2751     // might be different if this is a call site.
2752     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2753         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2754       return false;
2755 
2756     const auto &MemAA =
2757         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2758     if (!MemAA.isAssumedReadOnly())
2759       return false;
2760     if (KnownOnly && !MemAA.isKnownReadOnly())
2761       return false;
2762     if (!MemAA.isKnownReadOnly())
2763       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2764 
2765     return true;
2766   }
2767 
2768   /// See AbstractAttribute::updateImpl(...).
2769   ChangeStatus updateImpl(Attributor &A) override {
2770     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2771       return ChangeStatus::UNCHANGED;
2772 
2773     auto CheckForWillReturn = [&](Instruction &I) {
2774       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2775       const auto &WillReturnAA =
2776           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2777       if (WillReturnAA.isKnownWillReturn())
2778         return true;
2779       if (!WillReturnAA.isAssumedWillReturn())
2780         return false;
2781       const auto &NoRecurseAA =
2782           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2783       return NoRecurseAA.isAssumedNoRecurse();
2784     };
2785 
2786     bool UsedAssumedInformation = false;
2787     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2788                                            UsedAssumedInformation))
2789       return indicatePessimisticFixpoint();
2790 
2791     return ChangeStatus::UNCHANGED;
2792   }
2793 
2794   /// See AbstractAttribute::getAsStr()
2795   const std::string getAsStr() const override {
2796     return getAssumed() ? "willreturn" : "may-noreturn";
2797   }
2798 };
2799 
2800 struct AAWillReturnFunction final : AAWillReturnImpl {
2801   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2802       : AAWillReturnImpl(IRP, A) {}
2803 
2804   /// See AbstractAttribute::initialize(...).
2805   void initialize(Attributor &A) override {
2806     AAWillReturnImpl::initialize(A);
2807 
2808     Function *F = getAnchorScope();
2809     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2810       indicatePessimisticFixpoint();
2811   }
2812 
2813   /// See AbstractAttribute::trackStatistics()
2814   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2815 };
2816 
2817 /// WillReturn attribute deduction for a call sites.
2818 struct AAWillReturnCallSite final : AAWillReturnImpl {
2819   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2820       : AAWillReturnImpl(IRP, A) {}
2821 
2822   /// See AbstractAttribute::initialize(...).
2823   void initialize(Attributor &A) override {
2824     AAWillReturnImpl::initialize(A);
2825     Function *F = getAssociatedFunction();
2826     if (!F || !A.isFunctionIPOAmendable(*F))
2827       indicatePessimisticFixpoint();
2828   }
2829 
2830   /// See AbstractAttribute::updateImpl(...).
2831   ChangeStatus updateImpl(Attributor &A) override {
2832     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2833       return ChangeStatus::UNCHANGED;
2834 
2835     // TODO: Once we have call site specific value information we can provide
2836     //       call site specific liveness information and then it makes
2837     //       sense to specialize attributes for call sites arguments instead of
2838     //       redirecting requests to the callee argument.
2839     Function *F = getAssociatedFunction();
2840     const IRPosition &FnPos = IRPosition::function(*F);
2841     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2842     return clampStateAndIndicateChange(getState(), FnAA.getState());
2843   }
2844 
2845   /// See AbstractAttribute::trackStatistics()
2846   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2847 };
2848 
2849 /// -------------------AAReachability Attribute--------------------------
2850 
2851 struct AAReachabilityImpl : AAReachability {
2852   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2853       : AAReachability(IRP, A) {}
2854 
2855   const std::string getAsStr() const override {
2856     // TODO: Return the number of reachable queries.
2857     return "reachable";
2858   }
2859 
2860   /// See AbstractAttribute::updateImpl(...).
2861   ChangeStatus updateImpl(Attributor &A) override {
2862     return ChangeStatus::UNCHANGED;
2863   }
2864 };
2865 
2866 struct AAReachabilityFunction final : public AAReachabilityImpl {
2867   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2868       : AAReachabilityImpl(IRP, A) {}
2869 
2870   /// See AbstractAttribute::trackStatistics()
2871   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2872 };
2873 
2874 /// ------------------------ NoAlias Argument Attribute ------------------------
2875 
2876 struct AANoAliasImpl : AANoAlias {
2877   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2878     assert(getAssociatedType()->isPointerTy() &&
2879            "Noalias is a pointer attribute");
2880   }
2881 
2882   const std::string getAsStr() const override {
2883     return getAssumed() ? "noalias" : "may-alias";
2884   }
2885 };
2886 
2887 /// NoAlias attribute for a floating value.
2888 struct AANoAliasFloating final : AANoAliasImpl {
2889   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2890       : AANoAliasImpl(IRP, A) {}
2891 
2892   /// See AbstractAttribute::initialize(...).
2893   void initialize(Attributor &A) override {
2894     AANoAliasImpl::initialize(A);
2895     Value *Val = &getAssociatedValue();
2896     do {
2897       CastInst *CI = dyn_cast<CastInst>(Val);
2898       if (!CI)
2899         break;
2900       Value *Base = CI->getOperand(0);
2901       if (!Base->hasOneUse())
2902         break;
2903       Val = Base;
2904     } while (true);
2905 
2906     if (!Val->getType()->isPointerTy()) {
2907       indicatePessimisticFixpoint();
2908       return;
2909     }
2910 
2911     if (isa<AllocaInst>(Val))
2912       indicateOptimisticFixpoint();
2913     else if (isa<ConstantPointerNull>(Val) &&
2914              !NullPointerIsDefined(getAnchorScope(),
2915                                    Val->getType()->getPointerAddressSpace()))
2916       indicateOptimisticFixpoint();
2917     else if (Val != &getAssociatedValue()) {
2918       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2919           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2920       if (ValNoAliasAA.isKnownNoAlias())
2921         indicateOptimisticFixpoint();
2922     }
2923   }
2924 
2925   /// See AbstractAttribute::updateImpl(...).
2926   ChangeStatus updateImpl(Attributor &A) override {
2927     // TODO: Implement this.
2928     return indicatePessimisticFixpoint();
2929   }
2930 
2931   /// See AbstractAttribute::trackStatistics()
2932   void trackStatistics() const override {
2933     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2934   }
2935 };
2936 
2937 /// NoAlias attribute for an argument.
2938 struct AANoAliasArgument final
2939     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2940   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2941   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2942 
2943   /// See AbstractAttribute::initialize(...).
2944   void initialize(Attributor &A) override {
2945     Base::initialize(A);
2946     // See callsite argument attribute and callee argument attribute.
2947     if (hasAttr({Attribute::ByVal}))
2948       indicateOptimisticFixpoint();
2949   }
2950 
2951   /// See AbstractAttribute::update(...).
2952   ChangeStatus updateImpl(Attributor &A) override {
2953     // We have to make sure no-alias on the argument does not break
2954     // synchronization when this is a callback argument, see also [1] below.
2955     // If synchronization cannot be affected, we delegate to the base updateImpl
2956     // function, otherwise we give up for now.
2957 
2958     // If the function is no-sync, no-alias cannot break synchronization.
2959     const auto &NoSyncAA =
2960         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2961                              DepClassTy::OPTIONAL);
2962     if (NoSyncAA.isAssumedNoSync())
2963       return Base::updateImpl(A);
2964 
2965     // If the argument is read-only, no-alias cannot break synchronization.
2966     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2967         *this, getIRPosition(), DepClassTy::OPTIONAL);
2968     if (MemBehaviorAA.isAssumedReadOnly())
2969       return Base::updateImpl(A);
2970 
2971     // If the argument is never passed through callbacks, no-alias cannot break
2972     // synchronization.
2973     bool AllCallSitesKnown;
2974     if (A.checkForAllCallSites(
2975             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2976             true, AllCallSitesKnown))
2977       return Base::updateImpl(A);
2978 
2979     // TODO: add no-alias but make sure it doesn't break synchronization by
2980     // introducing fake uses. See:
2981     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2982     //     International Workshop on OpenMP 2018,
2983     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2984 
2985     return indicatePessimisticFixpoint();
2986   }
2987 
2988   /// See AbstractAttribute::trackStatistics()
2989   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2990 };
2991 
2992 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2993   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2994       : AANoAliasImpl(IRP, A) {}
2995 
2996   /// See AbstractAttribute::initialize(...).
2997   void initialize(Attributor &A) override {
2998     // See callsite argument attribute and callee argument attribute.
2999     const auto &CB = cast<CallBase>(getAnchorValue());
3000     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3001       indicateOptimisticFixpoint();
3002     Value &Val = getAssociatedValue();
3003     if (isa<ConstantPointerNull>(Val) &&
3004         !NullPointerIsDefined(getAnchorScope(),
3005                               Val.getType()->getPointerAddressSpace()))
3006       indicateOptimisticFixpoint();
3007   }
3008 
3009   /// Determine if the underlying value may alias with the call site argument
3010   /// \p OtherArgNo of \p ICS (= the underlying call site).
3011   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3012                             const AAMemoryBehavior &MemBehaviorAA,
3013                             const CallBase &CB, unsigned OtherArgNo) {
3014     // We do not need to worry about aliasing with the underlying IRP.
3015     if (this->getCalleeArgNo() == (int)OtherArgNo)
3016       return false;
3017 
3018     // If it is not a pointer or pointer vector we do not alias.
3019     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3020     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3021       return false;
3022 
3023     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3024         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3025 
3026     // If the argument is readnone, there is no read-write aliasing.
3027     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3028       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3029       return false;
3030     }
3031 
3032     // If the argument is readonly and the underlying value is readonly, there
3033     // is no read-write aliasing.
3034     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3035     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3036       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3037       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3038       return false;
3039     }
3040 
3041     // We have to utilize actual alias analysis queries so we need the object.
3042     if (!AAR)
3043       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3044 
3045     // Try to rule it out at the call site.
3046     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3047     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3048                          "callsite arguments: "
3049                       << getAssociatedValue() << " " << *ArgOp << " => "
3050                       << (IsAliasing ? "" : "no-") << "alias \n");
3051 
3052     return IsAliasing;
3053   }
3054 
3055   bool
3056   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3057                                          const AAMemoryBehavior &MemBehaviorAA,
3058                                          const AANoAlias &NoAliasAA) {
3059     // We can deduce "noalias" if the following conditions hold.
3060     // (i)   Associated value is assumed to be noalias in the definition.
3061     // (ii)  Associated value is assumed to be no-capture in all the uses
3062     //       possibly executed before this callsite.
3063     // (iii) There is no other pointer argument which could alias with the
3064     //       value.
3065 
3066     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3067     if (!AssociatedValueIsNoAliasAtDef) {
3068       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3069                         << " is not no-alias at the definition\n");
3070       return false;
3071     }
3072 
3073     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3074 
3075     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3076     const Function *ScopeFn = VIRP.getAnchorScope();
3077     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3078     // Check whether the value is captured in the scope using AANoCapture.
3079     //      Look at CFG and check only uses possibly executed before this
3080     //      callsite.
3081     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3082       Instruction *UserI = cast<Instruction>(U.getUser());
3083 
3084       // If UserI is the curr instruction and there is a single potential use of
3085       // the value in UserI we allow the use.
3086       // TODO: We should inspect the operands and allow those that cannot alias
3087       //       with the value.
3088       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3089         return true;
3090 
3091       if (ScopeFn) {
3092         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3093             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3094 
3095         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3096           return true;
3097 
3098         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3099           if (CB->isArgOperand(&U)) {
3100 
3101             unsigned ArgNo = CB->getArgOperandNo(&U);
3102 
3103             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3104                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3105                 DepClassTy::OPTIONAL);
3106 
3107             if (NoCaptureAA.isAssumedNoCapture())
3108               return true;
3109           }
3110         }
3111       }
3112 
3113       // For cases which can potentially have more users
3114       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3115           isa<SelectInst>(U)) {
3116         Follow = true;
3117         return true;
3118       }
3119 
3120       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3121       return false;
3122     };
3123 
3124     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3125       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3126         LLVM_DEBUG(
3127             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3128                    << " cannot be noalias as it is potentially captured\n");
3129         return false;
3130       }
3131     }
3132     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3133 
3134     // Check there is no other pointer argument which could alias with the
3135     // value passed at this call site.
3136     // TODO: AbstractCallSite
3137     const auto &CB = cast<CallBase>(getAnchorValue());
3138     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
3139          OtherArgNo++)
3140       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3141         return false;
3142 
3143     return true;
3144   }
3145 
3146   /// See AbstractAttribute::updateImpl(...).
3147   ChangeStatus updateImpl(Attributor &A) override {
3148     // If the argument is readnone we are done as there are no accesses via the
3149     // argument.
3150     auto &MemBehaviorAA =
3151         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3152     if (MemBehaviorAA.isAssumedReadNone()) {
3153       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3154       return ChangeStatus::UNCHANGED;
3155     }
3156 
3157     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3158     const auto &NoAliasAA =
3159         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3160 
3161     AAResults *AAR = nullptr;
3162     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3163                                                NoAliasAA)) {
3164       LLVM_DEBUG(
3165           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3166       return ChangeStatus::UNCHANGED;
3167     }
3168 
3169     return indicatePessimisticFixpoint();
3170   }
3171 
3172   /// See AbstractAttribute::trackStatistics()
3173   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3174 };
3175 
3176 /// NoAlias attribute for function return value.
3177 struct AANoAliasReturned final : AANoAliasImpl {
3178   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3179       : AANoAliasImpl(IRP, A) {}
3180 
3181   /// See AbstractAttribute::initialize(...).
3182   void initialize(Attributor &A) override {
3183     AANoAliasImpl::initialize(A);
3184     Function *F = getAssociatedFunction();
3185     if (!F || F->isDeclaration())
3186       indicatePessimisticFixpoint();
3187   }
3188 
3189   /// See AbstractAttribute::updateImpl(...).
3190   virtual ChangeStatus updateImpl(Attributor &A) override {
3191 
3192     auto CheckReturnValue = [&](Value &RV) -> bool {
3193       if (Constant *C = dyn_cast<Constant>(&RV))
3194         if (C->isNullValue() || isa<UndefValue>(C))
3195           return true;
3196 
3197       /// For now, we can only deduce noalias if we have call sites.
3198       /// FIXME: add more support.
3199       if (!isa<CallBase>(&RV))
3200         return false;
3201 
3202       const IRPosition &RVPos = IRPosition::value(RV);
3203       const auto &NoAliasAA =
3204           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3205       if (!NoAliasAA.isAssumedNoAlias())
3206         return false;
3207 
3208       const auto &NoCaptureAA =
3209           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3210       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3211     };
3212 
3213     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3214       return indicatePessimisticFixpoint();
3215 
3216     return ChangeStatus::UNCHANGED;
3217   }
3218 
3219   /// See AbstractAttribute::trackStatistics()
3220   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3221 };
3222 
3223 /// NoAlias attribute deduction for a call site return value.
3224 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3225   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3226       : AANoAliasImpl(IRP, A) {}
3227 
3228   /// See AbstractAttribute::initialize(...).
3229   void initialize(Attributor &A) override {
3230     AANoAliasImpl::initialize(A);
3231     Function *F = getAssociatedFunction();
3232     if (!F || F->isDeclaration())
3233       indicatePessimisticFixpoint();
3234   }
3235 
3236   /// See AbstractAttribute::updateImpl(...).
3237   ChangeStatus updateImpl(Attributor &A) override {
3238     // TODO: Once we have call site specific value information we can provide
3239     //       call site specific liveness information and then it makes
3240     //       sense to specialize attributes for call sites arguments instead of
3241     //       redirecting requests to the callee argument.
3242     Function *F = getAssociatedFunction();
3243     const IRPosition &FnPos = IRPosition::returned(*F);
3244     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3245     return clampStateAndIndicateChange(getState(), FnAA.getState());
3246   }
3247 
3248   /// See AbstractAttribute::trackStatistics()
3249   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3250 };
3251 
3252 /// -------------------AAIsDead Function Attribute-----------------------
3253 
3254 struct AAIsDeadValueImpl : public AAIsDead {
3255   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3256 
3257   /// See AAIsDead::isAssumedDead().
3258   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3259 
3260   /// See AAIsDead::isKnownDead().
3261   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3262 
3263   /// See AAIsDead::isAssumedDead(BasicBlock *).
3264   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3265 
3266   /// See AAIsDead::isKnownDead(BasicBlock *).
3267   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3268 
3269   /// See AAIsDead::isAssumedDead(Instruction *I).
3270   bool isAssumedDead(const Instruction *I) const override {
3271     return I == getCtxI() && isAssumedDead();
3272   }
3273 
3274   /// See AAIsDead::isKnownDead(Instruction *I).
3275   bool isKnownDead(const Instruction *I) const override {
3276     return isAssumedDead(I) && isKnownDead();
3277   }
3278 
3279   /// See AbstractAttribute::getAsStr().
3280   const std::string getAsStr() const override {
3281     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3282   }
3283 
3284   /// Check if all uses are assumed dead.
3285   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3286     // Callers might not check the type, void has no uses.
3287     if (V.getType()->isVoidTy())
3288       return true;
3289 
3290     // If we replace a value with a constant there are no uses left afterwards.
3291     if (!isa<Constant>(V)) {
3292       bool UsedAssumedInformation = false;
3293       Optional<Constant *> C =
3294           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3295       if (!C.hasValue() || *C)
3296         return true;
3297     }
3298 
3299     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3300     // Explicitly set the dependence class to required because we want a long
3301     // chain of N dependent instructions to be considered live as soon as one is
3302     // without going through N update cycles. This is not required for
3303     // correctness.
3304     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3305                              DepClassTy::REQUIRED);
3306   }
3307 
3308   /// Determine if \p I is assumed to be side-effect free.
3309   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3310     if (!I || wouldInstructionBeTriviallyDead(I))
3311       return true;
3312 
3313     auto *CB = dyn_cast<CallBase>(I);
3314     if (!CB || isa<IntrinsicInst>(CB))
3315       return false;
3316 
3317     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3318     const auto &NoUnwindAA =
3319         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3320     if (!NoUnwindAA.isAssumedNoUnwind())
3321       return false;
3322     if (!NoUnwindAA.isKnownNoUnwind())
3323       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3324 
3325     const auto &MemBehaviorAA =
3326         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3327     if (MemBehaviorAA.isAssumedReadOnly()) {
3328       if (!MemBehaviorAA.isKnownReadOnly())
3329         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3330       return true;
3331     }
3332     return false;
3333   }
3334 };
3335 
3336 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3337   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3338       : AAIsDeadValueImpl(IRP, A) {}
3339 
3340   /// See AbstractAttribute::initialize(...).
3341   void initialize(Attributor &A) override {
3342     if (isa<UndefValue>(getAssociatedValue())) {
3343       indicatePessimisticFixpoint();
3344       return;
3345     }
3346 
3347     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3348     if (!isAssumedSideEffectFree(A, I)) {
3349       if (!isa_and_nonnull<StoreInst>(I))
3350         indicatePessimisticFixpoint();
3351       else
3352         removeAssumedBits(HAS_NO_EFFECT);
3353     }
3354   }
3355 
3356   bool isDeadStore(Attributor &A, StoreInst &SI) {
3357     bool UsedAssumedInformation = false;
3358     SmallSetVector<Value *, 4> PotentialCopies;
3359     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3360                                              UsedAssumedInformation))
3361       return false;
3362     return llvm::all_of(PotentialCopies, [&](Value *V) {
3363       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3364                              UsedAssumedInformation);
3365     });
3366   }
3367 
3368   /// See AbstractAttribute::updateImpl(...).
3369   ChangeStatus updateImpl(Attributor &A) override {
3370     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3371     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3372       if (!isDeadStore(A, *SI))
3373         return indicatePessimisticFixpoint();
3374     } else {
3375       if (!isAssumedSideEffectFree(A, I))
3376         return indicatePessimisticFixpoint();
3377       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3378         return indicatePessimisticFixpoint();
3379     }
3380     return ChangeStatus::UNCHANGED;
3381   }
3382 
3383   /// See AbstractAttribute::manifest(...).
3384   ChangeStatus manifest(Attributor &A) override {
3385     Value &V = getAssociatedValue();
3386     if (auto *I = dyn_cast<Instruction>(&V)) {
3387       // If we get here we basically know the users are all dead. We check if
3388       // isAssumedSideEffectFree returns true here again because it might not be
3389       // the case and only the users are dead but the instruction (=call) is
3390       // still needed.
3391       if (isa<StoreInst>(I) ||
3392           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3393         A.deleteAfterManifest(*I);
3394         return ChangeStatus::CHANGED;
3395       }
3396     }
3397     if (V.use_empty())
3398       return ChangeStatus::UNCHANGED;
3399 
3400     bool UsedAssumedInformation = false;
3401     Optional<Constant *> C =
3402         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3403     if (C.hasValue() && C.getValue())
3404       return ChangeStatus::UNCHANGED;
3405 
3406     // Replace the value with undef as it is dead but keep droppable uses around
3407     // as they provide information we don't want to give up on just yet.
3408     UndefValue &UV = *UndefValue::get(V.getType());
3409     bool AnyChange =
3410         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3411     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3412   }
3413 
3414   /// See AbstractAttribute::trackStatistics()
3415   void trackStatistics() const override {
3416     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3417   }
3418 };
3419 
3420 struct AAIsDeadArgument : public AAIsDeadFloating {
3421   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3422       : AAIsDeadFloating(IRP, A) {}
3423 
3424   /// See AbstractAttribute::initialize(...).
3425   void initialize(Attributor &A) override {
3426     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3427       indicatePessimisticFixpoint();
3428   }
3429 
3430   /// See AbstractAttribute::manifest(...).
3431   ChangeStatus manifest(Attributor &A) override {
3432     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3433     Argument &Arg = *getAssociatedArgument();
3434     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3435       if (A.registerFunctionSignatureRewrite(
3436               Arg, /* ReplacementTypes */ {},
3437               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3438               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3439         Arg.dropDroppableUses();
3440         return ChangeStatus::CHANGED;
3441       }
3442     return Changed;
3443   }
3444 
3445   /// See AbstractAttribute::trackStatistics()
3446   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3447 };
3448 
3449 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3450   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3451       : AAIsDeadValueImpl(IRP, A) {}
3452 
3453   /// See AbstractAttribute::initialize(...).
3454   void initialize(Attributor &A) override {
3455     if (isa<UndefValue>(getAssociatedValue()))
3456       indicatePessimisticFixpoint();
3457   }
3458 
3459   /// See AbstractAttribute::updateImpl(...).
3460   ChangeStatus updateImpl(Attributor &A) override {
3461     // TODO: Once we have call site specific value information we can provide
3462     //       call site specific liveness information and then it makes
3463     //       sense to specialize attributes for call sites arguments instead of
3464     //       redirecting requests to the callee argument.
3465     Argument *Arg = getAssociatedArgument();
3466     if (!Arg)
3467       return indicatePessimisticFixpoint();
3468     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3469     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3470     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3471   }
3472 
3473   /// See AbstractAttribute::manifest(...).
3474   ChangeStatus manifest(Attributor &A) override {
3475     CallBase &CB = cast<CallBase>(getAnchorValue());
3476     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3477     assert(!isa<UndefValue>(U.get()) &&
3478            "Expected undef values to be filtered out!");
3479     UndefValue &UV = *UndefValue::get(U->getType());
3480     if (A.changeUseAfterManifest(U, UV))
3481       return ChangeStatus::CHANGED;
3482     return ChangeStatus::UNCHANGED;
3483   }
3484 
3485   /// See AbstractAttribute::trackStatistics()
3486   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3487 };
3488 
3489 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3490   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3491       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3492 
3493   /// See AAIsDead::isAssumedDead().
3494   bool isAssumedDead() const override {
3495     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3496   }
3497 
3498   /// See AbstractAttribute::initialize(...).
3499   void initialize(Attributor &A) override {
3500     if (isa<UndefValue>(getAssociatedValue())) {
3501       indicatePessimisticFixpoint();
3502       return;
3503     }
3504 
3505     // We track this separately as a secondary state.
3506     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3507   }
3508 
3509   /// See AbstractAttribute::updateImpl(...).
3510   ChangeStatus updateImpl(Attributor &A) override {
3511     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3512     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3513       IsAssumedSideEffectFree = false;
3514       Changed = ChangeStatus::CHANGED;
3515     }
3516     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3517       return indicatePessimisticFixpoint();
3518     return Changed;
3519   }
3520 
3521   /// See AbstractAttribute::trackStatistics()
3522   void trackStatistics() const override {
3523     if (IsAssumedSideEffectFree)
3524       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3525     else
3526       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3527   }
3528 
3529   /// See AbstractAttribute::getAsStr().
3530   const std::string getAsStr() const override {
3531     return isAssumedDead()
3532                ? "assumed-dead"
3533                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3534   }
3535 
3536 private:
3537   bool IsAssumedSideEffectFree;
3538 };
3539 
3540 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3541   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3542       : AAIsDeadValueImpl(IRP, A) {}
3543 
3544   /// See AbstractAttribute::updateImpl(...).
3545   ChangeStatus updateImpl(Attributor &A) override {
3546 
3547     bool UsedAssumedInformation = false;
3548     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3549                               {Instruction::Ret}, UsedAssumedInformation);
3550 
3551     auto PredForCallSite = [&](AbstractCallSite ACS) {
3552       if (ACS.isCallbackCall() || !ACS.getInstruction())
3553         return false;
3554       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3555     };
3556 
3557     bool AllCallSitesKnown;
3558     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3559                                 AllCallSitesKnown))
3560       return indicatePessimisticFixpoint();
3561 
3562     return ChangeStatus::UNCHANGED;
3563   }
3564 
3565   /// See AbstractAttribute::manifest(...).
3566   ChangeStatus manifest(Attributor &A) override {
3567     // TODO: Rewrite the signature to return void?
3568     bool AnyChange = false;
3569     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3570     auto RetInstPred = [&](Instruction &I) {
3571       ReturnInst &RI = cast<ReturnInst>(I);
3572       if (!isa<UndefValue>(RI.getReturnValue()))
3573         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3574       return true;
3575     };
3576     bool UsedAssumedInformation = false;
3577     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3578                               UsedAssumedInformation);
3579     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3580   }
3581 
3582   /// See AbstractAttribute::trackStatistics()
3583   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3584 };
3585 
3586 struct AAIsDeadFunction : public AAIsDead {
3587   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3588 
3589   /// See AbstractAttribute::initialize(...).
3590   void initialize(Attributor &A) override {
3591     const Function *F = getAnchorScope();
3592     if (F && !F->isDeclaration()) {
3593       // We only want to compute liveness once. If the function is not part of
3594       // the SCC, skip it.
3595       if (A.isRunOn(*const_cast<Function *>(F))) {
3596         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3597         assumeLive(A, F->getEntryBlock());
3598       } else {
3599         indicatePessimisticFixpoint();
3600       }
3601     }
3602   }
3603 
3604   /// See AbstractAttribute::getAsStr().
3605   const std::string getAsStr() const override {
3606     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3607            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3608            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3609            std::to_string(KnownDeadEnds.size()) + "]";
3610   }
3611 
3612   /// See AbstractAttribute::manifest(...).
