1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumeBundleQueries.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Assumptions.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include <cassert>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "attributor"
52 
53 static cl::opt<bool> ManifestInternal(
54     "attributor-manifest-internal", cl::Hidden,
55     cl::desc("Manifest Attributor internal string attributes."),
56     cl::init(false));
57 
58 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
59                                        cl::Hidden);
60 
61 template <>
62 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
63 
64 static cl::opt<unsigned, true> MaxPotentialValues(
65     "attributor-max-potential-values", cl::Hidden,
66     cl::desc("Maximum number of potential values to be "
67              "tracked for each position."),
68     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
69     cl::init(7));
70 
71 STATISTIC(NumAAs, "Number of abstract attributes created");
72 
73 // Some helper macros to deal with statistics tracking.
74 //
75 // Usage:
76 // For simple IR attribute tracking overload trackStatistics in the abstract
77 // attribute and choose the right STATS_DECLTRACK_********* macro,
78 // e.g.,:
79 //  void trackStatistics() const override {
80 //    STATS_DECLTRACK_ARG_ATTR(returned)
81 //  }
82 // If there is a single "increment" side one can use the macro
83 // STATS_DECLTRACK with a custom message. If there are multiple increment
84 // sides, STATS_DECL and STATS_TRACK can also be used separately.
85 //
86 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
87   ("Number of " #TYPE " marked '" #NAME "'")
88 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
89 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
90 #define STATS_DECL(NAME, TYPE, MSG)                                            \
91   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
92 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
93 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
94   {                                                                            \
95     STATS_DECL(NAME, TYPE, MSG)                                                \
96     STATS_TRACK(NAME, TYPE)                                                    \
97   }
98 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
99   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
100 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
101   STATS_DECLTRACK(NAME, CSArguments,                                           \
102                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
103 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
105 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
106   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
107 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
108   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
109                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
110 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
111   STATS_DECLTRACK(NAME, CSReturn,                                              \
112                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
113 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
114   STATS_DECLTRACK(NAME, Floating,                                              \
115                   ("Number of floating values known to be '" #NAME "'"))
116 
117 // Specialization of the operator<< for abstract attributes subclasses. This
118 // disambiguates situations where multiple operators are applicable.
119 namespace llvm {
120 #define PIPE_OPERATOR(CLASS)                                                   \
121   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
122     return OS << static_cast<const AbstractAttribute &>(AA);                   \
123   }
124 
125 PIPE_OPERATOR(AAIsDead)
126 PIPE_OPERATOR(AANoUnwind)
127 PIPE_OPERATOR(AANoSync)
128 PIPE_OPERATOR(AANoRecurse)
129 PIPE_OPERATOR(AAWillReturn)
130 PIPE_OPERATOR(AANoReturn)
131 PIPE_OPERATOR(AAReturnedValues)
132 PIPE_OPERATOR(AANonNull)
133 PIPE_OPERATOR(AANoAlias)
134 PIPE_OPERATOR(AADereferenceable)
135 PIPE_OPERATOR(AAAlign)
136 PIPE_OPERATOR(AANoCapture)
137 PIPE_OPERATOR(AAValueSimplify)
138 PIPE_OPERATOR(AANoFree)
139 PIPE_OPERATOR(AAHeapToStack)
140 PIPE_OPERATOR(AAReachability)
141 PIPE_OPERATOR(AAMemoryBehavior)
142 PIPE_OPERATOR(AAMemoryLocation)
143 PIPE_OPERATOR(AAValueConstantRange)
144 PIPE_OPERATOR(AAPrivatizablePtr)
145 PIPE_OPERATOR(AAUndefinedBehavior)
146 PIPE_OPERATOR(AAPotentialValues)
147 PIPE_OPERATOR(AANoUndef)
148 PIPE_OPERATOR(AACallEdges)
149 PIPE_OPERATOR(AAFunctionReachability)
150 PIPE_OPERATOR(AAPointerInfo)
151 PIPE_OPERATOR(AAAssumptionInfo)
152 
153 #undef PIPE_OPERATOR
154 
155 template <>
156 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
157                                                      const DerefState &R) {
158   ChangeStatus CS0 =
159       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
160   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
161   return CS0 | CS1;
162 }
163 
164 } // namespace llvm
165 
166 /// Get pointer operand of memory accessing instruction. If \p I is
167 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
168 /// is set to false and the instruction is volatile, return nullptr.
169 static const Value *getPointerOperand(const Instruction *I,
170                                       bool AllowVolatile) {
171   if (!AllowVolatile && I->isVolatile())
172     return nullptr;
173 
174   if (auto *LI = dyn_cast<LoadInst>(I)) {
175     return LI->getPointerOperand();
176   }
177 
178   if (auto *SI = dyn_cast<StoreInst>(I)) {
179     return SI->getPointerOperand();
180   }
181 
182   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
183     return CXI->getPointerOperand();
184   }
185 
186   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
187     return RMWI->getPointerOperand();
188   }
189 
190   return nullptr;
191 }
192 
193 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
194 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
195 /// getelement pointer instructions that traverse the natural type of \p Ptr if
196 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
197 /// through a cast to i8*.
198 ///
199 /// TODO: This could probably live somewhere more prominantly if it doesn't
200 ///       already exist.
201 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
202                                int64_t Offset, IRBuilder<NoFolder> &IRB,
203                                const DataLayout &DL) {
204   assert(Offset >= 0 && "Negative offset not supported yet!");
205   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
206                     << "-bytes as " << *ResTy << "\n");
207 
208   if (Offset) {
209     Type *Ty = PtrElemTy;
210     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
211     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
212 
213     SmallVector<Value *, 4> ValIndices;
214     std::string GEPName = Ptr->getName().str();
215     for (const APInt &Index : IntIndices) {
216       ValIndices.push_back(IRB.getInt(Index));
217       GEPName += "." + std::to_string(Index.getZExtValue());
218     }
219 
220     // Create a GEP for the indices collected above.
221     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
222 
223     // If an offset is left we use byte-wise adjustment.
224     if (IntOffset != 0) {
225       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
226       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
227                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
228     }
229   }
230 
231   // Ensure the result has the requested type.
232   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
233 
234   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
235   return Ptr;
236 }
237 
238 /// Recursively visit all values that might become \p IRP at some point. This
239 /// will be done by looking through cast instructions, selects, phis, and calls
240 /// with the "returned" attribute. Once we cannot look through the value any
241 /// further, the callback \p VisitValueCB is invoked and passed the current
242 /// value, the \p State, and a flag to indicate if we stripped anything.
243 /// Stripped means that we unpacked the value associated with \p IRP at least
244 /// once. Note that the value used for the callback may still be the value
245 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
246 /// we will never visit more values than specified by \p MaxValues.
247 template <typename StateTy>
248 static bool genericValueTraversal(
249     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
250     StateTy &State,
251     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
252         VisitValueCB,
253     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
254     function_ref<Value *(Value *)> StripCB = nullptr) {
255 
256   const AAIsDead *LivenessAA = nullptr;
257   if (IRP.getAnchorScope())
258     LivenessAA = &A.getAAFor<AAIsDead>(
259         QueryingAA,
260         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
261         DepClassTy::NONE);
262   bool AnyDead = false;
263 
264   Value *InitialV = &IRP.getAssociatedValue();
265   using Item = std::pair<Value *, const Instruction *>;
266   SmallSet<Item, 16> Visited;
267   SmallVector<Item, 16> Worklist;
268   Worklist.push_back({InitialV, CtxI});
269 
270   int Iteration = 0;
271   do {
272     Item I = Worklist.pop_back_val();
273     Value *V = I.first;
274     CtxI = I.second;
275     if (StripCB)
276       V = StripCB(V);
277 
278     // Check if we should process the current value. To prevent endless
279     // recursion keep a record of the values we followed!
280     if (!Visited.insert(I).second)
281       continue;
282 
283     // Make sure we limit the compile time for complex expressions.
284     if (Iteration++ >= MaxValues)
285       return false;
286 
287     // Explicitly look through calls with a "returned" attribute if we do
288     // not have a pointer as stripPointerCasts only works on them.
289     Value *NewV = nullptr;
290     if (V->getType()->isPointerTy()) {
291       NewV = V->stripPointerCasts();
292     } else {
293       auto *CB = dyn_cast<CallBase>(V);
294       if (CB && CB->getCalledFunction()) {
295         for (Argument &Arg : CB->getCalledFunction()->args())
296           if (Arg.hasReturnedAttr()) {
297             NewV = CB->getArgOperand(Arg.getArgNo());
298             break;
299           }
300       }
301     }
302     if (NewV && NewV != V) {
303       Worklist.push_back({NewV, CtxI});
304       continue;
305     }
306 
307     // Look through select instructions, visit assumed potential values.
308     if (auto *SI = dyn_cast<SelectInst>(V)) {
309       bool UsedAssumedInformation = false;
310       Optional<Constant *> C = A.getAssumedConstant(
311           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
312       bool NoValueYet = !C.hasValue();
313       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
314         continue;
315       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
316         if (CI->isZero())
317           Worklist.push_back({SI->getFalseValue(), CtxI});
318         else
319           Worklist.push_back({SI->getTrueValue(), CtxI});
320         continue;
321       }
322       // We could not simplify the condition, assume both values.(
323       Worklist.push_back({SI->getTrueValue(), CtxI});
324       Worklist.push_back({SI->getFalseValue(), CtxI});
325       continue;
326     }
327 
328     // Look through phi nodes, visit all live operands.
329     if (auto *PHI = dyn_cast<PHINode>(V)) {
330       assert(LivenessAA &&
331              "Expected liveness in the presence of instructions!");
332       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
333         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
334         bool UsedAssumedInformation = false;
335         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
336                             LivenessAA, UsedAssumedInformation,
337                             /* CheckBBLivenessOnly */ true)) {
338           AnyDead = true;
339           continue;
340         }
341         Worklist.push_back(
342             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
343       }
344       continue;
345     }
346 
347     if (UseValueSimplify && !isa<Constant>(V)) {
348       bool UsedAssumedInformation = false;
349       Optional<Value *> SimpleV =
350           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
351       if (!SimpleV.hasValue())
352         continue;
353       if (!SimpleV.getValue())
354         return false;
355       Value *NewV = SimpleV.getValue();
356       if (NewV != V) {
357         Worklist.push_back({NewV, CtxI});
358         continue;
359       }
360     }
361 
362     // Once a leaf is reached we inform the user through the callback.
363     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
364       return false;
365   } while (!Worklist.empty());
366 
367   // If we actually used liveness information so we have to record a dependence.
368   if (AnyDead)
369     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
370 
371   // All values have been visited.
372   return true;
373 }
374 
375 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
376                                      SmallVectorImpl<Value *> &Objects,
377                                      const AbstractAttribute &QueryingAA,
378                                      const Instruction *CtxI) {
379   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
380   SmallPtrSet<Value *, 8> SeenObjects;
381   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
382                                      SmallVectorImpl<Value *> &Objects,
383                                      bool) -> bool {
384     if (SeenObjects.insert(&Val).second)
385       Objects.push_back(&Val);
386     return true;
387   };
388   if (!genericValueTraversal<decltype(Objects)>(
389           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
390           true, 32, StripCB))
391     return false;
392   return true;
393 }
394 
395 const Value *stripAndAccumulateMinimalOffsets(
396     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
397     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
398     bool UseAssumed = false) {
399 
400   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
401     const IRPosition &Pos = IRPosition::value(V);
402     // Only track dependence if we are going to use the assumed info.
403     const AAValueConstantRange &ValueConstantRangeAA =
404         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
405                                          UseAssumed ? DepClassTy::OPTIONAL
406                                                     : DepClassTy::NONE);
407     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
408                                      : ValueConstantRangeAA.getKnown();
409     // We can only use the lower part of the range because the upper part can
410     // be higher than what the value can really be.
411     ROffset = Range.getSignedMin();
412     return true;
413   };
414 
415   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
416                                                 /* AllowInvariant */ false,
417                                                 AttributorAnalysis);
418 }
419 
420 static const Value *getMinimalBaseOfAccessPointerOperand(
421     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
422     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
423   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
424   if (!Ptr)
425     return nullptr;
426   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
427   const Value *Base = stripAndAccumulateMinimalOffsets(
428       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
429 
430   BytesOffset = OffsetAPInt.getSExtValue();
431   return Base;
432 }
433 
434 static const Value *
435 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
436                                      const DataLayout &DL,
437                                      bool AllowNonInbounds = false) {
438   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
439   if (!Ptr)
440     return nullptr;
441 
442   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
443                                           AllowNonInbounds);
444 }
445 
446 /// Clamp the information known for all returned values of a function
447 /// (identified by \p QueryingAA) into \p S.
448 template <typename AAType, typename StateType = typename AAType::StateType>
449 static void clampReturnedValueStates(
450     Attributor &A, const AAType &QueryingAA, StateType &S,
451     const IRPosition::CallBaseContext *CBContext = nullptr) {
452   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
453                     << QueryingAA << " into " << S << "\n");
454 
455   assert((QueryingAA.getIRPosition().getPositionKind() ==
456               IRPosition::IRP_RETURNED ||
457           QueryingAA.getIRPosition().getPositionKind() ==
458               IRPosition::IRP_CALL_SITE_RETURNED) &&
459          "Can only clamp returned value states for a function returned or call "
460          "site returned position!");
461 
462   // Use an optional state as there might not be any return values and we want
463   // to join (IntegerState::operator&) the state of all there are.
464   Optional<StateType> T;
465 
466   // Callback for each possibly returned value.
467   auto CheckReturnValue = [&](Value &RV) -> bool {
468     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
469     const AAType &AA =
470         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
471     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
472                       << " @ " << RVPos << "\n");
473     const StateType &AAS = AA.getState();
474     if (T.hasValue())
475       *T &= AAS;
476     else
477       T = AAS;
478     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
479                       << "\n");
480     return T->isValidState();
481   };
482 
483   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
484     S.indicatePessimisticFixpoint();
485   else if (T.hasValue())
486     S ^= *T;
487 }
488 
489 namespace {
490 /// Helper class for generic deduction: return value -> returned position.
491 template <typename AAType, typename BaseType,
492           typename StateType = typename BaseType::StateType,
493           bool PropagateCallBaseContext = false>
494 struct AAReturnedFromReturnedValues : public BaseType {
495   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
496       : BaseType(IRP, A) {}
497 
498   /// See AbstractAttribute::updateImpl(...).
499   ChangeStatus updateImpl(Attributor &A) override {
500     StateType S(StateType::getBestState(this->getState()));
501     clampReturnedValueStates<AAType, StateType>(
502         A, *this, S,
503         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
504     // TODO: If we know we visited all returned values, thus no are assumed
505     // dead, we can take the known information from the state T.
506     return clampStateAndIndicateChange<StateType>(this->getState(), S);
507   }
508 };
509 
510 /// Clamp the information known at all call sites for a given argument
511 /// (identified by \p QueryingAA) into \p S.
512 template <typename AAType, typename StateType = typename AAType::StateType>
513 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
514                                         StateType &S) {
515   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
516                     << QueryingAA << " into " << S << "\n");
517 
518   assert(QueryingAA.getIRPosition().getPositionKind() ==
519              IRPosition::IRP_ARGUMENT &&
520          "Can only clamp call site argument states for an argument position!");
521 
522   // Use an optional state as there might not be any return values and we want
523   // to join (IntegerState::operator&) the state of all there are.
524   Optional<StateType> T;
525 
526   // The argument number which is also the call site argument number.
527   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
528 
529   auto CallSiteCheck = [&](AbstractCallSite ACS) {
530     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
531     // Check if a coresponding argument was found or if it is on not associated
532     // (which can happen for callback calls).
533     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
534       return false;
535 
536     const AAType &AA =
537         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
538     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
539                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
540     const StateType &AAS = AA.getState();
541     if (T.hasValue())
542       *T &= AAS;
543     else
544       T = AAS;
545     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
546                       << "\n");
547     return T->isValidState();
548   };
549 
550   bool AllCallSitesKnown;
551   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
552                               AllCallSitesKnown))
553     S.indicatePessimisticFixpoint();
554   else if (T.hasValue())
555     S ^= *T;
556 }
557 
558 /// This function is the bridge between argument position and the call base
559 /// context.
560 template <typename AAType, typename BaseType,
561           typename StateType = typename AAType::StateType>
562 bool getArgumentStateFromCallBaseContext(Attributor &A,
563                                          BaseType &QueryingAttribute,
564                                          IRPosition &Pos, StateType &State) {
565   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
566          "Expected an 'argument' position !");
567   const CallBase *CBContext = Pos.getCallBaseContext();
568   if (!CBContext)
569     return false;
570 
571   int ArgNo = Pos.getCallSiteArgNo();
572   assert(ArgNo >= 0 && "Invalid Arg No!");
573 
574   const auto &AA = A.getAAFor<AAType>(
575       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
576       DepClassTy::REQUIRED);
577   const StateType &CBArgumentState =
578       static_cast<const StateType &>(AA.getState());
579 
580   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
581                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
582                     << "\n");
583 
584   // NOTE: If we want to do call site grouping it should happen here.
585   State ^= CBArgumentState;
586   return true;
587 }
588 
589 /// Helper class for generic deduction: call site argument -> argument position.
590 template <typename AAType, typename BaseType,
591           typename StateType = typename AAType::StateType,
592           bool BridgeCallBaseContext = false>
593 struct AAArgumentFromCallSiteArguments : public BaseType {
594   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
595       : BaseType(IRP, A) {}
596 
597   /// See AbstractAttribute::updateImpl(...).
598   ChangeStatus updateImpl(Attributor &A) override {
599     StateType S = StateType::getBestState(this->getState());
600 
601     if (BridgeCallBaseContext) {
602       bool Success =
603           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
604               A, *this, this->getIRPosition(), S);
605       if (Success)
606         return clampStateAndIndicateChange<StateType>(this->getState(), S);
607     }
608     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
609 
610     // TODO: If we know we visited all incoming values, thus no are assumed
611     // dead, we can take the known information from the state T.
612     return clampStateAndIndicateChange<StateType>(this->getState(), S);
613   }
614 };
615 
616 /// Helper class for generic replication: function returned -> cs returned.
617 template <typename AAType, typename BaseType,
618           typename StateType = typename BaseType::StateType,
619           bool IntroduceCallBaseContext = false>
620 struct AACallSiteReturnedFromReturned : public BaseType {
621   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
622       : BaseType(IRP, A) {}
623 
624   /// See AbstractAttribute::updateImpl(...).
625   ChangeStatus updateImpl(Attributor &A) override {
626     assert(this->getIRPosition().getPositionKind() ==
627                IRPosition::IRP_CALL_SITE_RETURNED &&
628            "Can only wrap function returned positions for call site returned "
629            "positions!");
630     auto &S = this->getState();
631 
632     const Function *AssociatedFunction =
633         this->getIRPosition().getAssociatedFunction();
634     if (!AssociatedFunction)
635       return S.indicatePessimisticFixpoint();
636 
637     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
638     if (IntroduceCallBaseContext)
639       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
640                         << CBContext << "\n");
641 
642     IRPosition FnPos = IRPosition::returned(
643         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
644     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
645     return clampStateAndIndicateChange(S, AA.getState());
646   }
647 };
648 } // namespace
649 
650 /// Helper function to accumulate uses.
651 template <class AAType, typename StateType = typename AAType::StateType>
652 static void followUsesInContext(AAType &AA, Attributor &A,
653                                 MustBeExecutedContextExplorer &Explorer,
654                                 const Instruction *CtxI,
655                                 SetVector<const Use *> &Uses,
656                                 StateType &State) {
657   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
658   for (unsigned u = 0; u < Uses.size(); ++u) {
659     const Use *U = Uses[u];
660     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
661       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
662       if (Found && AA.followUseInMBEC(A, U, UserI, State))
663         for (const Use &Us : UserI->uses())
664           Uses.insert(&Us);
665     }
666   }
667 }
668 
669 /// Use the must-be-executed-context around \p I to add information into \p S.
670 /// The AAType class is required to have `followUseInMBEC` method with the
671 /// following signature and behaviour:
672 ///
673 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
674 /// U - Underlying use.
675 /// I - The user of the \p U.
676 /// Returns true if the value should be tracked transitively.
677 ///
678 template <class AAType, typename StateType = typename AAType::StateType>
679 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
680                              Instruction &CtxI) {
681 
682   // Container for (transitive) uses of the associated value.
683   SetVector<const Use *> Uses;
684   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
685     Uses.insert(&U);
686 
687   MustBeExecutedContextExplorer &Explorer =
688       A.getInfoCache().getMustBeExecutedContextExplorer();
689 
690   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
691 
692   if (S.isAtFixpoint())
693     return;
694 
695   SmallVector<const BranchInst *, 4> BrInsts;
696   auto Pred = [&](const Instruction *I) {
697     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
698       if (Br->isConditional())
699         BrInsts.push_back(Br);
700     return true;
701   };
702 
703   // Here, accumulate conditional branch instructions in the context. We
704   // explore the child paths and collect the known states. The disjunction of
705   // those states can be merged to its own state. Let ParentState_i be a state
706   // to indicate the known information for an i-th branch instruction in the
707   // context. ChildStates are created for its successors respectively.
708   //
709   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
710   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
711   //      ...
712   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
713   //
714   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
715   //
716   // FIXME: Currently, recursive branches are not handled. For example, we
717   // can't deduce that ptr must be dereferenced in below function.
718   //
719   // void f(int a, int c, int *ptr) {
720   //    if(a)
721   //      if (b) {
722   //        *ptr = 0;
723   //      } else {
724   //        *ptr = 1;
725   //      }
726   //    else {
727   //      if (b) {
728   //        *ptr = 0;
729   //      } else {
730   //        *ptr = 1;
731   //      }
732   //    }
733   // }
734 
735   Explorer.checkForAllContext(&CtxI, Pred);
736   for (const BranchInst *Br : BrInsts) {
737     StateType ParentState;
738 
739     // The known state of the parent state is a conjunction of children's
740     // known states so it is initialized with a best state.