3613   ChangeStatus manifest(Attributor &A) override {
3614     assert(getState().isValidState() &&
3615            "Attempted to manifest an invalid state!");
3616 
3617     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3618     Function &F = *getAnchorScope();
3619 
3620     if (AssumedLiveBlocks.empty()) {
3621       A.deleteAfterManifest(F);
3622       return ChangeStatus::CHANGED;
3623     }
3624 
3625     // Flag to determine if we can change an invoke to a call assuming the
3626     // callee is nounwind. This is not possible if the personality of the
3627     // function allows to catch asynchronous exceptions.
3628     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3629 
3630     KnownDeadEnds.set_union(ToBeExploredFrom);
3631     for (const Instruction *DeadEndI : KnownDeadEnds) {
3632       auto *CB = dyn_cast<CallBase>(DeadEndI);
3633       if (!CB)
3634         continue;
3635       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3636           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3637       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3638       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3639         continue;
3640 
3641       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3642         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3643       else
3644         A.changeToUnreachableAfterManifest(
3645             const_cast<Instruction *>(DeadEndI->getNextNode()));
3646       HasChanged = ChangeStatus::CHANGED;
3647     }
3648 
3649     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3650     for (BasicBlock &BB : F)
3651       if (!AssumedLiveBlocks.count(&BB)) {
3652         A.deleteAfterManifest(BB);
3653         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3654       }
3655 
3656     return HasChanged;
3657   }
3658 
3659   /// See AbstractAttribute::updateImpl(...).
3660   ChangeStatus updateImpl(Attributor &A) override;
3661 
3662   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3663     return !AssumedLiveEdges.count(std::make_pair(From, To));
3664   }
3665 
3666   /// See AbstractAttribute::trackStatistics()
3667   void trackStatistics() const override {}
3668 
3669   /// Returns true if the function is assumed dead.
3670   bool isAssumedDead() const override { return false; }
3671 
3672   /// See AAIsDead::isKnownDead().
3673   bool isKnownDead() const override { return false; }
3674 
3675   /// See AAIsDead::isAssumedDead(BasicBlock *).
3676   bool isAssumedDead(const BasicBlock *BB) const override {
3677     assert(BB->getParent() == getAnchorScope() &&
3678            "BB must be in the same anchor scope function.");
3679 
3680     if (!getAssumed())
3681       return false;
3682     return !AssumedLiveBlocks.count(BB);
3683   }
3684 
3685   /// See AAIsDead::isKnownDead(BasicBlock *).
3686   bool isKnownDead(const BasicBlock *BB) const override {
3687     return getKnown() && isAssumedDead(BB);
3688   }
3689 
3690   /// See AAIsDead::isAssumed(Instruction *I).
3691   bool isAssumedDead(const Instruction *I) const override {
3692     assert(I->getParent()->getParent() == getAnchorScope() &&
3693            "Instruction must be in the same anchor scope function.");
3694 
3695     if (!getAssumed())
3696       return false;
3697 
3698     // If it is not in AssumedLiveBlocks then it for sure dead.
3699     // Otherwise, it can still be after noreturn call in a live block.
3700     if (!AssumedLiveBlocks.count(I->getParent()))
3701       return true;
3702 
3703     // If it is not after a liveness barrier it is live.
3704     const Instruction *PrevI = I->getPrevNode();
3705     while (PrevI) {
3706       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3707         return true;
3708       PrevI = PrevI->getPrevNode();
3709     }
3710     return false;
3711   }
3712 
3713   /// See AAIsDead::isKnownDead(Instruction *I).
3714   bool isKnownDead(const Instruction *I) const override {
3715     return getKnown() && isAssumedDead(I);
3716   }
3717 
3718   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3719   /// that internal function called from \p BB should now be looked at.
3720   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3721     if (!AssumedLiveBlocks.insert(&BB).second)
3722       return false;
3723 
3724     // We assume that all of BB is (probably) live now and if there are calls to
3725     // internal functions we will assume that those are now live as well. This
3726     // is a performance optimization for blocks with calls to a lot of internal
3727     // functions. It can however cause dead functions to be treated as live.
3728     for (const Instruction &I : BB)
3729       if (const auto *CB = dyn_cast<CallBase>(&I))
3730         if (const Function *F = CB->getCalledFunction())
3731           if (F->hasLocalLinkage())
3732             A.markLiveInternalFunction(*F);
3733     return true;
3734   }
3735 
3736   /// Collection of instructions that need to be explored again, e.g., we
3737   /// did assume they do not transfer control to (one of their) successors.
3738   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3739 
3740   /// Collection of instructions that are known to not transfer control.
3741   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3742 
3743   /// Collection of all assumed live edges
3744   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3745 
3746   /// Collection of all assumed live BasicBlocks.
3747   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3748 };
3749 
3750 static bool
3751 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3752                         AbstractAttribute &AA,
3753                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3754   const IRPosition &IPos = IRPosition::callsite_function(CB);
3755 
3756   const auto &NoReturnAA =
3757       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3758   if (NoReturnAA.isAssumedNoReturn())
3759     return !NoReturnAA.isKnownNoReturn();
3760   if (CB.isTerminator())
3761     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3762   else
3763     AliveSuccessors.push_back(CB.getNextNode());
3764   return false;
3765 }
3766 
3767 static bool
3768 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3769                         AbstractAttribute &AA,
3770                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3771   bool UsedAssumedInformation =
3772       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3773 
3774   // First, determine if we can change an invoke to a call assuming the
3775   // callee is nounwind. This is not possible if the personality of the
3776   // function allows to catch asynchronous exceptions.
3777   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3778     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3779   } else {
3780     const IRPosition &IPos = IRPosition::callsite_function(II);
3781     const auto &AANoUnw =
3782         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3783     if (AANoUnw.isAssumedNoUnwind()) {
3784       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3785     } else {
3786       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3787     }
3788   }
3789   return UsedAssumedInformation;
3790 }
3791 
3792 static bool
3793 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3794                         AbstractAttribute &AA,
3795                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3796   bool UsedAssumedInformation = false;
3797   if (BI.getNumSuccessors() == 1) {
3798     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3799   } else {
3800     Optional<Constant *> C =
3801         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3802     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3803       // No value yet, assume both edges are dead.
3804     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3805       const BasicBlock *SuccBB =
3806           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3807       AliveSuccessors.push_back(&SuccBB->front());
3808     } else {
3809       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3810       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3811       UsedAssumedInformation = false;
3812     }
3813   }
3814   return UsedAssumedInformation;
3815 }
3816 
3817 static bool
3818 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3819                         AbstractAttribute &AA,
3820                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3821   bool UsedAssumedInformation = false;
3822   Optional<Constant *> C =
3823       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3824   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3825     // No value yet, assume all edges are dead.
3826   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3827     for (auto &CaseIt : SI.cases()) {
3828       if (CaseIt.getCaseValue() == C.getValue()) {
3829         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3830         return UsedAssumedInformation;
3831       }
3832     }
3833     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3834     return UsedAssumedInformation;
3835   } else {
3836     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3837       AliveSuccessors.push_back(&SuccBB->front());
3838   }
3839   return UsedAssumedInformation;
3840 }
3841 
3842 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3843   ChangeStatus Change = ChangeStatus::UNCHANGED;
3844 
3845   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3846                     << getAnchorScope()->size() << "] BBs and "
3847                     << ToBeExploredFrom.size() << " exploration points and "
3848                     << KnownDeadEnds.size() << " known dead ends\n");
3849 
3850   // Copy and clear the list of instructions we need to explore from. It is
3851   // refilled with instructions the next update has to look at.
3852   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3853                                                ToBeExploredFrom.end());
3854   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3855 
3856   SmallVector<const Instruction *, 8> AliveSuccessors;
3857   while (!Worklist.empty()) {
3858     const Instruction *I = Worklist.pop_back_val();
3859     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3860 
3861     // Fast forward for uninteresting instructions. We could look for UB here
3862     // though.
3863     while (!I->isTerminator() && !isa<CallBase>(I))
3864       I = I->getNextNode();
3865 
3866     AliveSuccessors.clear();
3867 
3868     bool UsedAssumedInformation = false;
3869     switch (I->getOpcode()) {
3870     // TODO: look for (assumed) UB to backwards propagate "deadness".
3871     default:
3872       assert(I->isTerminator() &&
3873              "Expected non-terminators to be handled already!");
3874       for (const BasicBlock *SuccBB : successors(I->getParent()))
3875         AliveSuccessors.push_back(&SuccBB->front());
3876       break;
3877     case Instruction::Call:
3878       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3879                                                        *this, AliveSuccessors);
3880       break;
3881     case Instruction::Invoke:
3882       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3883                                                        *this, AliveSuccessors);
3884       break;
3885     case Instruction::Br:
3886       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3887                                                        *this, AliveSuccessors);
3888       break;
3889     case Instruction::Switch:
3890       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3891                                                        *this, AliveSuccessors);
3892       break;
3893     }
3894 
3895     if (UsedAssumedInformation) {
3896       NewToBeExploredFrom.insert(I);
3897     } else if (AliveSuccessors.empty() ||
3898                (I->isTerminator() &&
3899                 AliveSuccessors.size() < I->getNumSuccessors())) {
3900       if (KnownDeadEnds.insert(I))
3901         Change = ChangeStatus::CHANGED;
3902     }
3903 
3904     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3905                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3906                       << UsedAssumedInformation << "\n");
3907 
3908     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3909       if (!I->isTerminator()) {
3910         assert(AliveSuccessors.size() == 1 &&
3911                "Non-terminator expected to have a single successor!");
3912         Worklist.push_back(AliveSuccessor);
3913       } else {
3914         // record the assumed live edge
3915         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3916         if (AssumedLiveEdges.insert(Edge).second)
3917           Change = ChangeStatus::CHANGED;
3918         if (assumeLive(A, *AliveSuccessor->getParent()))
3919           Worklist.push_back(AliveSuccessor);
3920       }
3921     }
3922   }
3923 
3924   // Check if the content of ToBeExploredFrom changed, ignore the order.
3925   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3926       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3927         return !ToBeExploredFrom.count(I);
3928       })) {
3929     Change = ChangeStatus::CHANGED;
3930     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3931   }
3932 
3933   // If we know everything is live there is no need to query for liveness.
3934   // Instead, indicating a pessimistic fixpoint will cause the state to be
3935   // "invalid" and all queries to be answered conservatively without lookups.
3936   // To be in this state we have to (1) finished the exploration and (3) not
3937   // discovered any non-trivial dead end and (2) not ruled unreachable code
3938   // dead.
3939   if (ToBeExploredFrom.empty() &&
3940       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3941       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3942         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3943       }))
3944     return indicatePessimisticFixpoint();
3945   return Change;
3946 }
3947 
3948 /// Liveness information for a call sites.
3949 struct AAIsDeadCallSite final : AAIsDeadFunction {
3950   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3951       : AAIsDeadFunction(IRP, A) {}
3952 
3953   /// See AbstractAttribute::initialize(...).
3954   void initialize(Attributor &A) override {
3955     // TODO: Once we have call site specific value information we can provide
3956     //       call site specific liveness information and then it makes
3957     //       sense to specialize attributes for call sites instead of
3958     //       redirecting requests to the callee.
3959     llvm_unreachable("Abstract attributes for liveness are not "
3960                      "supported for call sites yet!");
3961   }
3962 
3963   /// See AbstractAttribute::updateImpl(...).
3964   ChangeStatus updateImpl(Attributor &A) override {
3965     return indicatePessimisticFixpoint();
3966   }
3967 
3968   /// See AbstractAttribute::trackStatistics()
3969   void trackStatistics() const override {}
3970 };
3971 
3972 /// -------------------- Dereferenceable Argument Attribute --------------------
3973 
3974 struct AADereferenceableImpl : AADereferenceable {
3975   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3976       : AADereferenceable(IRP, A) {}
3977   using StateType = DerefState;
3978 
3979   /// See AbstractAttribute::initialize(...).
3980   void initialize(Attributor &A) override {
3981     SmallVector<Attribute, 4> Attrs;
3982     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3983              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3984     for (const Attribute &Attr : Attrs)
3985       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3986 
3987     const IRPosition &IRP = this->getIRPosition();
3988     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
3989 
3990     bool CanBeNull, CanBeFreed;
3991     takeKnownDerefBytesMaximum(
3992         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3993             A.getDataLayout(), CanBeNull, CanBeFreed));
3994 
3995     bool IsFnInterface = IRP.isFnInterfaceKind();
3996     Function *FnScope = IRP.getAnchorScope();
3997     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3998       indicatePessimisticFixpoint();
3999       return;
4000     }
4001 
4002     if (Instruction *CtxI = getCtxI())
4003       followUsesInMBEC(*this, A, getState(), *CtxI);
4004   }
4005 
4006   /// See AbstractAttribute::getState()
4007   /// {
4008   StateType &getState() override { return *this; }
4009   const StateType &getState() const override { return *this; }
4010   /// }
4011 
4012   /// Helper function for collecting accessed bytes in must-be-executed-context
4013   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4014                               DerefState &State) {
4015     const Value *UseV = U->get();
4016     if (!UseV->getType()->isPointerTy())
4017       return;
4018 
4019     Type *PtrTy = UseV->getType();
4020     const DataLayout &DL = A.getDataLayout();
4021     int64_t Offset;
4022     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4023             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4024       if (Base == &getAssociatedValue() &&
4025           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4026         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4027         State.addAccessedBytes(Offset, Size);
4028       }
4029     }
4030   }
4031 
4032   /// See followUsesInMBEC
4033   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4034                        AADereferenceable::StateType &State) {
4035     bool IsNonNull = false;
4036     bool TrackUse = false;
4037     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4038         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4039     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4040                       << " for instruction " << *I << "\n");
4041 
4042     addAccessedBytesForUse(A, U, I, State);
4043     State.takeKnownDerefBytesMaximum(DerefBytes);
4044     return TrackUse;
4045   }
4046 
4047   /// See AbstractAttribute::manifest(...).
4048   ChangeStatus manifest(Attributor &A) override {
4049     ChangeStatus Change = AADereferenceable::manifest(A);
4050     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4051       removeAttrs({Attribute::DereferenceableOrNull});
4052       return ChangeStatus::CHANGED;
4053     }
4054     return Change;
4055   }
4056 
4057   void getDeducedAttributes(LLVMContext &Ctx,
4058                             SmallVectorImpl<Attribute> &Attrs) const override {
4059     // TODO: Add *_globally support
4060     if (isAssumedNonNull())
4061       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4062           Ctx, getAssumedDereferenceableBytes()));
4063     else
4064       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4065           Ctx, getAssumedDereferenceableBytes()));
4066   }
4067 
4068   /// See AbstractAttribute::getAsStr().
4069   const std::string getAsStr() const override {
4070     if (!getAssumedDereferenceableBytes())
4071       return "unknown-dereferenceable";
4072     return std::string("dereferenceable") +
4073            (isAssumedNonNull() ? "" : "_or_null") +
4074            (isAssumedGlobal() ? "_globally" : "") + "<" +
4075            std::to_string(getKnownDereferenceableBytes()) + "-" +
4076            std::to_string(getAssumedDereferenceableBytes()) + ">";
4077   }
4078 };
4079 
4080 /// Dereferenceable attribute for a floating value.
4081 struct AADereferenceableFloating : AADereferenceableImpl {
4082   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4083       : AADereferenceableImpl(IRP, A) {}
4084 
4085   /// See AbstractAttribute::updateImpl(...).
4086   ChangeStatus updateImpl(Attributor &A) override {
4087     const DataLayout &DL = A.getDataLayout();
4088 
4089     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4090                             bool Stripped) -> bool {
4091       unsigned IdxWidth =
4092           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4093       APInt Offset(IdxWidth, 0);
4094       const Value *Base =
4095           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4096 
4097       const auto &AA = A.getAAFor<AADereferenceable>(
4098           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4099       int64_t DerefBytes = 0;
4100       if (!Stripped && this == &AA) {
4101         // Use IR information if we did not strip anything.
4102         // TODO: track globally.
4103         bool CanBeNull, CanBeFreed;
4104         DerefBytes =
4105             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4106         T.GlobalState.indicatePessimisticFixpoint();
4107       } else {
4108         const DerefState &DS = AA.getState();
4109         DerefBytes = DS.DerefBytesState.getAssumed();
4110         T.GlobalState &= DS.GlobalState;
4111       }
4112 
4113       // For now we do not try to "increase" dereferenceability due to negative
4114       // indices as we first have to come up with code to deal with loops and
4115       // for overflows of the dereferenceable bytes.
4116       int64_t OffsetSExt = Offset.getSExtValue();
4117       if (OffsetSExt < 0)
4118         OffsetSExt = 0;
4119 
4120       T.takeAssumedDerefBytesMinimum(
4121           std::max(int64_t(0), DerefBytes - OffsetSExt));
4122 
4123       if (this == &AA) {
4124         if (!Stripped) {
4125           // If nothing was stripped IR information is all we got.
4126           T.takeKnownDerefBytesMaximum(
4127               std::max(int64_t(0), DerefBytes - OffsetSExt));
4128           T.indicatePessimisticFixpoint();
4129         } else if (OffsetSExt > 0) {
4130           // If something was stripped but there is circular reasoning we look
4131           // for the offset. If it is positive we basically decrease the
4132           // dereferenceable bytes in a circluar loop now, which will simply
4133           // drive them down to the known value in a very slow way which we
4134           // can accelerate.
4135           T.indicatePessimisticFixpoint();
4136         }
4137       }
4138 
4139       return T.isValidState();
4140     };
4141 
4142     DerefState T;
4143     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4144                                            VisitValueCB, getCtxI()))
4145       return indicatePessimisticFixpoint();
4146 
4147     return clampStateAndIndicateChange(getState(), T);
4148   }
4149 
4150   /// See AbstractAttribute::trackStatistics()
4151   void trackStatistics() const override {
4152     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4153   }
4154 };
4155 
4156 /// Dereferenceable attribute for a return value.
4157 struct AADereferenceableReturned final
4158     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4159   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4160       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4161             IRP, A) {}
4162 
4163   /// See AbstractAttribute::trackStatistics()
4164   void trackStatistics() const override {
4165     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4166   }
4167 };
4168 
4169 /// Dereferenceable attribute for an argument
4170 struct AADereferenceableArgument final
4171     : AAArgumentFromCallSiteArguments<AADereferenceable,
4172                                       AADereferenceableImpl> {
4173   using Base =
4174       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4175   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4176       : Base(IRP, A) {}
4177 
4178   /// See AbstractAttribute::trackStatistics()
4179   void trackStatistics() const override {
4180     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4181   }
4182 };
4183 
4184 /// Dereferenceable attribute for a call site argument.
4185 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4186   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4187       : AADereferenceableFloating(IRP, A) {}
4188 
4189   /// See AbstractAttribute::trackStatistics()
4190   void trackStatistics() const override {
4191     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4192   }
4193 };
4194 
4195 /// Dereferenceable attribute deduction for a call site return value.
4196 struct AADereferenceableCallSiteReturned final
4197     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4198   using Base =
4199       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4200   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4201       : Base(IRP, A) {}
4202 
4203   /// See AbstractAttribute::trackStatistics()
4204   void trackStatistics() const override {
4205     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4206   }
4207 };
4208 
4209 // ------------------------ Align Argument Attribute ------------------------
4210 
4211 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4212                                     Value &AssociatedValue, const Use *U,
4213                                     const Instruction *I, bool &TrackUse) {
4214   // We need to follow common pointer manipulation uses to the accesses they
4215   // feed into.
4216   if (isa<CastInst>(I)) {
4217     // Follow all but ptr2int casts.
4218     TrackUse = !isa<PtrToIntInst>(I);
4219     return 0;
4220   }
4221   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4222     if (GEP->hasAllConstantIndices())
4223       TrackUse = true;
4224     return 0;
4225   }
4226 
4227   MaybeAlign MA;
4228   if (const auto *CB = dyn_cast<CallBase>(I)) {
4229     if (CB->isBundleOperand(U) || CB->isCallee(U))
4230       return 0;
4231 
4232     unsigned ArgNo = CB->getArgOperandNo(U);
4233     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4234     // As long as we only use known information there is no need to track
4235     // dependences here.
4236     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4237     MA = MaybeAlign(AlignAA.getKnownAlign());
4238   }
4239 
4240   const DataLayout &DL = A.getDataLayout();
4241   const Value *UseV = U->get();
4242   if (auto *SI = dyn_cast<StoreInst>(I)) {
4243     if (SI->getPointerOperand() == UseV)
4244       MA = SI->getAlign();
4245   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4246     if (LI->getPointerOperand() == UseV)
4247       MA = LI->getAlign();
4248   }
4249 
4250   if (!MA || *MA <= QueryingAA.getKnownAlign())
4251     return 0;
4252 
4253   unsigned Alignment = MA->value();
4254   int64_t Offset;
4255 
4256   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4257     if (Base == &AssociatedValue) {
4258       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4259       // So we can say that the maximum power of two which is a divisor of
4260       // gcd(Offset, Alignment) is an alignment.
4261 
4262       uint32_t gcd =
4263           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4264       Alignment = llvm::PowerOf2Floor(gcd);
4265     }
4266   }
4267 
4268   return Alignment;
4269 }
4270 
4271 struct AAAlignImpl : AAAlign {
4272   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4273 
4274   /// See AbstractAttribute::initialize(...).
4275   void initialize(Attributor &A) override {
4276     SmallVector<Attribute, 4> Attrs;
4277     getAttrs({Attribute::Alignment}, Attrs);
4278     for (const Attribute &Attr : Attrs)
4279       takeKnownMaximum(Attr.getValueAsInt());
4280 
4281     Value &V = getAssociatedValue();
4282     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4283     //       use of the function pointer. This was caused by D73131. We want to
4284     //       avoid this for function pointers especially because we iterate
4285     //       their uses and int2ptr is not handled. It is not a correctness
4286     //       problem though!
4287     if (!V.getType()->getPointerElementType()->isFunctionTy())
4288       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4289 
4290     if (getIRPosition().isFnInterfaceKind() &&
4291         (!getAnchorScope() ||
4292          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4293       indicatePessimisticFixpoint();
4294       return;
4295     }
4296 
4297     if (Instruction *CtxI = getCtxI())
4298       followUsesInMBEC(*this, A, getState(), *CtxI);
4299   }
4300 
4301   /// See AbstractAttribute::manifest(...).
4302   ChangeStatus manifest(Attributor &A) override {
4303     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4304 
4305     // Check for users that allow alignment annotations.
4306     Value &AssociatedValue = getAssociatedValue();
4307     for (const Use &U : AssociatedValue.uses()) {
4308       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4309         if (SI->getPointerOperand() == &AssociatedValue)
4310           if (SI->getAlignment() < getAssumedAlign()) {
4311             STATS_DECLTRACK(AAAlign, Store,
4312                             "Number of times alignment added to a store");
4313             SI->setAlignment(Align(getAssumedAlign()));
4314             LoadStoreChanged = ChangeStatus::CHANGED;
4315           }
4316       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4317         if (LI->getPointerOperand() == &AssociatedValue)
4318           if (LI->getAlignment() < getAssumedAlign()) {
4319             LI->setAlignment(Align(getAssumedAlign()));
4320             STATS_DECLTRACK(AAAlign, Load,
4321                             "Number of times alignment added to a load");
4322             LoadStoreChanged = ChangeStatus::CHANGED;
4323           }
4324       }
4325     }
4326 
4327     ChangeStatus Changed = AAAlign::manifest(A);
4328 
4329     Align InheritAlign =
4330         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4331     if (InheritAlign >= getAssumedAlign())
4332       return LoadStoreChanged;
4333     return Changed | LoadStoreChanged;
4334   }
4335 
4336   // TODO: Provide a helper to determine the implied ABI alignment and check in
4337   //       the existing manifest method and a new one for AAAlignImpl that value
4338   //       to avoid making the alignment explicit if it did not improve.
4339 
4340   /// See AbstractAttribute::getDeducedAttributes
4341   virtual void
4342   getDeducedAttributes(LLVMContext &Ctx,
4343                        SmallVectorImpl<Attribute> &Attrs) const override {
4344     if (getAssumedAlign() > 1)
4345       Attrs.emplace_back(
4346           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4347   }
4348 
4349   /// See followUsesInMBEC
4350   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4351                        AAAlign::StateType &State) {
4352     bool TrackUse = false;
4353 
4354     unsigned int KnownAlign =
4355         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4356     State.takeKnownMaximum(KnownAlign);
4357 
4358     return TrackUse;
4359   }
4360 
4361   /// See AbstractAttribute::getAsStr().
4362   const std::string getAsStr() const override {
4363     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4364                                 "-" + std::to_string(getAssumedAlign()) + ">")
4365                              : "unknown-align";
4366   }
4367 };
4368 
4369 /// Align attribute for a floating value.
4370 struct AAAlignFloating : AAAlignImpl {
4371   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4372 
4373   /// See AbstractAttribute::updateImpl(...).
4374   ChangeStatus updateImpl(Attributor &A) override {
4375     const DataLayout &DL = A.getDataLayout();
4376 
4377     auto VisitValueCB = [&](Value &V, const Instruction *,
4378                             AAAlign::StateType &T, bool Stripped) -> bool {
4379       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4380                                            DepClassTy::REQUIRED);
4381       if (!Stripped && this == &AA) {
4382         int64_t Offset;
4383         unsigned Alignment = 1;
4384         if (const Value *Base =
4385                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4386           Align PA = Base->getPointerAlignment(DL);
4387           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4388           // So we can say that the maximum power of two which is a divisor of
4389           // gcd(Offset, Alignment) is an alignment.
4390 
4391           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4392                                                uint32_t(PA.value()));
4393           Alignment = llvm::PowerOf2Floor(gcd);
4394         } else {
4395           Alignment = V.getPointerAlignment(DL).value();
4396         }
4397         // Use only IR information if we did not strip anything.
4398         T.takeKnownMaximum(Alignment);
4399         T.indicatePessimisticFixpoint();
4400       } else {
4401         // Use abstract attribute information.
4402         const AAAlign::StateType &DS = AA.getState();
4403         T ^= DS;
4404       }
4405       return T.isValidState();
4406     };
4407 
4408     StateType T;
4409     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4410                                           VisitValueCB, getCtxI()))
4411       return indicatePessimisticFixpoint();
4412 
4413     // TODO: If we know we visited all incoming values, thus no are assumed
4414     // dead, we can take the known information from the state T.
4415     return clampStateAndIndicateChange(getState(), T);
4416   }
4417 
4418   /// See AbstractAttribute::trackStatistics()
4419   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4420 };
4421 
4422 /// Align attribute for function return value.
4423 struct AAAlignReturned final
4424     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4425   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4426   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4427 
4428   /// See AbstractAttribute::initialize(...).
4429   void initialize(Attributor &A) override {
4430     Base::initialize(A);
4431     Function *F = getAssociatedFunction();
4432     if (!F || F->isDeclaration())
4433       indicatePessimisticFixpoint();
4434   }
4435 
4436   /// See AbstractAttribute::trackStatistics()
4437   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4438 };
4439 
4440 /// Align attribute for function argument.
4441 struct AAAlignArgument final
4442     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4443   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4444   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4445 
4446   /// See AbstractAttribute::manifest(...).
4447   ChangeStatus manifest(Attributor &A) override {
4448     // If the associated argument is involved in a must-tail call we give up
4449     // because we would need to keep the argument alignments of caller and
4450     // callee in-sync. Just does not seem worth the trouble right now.
4451     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4452       return ChangeStatus::UNCHANGED;
4453     return Base::manifest(A);
4454   }
4455 
4456   /// See AbstractAttribute::trackStatistics()
4457   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4458 };
4459 
4460 struct AAAlignCallSiteArgument final : AAAlignFloating {
4461   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4462       : AAAlignFloating(IRP, A) {}
4463 
4464   /// See AbstractAttribute::manifest(...).
4465   ChangeStatus manifest(Attributor &A) override {
4466     // If the associated argument is involved in a must-tail call we give up
4467     // because we would need to keep the argument alignments of caller and
4468     // callee in-sync. Just does not seem worth the trouble right now.
4469     if (Argument *Arg = getAssociatedArgument())
4470       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4471         return ChangeStatus::UNCHANGED;
4472     ChangeStatus Changed = AAAlignImpl::manifest(A);
4473     Align InheritAlign =
4474         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4475     if (InheritAlign >= getAssumedAlign())
4476       Changed = ChangeStatus::UNCHANGED;
4477     return Changed;
4478   }
4479 
4480   /// See AbstractAttribute::updateImpl(Attributor &A).
4481   ChangeStatus updateImpl(Attributor &A) override {
4482     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4483     if (Argument *Arg = getAssociatedArgument()) {
4484       // We only take known information from the argument
4485       // so we do not need to track a dependence.
4486       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4487           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4488       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4489     }
4490     return Changed;
4491   }
4492 
4493   /// See AbstractAttribute::trackStatistics()
4494   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4495 };
4496 
4497 /// Align attribute deduction for a call site return value.
4498 struct AAAlignCallSiteReturned final
4499     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4500   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4501   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4502       : Base(IRP, A) {}
4503 
4504   /// See AbstractAttribute::initialize(...).
4505   void initialize(Attributor &A) override {
4506     Base::initialize(A);
4507     Function *F = getAssociatedFunction();
4508     if (!F || F->isDeclaration())
4509       indicatePessimisticFixpoint();
4510   }
4511 
4512   /// See AbstractAttribute::trackStatistics()
4513   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4514 };
4515 
4516 /// ------------------ Function No-Return Attribute ----------------------------
4517 struct AANoReturnImpl : public AANoReturn {
4518   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4519 
4520   /// See AbstractAttribute::initialize(...).
4521   void initialize(Attributor &A) override {
4522     AANoReturn::initialize(A);
4523     Function *F = getAssociatedFunction();
4524     if (!F || F->isDeclaration())
4525       indicatePessimisticFixpoint();
4526   }
4527 
4528   /// See AbstractAttribute::getAsStr().
4529   const std::string getAsStr() const override {
4530     return getAssumed() ? "noreturn" : "may-return";
4531   }
4532 
4533   /// See AbstractAttribute::updateImpl(Attributor &A).
4534   virtual ChangeStatus updateImpl(Attributor &A) override {
4535     auto CheckForNoReturn = [](Instruction &) { return false; };
4536     bool UsedAssumedInformation = false;
4537     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4538                                    {(unsigned)Instruction::Ret},
4539                                    UsedAssumedInformation))
4540       return indicatePessimisticFixpoint();
4541     return ChangeStatus::UNCHANGED;
4542   }
4543 };
4544 
4545 struct AANoReturnFunction final : AANoReturnImpl {
4546   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4547       : AANoReturnImpl(IRP, A) {}
4548 
4549   /// See AbstractAttribute::trackStatistics()
4550   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4551 };
4552 
4553 /// NoReturn attribute deduction for a call sites.
4554 struct AANoReturnCallSite final : AANoReturnImpl {
4555   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4556       : AANoReturnImpl(IRP, A) {}
4557 
4558   /// See AbstractAttribute::initialize(...).
4559   void initialize(Attributor &A) override {
4560     AANoReturnImpl::initialize(A);
4561     if (Function *F = getAssociatedFunction()) {
4562       const IRPosition &FnPos = IRPosition::function(*F);
4563       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4564       if (!FnAA.isAssumedNoReturn())
4565         indicatePessimisticFixpoint();
4566     }
4567   }
4568 
4569   /// See AbstractAttribute::updateImpl(...).
4570   ChangeStatus updateImpl(Attributor &A) override {
4571     // TODO: Once we have call site specific value information we can provide
4572     //       call site specific liveness information and then it makes
4573     //       sense to specialize attributes for call sites arguments instead of
4574     //       redirecting requests to the callee argument.
4575     Function *F = getAssociatedFunction();
4576     const IRPosition &FnPos = IRPosition::function(*F);
4577     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4578     return clampStateAndIndicateChange(getState(), FnAA.getState());
4579   }
4580 
4581   /// See AbstractAttribute::trackStatistics()
4582   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4583 };
4584 
4585 /// ----------------------- Variable Capturing ---------------------------------
4586 
4587 /// A class to hold the state of for no-capture attributes.
4588 struct AANoCaptureImpl : public AANoCapture {
4589   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4590 
4591   /// See AbstractAttribute::initialize(...).
4592   void initialize(Attributor &A) override {
4593     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4594       indicateOptimisticFixpoint();
4595       return;
4596     }
4597     Function *AnchorScope = getAnchorScope();
4598     if (isFnInterfaceKind() &&
4599         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4600       indicatePessimisticFixpoint();
4601       return;
4602     }
4603 
4604     // You cannot "capture" null in the default address space.
4605     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4606         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4607       indicateOptimisticFixpoint();
4608       return;
4609     }
4610 
4611     const Function *F =
4612         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4613 
4614     // Check what state the associated function can actually capture.
4615     if (F)
4616       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4617     else
4618       indicatePessimisticFixpoint();
4619   }
4620 
4621   /// See AbstractAttribute::updateImpl(...).
4622   ChangeStatus updateImpl(Attributor &A) override;
4623 
4624   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4625   virtual void
4626   getDeducedAttributes(LLVMContext &Ctx,
4627                        SmallVectorImpl<Attribute> &Attrs) const override {
4628     if (!isAssumedNoCaptureMaybeReturned())
4629       return;
4630 
4631     if (isArgumentPosition()) {
4632       if (isAssumedNoCapture())
4633         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4634       else if (ManifestInternal)
4635         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4636     }
4637   }
4638 
4639   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4640   /// depending on the ability of the function associated with \p IRP to capture
4641   /// state in memory and through "returning/throwing", respectively.
4642   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4643                                                    const Function &F,
4644                                                    BitIntegerState &State) {
4645     // TODO: Once we have memory behavior attributes we should use them here.
4646 
4647     // If we know we cannot communicate or write to memory, we do not care about
4648     // ptr2int anymore.
4649     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4650         F.getReturnType()->isVoidTy()) {
4651       State.addKnownBits(NO_CAPTURE);
4652       return;
4653     }
4654 
4655     // A function cannot capture state in memory if it only reads memory, it can
4656     // however return/throw state and the state might be influenced by the
4657     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4658     if (F.onlyReadsMemory())
4659       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4660 
4661     // A function cannot communicate state back if it does not through
4662     // exceptions and doesn not return values.
4663     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4664       State.addKnownBits(NOT_CAPTURED_IN_RET);
4665 
4666     // Check existing "returned" attributes.
4667     int ArgNo = IRP.getCalleeArgNo();
4668     if (F.doesNotThrow() && ArgNo >= 0) {
4669       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4670         if (F.hasParamAttribute(u, Attribute::Returned)) {
4671           if (u == unsigned(ArgNo))
4672             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4673           else if (F.onlyReadsMemory())
4674             State.addKnownBits(NO_CAPTURE);
4675           else
4676             State.addKnownBits(NOT_CAPTURED_IN_RET);
4677           break;
4678         }
4679     }
4680   }
4681 
4682   /// See AbstractState::getAsStr().
4683   const std::string getAsStr() const override {
4684     if (isKnownNoCapture())
4685       return "known not-captured";
4686     if (isAssumedNoCapture())
4687       return "assumed not-captured";
4688     if (isKnownNoCaptureMaybeReturned())
4689       return "known not-captured-maybe-returned";
4690     if (isAssumedNoCaptureMaybeReturned())
4691       return "assumed not-captured-maybe-returned";
4692     return "assumed-captured";
4693   }
4694 };
4695 
4696 /// Attributor-aware capture tracker.
4697 struct AACaptureUseTracker final : public CaptureTracker {
4698 
4699   /// Create a capture tracker that can lookup in-flight abstract attributes
4700   /// through the Attributor \p A.
4701   ///
4702   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4703   /// search is stopped. If a use leads to a return instruction,
4704   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4705   /// If a use leads to a ptr2int which may capture the value,
4706   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4707   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4708   /// set. All values in \p PotentialCopies are later tracked as well. For every
4709   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4710   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4711   /// conservatively set to true.
4712   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4713                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4714                       SmallSetVector<Value *, 4> &PotentialCopies,
4715                       unsigned &RemainingUsesToExplore)
4716       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4717         PotentialCopies(PotentialCopies),
4718         RemainingUsesToExplore(RemainingUsesToExplore) {}
4719 
4720   /// Determine if \p V maybe captured. *Also updates the state!*
4721   bool valueMayBeCaptured(const Value *V) {
4722     if (V->getType()->isPointerTy()) {
4723       PointerMayBeCaptured(V, this);
4724     } else {
4725       State.indicatePessimisticFixpoint();
4726     }
4727     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4728   }
4729 
4730   /// See CaptureTracker::tooManyUses().
4731   void tooManyUses() override {
4732     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4733   }
4734 
4735   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4736     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4737       return true;
4738     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4739         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4740     return DerefAA.getAssumedDereferenceableBytes();
4741   }
4742 
4743   /// See CaptureTracker::captured(...).
4744   bool captured(const Use *U) override {
4745     Instruction *UInst = cast<Instruction>(U->getUser());
4746     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4747                       << "\n");
4748 
4749     // Because we may reuse the tracker multiple times we keep track of the
4750     // number of explored uses ourselves as well.
4751     if (RemainingUsesToExplore-- == 0) {
4752       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4753       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4754                           /* Return */ true);
4755     }
4756 
4757     // Deal with ptr2int by following uses.
4758     if (isa<PtrToIntInst>(UInst)) {
4759       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4760       return valueMayBeCaptured(UInst);
4761     }
4762 
4763     // For stores we check if we can follow the value through memory or not.
4764     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4765       if (SI->isVolatile())
4766         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4767                             /* Return */ false);
4768       bool UsedAssumedInformation = false;
4769       if (!AA::getPotentialCopiesOfStoredValue(
4770               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4771         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4772                             /* Return */ false);
4773       // Not captured directly, potential copies will be checked.
4774       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4775                           /* Return */ false);
4776     }
4777 
4778     // Explicitly catch return instructions.
4779     if (isa<ReturnInst>(UInst)) {
4780       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4781         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4782                             /* Return */ true);
4783       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4784                           /* Return */ true);
4785     }
4786 
4787     // For now we only use special logic for call sites. However, the tracker
4788     // itself knows about a lot of other non-capturing cases already.
4789     auto *CB = dyn_cast<CallBase>(UInst);
4790     if (!CB || !CB->isArgOperand(U))
4791       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4792                           /* Return */ true);
4793 
4794     unsigned ArgNo = CB->getArgOperandNo(U);
4795     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4796     // If we have a abstract no-capture attribute for the argument we can use
4797     // it to justify a non-capture attribute here. This allows recursion!
4798     auto &ArgNoCaptureAA =
4799         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4800     if (ArgNoCaptureAA.isAssumedNoCapture())
4801       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4802                           /* Return */ false);
4803     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4804       addPotentialCopy(*CB);
4805       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4806                           /* Return */ false);
4807     }
4808 
4809     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4810     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4811                         /* Return */ true);
4812   }
4813 
4814   /// Register \p CS as potential copy of the value we are checking.
4815   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4816 
4817   /// See CaptureTracker::shouldExplore(...).
4818   bool shouldExplore(const Use *U) override {
4819     // Check liveness and ignore droppable users.
4820     bool UsedAssumedInformation = false;
4821     return !U->getUser()->isDroppable() &&
4822            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4823                             UsedAssumedInformation);
4824   }
4825 
4826   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4827   /// \p CapturedInRet, then return the appropriate value for use in the
4828   /// CaptureTracker::captured() interface.
4829   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4830                     bool CapturedInRet) {
4831     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4832                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4833     if (CapturedInMem)
4834       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4835     if (CapturedInInt)
4836       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4837     if (CapturedInRet)
4838       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4839     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4840   }
4841 
4842 private:
4843   /// The attributor providing in-flight abstract attributes.
4844   Attributor &A;
4845 
4846   /// The abstract attribute currently updated.
4847   AANoCapture &NoCaptureAA;
4848 
4849   /// The abstract liveness state.
4850   const AAIsDead &IsDeadAA;
4851 
4852   /// The state currently updated.
4853   AANoCapture::StateType &State;
4854 
4855   /// Set of potential copies of the tracked value.
4856   SmallSetVector<Value *, 4> &PotentialCopies;
4857 
4858   /// Global counter to limit the number of explored uses.
4859   unsigned &RemainingUsesToExplore;
4860 };
4861 
4862 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4863   const IRPosition &IRP = getIRPosition();
4864   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4865                                   : &IRP.getAssociatedValue();
4866   if (!V)
4867     return indicatePessimisticFixpoint();
4868 
4869   const Function *F =
4870       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4871   assert(F && "Expected a function!");
4872   const IRPosition &FnPos = IRPosition::function(*F);
4873   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4874 
4875   AANoCapture::StateType T;
4876 
4877   // Readonly means we cannot capture through memory.
4878   const auto &FnMemAA =
4879       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4880   if (FnMemAA.isAssumedReadOnly()) {
4881     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4882     if (FnMemAA.isKnownReadOnly())
4883       addKnownBits(NOT_CAPTURED_IN_MEM);
4884     else
4885       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4886   }
4887 
4888   // Make sure all returned values are different than the underlying value.
4889   // TODO: we could do this in a more sophisticated way inside
4890   //       AAReturnedValues, e.g., track all values that escape through returns
4891   //       directly somehow.
4892   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4893     bool SeenConstant = false;
4894     for (auto &It : RVAA.returned_values()) {
4895       if (isa<Constant>(It.first)) {
4896         if (SeenConstant)
4897           return false;
4898         SeenConstant = true;
4899       } else if (!isa<Argument>(It.first) ||
4900                  It.first == getAssociatedArgument())
4901         return false;
4902     }
4903     return true;
4904   };
4905 
4906   const auto &NoUnwindAA =
4907       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4908   if (NoUnwindAA.isAssumedNoUnwind()) {
4909     bool IsVoidTy = F->getReturnType()->isVoidTy();
4910     const AAReturnedValues *RVAA =
4911         IsVoidTy ? nullptr
4912                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4913 
4914                                                  DepClassTy::OPTIONAL);
4915     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4916       T.addKnownBits(NOT_CAPTURED_IN_RET);
4917       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4918         return ChangeStatus::UNCHANGED;
4919       if (NoUnwindAA.isKnownNoUnwind() &&
4920           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4921         addKnownBits(NOT_CAPTURED_IN_RET);
4922         if (isKnown(NOT_CAPTURED_IN_MEM))
4923           return indicateOptimisticFixpoint();
4924       }
4925     }
4926   }
4927 
4928   // Use the CaptureTracker interface and logic with the specialized tracker,
4929   // defined in AACaptureUseTracker, that can look at in-flight abstract
4930   // attributes and directly updates the assumed state.
4931   SmallSetVector<Value *, 4> PotentialCopies;
4932   unsigned RemainingUsesToExplore =
4933       getDefaultMaxUsesToExploreForCaptureTracking();
4934   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4935                               RemainingUsesToExplore);
4936 
4937   // Check all potential copies of the associated value until we can assume
4938   // none will be captured or we have to assume at least one might be.
4939   unsigned Idx = 0;
4940   PotentialCopies.insert(V);
4941   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4942     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4943 
4944   AANoCapture::StateType &S = getState();
4945   auto Assumed = S.getAssumed();
4946   S.intersectAssumedBits(T.getAssumed());
4947   if (!isAssumedNoCaptureMaybeReturned())
4948     return indicatePessimisticFixpoint();
4949   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4950                                    : ChangeStatus::CHANGED;
4951 }
4952 
4953 /// NoCapture attribute for function arguments.
4954 struct AANoCaptureArgument final : AANoCaptureImpl {
4955   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4956       : AANoCaptureImpl(IRP, A) {}
4957 
4958   /// See AbstractAttribute::trackStatistics()
4959   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4960 };
4961 
4962 /// NoCapture attribute for call site arguments.
4963 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4964   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4965       : AANoCaptureImpl(IRP, A) {}
4966 
4967   /// See AbstractAttribute::initialize(...).
4968   void initialize(Attributor &A) override {
4969     if (Argument *Arg = getAssociatedArgument())
4970       if (Arg->hasByValAttr())
4971         indicateOptimisticFixpoint();
4972     AANoCaptureImpl::initialize(A);
4973   }
4974 
4975   /// See AbstractAttribute::updateImpl(...).
4976   ChangeStatus updateImpl(Attributor &A) override {
4977     // TODO: Once we have call site specific value information we can provide
4978     //       call site specific liveness information and then it makes
4979     //       sense to specialize attributes for call sites arguments instead of
4980     //       redirecting requests to the callee argument.
4981     Argument *Arg = getAssociatedArgument();
4982     if (!Arg)
4983       return indicatePessimisticFixpoint();
4984     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4985     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
4986     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4987   }
4988 
4989   /// See AbstractAttribute::trackStatistics()
4990   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4991 };
4992 
4993 /// NoCapture attribute for floating values.
4994 struct AANoCaptureFloating final : AANoCaptureImpl {
4995   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4996       : AANoCaptureImpl(IRP, A) {}
4997 
4998   /// See AbstractAttribute::trackStatistics()
4999   void trackStatistics() const override {
5000     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5001   }
5002 };
5003 
5004 /// NoCapture attribute for function return value.
5005 struct AANoCaptureReturned final : AANoCaptureImpl {
5006   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5007       : AANoCaptureImpl(IRP, A) {
5008     llvm_unreachable("NoCapture is not applicable to function returns!");
5009   }
5010 
5011   /// See AbstractAttribute::initialize(...).
5012   void initialize(Attributor &A) override {
5013     llvm_unreachable("NoCapture is not applicable to function returns!");
5014   }
5015 
5016   /// See AbstractAttribute::updateImpl(...).
5017   ChangeStatus updateImpl(Attributor &A) override {
5018     llvm_unreachable("NoCapture is not applicable to function returns!");
5019   }
5020 
5021   /// See AbstractAttribute::trackStatistics()
5022   void trackStatistics() const override {}
5023 };
5024 
5025 /// NoCapture attribute deduction for a call site return value.
5026 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5027   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5028       : AANoCaptureImpl(IRP, A) {}
5029 
5030   /// See AbstractAttribute::initialize(...).
5031   void initialize(Attributor &A) override {
5032     const Function *F = getAnchorScope();
5033     // Check what state the associated function can actually capture.
5034     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5035   }
5036 
5037   /// See AbstractAttribute::trackStatistics()
5038   void trackStatistics() const override {
5039     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5040   }
5041 };
5042 
5043 /// ------------------ Value Simplify Attribute ----------------------------
5044 
5045 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5046   // FIXME: Add a typecast support.
5047   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5048       SimplifiedAssociatedValue, Other, Ty);
5049   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5050     return false;
5051 
5052   LLVM_DEBUG({
5053     if (SimplifiedAssociatedValue.hasValue())
5054       dbgs() << "[ValueSimplify] is assumed to be "
5055              << **SimplifiedAssociatedValue << "\n";
5056     else
5057       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5058   });
5059   return true;
5060 }
5061 
5062 struct AAValueSimplifyImpl : AAValueSimplify {
5063   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5064       : AAValueSimplify(IRP, A) {}
5065 
5066   /// See AbstractAttribute::initialize(...).
5067   void initialize(Attributor &A) override {
5068     if (getAssociatedValue().getType()->isVoidTy())
5069       indicatePessimisticFixpoint();
5070   }
5071 
5072   /// See AbstractAttribute::getAsStr().
5073   const std::string getAsStr() const override {
5074     LLVM_DEBUG({
5075       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5076       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5077         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5078     });
5079     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5080                           : "not-simple";
5081   }
5082 
5083   /// See AbstractAttribute::trackStatistics()
5084   void trackStatistics() const override {}
5085 
5086   /// See AAValueSimplify::getAssumedSimplifiedValue()
5087   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5088     return SimplifiedAssociatedValue;
5089   }
5090 
5091   /// Return a value we can use as replacement for the associated one, or
5092   /// nullptr if we don't have one that makes sense.
5093   Value *getReplacementValue(Attributor &A) const {
5094     Value *NewV;
5095     NewV = SimplifiedAssociatedValue.hasValue()
5096                ? SimplifiedAssociatedValue.getValue()
5097                : UndefValue::get(getAssociatedType());
5098     if (!NewV)
5099       return nullptr;
5100     NewV = AA::getWithType(*NewV, *getAssociatedType());
5101     if (!NewV || NewV == &getAssociatedValue())
5102       return nullptr;
5103     const Instruction *CtxI = getCtxI();
5104     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5105       return nullptr;
5106     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5107       return nullptr;
5108     return NewV;
5109   }
5110 
5111   /// Helper function for querying AAValueSimplify and updating candicate.
5112   /// \param IRP The value position we are trying to unify with SimplifiedValue
5113   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5114                       const IRPosition &IRP, bool Simplify = true) {
5115     bool UsedAssumedInformation = false;
5116     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5117     if (Simplify)
5118       QueryingValueSimplified =
5119           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5120     return unionAssumed(QueryingValueSimplified);
5121   }
5122 
5123   /// Returns a candidate is found or not
5124   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5125     if (!getAssociatedValue().getType()->isIntegerTy())
5126       return false;
5127 
5128     // This will also pass the call base context.
5129     const auto &AA =
5130         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5131 
5132     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5133 
5134     if (!COpt.hasValue()) {
5135       SimplifiedAssociatedValue = llvm::None;
5136       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5137       return true;
5138     }
5139     if (auto *C = COpt.getValue()) {
5140       SimplifiedAssociatedValue = C;
5141       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5142       return true;
5143     }
5144     return false;
5145   }
5146 
5147   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5148     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5149       return true;
5150     if (askSimplifiedValueFor<AAPotentialValues>(A))
5151       return true;
5152     return false;
5153   }
5154 
5155   /// See AbstractAttribute::manifest(...).
5156   ChangeStatus manifest(Attributor &A) override {
5157     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5158     if (getAssociatedValue().user_empty())
5159       return Changed;
5160 
5161     if (auto *NewV = getReplacementValue(A)) {
5162       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5163                         << *NewV << " :: " << *this << "\n");
5164       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5165         Changed = ChangeStatus::CHANGED;
5166     }
5167 
5168     return Changed | AAValueSimplify::manifest(A);
5169   }
5170 
5171   /// See AbstractState::indicatePessimisticFixpoint(...).
5172   ChangeStatus indicatePessimisticFixpoint() override {
5173     SimplifiedAssociatedValue = &getAssociatedValue();
5174     return AAValueSimplify::indicatePessimisticFixpoint();
5175   }
5176 
5177   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5178                          LoadInst &L, function_ref<bool(Value &)> Union) {
5179     auto UnionWrapper = [&](Value &V, Value &Obj) {
5180       if (isa<AllocaInst>(Obj))
5181         return Union(V);
5182       if (!AA::isDynamicallyUnique(A, AA, V))
5183         return false;
5184       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5185         return false;
5186       return Union(V);
5187     };
5188 
5189     Value &Ptr = *L.getPointerOperand();
5190     SmallVector<Value *, 8> Objects;
5191     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5192       return false;
5193 
5194     for (Value *Obj : Objects) {
5195       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5196       if (isa<UndefValue>(Obj))
5197         continue;
5198       if (isa<ConstantPointerNull>(Obj)) {
5199         // A null pointer access can be undefined but any offset from null may
5200         // be OK. We do not try to optimize the latter.
5201         bool UsedAssumedInformation = false;
5202         if (!NullPointerIsDefined(L.getFunction(),
5203                                   Ptr.getType()->getPointerAddressSpace()) &&
5204             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5205           continue;
5206         return false;
5207       }
5208       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj))
5209         return false;
5210       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType());
5211       if (!InitialVal || !Union(*InitialVal))
5212         return false;
5213 
5214       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5215                            "propagation, checking accesses next.\n");
5216 
5217       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5218         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5219         if (!Acc.isWrite())
5220           return true;
5221         if (Acc.isWrittenValueYetUndetermined())
5222           return true;
5223         Value *Content = Acc.getWrittenValue();
5224         if (!Content)
5225           return false;
5226         Value *CastedContent =
5227             AA::getWithType(*Content, *AA.getAssociatedType());
5228         if (!CastedContent)
5229           return false;
5230         if (IsExact)
5231           return UnionWrapper(*CastedContent, *Obj);
5232         if (auto *C = dyn_cast<Constant>(CastedContent))
5233           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5234             return UnionWrapper(*CastedContent, *Obj);
5235         return false;
5236       };
5237 
5238       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5239                                            DepClassTy::REQUIRED);
5240       if (!PI.forallInterferingAccesses(L, CheckAccess))
5241         return false;
5242     }
5243     return true;
5244   }
5245 };
5246 
5247 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5248   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5249       : AAValueSimplifyImpl(IRP, A) {}
5250 
5251   void initialize(Attributor &A) override {
5252     AAValueSimplifyImpl::initialize(A);
5253     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5254       indicatePessimisticFixpoint();
5255     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5256                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5257                 /* IgnoreSubsumingPositions */ true))
5258       indicatePessimisticFixpoint();
5259 
5260     // FIXME: This is a hack to prevent us from propagating function poiner in
5261     // the new pass manager CGSCC pass as it creates call edges the
5262     // CallGraphUpdater cannot handle yet.
5263     Value &V = getAssociatedValue();
5264     if (V.getType()->isPointerTy() &&
5265         V.getType()->getPointerElementType()->isFunctionTy() &&
5266         !A.isModulePass())
5267       indicatePessimisticFixpoint();
5268   }
5269 
5270   /// See AbstractAttribute::updateImpl(...).
5271   ChangeStatus updateImpl(Attributor &A) override {
5272     // Byval is only replacable if it is readonly otherwise we would write into
5273     // the replaced value and not the copy that byval creates implicitly.
5274     Argument *Arg = getAssociatedArgument();
5275     if (Arg->hasByValAttr()) {
5276       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5277       //       there is no race by not copying a constant byval.