741     ParentState.indicateOptimisticFixpoint();
742 
743     for (const BasicBlock *BB : Br->successors()) {
744       StateType ChildState;
745 
746       size_t BeforeSize = Uses.size();
747       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
748 
749       // Erase uses which only appear in the child.
750       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
751         It = Uses.erase(It);
752 
753       ParentState &= ChildState;
754     }
755 
756     // Use only known state.
757     S += ParentState;
758   }
759 }
760 
761 /// ------------------------ PointerInfo ---------------------------------------
762 
763 namespace llvm {
764 namespace AA {
765 namespace PointerInfo {
766 
767 /// An access kind description as used by AAPointerInfo.
768 struct OffsetAndSize;
769 
770 struct State;
771 
772 } // namespace PointerInfo
773 } // namespace AA
774 
775 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
776 template <>
777 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
778   using Access = AAPointerInfo::Access;
779   static inline Access getEmptyKey();
780   static inline Access getTombstoneKey();
781   static unsigned getHashValue(const Access &A);
782   static bool isEqual(const Access &LHS, const Access &RHS);
783 };
784 
785 /// Helper that allows OffsetAndSize as a key in a DenseMap.
786 template <>
787 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
788     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
789 
790 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
791 /// but the instruction
792 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
793   using Base = DenseMapInfo<Instruction *>;
794   using Access = AAPointerInfo::Access;
795   static inline Access getEmptyKey();
796   static inline Access getTombstoneKey();
797   static unsigned getHashValue(const Access &A);
798   static bool isEqual(const Access &LHS, const Access &RHS);
799 };
800 
801 } // namespace llvm
802 
803 /// Helper to represent an access offset and size, with logic to deal with
804 /// uncertainty and check for overlapping accesses.
805 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
806   using BaseTy = std::pair<int64_t, int64_t>;
807   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
808   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
809   int64_t getOffset() const { return first; }
810   int64_t getSize() const { return second; }
811   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
812 
813   /// Return true if this offset and size pair might describe an address that
814   /// overlaps with \p OAS.
815   bool mayOverlap(const OffsetAndSize &OAS) const {
816     // Any unknown value and we are giving up -> overlap.
817     if (OAS.getOffset() == OffsetAndSize::Unknown ||
818         OAS.getSize() == OffsetAndSize::Unknown ||
819         getOffset() == OffsetAndSize::Unknown ||
820         getSize() == OffsetAndSize::Unknown)
821       return true;
822 
823     // Check if one offset point is in the other interval [offset, offset+size].
824     return OAS.getOffset() + OAS.getSize() > getOffset() &&
825            OAS.getOffset() < getOffset() + getSize();
826   }
827 
828   /// Constant used to represent unknown offset or sizes.
829   static constexpr int64_t Unknown = 1 << 31;
830 };
831 
832 /// Implementation of the DenseMapInfo.
833 ///
834 ///{
835 inline llvm::AccessAsInstructionInfo::Access
836 llvm::AccessAsInstructionInfo::getEmptyKey() {
837   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
838 }
839 inline llvm::AccessAsInstructionInfo::Access
840 llvm::AccessAsInstructionInfo::getTombstoneKey() {
841   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
842                 nullptr);
843 }
844 unsigned llvm::AccessAsInstructionInfo::getHashValue(
845     const llvm::AccessAsInstructionInfo::Access &A) {
846   return Base::getHashValue(A.getRemoteInst());
847 }
848 bool llvm::AccessAsInstructionInfo::isEqual(
849     const llvm::AccessAsInstructionInfo::Access &LHS,
850     const llvm::AccessAsInstructionInfo::Access &RHS) {
851   return LHS.getRemoteInst() == RHS.getRemoteInst();
852 }
853 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
854 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
855   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
856                                nullptr);
857 }
858 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
859 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
860   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
861                                nullptr);
862 }
863 
864 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
865     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
866   return detail::combineHashValue(
867              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
868              (A.isWrittenValueYetUndetermined()
869                   ? ~0
870                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
871          A.getKind();
872 }
873 
874 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
875     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
876     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
877   return LHS == RHS;
878 }
879 ///}
880 
881 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
882 struct AA::PointerInfo::State : public AbstractState {
883 
884   /// Return the best possible representable state.
885   static State getBestState(const State &SIS) { return State(); }
886 
887   /// Return the worst possible representable state.
888   static State getWorstState(const State &SIS) {
889     State R;
890     R.indicatePessimisticFixpoint();
891     return R;
892   }
893 
894   State() {}
895   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
896   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
897 
898   const State &getAssumed() const { return *this; }
899 
900   /// See AbstractState::isValidState().
901   bool isValidState() const override { return BS.isValidState(); }
902 
903   /// See AbstractState::isAtFixpoint().
904   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
905 
906   /// See AbstractState::indicateOptimisticFixpoint().
907   ChangeStatus indicateOptimisticFixpoint() override {
908     BS.indicateOptimisticFixpoint();
909     return ChangeStatus::UNCHANGED;
910   }
911 
912   /// See AbstractState::indicatePessimisticFixpoint().
913   ChangeStatus indicatePessimisticFixpoint() override {
914     BS.indicatePessimisticFixpoint();
915     return ChangeStatus::CHANGED;
916   }
917 
918   State &operator=(const State &R) {
919     if (this == &R)
920       return *this;
921     BS = R.BS;
922     AccessBins = R.AccessBins;
923     return *this;
924   }
925 
926   State &operator=(State &&R) {
927     if (this == &R)
928       return *this;
929     std::swap(BS, R.BS);
930     std::swap(AccessBins, R.AccessBins);
931     return *this;
932   }
933 
934   bool operator==(const State &R) const {
935     if (BS != R.BS)
936       return false;
937     if (AccessBins.size() != R.AccessBins.size())
938       return false;
939     auto It = begin(), RIt = R.begin(), E = end();
940     while (It != E) {
941       if (It->getFirst() != RIt->getFirst())
942         return false;
943       auto &Accs = It->getSecond();
944       auto &RAccs = RIt->getSecond();
945       if (Accs.size() != RAccs.size())
946         return false;
947       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
948       while (AccIt != AccE) {
949         if (*AccIt != *RAccIt)
950           return false;
951         ++AccIt;
952         ++RAccIt;
953       }
954       ++It;
955       ++RIt;
956     }
957     return true;
958   }
959   bool operator!=(const State &R) const { return !(*this == R); }
960 
961   /// We store accesses in a set with the instruction as key.
962   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
963 
964   /// We store all accesses in bins denoted by their offset and size.
965   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
966 
967   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
968   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
969 
970 protected:
971   /// The bins with all the accesses for the associated pointer.
972   DenseMap<OffsetAndSize, Accesses> AccessBins;
973 
974   /// Add a new access to the state at offset \p Offset and with size \p Size.
975   /// The access is associated with \p I, writes \p Content (if anything), and
976   /// is of kind \p Kind.
977   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
978   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
979                          Optional<Value *> Content,
980                          AAPointerInfo::AccessKind Kind, Type *Ty,
981                          Instruction *RemoteI = nullptr,
982                          Accesses *BinPtr = nullptr) {
983     OffsetAndSize Key{Offset, Size};
984     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
985     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
986     // Check if we have an access for this instruction in this bin, if not,
987     // simply add it.
988     auto It = Bin.find(Acc);
989     if (It == Bin.end()) {
990       Bin.insert(Acc);
991       return ChangeStatus::CHANGED;
992     }
993     // If the existing access is the same as then new one, nothing changed.
994     AAPointerInfo::Access Before = *It;
995     // The new one will be combined with the existing one.
996     *It &= Acc;
997     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
998   }
999 
1000   /// See AAPointerInfo::forallInterferingAccesses.
1001   bool forallInterferingAccesses(
1002       Instruction &I,
1003       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1004     if (!isValidState())
1005       return false;
1006     // First find the offset and size of I.
1007     OffsetAndSize OAS(-1, -1);
1008     for (auto &It : AccessBins) {
1009       for (auto &Access : It.getSecond()) {
1010         if (Access.getRemoteInst() == &I) {
1011           OAS = It.getFirst();
1012           break;
1013         }
1014       }
1015       if (OAS.getSize() != -1)
1016         break;
1017     }
1018     if (OAS.getSize() == -1)
1019       return true;
1020 
1021     // Now that we have an offset and size, find all overlapping ones and use
1022     // the callback on the accesses.
1023     for (auto &It : AccessBins) {
1024       OffsetAndSize ItOAS = It.getFirst();
1025       if (!OAS.mayOverlap(ItOAS))
1026         continue;
1027       for (auto &Access : It.getSecond())
1028         if (!CB(Access, OAS == ItOAS))
1029           return false;
1030     }
1031     return true;
1032   }
1033 
1034 private:
1035   /// State to track fixpoint and validity.
1036   BooleanState BS;
1037 };
1038 
1039 namespace {
1040 struct AAPointerInfoImpl
1041     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1042   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1043   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1044 
1045   /// See AbstractAttribute::initialize(...).
1046   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1047 
1048   /// See AbstractAttribute::getAsStr().
1049   const std::string getAsStr() const override {
1050     return std::string("PointerInfo ") +
1051            (isValidState() ? (std::string("#") +
1052                               std::to_string(AccessBins.size()) + " bins")
1053                            : "<invalid>");
1054   }
1055 
1056   /// See AbstractAttribute::manifest(...).
1057   ChangeStatus manifest(Attributor &A) override {
1058     return AAPointerInfo::manifest(A);
1059   }
1060 
1061   bool forallInterferingAccesses(
1062       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1063       const override {
1064     return State::forallInterferingAccesses(LI, CB);
1065   }
1066   bool forallInterferingAccesses(
1067       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1068       const override {
1069     return State::forallInterferingAccesses(SI, CB);
1070   }
1071 
1072   ChangeStatus translateAndAddCalleeState(Attributor &A,
1073                                           const AAPointerInfo &CalleeAA,
1074                                           int64_t CallArgOffset, CallBase &CB) {
1075     using namespace AA::PointerInfo;
1076     if (!CalleeAA.getState().isValidState() || !isValidState())
1077       return indicatePessimisticFixpoint();
1078 
1079     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1080     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1081 
1082     // Combine the accesses bin by bin.
1083     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1084     for (auto &It : CalleeImplAA.getState()) {
1085       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1086       if (CallArgOffset != OffsetAndSize::Unknown)
1087         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1088                             It.first.getSize());
1089       Accesses &Bin = AccessBins[OAS];
1090       for (const AAPointerInfo::Access &RAcc : It.second) {
1091         if (IsByval && !RAcc.isRead())
1092           continue;
1093         bool UsedAssumedInformation = false;
1094         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1095             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1096         AccessKind AK =
1097             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1098                                                  : AccessKind::AK_READ_WRITE));
1099         Changed =
1100             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1101                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1102       }
1103     }
1104     return Changed;
1105   }
1106 
1107   /// Statistic tracking for all AAPointerInfo implementations.
1108   /// See AbstractAttribute::trackStatistics().
1109   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1110 };
1111 
1112 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1113   using AccessKind = AAPointerInfo::AccessKind;
1114   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1115       : AAPointerInfoImpl(IRP, A) {}
1116 
1117   /// See AbstractAttribute::initialize(...).
1118   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1119 
1120   /// Deal with an access and signal if it was handled successfully.
1121   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1122                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1123                     ChangeStatus &Changed, Type *Ty,
1124                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1125     using namespace AA::PointerInfo;
1126     // No need to find a size if one is given or the offset is unknown.
1127     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1128         Ty) {
1129       const DataLayout &DL = A.getDataLayout();
1130       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1131       if (!AccessSize.isScalable())
1132         Size = AccessSize.getFixedSize();
1133     }
1134     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1135     return true;
1136   };
1137 
1138   /// Helper struct, will support ranges eventually.
1139   struct OffsetInfo {
1140     int64_t Offset = AA::PointerInfo::OffsetAndSize::Unknown;
1141 
1142     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1143   };
1144 
1145   /// See AbstractAttribute::updateImpl(...).
1146   ChangeStatus updateImpl(Attributor &A) override {
1147     using namespace AA::PointerInfo;
1148     State S = getState();
1149     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1150     Value &AssociatedValue = getAssociatedValue();
1151 
1152     const DataLayout &DL = A.getDataLayout();
1153     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1154     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1155 
1156     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1157                                      bool &Follow) {
1158       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1159       UsrOI = PtrOI;
1160       Follow = true;
1161       return true;
1162     };
1163 
1164     const auto *TLI = getAnchorScope()
1165                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1166                                 *getAnchorScope())
1167                           : nullptr;
1168     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1169       Value *CurPtr = U.get();
1170       User *Usr = U.getUser();
1171       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1172                         << *Usr << "\n");
1173       assert(OffsetInfoMap.count(CurPtr) &&
1174              "The current pointer offset should have been seeded!");
1175 
1176       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1177         if (CE->isCast())
1178           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1179         if (CE->isCompare())
1180           return true;
1181         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1182           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1183                             << "\n");
1184           return false;
1185         }
1186       }
1187       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1188         // Note the order here, the Usr access might change the map, CurPtr is
1189         // already in it though.
1190         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1191         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1192         UsrOI = PtrOI;
1193 
1194         // TODO: Use range information.
1195         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1196             !GEP->hasAllConstantIndices()) {
1197           UsrOI.Offset = OffsetAndSize::Unknown;
1198           Follow = true;
1199           return true;
1200         }
1201 
1202         SmallVector<Value *, 8> Indices;
1203         for (Use &Idx : GEP->indices()) {
1204           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1205             Indices.push_back(CIdx);
1206             continue;
1207           }
1208 
1209           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1210                             << " : " << *Idx << "\n");
1211           return false;
1212         }
1213         UsrOI.Offset = PtrOI.Offset +
1214                        DL.getIndexedOffsetInType(
1215                            CurPtr->getType()->getPointerElementType(), Indices);
1216         Follow = true;
1217         return true;
1218       }
1219       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr))
1220         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1221 
1222       // For PHIs we need to take care of the recurrence explicitly as the value
1223       // might change while we iterate through a loop. For now, we give up if
1224       // the PHI is not invariant.
1225       if (isa<PHINode>(Usr)) {
1226         // Note the order here, the Usr access might change the map, CurPtr is
1227         // already in it though.
1228         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1229         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1230         // Check if the PHI is invariant (so far).
1231         if (UsrOI == PtrOI)
1232           return true;
1233 
1234         // Check if the PHI operand has already an unknown offset as we can't
1235         // improve on that anymore.
1236         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1237           UsrOI = PtrOI;
1238           Follow = true;
1239           return true;
1240         }
1241 
1242         // Check if the PHI operand is not dependent on the PHI itself.
1243         // TODO: This is not great as we look at the pointer type. However, it
1244         // is unclear where the Offset size comes from with typeless pointers.
1245         APInt Offset(
1246             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1247             0);
1248         if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets(
1249                                     DL, Offset, /* AllowNonInbounds */ true)) {
1250           if (Offset != PtrOI.Offset) {
1251             LLVM_DEBUG(dbgs()
1252                        << "[AAPointerInfo] PHI operand pointer offset mismatch "
1253                        << *CurPtr << " in " << *Usr << "\n");
1254             return false;
1255           }
1256           return HandlePassthroughUser(Usr, PtrOI, Follow);
1257         }
1258 
1259         // TODO: Approximate in case we know the direction of the recurrence.
1260         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1261                           << *CurPtr << " in " << *Usr << "\n");
1262         UsrOI = PtrOI;
1263         UsrOI.Offset = OffsetAndSize::Unknown;
1264         Follow = true;
1265         return true;
1266       }
1267 
1268       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1269         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1270                             AccessKind::AK_READ, OffsetInfoMap[CurPtr].Offset,
1271                             Changed, LoadI->getType());
1272       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1273         if (StoreI->getValueOperand() == CurPtr) {
1274           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1275                             << *StoreI << "\n");
1276           return false;
1277         }
1278         bool UsedAssumedInformation = false;
1279         Optional<Value *> Content = A.getAssumedSimplified(
1280             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1281         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1282                             OffsetInfoMap[CurPtr].Offset, Changed,
1283                             StoreI->getValueOperand()->getType());
1284       }
1285       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1286         if (CB->isLifetimeStartOrEnd())
1287           return true;
1288         if (TLI && isFreeCall(CB, TLI))
1289           return true;
1290         if (CB->isArgOperand(&U)) {
1291           unsigned ArgNo = CB->getArgOperandNo(&U);
1292           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1293               *this, IRPosition::callsite_argument(*CB, ArgNo),
1294               DepClassTy::REQUIRED);
1295           Changed = translateAndAddCalleeState(
1296                         A, CSArgPI, OffsetInfoMap[CurPtr].Offset, *CB) |
1297                     Changed;
1298           return true;
1299         }
1300         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1301                           << "\n");
1302         // TODO: Allow some call uses
1303         return false;
1304       }
1305 
1306       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1307       return false;
1308     };
1309     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1310       if (OffsetInfoMap.count(NewU))
1311         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1312       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1313       return true;
1314     };
1315     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1316                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1317                            EquivalentUseCB))
1318       return indicatePessimisticFixpoint();
1319 
1320     LLVM_DEBUG({
1321       dbgs() << "Accesses by bin after update:\n";
1322       for (auto &It : AccessBins) {
1323         dbgs() << "[" << It.first.getOffset() << "-"
1324                << It.first.getOffset() + It.first.getSize()
1325                << "] : " << It.getSecond().size() << "\n";
1326         for (auto &Acc : It.getSecond()) {
1327           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1328                  << "\n";
1329           if (Acc.getLocalInst() != Acc.getRemoteInst())
1330             dbgs() << "     -->                         "
1331                    << *Acc.getRemoteInst() << "\n";
1332           if (!Acc.isWrittenValueYetUndetermined())
1333             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1334         }
1335       }
1336     });
1337 
1338     return Changed;
1339   }
1340 
1341   /// See AbstractAttribute::trackStatistics()
1342   void trackStatistics() const override {
1343     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1344   }
1345 };
1346 
1347 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1348   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1349       : AAPointerInfoImpl(IRP, A) {}
1350 
1351   /// See AbstractAttribute::updateImpl(...).
1352   ChangeStatus updateImpl(Attributor &A) override {
1353     return indicatePessimisticFixpoint();
1354   }
1355 
1356   /// See AbstractAttribute::trackStatistics()
1357   void trackStatistics() const override {
1358     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1359   }
1360 };
1361 
1362 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1363   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1364       : AAPointerInfoFloating(IRP, A) {}
1365 
1366   /// See AbstractAttribute::initialize(...).
1367   void initialize(Attributor &A) override {
1368     AAPointerInfoFloating::initialize(A);
1369     if (getAnchorScope()->isDeclaration())
1370       indicatePessimisticFixpoint();
1371   }
1372 
1373   /// See AbstractAttribute::trackStatistics()
1374   void trackStatistics() const override {
1375     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1376   }
1377 };
1378 
1379 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1380   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1381       : AAPointerInfoFloating(IRP, A) {}
1382 
1383   /// See AbstractAttribute::updateImpl(...).
1384   ChangeStatus updateImpl(Attributor &A) override {
1385     using namespace AA::PointerInfo;
1386     // We handle memory intrinsics explicitly, at least the first (=
1387     // destination) and second (=source) arguments as we know how they are
1388     // accessed.
1389     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1390       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1391       int64_t LengthVal = OffsetAndSize::Unknown;
1392       if (Length)
1393         LengthVal = Length->getSExtValue();
1394       Value &Ptr = getAssociatedValue();
1395       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1396       ChangeStatus Changed;
1397       if (ArgNo == 0) {
1398         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1399                      nullptr, LengthVal);
1400       } else if (ArgNo == 1) {
1401         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1402                      nullptr, LengthVal);
1403       } else {
1404         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1405                           << *MI << "\n");
1406         return indicatePessimisticFixpoint();
1407       }
1408       return Changed;
1409     }
1410 
1411     // TODO: Once we have call site specific value information we can provide
1412     //       call site specific liveness information and then it makes
1413     //       sense to specialize attributes for call sites arguments instead of
1414     //       redirecting requests to the callee argument.
1415     Argument *Arg = getAssociatedArgument();
1416     if (!Arg)
1417       return indicatePessimisticFixpoint();
1418     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1419     auto &ArgAA =
1420         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1421     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1422   }
1423 
1424   /// See AbstractAttribute::trackStatistics()
1425   void trackStatistics() const override {
1426     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1427   }
1428 };
1429 
1430 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1431   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1432       : AAPointerInfoFloating(IRP, A) {}
1433 
1434   /// See AbstractAttribute::trackStatistics()
1435   void trackStatistics() const override {
1436     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1437   }
1438 };
1439 
1440 /// -----------------------NoUnwind Function Attribute--------------------------
1441 
1442 struct AANoUnwindImpl : AANoUnwind {
1443   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1444 
1445   const std::string getAsStr() const override {
1446     return getAssumed() ? "nounwind" : "may-unwind";
1447   }
1448 
1449   /// See AbstractAttribute::updateImpl(...).
1450   ChangeStatus updateImpl(Attributor &A) override {
1451     auto Opcodes = {
1452         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1453         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1454         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1455 
1456     auto CheckForNoUnwind = [&](Instruction &I) {
1457       if (!I.mayThrow())
1458         return true;
1459 
1460       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1461         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1462             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1463         return NoUnwindAA.isAssumedNoUnwind();
1464       }
1465       return false;
1466     };
1467 
1468     bool UsedAssumedInformation = false;
1469     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1470                                    UsedAssumedInformation))
1471       return indicatePessimisticFixpoint();
1472 
1473     return ChangeStatus::UNCHANGED;
1474   }
1475 };
1476 
1477 struct AANoUnwindFunction final : public AANoUnwindImpl {
1478   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1479       : AANoUnwindImpl(IRP, A) {}
1480 
1481   /// See AbstractAttribute::trackStatistics()
1482   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1483 };
1484 
1485 /// NoUnwind attribute deduction for a call sites.
1486 struct AANoUnwindCallSite final : AANoUnwindImpl {
1487   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1488       : AANoUnwindImpl(IRP, A) {}
1489 
1490   /// See AbstractAttribute::initialize(...).
1491   void initialize(Attributor &A) override {
1492     AANoUnwindImpl::initialize(A);
1493     Function *F = getAssociatedFunction();
1494     if (!F || F->isDeclaration())
1495       indicatePessimisticFixpoint();
1496   }
1497 
1498   /// See AbstractAttribute::updateImpl(...).
1499   ChangeStatus updateImpl(Attributor &A) override {
1500     // TODO: Once we have call site specific value information we can provide
1501     //       call site specific liveness information and then it makes
1502     //       sense to specialize attributes for call sites arguments instead of
1503     //       redirecting requests to the callee argument.
1504     Function *F = getAssociatedFunction();
1505     const IRPosition &FnPos = IRPosition::function(*F);
1506     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1507     return clampStateAndIndicateChange(getState(), FnAA.getState());
1508   }
1509 
1510   /// See AbstractAttribute::trackStatistics()
1511   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1512 };
1513 
1514 /// --------------------- Function Return Values -------------------------------
1515 
1516 /// "Attribute" that collects all potential returned values and the return
1517 /// instructions that they arise from.
1518 ///
1519 /// If there is a unique returned value R, the manifest method will:
1520 ///   - mark R with the "returned" attribute, if R is an argument.
1521 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1522 
1523   /// Mapping of values potentially returned by the associated function to the
1524   /// return instructions that might return them.
1525   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1526 
1527   /// State flags
1528   ///
1529   ///{
1530   bool IsFixed = false;
1531   bool IsValidState = true;
1532   ///}
1533 
1534 public:
1535   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1536       : AAReturnedValues(IRP, A) {}
1537 
1538   /// See AbstractAttribute::initialize(...).
1539   void initialize(Attributor &A) override {
1540     // Reset the state.
1541     IsFixed = false;
1542     IsValidState = true;
1543     ReturnedValues.clear();
1544 
1545     Function *F = getAssociatedFunction();
1546     if (!F || F->isDeclaration()) {
1547       indicatePessimisticFixpoint();
1548       return;
1549     }
1550     assert(!F->getReturnType()->isVoidTy() &&
1551            "Did not expect a void return type!");
1552 
1553     // The map from instruction opcodes to those instructions in the function.
1554     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1555 
1556     // Look through all arguments, if one is marked as returned we are done.
1557     for (Argument &Arg : F->args()) {
1558       if (Arg.hasReturnedAttr()) {
1559         auto &ReturnInstSet = ReturnedValues[&Arg];
1560         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1561           for (Instruction *RI : *Insts)
1562             ReturnInstSet.insert(cast<ReturnInst>(RI));
1563 
1564         indicateOptimisticFixpoint();
1565         return;
1566       }
1567     }
1568 
1569     if (!A.isFunctionIPOAmendable(*F))
1570       indicatePessimisticFixpoint();
1571   }
1572 
1573   /// See AbstractAttribute::manifest(...).
1574   ChangeStatus manifest(Attributor &A) override;
1575 
1576   /// See AbstractAttribute::getState(...).
1577   AbstractState &getState() override { return *this; }
1578 
1579   /// See AbstractAttribute::getState(...).
1580   const AbstractState &getState() const override { return *this; }
1581 
1582   /// See AbstractAttribute::updateImpl(Attributor &A).
1583   ChangeStatus updateImpl(Attributor &A) override;
1584 
1585   llvm::iterator_range<iterator> returned_values() override {
1586     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1587   }
1588 
1589   llvm::iterator_range<const_iterator> returned_values() const override {
1590     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1591   }
1592 
1593   /// Return the number of potential return values, -1 if unknown.
1594   size_t getNumReturnValues() const override {
1595     return isValidState() ? ReturnedValues.size() : -1;
1596   }
1597 
1598   /// Return an assumed unique return value if a single candidate is found. If
1599   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1600   /// Optional::NoneType.
1601   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1602 
1603   /// See AbstractState::checkForAllReturnedValues(...).
1604   bool checkForAllReturnedValuesAndReturnInsts(
1605       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1606       const override;
1607 
1608   /// Pretty print the attribute similar to the IR representation.
1609   const std::string getAsStr() const override;
1610 
1611   /// See AbstractState::isAtFixpoint().
1612   bool isAtFixpoint() const override { return IsFixed; }
1613 
1614   /// See AbstractState::isValidState().
1615   bool isValidState() const override { return IsValidState; }
1616 
1617   /// See AbstractState::indicateOptimisticFixpoint(...).
1618   ChangeStatus indicateOptimisticFixpoint() override {
1619     IsFixed = true;
1620     return ChangeStatus::UNCHANGED;
1621   }
1622 
1623   ChangeStatus indicatePessimisticFixpoint() override {
1624     IsFixed = true;
1625     IsValidState = false;
1626     return ChangeStatus::CHANGED;
1627   }
1628 };
1629 
1630 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1631   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1632 
1633   // Bookkeeping.
1634   assert(isValidState());
1635   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1636                   "Number of function with known return values");
1637 
1638   // Check if we have an assumed unique return value that we could manifest.
1639   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1640 
1641   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1642     return Changed;
1643 
1644   // Bookkeeping.
1645   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1646                   "Number of function with unique return");
1647   // If the assumed unique return value is an argument, annotate it.
1648   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1649     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1650             getAssociatedFunction()->getReturnType())) {
1651       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1652       Changed = IRAttribute::manifest(A);
1653     }
1654   }
1655   return Changed;
1656 }
1657 
1658 const std::string AAReturnedValuesImpl::getAsStr() const {
1659   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1660          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1661 }
1662 
1663 Optional<Value *>
1664 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1665   // If checkForAllReturnedValues provides a unique value, ignoring potential
1666   // undef values that can also be present, it is assumed to be the actual
1667   // return value and forwarded to the caller of this method. If there are
1668   // multiple, a nullptr is returned indicating there cannot be a unique
1669   // returned value.
1670   Optional<Value *> UniqueRV;
1671   Type *Ty = getAssociatedFunction()->getReturnType();
1672 
1673   auto Pred = [&](Value &RV) -> bool {
1674     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1675     return UniqueRV != Optional<Value *>(nullptr);
1676   };
1677 
1678   if (!A.checkForAllReturnedValues(Pred, *this))
1679     UniqueRV = nullptr;
1680 
1681   return UniqueRV;
1682 }
1683 
1684 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1685     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1686     const {
1687   if (!isValidState())
1688     return false;
1689 
1690   // Check all returned values but ignore call sites as long as we have not
1691   // encountered an overdefined one during an update.
1692   for (auto &It : ReturnedValues) {
1693     Value *RV = It.first;
1694     if (!Pred(*RV, It.second))
1695       return false;
1696   }
1697 
1698   return true;
1699 }
1700 
1701 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1702   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1703 
1704   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1705                            bool) -> bool {
1706     bool UsedAssumedInformation = false;
1707     Optional<Value *> SimpleRetVal =
1708         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1709     if (!SimpleRetVal.hasValue())
1710       return true;
1711     if (!SimpleRetVal.getValue())
1712       return false;
1713     Value *RetVal = *SimpleRetVal;
1714     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1715            "Assumed returned value should be valid in function scope!");
1716     if (ReturnedValues[RetVal].insert(&Ret))
1717       Changed = ChangeStatus::CHANGED;
1718     return true;
1719   };
1720 
1721   auto ReturnInstCB = [&](Instruction &I) {
1722     ReturnInst &Ret = cast<ReturnInst>(I);
1723     return genericValueTraversal<ReturnInst>(
1724         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1725         &I);
1726   };
1727 
1728   // Discover returned values from all live returned instructions in the
1729   // associated function.
1730   bool UsedAssumedInformation = false;
1731   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1732                                  UsedAssumedInformation))
1733     return indicatePessimisticFixpoint();
1734   return Changed;
1735 }
1736 
1737 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1738   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1739       : AAReturnedValuesImpl(IRP, A) {}
1740 
1741   /// See AbstractAttribute::trackStatistics()
1742   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1743 };
1744 
1745 /// Returned values information for a call sites.
1746 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1747   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1748       : AAReturnedValuesImpl(IRP, A) {}
1749 
1750   /// See AbstractAttribute::initialize(...).
1751   void initialize(Attributor &A) override {
1752     // TODO: Once we have call site specific value information we can provide
1753     //       call site specific liveness information and then it makes
1754     //       sense to specialize attributes for call sites instead of
1755     //       redirecting requests to the callee.
1756     llvm_unreachable("Abstract attributes for returned values are not "
1757                      "supported for call sites yet!");
1758   }
1759 
1760   /// See AbstractAttribute::updateImpl(...).
1761   ChangeStatus updateImpl(Attributor &A) override {
1762     return indicatePessimisticFixpoint();
1763   }
1764 
1765   /// See AbstractAttribute::trackStatistics()
1766   void trackStatistics() const override {}
1767 };
1768 
1769 /// ------------------------ NoSync Function Attribute -------------------------
1770 
1771 struct AANoSyncImpl : AANoSync {
1772   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1773 
1774   const std::string getAsStr() const override {
1775     return getAssumed() ? "nosync" : "may-sync";
1776   }
1777 
1778   /// See AbstractAttribute::updateImpl(...).
1779   ChangeStatus updateImpl(Attributor &A) override;
1780 
1781   /// Helper function used to determine whether an instruction is non-relaxed
1782   /// atomic. In other words, if an atomic instruction does not have unordered
1783   /// or monotonic ordering
1784   static bool isNonRelaxedAtomic(Instruction *I);
1785 
1786   /// Helper function specific for intrinsics which are potentially volatile
1787   static bool isNoSyncIntrinsic(Instruction *I);
1788 };
1789 
1790 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1791   if (!I->isAtomic())
1792     return false;
1793 
1794   if (auto *FI = dyn_cast<FenceInst>(I))
1795     // All legal orderings for fence are stronger than monotonic.
1796     return FI->getSyncScopeID() != SyncScope::SingleThread;
1797   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1798     // Unordered is not a legal ordering for cmpxchg.
1799     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1800             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1801   }
1802 
1803   AtomicOrdering Ordering;
1804   switch (I->getOpcode()) {
1805   case Instruction::AtomicRMW:
1806     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1807     break;
1808   case Instruction::Store:
1809     Ordering = cast<StoreInst>(I)->getOrdering();
1810     break;
1811   case Instruction::Load:
1812     Ordering = cast<LoadInst>(I)->getOrdering();
1813     break;
1814   default:
1815     llvm_unreachable(
1816         "New atomic operations need to be known in the attributor.");
1817   }
1818 
1819   return (Ordering != AtomicOrdering::Unordered &&
1820           Ordering != AtomicOrdering::Monotonic);
1821 }
1822 
1823 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1824 /// which would be nosync except that they have a volatile flag.  All other
1825 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1826 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1827   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1828     return !MI->isVolatile();
1829   return false;
1830 }
1831 
1832 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1833 
1834   auto CheckRWInstForNoSync = [&](Instruction &I) {
1835     /// We are looking for volatile instructions or Non-Relaxed atomics.
1836 
1837     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1838       if (CB->hasFnAttr(Attribute::NoSync))
1839         return true;
1840 
1841       if (isNoSyncIntrinsic(&I))
1842         return true;
1843 
1844       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1845           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1846       return NoSyncAA.isAssumedNoSync();
1847     }
1848 
1849     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1850       return true;
1851 
1852     return false;
1853   };
1854 
1855   auto CheckForNoSync = [&](Instruction &I) {
1856     // At this point we handled all read/write effects and they are all
1857     // nosync, so they can be skipped.
1858     if (I.mayReadOrWriteMemory())
1859       return true;
1860 
1861     // non-convergent and readnone imply nosync.
1862     return !cast<CallBase>(I).isConvergent();
1863   };
1864 
1865   bool UsedAssumedInformation = false;
1866   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1867                                           UsedAssumedInformation) ||
1868       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1869                                          UsedAssumedInformation))
1870     return indicatePessimisticFixpoint();
1871 
1872   return ChangeStatus::UNCHANGED;
1873 }
1874 
1875 struct AANoSyncFunction final : public AANoSyncImpl {
1876   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1877       : AANoSyncImpl(IRP, A) {}
1878 
1879   /// See AbstractAttribute::trackStatistics()
1880   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1881 };
1882 
1883 /// NoSync attribute deduction for a call sites.
1884 struct AANoSyncCallSite final : AANoSyncImpl {
1885   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1886       : AANoSyncImpl(IRP, A) {}
1887 
1888   /// See AbstractAttribute::initialize(...).
1889   void initialize(Attributor &A) override {
1890     AANoSyncImpl::initialize(A);
1891     Function *F = getAssociatedFunction();
1892     if (!F || F->isDeclaration())
1893       indicatePessimisticFixpoint();
1894   }
1895 
1896   /// See AbstractAttribute::updateImpl(...).
1897   ChangeStatus updateImpl(Attributor &A) override {
1898     // TODO: Once we have call site specific value information we can provide
1899     //       call site specific liveness information and then it makes
1900     //       sense to specialize attributes for call sites arguments instead of
1901     //       redirecting requests to the callee argument.
1902     Function *F = getAssociatedFunction();
1903     const IRPosition &FnPos = IRPosition::function(*F);
1904     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1905     return clampStateAndIndicateChange(getState(), FnAA.getState());
1906   }
1907 
1908   /// See AbstractAttribute::trackStatistics()
1909   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1910 };
1911 
1912 /// ------------------------ No-Free Attributes ----------------------------
1913 
1914 struct AANoFreeImpl : public AANoFree {
1915   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1916 
1917   /// See AbstractAttribute::updateImpl(...).
1918   ChangeStatus updateImpl(Attributor &A) override {
1919     auto CheckForNoFree = [&](Instruction &I) {
1920       const auto &CB = cast<CallBase>(I);
1921       if (CB.hasFnAttr(Attribute::NoFree))
1922         return true;
1923 
1924       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1925           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1926       return NoFreeAA.isAssumedNoFree();
1927     };
1928 
1929     bool UsedAssumedInformation = false;
1930     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1931                                            UsedAssumedInformation))
1932       return indicatePessimisticFixpoint();
1933     return ChangeStatus::UNCHANGED;
1934   }
1935 
1936   /// See AbstractAttribute::getAsStr().
1937   const std::string getAsStr() const override {
1938     return getAssumed() ? "nofree" : "may-free";
1939   }
1940 };
1941 
1942 struct AANoFreeFunction final : public AANoFreeImpl {
1943   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1944       : AANoFreeImpl(IRP, A) {}
1945 
1946   /// See AbstractAttribute::trackStatistics()
1947   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1948 };
1949 
1950 /// NoFree attribute deduction for a call sites.
1951 struct AANoFreeCallSite final : AANoFreeImpl {
1952   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1953       : AANoFreeImpl(IRP, A) {}
1954 
1955   /// See AbstractAttribute::initialize(...).
1956   void initialize(Attributor &A) override {
1957     AANoFreeImpl::initialize(A);
1958     Function *F = getAssociatedFunction();
1959     if (!F || F->isDeclaration())
1960       indicatePessimisticFixpoint();
1961   }
1962 
1963   /// See AbstractAttribute::updateImpl(...).
1964   ChangeStatus updateImpl(Attributor &A) override {
1965     // TODO: Once we have call site specific value information we can provide
1966     //       call site specific liveness information and then it makes
1967     //       sense to specialize attributes for call sites arguments instead of
1968     //       redirecting requests to the callee argument.
1969     Function *F = getAssociatedFunction();
1970     const IRPosition &FnPos = IRPosition::function(*F);
1971     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1972     return clampStateAndIndicateChange(getState(), FnAA.getState());
1973   }
1974 
1975   /// See AbstractAttribute::trackStatistics()
1976   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1977 };
1978 
1979 /// NoFree attribute for floating values.
1980 struct AANoFreeFloating : AANoFreeImpl {
1981   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1982       : AANoFreeImpl(IRP, A) {}
1983 
1984   /// See AbstractAttribute::trackStatistics()
1985   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1986 
1987   /// See Abstract Attribute::updateImpl(...).
1988   ChangeStatus updateImpl(Attributor &A) override {
1989     const IRPosition &IRP = getIRPosition();
1990 
1991     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1992         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1993     if (NoFreeAA.isAssumedNoFree())
1994       return ChangeStatus::UNCHANGED;
1995 
1996     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1997     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1998       Instruction *UserI = cast<Instruction>(U.getUser());
1999       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2000         if (CB->isBundleOperand(&U))
2001           return false;
2002         if (!CB->isArgOperand(&U))
2003           return true;
2004         unsigned ArgNo = CB->getArgOperandNo(&U);
2005 
2006         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2007             *this, IRPosition::callsite_argument(*CB, ArgNo),
2008             DepClassTy::REQUIRED);
2009         return NoFreeArg.isAssumedNoFree();
2010       }
2011 
2012       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2013           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2014         Follow = true;
2015         return true;
2016       }
2017       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2018           isa<ReturnInst>(UserI))
2019         return true;
2020 
2021       // Unknown user.
2022       return false;
2023     };
2024     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2025       return indicatePessimisticFixpoint();
2026 
2027     return ChangeStatus::UNCHANGED;
2028   }
2029 };
2030 
2031 /// NoFree attribute for a call site argument.
2032 struct AANoFreeArgument final : AANoFreeFloating {
2033   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2034       : AANoFreeFloating(IRP, A) {}
2035 
2036   /// See AbstractAttribute::trackStatistics()
2037   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2038 };
2039 
2040 /// NoFree attribute for call site arguments.
2041 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2042   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2043       : AANoFreeFloating(IRP, A) {}
2044 
2045   /// See AbstractAttribute::updateImpl(...).
2046   ChangeStatus updateImpl(Attributor &A) override {
2047     // TODO: Once we have call site specific value information we can provide
2048     //       call site specific liveness information and then it makes
2049     //       sense to specialize attributes for call sites arguments instead of
2050     //       redirecting requests to the callee argument.
2051     Argument *Arg = getAssociatedArgument();
2052     if (!Arg)
2053       return indicatePessimisticFixpoint();
2054     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2055     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2056     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2057   }
2058 
2059   /// See AbstractAttribute::trackStatistics()
2060   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2061 };
2062 
2063 /// NoFree attribute for function return value.
2064 struct AANoFreeReturned final : AANoFreeFloating {
2065   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2066       : AANoFreeFloating(IRP, A) {
2067     llvm_unreachable("NoFree is not applicable to function returns!");
2068   }
2069 
2070   /// See AbstractAttribute::initialize(...).
2071   void initialize(Attributor &A) override {
2072     llvm_unreachable("NoFree is not applicable to function returns!");
2073   }
2074 
2075   /// See AbstractAttribute::updateImpl(...).
2076   ChangeStatus updateImpl(Attributor &A) override {
2077     llvm_unreachable("NoFree is not applicable to function returns!");
2078   }
2079 
2080   /// See AbstractAttribute::trackStatistics()
2081   void trackStatistics() const override {}
2082 };
2083 
2084 /// NoFree attribute deduction for a call site return value.
2085 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2086   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2087       : AANoFreeFloating(IRP, A) {}
2088 
2089   ChangeStatus manifest(Attributor &A) override {
2090     return ChangeStatus::UNCHANGED;
2091   }
2092   /// See AbstractAttribute::trackStatistics()
2093   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2094 };
2095 
2096 /// ------------------------ NonNull Argument Attribute ------------------------
2097 static int64_t getKnownNonNullAndDerefBytesForUse(
2098     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2099     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2100   TrackUse = false;
2101 
2102   const Value *UseV = U->get();
2103   if (!UseV->getType()->isPointerTy())
2104     return 0;
2105 
2106   // We need to follow common pointer manipulation uses to the accesses they
2107   // feed into. We can try to be smart to avoid looking through things we do not
2108   // like for now, e.g., non-inbounds GEPs.
2109   if (isa<CastInst>(I)) {
2110     TrackUse = true;
2111     return 0;
2112   }
2113 
2114   if (isa<GetElementPtrInst>(I)) {
2115     TrackUse = true;
2116     return 0;
2117   }
2118 
2119   Type *PtrTy = UseV->getType();
2120   const Function *F = I->getFunction();
2121   bool NullPointerIsDefined =
2122       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2123   const DataLayout &DL = A.getInfoCache().getDL();
2124   if (const auto *CB = dyn_cast<CallBase>(I)) {
2125     if (CB->isBundleOperand(U)) {
2126       if (RetainedKnowledge RK = getKnowledgeFromUse(
2127               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2128         IsNonNull |=
2129             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2130         return RK.ArgValue;
2131       }
2132       return 0;
2133     }
2134 
2135     if (CB->isCallee(U)) {
2136       IsNonNull |= !NullPointerIsDefined;
2137       return 0;
2138     }
2139 
2140     unsigned ArgNo = CB->getArgOperandNo(U);
2141     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2142     // As long as we only use known information there is no need to track
2143     // dependences here.
2144     auto &DerefAA =
2145         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2146     IsNonNull |= DerefAA.isKnownNonNull();
2147     return DerefAA.getKnownDereferenceableBytes();
2148   }
2149 
2150   int64_t Offset;
2151   const Value *Base =
2152       getMinimalBaseOfAccessPointerOperand(A, QueryingAA, I, Offset, DL);
2153   if (Base) {
2154     if (Base == &AssociatedValue &&
2155         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2156       int64_t DerefBytes =
2157           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2158 
2159       IsNonNull |= !NullPointerIsDefined;
2160       return std::max(int64_t(0), DerefBytes);
2161     }
2162   }
2163 
2164   /// Corner case when an offset is 0.
2165   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2166                                               /*AllowNonInbounds*/ true);
2167   if (Base) {
2168     if (Offset == 0 && Base == &AssociatedValue &&
2169         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2170       int64_t DerefBytes =
2171           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2172       IsNonNull |= !NullPointerIsDefined;
2173       return std::max(int64_t(0), DerefBytes);
2174     }
2175   }
2176 
2177   return 0;
2178 }
2179 
2180 struct AANonNullImpl : AANonNull {
2181   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2182       : AANonNull(IRP, A),
2183         NullIsDefined(NullPointerIsDefined(
2184             getAnchorScope(),
2185             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2186 
2187   /// See AbstractAttribute::initialize(...).