5278       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5279                                                        DepClassTy::REQUIRED);
5280       if (!MemAA.isAssumedReadOnly())
5281         return indicatePessimisticFixpoint();
5282     }
5283 
5284     auto Before = SimplifiedAssociatedValue;
5285 
5286     auto PredForCallSite = [&](AbstractCallSite ACS) {
5287       const IRPosition &ACSArgPos =
5288           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5289       // Check if a coresponding argument was found or if it is on not
5290       // associated (which can happen for callback calls).
5291       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5292         return false;
5293 
5294       // Simplify the argument operand explicitly and check if the result is
5295       // valid in the current scope. This avoids refering to simplified values
5296       // in other functions, e.g., we don't want to say a an argument in a
5297       // static function is actually an argument in a different function.
5298       bool UsedAssumedInformation = false;
5299       Optional<Constant *> SimpleArgOp =
5300           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5301       if (!SimpleArgOp.hasValue())
5302         return true;
5303       if (!SimpleArgOp.getValue())
5304         return false;
5305       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5306         return false;
5307       return unionAssumed(*SimpleArgOp);
5308     };
5309 
5310     // Generate a answer specific to a call site context.
5311     bool Success;
5312     bool AllCallSitesKnown;
5313     if (hasCallBaseContext() &&
5314         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5315       Success = PredForCallSite(
5316           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5317     else
5318       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5319                                        AllCallSitesKnown);
5320 
5321     if (!Success)
5322       if (!askSimplifiedValueForOtherAAs(A))
5323         return indicatePessimisticFixpoint();
5324 
5325     // If a candicate was found in this update, return CHANGED.
5326     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5327                                                : ChangeStatus ::CHANGED;
5328   }
5329 
5330   /// See AbstractAttribute::trackStatistics()
5331   void trackStatistics() const override {
5332     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5333   }
5334 };
5335 
5336 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5337   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5338       : AAValueSimplifyImpl(IRP, A) {}
5339 
5340   /// See AAValueSimplify::getAssumedSimplifiedValue()
5341   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5342     if (!isValidState())
5343       return nullptr;
5344     return SimplifiedAssociatedValue;
5345   }
5346 
5347   /// See AbstractAttribute::updateImpl(...).
5348   ChangeStatus updateImpl(Attributor &A) override {
5349     auto Before = SimplifiedAssociatedValue;
5350 
5351     auto PredForReturned = [&](Value &V) {
5352       return checkAndUpdate(A, *this,
5353                             IRPosition::value(V, getCallBaseContext()));
5354     };
5355 
5356     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5357       if (!askSimplifiedValueForOtherAAs(A))
5358         return indicatePessimisticFixpoint();
5359 
5360     // If a candicate was found in this update, return CHANGED.
5361     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5362                                                : ChangeStatus ::CHANGED;
5363   }
5364 
5365   ChangeStatus manifest(Attributor &A) override {
5366     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5367 
5368     if (auto *NewV = getReplacementValue(A)) {
5369       auto PredForReturned =
5370           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5371             for (ReturnInst *RI : RetInsts) {
5372               Value *ReturnedVal = RI->getReturnValue();
5373               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5374                 return true;
5375               assert(RI->getFunction() == getAnchorScope() &&
5376                      "ReturnInst in wrong function!");
5377               LLVM_DEBUG(dbgs()
5378                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5379                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5380               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5381                 Changed = ChangeStatus::CHANGED;
5382             }
5383             return true;
5384           };
5385       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5386     }
5387 
5388     return Changed | AAValueSimplify::manifest(A);
5389   }
5390 
5391   /// See AbstractAttribute::trackStatistics()
5392   void trackStatistics() const override {
5393     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5394   }
5395 };
5396 
5397 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5398   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5399       : AAValueSimplifyImpl(IRP, A) {}
5400 
5401   /// See AbstractAttribute::initialize(...).
5402   void initialize(Attributor &A) override {
5403     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
5404     //        Needs investigation.
5405     // AAValueSimplifyImpl::initialize(A);
5406     Value &V = getAnchorValue();
5407 
5408     // TODO: add other stuffs
5409     if (isa<Constant>(V))
5410       indicatePessimisticFixpoint();
5411   }
5412 
5413   /// Check if \p Cmp is a comparison we can simplify.
5414   ///
5415   /// We handle multiple cases, one in which at least one operand is an
5416   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5417   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5418   /// will be updated.
5419   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5420     auto Union = [&](Value &V) {
5421       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5422           SimplifiedAssociatedValue, &V, V.getType());
5423       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5424     };
5425 
5426     Value *LHS = Cmp.getOperand(0);
5427     Value *RHS = Cmp.getOperand(1);
5428 
5429     // Simplify the operands first.
5430     bool UsedAssumedInformation = false;
5431     const auto &SimplifiedLHS =
5432         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5433                                *this, UsedAssumedInformation);
5434     if (!SimplifiedLHS.hasValue())
5435       return true;
5436     if (!SimplifiedLHS.getValue())
5437       return false;
5438     LHS = *SimplifiedLHS;
5439 
5440     const auto &SimplifiedRHS =
5441         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5442                                *this, UsedAssumedInformation);
5443     if (!SimplifiedRHS.hasValue())
5444       return true;
5445     if (!SimplifiedRHS.getValue())
5446       return false;
5447     RHS = *SimplifiedRHS;
5448 
5449     LLVMContext &Ctx = Cmp.getContext();
5450     // Handle the trivial case first in which we don't even need to think about
5451     // null or non-null.
5452     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5453       Constant *NewVal =
5454           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5455       if (!Union(*NewVal))
5456         return false;
5457       if (!UsedAssumedInformation)
5458         indicateOptimisticFixpoint();
5459       return true;
5460     }
5461 
5462     // From now on we only handle equalities (==, !=).
5463     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5464     if (!ICmp || !ICmp->isEquality())
5465       return false;
5466 
5467     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5468     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5469     if (!LHSIsNull && !RHSIsNull)
5470       return false;
5471 
5472     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5473     // non-nullptr operand and if we assume it's non-null we can conclude the
5474     // result of the comparison.
5475     assert((LHSIsNull || RHSIsNull) &&
5476            "Expected nullptr versus non-nullptr comparison at this point");
5477 
5478     // The index is the operand that we assume is not null.
5479     unsigned PtrIdx = LHSIsNull;
5480     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5481         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5482         DepClassTy::REQUIRED);
5483     if (!PtrNonNullAA.isAssumedNonNull())
5484       return false;
5485     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5486 
5487     // The new value depends on the predicate, true for != and false for ==.
5488     Constant *NewVal = ConstantInt::get(
5489         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5490     if (!Union(*NewVal))
5491       return false;
5492 
5493     if (!UsedAssumedInformation)
5494       indicateOptimisticFixpoint();
5495 
5496     return true;
5497   }
5498 
5499   bool updateWithLoad(Attributor &A, LoadInst &L) {
5500     auto Union = [&](Value &V) {
5501       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5502           SimplifiedAssociatedValue, &V, L.getType());
5503       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5504     };
5505     return handleLoad(A, *this, L, Union);
5506   }
5507 
5508   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5509   /// simplify any operand of the instruction \p I. Return true if successful,
5510   /// in that case SimplifiedAssociatedValue will be updated.
5511   bool handleGenericInst(Attributor &A, Instruction &I) {
5512     bool SomeSimplified = false;
5513     bool UsedAssumedInformation = false;
5514 
5515     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5516     int Idx = 0;
5517     for (Value *Op : I.operands()) {
5518       const auto &SimplifiedOp =
5519           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5520                                  *this, UsedAssumedInformation);
5521       // If we are not sure about any operand we are not sure about the entire
5522       // instruction, we'll wait.
5523       if (!SimplifiedOp.hasValue())
5524         return true;
5525 
5526       if (SimplifiedOp.getValue())
5527         NewOps[Idx] = SimplifiedOp.getValue();
5528       else
5529         NewOps[Idx] = Op;
5530 
5531       SomeSimplified |= (NewOps[Idx] != Op);
5532       ++Idx;
5533     }
5534 
5535     // We won't bother with the InstSimplify interface if we didn't simplify any
5536     // operand ourselves.
5537     if (!SomeSimplified)
5538       return false;
5539 
5540     InformationCache &InfoCache = A.getInfoCache();
5541     Function *F = I.getFunction();
5542     const auto *DT =
5543         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5544     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5545     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5546     OptimizationRemarkEmitter *ORE = nullptr;
5547 
5548     const DataLayout &DL = I.getModule()->getDataLayout();
5549     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5550     if (Value *SimplifiedI =
5551             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5552       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5553           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5554       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5555     }
5556     return false;
5557   }
5558 
5559   /// See AbstractAttribute::updateImpl(...).
5560   ChangeStatus updateImpl(Attributor &A) override {
5561     auto Before = SimplifiedAssociatedValue;
5562 
5563     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5564                             bool Stripped) -> bool {
5565       auto &AA = A.getAAFor<AAValueSimplify>(
5566           *this, IRPosition::value(V, getCallBaseContext()),
5567           DepClassTy::REQUIRED);
5568       if (!Stripped && this == &AA) {
5569 
5570         if (auto *I = dyn_cast<Instruction>(&V)) {
5571           if (auto *LI = dyn_cast<LoadInst>(&V))
5572             if (updateWithLoad(A, *LI))
5573               return true;
5574           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5575             if (handleCmp(A, *Cmp))
5576               return true;
5577           if (handleGenericInst(A, *I))
5578             return true;
5579         }
5580         // TODO: Look the instruction and check recursively.
5581 
5582         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5583                           << "\n");
5584         return false;
5585       }
5586       return checkAndUpdate(A, *this,
5587                             IRPosition::value(V, getCallBaseContext()));
5588     };
5589 
5590     bool Dummy = false;
5591     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5592                                      VisitValueCB, getCtxI(),
5593                                      /* UseValueSimplify */ false))
5594       if (!askSimplifiedValueForOtherAAs(A))
5595         return indicatePessimisticFixpoint();
5596 
5597     // If a candicate was found in this update, return CHANGED.
5598     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5599                                                : ChangeStatus ::CHANGED;
5600   }
5601 
5602   /// See AbstractAttribute::trackStatistics()
5603   void trackStatistics() const override {
5604     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5605   }
5606 };
5607 
5608 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5609   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5610       : AAValueSimplifyImpl(IRP, A) {}
5611 
5612   /// See AbstractAttribute::initialize(...).
5613   void initialize(Attributor &A) override {
5614     SimplifiedAssociatedValue = nullptr;
5615     indicateOptimisticFixpoint();
5616   }
5617   /// See AbstractAttribute::initialize(...).
5618   ChangeStatus updateImpl(Attributor &A) override {
5619     llvm_unreachable(
5620         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5621   }
5622   /// See AbstractAttribute::trackStatistics()
5623   void trackStatistics() const override {
5624     STATS_DECLTRACK_FN_ATTR(value_simplify)
5625   }
5626 };
5627 
5628 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5629   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5630       : AAValueSimplifyFunction(IRP, A) {}
5631   /// See AbstractAttribute::trackStatistics()
5632   void trackStatistics() const override {
5633     STATS_DECLTRACK_CS_ATTR(value_simplify)
5634   }
5635 };
5636 
5637 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5638   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5639       : AAValueSimplifyImpl(IRP, A) {}
5640 
5641   void initialize(Attributor &A) override {
5642     if (!getAssociatedFunction())
5643       indicatePessimisticFixpoint();
5644   }
5645 
5646   /// See AbstractAttribute::updateImpl(...).
5647   ChangeStatus updateImpl(Attributor &A) override {
5648     auto Before = SimplifiedAssociatedValue;
5649     auto &RetAA = A.getAAFor<AAReturnedValues>(
5650         *this, IRPosition::function(*getAssociatedFunction()),
5651         DepClassTy::REQUIRED);
5652     auto PredForReturned =
5653         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5654           bool UsedAssumedInformation = false;
5655           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5656               &RetVal, *cast<CallBase>(getCtxI()), *this,
5657               UsedAssumedInformation);
5658           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5659               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5660           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5661         };
5662     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5663       if (!askSimplifiedValueForOtherAAs(A))
5664         return indicatePessimisticFixpoint();
5665     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5666                                                : ChangeStatus ::CHANGED;
5667   }
5668 
5669   void trackStatistics() const override {
5670     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5671   }
5672 };
5673 
5674 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5675   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5676       : AAValueSimplifyFloating(IRP, A) {}
5677 
5678   /// See AbstractAttribute::manifest(...).
5679   ChangeStatus manifest(Attributor &A) override {
5680     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5681 
5682     if (auto *NewV = getReplacementValue(A)) {
5683       Use &U = cast<CallBase>(&getAnchorValue())
5684                    ->getArgOperandUse(getCallSiteArgNo());
5685       if (A.changeUseAfterManifest(U, *NewV))
5686         Changed = ChangeStatus::CHANGED;
5687     }
5688 
5689     return Changed | AAValueSimplify::manifest(A);
5690   }
5691 
5692   void trackStatistics() const override {
5693     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5694   }
5695 };
5696 
5697 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5698 struct AAHeapToStackFunction final : public AAHeapToStack {
5699 
5700   struct AllocationInfo {
5701     /// The call that allocates the memory.
5702     CallBase *const CB;
5703 
5704     /// The kind of allocation.
5705     const enum class AllocationKind {
5706       MALLOC,
5707       CALLOC,
5708       ALIGNED_ALLOC,
5709     } Kind;
5710 
5711     /// The library function id for the allocation.
5712     LibFunc LibraryFunctionId = NotLibFunc;
5713 
5714     /// The status wrt. a rewrite.
5715     enum {
5716       STACK_DUE_TO_USE,
5717       STACK_DUE_TO_FREE,
5718       INVALID,
5719     } Status = STACK_DUE_TO_USE;
5720 
5721     /// Flag to indicate if we encountered a use that might free this allocation
5722     /// but which is not in the deallocation infos.
5723     bool HasPotentiallyFreeingUnknownUses = false;
5724 
5725     /// The set of free calls that use this allocation.
5726     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5727   };
5728 
5729   struct DeallocationInfo {
5730     /// The call that deallocates the memory.
5731     CallBase *const CB;
5732 
5733     /// Flag to indicate if we don't know all objects this deallocation might
5734     /// free.
5735     bool MightFreeUnknownObjects = false;
5736 
5737     /// The set of allocation calls that are potentially freed.
5738     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5739   };
5740 
5741   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5742       : AAHeapToStack(IRP, A) {}
5743 
5744   ~AAHeapToStackFunction() {
5745     // Ensure we call the destructor so we release any memory allocated in the
5746     // sets.
5747     for (auto &It : AllocationInfos)
5748       It.getSecond()->~AllocationInfo();
5749     for (auto &It : DeallocationInfos)
5750       It.getSecond()->~DeallocationInfo();
5751   }
5752 
5753   void initialize(Attributor &A) override {
5754     AAHeapToStack::initialize(A);
5755 
5756     const Function *F = getAnchorScope();
5757     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5758 
5759     auto AllocationIdentifierCB = [&](Instruction &I) {
5760       CallBase *CB = dyn_cast<CallBase>(&I);
5761       if (!CB)
5762         return true;
5763       if (isFreeCall(CB, TLI)) {
5764         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5765         return true;
5766       }
5767       bool IsMalloc = isMallocLikeFn(CB, TLI);
5768       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5769       bool IsCalloc =
5770           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5771       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5772         return true;
5773       auto Kind =
5774           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5775                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5776                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5777 
5778       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5779       AllocationInfos[CB] = AI;
5780       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5781       return true;
5782     };
5783 
5784     bool UsedAssumedInformation = false;
5785     bool Success = A.checkForAllCallLikeInstructions(
5786         AllocationIdentifierCB, *this, UsedAssumedInformation,
5787         /* CheckBBLivenessOnly */ false,
5788         /* CheckPotentiallyDead */ true);
5789     (void)Success;
5790     assert(Success && "Did not expect the call base visit callback to fail!");
5791   }
5792 
5793   const std::string getAsStr() const override {
5794     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5795     for (const auto &It : AllocationInfos) {
5796       if (It.second->Status == AllocationInfo::INVALID)
5797         ++NumInvalidMallocs;
5798       else
5799         ++NumH2SMallocs;
5800     }
5801     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5802            std::to_string(NumInvalidMallocs);
5803   }
5804 
5805   /// See AbstractAttribute::trackStatistics().
5806   void trackStatistics() const override {
5807     STATS_DECL(
5808         MallocCalls, Function,
5809         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5810     for (auto &It : AllocationInfos)
5811       if (It.second->Status != AllocationInfo::INVALID)
5812         ++BUILD_STAT_NAME(MallocCalls, Function);
5813   }
5814 
5815   bool isAssumedHeapToStack(const CallBase &CB) const override {
5816     if (isValidState())
5817       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5818         return AI->Status != AllocationInfo::INVALID;
5819     return false;
5820   }
5821 
5822   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5823     if (!isValidState())
5824       return false;
5825 
5826     for (auto &It : AllocationInfos) {
5827       AllocationInfo &AI = *It.second;
5828       if (AI.Status == AllocationInfo::INVALID)
5829         continue;
5830 
5831       if (AI.PotentialFreeCalls.count(&CB))
5832         return true;
5833     }
5834 
5835     return false;
5836   }
5837 
5838   ChangeStatus manifest(Attributor &A) override {
5839     assert(getState().isValidState() &&
5840            "Attempted to manifest an invalid state!");
5841 
5842     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5843     Function *F = getAnchorScope();
5844     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5845 
5846     for (auto &It : AllocationInfos) {
5847       AllocationInfo &AI = *It.second;
5848       if (AI.Status == AllocationInfo::INVALID)
5849         continue;
5850 
5851       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5852         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5853         A.deleteAfterManifest(*FreeCall);
5854         HasChanged = ChangeStatus::CHANGED;
5855       }
5856 
5857       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5858                         << "\n");
5859 
5860       auto Remark = [&](OptimizationRemark OR) {
5861         LibFunc IsAllocShared;
5862         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5863           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5864             return OR << "Moving globalized variable to the stack.";
5865         return OR << "Moving memory allocation from the heap to the stack.";
5866       };
5867       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5868         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5869       else
5870         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5871 
5872       Value *Size;
5873       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5874       if (SizeAPI.hasValue()) {
5875         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5876       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5877         auto *Num = AI.CB->getOperand(0);
5878         auto *SizeT = AI.CB->getOperand(1);
5879         IRBuilder<> B(AI.CB);
5880         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5881       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5882         Size = AI.CB->getOperand(1);
5883       } else {
5884         Size = AI.CB->getOperand(0);
5885       }
5886 
5887       Align Alignment(1);
5888       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5889         Optional<APInt> AlignmentAPI =
5890             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5891         assert(AlignmentAPI.hasValue() &&
5892                "Expected an alignment during manifest!");
5893         Alignment =
5894             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5895       }
5896 
5897       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5898       Instruction *Alloca =
5899           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5900                          "", AI.CB->getNextNode());
5901 
5902       if (Alloca->getType() != AI.CB->getType())
5903         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5904                                  Alloca->getNextNode());
5905 
5906       A.changeValueAfterManifest(*AI.CB, *Alloca);
5907 
5908       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5909         auto *NBB = II->getNormalDest();
5910         BranchInst::Create(NBB, AI.CB->getParent());
5911         A.deleteAfterManifest(*AI.CB);
5912       } else {
5913         A.deleteAfterManifest(*AI.CB);
5914       }
5915 
5916       // Zero out the allocated memory if it was a calloc.
5917       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5918         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5919                                    Alloca->getNextNode());
5920         Value *Ops[] = {
5921             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5922             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5923 
5924         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5925         Module *M = F->getParent();
5926         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5927         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5928       }
5929       HasChanged = ChangeStatus::CHANGED;
5930     }
5931 
5932     return HasChanged;
5933   }
5934 
5935   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5936                            Value &V) {
5937     bool UsedAssumedInformation = false;
5938     Optional<Constant *> SimpleV =
5939         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5940     if (!SimpleV.hasValue())
5941       return APInt(64, 0);
5942     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5943       return CI->getValue();
5944     return llvm::None;
5945   }
5946 
5947   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5948                           AllocationInfo &AI) {
5949 
5950     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
5951       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
5952 
5953     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
5954       // Only if the alignment is also constant we return a size.
5955       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
5956                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
5957                  : llvm::None;
5958 
5959     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
5960            "Expected only callocs are left");
5961     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
5962     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
5963     if (!Num.hasValue() || !Size.hasValue())
5964       return llvm::None;
5965     bool Overflow = false;
5966     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
5967     return Overflow ? llvm::None : Size;
5968   }
5969 
5970   /// Collection of all malloc-like calls in a function with associated
5971   /// information.
5972   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
5973 
5974   /// Collection of all free-like calls in a function with associated
5975   /// information.
5976   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
5977 
5978   ChangeStatus updateImpl(Attributor &A) override;
5979 };
5980 
5981 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
5982   ChangeStatus Changed = ChangeStatus::UNCHANGED;
5983   const Function *F = getAnchorScope();
5984 
5985   const auto &LivenessAA =
5986       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
5987 
5988   MustBeExecutedContextExplorer &Explorer =
5989       A.getInfoCache().getMustBeExecutedContextExplorer();
5990 
5991   bool StackIsAccessibleByOtherThreads =
5992       A.getInfoCache().stackIsAccessibleByOtherThreads();
5993 
5994   // Flag to ensure we update our deallocation information at most once per
5995   // updateImpl call and only if we use the free check reasoning.
5996   bool HasUpdatedFrees = false;
5997 
5998   auto UpdateFrees = [&]() {
5999     HasUpdatedFrees = true;
6000 
6001     for (auto &It : DeallocationInfos) {
6002       DeallocationInfo &DI = *It.second;
6003       // For now we cannot use deallocations that have unknown inputs, skip
6004       // them.
6005       if (DI.MightFreeUnknownObjects)
6006         continue;
6007 
6008       // No need to analyze dead calls, ignore them instead.
6009       bool UsedAssumedInformation = false;
6010       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6011                           /* CheckBBLivenessOnly */ true))
6012         continue;
6013 
6014       // Use the optimistic version to get the freed objects, ignoring dead
6015       // branches etc.
6016       SmallVector<Value *, 8> Objects;
6017       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6018                                            *this, DI.CB)) {
6019         LLVM_DEBUG(
6020             dbgs()
6021             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6022         DI.MightFreeUnknownObjects = true;
6023         continue;
6024       }
6025 
6026       // Check each object explicitly.
6027       for (auto *Obj : Objects) {
6028         // Free of null and undef can be ignored as no-ops (or UB in the latter
6029         // case).
6030         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6031           continue;
6032 
6033         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6034         if (!ObjCB) {
6035           LLVM_DEBUG(dbgs()
6036                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6037           DI.MightFreeUnknownObjects = true;
6038           continue;
6039         }
6040 
6041         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6042         if (!AI) {
6043           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6044                             << "\n");
6045           DI.MightFreeUnknownObjects = true;
6046           continue;
6047         }
6048 
6049         DI.PotentialAllocationCalls.insert(ObjCB);
6050       }
6051     }
6052   };
6053 
6054   auto FreeCheck = [&](AllocationInfo &AI) {
6055     // If the stack is not accessible by other threads, the "must-free" logic
6056     // doesn't apply as the pointer could be shared and needs to be places in
6057     // "shareable" memory.
6058     if (!StackIsAccessibleByOtherThreads) {
6059       auto &NoSyncAA =
6060           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6061       if (!NoSyncAA.isAssumedNoSync()) {
6062         LLVM_DEBUG(
6063             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6064                       "other threads and function is not nosync:\n");
6065         return false;
6066       }
6067     }
6068     if (!HasUpdatedFrees)
6069       UpdateFrees();
6070 
6071     // TODO: Allow multi exit functions that have different free calls.
6072     if (AI.PotentialFreeCalls.size() != 1) {
6073       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6074                         << AI.PotentialFreeCalls.size() << "\n");
6075       return false;
6076     }
6077     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6078     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6079     if (!DI) {
6080       LLVM_DEBUG(
6081           dbgs() << "[H2S] unique free call was not known as deallocation call "
6082                  << *UniqueFree << "\n");
6083       return false;
6084     }
6085     if (DI->MightFreeUnknownObjects) {
6086       LLVM_DEBUG(
6087           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6088       return false;
6089     }
6090     if (DI->PotentialAllocationCalls.size() > 1) {
6091       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6092                         << DI->PotentialAllocationCalls.size()
6093                         << " different allocations\n");
6094       return false;
6095     }
6096     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6097       LLVM_DEBUG(
6098           dbgs()
6099           << "[H2S] unique free call not known to free this allocation but "
6100           << **DI->PotentialAllocationCalls.begin() << "\n");
6101       return false;
6102     }
6103     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6104     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6105       LLVM_DEBUG(
6106           dbgs()
6107           << "[H2S] unique free call might not be executed with the allocation "
6108           << *UniqueFree << "\n");
6109       return false;
6110     }
6111     return true;
6112   };
6113 
6114   auto UsesCheck = [&](AllocationInfo &AI) {
6115     bool ValidUsesOnly = true;
6116 
6117     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6118       Instruction *UserI = cast<Instruction>(U.getUser());
6119       if (isa<LoadInst>(UserI))
6120         return true;
6121       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6122         if (SI->getValueOperand() == U.get()) {
6123           LLVM_DEBUG(dbgs()
6124                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6125           ValidUsesOnly = false;
6126         } else {
6127           // A store into the malloc'ed memory is fine.
6128         }
6129         return true;
6130       }
6131       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6132         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6133           return true;
6134         if (DeallocationInfos.count(CB)) {
6135           AI.PotentialFreeCalls.insert(CB);
6136           return true;
6137         }
6138 
6139         unsigned ArgNo = CB->getArgOperandNo(&U);
6140 
6141         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6142             *this, IRPosition::callsite_argument(*CB, ArgNo),
6143             DepClassTy::OPTIONAL);
6144 
6145         // If a call site argument use is nofree, we are fine.
6146         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6147             *this, IRPosition::callsite_argument(*CB, ArgNo),
6148             DepClassTy::OPTIONAL);
6149 
6150         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6151         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6152         if (MaybeCaptured ||
6153             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6154              MaybeFreed)) {
6155           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6156 
6157           // Emit a missed remark if this is missed OpenMP globalization.
6158           auto Remark = [&](OptimizationRemarkMissed ORM) {
6159             return ORM
6160                    << "Could not move globalized variable to the stack. "
6161                       "Variable is potentially captured in call. Mark "
6162                       "parameter as `__attribute__((noescape))` to override.";
6163           };
6164 
6165           if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6166             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6167 
6168           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6169           ValidUsesOnly = false;
6170         }
6171         return true;
6172       }
6173 
6174       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6175           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6176         Follow = true;
6177         return true;
6178       }
6179       // Unknown user for which we can not track uses further (in a way that
6180       // makes sense).
6181       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6182       ValidUsesOnly = false;
6183       return true;
6184     };
6185     A.checkForAllUses(Pred, *this, *AI.CB);
6186     return ValidUsesOnly;
6187   };
6188 
6189   // The actual update starts here. We look at all allocations and depending on
6190   // their status perform the appropriate check(s).
6191   for (auto &It : AllocationInfos) {
6192     AllocationInfo &AI = *It.second;
6193     if (AI.Status == AllocationInfo::INVALID)
6194       continue;
6195 
6196     if (MaxHeapToStackSize == -1) {
6197       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6198         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6199           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6200                             << "\n");
6201           AI.Status = AllocationInfo::INVALID;
6202           Changed = ChangeStatus::CHANGED;
6203           continue;
6204         }
6205     } else {
6206       Optional<APInt> Size = getSize(A, *this, AI);
6207       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6208         LLVM_DEBUG({
6209           if (!Size.hasValue())
6210             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6211                    << "\n";
6212           else
6213             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6214                    << MaxHeapToStackSize << "\n";
6215         });
6216 
6217         AI.Status = AllocationInfo::INVALID;
6218         Changed = ChangeStatus::CHANGED;
6219         continue;
6220       }
6221     }
6222 
6223     switch (AI.Status) {
6224     case AllocationInfo::STACK_DUE_TO_USE:
6225       if (UsesCheck(AI))
6226         continue;
6227       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6228       LLVM_FALLTHROUGH;
6229     case AllocationInfo::STACK_DUE_TO_FREE:
6230       if (FreeCheck(AI))
6231         continue;
6232       AI.Status = AllocationInfo::INVALID;
6233       Changed = ChangeStatus::CHANGED;
6234       continue;
6235     case AllocationInfo::INVALID:
6236       llvm_unreachable("Invalid allocations should never reach this point!");
6237     };
6238   }
6239 
6240   return Changed;
6241 }
6242 
6243 /// ----------------------- Privatizable Pointers ------------------------------
6244 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6245   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6246       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6247 
6248   ChangeStatus indicatePessimisticFixpoint() override {
6249     AAPrivatizablePtr::indicatePessimisticFixpoint();
6250     PrivatizableType = nullptr;
6251     return ChangeStatus::CHANGED;
6252   }
6253 
6254   /// Identify the type we can chose for a private copy of the underlying
6255   /// argument. None means it is not clear yet, nullptr means there is none.
6256   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6257 
6258   /// Return a privatizable type that encloses both T0 and T1.
6259   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6260   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6261     if (!T0.hasValue())
6262       return T1;
6263     if (!T1.hasValue())
6264       return T0;
6265     if (T0 == T1)
6266       return T0;
6267     return nullptr;
6268   }
6269 
6270   Optional<Type *> getPrivatizableType() const override {
6271     return PrivatizableType;
6272   }
6273 
6274   const std::string getAsStr() const override {
6275     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6276   }
6277 
6278 protected:
6279   Optional<Type *> PrivatizableType;
6280 };
6281 
6282 // TODO: Do this for call site arguments (probably also other values) as well.
6283 
6284 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6285   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6286       : AAPrivatizablePtrImpl(IRP, A) {}
6287 
6288   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6289   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6290     // If this is a byval argument and we know all the call sites (so we can
6291     // rewrite them), there is no need to check them explicitly.
6292     bool AllCallSitesKnown;
6293     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6294         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6295                                true, AllCallSitesKnown))
6296       return getAssociatedValue().getType()->getPointerElementType();
6297 
6298     Optional<Type *> Ty;
6299     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6300 
6301     // Make sure the associated call site argument has the same type at all call
6302     // sites and it is an allocation we know is safe to privatize, for now that
6303     // means we only allow alloca instructions.
6304     // TODO: We can additionally analyze the accesses in the callee to  create
6305     //       the type from that information instead. That is a little more
6306     //       involved and will be done in a follow up patch.
6307     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6308       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6309       // Check if a coresponding argument was found or if it is one not
6310       // associated (which can happen for callback calls).
6311       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6312         return false;
6313 
6314       // Check that all call sites agree on a type.
6315       auto &PrivCSArgAA =
6316           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6317       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6318 
6319       LLVM_DEBUG({
6320         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6321         if (CSTy.hasValue() && CSTy.getValue())
6322           CSTy.getValue()->print(dbgs());
6323         else if (CSTy.hasValue())
6324           dbgs() << "<nullptr>";
6325         else
6326           dbgs() << "<none>";
6327       });
6328 
6329       Ty = combineTypes(Ty, CSTy);
6330 
6331       LLVM_DEBUG({
6332         dbgs() << " : New Type: ";
6333         if (Ty.hasValue() && Ty.getValue())
6334           Ty.getValue()->print(dbgs());
6335         else if (Ty.hasValue())
6336           dbgs() << "<nullptr>";
6337         else
6338           dbgs() << "<none>";
6339         dbgs() << "\n";
6340       });
6341 
6342       return !Ty.hasValue() || Ty.getValue();
6343     };
6344 
6345     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6346       return nullptr;
6347     return Ty;
6348   }
6349 
6350   /// See AbstractAttribute::updateImpl(...).
6351   ChangeStatus updateImpl(Attributor &A) override {
6352     PrivatizableType = identifyPrivatizableType(A);
6353     if (!PrivatizableType.hasValue())
6354       return ChangeStatus::UNCHANGED;
6355     if (!PrivatizableType.getValue())
6356       return indicatePessimisticFixpoint();
6357 
6358     // The dependence is optional so we don't give up once we give up on the
6359     // alignment.
6360     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6361                         DepClassTy::OPTIONAL);
6362 
6363     // Avoid arguments with padding for now.
6364     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6365         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6366                                                 A.getInfoCache().getDL())) {
6367       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6368       return indicatePessimisticFixpoint();
6369     }
6370 
6371     // Verify callee and caller agree on how the promoted argument would be
6372     // passed.
6373     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
6374     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
6375     // which doesn't require the arguments ArgumentPromotion wanted to pass.
6376     Function &Fn = *getIRPosition().getAnchorScope();
6377     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
6378     ArgsToPromote.insert(getAssociatedArgument());
6379     const auto *TTI =
6380         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6381     if (!TTI ||
6382         !ArgumentPromotionPass::areFunctionArgsABICompatible(
6383             Fn, *TTI, ArgsToPromote, Dummy) ||
6384         ArgsToPromote.empty()) {
6385       LLVM_DEBUG(
6386           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6387                  << Fn.getName() << "\n");
6388       return indicatePessimisticFixpoint();
6389     }
6390 
6391     // Collect the types that will replace the privatizable type in the function
6392     // signature.
6393     SmallVector<Type *, 16> ReplacementTypes;
6394     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6395 
6396     // Register a rewrite of the argument.
6397     Argument *Arg = getAssociatedArgument();
6398     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6399       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6400       return indicatePessimisticFixpoint();
6401     }
6402 
6403     unsigned ArgNo = Arg->getArgNo();
6404 
6405     // Helper to check if for the given call site the associated argument is
6406     // passed to a callback where the privatization would be different.
6407     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6408       SmallVector<const Use *, 4> CallbackUses;
6409       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6410       for (const Use *U : CallbackUses) {
6411         AbstractCallSite CBACS(U);
6412         assert(CBACS && CBACS.isCallbackCall());
6413         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6414           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6415 
6416           LLVM_DEBUG({
6417             dbgs()
6418                 << "[AAPrivatizablePtr] Argument " << *Arg
6419                 << "check if can be privatized in the context of its parent ("
6420                 << Arg->getParent()->getName()
6421                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6422                    "callback ("
6423                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6424                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6425                 << CBACS.getCallArgOperand(CBArg) << " vs "
6426                 << CB.getArgOperand(ArgNo) << "\n"
6427                 << "[AAPrivatizablePtr] " << CBArg << " : "
6428                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6429           });
6430 
6431           if (CBArgNo != int(ArgNo))
6432             continue;
6433           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6434               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6435           if (CBArgPrivAA.isValidState()) {
6436             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6437             if (!CBArgPrivTy.hasValue())
6438               continue;
6439             if (CBArgPrivTy.getValue() == PrivatizableType)
6440               continue;
6441           }
6442 
6443           LLVM_DEBUG({
6444             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6445                    << " cannot be privatized in the context of its parent ("
6446                    << Arg->getParent()->getName()
6447                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6448                       "callback ("
6449                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6450                    << ").\n[AAPrivatizablePtr] for which the argument "
6451                       "privatization is not compatible.\n";
6452           });
6453           return false;
6454         }
6455       }
6456       return true;
6457     };
6458 
6459     // Helper to check if for the given call site the associated argument is
6460     // passed to a direct call where the privatization would be different.
6461     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6462       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6463       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6464       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
6465              "Expected a direct call operand for callback call operand");
6466 
6467       LLVM_DEBUG({
6468         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6469                << " check if be privatized in the context of its parent ("
6470                << Arg->getParent()->getName()
6471                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6472                   "direct call of ("
6473                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6474                << ").\n";
6475       });
6476 
6477       Function *DCCallee = DC->getCalledFunction();
6478       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6479         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6480             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6481             DepClassTy::REQUIRED);
6482         if (DCArgPrivAA.isValidState()) {
6483           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6484           if (!DCArgPrivTy.hasValue())
6485             return true;
6486           if (DCArgPrivTy.getValue() == PrivatizableType)
6487             return true;
6488         }
6489       }
6490 
6491       LLVM_DEBUG({
6492         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6493                << " cannot be privatized in the context of its parent ("
6494                << Arg->getParent()->getName()
6495                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6496                   "direct call of ("
6497                << ACS.getInstruction()->getCalledFunction()->getName()
6498                << ").\n[AAPrivatizablePtr] for which the argument "
6499                   "privatization is not compatible.\n";
6500       });
6501       return false;
6502     };
6503 
6504     // Helper to check if the associated argument is used at the given abstract
6505     // call site in a way that is incompatible with the privatization assumed
6506     // here.
6507     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6508       if (ACS.isDirectCall())
6509         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6510       if (ACS.isCallbackCall())
6511         return IsCompatiblePrivArgOfDirectCS(ACS);
6512       return false;
6513     };
6514 
6515     bool AllCallSitesKnown;
6516     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6517                                 AllCallSitesKnown))
6518       return indicatePessimisticFixpoint();
6519 
6520     return ChangeStatus::UNCHANGED;
6521   }
6522 
6523   /// Given a type to private \p PrivType, collect the constituates (which are
6524   /// used) in \p ReplacementTypes.
6525   static void
6526   identifyReplacementTypes(Type *PrivType,
6527                            SmallVectorImpl<Type *> &ReplacementTypes) {
6528     // TODO: For now we expand the privatization type to the fullest which can
6529     //       lead to dead arguments that need to be removed later.
6530     assert(PrivType && "Expected privatizable type!");
6531 
6532     // Traverse the type, extract constituate types on the outermost level.
6533     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6534       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6535         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6536     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6537       ReplacementTypes.append(PrivArrayType->getNumElements(),
6538                               PrivArrayType->getElementType());
6539     } else {
6540       ReplacementTypes.push_back(PrivType);
6541     }
6542   }
6543 
6544   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6545   /// The values needed are taken from the arguments of \p F starting at
6546   /// position \p ArgNo.
6547   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6548                                    unsigned ArgNo, Instruction &IP) {
6549     assert(PrivType && "Expected privatizable type!");
6550 
6551     IRBuilder<NoFolder> IRB(&IP);
6552     const DataLayout &DL = F.getParent()->getDataLayout();
6553 
6554     // Traverse the type, build GEPs and stores.
6555     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6556       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6557       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6558         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6559         Value *Ptr =
6560             constructPointer(PointeeTy, PrivType, &Base,
6561                              PrivStructLayout->getElementOffset(u), IRB, DL);
6562         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6563       }
6564     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6565       Type *PointeeTy = PrivArrayType->getElementType();
6566       Type *PointeePtrTy = PointeeTy->getPointerTo();
6567       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6568       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6569         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6570                                       u * PointeeTySize, IRB, DL);
6571         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6572       }
6573     } else {
6574       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6575     }
6576   }
6577 
6578   /// Extract values from \p Base according to the type \p PrivType at the
6579   /// call position \p ACS. The values are appended to \p ReplacementValues.
6580   void createReplacementValues(Align Alignment, Type *PrivType,
6581                                AbstractCallSite ACS, Value *Base,
6582                                SmallVectorImpl<Value *> &ReplacementValues) {
6583     assert(Base && "Expected base value!");
6584     assert(PrivType && "Expected privatizable type!");
6585     Instruction *IP = ACS.getInstruction();
6586 
6587     IRBuilder<NoFolder> IRB(IP);
6588     const DataLayout &DL = IP->getModule()->getDataLayout();
6589 
6590     if (Base->getType()->getPointerElementType() != PrivType)
6591       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6592                                                  "", ACS.getInstruction());
6593 
6594     // Traverse the type, build GEPs and loads.
6595     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6596       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6597       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6598         Type *PointeeTy = PrivStructType->getElementType(u);
6599         Value *Ptr =
6600             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6601                              PrivStructLayout->getElementOffset(u), IRB, DL);
6602         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6603         L->setAlignment(Alignment);
6604         ReplacementValues.push_back(L);
6605       }
6606     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6607       Type *PointeeTy = PrivArrayType->getElementType();
6608       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6609       Type *PointeePtrTy = PointeeTy->getPointerTo();
6610       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6611         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6612                                       u * PointeeTySize, IRB, DL);
6613         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6614         L->setAlignment(Alignment);
6615         ReplacementValues.push_back(L);
6616       }
6617     } else {
6618       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6619       L->setAlignment(Alignment);
6620       ReplacementValues.push_back(L);
6621     }
6622   }
6623 
6624   /// See AbstractAttribute::manifest(...)
6625   ChangeStatus manifest(Attributor &A) override {
6626     if (!PrivatizableType.hasValue())
6627       return ChangeStatus::UNCHANGED;
6628     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6629 
6630     // Collect all tail calls in the function as we cannot allow new allocas to
6631     // escape into tail recursion.
6632     // TODO: Be smarter about new allocas escaping into tail calls.
6633     SmallVector<CallInst *, 16> TailCalls;
6634     bool UsedAssumedInformation = false;
6635     if (!A.checkForAllInstructions(
6636             [&](Instruction &I) {
6637               CallInst &CI = cast<CallInst>(I);
6638               if (CI.isTailCall())
6639                 TailCalls.push_back(&CI);
6640               return true;
6641             },
6642             *this, {Instruction::Call}, UsedAssumedInformation))
6643       return ChangeStatus::UNCHANGED;
6644 
6645     Argument *Arg = getAssociatedArgument();
6646     // Query AAAlign attribute for alignment of associated argument to
6647     // determine the best alignment of loads.
6648     const auto &AlignAA =
6649         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6650 
6651     // Callback to repair the associated function. A new alloca is placed at the
6652     // beginning and initialized with the values passed through arguments. The
6653     // new alloca replaces the use of the old pointer argument.
6654     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6655         [=](const Attributor::ArgumentReplacementInfo &ARI,
6656             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6657           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6658           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6659           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6660                                            Arg->getName() + ".priv", IP);
6661           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6662                                ArgIt->getArgNo(), *IP);
6663 
6664           if (AI->getType() != Arg->getType())
6665             AI =
6666                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6667           Arg->replaceAllUsesWith(AI);
6668 
6669           for (CallInst *CI : TailCalls)
6670             CI->setTailCall(false);
6671         };
6672 
6673     // Callback to repair a call site of the associated function. The elements
6674     // of the privatizable type are loaded prior to the call and passed to the
6675     // new function version.
6676     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6677         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6678                       AbstractCallSite ACS,
6679                       SmallVectorImpl<Value *> &NewArgOperands) {
6680           // When no alignment is specified for the load instruction,
6681           // natural alignment is assumed.
6682           createReplacementValues(
6683               assumeAligned(AlignAA.getAssumedAlign()),
6684               PrivatizableType.getValue(), ACS,
6685               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6686               NewArgOperands);
6687         };
6688 
6689     // Collect the types that will replace the privatizable type in the function
6690     // signature.
6691     SmallVector<Type *, 16> ReplacementTypes;
6692     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6693 
6694     // Register a rewrite of the argument.
6695     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6696                                            std::move(FnRepairCB),
6697                                            std::move(ACSRepairCB)))
6698       return ChangeStatus::CHANGED;
6699     return ChangeStatus::UNCHANGED;
6700   }
6701 
6702   /// See AbstractAttribute::trackStatistics()
6703   void trackStatistics() const override {
6704     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6705   }
6706 };
6707 
6708 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6709   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6710       : AAPrivatizablePtrImpl(IRP, A) {}
6711 
6712   /// See AbstractAttribute::initialize(...).
6713   virtual void initialize(Attributor &A) override {
6714     // TODO: We can privatize more than arguments.
6715     indicatePessimisticFixpoint();
6716   }
6717 
6718   ChangeStatus updateImpl(Attributor &A) override {
6719     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6720                      "updateImpl will not be called");
6721   }
6722 
6723   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6724   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6725     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6726     if (!Obj) {
6727       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6728       return nullptr;
6729     }
6730 
6731     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6732       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6733         if (CI->isOne())
6734           return Obj->getType()->getPointerElementType();
6735     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6736       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6737           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6738       if (PrivArgAA.isAssumedPrivatizablePtr())
6739         return Obj->getType()->getPointerElementType();
6740     }
6741 
6742     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6743                          "alloca nor privatizable argument: "
6744                       << *Obj << "!\n");
6745     return nullptr;
6746   }
6747 
6748   /// See AbstractAttribute::trackStatistics()
6749   void trackStatistics() const override {
6750     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6751   }
6752 };
6753 
6754 struct AAPrivatizablePtrCallSiteArgument final
6755     : public AAPrivatizablePtrFloating {
6756   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6757       : AAPrivatizablePtrFloating(IRP, A) {}
6758 
6759   /// See AbstractAttribute::initialize(...).
6760   void initialize(Attributor &A) override {
6761     if (getIRPosition().hasAttr(Attribute::ByVal))
6762       indicateOptimisticFixpoint();
6763   }
6764 
6765   /// See AbstractAttribute::updateImpl(...).
6766   ChangeStatus updateImpl(Attributor &A) override {
6767     PrivatizableType = identifyPrivatizableType(A);
6768     if (!PrivatizableType.hasValue())
6769       return ChangeStatus::UNCHANGED;
6770     if (!PrivatizableType.getValue())
6771       return indicatePessimisticFixpoint();
6772 
6773     const IRPosition &IRP = getIRPosition();
6774     auto &NoCaptureAA =
6775         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6776     if (!NoCaptureAA.isAssumedNoCapture()) {
6777       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6778       return indicatePessimisticFixpoint();
6779     }
6780 
6781     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6782     if (!NoAliasAA.isAssumedNoAlias()) {
6783       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6784       return indicatePessimisticFixpoint();
6785     }
6786 
6787     const auto &MemBehaviorAA =
6788         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6789     if (!MemBehaviorAA.isAssumedReadOnly()) {
6790       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6791       return indicatePessimisticFixpoint();
6792     }
6793 
6794     return ChangeStatus::UNCHANGED;
6795   }
6796 
6797   /// See AbstractAttribute::trackStatistics()
6798   void trackStatistics() const override {
6799     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6800   }
6801 };
6802 
6803 struct AAPrivatizablePtrCallSiteReturned final
6804     : public AAPrivatizablePtrFloating {
6805   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6806       : AAPrivatizablePtrFloating(IRP, A) {}
6807 
6808   /// See AbstractAttribute::initialize(...).
6809   void initialize(Attributor &A) override {
6810     // TODO: We can privatize more than arguments.
6811     indicatePessimisticFixpoint();
6812   }
6813 
6814   /// See AbstractAttribute::trackStatistics()
6815   void trackStatistics() const override {
6816     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6817   }
6818 };
6819 
6820 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6821   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6822       : AAPrivatizablePtrFloating(IRP, A) {}
6823 
6824   /// See AbstractAttribute::initialize(...).
6825   void initialize(Attributor &A) override {
6826     // TODO: We can privatize more than arguments.
6827     indicatePessimisticFixpoint();
6828   }
6829 
6830   /// See AbstractAttribute::trackStatistics()
6831   void trackStatistics() const override {
6832     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6833   }
6834 };
6835 
6836 /// -------------------- Memory Behavior Attributes ----------------------------
6837 /// Includes read-none, read-only, and write-only.
6838 /// ----------------------------------------------------------------------------
6839 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6840   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6841       : AAMemoryBehavior(IRP, A) {}
6842 
6843   /// See AbstractAttribute::initialize(...).
6844   void initialize(Attributor &A) override {
6845     intersectAssumedBits(BEST_STATE);
6846     getKnownStateFromValue(getIRPosition(), getState());
6847     AAMemoryBehavior::initialize(A);
6848   }
6849 
6850   /// Return the memory behavior information encoded in the IR for \p IRP.
6851   static void getKnownStateFromValue(const IRPosition &IRP,
6852                                      BitIntegerState &State,
6853                                      bool IgnoreSubsumingPositions = false) {
6854     SmallVector<Attribute, 2> Attrs;
6855     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6856     for (const Attribute &Attr : Attrs) {
6857       switch (Attr.getKindAsEnum()) {
6858       case Attribute::ReadNone:
6859         State.addKnownBits(NO_ACCESSES);
6860         break;
6861       case Attribute::ReadOnly:
6862         State.addKnownBits(NO_WRITES);
6863         break;
6864       case Attribute::WriteOnly:
6865         State.addKnownBits(NO_READS);
6866         break;
6867       default:
6868         llvm_unreachable("Unexpected attribute!");
6869       }
6870     }
6871 
6872     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6873       if (!I->mayReadFromMemory())
6874         State.addKnownBits(NO_READS);
6875       if (!I->mayWriteToMemory())
6876         State.addKnownBits(NO_WRITES);
6877     }
6878   }
6879 
6880   /// See AbstractAttribute::getDeducedAttributes(...).
6881   void getDeducedAttributes(LLVMContext &Ctx,
6882                             SmallVectorImpl<Attribute> &Attrs) const override {
6883     assert(Attrs.size() == 0);
6884     if (isAssumedReadNone())
6885       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6886     else if (isAssumedReadOnly())
6887       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6888     else if (isAssumedWriteOnly())
6889       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6890     assert(Attrs.size() <= 1);
6891   }
6892 
6893   /// See AbstractAttribute::manifest(...).
6894   ChangeStatus manifest(Attributor &A) override {
6895     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6896       return ChangeStatus::UNCHANGED;
6897 
6898     const IRPosition &IRP = getIRPosition();
6899 
6900     // Check if we would improve the existing attributes first.
6901     SmallVector<Attribute, 4> DeducedAttrs;
6902     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6903     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6904           return IRP.hasAttr(Attr.getKindAsEnum(),
6905                              /* IgnoreSubsumingPositions */ true);
6906         }))
6907       return ChangeStatus::UNCHANGED;
6908 
6909     // Clear existing attributes.
6910     IRP.removeAttrs(AttrKinds);
6911 
6912     // Use the generic manifest method.
6913     return IRAttribute::manifest(A);
6914   }
6915 
6916   /// See AbstractState::getAsStr().
6917   const std::string getAsStr() const override {
6918     if (isAssumedReadNone())
6919       return "readnone";
6920     if (isAssumedReadOnly())
6921       return "readonly";
6922     if (isAssumedWriteOnly())
6923       return "writeonly";
6924     return "may-read/write";
6925   }
6926 
6927   /// The set of IR attributes AAMemoryBehavior deals with.
6928   static const Attribute::AttrKind AttrKinds[3];
6929 };
6930 
6931 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6932     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6933 
6934 /// Memory behavior attribute for a floating value.
6935 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6936   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6937       : AAMemoryBehaviorImpl(IRP, A) {}
6938 
6939   /// See AbstractAttribute::updateImpl(...).
6940   ChangeStatus updateImpl(Attributor &A) override;
6941 
6942   /// See AbstractAttribute::trackStatistics()
6943   void trackStatistics() const override {
6944     if (isAssumedReadNone())
6945       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6946     else if (isAssumedReadOnly())
6947       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6948     else if (isAssumedWriteOnly())
6949       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6950   }
6951 
6952 private:
6953   /// Return true if users of \p UserI might access the underlying
6954   /// variable/location described by \p U and should therefore be analyzed.
6955   bool followUsersOfUseIn(Attributor &A, const Use &U,
6956                           const Instruction *UserI);
6957 
6958   /// Update the state according to the effect of use \p U in \p UserI.
6959   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
6960 };
6961 
6962 /// Memory behavior attribute for function argument.
6963 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6964   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6965       : AAMemoryBehaviorFloating(IRP, A) {}
6966 
6967   /// See AbstractAttribute::initialize(...).
6968   void initialize(Attributor &A) override {
6969     intersectAssumedBits(BEST_STATE);
6970     const IRPosition &IRP = getIRPosition();
6971     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
6972     // can query it when we use has/getAttr. That would allow us to reuse the
6973     // initialize of the base class here.
6974     bool HasByVal =
6975         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
6976     getKnownStateFromValue(IRP, getState(),
6977                            /* IgnoreSubsumingPositions */ HasByVal);
6978 
6979     // Initialize the use vector with all direct uses of the associated value.
6980     Argument *Arg = getAssociatedArgument();
6981     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
6982       indicatePessimisticFixpoint();
6983   }
6984 
6985   ChangeStatus manifest(Attributor &A) override {
6986     // TODO: Pointer arguments are not supported on vectors of pointers yet.
6987     if (!getAssociatedValue().getType()->isPointerTy())
6988       return ChangeStatus::UNCHANGED;
6989 
6990     // TODO: From readattrs.ll: "inalloca parameters are always
6991     //                           considered written"
6992     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
6993       removeKnownBits(NO_WRITES);
6994       removeAssumedBits(NO_WRITES);
6995     }
6996     return AAMemoryBehaviorFloating::manifest(A);
6997   }
6998 
6999   /// See AbstractAttribute::trackStatistics()
7000   void trackStatistics() const override {
7001     if (isAssumedReadNone())
7002       STATS_DECLTRACK_ARG_ATTR(readnone)
7003     else if (isAssumedReadOnly())
7004       STATS_DECLTRACK_ARG_ATTR(readonly)
7005     else if (isAssumedWriteOnly())
7006       STATS_DECLTRACK_ARG_ATTR(writeonly)
7007   }
7008 };
7009 
7010 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7011   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7012       : AAMemoryBehaviorArgument(IRP, A) {}
7013 
7014   /// See AbstractAttribute::initialize(...).
7015   void initialize(Attributor &A) override {
7016     // If we don't have an associated attribute this is either a variadic call
7017     // or an indirect call, either way, nothing to do here.
7018     Argument *Arg = getAssociatedArgument();
7019     if (!Arg) {
7020       indicatePessimisticFixpoint();
7021       return;
7022     }
7023     if (Arg->hasByValAttr()) {
7024       addKnownBits(NO_WRITES);
7025       removeKnownBits(NO_READS);
7026       removeAssumedBits(NO_READS);
7027     }
7028     AAMemoryBehaviorArgument::initialize(A);
7029     if (getAssociatedFunction()->isDeclaration())
7030       indicatePessimisticFixpoint();
7031   }
7032 
7033   /// See AbstractAttribute::updateImpl(...).
7034   ChangeStatus updateImpl(Attributor &A) override {
7035     // TODO: Once we have call site specific value information we can provide
7036     //       call site specific liveness liveness information and then it makes
7037     //       sense to specialize attributes for call sites arguments instead of
7038     //       redirecting requests to the callee argument.