2188   void initialize(Attributor &A) override {
2189     Value &V = getAssociatedValue();
2190     if (!NullIsDefined &&
2191         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2192                 /* IgnoreSubsumingPositions */ false, &A)) {
2193       indicateOptimisticFixpoint();
2194       return;
2195     }
2196 
2197     if (isa<ConstantPointerNull>(V)) {
2198       indicatePessimisticFixpoint();
2199       return;
2200     }
2201 
2202     AANonNull::initialize(A);
2203 
2204     bool CanBeNull, CanBeFreed;
2205     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2206                                          CanBeFreed)) {
2207       if (!CanBeNull) {
2208         indicateOptimisticFixpoint();
2209         return;
2210       }
2211     }
2212 
2213     if (isa<GlobalValue>(&getAssociatedValue())) {
2214       indicatePessimisticFixpoint();
2215       return;
2216     }
2217 
2218     if (Instruction *CtxI = getCtxI())
2219       followUsesInMBEC(*this, A, getState(), *CtxI);
2220   }
2221 
2222   /// See followUsesInMBEC
2223   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2224                        AANonNull::StateType &State) {
2225     bool IsNonNull = false;
2226     bool TrackUse = false;
2227     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2228                                        IsNonNull, TrackUse);
2229     State.setKnown(IsNonNull);
2230     return TrackUse;
2231   }
2232 
2233   /// See AbstractAttribute::getAsStr().
2234   const std::string getAsStr() const override {
2235     return getAssumed() ? "nonnull" : "may-null";
2236   }
2237 
2238   /// Flag to determine if the underlying value can be null and still allow
2239   /// valid accesses.
2240   const bool NullIsDefined;
2241 };
2242 
2243 /// NonNull attribute for a floating value.
2244 struct AANonNullFloating : public AANonNullImpl {
2245   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2246       : AANonNullImpl(IRP, A) {}
2247 
2248   /// See AbstractAttribute::updateImpl(...).
2249   ChangeStatus updateImpl(Attributor &A) override {
2250     const DataLayout &DL = A.getDataLayout();
2251 
2252     DominatorTree *DT = nullptr;
2253     AssumptionCache *AC = nullptr;
2254     InformationCache &InfoCache = A.getInfoCache();
2255     if (const Function *Fn = getAnchorScope()) {
2256       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2257       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2258     }
2259 
2260     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2261                             AANonNull::StateType &T, bool Stripped) -> bool {
2262       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2263                                              DepClassTy::REQUIRED);
2264       if (!Stripped && this == &AA) {
2265         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2266           T.indicatePessimisticFixpoint();
2267       } else {
2268         // Use abstract attribute information.
2269         const AANonNull::StateType &NS = AA.getState();
2270         T ^= NS;
2271       }
2272       return T.isValidState();
2273     };
2274 
2275     StateType T;
2276     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2277                                           VisitValueCB, getCtxI()))
2278       return indicatePessimisticFixpoint();
2279 
2280     return clampStateAndIndicateChange(getState(), T);
2281   }
2282 
2283   /// See AbstractAttribute::trackStatistics()
2284   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2285 };
2286 
2287 /// NonNull attribute for function return value.
2288 struct AANonNullReturned final
2289     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2290   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2291       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2292 
2293   /// See AbstractAttribute::getAsStr().
2294   const std::string getAsStr() const override {
2295     return getAssumed() ? "nonnull" : "may-null";
2296   }
2297 
2298   /// See AbstractAttribute::trackStatistics()
2299   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2300 };
2301 
2302 /// NonNull attribute for function argument.
2303 struct AANonNullArgument final
2304     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2305   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2306       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2307 
2308   /// See AbstractAttribute::trackStatistics()
2309   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2310 };
2311 
2312 struct AANonNullCallSiteArgument final : AANonNullFloating {
2313   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2314       : AANonNullFloating(IRP, A) {}
2315 
2316   /// See AbstractAttribute::trackStatistics()
2317   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2318 };
2319 
2320 /// NonNull attribute for a call site return position.
2321 struct AANonNullCallSiteReturned final
2322     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2323   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2324       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2325 
2326   /// See AbstractAttribute::trackStatistics()
2327   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2328 };
2329 
2330 /// ------------------------ No-Recurse Attributes ----------------------------
2331 
2332 struct AANoRecurseImpl : public AANoRecurse {
2333   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2334 
2335   /// See AbstractAttribute::getAsStr()
2336   const std::string getAsStr() const override {
2337     return getAssumed() ? "norecurse" : "may-recurse";
2338   }
2339 };
2340 
2341 struct AANoRecurseFunction final : AANoRecurseImpl {
2342   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2343       : AANoRecurseImpl(IRP, A) {}
2344 
2345   /// See AbstractAttribute::initialize(...).
2346   void initialize(Attributor &A) override {
2347     AANoRecurseImpl::initialize(A);
2348     // TODO: We should build a call graph ourselves to enable this in the module
2349     // pass as well.
2350     if (const Function *F = getAnchorScope())
2351       if (A.getInfoCache().getSccSize(*F) != 1)
2352         indicatePessimisticFixpoint();
2353   }
2354 
2355   /// See AbstractAttribute::updateImpl(...).
2356   ChangeStatus updateImpl(Attributor &A) override {
2357 
2358     // If all live call sites are known to be no-recurse, we are as well.
2359     auto CallSitePred = [&](AbstractCallSite ACS) {
2360       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2361           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2362           DepClassTy::NONE);
2363       return NoRecurseAA.isKnownNoRecurse();
2364     };
2365     bool AllCallSitesKnown;
2366     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2367       // If we know all call sites and all are known no-recurse, we are done.
2368       // If all known call sites, which might not be all that exist, are known
2369       // to be no-recurse, we are not done but we can continue to assume
2370       // no-recurse. If one of the call sites we have not visited will become
2371       // live, another update is triggered.
2372       if (AllCallSitesKnown)
2373         indicateOptimisticFixpoint();
2374       return ChangeStatus::UNCHANGED;
2375     }
2376 
2377     // If the above check does not hold anymore we look at the calls.
2378     auto CheckForNoRecurse = [&](Instruction &I) {
2379       const auto &CB = cast<CallBase>(I);
2380       if (CB.hasFnAttr(Attribute::NoRecurse))
2381         return true;
2382 
2383       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2384           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2385       if (!NoRecurseAA.isAssumedNoRecurse())
2386         return false;
2387 
2388       // Recursion to the same function
2389       if (CB.getCalledFunction() == getAnchorScope())
2390         return false;
2391 
2392       return true;
2393     };
2394 
2395     bool UsedAssumedInformation = false;
2396     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2397                                            UsedAssumedInformation))
2398       return indicatePessimisticFixpoint();
2399     return ChangeStatus::UNCHANGED;
2400   }
2401 
2402   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2403 };
2404 
2405 /// NoRecurse attribute deduction for a call sites.
2406 struct AANoRecurseCallSite final : AANoRecurseImpl {
2407   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2408       : AANoRecurseImpl(IRP, A) {}
2409 
2410   /// See AbstractAttribute::initialize(...).
2411   void initialize(Attributor &A) override {
2412     AANoRecurseImpl::initialize(A);
2413     Function *F = getAssociatedFunction();
2414     if (!F || F->isDeclaration())
2415       indicatePessimisticFixpoint();
2416   }
2417 
2418   /// See AbstractAttribute::updateImpl(...).
2419   ChangeStatus updateImpl(Attributor &A) override {
2420     // TODO: Once we have call site specific value information we can provide
2421     //       call site specific liveness information and then it makes
2422     //       sense to specialize attributes for call sites arguments instead of
2423     //       redirecting requests to the callee argument.
2424     Function *F = getAssociatedFunction();
2425     const IRPosition &FnPos = IRPosition::function(*F);
2426     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2427     return clampStateAndIndicateChange(getState(), FnAA.getState());
2428   }
2429 
2430   /// See AbstractAttribute::trackStatistics()
2431   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2432 };
2433 
2434 /// -------------------- Undefined-Behavior Attributes ------------------------
2435 
2436 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2437   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2438       : AAUndefinedBehavior(IRP, A) {}
2439 
2440   /// See AbstractAttribute::updateImpl(...).
2441   // through a pointer (i.e. also branches etc.)
2442   ChangeStatus updateImpl(Attributor &A) override {
2443     const size_t UBPrevSize = KnownUBInsts.size();
2444     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2445 
2446     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2447       // Lang ref now states volatile store is not UB, let's skip them.
2448       if (I.isVolatile() && I.mayWriteToMemory())
2449         return true;
2450 
2451       // Skip instructions that are already saved.
2452       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2453         return true;
2454 
2455       // If we reach here, we know we have an instruction
2456       // that accesses memory through a pointer operand,
2457       // for which getPointerOperand() should give it to us.
2458       Value *PtrOp =
2459           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2460       assert(PtrOp &&
2461              "Expected pointer operand of memory accessing instruction");
2462 
2463       // Either we stopped and the appropriate action was taken,
2464       // or we got back a simplified value to continue.
2465       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2466       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2467         return true;
2468       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2469 
2470       // A memory access through a pointer is considered UB
2471       // only if the pointer has constant null value.
2472       // TODO: Expand it to not only check constant values.
2473       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2474         AssumedNoUBInsts.insert(&I);
2475         return true;
2476       }
2477       const Type *PtrTy = PtrOpVal->getType();
2478 
2479       // Because we only consider instructions inside functions,
2480       // assume that a parent function exists.
2481       const Function *F = I.getFunction();
2482 
2483       // A memory access using constant null pointer is only considered UB
2484       // if null pointer is _not_ defined for the target platform.
2485       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2486         AssumedNoUBInsts.insert(&I);
2487       else
2488         KnownUBInsts.insert(&I);
2489       return true;
2490     };
2491 
2492     auto InspectBrInstForUB = [&](Instruction &I) {
2493       // A conditional branch instruction is considered UB if it has `undef`
2494       // condition.
2495 
2496       // Skip instructions that are already saved.
2497       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2498         return true;
2499 
2500       // We know we have a branch instruction.
2501       auto *BrInst = cast<BranchInst>(&I);
2502 
2503       // Unconditional branches are never considered UB.
2504       if (BrInst->isUnconditional())
2505         return true;
2506 
2507       // Either we stopped and the appropriate action was taken,
2508       // or we got back a simplified value to continue.
2509       Optional<Value *> SimplifiedCond =
2510           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2511       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2512         return true;
2513       AssumedNoUBInsts.insert(&I);
2514       return true;
2515     };
2516 
2517     auto InspectCallSiteForUB = [&](Instruction &I) {
2518       // Check whether a callsite always cause UB or not
2519 
2520       // Skip instructions that are already saved.
2521       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2522         return true;
2523 
2524       // Check nonnull and noundef argument attribute violation for each
2525       // callsite.
2526       CallBase &CB = cast<CallBase>(I);
2527       Function *Callee = CB.getCalledFunction();
2528       if (!Callee)
2529         return true;
2530       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2531         // If current argument is known to be simplified to null pointer and the
2532         // corresponding argument position is known to have nonnull attribute,
2533         // the argument is poison. Furthermore, if the argument is poison and
2534         // the position is known to have noundef attriubte, this callsite is
2535         // considered UB.
2536         if (idx >= Callee->arg_size())
2537           break;
2538         Value *ArgVal = CB.getArgOperand(idx);
2539         if (!ArgVal)
2540           continue;
2541         // Here, we handle three cases.
2542         //   (1) Not having a value means it is dead. (we can replace the value
2543         //       with undef)
2544         //   (2) Simplified to undef. The argument violate noundef attriubte.
2545         //   (3) Simplified to null pointer where known to be nonnull.
2546         //       The argument is a poison value and violate noundef attribute.
2547         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2548         auto &NoUndefAA =
2549             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2550         if (!NoUndefAA.isKnownNoUndef())
2551           continue;
2552         bool UsedAssumedInformation = false;
2553         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2554             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2555         if (UsedAssumedInformation)
2556           continue;
2557         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2558           return true;
2559         if (!SimplifiedVal.hasValue() ||
2560             isa<UndefValue>(*SimplifiedVal.getValue())) {
2561           KnownUBInsts.insert(&I);
2562           continue;
2563         }
2564         if (!ArgVal->getType()->isPointerTy() ||
2565             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2566           continue;
2567         auto &NonNullAA =
2568             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2569         if (NonNullAA.isKnownNonNull())
2570           KnownUBInsts.insert(&I);
2571       }
2572       return true;
2573     };
2574 
2575     auto InspectReturnInstForUB =
2576         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2577           // Check if a return instruction always cause UB or not
2578           // Note: It is guaranteed that the returned position of the anchor
2579           //       scope has noundef attribute when this is called.
2580           //       We also ensure the return position is not "assumed dead"
2581           //       because the returned value was then potentially simplified to
2582           //       `undef` in AAReturnedValues without removing the `noundef`
2583           //       attribute yet.
2584 
2585           // When the returned position has noundef attriubte, UB occur in the
2586           // following cases.
2587           //   (1) Returned value is known to be undef.
2588           //   (2) The value is known to be a null pointer and the returned
2589           //       position has nonnull attribute (because the returned value is
2590           //       poison).
2591           bool FoundUB = false;
2592           if (isa<UndefValue>(V)) {
2593             FoundUB = true;
2594           } else {
2595             if (isa<ConstantPointerNull>(V)) {
2596               auto &NonNullAA = A.getAAFor<AANonNull>(
2597                   *this, IRPosition::returned(*getAnchorScope()),
2598                   DepClassTy::NONE);
2599               if (NonNullAA.isKnownNonNull())
2600                 FoundUB = true;
2601             }
2602           }
2603 
2604           if (FoundUB)
2605             for (ReturnInst *RI : RetInsts)
2606               KnownUBInsts.insert(RI);
2607           return true;
2608         };
2609 
2610     bool UsedAssumedInformation = false;
2611     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2612                               {Instruction::Load, Instruction::Store,
2613                                Instruction::AtomicCmpXchg,
2614                                Instruction::AtomicRMW},
2615                               UsedAssumedInformation,
2616                               /* CheckBBLivenessOnly */ true);
2617     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2618                               UsedAssumedInformation,
2619                               /* CheckBBLivenessOnly */ true);
2620     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2621                                       UsedAssumedInformation);
2622 
2623     // If the returned position of the anchor scope has noundef attriubte, check
2624     // all returned instructions.
2625     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2626       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2627       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2628         auto &RetPosNoUndefAA =
2629             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2630         if (RetPosNoUndefAA.isKnownNoUndef())
2631           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2632                                                     *this);
2633       }
2634     }
2635 
2636     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2637         UBPrevSize != KnownUBInsts.size())
2638       return ChangeStatus::CHANGED;
2639     return ChangeStatus::UNCHANGED;
2640   }
2641 
2642   bool isKnownToCauseUB(Instruction *I) const override {
2643     return KnownUBInsts.count(I);
2644   }
2645 
2646   bool isAssumedToCauseUB(Instruction *I) const override {
2647     // In simple words, if an instruction is not in the assumed to _not_
2648     // cause UB, then it is assumed UB (that includes those
2649     // in the KnownUBInsts set). The rest is boilerplate
2650     // is to ensure that it is one of the instructions we test
2651     // for UB.
2652 
2653     switch (I->getOpcode()) {
2654     case Instruction::Load:
2655     case Instruction::Store:
2656     case Instruction::AtomicCmpXchg:
2657     case Instruction::AtomicRMW:
2658       return !AssumedNoUBInsts.count(I);
2659     case Instruction::Br: {
2660       auto BrInst = cast<BranchInst>(I);
2661       if (BrInst->isUnconditional())
2662         return false;
2663       return !AssumedNoUBInsts.count(I);
2664     } break;
2665     default:
2666       return false;
2667     }
2668     return false;
2669   }
2670 
2671   ChangeStatus manifest(Attributor &A) override {
2672     if (KnownUBInsts.empty())
2673       return ChangeStatus::UNCHANGED;
2674     for (Instruction *I : KnownUBInsts)
2675       A.changeToUnreachableAfterManifest(I);
2676     return ChangeStatus::CHANGED;
2677   }
2678 
2679   /// See AbstractAttribute::getAsStr()
2680   const std::string getAsStr() const override {
2681     return getAssumed() ? "undefined-behavior" : "no-ub";
2682   }
2683 
2684   /// Note: The correctness of this analysis depends on the fact that the
2685   /// following 2 sets will stop changing after some point.
2686   /// "Change" here means that their size changes.
2687   /// The size of each set is monotonically increasing
2688   /// (we only add items to them) and it is upper bounded by the number of
2689   /// instructions in the processed function (we can never save more
2690   /// elements in either set than this number). Hence, at some point,
2691   /// they will stop increasing.
2692   /// Consequently, at some point, both sets will have stopped
2693   /// changing, effectively making the analysis reach a fixpoint.
2694 
2695   /// Note: These 2 sets are disjoint and an instruction can be considered
2696   /// one of 3 things:
2697   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2698   ///    the KnownUBInsts set.
2699   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2700   ///    has a reason to assume it).
2701   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2702   ///    could not find a reason to assume or prove that it can cause UB,
2703   ///    hence it assumes it doesn't. We have a set for these instructions
2704   ///    so that we don't reprocess them in every update.
2705   ///    Note however that instructions in this set may cause UB.
2706 
2707 protected:
2708   /// A set of all live instructions _known_ to cause UB.
2709   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2710 
2711 private:
2712   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2713   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2714 
2715   // Should be called on updates in which if we're processing an instruction
2716   // \p I that depends on a value \p V, one of the following has to happen:
2717   // - If the value is assumed, then stop.
2718   // - If the value is known but undef, then consider it UB.
2719   // - Otherwise, do specific processing with the simplified value.
2720   // We return None in the first 2 cases to signify that an appropriate
2721   // action was taken and the caller should stop.
2722   // Otherwise, we return the simplified value that the caller should
2723   // use for specific processing.
2724   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2725                                          Instruction *I) {
2726     bool UsedAssumedInformation = false;
2727     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2728         IRPosition::value(*V), *this, UsedAssumedInformation);
2729     if (!UsedAssumedInformation) {
2730       // Don't depend on assumed values.
2731       if (!SimplifiedV.hasValue()) {
2732         // If it is known (which we tested above) but it doesn't have a value,
2733         // then we can assume `undef` and hence the instruction is UB.
2734         KnownUBInsts.insert(I);
2735         return llvm::None;
2736       }
2737       if (!SimplifiedV.getValue())
2738         return nullptr;
2739       V = *SimplifiedV;
2740     }
2741     if (isa<UndefValue>(V)) {
2742       KnownUBInsts.insert(I);
2743       return llvm::None;
2744     }
2745     return V;
2746   }
2747 };
2748 
2749 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2750   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2751       : AAUndefinedBehaviorImpl(IRP, A) {}
2752 
2753   /// See AbstractAttribute::trackStatistics()
2754   void trackStatistics() const override {
2755     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2756                "Number of instructions known to have UB");
2757     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2758         KnownUBInsts.size();
2759   }
2760 };
2761 
2762 /// ------------------------ Will-Return Attributes ----------------------------
2763 
2764 // Helper function that checks whether a function has any cycle which we don't
2765 // know if it is bounded or not.
2766 // Loops with maximum trip count are considered bounded, any other cycle not.
2767 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2768   ScalarEvolution *SE =
2769       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2770   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2771   // If either SCEV or LoopInfo is not available for the function then we assume
2772   // any cycle to be unbounded cycle.
2773   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2774   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2775   if (!SE || !LI) {
2776     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2777       if (SCCI.hasCycle())
2778         return true;
2779     return false;
2780   }
2781 
2782   // If there's irreducible control, the function may contain non-loop cycles.
2783   if (mayContainIrreducibleControl(F, LI))
2784     return true;
2785 
2786   // Any loop that does not have a max trip count is considered unbounded cycle.
2787   for (auto *L : LI->getLoopsInPreorder()) {
2788     if (!SE->getSmallConstantMaxTripCount(L))
2789       return true;
2790   }
2791   return false;
2792 }
2793 
2794 struct AAWillReturnImpl : public AAWillReturn {
2795   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2796       : AAWillReturn(IRP, A) {}
2797 
2798   /// See AbstractAttribute::initialize(...).
2799   void initialize(Attributor &A) override {
2800     AAWillReturn::initialize(A);
2801 
2802     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2803       indicateOptimisticFixpoint();
2804       return;
2805     }
2806   }
2807 
2808   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2809   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2810     // Check for `mustprogress` in the scope and the associated function which
2811     // might be different if this is a call site.
2812     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2813         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2814       return false;
2815 
2816     const auto &MemAA =
2817         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2818     if (!MemAA.isAssumedReadOnly())
2819       return false;
2820     if (KnownOnly && !MemAA.isKnownReadOnly())
2821       return false;
2822     if (!MemAA.isKnownReadOnly())
2823       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2824 
2825     return true;
2826   }
2827 
2828   /// See AbstractAttribute::updateImpl(...).
2829   ChangeStatus updateImpl(Attributor &A) override {
2830     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2831       return ChangeStatus::UNCHANGED;
2832 
2833     auto CheckForWillReturn = [&](Instruction &I) {
2834       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2835       const auto &WillReturnAA =
2836           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2837       if (WillReturnAA.isKnownWillReturn())
2838         return true;
2839       if (!WillReturnAA.isAssumedWillReturn())
2840         return false;
2841       const auto &NoRecurseAA =
2842           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2843       return NoRecurseAA.isAssumedNoRecurse();
2844     };
2845 
2846     bool UsedAssumedInformation = false;
2847     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2848                                            UsedAssumedInformation))
2849       return indicatePessimisticFixpoint();
2850 
2851     return ChangeStatus::UNCHANGED;
2852   }
2853 
2854   /// See AbstractAttribute::getAsStr()
2855   const std::string getAsStr() const override {
2856     return getAssumed() ? "willreturn" : "may-noreturn";
2857   }
2858 };
2859 
2860 struct AAWillReturnFunction final : AAWillReturnImpl {
2861   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2862       : AAWillReturnImpl(IRP, A) {}
2863 
2864   /// See AbstractAttribute::initialize(...).
2865   void initialize(Attributor &A) override {
2866     AAWillReturnImpl::initialize(A);
2867 
2868     Function *F = getAnchorScope();
2869     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2870       indicatePessimisticFixpoint();
2871   }
2872 
2873   /// See AbstractAttribute::trackStatistics()
2874   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2875 };
2876 
2877 /// WillReturn attribute deduction for a call sites.
2878 struct AAWillReturnCallSite final : AAWillReturnImpl {
2879   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2880       : AAWillReturnImpl(IRP, A) {}
2881 
2882   /// See AbstractAttribute::initialize(...).
2883   void initialize(Attributor &A) override {
2884     AAWillReturnImpl::initialize(A);
2885     Function *F = getAssociatedFunction();
2886     if (!F || !A.isFunctionIPOAmendable(*F))
2887       indicatePessimisticFixpoint();
2888   }
2889 
2890   /// See AbstractAttribute::updateImpl(...).
2891   ChangeStatus updateImpl(Attributor &A) override {
2892     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2893       return ChangeStatus::UNCHANGED;
2894 
2895     // TODO: Once we have call site specific value information we can provide
2896     //       call site specific liveness information and then it makes
2897     //       sense to specialize attributes for call sites arguments instead of
2898     //       redirecting requests to the callee argument.
2899     Function *F = getAssociatedFunction();
2900     const IRPosition &FnPos = IRPosition::function(*F);
2901     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2902     return clampStateAndIndicateChange(getState(), FnAA.getState());
2903   }
2904 
2905   /// See AbstractAttribute::trackStatistics()
2906   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2907 };
2908 
2909 /// -------------------AAReachability Attribute--------------------------
2910 
2911 struct AAReachabilityImpl : AAReachability {
2912   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2913       : AAReachability(IRP, A) {}
2914 
2915   const std::string getAsStr() const override {
2916     // TODO: Return the number of reachable queries.
2917     return "reachable";
2918   }
2919 
2920   /// See AbstractAttribute::updateImpl(...).
2921   ChangeStatus updateImpl(Attributor &A) override {
2922     return ChangeStatus::UNCHANGED;
2923   }
2924 };
2925 
2926 struct AAReachabilityFunction final : public AAReachabilityImpl {
2927   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2928       : AAReachabilityImpl(IRP, A) {}
2929 
2930   /// See AbstractAttribute::trackStatistics()
2931   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2932 };
2933 
2934 /// ------------------------ NoAlias Argument Attribute ------------------------
2935 
2936 struct AANoAliasImpl : AANoAlias {
2937   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2938     assert(getAssociatedType()->isPointerTy() &&
2939            "Noalias is a pointer attribute");
2940   }
2941 
2942   const std::string getAsStr() const override {
2943     return getAssumed() ? "noalias" : "may-alias";
2944   }
2945 };
2946 
2947 /// NoAlias attribute for a floating value.
2948 struct AANoAliasFloating final : AANoAliasImpl {
2949   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2950       : AANoAliasImpl(IRP, A) {}
2951 
2952   /// See AbstractAttribute::initialize(...).
2953   void initialize(Attributor &A) override {
2954     AANoAliasImpl::initialize(A);
2955     Value *Val = &getAssociatedValue();
2956     do {
2957       CastInst *CI = dyn_cast<CastInst>(Val);
2958       if (!CI)
2959         break;
2960       Value *Base = CI->getOperand(0);
2961       if (!Base->hasOneUse())
2962         break;
2963       Val = Base;
2964     } while (true);
2965 
2966     if (!Val->getType()->isPointerTy()) {
2967       indicatePessimisticFixpoint();
2968       return;
2969     }
2970 
2971     if (isa<AllocaInst>(Val))
2972       indicateOptimisticFixpoint();
2973     else if (isa<ConstantPointerNull>(Val) &&
2974              !NullPointerIsDefined(getAnchorScope(),
2975                                    Val->getType()->getPointerAddressSpace()))
2976       indicateOptimisticFixpoint();
2977     else if (Val != &getAssociatedValue()) {
2978       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2979           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2980       if (ValNoAliasAA.isKnownNoAlias())
2981         indicateOptimisticFixpoint();
2982     }
2983   }
2984 
2985   /// See AbstractAttribute::updateImpl(...).
2986   ChangeStatus updateImpl(Attributor &A) override {
2987     // TODO: Implement this.
2988     return indicatePessimisticFixpoint();
2989   }
2990 
2991   /// See AbstractAttribute::trackStatistics()
2992   void trackStatistics() const override {
2993     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2994   }
2995 };
2996 
2997 /// NoAlias attribute for an argument.
2998 struct AANoAliasArgument final
2999     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3000   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3001   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3002 
3003   /// See AbstractAttribute::initialize(...).
3004   void initialize(Attributor &A) override {
3005     Base::initialize(A);
3006     // See callsite argument attribute and callee argument attribute.
3007     if (hasAttr({Attribute::ByVal}))
3008       indicateOptimisticFixpoint();
3009   }
3010 
3011   /// See AbstractAttribute::update(...).
3012   ChangeStatus updateImpl(Attributor &A) override {
3013     // We have to make sure no-alias on the argument does not break
3014     // synchronization when this is a callback argument, see also [1] below.
3015     // If synchronization cannot be affected, we delegate to the base updateImpl
3016     // function, otherwise we give up for now.
3017 
3018     // If the function is no-sync, no-alias cannot break synchronization.
3019     const auto &NoSyncAA =
3020         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3021                              DepClassTy::OPTIONAL);
3022     if (NoSyncAA.isAssumedNoSync())
3023       return Base::updateImpl(A);
3024 
3025     // If the argument is read-only, no-alias cannot break synchronization.
3026     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3027         *this, getIRPosition(), DepClassTy::OPTIONAL);
3028     if (MemBehaviorAA.isAssumedReadOnly())
3029       return Base::updateImpl(A);
3030 
3031     // If the argument is never passed through callbacks, no-alias cannot break
3032     // synchronization.
3033     bool AllCallSitesKnown;
3034     if (A.checkForAllCallSites(
3035             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3036             true, AllCallSitesKnown))
3037       return Base::updateImpl(A);
3038 
3039     // TODO: add no-alias but make sure it doesn't break synchronization by
3040     // introducing fake uses. See:
3041     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3042     //     International Workshop on OpenMP 2018,
3043     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3044 
3045     return indicatePessimisticFixpoint();
3046   }
3047 
3048   /// See AbstractAttribute::trackStatistics()
3049   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3050 };
3051 
3052 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3053   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3054       : AANoAliasImpl(IRP, A) {}
3055 
3056   /// See AbstractAttribute::initialize(...).
3057   void initialize(Attributor &A) override {
3058     // See callsite argument attribute and callee argument attribute.
3059     const auto &CB = cast<CallBase>(getAnchorValue());
3060     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3061       indicateOptimisticFixpoint();
3062     Value &Val = getAssociatedValue();
3063     if (isa<ConstantPointerNull>(Val) &&
3064         !NullPointerIsDefined(getAnchorScope(),
3065                               Val.getType()->getPointerAddressSpace()))
3066       indicateOptimisticFixpoint();
3067   }
3068 
3069   /// Determine if the underlying value may alias with the call site argument
3070   /// \p OtherArgNo of \p ICS (= the underlying call site).
3071   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3072                             const AAMemoryBehavior &MemBehaviorAA,
3073                             const CallBase &CB, unsigned OtherArgNo) {
3074     // We do not need to worry about aliasing with the underlying IRP.
3075     if (this->getCalleeArgNo() == (int)OtherArgNo)
3076       return false;
3077 
3078     // If it is not a pointer or pointer vector we do not alias.
3079     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3080     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3081       return false;
3082 
3083     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3084         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3085 
3086     // If the argument is readnone, there is no read-write aliasing.
3087     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3088       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3089       return false;
3090     }
3091 
3092     // If the argument is readonly and the underlying value is readonly, there
3093     // is no read-write aliasing.
3094     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3095     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3096       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3097       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3098       return false;
3099     }
3100 
3101     // We have to utilize actual alias analysis queries so we need the object.
3102     if (!AAR)
3103       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3104 
3105     // Try to rule it out at the call site.
3106     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3107     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3108                          "callsite arguments: "
3109                       << getAssociatedValue() << " " << *ArgOp << " => "
3110                       << (IsAliasing ? "" : "no-") << "alias \n");
3111 
3112     return IsAliasing;
3113   }
3114 
3115   bool
3116   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3117                                          const AAMemoryBehavior &MemBehaviorAA,
3118                                          const AANoAlias &NoAliasAA) {
3119     // We can deduce "noalias" if the following conditions hold.
3120     // (i)   Associated value is assumed to be noalias in the definition.
3121     // (ii)  Associated value is assumed to be no-capture in all the uses
3122     //       possibly executed before this callsite.
3123     // (iii) There is no other pointer argument which could alias with the
3124     //       value.
3125 
3126     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3127     if (!AssociatedValueIsNoAliasAtDef) {
3128       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3129                         << " is not no-alias at the definition\n");
3130       return false;
3131     }
3132 
3133     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3134 
3135     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3136     const Function *ScopeFn = VIRP.getAnchorScope();
3137     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3138     // Check whether the value is captured in the scope using AANoCapture.
3139     //      Look at CFG and check only uses possibly executed before this
3140     //      callsite.
3141     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3142       Instruction *UserI = cast<Instruction>(U.getUser());
3143 
3144       // If UserI is the curr instruction and there is a single potential use of
3145       // the value in UserI we allow the use.
3146       // TODO: We should inspect the operands and allow those that cannot alias
3147       //       with the value.
3148       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3149         return true;
3150 
3151       if (ScopeFn) {
3152         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3153             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3154 
3155         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3156           return true;
3157 
3158         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3159           if (CB->isArgOperand(&U)) {
3160 
3161             unsigned ArgNo = CB->getArgOperandNo(&U);
3162 
3163             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3164                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3165                 DepClassTy::OPTIONAL);
3166 
3167             if (NoCaptureAA.isAssumedNoCapture())
3168               return true;
3169           }
3170         }
3171       }
3172 
3173       // For cases which can potentially have more users
3174       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3175           isa<SelectInst>(U)) {
3176         Follow = true;
3177         return true;
3178       }
3179 
3180       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3181       return false;
3182     };
3183 
3184     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3185       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3186         LLVM_DEBUG(
3187             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3188                    << " cannot be noalias as it is potentially captured\n");
3189         return false;
3190       }
3191     }
3192     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3193 
3194     // Check there is no other pointer argument which could alias with the
3195     // value passed at this call site.
3196     // TODO: AbstractCallSite
3197     const auto &CB = cast<CallBase>(getAnchorValue());
3198     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3199       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3200         return false;
3201 
3202     return true;
3203   }
3204 
3205   /// See AbstractAttribute::updateImpl(...).
3206   ChangeStatus updateImpl(Attributor &A) override {
3207     // If the argument is readnone we are done as there are no accesses via the
3208     // argument.
3209     auto &MemBehaviorAA =
3210         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3211     if (MemBehaviorAA.isAssumedReadNone()) {
3212       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3213       return ChangeStatus::UNCHANGED;
3214     }
3215 
3216     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3217     const auto &NoAliasAA =
3218         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3219 
3220     AAResults *AAR = nullptr;
3221     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3222                                                NoAliasAA)) {
3223       LLVM_DEBUG(
3224           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3225       return ChangeStatus::UNCHANGED;
3226     }
3227 
3228     return indicatePessimisticFixpoint();
3229   }
3230 
3231   /// See AbstractAttribute::trackStatistics()
3232   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3233 };
3234 
3235 /// NoAlias attribute for function return value.
3236 struct AANoAliasReturned final : AANoAliasImpl {
3237   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3238       : AANoAliasImpl(IRP, A) {}
3239 
3240   /// See AbstractAttribute::initialize(...).
3241   void initialize(Attributor &A) override {
3242     AANoAliasImpl::initialize(A);
3243     Function *F = getAssociatedFunction();
3244     if (!F || F->isDeclaration())
3245       indicatePessimisticFixpoint();
3246   }
3247 
3248   /// See AbstractAttribute::updateImpl(...).
3249   virtual ChangeStatus updateImpl(Attributor &A) override {
3250 
3251     auto CheckReturnValue = [&](Value &RV) -> bool {
3252       if (Constant *C = dyn_cast<Constant>(&RV))
3253         if (C->isNullValue() || isa<UndefValue>(C))
3254           return true;
3255 
3256       /// For now, we can only deduce noalias if we have call sites.
3257       /// FIXME: add more support.
3258       if (!isa<CallBase>(&RV))
3259         return false;
3260 
3261       const IRPosition &RVPos = IRPosition::value(RV);
3262       const auto &NoAliasAA =
3263           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3264       if (!NoAliasAA.isAssumedNoAlias())
3265         return false;
3266 
3267       const auto &NoCaptureAA =
3268           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3269       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3270     };
3271 
3272     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3273       return indicatePessimisticFixpoint();
3274 
3275     return ChangeStatus::UNCHANGED;
3276   }
3277 
3278   /// See AbstractAttribute::trackStatistics()
3279   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3280 };
3281 
3282 /// NoAlias attribute deduction for a call site return value.
3283 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3284   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3285       : AANoAliasImpl(IRP, A) {}
3286 
3287   /// See AbstractAttribute::initialize(...).
3288   void initialize(Attributor &A) override {
3289     AANoAliasImpl::initialize(A);
3290     Function *F = getAssociatedFunction();
3291     if (!F || F->isDeclaration())
3292       indicatePessimisticFixpoint();
3293   }
3294 
3295   /// See AbstractAttribute::updateImpl(...).
3296   ChangeStatus updateImpl(Attributor &A) override {
3297     // TODO: Once we have call site specific value information we can provide
3298     //       call site specific liveness information and then it makes
3299     //       sense to specialize attributes for call sites arguments instead of
3300     //       redirecting requests to the callee argument.
3301     Function *F = getAssociatedFunction();
3302     const IRPosition &FnPos = IRPosition::returned(*F);
3303     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3304     return clampStateAndIndicateChange(getState(), FnAA.getState());
3305   }
3306 
3307   /// See AbstractAttribute::trackStatistics()
3308   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3309 };
3310 
3311 /// -------------------AAIsDead Function Attribute-----------------------
3312 
3313 struct AAIsDeadValueImpl : public AAIsDead {
3314   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3315 
3316   /// See AAIsDead::isAssumedDead().
3317   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3318 
3319   /// See AAIsDead::isKnownDead().
3320   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3321 
3322   /// See AAIsDead::isAssumedDead(BasicBlock *).
3323   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3324 
3325   /// See AAIsDead::isKnownDead(BasicBlock *).
3326   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3327 
3328   /// See AAIsDead::isAssumedDead(Instruction *I).
3329   bool isAssumedDead(const Instruction *I) const override {
3330     return I == getCtxI() && isAssumedDead();
3331   }
3332 
3333   /// See AAIsDead::isKnownDead(Instruction *I).
3334   bool isKnownDead(const Instruction *I) const override {
3335     return isAssumedDead(I) && isKnownDead();
3336   }
3337 
3338   /// See AbstractAttribute::getAsStr().
3339   const std::string getAsStr() const override {
3340     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3341   }
3342 
3343   /// Check if all uses are assumed dead.
3344   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3345     // Callers might not check the type, void has no uses.
3346     if (V.getType()->isVoidTy())
3347       return true;
3348 
3349     // If we replace a value with a constant there are no uses left afterwards.
3350     if (!isa<Constant>(V)) {
3351       bool UsedAssumedInformation = false;
3352       Optional<Constant *> C =
3353           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3354       if (!C.hasValue() || *C)
3355         return true;
3356     }
3357 
3358     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3359     // Explicitly set the dependence class to required because we want a long
3360     // chain of N dependent instructions to be considered live as soon as one is
3361     // without going through N update cycles. This is not required for
3362     // correctness.
3363     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3364                              DepClassTy::REQUIRED);
3365   }
3366 
3367   /// Determine if \p I is assumed to be side-effect free.
3368   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3369     if (!I || wouldInstructionBeTriviallyDead(I))
3370       return true;
3371 
3372     auto *CB = dyn_cast<CallBase>(I);
3373     if (!CB || isa<IntrinsicInst>(CB))
3374       return false;
3375 
3376     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3377     const auto &NoUnwindAA =
3378         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3379     if (!NoUnwindAA.isAssumedNoUnwind())
3380       return false;
3381     if (!NoUnwindAA.isKnownNoUnwind())
3382       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3383 
3384     const auto &MemBehaviorAA =
3385         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3386     if (MemBehaviorAA.isAssumedReadOnly()) {
3387       if (!MemBehaviorAA.isKnownReadOnly())
3388         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3389       return true;
3390     }
3391     return false;
3392   }
3393 };
3394 
3395 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3396   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3397       : AAIsDeadValueImpl(IRP, A) {}
3398 
3399   /// See AbstractAttribute::initialize(...).
3400   void initialize(Attributor &A) override {
3401     if (isa<UndefValue>(getAssociatedValue())) {
3402       indicatePessimisticFixpoint();
3403       return;
3404     }
3405 
3406     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3407     if (!isAssumedSideEffectFree(A, I)) {
3408       if (!isa_and_nonnull<StoreInst>(I))
3409         indicatePessimisticFixpoint();
3410       else
3411         removeAssumedBits(HAS_NO_EFFECT);
3412     }
3413   }
3414 
3415   bool isDeadStore(Attributor &A, StoreInst &SI) {
3416     // Lang ref now states volatile store is not UB/dead, let's skip them.
3417     if (SI.isVolatile())
3418       return false;
3419 
3420     bool UsedAssumedInformation = false;
3421     SmallSetVector<Value *, 4> PotentialCopies;
3422     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3423                                              UsedAssumedInformation))
3424       return false;
3425     return llvm::all_of(PotentialCopies, [&](Value *V) {
3426       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3427                              UsedAssumedInformation);
3428     });
3429   }
3430 
3431   /// See AbstractAttribute::updateImpl(...).
3432   ChangeStatus updateImpl(Attributor &A) override {
3433     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3434     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3435       if (!isDeadStore(A, *SI))
3436         return indicatePessimisticFixpoint();
3437     } else {
3438       if (!isAssumedSideEffectFree(A, I))
3439         return indicatePessimisticFixpoint();
3440       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3441         return indicatePessimisticFixpoint();
3442     }
3443     return ChangeStatus::UNCHANGED;
3444   }
3445 
3446   /// See AbstractAttribute::manifest(...).
3447   ChangeStatus manifest(Attributor &A) override {
3448     Value &V = getAssociatedValue();
3449     if (auto *I = dyn_cast<Instruction>(&V)) {
3450       // If we get here we basically know the users are all dead. We check if
3451       // isAssumedSideEffectFree returns true here again because it might not be
3452       // the case and only the users are dead but the instruction (=call) is
3453       // still needed.
3454       if (isa<StoreInst>(I) ||
3455           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3456         A.deleteAfterManifest(*I);
3457         return ChangeStatus::CHANGED;
3458       }
3459     }
3460     if (V.use_empty())
3461       return ChangeStatus::UNCHANGED;
3462 
3463     bool UsedAssumedInformation = false;
3464     Optional<Constant *> C =
3465         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3466     if (C.hasValue() && C.getValue())
3467       return ChangeStatus::UNCHANGED;
3468 
3469     // Replace the value with undef as it is dead but keep droppable uses around
3470     // as they provide information we don't want to give up on just yet.
3471     UndefValue &UV = *UndefValue::get(V.getType());
3472     bool AnyChange =
3473         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3474     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3475   }
3476 
3477   /// See AbstractAttribute::trackStatistics()
3478   void trackStatistics() const override {
3479     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3480   }
3481 };
3482 
3483 struct AAIsDeadArgument : public AAIsDeadFloating {
3484   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3485       : AAIsDeadFloating(IRP, A) {}
3486 
3487   /// See AbstractAttribute::initialize(...).
3488   void initialize(Attributor &A) override {
3489     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3490       indicatePessimisticFixpoint();
3491   }
3492 
3493   /// See AbstractAttribute::manifest(...).
3494   ChangeStatus manifest(Attributor &A) override {
3495     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3496     Argument &Arg = *getAssociatedArgument();
3497     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3498       if (A.registerFunctionSignatureRewrite(
3499               Arg, /* ReplacementTypes */ {},
3500               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3501               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3502         Arg.dropDroppableUses();
3503         return ChangeStatus::CHANGED;
3504       }
3505     return Changed;
3506   }
3507 
3508   /// See AbstractAttribute::trackStatistics()
3509   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3510 };
3511 
3512 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3513   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3514       : AAIsDeadValueImpl(IRP, A) {}
3515 
3516   /// See AbstractAttribute::initialize(...).
3517   void initialize(Attributor &A) override {
3518     if (isa<UndefValue>(getAssociatedValue()))
3519       indicatePessimisticFixpoint();
3520   }
3521 
3522   /// See AbstractAttribute::updateImpl(...).
3523   ChangeStatus updateImpl(Attributor &A) override {
3524     // TODO: Once we have call site specific value information we can provide
3525     //       call site specific liveness information and then it makes
3526     //       sense to specialize attributes for call sites arguments instead of
3527     //       redirecting requests to the callee argument.
3528     Argument *Arg = getAssociatedArgument();
3529     if (!Arg)
3530       return indicatePessimisticFixpoint();
3531     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3532     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3533     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3534   }
3535 
3536   /// See AbstractAttribute::manifest(...).
3537   ChangeStatus manifest(Attributor &A) override {
3538     CallBase &CB = cast<CallBase>(getAnchorValue());
3539     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3540     assert(!isa<UndefValue>(U.get()) &&
3541            "Expected undef values to be filtered out!");
3542     UndefValue &UV = *UndefValue::get(U->getType());
3543     if (A.changeUseAfterManifest(U, UV))
3544       return ChangeStatus::CHANGED;
3545     return ChangeStatus::UNCHANGED;
3546   }
3547 
3548   /// See AbstractAttribute::trackStatistics()
3549   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3550 };
3551 
3552 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3553   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3554       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3555 
3556   /// See AAIsDead::isAssumedDead().