7039     Argument *Arg = getAssociatedArgument();
7040     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7041     auto &ArgAA =
7042         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7043     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7044   }
7045 
7046   /// See AbstractAttribute::trackStatistics()
7047   void trackStatistics() const override {
7048     if (isAssumedReadNone())
7049       STATS_DECLTRACK_CSARG_ATTR(readnone)
7050     else if (isAssumedReadOnly())
7051       STATS_DECLTRACK_CSARG_ATTR(readonly)
7052     else if (isAssumedWriteOnly())
7053       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7054   }
7055 };
7056 
7057 /// Memory behavior attribute for a call site return position.
7058 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7059   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7060       : AAMemoryBehaviorFloating(IRP, A) {}
7061 
7062   /// See AbstractAttribute::initialize(...).
7063   void initialize(Attributor &A) override {
7064     AAMemoryBehaviorImpl::initialize(A);
7065     Function *F = getAssociatedFunction();
7066     if (!F || F->isDeclaration())
7067       indicatePessimisticFixpoint();
7068   }
7069 
7070   /// See AbstractAttribute::manifest(...).
7071   ChangeStatus manifest(Attributor &A) override {
7072     // We do not annotate returned values.
7073     return ChangeStatus::UNCHANGED;
7074   }
7075 
7076   /// See AbstractAttribute::trackStatistics()
7077   void trackStatistics() const override {}
7078 };
7079 
7080 /// An AA to represent the memory behavior function attributes.
7081 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7082   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7083       : AAMemoryBehaviorImpl(IRP, A) {}
7084 
7085   /// See AbstractAttribute::updateImpl(Attributor &A).
7086   virtual ChangeStatus updateImpl(Attributor &A) override;
7087 
7088   /// See AbstractAttribute::manifest(...).
7089   ChangeStatus manifest(Attributor &A) override {
7090     Function &F = cast<Function>(getAnchorValue());
7091     if (isAssumedReadNone()) {
7092       F.removeFnAttr(Attribute::ArgMemOnly);
7093       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7094       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7095     }
7096     return AAMemoryBehaviorImpl::manifest(A);
7097   }
7098 
7099   /// See AbstractAttribute::trackStatistics()
7100   void trackStatistics() const override {
7101     if (isAssumedReadNone())
7102       STATS_DECLTRACK_FN_ATTR(readnone)
7103     else if (isAssumedReadOnly())
7104       STATS_DECLTRACK_FN_ATTR(readonly)
7105     else if (isAssumedWriteOnly())
7106       STATS_DECLTRACK_FN_ATTR(writeonly)
7107   }
7108 };
7109 
7110 /// AAMemoryBehavior attribute for call sites.
7111 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7112   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7113       : AAMemoryBehaviorImpl(IRP, A) {}
7114 
7115   /// See AbstractAttribute::initialize(...).
7116   void initialize(Attributor &A) override {
7117     AAMemoryBehaviorImpl::initialize(A);
7118     Function *F = getAssociatedFunction();
7119     if (!F || F->isDeclaration())
7120       indicatePessimisticFixpoint();
7121   }
7122 
7123   /// See AbstractAttribute::updateImpl(...).
7124   ChangeStatus updateImpl(Attributor &A) override {
7125     // TODO: Once we have call site specific value information we can provide
7126     //       call site specific liveness liveness information and then it makes
7127     //       sense to specialize attributes for call sites arguments instead of
7128     //       redirecting requests to the callee argument.
7129     Function *F = getAssociatedFunction();
7130     const IRPosition &FnPos = IRPosition::function(*F);
7131     auto &FnAA =
7132         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7133     return clampStateAndIndicateChange(getState(), FnAA.getState());
7134   }
7135 
7136   /// See AbstractAttribute::trackStatistics()
7137   void trackStatistics() const override {
7138     if (isAssumedReadNone())
7139       STATS_DECLTRACK_CS_ATTR(readnone)
7140     else if (isAssumedReadOnly())
7141       STATS_DECLTRACK_CS_ATTR(readonly)
7142     else if (isAssumedWriteOnly())
7143       STATS_DECLTRACK_CS_ATTR(writeonly)
7144   }
7145 };
7146 
7147 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7148 
7149   // The current assumed state used to determine a change.
7150   auto AssumedState = getAssumed();
7151 
7152   auto CheckRWInst = [&](Instruction &I) {
7153     // If the instruction has an own memory behavior state, use it to restrict
7154     // the local state. No further analysis is required as the other memory
7155     // state is as optimistic as it gets.
7156     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7157       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7158           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7159       intersectAssumedBits(MemBehaviorAA.getAssumed());
7160       return !isAtFixpoint();
7161     }
7162 
7163     // Remove access kind modifiers if necessary.
7164     if (I.mayReadFromMemory())
7165       removeAssumedBits(NO_READS);
7166     if (I.mayWriteToMemory())
7167       removeAssumedBits(NO_WRITES);
7168     return !isAtFixpoint();
7169   };
7170 
7171   bool UsedAssumedInformation = false;
7172   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7173                                           UsedAssumedInformation))
7174     return indicatePessimisticFixpoint();
7175 
7176   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7177                                         : ChangeStatus::UNCHANGED;
7178 }
7179 
7180 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7181 
7182   const IRPosition &IRP = getIRPosition();
7183   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7184   AAMemoryBehavior::StateType &S = getState();
7185 
7186   // First, check the function scope. We take the known information and we avoid
7187   // work if the assumed information implies the current assumed information for
7188   // this attribute. This is a valid for all but byval arguments.
7189   Argument *Arg = IRP.getAssociatedArgument();
7190   AAMemoryBehavior::base_t FnMemAssumedState =
7191       AAMemoryBehavior::StateType::getWorstState();
7192   if (!Arg || !Arg->hasByValAttr()) {
7193     const auto &FnMemAA =
7194         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7195     FnMemAssumedState = FnMemAA.getAssumed();
7196     S.addKnownBits(FnMemAA.getKnown());
7197     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7198       return ChangeStatus::UNCHANGED;
7199   }
7200 
7201   // The current assumed state used to determine a change.
7202   auto AssumedState = S.getAssumed();
7203 
7204   // Make sure the value is not captured (except through "return"), if
7205   // it is, any information derived would be irrelevant anyway as we cannot
7206   // check the potential aliases introduced by the capture. However, no need
7207   // to fall back to anythign less optimistic than the function state.
7208   const auto &ArgNoCaptureAA =
7209       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7210   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7211     S.intersectAssumedBits(FnMemAssumedState);
7212     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7213                                           : ChangeStatus::UNCHANGED;
7214   }
7215 
7216   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7217   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7218     Instruction *UserI = cast<Instruction>(U.getUser());
7219     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7220                       << " \n");
7221 
7222     // Droppable users, e.g., llvm::assume does not actually perform any action.
7223     if (UserI->isDroppable())
7224       return true;
7225 
7226     // Check if the users of UserI should also be visited.
7227     Follow = followUsersOfUseIn(A, U, UserI);
7228 
7229     // If UserI might touch memory we analyze the use in detail.
7230     if (UserI->mayReadOrWriteMemory())
7231       analyzeUseIn(A, U, UserI);
7232 
7233     return !isAtFixpoint();
7234   };
7235 
7236   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7237     return indicatePessimisticFixpoint();
7238 
7239   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7240                                         : ChangeStatus::UNCHANGED;
7241 }
7242 
7243 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7244                                                   const Instruction *UserI) {
7245   // The loaded value is unrelated to the pointer argument, no need to
7246   // follow the users of the load.
7247   if (isa<LoadInst>(UserI))
7248     return false;
7249 
7250   // By default we follow all uses assuming UserI might leak information on U,
7251   // we have special handling for call sites operands though.
7252   const auto *CB = dyn_cast<CallBase>(UserI);
7253   if (!CB || !CB->isArgOperand(&U))
7254     return true;
7255 
7256   // If the use is a call argument known not to be captured, the users of
7257   // the call do not need to be visited because they have to be unrelated to
7258   // the input. Note that this check is not trivial even though we disallow
7259   // general capturing of the underlying argument. The reason is that the
7260   // call might the argument "through return", which we allow and for which we
7261   // need to check call users.
7262   if (U.get()->getType()->isPointerTy()) {
7263     unsigned ArgNo = CB->getArgOperandNo(&U);
7264     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7265         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7266     return !ArgNoCaptureAA.isAssumedNoCapture();
7267   }
7268 
7269   return true;
7270 }
7271 
7272 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7273                                             const Instruction *UserI) {
7274   assert(UserI->mayReadOrWriteMemory());
7275 
7276   switch (UserI->getOpcode()) {
7277   default:
7278     // TODO: Handle all atomics and other side-effect operations we know of.
7279     break;
7280   case Instruction::Load:
7281     // Loads cause the NO_READS property to disappear.
7282     removeAssumedBits(NO_READS);
7283     return;
7284 
7285   case Instruction::Store:
7286     // Stores cause the NO_WRITES property to disappear if the use is the
7287     // pointer operand. Note that we do assume that capturing was taken care of
7288     // somewhere else.
7289     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7290       removeAssumedBits(NO_WRITES);
7291     return;
7292 
7293   case Instruction::Call:
7294   case Instruction::CallBr:
7295   case Instruction::Invoke: {
7296     // For call sites we look at the argument memory behavior attribute (this
7297     // could be recursive!) in order to restrict our own state.
7298     const auto *CB = cast<CallBase>(UserI);
7299 
7300     // Give up on operand bundles.
7301     if (CB->isBundleOperand(&U)) {
7302       indicatePessimisticFixpoint();
7303       return;
7304     }
7305 
7306     // Calling a function does read the function pointer, maybe write it if the
7307     // function is self-modifying.
7308     if (CB->isCallee(&U)) {
7309       removeAssumedBits(NO_READS);
7310       break;
7311     }
7312 
7313     // Adjust the possible access behavior based on the information on the
7314     // argument.
7315     IRPosition Pos;
7316     if (U.get()->getType()->isPointerTy())
7317       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7318     else
7319       Pos = IRPosition::callsite_function(*CB);
7320     const auto &MemBehaviorAA =
7321         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7322     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7323     // and at least "known".
7324     intersectAssumedBits(MemBehaviorAA.getAssumed());
7325     return;
7326   }
7327   };
7328 
7329   // Generally, look at the "may-properties" and adjust the assumed state if we
7330   // did not trigger special handling before.
7331   if (UserI->mayReadFromMemory())
7332     removeAssumedBits(NO_READS);
7333   if (UserI->mayWriteToMemory())
7334     removeAssumedBits(NO_WRITES);
7335 }
7336 
7337 /// -------------------- Memory Locations Attributes ---------------------------
7338 /// Includes read-none, argmemonly, inaccessiblememonly,
7339 /// inaccessiblememorargmemonly
7340 /// ----------------------------------------------------------------------------
7341 
7342 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7343     AAMemoryLocation::MemoryLocationsKind MLK) {
7344   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7345     return "all memory";
7346   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7347     return "no memory";
7348   std::string S = "memory:";
7349   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7350     S += "stack,";
7351   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7352     S += "constant,";
7353   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7354     S += "internal global,";
7355   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7356     S += "external global,";
7357   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7358     S += "argument,";
7359   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7360     S += "inaccessible,";
7361   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7362     S += "malloced,";
7363   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7364     S += "unknown,";
7365   S.pop_back();
7366   return S;
7367 }
7368 
7369 namespace {
7370 struct AAMemoryLocationImpl : public AAMemoryLocation {
7371 
7372   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7373       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7374     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7375       AccessKind2Accesses[u] = nullptr;
7376   }
7377 
7378   ~AAMemoryLocationImpl() {
7379     // The AccessSets are allocated via a BumpPtrAllocator, we call
7380     // the destructor manually.
7381     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7382       if (AccessKind2Accesses[u])
7383         AccessKind2Accesses[u]->~AccessSet();
7384   }
7385 
7386   /// See AbstractAttribute::initialize(...).
7387   void initialize(Attributor &A) override {
7388     intersectAssumedBits(BEST_STATE);
7389     getKnownStateFromValue(A, getIRPosition(), getState());
7390     AAMemoryLocation::initialize(A);
7391   }
7392 
7393   /// Return the memory behavior information encoded in the IR for \p IRP.
7394   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7395                                      BitIntegerState &State,
7396                                      bool IgnoreSubsumingPositions = false) {
7397     // For internal functions we ignore `argmemonly` and
7398     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7399     // constant propagation. It is unclear if this is the best way but it is
7400     // unlikely this will cause real performance problems. If we are deriving
7401     // attributes for the anchor function we even remove the attribute in
7402     // addition to ignoring it.
7403     bool UseArgMemOnly = true;
7404     Function *AnchorFn = IRP.getAnchorScope();
7405     if (AnchorFn && A.isRunOn(*AnchorFn))
7406       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7407 
7408     SmallVector<Attribute, 2> Attrs;
7409     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7410     for (const Attribute &Attr : Attrs) {
7411       switch (Attr.getKindAsEnum()) {
7412       case Attribute::ReadNone:
7413         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7414         break;
7415       case Attribute::InaccessibleMemOnly:
7416         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7417         break;
7418       case Attribute::ArgMemOnly:
7419         if (UseArgMemOnly)
7420           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7421         else
7422           IRP.removeAttrs({Attribute::ArgMemOnly});
7423         break;
7424       case Attribute::InaccessibleMemOrArgMemOnly:
7425         if (UseArgMemOnly)
7426           State.addKnownBits(inverseLocation(
7427               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7428         else
7429           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7430         break;
7431       default:
7432         llvm_unreachable("Unexpected attribute!");
7433       }
7434     }
7435   }
7436 
7437   /// See AbstractAttribute::getDeducedAttributes(...).
7438   void getDeducedAttributes(LLVMContext &Ctx,
7439                             SmallVectorImpl<Attribute> &Attrs) const override {
7440     assert(Attrs.size() == 0);
7441     if (isAssumedReadNone()) {
7442       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7443     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7444       if (isAssumedInaccessibleMemOnly())
7445         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7446       else if (isAssumedArgMemOnly())
7447         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7448       else if (isAssumedInaccessibleOrArgMemOnly())
7449         Attrs.push_back(
7450             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7451     }
7452     assert(Attrs.size() <= 1);
7453   }
7454 
7455   /// See AbstractAttribute::manifest(...).
7456   ChangeStatus manifest(Attributor &A) override {
7457     const IRPosition &IRP = getIRPosition();
7458 
7459     // Check if we would improve the existing attributes first.
7460     SmallVector<Attribute, 4> DeducedAttrs;
7461     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7462     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7463           return IRP.hasAttr(Attr.getKindAsEnum(),
7464                              /* IgnoreSubsumingPositions */ true);
7465         }))
7466       return ChangeStatus::UNCHANGED;
7467 
7468     // Clear existing attributes.
7469     IRP.removeAttrs(AttrKinds);
7470     if (isAssumedReadNone())
7471       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7472 
7473     // Use the generic manifest method.
7474     return IRAttribute::manifest(A);
7475   }
7476 
7477   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7478   bool checkForAllAccessesToMemoryKind(
7479       function_ref<bool(const Instruction *, const Value *, AccessKind,
7480                         MemoryLocationsKind)>
7481           Pred,
7482       MemoryLocationsKind RequestedMLK) const override {
7483     if (!isValidState())
7484       return false;
7485 
7486     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7487     if (AssumedMLK == NO_LOCATIONS)
7488       return true;
7489 
7490     unsigned Idx = 0;
7491     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7492          CurMLK *= 2, ++Idx) {
7493       if (CurMLK & RequestedMLK)
7494         continue;
7495 
7496       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7497         for (const AccessInfo &AI : *Accesses)
7498           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7499             return false;
7500     }
7501 
7502     return true;
7503   }
7504 
7505   ChangeStatus indicatePessimisticFixpoint() override {
7506     // If we give up and indicate a pessimistic fixpoint this instruction will
7507     // become an access for all potential access kinds:
7508     // TODO: Add pointers for argmemonly and globals to improve the results of
7509     //       checkForAllAccessesToMemoryKind.
7510     bool Changed = false;
7511     MemoryLocationsKind KnownMLK = getKnown();
7512     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7513     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7514       if (!(CurMLK & KnownMLK))
7515         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7516                                   getAccessKindFromInst(I));
7517     return AAMemoryLocation::indicatePessimisticFixpoint();
7518   }
7519 
7520 protected:
7521   /// Helper struct to tie together an instruction that has a read or write
7522   /// effect with the pointer it accesses (if any).
7523   struct AccessInfo {
7524 
7525     /// The instruction that caused the access.
7526     const Instruction *I;
7527 
7528     /// The base pointer that is accessed, or null if unknown.
7529     const Value *Ptr;
7530 
7531     /// The kind of access (read/write/read+write).
7532     AccessKind Kind;
7533 
7534     bool operator==(const AccessInfo &RHS) const {
7535       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7536     }
7537     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7538       if (LHS.I != RHS.I)
7539         return LHS.I < RHS.I;
7540       if (LHS.Ptr != RHS.Ptr)
7541         return LHS.Ptr < RHS.Ptr;
7542       if (LHS.Kind != RHS.Kind)
7543         return LHS.Kind < RHS.Kind;
7544       return false;
7545     }
7546   };
7547 
7548   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7549   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7550   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7551   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7552 
7553   /// Categorize the pointer arguments of CB that might access memory in
7554   /// AccessedLoc and update the state and access map accordingly.
7555   void
7556   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7557                                      AAMemoryLocation::StateType &AccessedLocs,
7558                                      bool &Changed);
7559 
7560   /// Return the kind(s) of location that may be accessed by \p V.
7561   AAMemoryLocation::MemoryLocationsKind
7562   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7563 
7564   /// Return the access kind as determined by \p I.
7565   AccessKind getAccessKindFromInst(const Instruction *I) {
7566     AccessKind AK = READ_WRITE;
7567     if (I) {
7568       AK = I->mayReadFromMemory() ? READ : NONE;
7569       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7570     }
7571     return AK;
7572   }
7573 
7574   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7575   /// an access of kind \p AK to a \p MLK memory location with the access
7576   /// pointer \p Ptr.
7577   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7578                                  MemoryLocationsKind MLK, const Instruction *I,
7579                                  const Value *Ptr, bool &Changed,
7580                                  AccessKind AK = READ_WRITE) {
7581 
7582     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7583     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7584     if (!Accesses)
7585       Accesses = new (Allocator) AccessSet();
7586     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7587     State.removeAssumedBits(MLK);
7588   }
7589 
7590   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7591   /// arguments, and update the state and access map accordingly.
7592   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7593                           AAMemoryLocation::StateType &State, bool &Changed);
7594 
7595   /// Used to allocate access sets.
7596   BumpPtrAllocator &Allocator;
7597 
7598   /// The set of IR attributes AAMemoryLocation deals with.
7599   static const Attribute::AttrKind AttrKinds[4];
7600 };
7601 
7602 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7603     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7604     Attribute::InaccessibleMemOrArgMemOnly};
7605 
7606 void AAMemoryLocationImpl::categorizePtrValue(
7607     Attributor &A, const Instruction &I, const Value &Ptr,
7608     AAMemoryLocation::StateType &State, bool &Changed) {
7609   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7610                     << Ptr << " ["
7611                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7612 
7613   SmallVector<Value *, 8> Objects;
7614   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7615     LLVM_DEBUG(
7616         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7617     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7618                               getAccessKindFromInst(&I));
7619     return;
7620   }
7621 
7622   for (Value *Obj : Objects) {
7623     // TODO: recognize the TBAA used for constant accesses.
7624     MemoryLocationsKind MLK = NO_LOCATIONS;
7625     assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped.");
7626     if (isa<UndefValue>(Obj))
7627       continue;
7628     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7629       if (Arg->hasByValAttr())
7630         MLK = NO_LOCAL_MEM;
7631       else
7632         MLK = NO_ARGUMENT_MEM;
7633     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7634       // Reading constant memory is not treated as a read "effect" by the
7635       // function attr pass so we won't neither. Constants defined by TBAA are
7636       // similar. (We know we do not write it because it is constant.)
7637       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7638         if (GVar->isConstant())
7639           continue;
7640 
7641       if (GV->hasLocalLinkage())
7642         MLK = NO_GLOBAL_INTERNAL_MEM;
7643       else
7644         MLK = NO_GLOBAL_EXTERNAL_MEM;
7645     } else if (isa<ConstantPointerNull>(Obj) &&
7646                !NullPointerIsDefined(getAssociatedFunction(),
7647                                      Ptr.getType()->getPointerAddressSpace())) {
7648       continue;
7649     } else if (isa<AllocaInst>(Obj)) {
7650       MLK = NO_LOCAL_MEM;
7651     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7652       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7653           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7654       if (NoAliasAA.isAssumedNoAlias())
7655         MLK = NO_MALLOCED_MEM;
7656       else
7657         MLK = NO_UNKOWN_MEM;
7658     } else {
7659       MLK = NO_UNKOWN_MEM;
7660     }
7661 
7662     assert(MLK != NO_LOCATIONS && "No location specified!");
7663     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7664                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7665                       << "\n");
7666     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7667                               getAccessKindFromInst(&I));
7668   }
7669 
7670   LLVM_DEBUG(
7671       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7672              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7673 }
7674 
7675 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7676     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7677     bool &Changed) {
7678   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
7679 
7680     // Skip non-pointer arguments.
7681     const Value *ArgOp = CB.getArgOperand(ArgNo);
7682     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7683       continue;
7684 
7685     // Skip readnone arguments.
7686     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7687     const auto &ArgOpMemLocationAA =
7688         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7689 
7690     if (ArgOpMemLocationAA.isAssumedReadNone())
7691       continue;
7692 
7693     // Categorize potentially accessed pointer arguments as if there was an
7694     // access instruction with them as pointer.
7695     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7696   }
7697 }
7698 
7699 AAMemoryLocation::MemoryLocationsKind
7700 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7701                                                   bool &Changed) {
7702   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7703                     << I << "\n");
7704 
7705   AAMemoryLocation::StateType AccessedLocs;
7706   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7707 
7708   if (auto *CB = dyn_cast<CallBase>(&I)) {
7709 
7710     // First check if we assume any memory is access is visible.
7711     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7712         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7713     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7714                       << " [" << CBMemLocationAA << "]\n");
7715 
7716     if (CBMemLocationAA.isAssumedReadNone())
7717       return NO_LOCATIONS;
7718 
7719     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7720       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7721                                 Changed, getAccessKindFromInst(&I));
7722       return AccessedLocs.getAssumed();
7723     }
7724 
7725     uint32_t CBAssumedNotAccessedLocs =
7726         CBMemLocationAA.getAssumedNotAccessedLocation();
7727 
7728     // Set the argmemonly and global bit as we handle them separately below.
7729     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7730         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7731 
7732     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7733       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7734         continue;
7735       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7736                                 getAccessKindFromInst(&I));
7737     }
7738 
7739     // Now handle global memory if it might be accessed. This is slightly tricky
7740     // as NO_GLOBAL_MEM has multiple bits set.
7741     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7742     if (HasGlobalAccesses) {
7743       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7744                             AccessKind Kind, MemoryLocationsKind MLK) {
7745         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7746                                   getAccessKindFromInst(&I));
7747         return true;
7748       };
7749       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7750               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7751         return AccessedLocs.getWorstState();
7752     }
7753 
7754     LLVM_DEBUG(
7755         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7756                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7757 
7758     // Now handle argument memory if it might be accessed.
7759     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7760     if (HasArgAccesses)
7761       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7762 
7763     LLVM_DEBUG(
7764         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7765                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7766 
7767     return AccessedLocs.getAssumed();
7768   }
7769 
7770   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7771     LLVM_DEBUG(
7772         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7773                << I << " [" << *Ptr << "]\n");
7774     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7775     return AccessedLocs.getAssumed();
7776   }
7777 
7778   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7779                     << I << "\n");
7780   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7781                             getAccessKindFromInst(&I));
7782   return AccessedLocs.getAssumed();
7783 }
7784 
7785 /// An AA to represent the memory behavior function attributes.
7786 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7787   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7788       : AAMemoryLocationImpl(IRP, A) {}
7789 
7790   /// See AbstractAttribute::updateImpl(Attributor &A).
7791   virtual ChangeStatus updateImpl(Attributor &A) override {
7792 
7793     const auto &MemBehaviorAA =
7794         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7795     if (MemBehaviorAA.isAssumedReadNone()) {
7796       if (MemBehaviorAA.isKnownReadNone())
7797         return indicateOptimisticFixpoint();
7798       assert(isAssumedReadNone() &&
7799              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7800       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7801       return ChangeStatus::UNCHANGED;
7802     }
7803 
7804     // The current assumed state used to determine a change.
7805     auto AssumedState = getAssumed();
7806     bool Changed = false;
7807 
7808     auto CheckRWInst = [&](Instruction &I) {
7809       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7810       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7811                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7812       removeAssumedBits(inverseLocation(MLK, false, false));
7813       // Stop once only the valid bit set in the *not assumed location*, thus
7814       // once we don't actually exclude any memory locations in the state.
7815       return getAssumedNotAccessedLocation() != VALID_STATE;
7816     };
7817 
7818     bool UsedAssumedInformation = false;
7819     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7820                                             UsedAssumedInformation))
7821       return indicatePessimisticFixpoint();
7822 
7823     Changed |= AssumedState != getAssumed();
7824     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7825   }
7826 
7827   /// See AbstractAttribute::trackStatistics()
7828   void trackStatistics() const override {
7829     if (isAssumedReadNone())
7830       STATS_DECLTRACK_FN_ATTR(readnone)
7831     else if (isAssumedArgMemOnly())
7832       STATS_DECLTRACK_FN_ATTR(argmemonly)
7833     else if (isAssumedInaccessibleMemOnly())
7834       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7835     else if (isAssumedInaccessibleOrArgMemOnly())
7836       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7837   }
7838 };
7839 
7840 /// AAMemoryLocation attribute for call sites.
7841 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7842   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7843       : AAMemoryLocationImpl(IRP, A) {}
7844 
7845   /// See AbstractAttribute::initialize(...).
7846   void initialize(Attributor &A) override {
7847     AAMemoryLocationImpl::initialize(A);
7848     Function *F = getAssociatedFunction();
7849     if (!F || F->isDeclaration())
7850       indicatePessimisticFixpoint();
7851   }
7852 
7853   /// See AbstractAttribute::updateImpl(...).
7854   ChangeStatus updateImpl(Attributor &A) override {
7855     // TODO: Once we have call site specific value information we can provide
7856     //       call site specific liveness liveness information and then it makes
7857     //       sense to specialize attributes for call sites arguments instead of
7858     //       redirecting requests to the callee argument.