3557   bool isAssumedDead() const override {
3558     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3559   }
3560 
3561   /// See AbstractAttribute::initialize(...).
3562   void initialize(Attributor &A) override {
3563     if (isa<UndefValue>(getAssociatedValue())) {
3564       indicatePessimisticFixpoint();
3565       return;
3566     }
3567 
3568     // We track this separately as a secondary state.
3569     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3570   }
3571 
3572   /// See AbstractAttribute::updateImpl(...).
3573   ChangeStatus updateImpl(Attributor &A) override {
3574     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3575     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3576       IsAssumedSideEffectFree = false;
3577       Changed = ChangeStatus::CHANGED;
3578     }
3579     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3580       return indicatePessimisticFixpoint();
3581     return Changed;
3582   }
3583 
3584   /// See AbstractAttribute::trackStatistics()
3585   void trackStatistics() const override {
3586     if (IsAssumedSideEffectFree)
3587       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3588     else
3589       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3590   }
3591 
3592   /// See AbstractAttribute::getAsStr().
3593   const std::string getAsStr() const override {
3594     return isAssumedDead()
3595                ? "assumed-dead"
3596                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3597   }
3598 
3599 private:
3600   bool IsAssumedSideEffectFree;
3601 };
3602 
3603 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3604   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3605       : AAIsDeadValueImpl(IRP, A) {}
3606 
3607   /// See AbstractAttribute::updateImpl(...).
3608   ChangeStatus updateImpl(Attributor &A) override {
3609 
3610     bool UsedAssumedInformation = false;
3611     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3612                               {Instruction::Ret}, UsedAssumedInformation);
3613 
3614     auto PredForCallSite = [&](AbstractCallSite ACS) {
3615       if (ACS.isCallbackCall() || !ACS.getInstruction())
3616         return false;
3617       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3618     };
3619 
3620     bool AllCallSitesKnown;
3621     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3622                                 AllCallSitesKnown))
3623       return indicatePessimisticFixpoint();
3624 
3625     return ChangeStatus::UNCHANGED;
3626   }
3627 
3628   /// See AbstractAttribute::manifest(...).
3629   ChangeStatus manifest(Attributor &A) override {
3630     // TODO: Rewrite the signature to return void?
3631     bool AnyChange = false;
3632     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3633     auto RetInstPred = [&](Instruction &I) {
3634       ReturnInst &RI = cast<ReturnInst>(I);
3635       if (!isa<UndefValue>(RI.getReturnValue()))
3636         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3637       return true;
3638     };
3639     bool UsedAssumedInformation = false;
3640     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3641                               UsedAssumedInformation);
3642     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3643   }
3644 
3645   /// See AbstractAttribute::trackStatistics()
3646   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3647 };
3648 
3649 struct AAIsDeadFunction : public AAIsDead {
3650   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3651 
3652   /// See AbstractAttribute::initialize(...).
3653   void initialize(Attributor &A) override {
3654     const Function *F = getAnchorScope();
3655     if (F && !F->isDeclaration()) {
3656       // We only want to compute liveness once. If the function is not part of
3657       // the SCC, skip it.
3658       if (A.isRunOn(*const_cast<Function *>(F))) {
3659         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3660         assumeLive(A, F->getEntryBlock());
3661       } else {
3662         indicatePessimisticFixpoint();
3663       }
3664     }
3665   }
3666 
3667   /// See AbstractAttribute::getAsStr().
3668   const std::string getAsStr() const override {
3669     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3670            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3671            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3672            std::to_string(KnownDeadEnds.size()) + "]";
3673   }
3674 
3675   /// See AbstractAttribute::manifest(...).
3676   ChangeStatus manifest(Attributor &A) override {
3677     assert(getState().isValidState() &&
3678            "Attempted to manifest an invalid state!");
3679 
3680     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3681     Function &F = *getAnchorScope();
3682 
3683     if (AssumedLiveBlocks.empty()) {
3684       A.deleteAfterManifest(F);
3685       return ChangeStatus::CHANGED;
3686     }
3687 
3688     // Flag to determine if we can change an invoke to a call assuming the
3689     // callee is nounwind. This is not possible if the personality of the
3690     // function allows to catch asynchronous exceptions.
3691     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3692 
3693     KnownDeadEnds.set_union(ToBeExploredFrom);
3694     for (const Instruction *DeadEndI : KnownDeadEnds) {
3695       auto *CB = dyn_cast<CallBase>(DeadEndI);
3696       if (!CB)
3697         continue;
3698       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3699           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3700       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3701       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3702         continue;
3703 
3704       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3705         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3706       else
3707         A.changeToUnreachableAfterManifest(
3708             const_cast<Instruction *>(DeadEndI->getNextNode()));
3709       HasChanged = ChangeStatus::CHANGED;
3710     }
3711 
3712     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3713     for (BasicBlock &BB : F)
3714       if (!AssumedLiveBlocks.count(&BB)) {
3715         A.deleteAfterManifest(BB);
3716         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3717       }
3718 
3719     return HasChanged;
3720   }
3721 
3722   /// See AbstractAttribute::updateImpl(...).
3723   ChangeStatus updateImpl(Attributor &A) override;
3724 
3725   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3726     return !AssumedLiveEdges.count(std::make_pair(From, To));
3727   }
3728 
3729   /// See AbstractAttribute::trackStatistics()
3730   void trackStatistics() const override {}
3731 
3732   /// Returns true if the function is assumed dead.
3733   bool isAssumedDead() const override { return false; }
3734 
3735   /// See AAIsDead::isKnownDead().
3736   bool isKnownDead() const override { return false; }
3737 
3738   /// See AAIsDead::isAssumedDead(BasicBlock *).
3739   bool isAssumedDead(const BasicBlock *BB) const override {
3740     assert(BB->getParent() == getAnchorScope() &&
3741            "BB must be in the same anchor scope function.");
3742 
3743     if (!getAssumed())
3744       return false;
3745     return !AssumedLiveBlocks.count(BB);
3746   }
3747 
3748   /// See AAIsDead::isKnownDead(BasicBlock *).
3749   bool isKnownDead(const BasicBlock *BB) const override {
3750     return getKnown() && isAssumedDead(BB);
3751   }
3752 
3753   /// See AAIsDead::isAssumed(Instruction *I).
3754   bool isAssumedDead(const Instruction *I) const override {
3755     assert(I->getParent()->getParent() == getAnchorScope() &&
3756            "Instruction must be in the same anchor scope function.");
3757 
3758     if (!getAssumed())
3759       return false;
3760 
3761     // If it is not in AssumedLiveBlocks then it for sure dead.
3762     // Otherwise, it can still be after noreturn call in a live block.
3763     if (!AssumedLiveBlocks.count(I->getParent()))
3764       return true;
3765 
3766     // If it is not after a liveness barrier it is live.
3767     const Instruction *PrevI = I->getPrevNode();
3768     while (PrevI) {
3769       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3770         return true;
3771       PrevI = PrevI->getPrevNode();
3772     }
3773     return false;
3774   }
3775 
3776   /// See AAIsDead::isKnownDead(Instruction *I).
3777   bool isKnownDead(const Instruction *I) const override {
3778     return getKnown() && isAssumedDead(I);
3779   }
3780 
3781   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3782   /// that internal function called from \p BB should now be looked at.
3783   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3784     if (!AssumedLiveBlocks.insert(&BB).second)
3785       return false;
3786 
3787     // We assume that all of BB is (probably) live now and if there are calls to
3788     // internal functions we will assume that those are now live as well. This
3789     // is a performance optimization for blocks with calls to a lot of internal
3790     // functions. It can however cause dead functions to be treated as live.
3791     for (const Instruction &I : BB)
3792       if (const auto *CB = dyn_cast<CallBase>(&I))
3793         if (const Function *F = CB->getCalledFunction())
3794           if (F->hasLocalLinkage())
3795             A.markLiveInternalFunction(*F);
3796     return true;
3797   }
3798 
3799   /// Collection of instructions that need to be explored again, e.g., we
3800   /// did assume they do not transfer control to (one of their) successors.
3801   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3802 
3803   /// Collection of instructions that are known to not transfer control.
3804   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3805 
3806   /// Collection of all assumed live edges
3807   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3808 
3809   /// Collection of all assumed live BasicBlocks.
3810   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3811 };
3812 
3813 static bool
3814 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3815                         AbstractAttribute &AA,
3816                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3817   const IRPosition &IPos = IRPosition::callsite_function(CB);
3818 
3819   const auto &NoReturnAA =
3820       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3821   if (NoReturnAA.isAssumedNoReturn())
3822     return !NoReturnAA.isKnownNoReturn();
3823   if (CB.isTerminator())
3824     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3825   else
3826     AliveSuccessors.push_back(CB.getNextNode());
3827   return false;
3828 }
3829 
3830 static bool
3831 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3832                         AbstractAttribute &AA,
3833                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3834   bool UsedAssumedInformation =
3835       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3836 
3837   // First, determine if we can change an invoke to a call assuming the
3838   // callee is nounwind. This is not possible if the personality of the
3839   // function allows to catch asynchronous exceptions.
3840   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3841     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3842   } else {
3843     const IRPosition &IPos = IRPosition::callsite_function(II);
3844     const auto &AANoUnw =
3845         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3846     if (AANoUnw.isAssumedNoUnwind()) {
3847       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3848     } else {
3849       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3850     }
3851   }
3852   return UsedAssumedInformation;
3853 }
3854 
3855 static bool
3856 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3857                         AbstractAttribute &AA,
3858                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3859   bool UsedAssumedInformation = false;
3860   if (BI.getNumSuccessors() == 1) {
3861     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3862   } else {
3863     Optional<Constant *> C =
3864         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3865     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3866       // No value yet, assume both edges are dead.
3867     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3868       const BasicBlock *SuccBB =
3869           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3870       AliveSuccessors.push_back(&SuccBB->front());
3871     } else {
3872       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3873       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3874       UsedAssumedInformation = false;
3875     }
3876   }
3877   return UsedAssumedInformation;
3878 }
3879 
3880 static bool
3881 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3882                         AbstractAttribute &AA,
3883                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3884   bool UsedAssumedInformation = false;
3885   Optional<Constant *> C =
3886       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3887   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3888     // No value yet, assume all edges are dead.
3889   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3890     for (auto &CaseIt : SI.cases()) {
3891       if (CaseIt.getCaseValue() == C.getValue()) {
3892         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3893         return UsedAssumedInformation;
3894       }
3895     }
3896     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3897     return UsedAssumedInformation;
3898   } else {
3899     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3900       AliveSuccessors.push_back(&SuccBB->front());
3901   }
3902   return UsedAssumedInformation;
3903 }
3904 
3905 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3906   ChangeStatus Change = ChangeStatus::UNCHANGED;
3907 
3908   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3909                     << getAnchorScope()->size() << "] BBs and "
3910                     << ToBeExploredFrom.size() << " exploration points and "
3911                     << KnownDeadEnds.size() << " known dead ends\n");
3912 
3913   // Copy and clear the list of instructions we need to explore from. It is
3914   // refilled with instructions the next update has to look at.
3915   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3916                                                ToBeExploredFrom.end());
3917   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3918 
3919   SmallVector<const Instruction *, 8> AliveSuccessors;
3920   while (!Worklist.empty()) {
3921     const Instruction *I = Worklist.pop_back_val();
3922     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3923 
3924     // Fast forward for uninteresting instructions. We could look for UB here
3925     // though.
3926     while (!I->isTerminator() && !isa<CallBase>(I))
3927       I = I->getNextNode();
3928 
3929     AliveSuccessors.clear();
3930 
3931     bool UsedAssumedInformation = false;
3932     switch (I->getOpcode()) {
3933     // TODO: look for (assumed) UB to backwards propagate "deadness".
3934     default:
3935       assert(I->isTerminator() &&
3936              "Expected non-terminators to be handled already!");
3937       for (const BasicBlock *SuccBB : successors(I->getParent()))
3938         AliveSuccessors.push_back(&SuccBB->front());
3939       break;
3940     case Instruction::Call:
3941       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3942                                                        *this, AliveSuccessors);
3943       break;
3944     case Instruction::Invoke:
3945       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3946                                                        *this, AliveSuccessors);
3947       break;
3948     case Instruction::Br:
3949       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3950                                                        *this, AliveSuccessors);
3951       break;
3952     case Instruction::Switch:
3953       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3954                                                        *this, AliveSuccessors);
3955       break;
3956     }
3957 
3958     if (UsedAssumedInformation) {
3959       NewToBeExploredFrom.insert(I);
3960     } else if (AliveSuccessors.empty() ||
3961                (I->isTerminator() &&
3962                 AliveSuccessors.size() < I->getNumSuccessors())) {
3963       if (KnownDeadEnds.insert(I))
3964         Change = ChangeStatus::CHANGED;
3965     }
3966 
3967     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3968                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3969                       << UsedAssumedInformation << "\n");
3970 
3971     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3972       if (!I->isTerminator()) {
3973         assert(AliveSuccessors.size() == 1 &&
3974                "Non-terminator expected to have a single successor!");
3975         Worklist.push_back(AliveSuccessor);
3976       } else {
3977         // record the assumed live edge
3978         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3979         if (AssumedLiveEdges.insert(Edge).second)
3980           Change = ChangeStatus::CHANGED;
3981         if (assumeLive(A, *AliveSuccessor->getParent()))
3982           Worklist.push_back(AliveSuccessor);
3983       }
3984     }
3985   }
3986 
3987   // Check if the content of ToBeExploredFrom changed, ignore the order.
3988   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3989       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3990         return !ToBeExploredFrom.count(I);
3991       })) {
3992     Change = ChangeStatus::CHANGED;
3993     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3994   }
3995 
3996   // If we know everything is live there is no need to query for liveness.
3997   // Instead, indicating a pessimistic fixpoint will cause the state to be
3998   // "invalid" and all queries to be answered conservatively without lookups.
3999   // To be in this state we have to (1) finished the exploration and (3) not
4000   // discovered any non-trivial dead end and (2) not ruled unreachable code
4001   // dead.
4002   if (ToBeExploredFrom.empty() &&
4003       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4004       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4005         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4006       }))
4007     return indicatePessimisticFixpoint();
4008   return Change;
4009 }
4010 
4011 /// Liveness information for a call sites.
4012 struct AAIsDeadCallSite final : AAIsDeadFunction {
4013   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4014       : AAIsDeadFunction(IRP, A) {}
4015 
4016   /// See AbstractAttribute::initialize(...).
4017   void initialize(Attributor &A) override {
4018     // TODO: Once we have call site specific value information we can provide
4019     //       call site specific liveness information and then it makes
4020     //       sense to specialize attributes for call sites instead of
4021     //       redirecting requests to the callee.
4022     llvm_unreachable("Abstract attributes for liveness are not "
4023                      "supported for call sites yet!");
4024   }
4025 
4026   /// See AbstractAttribute::updateImpl(...).
4027   ChangeStatus updateImpl(Attributor &A) override {
4028     return indicatePessimisticFixpoint();
4029   }
4030 
4031   /// See AbstractAttribute::trackStatistics()
4032   void trackStatistics() const override {}
4033 };
4034 
4035 /// -------------------- Dereferenceable Argument Attribute --------------------
4036 
4037 struct AADereferenceableImpl : AADereferenceable {
4038   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4039       : AADereferenceable(IRP, A) {}
4040   using StateType = DerefState;
4041 
4042   /// See AbstractAttribute::initialize(...).
4043   void initialize(Attributor &A) override {
4044     SmallVector<Attribute, 4> Attrs;
4045     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4046              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4047     for (const Attribute &Attr : Attrs)
4048       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4049 
4050     const IRPosition &IRP = this->getIRPosition();
4051     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4052 
4053     bool CanBeNull, CanBeFreed;
4054     takeKnownDerefBytesMaximum(
4055         IRP.getAssociatedValue().getPointerDereferenceableBytes(
4056             A.getDataLayout(), CanBeNull, CanBeFreed));
4057 
4058     bool IsFnInterface = IRP.isFnInterfaceKind();
4059     Function *FnScope = IRP.getAnchorScope();
4060     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4061       indicatePessimisticFixpoint();
4062       return;
4063     }
4064 
4065     if (Instruction *CtxI = getCtxI())
4066       followUsesInMBEC(*this, A, getState(), *CtxI);
4067   }
4068 
4069   /// See AbstractAttribute::getState()
4070   /// {
4071   StateType &getState() override { return *this; }
4072   const StateType &getState() const override { return *this; }
4073   /// }
4074 
4075   /// Helper function for collecting accessed bytes in must-be-executed-context
4076   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4077                               DerefState &State) {
4078     const Value *UseV = U->get();
4079     if (!UseV->getType()->isPointerTy())
4080       return;
4081 
4082     Type *PtrTy = UseV->getType();
4083     const DataLayout &DL = A.getDataLayout();
4084     int64_t Offset;
4085     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4086             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4087       if (Base == &getAssociatedValue() &&
4088           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4089         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4090         State.addAccessedBytes(Offset, Size);
4091       }
4092     }
4093   }
4094 
4095   /// See followUsesInMBEC
4096   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4097                        AADereferenceable::StateType &State) {
4098     bool IsNonNull = false;
4099     bool TrackUse = false;
4100     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4101         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4102     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4103                       << " for instruction " << *I << "\n");
4104 
4105     addAccessedBytesForUse(A, U, I, State);
4106     State.takeKnownDerefBytesMaximum(DerefBytes);
4107     return TrackUse;
4108   }
4109 
4110   /// See AbstractAttribute::manifest(...).
4111   ChangeStatus manifest(Attributor &A) override {
4112     ChangeStatus Change = AADereferenceable::manifest(A);
4113     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4114       removeAttrs({Attribute::DereferenceableOrNull});
4115       return ChangeStatus::CHANGED;
4116     }
4117     return Change;
4118   }
4119 
4120   void getDeducedAttributes(LLVMContext &Ctx,
4121                             SmallVectorImpl<Attribute> &Attrs) const override {
4122     // TODO: Add *_globally support
4123     if (isAssumedNonNull())
4124       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4125           Ctx, getAssumedDereferenceableBytes()));
4126     else
4127       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4128           Ctx, getAssumedDereferenceableBytes()));
4129   }
4130 
4131   /// See AbstractAttribute::getAsStr().
4132   const std::string getAsStr() const override {
4133     if (!getAssumedDereferenceableBytes())
4134       return "unknown-dereferenceable";
4135     return std::string("dereferenceable") +
4136            (isAssumedNonNull() ? "" : "_or_null") +
4137            (isAssumedGlobal() ? "_globally" : "") + "<" +
4138            std::to_string(getKnownDereferenceableBytes()) + "-" +
4139            std::to_string(getAssumedDereferenceableBytes()) + ">";
4140   }
4141 };
4142 
4143 /// Dereferenceable attribute for a floating value.
4144 struct AADereferenceableFloating : AADereferenceableImpl {
4145   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4146       : AADereferenceableImpl(IRP, A) {}
4147 
4148   /// See AbstractAttribute::updateImpl(...).
4149   ChangeStatus updateImpl(Attributor &A) override {
4150     const DataLayout &DL = A.getDataLayout();
4151 
4152     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4153                             bool Stripped) -> bool {
4154       unsigned IdxWidth =
4155           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4156       APInt Offset(IdxWidth, 0);
4157       const Value *Base =
4158           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4159 
4160       const auto &AA = A.getAAFor<AADereferenceable>(
4161           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4162       int64_t DerefBytes = 0;
4163       if (!Stripped && this == &AA) {
4164         // Use IR information if we did not strip anything.
4165         // TODO: track globally.
4166         bool CanBeNull, CanBeFreed;
4167         DerefBytes =
4168             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4169         T.GlobalState.indicatePessimisticFixpoint();
4170       } else {
4171         const DerefState &DS = AA.getState();
4172         DerefBytes = DS.DerefBytesState.getAssumed();
4173         T.GlobalState &= DS.GlobalState;
4174       }
4175 
4176       // For now we do not try to "increase" dereferenceability due to negative
4177       // indices as we first have to come up with code to deal with loops and
4178       // for overflows of the dereferenceable bytes.
4179       int64_t OffsetSExt = Offset.getSExtValue();
4180       if (OffsetSExt < 0)
4181         OffsetSExt = 0;
4182 
4183       T.takeAssumedDerefBytesMinimum(
4184           std::max(int64_t(0), DerefBytes - OffsetSExt));
4185 
4186       if (this == &AA) {
4187         if (!Stripped) {
4188           // If nothing was stripped IR information is all we got.
4189           T.takeKnownDerefBytesMaximum(
4190               std::max(int64_t(0), DerefBytes - OffsetSExt));
4191           T.indicatePessimisticFixpoint();
4192         } else if (OffsetSExt > 0) {
4193           // If something was stripped but there is circular reasoning we look
4194           // for the offset. If it is positive we basically decrease the
4195           // dereferenceable bytes in a circluar loop now, which will simply
4196           // drive them down to the known value in a very slow way which we
4197           // can accelerate.
4198           T.indicatePessimisticFixpoint();
4199         }
4200       }
4201 
4202       return T.isValidState();
4203     };
4204 
4205     DerefState T;
4206     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4207                                            VisitValueCB, getCtxI()))
4208       return indicatePessimisticFixpoint();
4209 
4210     return clampStateAndIndicateChange(getState(), T);
4211   }
4212 
4213   /// See AbstractAttribute::trackStatistics()
4214   void trackStatistics() const override {
4215     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4216   }
4217 };
4218 
4219 /// Dereferenceable attribute for a return value.
4220 struct AADereferenceableReturned final
4221     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4222   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4223       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4224             IRP, A) {}
4225 
4226   /// See AbstractAttribute::trackStatistics()
4227   void trackStatistics() const override {
4228     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4229   }
4230 };
4231 
4232 /// Dereferenceable attribute for an argument
4233 struct AADereferenceableArgument final
4234     : AAArgumentFromCallSiteArguments<AADereferenceable,
4235                                       AADereferenceableImpl> {
4236   using Base =
4237       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4238   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4239       : Base(IRP, A) {}
4240 
4241   /// See AbstractAttribute::trackStatistics()
4242   void trackStatistics() const override {
4243     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4244   }
4245 };
4246 
4247 /// Dereferenceable attribute for a call site argument.
4248 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4249   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4250       : AADereferenceableFloating(IRP, A) {}
4251 
4252   /// See AbstractAttribute::trackStatistics()
4253   void trackStatistics() const override {
4254     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4255   }
4256 };
4257 
4258 /// Dereferenceable attribute deduction for a call site return value.
4259 struct AADereferenceableCallSiteReturned final
4260     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4261   using Base =
4262       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4263   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4264       : Base(IRP, A) {}
4265 
4266   /// See AbstractAttribute::trackStatistics()
4267   void trackStatistics() const override {
4268     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4269   }
4270 };
4271 
4272 // ------------------------ Align Argument Attribute ------------------------
4273 
4274 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4275                                     Value &AssociatedValue, const Use *U,
4276                                     const Instruction *I, bool &TrackUse) {
4277   // We need to follow common pointer manipulation uses to the accesses they
4278   // feed into.
4279   if (isa<CastInst>(I)) {
4280     // Follow all but ptr2int casts.
4281     TrackUse = !isa<PtrToIntInst>(I);
4282     return 0;
4283   }
4284   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4285     if (GEP->hasAllConstantIndices())
4286       TrackUse = true;
4287     return 0;
4288   }
4289 
4290   MaybeAlign MA;
4291   if (const auto *CB = dyn_cast<CallBase>(I)) {
4292     if (CB->isBundleOperand(U) || CB->isCallee(U))
4293       return 0;
4294 
4295     unsigned ArgNo = CB->getArgOperandNo(U);
4296     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4297     // As long as we only use known information there is no need to track
4298     // dependences here.
4299     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4300     MA = MaybeAlign(AlignAA.getKnownAlign());
4301   }
4302 
4303   const DataLayout &DL = A.getDataLayout();
4304   const Value *UseV = U->get();
4305   if (auto *SI = dyn_cast<StoreInst>(I)) {
4306     if (SI->getPointerOperand() == UseV)
4307       MA = SI->getAlign();
4308   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4309     if (LI->getPointerOperand() == UseV)
4310       MA = LI->getAlign();
4311   }
4312 
4313   if (!MA || *MA <= QueryingAA.getKnownAlign())
4314     return 0;
4315 
4316   unsigned Alignment = MA->value();
4317   int64_t Offset;
4318 
4319   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4320     if (Base == &AssociatedValue) {
4321       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4322       // So we can say that the maximum power of two which is a divisor of
4323       // gcd(Offset, Alignment) is an alignment.
4324 
4325       uint32_t gcd =
4326           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4327       Alignment = llvm::PowerOf2Floor(gcd);
4328     }
4329   }
4330 
4331   return Alignment;
4332 }
4333 
4334 struct AAAlignImpl : AAAlign {
4335   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4336 
4337   /// See AbstractAttribute::initialize(...).
4338   void initialize(Attributor &A) override {
4339     SmallVector<Attribute, 4> Attrs;
4340     getAttrs({Attribute::Alignment}, Attrs);
4341     for (const Attribute &Attr : Attrs)
4342       takeKnownMaximum(Attr.getValueAsInt());
4343 
4344     Value &V = getAssociatedValue();
4345     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4346     //       use of the function pointer. This was caused by D73131. We want to
4347     //       avoid this for function pointers especially because we iterate
4348     //       their uses and int2ptr is not handled. It is not a correctness
4349     //       problem though!
4350     if (!V.getType()->getPointerElementType()->isFunctionTy())
4351       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4352 
4353     if (getIRPosition().isFnInterfaceKind() &&
4354         (!getAnchorScope() ||
4355          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4356       indicatePessimisticFixpoint();
4357       return;
4358     }
4359 
4360     if (Instruction *CtxI = getCtxI())
4361       followUsesInMBEC(*this, A, getState(), *CtxI);
4362   }
4363 
4364   /// See AbstractAttribute::manifest(...).
4365   ChangeStatus manifest(Attributor &A) override {
4366     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4367 
4368     // Check for users that allow alignment annotations.
4369     Value &AssociatedValue = getAssociatedValue();
4370     for (const Use &U : AssociatedValue.uses()) {
4371       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4372         if (SI->getPointerOperand() == &AssociatedValue)
4373           if (SI->getAlignment() < getAssumedAlign()) {
4374             STATS_DECLTRACK(AAAlign, Store,
4375                             "Number of times alignment added to a store");
4376             SI->setAlignment(Align(getAssumedAlign()));
4377             LoadStoreChanged = ChangeStatus::CHANGED;
4378           }
4379       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4380         if (LI->getPointerOperand() == &AssociatedValue)
4381           if (LI->getAlignment() < getAssumedAlign()) {
4382             LI->setAlignment(Align(getAssumedAlign()));
4383             STATS_DECLTRACK(AAAlign, Load,
4384                             "Number of times alignment added to a load");
4385             LoadStoreChanged = ChangeStatus::CHANGED;
4386           }
4387       }
4388     }
4389 
4390     ChangeStatus Changed = AAAlign::manifest(A);
4391 
4392     Align InheritAlign =
4393         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4394     if (InheritAlign >= getAssumedAlign())
4395       return LoadStoreChanged;
4396     return Changed | LoadStoreChanged;
4397   }
4398 
4399   // TODO: Provide a helper to determine the implied ABI alignment and check in
4400   //       the existing manifest method and a new one for AAAlignImpl that value
4401   //       to avoid making the alignment explicit if it did not improve.
4402 
4403   /// See AbstractAttribute::getDeducedAttributes
4404   virtual void
4405   getDeducedAttributes(LLVMContext &Ctx,
4406                        SmallVectorImpl<Attribute> &Attrs) const override {
4407     if (getAssumedAlign() > 1)
4408       Attrs.emplace_back(
4409           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4410   }
4411 
4412   /// See followUsesInMBEC
4413   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4414                        AAAlign::StateType &State) {
4415     bool TrackUse = false;
4416 
4417     unsigned int KnownAlign =
4418         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4419     State.takeKnownMaximum(KnownAlign);
4420 
4421     return TrackUse;
4422   }
4423 
4424   /// See AbstractAttribute::getAsStr().
4425   const std::string getAsStr() const override {
4426     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4427                                 "-" + std::to_string(getAssumedAlign()) + ">")
4428                              : "unknown-align";
4429   }
4430 };
4431 
4432 /// Align attribute for a floating value.
4433 struct AAAlignFloating : AAAlignImpl {
4434   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4435 
4436   /// See AbstractAttribute::updateImpl(...).
4437   ChangeStatus updateImpl(Attributor &A) override {
4438     const DataLayout &DL = A.getDataLayout();
4439 
4440     auto VisitValueCB = [&](Value &V, const Instruction *,
4441                             AAAlign::StateType &T, bool Stripped) -> bool {
4442       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4443                                            DepClassTy::REQUIRED);
4444       if (!Stripped && this == &AA) {
4445         int64_t Offset;
4446         unsigned Alignment = 1;
4447         if (const Value *Base =
4448                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4449           Align PA = Base->getPointerAlignment(DL);
4450           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4451           // So we can say that the maximum power of two which is a divisor of
4452           // gcd(Offset, Alignment) is an alignment.
4453 
4454           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4455                                                uint32_t(PA.value()));
4456           Alignment = llvm::PowerOf2Floor(gcd);
4457         } else {
4458           Alignment = V.getPointerAlignment(DL).value();
4459         }
4460         // Use only IR information if we did not strip anything.
4461         T.takeKnownMaximum(Alignment);
4462         T.indicatePessimisticFixpoint();
4463       } else {
4464         // Use abstract attribute information.
4465         const AAAlign::StateType &DS = AA.getState();
4466         T ^= DS;
4467       }
4468       return T.isValidState();
4469     };
4470 
4471     StateType T;
4472     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4473                                           VisitValueCB, getCtxI()))
4474       return indicatePessimisticFixpoint();
4475 
4476     // TODO: If we know we visited all incoming values, thus no are assumed
4477     // dead, we can take the known information from the state T.
4478     return clampStateAndIndicateChange(getState(), T);
4479   }
4480 
4481   /// See AbstractAttribute::trackStatistics()
4482   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4483 };
4484 
4485 /// Align attribute for function return value.
4486 struct AAAlignReturned final
4487     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4488   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4489   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4490 
4491   /// See AbstractAttribute::initialize(...).
4492   void initialize(Attributor &A) override {
4493     Base::initialize(A);
4494     Function *F = getAssociatedFunction();
4495     if (!F || F->isDeclaration())
4496       indicatePessimisticFixpoint();
4497   }
4498 
4499   /// See AbstractAttribute::trackStatistics()
4500   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4501 };
4502 
4503 /// Align attribute for function argument.
4504 struct AAAlignArgument final
4505     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4506   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4507   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4508 
4509   /// See AbstractAttribute::manifest(...).
4510   ChangeStatus manifest(Attributor &A) override {
4511     // If the associated argument is involved in a must-tail call we give up
4512     // because we would need to keep the argument alignments of caller and
4513     // callee in-sync. Just does not seem worth the trouble right now.
4514     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4515       return ChangeStatus::UNCHANGED;
4516     return Base::manifest(A);
4517   }
4518 
4519   /// See AbstractAttribute::trackStatistics()
4520   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4521 };
4522 
4523 struct AAAlignCallSiteArgument final : AAAlignFloating {
4524   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4525       : AAAlignFloating(IRP, A) {}
4526 
4527   /// See AbstractAttribute::manifest(...).
4528   ChangeStatus manifest(Attributor &A) override {
4529     // If the associated argument is involved in a must-tail call we give up
4530     // because we would need to keep the argument alignments of caller and
4531     // callee in-sync. Just does not seem worth the trouble right now.
4532     if (Argument *Arg = getAssociatedArgument())
4533       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4534         return ChangeStatus::UNCHANGED;
4535     ChangeStatus Changed = AAAlignImpl::manifest(A);
4536     Align InheritAlign =
4537         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4538     if (InheritAlign >= getAssumedAlign())
4539       Changed = ChangeStatus::UNCHANGED;
4540     return Changed;
4541   }
4542 
4543   /// See AbstractAttribute::updateImpl(Attributor &A).
4544   ChangeStatus updateImpl(Attributor &A) override {
4545     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4546     if (Argument *Arg = getAssociatedArgument()) {
4547       // We only take known information from the argument
4548       // so we do not need to track a dependence.
4549       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4550           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4551       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4552     }
4553     return Changed;
4554   }
4555 
4556   /// See AbstractAttribute::trackStatistics()
4557   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4558 };
4559 
4560 /// Align attribute deduction for a call site return value.
4561 struct AAAlignCallSiteReturned final
4562     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4563   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4564   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4565       : Base(IRP, A) {}
4566 
4567   /// See AbstractAttribute::initialize(...).
4568   void initialize(Attributor &A) override {
4569     Base::initialize(A);
4570     Function *F = getAssociatedFunction();
4571     if (!F || F->isDeclaration())
4572       indicatePessimisticFixpoint();
4573   }
4574 
4575   /// See AbstractAttribute::trackStatistics()
4576   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4577 };
4578 
4579 /// ------------------ Function No-Return Attribute ----------------------------
4580 struct AANoReturnImpl : public AANoReturn {
4581   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4582 
4583   /// See AbstractAttribute::initialize(...).
4584   void initialize(Attributor &A) override {
4585     AANoReturn::initialize(A);
4586     Function *F = getAssociatedFunction();
4587     if (!F || F->isDeclaration())
4588       indicatePessimisticFixpoint();
4589   }
4590 
4591   /// See AbstractAttribute::getAsStr().
4592   const std::string getAsStr() const override {
4593     return getAssumed() ? "noreturn" : "may-return";
4594   }
4595 
4596   /// See AbstractAttribute::updateImpl(Attributor &A).
4597   virtual ChangeStatus updateImpl(Attributor &A) override {
4598     auto CheckForNoReturn = [](Instruction &) { return false; };
4599     bool UsedAssumedInformation = false;
4600     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4601                                    {(unsigned)Instruction::Ret},
4602                                    UsedAssumedInformation))
4603       return indicatePessimisticFixpoint();
4604     return ChangeStatus::UNCHANGED;
4605   }
4606 };
4607 
4608 struct AANoReturnFunction final : AANoReturnImpl {
4609   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4610       : AANoReturnImpl(IRP, A) {}
4611 
4612   /// See AbstractAttribute::trackStatistics()
4613   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4614 };
4615 
4616 /// NoReturn attribute deduction for a call sites.
4617 struct AANoReturnCallSite final : AANoReturnImpl {
4618   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4619       : AANoReturnImpl(IRP, A) {}
4620 
4621   /// See AbstractAttribute::initialize(...).
4622   void initialize(Attributor &A) override {
4623     AANoReturnImpl::initialize(A);
4624     if (Function *F = getAssociatedFunction()) {
4625       const IRPosition &FnPos = IRPosition::function(*F);
4626       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4627       if (!FnAA.isAssumedNoReturn())
4628         indicatePessimisticFixpoint();
4629     }
4630   }
4631 
4632   /// See AbstractAttribute::updateImpl(...).
4633   ChangeStatus updateImpl(Attributor &A) override {
4634     // TODO: Once we have call site specific value information we can provide
4635     //       call site specific liveness information and then it makes
4636     //       sense to specialize attributes for call sites arguments instead of
4637     //       redirecting requests to the callee argument.
4638     Function *F = getAssociatedFunction();
4639     const IRPosition &FnPos = IRPosition::function(*F);
4640     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4641     return clampStateAndIndicateChange(getState(), FnAA.getState());
4642   }
4643 
4644   /// See AbstractAttribute::trackStatistics()
4645   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4646 };
4647 
4648 /// ----------------------- Variable Capturing ---------------------------------
4649 
4650 /// A class to hold the state of for no-capture attributes.
4651 struct AANoCaptureImpl : public AANoCapture {
4652   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4653 
4654   /// See AbstractAttribute::initialize(...).
4655   void initialize(Attributor &A) override {
4656     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4657       indicateOptimisticFixpoint();
4658       return;
4659     }
4660     Function *AnchorScope = getAnchorScope();
4661     if (isFnInterfaceKind() &&
4662         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4663       indicatePessimisticFixpoint();
4664       return;
4665     }
4666 
4667     // You cannot "capture" null in the default address space.
4668     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4669         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4670       indicateOptimisticFixpoint();
4671       return;
4672     }
4673 
4674     const Function *F =
4675         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4676 
4677     // Check what state the associated function can actually capture.
4678     if (F)
4679       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4680     else
4681       indicatePessimisticFixpoint();
4682   }
4683 
4684   /// See AbstractAttribute::updateImpl(...).
4685   ChangeStatus updateImpl(Attributor &A) override;
4686 
4687   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4688   virtual void
4689   getDeducedAttributes(LLVMContext &Ctx,
4690                        SmallVectorImpl<Attribute> &Attrs) const override {
4691     if (!isAssumedNoCaptureMaybeReturned())
4692       return;
4693 
4694     if (isArgumentPosition()) {
4695       if (isAssumedNoCapture())
4696         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4697       else if (ManifestInternal)
4698         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4699     }
4700   }
4701 
4702   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4703   /// depending on the ability of the function associated with \p IRP to capture
4704   /// state in memory and through "returning/throwing", respectively.
4705   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4706                                                    const Function &F,
4707                                                    BitIntegerState &State) {
4708     // TODO: Once we have memory behavior attributes we should use them here.
4709 
4710     // If we know we cannot communicate or write to memory, we do not care about
4711     // ptr2int anymore.
4712     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4713         F.getReturnType()->isVoidTy()) {
4714       State.addKnownBits(NO_CAPTURE);
4715       return;
4716     }
4717 
4718     // A function cannot capture state in memory if it only reads memory, it can
4719     // however return/throw state and the state might be influenced by the
4720     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4721     if (F.onlyReadsMemory())
4722       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4723 
4724     // A function cannot communicate state back if it does not through
4725     // exceptions and doesn not return values.
4726     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4727       State.addKnownBits(NOT_CAPTURED_IN_RET);
4728 
4729     // Check existing "returned" attributes.
4730     int ArgNo = IRP.getCalleeArgNo();
4731     if (F.doesNotThrow() && ArgNo >= 0) {
4732       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4733         if (F.hasParamAttribute(u, Attribute::Returned)) {
4734           if (u == unsigned(ArgNo))
4735             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4736           else if (F.onlyReadsMemory())
4737             State.addKnownBits(NO_CAPTURE);
4738           else
4739             State.addKnownBits(NOT_CAPTURED_IN_RET);
4740           break;
4741         }
4742     }
4743   }
4744 
4745   /// See AbstractState::getAsStr().
4746   const std::string getAsStr() const override {
4747     if (isKnownNoCapture())
4748       return "known not-captured";
4749     if (isAssumedNoCapture())
4750       return "assumed not-captured";
4751     if (isKnownNoCaptureMaybeReturned())
4752       return "known not-captured-maybe-returned";
4753     if (isAssumedNoCaptureMaybeReturned())
4754       return "assumed not-captured-maybe-returned";
4755     return "assumed-captured";
4756   }
4757 };
4758 
4759 /// Attributor-aware capture tracker.
4760 struct AACaptureUseTracker final : public CaptureTracker {
4761 
4762   /// Create a capture tracker that can lookup in-flight abstract attributes
4763   /// through the Attributor \p A.
4764   ///
4765   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4766   /// search is stopped. If a use leads to a return instruction,
4767   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4768   /// If a use leads to a ptr2int which may capture the value,
4769   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4770   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4771   /// set. All values in \p PotentialCopies are later tracked as well. For every
4772   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4773   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4774   /// conservatively set to true.
4775   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4776                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4777                       SmallSetVector<Value *, 4> &PotentialCopies,
4778                       unsigned &RemainingUsesToExplore)
4779       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4780         PotentialCopies(PotentialCopies),
4781         RemainingUsesToExplore(RemainingUsesToExplore) {}
4782 
4783   /// Determine if \p V maybe captured. *Also updates the state!*
4784   bool valueMayBeCaptured(const Value *V) {
4785     if (V->getType()->isPointerTy()) {
4786       PointerMayBeCaptured(V, this);
4787     } else {
4788       State.indicatePessimisticFixpoint();
4789     }
4790     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4791   }
4792 
4793   /// See CaptureTracker::tooManyUses().
4794   void tooManyUses() override {
4795     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4796   }
4797 
4798   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4799     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4800       return true;
4801     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4802         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4803     return DerefAA.getAssumedDereferenceableBytes();
4804   }
4805 
4806   /// See CaptureTracker::captured(...).
4807   bool captured(const Use *U) override {
4808     Instruction *UInst = cast<Instruction>(U->getUser());
4809     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4810                       << "\n");
4811 
4812     // Because we may reuse the tracker multiple times we keep track of the
4813     // number of explored uses ourselves as well.
4814     if (RemainingUsesToExplore-- == 0) {
4815       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4816       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4817                           /* Return */ true);
4818     }
4819 
4820     // Deal with ptr2int by following uses.
4821     if (isa<PtrToIntInst>(UInst)) {
4822       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4823       return valueMayBeCaptured(UInst);
4824     }
4825 
4826     // For stores we check if we can follow the value through memory or not.
4827     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4828       if (SI->isVolatile())
4829         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4830                             /* Return */ false);
4831       bool UsedAssumedInformation = false;
4832       if (!AA::getPotentialCopiesOfStoredValue(
4833               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4834         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4835                             /* Return */ false);
4836       // Not captured directly, potential copies will be checked.
4837       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4838                           /* Return */ false);
4839     }
4840 
4841     // Explicitly catch return instructions.
4842     if (isa<ReturnInst>(UInst)) {
4843       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4844         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4845                             /* Return */ true);
4846       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4847                           /* Return */ true);
4848     }
4849 
4850     // For now we only use special logic for call sites. However, the tracker
4851     // itself knows about a lot of other non-capturing cases already.
4852     auto *CB = dyn_cast<CallBase>(UInst);
4853     if (!CB || !CB->isArgOperand(U))
4854       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4855                           /* Return */ true);
4856 
4857     unsigned ArgNo = CB->getArgOperandNo(U);
4858     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4859     // If we have a abstract no-capture attribute for the argument we can use
4860     // it to justify a non-capture attribute here. This allows recursion!
4861     auto &ArgNoCaptureAA =
4862         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4863     if (ArgNoCaptureAA.isAssumedNoCapture())
4864       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4865                           /* Return */ false);
4866     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4867       addPotentialCopy(*CB);
4868       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4869                           /* Return */ false);
4870     }
4871 
4872     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4873     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4874                         /* Return */ true);
4875   }
4876 
4877   /// Register \p CS as potential copy of the value we are checking.
4878   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4879 
4880   /// See CaptureTracker::shouldExplore(...).
4881   bool shouldExplore(const Use *U) override {
4882     // Check liveness and ignore droppable users.
4883     bool UsedAssumedInformation = false;
4884     return !U->getUser()->isDroppable() &&
4885            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4886                             UsedAssumedInformation);
4887   }
4888 
4889   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4890   /// \p CapturedInRet, then return the appropriate value for use in the
4891   /// CaptureTracker::captured() interface.
4892   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4893                     bool CapturedInRet) {
4894     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4895                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4896     if (CapturedInMem)
4897       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4898     if (CapturedInInt)
4899       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4900     if (CapturedInRet)
4901       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4902     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4903   }
4904 
4905 private:
4906   /// The attributor providing in-flight abstract attributes.
4907   Attributor &A;
4908 
4909   /// The abstract attribute currently updated.
4910   AANoCapture &NoCaptureAA;
4911 
4912   /// The abstract liveness state.
4913   const AAIsDead &IsDeadAA;
4914 
4915   /// The state currently updated.
4916   AANoCapture::StateType &State;
4917 
4918   /// Set of potential copies of the tracked value.
4919   SmallSetVector<Value *, 4> &PotentialCopies;
4920 
4921   /// Global counter to limit the number of explored uses.