7859     Function *F = getAssociatedFunction();
7860     const IRPosition &FnPos = IRPosition::function(*F);
7861     auto &FnAA =
7862         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7863     bool Changed = false;
7864     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7865                           AccessKind Kind, MemoryLocationsKind MLK) {
7866       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7867                                 getAccessKindFromInst(I));
7868       return true;
7869     };
7870     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7871       return indicatePessimisticFixpoint();
7872     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7873   }
7874 
7875   /// See AbstractAttribute::trackStatistics()
7876   void trackStatistics() const override {
7877     if (isAssumedReadNone())
7878       STATS_DECLTRACK_CS_ATTR(readnone)
7879   }
7880 };
7881 
7882 /// ------------------ Value Constant Range Attribute -------------------------
7883 
7884 struct AAValueConstantRangeImpl : AAValueConstantRange {
7885   using StateType = IntegerRangeState;
7886   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7887       : AAValueConstantRange(IRP, A) {}
7888 
7889   /// See AbstractAttribute::getAsStr().
7890   const std::string getAsStr() const override {
7891     std::string Str;
7892     llvm::raw_string_ostream OS(Str);
7893     OS << "range(" << getBitWidth() << ")<";
7894     getKnown().print(OS);
7895     OS << " / ";
7896     getAssumed().print(OS);
7897     OS << ">";
7898     return OS.str();
7899   }
7900 
7901   /// Helper function to get a SCEV expr for the associated value at program
7902   /// point \p I.
7903   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7904     if (!getAnchorScope())
7905       return nullptr;
7906 
7907     ScalarEvolution *SE =
7908         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7909             *getAnchorScope());
7910 
7911     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7912         *getAnchorScope());
7913 
7914     if (!SE || !LI)
7915       return nullptr;
7916 
7917     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7918     if (!I)
7919       return S;
7920 
7921     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7922   }
7923 
7924   /// Helper function to get a range from SCEV for the associated value at
7925   /// program point \p I.
7926   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7927                                          const Instruction *I = nullptr) const {
7928     if (!getAnchorScope())
7929       return getWorstState(getBitWidth());
7930 
7931     ScalarEvolution *SE =
7932         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7933             *getAnchorScope());
7934 
7935     const SCEV *S = getSCEV(A, I);
7936     if (!SE || !S)
7937       return getWorstState(getBitWidth());
7938 
7939     return SE->getUnsignedRange(S);
7940   }
7941 
7942   /// Helper function to get a range from LVI for the associated value at
7943   /// program point \p I.
7944   ConstantRange
7945   getConstantRangeFromLVI(Attributor &A,
7946                           const Instruction *CtxI = nullptr) const {
7947     if (!getAnchorScope())
7948       return getWorstState(getBitWidth());
7949 
7950     LazyValueInfo *LVI =
7951         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
7952             *getAnchorScope());
7953 
7954     if (!LVI || !CtxI)
7955       return getWorstState(getBitWidth());
7956     return LVI->getConstantRange(&getAssociatedValue(),
7957                                  const_cast<Instruction *>(CtxI));
7958   }
7959 
7960   /// Return true if \p CtxI is valid for querying outside analyses.
7961   /// This basically makes sure we do not ask intra-procedural analysis
7962   /// about a context in the wrong function or a context that violates
7963   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
7964   /// if the original context of this AA is OK or should be considered invalid.
7965   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
7966                                                const Instruction *CtxI,
7967                                                bool AllowAACtxI) const {
7968     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
7969       return false;
7970 
7971     // Our context might be in a different function, neither intra-procedural
7972     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
7973     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
7974       return false;
7975 
7976     // If the context is not dominated by the value there are paths to the
7977     // context that do not define the value. This cannot be handled by
7978     // LazyValueInfo so we need to bail.
7979     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
7980       InformationCache &InfoCache = A.getInfoCache();
7981       const DominatorTree *DT =
7982           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
7983               *I->getFunction());
7984       return DT && DT->dominates(I, CtxI);
7985     }
7986 
7987     return true;
7988   }
7989 
7990   /// See AAValueConstantRange::getKnownConstantRange(..).
7991   ConstantRange
7992   getKnownConstantRange(Attributor &A,
7993                         const Instruction *CtxI = nullptr) const override {
7994     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
7995                                                  /* AllowAACtxI */ false))
7996       return getKnown();
7997 
7998     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7999     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8000     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8001   }
8002 
8003   /// See AAValueConstantRange::getAssumedConstantRange(..).
8004   ConstantRange
8005   getAssumedConstantRange(Attributor &A,
8006                           const Instruction *CtxI = nullptr) const override {
8007     // TODO: Make SCEV use Attributor assumption.
8008     //       We may be able to bound a variable range via assumptions in
8009     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8010     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8011     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8012                                                  /* AllowAACtxI */ false))
8013       return getAssumed();
8014 
8015     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8016     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8017     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8018   }
8019 
8020   /// See AbstractAttribute::initialize(..).
8021   void initialize(Attributor &A) override {
8022     // Intersect a range given by SCEV.
8023     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8024 
8025     // Intersect a range given by LVI.
8026     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8027   }
8028 
8029   /// Helper function to create MDNode for range metadata.
8030   static MDNode *
8031   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8032                             const ConstantRange &AssumedConstantRange) {
8033     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8034                                   Ty, AssumedConstantRange.getLower())),
8035                               ConstantAsMetadata::get(ConstantInt::get(
8036                                   Ty, AssumedConstantRange.getUpper()))};
8037     return MDNode::get(Ctx, LowAndHigh);
8038   }
8039 
8040   /// Return true if \p Assumed is included in \p KnownRanges.
8041   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8042 
8043     if (Assumed.isFullSet())
8044       return false;
8045 
8046     if (!KnownRanges)
8047       return true;
8048 
8049     // If multiple ranges are annotated in IR, we give up to annotate assumed
8050     // range for now.
8051 
8052     // TODO:  If there exists a known range which containts assumed range, we
8053     // can say assumed range is better.
8054     if (KnownRanges->getNumOperands() > 2)
8055       return false;
8056 
8057     ConstantInt *Lower =
8058         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8059     ConstantInt *Upper =
8060         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8061 
8062     ConstantRange Known(Lower->getValue(), Upper->getValue());
8063     return Known.contains(Assumed) && Known != Assumed;
8064   }
8065 
8066   /// Helper function to set range metadata.
8067   static bool
8068   setRangeMetadataIfisBetterRange(Instruction *I,
8069                                   const ConstantRange &AssumedConstantRange) {
8070     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8071     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8072       if (!AssumedConstantRange.isEmptySet()) {
8073         I->setMetadata(LLVMContext::MD_range,
8074                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8075                                                  AssumedConstantRange));
8076         return true;
8077       }
8078     }
8079     return false;
8080   }
8081 
8082   /// See AbstractAttribute::manifest()
8083   ChangeStatus manifest(Attributor &A) override {
8084     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8085     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8086     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8087 
8088     auto &V = getAssociatedValue();
8089     if (!AssumedConstantRange.isEmptySet() &&
8090         !AssumedConstantRange.isSingleElement()) {
8091       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8092         assert(I == getCtxI() && "Should not annotate an instruction which is "
8093                                  "not the context instruction");
8094         if (isa<CallInst>(I) || isa<LoadInst>(I))
8095           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8096             Changed = ChangeStatus::CHANGED;
8097       }
8098     }
8099 
8100     return Changed;
8101   }
8102 };
8103 
8104 struct AAValueConstantRangeArgument final
8105     : AAArgumentFromCallSiteArguments<
8106           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8107           true /* BridgeCallBaseContext */> {
8108   using Base = AAArgumentFromCallSiteArguments<
8109       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8110       true /* BridgeCallBaseContext */>;
8111   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8112       : Base(IRP, A) {}
8113 
8114   /// See AbstractAttribute::initialize(..).
8115   void initialize(Attributor &A) override {
8116     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8117       indicatePessimisticFixpoint();
8118     } else {
8119       Base::initialize(A);
8120     }
8121   }
8122 
8123   /// See AbstractAttribute::trackStatistics()
8124   void trackStatistics() const override {
8125     STATS_DECLTRACK_ARG_ATTR(value_range)
8126   }
8127 };
8128 
8129 struct AAValueConstantRangeReturned
8130     : AAReturnedFromReturnedValues<AAValueConstantRange,
8131                                    AAValueConstantRangeImpl,
8132                                    AAValueConstantRangeImpl::StateType,
8133                                    /* PropogateCallBaseContext */ true> {
8134   using Base =
8135       AAReturnedFromReturnedValues<AAValueConstantRange,
8136                                    AAValueConstantRangeImpl,
8137                                    AAValueConstantRangeImpl::StateType,
8138                                    /* PropogateCallBaseContext */ true>;
8139   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8140       : Base(IRP, A) {}
8141 
8142   /// See AbstractAttribute::initialize(...).
8143   void initialize(Attributor &A) override {}
8144 
8145   /// See AbstractAttribute::trackStatistics()
8146   void trackStatistics() const override {
8147     STATS_DECLTRACK_FNRET_ATTR(value_range)
8148   }
8149 };
8150 
8151 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8152   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8153       : AAValueConstantRangeImpl(IRP, A) {}
8154 
8155   /// See AbstractAttribute::initialize(...).
8156   void initialize(Attributor &A) override {
8157     AAValueConstantRangeImpl::initialize(A);
8158     Value &V = getAssociatedValue();
8159 
8160     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8161       unionAssumed(ConstantRange(C->getValue()));
8162       indicateOptimisticFixpoint();
8163       return;
8164     }
8165 
8166     if (isa<UndefValue>(&V)) {
8167       // Collapse the undef state to 0.
8168       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8169       indicateOptimisticFixpoint();
8170       return;
8171     }
8172 
8173     if (isa<CallBase>(&V))
8174       return;
8175 
8176     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8177       return;
8178     // If it is a load instruction with range metadata, use it.
8179     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8180       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8181         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8182         return;
8183       }
8184 
8185     // We can work with PHI and select instruction as we traverse their operands
8186     // during update.
8187     if (isa<SelectInst>(V) || isa<PHINode>(V))
8188       return;
8189 
8190     // Otherwise we give up.
8191     indicatePessimisticFixpoint();
8192 
8193     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8194                       << getAssociatedValue() << "\n");
8195   }
8196 
8197   bool calculateBinaryOperator(
8198       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8199       const Instruction *CtxI,
8200       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8201     Value *LHS = BinOp->getOperand(0);
8202     Value *RHS = BinOp->getOperand(1);
8203 
8204     // Simplify the operands first.
8205     bool UsedAssumedInformation = false;
8206     const auto &SimplifiedLHS =
8207         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8208                                *this, UsedAssumedInformation);
8209     if (!SimplifiedLHS.hasValue())
8210       return true;
8211     if (!SimplifiedLHS.getValue())
8212       return false;
8213     LHS = *SimplifiedLHS;
8214 
8215     const auto &SimplifiedRHS =
8216         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8217                                *this, UsedAssumedInformation);
8218     if (!SimplifiedRHS.hasValue())
8219       return true;
8220     if (!SimplifiedRHS.getValue())
8221       return false;
8222     RHS = *SimplifiedRHS;
8223 
8224     // TODO: Allow non integers as well.
8225     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8226       return false;
8227 
8228     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8229         *this, IRPosition::value(*LHS, getCallBaseContext()),
8230         DepClassTy::REQUIRED);
8231     QuerriedAAs.push_back(&LHSAA);
8232     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8233 
8234     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8235         *this, IRPosition::value(*RHS, getCallBaseContext()),
8236         DepClassTy::REQUIRED);
8237     QuerriedAAs.push_back(&RHSAA);
8238     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8239 
8240     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8241 
8242     T.unionAssumed(AssumedRange);
8243 
8244     // TODO: Track a known state too.
8245 
8246     return T.isValidState();
8247   }
8248 
8249   bool calculateCastInst(
8250       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8251       const Instruction *CtxI,
8252       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8253     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8254     // TODO: Allow non integers as well.
8255     Value *OpV = CastI->getOperand(0);
8256 
8257     // Simplify the operand first.
8258     bool UsedAssumedInformation = false;
8259     const auto &SimplifiedOpV =
8260         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8261                                *this, UsedAssumedInformation);
8262     if (!SimplifiedOpV.hasValue())
8263       return true;
8264     if (!SimplifiedOpV.getValue())
8265       return false;
8266     OpV = *SimplifiedOpV;
8267 
8268     if (!OpV->getType()->isIntegerTy())
8269       return false;
8270 
8271     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8272         *this, IRPosition::value(*OpV, getCallBaseContext()),
8273         DepClassTy::REQUIRED);
8274     QuerriedAAs.push_back(&OpAA);
8275     T.unionAssumed(
8276         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8277     return T.isValidState();
8278   }
8279 
8280   bool
8281   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8282                    const Instruction *CtxI,
8283                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8284     Value *LHS = CmpI->getOperand(0);
8285     Value *RHS = CmpI->getOperand(1);
8286 
8287     // Simplify the operands first.
8288     bool UsedAssumedInformation = false;
8289     const auto &SimplifiedLHS =
8290         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8291                                *this, UsedAssumedInformation);
8292     if (!SimplifiedLHS.hasValue())
8293       return true;
8294     if (!SimplifiedLHS.getValue())
8295       return false;
8296     LHS = *SimplifiedLHS;
8297 
8298     const auto &SimplifiedRHS =
8299         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8300                                *this, UsedAssumedInformation);
8301     if (!SimplifiedRHS.hasValue())
8302       return true;
8303     if (!SimplifiedRHS.getValue())
8304       return false;
8305     RHS = *SimplifiedRHS;
8306 
8307     // TODO: Allow non integers as well.
8308     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8309       return false;
8310 
8311     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8312         *this, IRPosition::value(*LHS, getCallBaseContext()),
8313         DepClassTy::REQUIRED);
8314     QuerriedAAs.push_back(&LHSAA);
8315     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8316         *this, IRPosition::value(*RHS, getCallBaseContext()),
8317         DepClassTy::REQUIRED);
8318     QuerriedAAs.push_back(&RHSAA);
8319     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8320     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8321 
8322     // If one of them is empty set, we can't decide.
8323     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8324       return true;
8325 
8326     bool MustTrue = false, MustFalse = false;
8327 
8328     auto AllowedRegion =
8329         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8330 
8331     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8332       MustFalse = true;
8333 
8334     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8335       MustTrue = true;
8336 
8337     assert((!MustTrue || !MustFalse) &&
8338            "Either MustTrue or MustFalse should be false!");
8339 
8340     if (MustTrue)
8341       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8342     else if (MustFalse)
8343       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8344     else
8345       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8346 
8347     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8348                       << " " << RHSAA << "\n");
8349 
8350     // TODO: Track a known state too.
8351     return T.isValidState();
8352   }
8353 
8354   /// See AbstractAttribute::updateImpl(...).
8355   ChangeStatus updateImpl(Attributor &A) override {
8356     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8357                             IntegerRangeState &T, bool Stripped) -> bool {
8358       Instruction *I = dyn_cast<Instruction>(&V);
8359       if (!I || isa<CallBase>(I)) {
8360 
8361         // Simplify the operand first.
8362         bool UsedAssumedInformation = false;
8363         const auto &SimplifiedOpV =
8364             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8365                                    *this, UsedAssumedInformation);
8366         if (!SimplifiedOpV.hasValue())
8367           return true;
8368         if (!SimplifiedOpV.getValue())
8369           return false;
8370         Value *VPtr = *SimplifiedOpV;
8371 
8372         // If the value is not instruction, we query AA to Attributor.
8373         const auto &AA = A.getAAFor<AAValueConstantRange>(
8374             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8375             DepClassTy::REQUIRED);
8376 
8377         // Clamp operator is not used to utilize a program point CtxI.
8378         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8379 
8380         return T.isValidState();
8381       }
8382 
8383       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8384       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8385         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8386           return false;
8387       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8388         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8389           return false;
8390       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8391         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8392           return false;
8393       } else {
8394         // Give up with other instructions.
8395         // TODO: Add other instructions
8396 
8397         T.indicatePessimisticFixpoint();
8398         return false;
8399       }
8400 
8401       // Catch circular reasoning in a pessimistic way for now.
8402       // TODO: Check how the range evolves and if we stripped anything, see also
8403       //       AADereferenceable or AAAlign for similar situations.
8404       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8405         if (QueriedAA != this)
8406           continue;
8407         // If we are in a stady state we do not need to worry.
8408         if (T.getAssumed() == getState().getAssumed())
8409           continue;
8410         T.indicatePessimisticFixpoint();
8411       }
8412 
8413       return T.isValidState();
8414     };
8415 
8416     IntegerRangeState T(getBitWidth());
8417 
8418     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8419                                                   VisitValueCB, getCtxI(),
8420                                                   /* UseValueSimplify */ false))
8421       return indicatePessimisticFixpoint();
8422 
8423     return clampStateAndIndicateChange(getState(), T);
8424   }
8425 
8426   /// See AbstractAttribute::trackStatistics()
8427   void trackStatistics() const override {
8428     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8429   }
8430 };
8431 
8432 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8433   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8434       : AAValueConstantRangeImpl(IRP, A) {}
8435 
8436   /// See AbstractAttribute::initialize(...).
8437   ChangeStatus updateImpl(Attributor &A) override {
8438     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8439                      "not be called");
8440   }
8441 
8442   /// See AbstractAttribute::trackStatistics()
8443   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8444 };
8445 
8446 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8447   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8448       : AAValueConstantRangeFunction(IRP, A) {}
8449 
8450   /// See AbstractAttribute::trackStatistics()
8451   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8452 };
8453 
8454 struct AAValueConstantRangeCallSiteReturned
8455     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8456                                      AAValueConstantRangeImpl,
8457                                      AAValueConstantRangeImpl::StateType,
8458                                      /* IntroduceCallBaseContext */ true> {
8459   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8460       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8461                                        AAValueConstantRangeImpl,
8462                                        AAValueConstantRangeImpl::StateType,
8463                                        /* IntroduceCallBaseContext */ true>(IRP,
8464                                                                             A) {
8465   }
8466 
8467   /// See AbstractAttribute::initialize(...).
8468   void initialize(Attributor &A) override {
8469     // If it is a load instruction with range metadata, use the metadata.
8470     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8471       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8472         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8473 
8474     AAValueConstantRangeImpl::initialize(A);
8475   }
8476 
8477   /// See AbstractAttribute::trackStatistics()
8478   void trackStatistics() const override {
8479     STATS_DECLTRACK_CSRET_ATTR(value_range)
8480   }
8481 };
8482 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8483   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8484       : AAValueConstantRangeFloating(IRP, A) {}
8485 
8486   /// See AbstractAttribute::manifest()
8487   ChangeStatus manifest(Attributor &A) override {
8488     return ChangeStatus::UNCHANGED;
8489   }
8490 
8491   /// See AbstractAttribute::trackStatistics()
8492   void trackStatistics() const override {
8493     STATS_DECLTRACK_CSARG_ATTR(value_range)
8494   }
8495 };
8496 
8497 /// ------------------ Potential Values Attribute -------------------------
8498 
8499 struct AAPotentialValuesImpl : AAPotentialValues {
8500   using StateType = PotentialConstantIntValuesState;
8501 
8502   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8503       : AAPotentialValues(IRP, A) {}
8504 
8505   /// See AbstractAttribute::getAsStr().
8506   const std::string getAsStr() const override {
8507     std::string Str;
8508     llvm::raw_string_ostream OS(Str);
8509     OS << getState();
8510     return OS.str();
8511   }
8512 
8513   /// See AbstractAttribute::updateImpl(...).
8514   ChangeStatus updateImpl(Attributor &A) override {
8515     return indicatePessimisticFixpoint();
8516   }
8517 };
8518 
8519 struct AAPotentialValuesArgument final
8520     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8521                                       PotentialConstantIntValuesState> {
8522   using Base =
8523       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8524                                       PotentialConstantIntValuesState>;
8525   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8526       : Base(IRP, A) {}
8527 
8528   /// See AbstractAttribute::initialize(..).
8529   void initialize(Attributor &A) override {
8530     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8531       indicatePessimisticFixpoint();
8532     } else {
8533       Base::initialize(A);
8534     }
8535   }
8536 
8537   /// See AbstractAttribute::trackStatistics()
8538   void trackStatistics() const override {
8539     STATS_DECLTRACK_ARG_ATTR(potential_values)
8540   }
8541 };
8542 
8543 struct AAPotentialValuesReturned
8544     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8545   using Base =
8546       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8547   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8548       : Base(IRP, A) {}
8549 
8550   /// See AbstractAttribute::trackStatistics()
8551   void trackStatistics() const override {
8552     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8553   }
8554 };
8555 
8556 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8557   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8558       : AAPotentialValuesImpl(IRP, A) {}
8559 
8560   /// See AbstractAttribute::initialize(..).
8561   void initialize(Attributor &A) override {
8562     Value &V = getAssociatedValue();
8563 
8564     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8565       unionAssumed(C->getValue());
8566       indicateOptimisticFixpoint();
8567       return;
8568     }
8569 
8570     if (isa<UndefValue>(&V)) {
8571       unionAssumedWithUndef();
8572       indicateOptimisticFixpoint();
8573       return;
8574     }
8575 
8576     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8577       return;
8578 
8579     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8580       return;
8581 
8582     indicatePessimisticFixpoint();
8583 
8584     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8585                       << getAssociatedValue() << "\n");
8586   }
8587 
8588   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8589                                 const APInt &RHS) {
8590     ICmpInst::Predicate Pred = ICI->getPredicate();
8591     switch (Pred) {
8592     case ICmpInst::ICMP_UGT:
8593       return LHS.ugt(RHS);
8594     case ICmpInst::ICMP_SGT:
8595       return LHS.sgt(RHS);
8596     case ICmpInst::ICMP_EQ:
8597       return LHS.eq(RHS);
8598     case ICmpInst::ICMP_UGE:
8599       return LHS.uge(RHS);
8600     case ICmpInst::ICMP_SGE:
8601       return LHS.sge(RHS);
8602     case ICmpInst::ICMP_ULT:
8603       return LHS.ult(RHS);
8604     case ICmpInst::ICMP_SLT:
8605       return LHS.slt(RHS);
8606     case ICmpInst::ICMP_NE:
8607       return LHS.ne(RHS);
8608     case ICmpInst::ICMP_ULE:
8609       return LHS.ule(RHS);
8610     case ICmpInst::ICMP_SLE:
8611       return LHS.sle(RHS);
8612     default:
8613       llvm_unreachable("Invalid ICmp predicate!");
8614     }
8615   }
8616 
8617   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8618                                  uint32_t ResultBitWidth) {
8619     Instruction::CastOps CastOp = CI->getOpcode();
8620     switch (CastOp) {
8621     default:
8622       llvm_unreachable("unsupported or not integer cast");
8623     case Instruction::Trunc:
8624       return Src.trunc(ResultBitWidth);
8625     case Instruction::SExt:
8626       return Src.sext(ResultBitWidth);
8627     case Instruction::ZExt:
8628       return Src.zext(ResultBitWidth);
8629     case Instruction::BitCast:
8630       return Src;
8631     }
8632   }
8633 
8634   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8635                                        const APInt &LHS, const APInt &RHS,
8636                                        bool &SkipOperation, bool &Unsupported) {
8637     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8638     // Unsupported is set to true when the binary operator is not supported.
8639     // SkipOperation is set to true when UB occur with the given operand pair
8640     // (LHS, RHS).
8641     // TODO: we should look at nsw and nuw keywords to handle operations
8642     //       that create poison or undef value.
8643     switch (BinOpcode) {
8644     default:
8645       Unsupported = true;
8646       return LHS;
8647     case Instruction::Add:
8648       return LHS + RHS;
8649     case Instruction::Sub:
8650       return LHS - RHS;
8651     case Instruction::Mul:
8652       return LHS * RHS;
8653     case Instruction::UDiv:
8654       if (RHS.isNullValue()) {
8655         SkipOperation = true;
8656         return LHS;
8657       }
8658       return LHS.udiv(RHS);
8659     case Instruction::SDiv:
8660       if (RHS.isNullValue()) {
8661         SkipOperation = true;
8662         return LHS;
8663       }
8664       return LHS.sdiv(RHS);
8665     case Instruction::URem:
8666       if (RHS.isNullValue()) {
8667         SkipOperation = true;
8668         return LHS;
8669       }
8670       return LHS.urem(RHS);
8671     case Instruction::SRem:
8672       if (RHS.isNullValue()) {
8673         SkipOperation = true;
8674         return LHS;
8675       }
8676       return LHS.srem(RHS);
8677     case Instruction::Shl:
8678       return LHS.shl(RHS);
8679     case Instruction::LShr:
8680       return LHS.lshr(RHS);
8681     case Instruction::AShr:
8682       return LHS.ashr(RHS);
8683     case Instruction::And:
8684       return LHS & RHS;
8685     case Instruction::Or:
8686       return LHS | RHS;
8687     case Instruction::Xor:
8688       return LHS ^ RHS;
8689     }
8690   }
8691 
8692   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8693                                            const APInt &LHS, const APInt &RHS) {
8694     bool SkipOperation = false;
8695     bool Unsupported = false;
8696     APInt Result =
8697         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8698     if (Unsupported)
8699       return false;
8700     // If SkipOperation is true, we can ignore this operand pair (L, R).
8701     if (!SkipOperation)
8702       unionAssumed(Result);
8703     return isValidState();
8704   }
8705 
8706   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8707     auto AssumedBefore = getAssumed();
8708     Value *LHS = ICI->getOperand(0);
8709     Value *RHS = ICI->getOperand(1);
8710 
8711     // Simplify the operands first.
8712     bool UsedAssumedInformation = false;
8713     const auto &SimplifiedLHS =
8714         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8715                                *this, UsedAssumedInformation);
8716     if (!SimplifiedLHS.hasValue())
8717       return ChangeStatus::UNCHANGED;
8718     if (!SimplifiedLHS.getValue())
8719       return indicatePessimisticFixpoint();
8720     LHS = *SimplifiedLHS;
8721 
8722     const auto &SimplifiedRHS =
8723         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8724                                *this, UsedAssumedInformation);
8725     if (!SimplifiedRHS.hasValue())
8726       return ChangeStatus::UNCHANGED;
8727     if (!SimplifiedRHS.getValue())
8728       return indicatePessimisticFixpoint();
8729     RHS = *SimplifiedRHS;
8730 
8731     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8732       return indicatePessimisticFixpoint();
8733 
8734     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8735                                                 DepClassTy::REQUIRED);
8736     if (!LHSAA.isValidState())
8737       return indicatePessimisticFixpoint();
8738 
8739     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8740                                                 DepClassTy::REQUIRED);
8741     if (!RHSAA.isValidState())
8742       return indicatePessimisticFixpoint();
8743 
8744     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8745     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8746 
8747     // TODO: make use of undef flag to limit potential values aggressively.
8748     bool MaybeTrue = false, MaybeFalse = false;
8749     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8750     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8751       // The result of any comparison between undefs can be soundly replaced
8752       // with undef.
8753       unionAssumedWithUndef();
8754     } else if (LHSAA.undefIsContained()) {
8755       for (const APInt &R : RHSAAPVS) {
8756         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8757         MaybeTrue |= CmpResult;
8758         MaybeFalse |= !CmpResult;
8759         if (MaybeTrue & MaybeFalse)
8760           return indicatePessimisticFixpoint();
8761       }
8762     } else if (RHSAA.undefIsContained()) {
8763       for (const APInt &L : LHSAAPVS) {
8764         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8765         MaybeTrue |= CmpResult;
8766         MaybeFalse |= !CmpResult;
8767         if (MaybeTrue & MaybeFalse)
8768           return indicatePessimisticFixpoint();
8769       }
8770     } else {
8771       for (const APInt &L : LHSAAPVS) {
8772         for (const APInt &R : RHSAAPVS) {
8773           bool CmpResult = calculateICmpInst(ICI, L, R);
8774           MaybeTrue |= CmpResult;
8775           MaybeFalse |= !CmpResult;
8776           if (MaybeTrue & MaybeFalse)
8777             return indicatePessimisticFixpoint();
8778         }
8779       }
8780     }
8781     if (MaybeTrue)
8782       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8783     if (MaybeFalse)
8784       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8785     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8786                                          : ChangeStatus::CHANGED;
8787   }
8788 
8789   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8790     auto AssumedBefore = getAssumed();
8791     Value *LHS = SI->getTrueValue();
8792     Value *RHS = SI->getFalseValue();
8793 
8794     // Simplify the operands first.
8795     bool UsedAssumedInformation = false;
8796     const auto &SimplifiedLHS =
8797         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8798                                *this, UsedAssumedInformation);
8799     if (!SimplifiedLHS.hasValue())
8800       return ChangeStatus::UNCHANGED;
8801     if (!SimplifiedLHS.getValue())
8802       return indicatePessimisticFixpoint();
8803     LHS = *SimplifiedLHS;
8804 
8805     const auto &SimplifiedRHS =
8806         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8807                                *this, UsedAssumedInformation);
8808     if (!SimplifiedRHS.hasValue())
8809       return ChangeStatus::UNCHANGED;
8810     if (!SimplifiedRHS.getValue())
8811       return indicatePessimisticFixpoint();
8812     RHS = *SimplifiedRHS;
8813 
8814     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8815       return indicatePessimisticFixpoint();
8816 
8817     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8818                                                   UsedAssumedInformation);
8819 
8820     // Check if we only need one operand.
8821     bool OnlyLeft = false, OnlyRight = false;
8822     if (C.hasValue() && *C && (*C)->isOneValue())
8823       OnlyLeft = true;
8824     else if (C.hasValue() && *C && (*C)->isZeroValue())
8825       OnlyRight = true;
8826 
8827     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8828     if (!OnlyRight) {
8829       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8830                                              DepClassTy::REQUIRED);
8831       if (!LHSAA->isValidState())
8832         return indicatePessimisticFixpoint();
8833     }
8834     if (!OnlyLeft) {
8835       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8836                                              DepClassTy::REQUIRED);
8837       if (!RHSAA->isValidState())
8838         return indicatePessimisticFixpoint();
8839     }
8840 
8841     if (!LHSAA || !RHSAA) {
8842       // select (true/false), lhs, rhs
8843       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8844 
8845       if (OpAA->undefIsContained())
8846         unionAssumedWithUndef();
8847       else
8848         unionAssumed(*OpAA);
8849 
8850     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8851       // select i1 *, undef , undef => undef
8852       unionAssumedWithUndef();
8853     } else {
8854       unionAssumed(*LHSAA);
8855       unionAssumed(*RHSAA);
8856     }
8857     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8858                                          : ChangeStatus::CHANGED;
8859   }
8860 
8861   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8862     auto AssumedBefore = getAssumed();
8863     if (!CI->isIntegerCast())
8864       return indicatePessimisticFixpoint();
8865     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8866     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8867     Value *Src = CI->getOperand(0);
8868 
8869     // Simplify the operand first.
8870     bool UsedAssumedInformation = false;
8871     const auto &SimplifiedSrc =
8872         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8873                                *this, UsedAssumedInformation);
8874     if (!SimplifiedSrc.hasValue())
8875       return ChangeStatus::UNCHANGED;
8876     if (!SimplifiedSrc.getValue())
8877       return indicatePessimisticFixpoint();
8878     Src = *SimplifiedSrc;
8879 
8880     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8881                                                 DepClassTy::REQUIRED);
8882     if (!SrcAA.isValidState())
8883       return indicatePessimisticFixpoint();
8884     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8885     if (SrcAA.undefIsContained())
8886       unionAssumedWithUndef();
8887     else {
8888       for (const APInt &S : SrcAAPVS) {
8889         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8890         unionAssumed(T);
8891       }
8892     }
8893     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8894                                          : ChangeStatus::CHANGED;
8895   }
8896 
8897   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8898     auto AssumedBefore = getAssumed();
8899     Value *LHS = BinOp->getOperand(0);
8900     Value *RHS = BinOp->getOperand(1);
8901 
8902     // Simplify the operands first.
8903     bool UsedAssumedInformation = false;
8904     const auto &SimplifiedLHS =
8905         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8906                                *this, UsedAssumedInformation);
8907     if (!SimplifiedLHS.hasValue())
8908       return ChangeStatus::UNCHANGED;
8909     if (!SimplifiedLHS.getValue())
8910       return indicatePessimisticFixpoint();
8911     LHS = *SimplifiedLHS;
8912 
8913     const auto &SimplifiedRHS =
8914         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8915                                *this, UsedAssumedInformation);
8916     if (!SimplifiedRHS.hasValue())
8917       return ChangeStatus::UNCHANGED;
8918     if (!SimplifiedRHS.getValue())
8919       return indicatePessimisticFixpoint();
8920     RHS = *SimplifiedRHS;
8921 
8922     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8923       return indicatePessimisticFixpoint();
8924 
8925     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8926                                                 DepClassTy::REQUIRED);
8927     if (!LHSAA.isValidState())
8928       return indicatePessimisticFixpoint();
8929 
8930     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8931                                                 DepClassTy::REQUIRED);
8932     if (!RHSAA.isValidState())
8933       return indicatePessimisticFixpoint();
8934 
8935     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8936     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8937     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
8938 
8939     // TODO: make use of undef flag to limit potential values aggressively.
8940     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8941       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
8942         return indicatePessimisticFixpoint();
8943     } else if (LHSAA.undefIsContained()) {
8944       for (const APInt &R : RHSAAPVS) {
8945         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
8946           return indicatePessimisticFixpoint();
8947       }
8948     } else if (RHSAA.undefIsContained()) {
8949       for (const APInt &L : LHSAAPVS) {
8950         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
8951           return indicatePessimisticFixpoint();
8952       }
8953     } else {
8954       for (const APInt &L : LHSAAPVS) {
8955         for (const APInt &R : RHSAAPVS) {
8956           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
8957             return indicatePessimisticFixpoint();
8958         }
8959       }
8960     }
8961     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8962                                          : ChangeStatus::CHANGED;
8963   }
8964 
8965   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
8966     auto AssumedBefore = getAssumed();
8967     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
8968       Value *IncomingValue = PHI->getIncomingValue(u);
8969 
8970       // Simplify the operand first.
8971       bool UsedAssumedInformation = false;
8972       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
8973           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
8974           UsedAssumedInformation);
8975       if (!SimplifiedIncomingValue.hasValue())
8976         continue;
8977       if (!SimplifiedIncomingValue.getValue())
8978         return indicatePessimisticFixpoint();
8979       IncomingValue = *SimplifiedIncomingValue;
8980 
8981       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
8982           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
8983       if (!PotentialValuesAA.isValidState())
8984         return indicatePessimisticFixpoint();
8985       if (PotentialValuesAA.undefIsContained())
8986         unionAssumedWithUndef();
8987       else
8988         unionAssumed(PotentialValuesAA.getAssumed());
8989     }
8990     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8991                                          : ChangeStatus::CHANGED;
8992   }
8993 
8994   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
8995     if (!L.getType()->isIntegerTy())
8996       return indicatePessimisticFixpoint();
8997 
8998     auto Union = [&](Value &V) {
8999       if (isa<UndefValue>(V)) {
9000         unionAssumedWithUndef();
9001         return true;
9002       }
9003       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9004         unionAssumed(CI->getValue());
9005         return true;
9006       }
9007       return false;
9008     };
9009     auto AssumedBefore = getAssumed();
9010 
9011     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9012       return indicatePessimisticFixpoint();
9013 
9014     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9015                                          : ChangeStatus::CHANGED;
9016   }
9017 
9018   /// See AbstractAttribute::updateImpl(...).
9019   ChangeStatus updateImpl(Attributor &A) override {
9020     Value &V = getAssociatedValue();
9021     Instruction *I = dyn_cast<Instruction>(&V);
9022 
9023     if (auto *ICI = dyn_cast<ICmpInst>(I))
9024       return updateWithICmpInst(A, ICI);
9025 
9026     if (auto *SI = dyn_cast<SelectInst>(I))
9027       return updateWithSelectInst(A, SI);
9028 
9029     if (auto *CI = dyn_cast<CastInst>(I))
9030       return updateWithCastInst(A, CI);
9031 
9032     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9033       return updateWithBinaryOperator(A, BinOp);
9034 
9035     if (auto *PHI = dyn_cast<PHINode>(I))
9036       return updateWithPHINode(A, PHI);
9037 
9038     if (auto *L = dyn_cast<LoadInst>(I))
9039       return updateWithLoad(A, *L);
9040 
9041     return indicatePessimisticFixpoint();
9042   }
9043 
9044   /// See AbstractAttribute::trackStatistics()
9045   void trackStatistics() const override {
9046     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9047   }
9048 };
9049 
9050 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9051   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9052       : AAPotentialValuesImpl(IRP, A) {}
9053 
9054   /// See AbstractAttribute::initialize(...).
9055   ChangeStatus updateImpl(Attributor &A) override {
9056     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9057                      "not be called");
9058   }
9059 
9060   /// See AbstractAttribute::trackStatistics()
9061   void trackStatistics() const override {
9062     STATS_DECLTRACK_FN_ATTR(potential_values)
9063   }
9064 };
9065 
9066 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9067   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9068       : AAPotentialValuesFunction(IRP, A) {}
9069 
9070   /// See AbstractAttribute::trackStatistics()
9071   void trackStatistics() const override {
9072     STATS_DECLTRACK_CS_ATTR(potential_values)
9073   }
9074 };
9075 
9076 struct AAPotentialValuesCallSiteReturned
9077     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9078   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9079       : AACallSiteReturnedFromReturned<AAPotentialValues,
9080                                        AAPotentialValuesImpl>(IRP, A) {}
9081 
9082   /// See AbstractAttribute::trackStatistics()
9083   void trackStatistics() const override {
9084     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9085   }
9086 };
9087 
9088 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9089   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9090       : AAPotentialValuesFloating(IRP, A) {}
9091 
9092   /// See AbstractAttribute::initialize(..).
9093   void initialize(Attributor &A) override {
9094     Value &V = getAssociatedValue();
9095 
9096     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9097       unionAssumed(C->getValue());
9098       indicateOptimisticFixpoint();
9099       return;
9100     }
9101 
9102     if (isa<UndefValue>(&V)) {
9103       unionAssumedWithUndef();
9104       indicateOptimisticFixpoint();
9105       return;
9106     }
9107   }
9108 
9109   /// See AbstractAttribute::updateImpl(...).
9110   ChangeStatus updateImpl(Attributor &A) override {
9111     Value &V = getAssociatedValue();
9112     auto AssumedBefore = getAssumed();
9113     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9114                                              DepClassTy::REQUIRED);
9115     const auto &S = AA.getAssumed();
9116     unionAssumed(S);
9117     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9118                                          : ChangeStatus::CHANGED;
9119   }
9120 
9121   /// See AbstractAttribute::trackStatistics()
9122   void trackStatistics() const override {
9123     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9124   }
9125 };
9126 
9127 /// ------------------------ NoUndef Attribute ---------------------------------
9128 struct AANoUndefImpl : AANoUndef {
9129   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9130 
9131   /// See AbstractAttribute::initialize(...).
9132   void initialize(Attributor &A) override {
9133     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9134       indicateOptimisticFixpoint();
9135       return;
9136     }
9137     Value &V = getAssociatedValue();
9138     if (isa<UndefValue>(V))
9139       indicatePessimisticFixpoint();
9140     else if (isa<FreezeInst>(V))
9141       indicateOptimisticFixpoint();
9142     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9143              isGuaranteedNotToBeUndefOrPoison(&V))
9144       indicateOptimisticFixpoint();
9145     else
9146       AANoUndef::initialize(A);
9147   }
9148 
9149   /// See followUsesInMBEC
9150   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9151                        AANoUndef::StateType &State) {
9152     const Value *UseV = U->get();
9153     const DominatorTree *DT = nullptr;
9154     AssumptionCache *AC = nullptr;
9155     InformationCache &InfoCache = A.getInfoCache();
9156     if (Function *F = getAnchorScope()) {
9157       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9158       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9159     }
9160     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9161     bool TrackUse = false;
9162     // Track use for instructions which must produce undef or poison bits when
9163     // at least one operand contains such bits.
9164     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9165       TrackUse = true;
9166     return TrackUse;
9167   }
9168 
9169   /// See AbstractAttribute::getAsStr().
9170   const std::string getAsStr() const override {
9171     return getAssumed() ? "noundef" : "may-undef-or-poison";
9172   }
9173 
9174   ChangeStatus manifest(Attributor &A) override {
9175     // We don't manifest noundef attribute for dead positions because the
9176     // associated values with dead positions would be replaced with undef
9177     // values.
9178     bool UsedAssumedInformation = false;
9179     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9180                         UsedAssumedInformation))
9181       return ChangeStatus::UNCHANGED;
9182     // A position whose simplified value does not have any value is
9183     // considered to be dead. We don't manifest noundef in such positions for
9184     // the same reason above.
9185     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9186              .hasValue())
9187       return ChangeStatus::UNCHANGED;
9188     return AANoUndef::manifest(A);
9189   }
9190 };
9191 
9192 struct AANoUndefFloating : public AANoUndefImpl {
9193   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9194       : AANoUndefImpl(IRP, A) {}
9195 
9196   /// See AbstractAttribute::initialize(...).
9197   void initialize(Attributor &A) override {
9198     AANoUndefImpl::initialize(A);
9199     if (!getState().isAtFixpoint())
9200       if (Instruction *CtxI = getCtxI())
9201         followUsesInMBEC(*this, A, getState(), *CtxI);
9202   }
9203 
9204   /// See AbstractAttribute::updateImpl(...).
9205   ChangeStatus updateImpl(Attributor &A) override {
9206     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9207                             AANoUndef::StateType &T, bool Stripped) -> bool {
9208       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9209                                              DepClassTy::REQUIRED);
9210       if (!Stripped && this == &AA) {
9211         T.indicatePessimisticFixpoint();
9212       } else {
9213         const AANoUndef::StateType &S =
9214             static_cast<const AANoUndef::StateType &>(AA.getState());
9215         T ^= S;
9216       }
9217       return T.isValidState();
9218     };
9219 
9220     StateType T;
9221     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9222                                           VisitValueCB, getCtxI()))
9223       return indicatePessimisticFixpoint();
9224 
9225     return clampStateAndIndicateChange(getState(), T);
9226   }
9227 
9228   /// See AbstractAttribute::trackStatistics()
9229   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9230 };
9231 
9232 struct AANoUndefReturned final
9233     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9234   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9235       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9236 
9237   /// See AbstractAttribute::trackStatistics()
9238   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9239 };
9240 
9241 struct AANoUndefArgument final
9242     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9243   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9244       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9245 
9246   /// See AbstractAttribute::trackStatistics()
9247   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9248 };
9249 
9250 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9251   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9252       : AANoUndefFloating(IRP, A) {}
9253 
9254   /// See AbstractAttribute::trackStatistics()
9255   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9256 };
9257 
9258 struct AANoUndefCallSiteReturned final
9259     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9260   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9261       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9262 
9263   /// See AbstractAttribute::trackStatistics()
9264   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9265 };
9266 
9267 struct AACallEdgesFunction : public AACallEdges {
9268   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9269       : AACallEdges(IRP, A) {}
9270 
9271   /// See AbstractAttribute::updateImpl(...).
9272   ChangeStatus updateImpl(Attributor &A) override {
9273     ChangeStatus Change = ChangeStatus::UNCHANGED;
9274     bool OldHasUnknownCallee = HasUnknownCallee;
9275     bool OldHasUnknownCalleeNonAsm = HasUnknownCalleeNonAsm;
9276 
9277     auto AddCalledFunction = [&](Function *Fn) {
9278       if (CalledFunctions.insert(Fn)) {
9279         Change = ChangeStatus::CHANGED;
9280         LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9281                           << "\n");
9282       }
9283     };
9284 
9285     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9286                           bool Stripped) -> bool {
9287       if (Function *Fn = dyn_cast<Function>(&V)) {
9288         AddCalledFunction(Fn);
9289       } else {
9290         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9291         HasUnknown = true;
9292         HasUnknownCalleeNonAsm = true;
9293       }
9294 
9295       // Explore all values.
9296       return true;
9297     };
9298 
9299     // Process any value that we might call.
9300     auto ProcessCalledOperand = [&](Value *V, Instruction *Ctx) {
9301       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9302                                        HasUnknownCallee, VisitValue, nullptr,
9303                                        false)) {
9304         // If we haven't gone through all values, assume that there are unknown
9305         // callees.
9306         HasUnknownCallee = true;
9307         HasUnknownCalleeNonAsm = true;
9308       }
9309     };
9310 
9311     auto ProcessCallInst = [&](Instruction &Inst) {
9312       CallBase &CB = static_cast<CallBase &>(Inst);
9313       if (CB.isInlineAsm()) {
9314         HasUnknownCallee = true;
9315         return true;
9316       }
9317 
9318       // Process callee metadata if available.
9319       if (auto *MD = Inst.getMetadata(LLVMContext::MD_callees)) {
9320         for (auto &Op : MD->operands()) {
9321           Function *Callee = mdconst::extract_or_null<Function>(Op);
9322           if (Callee)
9323             AddCalledFunction(Callee);
9324         }
9325         // Callees metadata grantees that the called function is one of its
9326         // operands, So we are done.
9327         return true;
9328       }
9329 
9330       // The most simple case.
9331       ProcessCalledOperand(CB.getCalledOperand(), &Inst);
9332 
9333       // Process callback functions.
9334       SmallVector<const Use *, 4u> CallbackUses;
9335       AbstractCallSite::getCallbackUses(CB, CallbackUses);
9336       for (const Use *U : CallbackUses)
9337         ProcessCalledOperand(U->get(), &Inst);
9338 
9339       return true;
9340     };
9341 
9342     // Visit all callable instructions.
9343     bool UsedAssumedInformation = false;
9344     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9345                                            UsedAssumedInformation)) {
9346       // If we haven't looked at all call like instructions, assume that there
9347       // are unknown callees.
9348       HasUnknownCallee = true;
9349       HasUnknownCalleeNonAsm = true;
9350     }
9351 
9352     // Track changes.
9353     if (OldHasUnknownCallee != HasUnknownCallee ||
9354         OldHasUnknownCalleeNonAsm != HasUnknownCalleeNonAsm)
9355       Change = ChangeStatus::CHANGED;
9356 
9357     return Change;
9358   }
9359 
9360   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9361     return CalledFunctions;
9362   };
9363 
9364   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9365 
9366   virtual bool hasNonAsmUnknownCallee() const override {
9367     return HasUnknownCalleeNonAsm;
9368   }
9369 
9370   const std::string getAsStr() const override {
9371     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9372            std::to_string(CalledFunctions.size()) + "]";
9373   }
9374 
9375   void trackStatistics() const override {}
9376 
9377   /// Optimistic set of functions that might be called by this function.
9378   SetVector<Function *> CalledFunctions;
9379 
9380   /// Is there any call with a unknown callee.
9381   bool HasUnknownCallee = false;
9382 
9383   /// Is there any call with a unknown callee, excluding any inline asm.
9384   bool HasUnknownCalleeNonAsm = false;
9385 };
9386 
9387 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9388   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9389       : AAFunctionReachability(IRP, A) {}
9390 
9391   bool canReach(Attributor &A, Function *Fn) const override {
9392     // Assume that we can reach any function if we can reach a call with
9393     // unknown callee.
9394     if (CanReachUnknownCallee)
9395       return true;
9396 
9397     if (ReachableQueries.count(Fn))
9398       return true;
9399 
9400     if (UnreachableQueries.count(Fn))
9401       return false;
9402 
9403     const AACallEdges &AAEdges =
9404         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9405 
9406     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9407     bool Result = checkIfReachable(A, Edges, Fn);
9408 
9409     // Attributor returns attributes as const, so this function has to be
9410     // const for users of this attribute to use it without having to do
9411     // a const_cast.
9412     // This is a hack for us to be able to cache queries.
9413     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9414 
9415     if (Result)
9416       NonConstThis->ReachableQueries.insert(Fn);
9417     else
9418       NonConstThis->UnreachableQueries.insert(Fn);
9419 
9420     return Result;
9421   }
9422 
9423   /// See AbstractAttribute::updateImpl(...).
9424   ChangeStatus updateImpl(Attributor &A) override {
9425     if (CanReachUnknownCallee)
9426       return ChangeStatus::UNCHANGED;
9427 
9428     const AACallEdges &AAEdges =
9429         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9430     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9431     ChangeStatus Change = ChangeStatus::UNCHANGED;
9432 
9433     if (AAEdges.hasUnknownCallee()) {
9434       bool OldCanReachUnknown = CanReachUnknownCallee;
9435       CanReachUnknownCallee = true;
9436       return OldCanReachUnknown ? ChangeStatus::UNCHANGED
9437                                 : ChangeStatus::CHANGED;
9438     }
9439 
9440     // Check if any of the unreachable functions become reachable.
9441     for (auto Current = UnreachableQueries.begin();
9442          Current != UnreachableQueries.end();) {
9443       if (!checkIfReachable(A, Edges, *Current)) {
9444         Current++;
9445         continue;
9446       }
9447       ReachableQueries.insert(*Current);
9448       UnreachableQueries.erase(*Current++);
9449       Change = ChangeStatus::CHANGED;
9450     }
9451 
9452     return Change;
9453   }
9454 
9455   const std::string getAsStr() const override {
9456     size_t QueryCount = ReachableQueries.size() + UnreachableQueries.size();
9457 
9458     return "FunctionReachability [" + std::to_string(ReachableQueries.size()) +
9459            "," + std::to_string(QueryCount) + "]";
9460   }
9461 
9462   void trackStatistics() const override {}
9463 
9464 private:
9465   bool canReachUnknownCallee() const override { return CanReachUnknownCallee; }
9466 
9467   bool checkIfReachable(Attributor &A, const SetVector<Function *> &Edges,
9468                         Function *Fn) const {
9469     if (Edges.count(Fn))
9470       return true;
9471 
9472     for (Function *Edge : Edges) {
9473       // We don't need a dependency if the result is reachable.
9474       const AAFunctionReachability &EdgeReachability =
9475           A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Edge),
9476                                              DepClassTy::NONE);
9477 
9478       if (EdgeReachability.canReach(A, Fn))
9479         return true;
9480     }
9481     for (Function *Fn : Edges)
9482       A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Fn),
9483                                          DepClassTy::REQUIRED);
9484 
9485     return false;
9486   }
9487 
9488   /// Set of functions that we know for sure is reachable.
9489   SmallPtrSet<Function *, 8> ReachableQueries;
9490 
9491   /// Set of functions that are unreachable, but might become reachable.
9492   SmallPtrSet<Function *, 8> UnreachableQueries;
9493 
9494   /// If we can reach a function with a call to a unknown function we assume
9495   /// that we can reach any function.
9496   bool CanReachUnknownCallee = false;
9497 };
9498 
9499 } // namespace
9500 
9501 AACallGraphNode *AACallEdgeIterator::operator*() const {
9502   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9503       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9504 }
9505 
9506 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9507 
9508 const char AAReturnedValues::ID = 0;
9509 const char AANoUnwind::ID = 0;
9510 const char AANoSync::ID = 0;
9511 const char AANoFree::ID = 0;
9512 const char AANonNull::ID = 0;
9513 const char AANoRecurse::ID = 0;
9514 const char AAWillReturn::ID = 0;
9515 const char AAUndefinedBehavior::ID = 0;
9516 const char AANoAlias::ID = 0;
9517 const char AAReachability::ID = 0;
9518 const char AANoReturn::ID = 0;
9519 const char AAIsDead::ID = 0;
9520 const char AADereferenceable::ID = 0;
9521 const char AAAlign::ID = 0;
9522 const char AANoCapture::ID = 0;
9523 const char AAValueSimplify::ID = 0;
9524 const char AAHeapToStack::ID = 0;
9525 const char AAPrivatizablePtr::ID = 0;
9526 const char AAMemoryBehavior::ID = 0;
9527 const char AAMemoryLocation::ID = 0;
9528 const char AAValueConstantRange::ID = 0;
9529 const char AAPotentialValues::ID = 0;
9530 const char AANoUndef::ID = 0;
9531 const char AACallEdges::ID = 0;
9532 const char AAFunctionReachability::ID = 0;
9533 const char AAPointerInfo::ID = 0;
9534 
9535 // Macro magic to create the static generator function for attributes that
9536 // follow the naming scheme.
9537 
9538 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9539   case IRPosition::PK:                                                         \
9540     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9541 
9542 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9543   case IRPosition::PK:                                                         \
9544     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9545     ++NumAAs;                                                                  \
9546     break;
9547 
9548 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9549   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9550     CLASS *AA = nullptr;                                                       \
9551     switch (IRP.getPositionKind()) {                                           \
9552       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9553       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9554       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9555       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9556       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9557       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9558       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9559       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9560     }                                                                          \
9561     return *AA;                                                                \
9562   }
9563 
9564 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9565   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9566     CLASS *AA = nullptr;                                                       \
9567     switch (IRP.getPositionKind()) {                                           \
9568       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9569       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9570       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9571       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9572       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9573       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9574       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9575       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9576     }                                                                          \
9577     return *AA;                                                                \
9578   }
9579 
9580 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9581   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9582     CLASS *AA = nullptr;                                                       \
9583     switch (IRP.getPositionKind()) {                                           \
9584       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9585       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9586       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9587       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9588       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9589       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9590       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9591       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9592     }                                                                          \
9593     return *AA;                                                                \
9594   }
9595 
9596 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9597   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9598     CLASS *AA = nullptr;                                                       \
9599     switch (IRP.getPositionKind()) {                                           \
9600       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9601       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9602       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9603       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9604       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9605       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9606       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9607       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9608     }                                                                          \
9609     return *AA;                                                                \
9610   }
9611 
9612 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9613   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9614     CLASS *AA = nullptr;                                                       \
9615     switch (IRP.getPositionKind()) {                                           \
9616       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9617       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9618       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9619       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9620       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9621       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9622       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9623       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9624     }                                                                          \
9625     return *AA;                                                                \
9626   }
9627 
9628 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9629 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9630 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9631 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9632 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9633 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9634 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9635 
9636 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9637 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9638 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9639 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9640 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9641 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9642 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9643 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9644 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9645 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9646 
9647 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9648 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9649 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9650 
9651 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9652 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9653 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9654 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9655 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9656 
9657 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9658 
9659 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9660 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9661 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9662 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9663 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9664 #undef SWITCH_PK_CREATE
9665 #undef SWITCH_PK_INV
9666