4922   unsigned &RemainingUsesToExplore;
4923 };
4924 
4925 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4926   const IRPosition &IRP = getIRPosition();
4927   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4928                                   : &IRP.getAssociatedValue();
4929   if (!V)
4930     return indicatePessimisticFixpoint();
4931 
4932   const Function *F =
4933       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4934   assert(F && "Expected a function!");
4935   const IRPosition &FnPos = IRPosition::function(*F);
4936   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4937 
4938   AANoCapture::StateType T;
4939 
4940   // Readonly means we cannot capture through memory.
4941   const auto &FnMemAA =
4942       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4943   if (FnMemAA.isAssumedReadOnly()) {
4944     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4945     if (FnMemAA.isKnownReadOnly())
4946       addKnownBits(NOT_CAPTURED_IN_MEM);
4947     else
4948       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4949   }
4950 
4951   // Make sure all returned values are different than the underlying value.
4952   // TODO: we could do this in a more sophisticated way inside
4953   //       AAReturnedValues, e.g., track all values that escape through returns
4954   //       directly somehow.
4955   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4956     bool SeenConstant = false;
4957     for (auto &It : RVAA.returned_values()) {
4958       if (isa<Constant>(It.first)) {
4959         if (SeenConstant)
4960           return false;
4961         SeenConstant = true;
4962       } else if (!isa<Argument>(It.first) ||
4963                  It.first == getAssociatedArgument())
4964         return false;
4965     }
4966     return true;
4967   };
4968 
4969   const auto &NoUnwindAA =
4970       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4971   if (NoUnwindAA.isAssumedNoUnwind()) {
4972     bool IsVoidTy = F->getReturnType()->isVoidTy();
4973     const AAReturnedValues *RVAA =
4974         IsVoidTy ? nullptr
4975                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4976 
4977                                                  DepClassTy::OPTIONAL);
4978     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4979       T.addKnownBits(NOT_CAPTURED_IN_RET);
4980       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4981         return ChangeStatus::UNCHANGED;
4982       if (NoUnwindAA.isKnownNoUnwind() &&
4983           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4984         addKnownBits(NOT_CAPTURED_IN_RET);
4985         if (isKnown(NOT_CAPTURED_IN_MEM))
4986           return indicateOptimisticFixpoint();
4987       }
4988     }
4989   }
4990 
4991   // Use the CaptureTracker interface and logic with the specialized tracker,
4992   // defined in AACaptureUseTracker, that can look at in-flight abstract
4993   // attributes and directly updates the assumed state.
4994   SmallSetVector<Value *, 4> PotentialCopies;
4995   unsigned RemainingUsesToExplore =
4996       getDefaultMaxUsesToExploreForCaptureTracking();
4997   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4998                               RemainingUsesToExplore);
4999 
5000   // Check all potential copies of the associated value until we can assume
5001   // none will be captured or we have to assume at least one might be.
5002   unsigned Idx = 0;
5003   PotentialCopies.insert(V);
5004   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
5005     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
5006 
5007   AANoCapture::StateType &S = getState();
5008   auto Assumed = S.getAssumed();
5009   S.intersectAssumedBits(T.getAssumed());
5010   if (!isAssumedNoCaptureMaybeReturned())
5011     return indicatePessimisticFixpoint();
5012   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5013                                    : ChangeStatus::CHANGED;
5014 }
5015 
5016 /// NoCapture attribute for function arguments.
5017 struct AANoCaptureArgument final : AANoCaptureImpl {
5018   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5019       : AANoCaptureImpl(IRP, A) {}
5020 
5021   /// See AbstractAttribute::trackStatistics()
5022   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5023 };
5024 
5025 /// NoCapture attribute for call site arguments.
5026 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5027   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5028       : AANoCaptureImpl(IRP, A) {}
5029 
5030   /// See AbstractAttribute::initialize(...).
5031   void initialize(Attributor &A) override {
5032     if (Argument *Arg = getAssociatedArgument())
5033       if (Arg->hasByValAttr())
5034         indicateOptimisticFixpoint();
5035     AANoCaptureImpl::initialize(A);
5036   }
5037 
5038   /// See AbstractAttribute::updateImpl(...).
5039   ChangeStatus updateImpl(Attributor &A) override {
5040     // TODO: Once we have call site specific value information we can provide
5041     //       call site specific liveness information and then it makes
5042     //       sense to specialize attributes for call sites arguments instead of
5043     //       redirecting requests to the callee argument.
5044     Argument *Arg = getAssociatedArgument();
5045     if (!Arg)
5046       return indicatePessimisticFixpoint();
5047     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5048     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5049     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5050   }
5051 
5052   /// See AbstractAttribute::trackStatistics()
5053   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5054 };
5055 
5056 /// NoCapture attribute for floating values.
5057 struct AANoCaptureFloating final : AANoCaptureImpl {
5058   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5059       : AANoCaptureImpl(IRP, A) {}
5060 
5061   /// See AbstractAttribute::trackStatistics()
5062   void trackStatistics() const override {
5063     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5064   }
5065 };
5066 
5067 /// NoCapture attribute for function return value.
5068 struct AANoCaptureReturned final : AANoCaptureImpl {
5069   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5070       : AANoCaptureImpl(IRP, A) {
5071     llvm_unreachable("NoCapture is not applicable to function returns!");
5072   }
5073 
5074   /// See AbstractAttribute::initialize(...).
5075   void initialize(Attributor &A) override {
5076     llvm_unreachable("NoCapture is not applicable to function returns!");
5077   }
5078 
5079   /// See AbstractAttribute::updateImpl(...).
5080   ChangeStatus updateImpl(Attributor &A) override {
5081     llvm_unreachable("NoCapture is not applicable to function returns!");
5082   }
5083 
5084   /// See AbstractAttribute::trackStatistics()
5085   void trackStatistics() const override {}
5086 };
5087 
5088 /// NoCapture attribute deduction for a call site return value.
5089 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5090   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5091       : AANoCaptureImpl(IRP, A) {}
5092 
5093   /// See AbstractAttribute::initialize(...).
5094   void initialize(Attributor &A) override {
5095     const Function *F = getAnchorScope();
5096     // Check what state the associated function can actually capture.
5097     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5098   }
5099 
5100   /// See AbstractAttribute::trackStatistics()
5101   void trackStatistics() const override {
5102     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5103   }
5104 };
5105 } // namespace
5106 
5107 /// ------------------ Value Simplify Attribute ----------------------------
5108 
5109 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5110   // FIXME: Add a typecast support.
5111   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5112       SimplifiedAssociatedValue, Other, Ty);
5113   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5114     return false;
5115 
5116   LLVM_DEBUG({
5117     if (SimplifiedAssociatedValue.hasValue())
5118       dbgs() << "[ValueSimplify] is assumed to be "
5119              << **SimplifiedAssociatedValue << "\n";
5120     else
5121       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5122   });
5123   return true;
5124 }
5125 
5126 namespace {
5127 struct AAValueSimplifyImpl : AAValueSimplify {
5128   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5129       : AAValueSimplify(IRP, A) {}
5130 
5131   /// See AbstractAttribute::initialize(...).
5132   void initialize(Attributor &A) override {
5133     if (getAssociatedValue().getType()->isVoidTy())
5134       indicatePessimisticFixpoint();
5135     if (A.hasSimplificationCallback(getIRPosition()))
5136       indicatePessimisticFixpoint();
5137   }
5138 
5139   /// See AbstractAttribute::getAsStr().
5140   const std::string getAsStr() const override {
5141     LLVM_DEBUG({
5142       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5143       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5144         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5145     });
5146     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5147                           : "not-simple";
5148   }
5149 
5150   /// See AbstractAttribute::trackStatistics()
5151   void trackStatistics() const override {}
5152 
5153   /// See AAValueSimplify::getAssumedSimplifiedValue()
5154   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5155     return SimplifiedAssociatedValue;
5156   }
5157 
5158   /// Return a value we can use as replacement for the associated one, or
5159   /// nullptr if we don't have one that makes sense.
5160   Value *getReplacementValue(Attributor &A) const {
5161     Value *NewV;
5162     NewV = SimplifiedAssociatedValue.hasValue()
5163                ? SimplifiedAssociatedValue.getValue()
5164                : UndefValue::get(getAssociatedType());
5165     if (!NewV)
5166       return nullptr;
5167     NewV = AA::getWithType(*NewV, *getAssociatedType());
5168     if (!NewV || NewV == &getAssociatedValue())
5169       return nullptr;
5170     const Instruction *CtxI = getCtxI();
5171     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5172       return nullptr;
5173     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5174       return nullptr;
5175     return NewV;
5176   }
5177 
5178   /// Helper function for querying AAValueSimplify and updating candicate.
5179   /// \param IRP The value position we are trying to unify with SimplifiedValue
5180   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5181                       const IRPosition &IRP, bool Simplify = true) {
5182     bool UsedAssumedInformation = false;
5183     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5184     if (Simplify)
5185       QueryingValueSimplified =
5186           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5187     return unionAssumed(QueryingValueSimplified);
5188   }
5189 
5190   /// Returns a candidate is found or not
5191   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5192     if (!getAssociatedValue().getType()->isIntegerTy())
5193       return false;
5194 
5195     // This will also pass the call base context.
5196     const auto &AA =
5197         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5198 
5199     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5200 
5201     if (!COpt.hasValue()) {
5202       SimplifiedAssociatedValue = llvm::None;
5203       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5204       return true;
5205     }
5206     if (auto *C = COpt.getValue()) {
5207       SimplifiedAssociatedValue = C;
5208       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5209       return true;
5210     }
5211     return false;
5212   }
5213 
5214   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5215     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5216       return true;
5217     if (askSimplifiedValueFor<AAPotentialValues>(A))
5218       return true;
5219     return false;
5220   }
5221 
5222   /// See AbstractAttribute::manifest(...).
5223   ChangeStatus manifest(Attributor &A) override {
5224     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5225     if (getAssociatedValue().user_empty())
5226       return Changed;
5227 
5228     if (auto *NewV = getReplacementValue(A)) {
5229       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5230                         << *NewV << " :: " << *this << "\n");
5231       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5232         Changed = ChangeStatus::CHANGED;
5233     }
5234 
5235     return Changed | AAValueSimplify::manifest(A);
5236   }
5237 
5238   /// See AbstractState::indicatePessimisticFixpoint(...).
5239   ChangeStatus indicatePessimisticFixpoint() override {
5240     SimplifiedAssociatedValue = &getAssociatedValue();
5241     return AAValueSimplify::indicatePessimisticFixpoint();
5242   }
5243 
5244   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5245                          LoadInst &L, function_ref<bool(Value &)> Union) {
5246     auto UnionWrapper = [&](Value &V, Value &Obj) {
5247       if (isa<AllocaInst>(Obj))
5248         return Union(V);
5249       if (!AA::isDynamicallyUnique(A, AA, V))
5250         return false;
5251       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5252         return false;
5253       return Union(V);
5254     };
5255 
5256     Value &Ptr = *L.getPointerOperand();
5257     SmallVector<Value *, 8> Objects;
5258     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5259       return false;
5260 
5261     const auto *TLI =
5262         A.getInfoCache().getTargetLibraryInfoForFunction(*L.getFunction());
5263     for (Value *Obj : Objects) {
5264       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5265       if (isa<UndefValue>(Obj))
5266         continue;
5267       if (isa<ConstantPointerNull>(Obj)) {
5268         // A null pointer access can be undefined but any offset from null may
5269         // be OK. We do not try to optimize the latter.
5270         bool UsedAssumedInformation = false;
5271         if (!NullPointerIsDefined(L.getFunction(),
5272                                   Ptr.getType()->getPointerAddressSpace()) &&
5273             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5274           continue;
5275         return false;
5276       }
5277       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
5278           !isNoAliasFn(Obj, TLI))
5279         return false;
5280       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType(), TLI);
5281       if (!InitialVal || !Union(*InitialVal))
5282         return false;
5283 
5284       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5285                            "propagation, checking accesses next.\n");
5286 
5287       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5288         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5289         if (!Acc.isWrite())
5290           return true;
5291         if (Acc.isWrittenValueYetUndetermined())
5292           return true;
5293         Value *Content = Acc.getWrittenValue();
5294         if (!Content)
5295           return false;
5296         Value *CastedContent =
5297             AA::getWithType(*Content, *AA.getAssociatedType());
5298         if (!CastedContent)
5299           return false;
5300         if (IsExact)
5301           return UnionWrapper(*CastedContent, *Obj);
5302         if (auto *C = dyn_cast<Constant>(CastedContent))
5303           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5304             return UnionWrapper(*CastedContent, *Obj);
5305         return false;
5306       };
5307 
5308       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5309                                            DepClassTy::REQUIRED);
5310       if (!PI.forallInterferingAccesses(L, CheckAccess))
5311         return false;
5312     }
5313     return true;
5314   }
5315 };
5316 
5317 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5318   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5319       : AAValueSimplifyImpl(IRP, A) {}
5320 
5321   void initialize(Attributor &A) override {
5322     AAValueSimplifyImpl::initialize(A);
5323     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5324       indicatePessimisticFixpoint();
5325     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5326                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5327                 /* IgnoreSubsumingPositions */ true))
5328       indicatePessimisticFixpoint();
5329 
5330     // FIXME: This is a hack to prevent us from propagating function poiner in
5331     // the new pass manager CGSCC pass as it creates call edges the
5332     // CallGraphUpdater cannot handle yet.
5333     Value &V = getAssociatedValue();
5334     if (V.getType()->isPointerTy() &&
5335         V.getType()->getPointerElementType()->isFunctionTy() &&
5336         !A.isModulePass())
5337       indicatePessimisticFixpoint();
5338   }
5339 
5340   /// See AbstractAttribute::updateImpl(...).
5341   ChangeStatus updateImpl(Attributor &A) override {
5342     // Byval is only replacable if it is readonly otherwise we would write into
5343     // the replaced value and not the copy that byval creates implicitly.
5344     Argument *Arg = getAssociatedArgument();
5345     if (Arg->hasByValAttr()) {
5346       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5347       //       there is no race by not copying a constant byval.
5348       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5349                                                        DepClassTy::REQUIRED);
5350       if (!MemAA.isAssumedReadOnly())
5351         return indicatePessimisticFixpoint();
5352     }
5353 
5354     auto Before = SimplifiedAssociatedValue;
5355 
5356     auto PredForCallSite = [&](AbstractCallSite ACS) {
5357       const IRPosition &ACSArgPos =
5358           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5359       // Check if a coresponding argument was found or if it is on not
5360       // associated (which can happen for callback calls).
5361       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5362         return false;
5363 
5364       // Simplify the argument operand explicitly and check if the result is
5365       // valid in the current scope. This avoids refering to simplified values
5366       // in other functions, e.g., we don't want to say a an argument in a
5367       // static function is actually an argument in a different function.
5368       bool UsedAssumedInformation = false;
5369       Optional<Constant *> SimpleArgOp =
5370           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5371       if (!SimpleArgOp.hasValue())
5372         return true;
5373       if (!SimpleArgOp.getValue())
5374         return false;
5375       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5376         return false;
5377       return unionAssumed(*SimpleArgOp);
5378     };
5379 
5380     // Generate a answer specific to a call site context.
5381     bool Success;
5382     bool AllCallSitesKnown;
5383     if (hasCallBaseContext() &&
5384         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5385       Success = PredForCallSite(
5386           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5387     else
5388       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5389                                        AllCallSitesKnown);
5390 
5391     if (!Success)
5392       if (!askSimplifiedValueForOtherAAs(A))
5393         return indicatePessimisticFixpoint();
5394 
5395     // If a candicate was found in this update, return CHANGED.
5396     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5397                                                : ChangeStatus ::CHANGED;
5398   }
5399 
5400   /// See AbstractAttribute::trackStatistics()
5401   void trackStatistics() const override {
5402     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5403   }
5404 };
5405 
5406 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5407   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5408       : AAValueSimplifyImpl(IRP, A) {}
5409 
5410   /// See AAValueSimplify::getAssumedSimplifiedValue()
5411   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5412     if (!isValidState())
5413       return nullptr;
5414     return SimplifiedAssociatedValue;
5415   }
5416 
5417   /// See AbstractAttribute::updateImpl(...).
5418   ChangeStatus updateImpl(Attributor &A) override {
5419     auto Before = SimplifiedAssociatedValue;
5420 
5421     auto PredForReturned = [&](Value &V) {
5422       return checkAndUpdate(A, *this,
5423                             IRPosition::value(V, getCallBaseContext()));
5424     };
5425 
5426     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5427       if (!askSimplifiedValueForOtherAAs(A))
5428         return indicatePessimisticFixpoint();
5429 
5430     // If a candicate was found in this update, return CHANGED.
5431     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5432                                                : ChangeStatus ::CHANGED;
5433   }
5434 
5435   ChangeStatus manifest(Attributor &A) override {
5436     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5437 
5438     if (auto *NewV = getReplacementValue(A)) {
5439       auto PredForReturned =
5440           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5441             for (ReturnInst *RI : RetInsts) {
5442               Value *ReturnedVal = RI->getReturnValue();
5443               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5444                 return true;
5445               assert(RI->getFunction() == getAnchorScope() &&
5446                      "ReturnInst in wrong function!");
5447               LLVM_DEBUG(dbgs()
5448                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5449                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5450               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5451                 Changed = ChangeStatus::CHANGED;
5452             }
5453             return true;
5454           };
5455       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5456     }
5457 
5458     return Changed | AAValueSimplify::manifest(A);
5459   }
5460 
5461   /// See AbstractAttribute::trackStatistics()
5462   void trackStatistics() const override {
5463     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5464   }
5465 };
5466 
5467 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5468   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5469       : AAValueSimplifyImpl(IRP, A) {}
5470 
5471   /// See AbstractAttribute::initialize(...).
5472   void initialize(Attributor &A) override {
5473     AAValueSimplifyImpl::initialize(A);
5474     Value &V = getAnchorValue();
5475 
5476     // TODO: add other stuffs
5477     if (isa<Constant>(V))
5478       indicatePessimisticFixpoint();
5479   }
5480 
5481   /// Check if \p Cmp is a comparison we can simplify.
5482   ///
5483   /// We handle multiple cases, one in which at least one operand is an
5484   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5485   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5486   /// will be updated.
5487   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5488     auto Union = [&](Value &V) {
5489       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5490           SimplifiedAssociatedValue, &V, V.getType());
5491       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5492     };
5493 
5494     Value *LHS = Cmp.getOperand(0);
5495     Value *RHS = Cmp.getOperand(1);
5496 
5497     // Simplify the operands first.
5498     bool UsedAssumedInformation = false;
5499     const auto &SimplifiedLHS =
5500         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5501                                *this, UsedAssumedInformation);
5502     if (!SimplifiedLHS.hasValue())
5503       return true;
5504     if (!SimplifiedLHS.getValue())
5505       return false;
5506     LHS = *SimplifiedLHS;
5507 
5508     const auto &SimplifiedRHS =
5509         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5510                                *this, UsedAssumedInformation);
5511     if (!SimplifiedRHS.hasValue())
5512       return true;
5513     if (!SimplifiedRHS.getValue())
5514       return false;
5515     RHS = *SimplifiedRHS;
5516 
5517     LLVMContext &Ctx = Cmp.getContext();
5518     // Handle the trivial case first in which we don't even need to think about
5519     // null or non-null.
5520     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5521       Constant *NewVal =
5522           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5523       if (!Union(*NewVal))
5524         return false;
5525       if (!UsedAssumedInformation)
5526         indicateOptimisticFixpoint();
5527       return true;
5528     }
5529 
5530     // From now on we only handle equalities (==, !=).
5531     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5532     if (!ICmp || !ICmp->isEquality())
5533       return false;
5534 
5535     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5536     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5537     if (!LHSIsNull && !RHSIsNull)
5538       return false;
5539 
5540     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5541     // non-nullptr operand and if we assume it's non-null we can conclude the
5542     // result of the comparison.
5543     assert((LHSIsNull || RHSIsNull) &&
5544            "Expected nullptr versus non-nullptr comparison at this point");
5545 
5546     // The index is the operand that we assume is not null.
5547     unsigned PtrIdx = LHSIsNull;
5548     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5549         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5550         DepClassTy::REQUIRED);
5551     if (!PtrNonNullAA.isAssumedNonNull())
5552       return false;
5553     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5554 
5555     // The new value depends on the predicate, true for != and false for ==.
5556     Constant *NewVal = ConstantInt::get(
5557         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5558     if (!Union(*NewVal))
5559       return false;
5560 
5561     if (!UsedAssumedInformation)
5562       indicateOptimisticFixpoint();
5563 
5564     return true;
5565   }
5566 
5567   bool updateWithLoad(Attributor &A, LoadInst &L) {
5568     auto Union = [&](Value &V) {
5569       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5570           SimplifiedAssociatedValue, &V, L.getType());
5571       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5572     };
5573     return handleLoad(A, *this, L, Union);
5574   }
5575 
5576   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5577   /// simplify any operand of the instruction \p I. Return true if successful,
5578   /// in that case SimplifiedAssociatedValue will be updated.
5579   bool handleGenericInst(Attributor &A, Instruction &I) {
5580     bool SomeSimplified = false;
5581     bool UsedAssumedInformation = false;
5582 
5583     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5584     int Idx = 0;
5585     for (Value *Op : I.operands()) {
5586       const auto &SimplifiedOp =
5587           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5588                                  *this, UsedAssumedInformation);
5589       // If we are not sure about any operand we are not sure about the entire
5590       // instruction, we'll wait.
5591       if (!SimplifiedOp.hasValue())
5592         return true;
5593 
5594       if (SimplifiedOp.getValue())
5595         NewOps[Idx] = SimplifiedOp.getValue();
5596       else
5597         NewOps[Idx] = Op;
5598 
5599       SomeSimplified |= (NewOps[Idx] != Op);
5600       ++Idx;
5601     }
5602 
5603     // We won't bother with the InstSimplify interface if we didn't simplify any
5604     // operand ourselves.
5605     if (!SomeSimplified)
5606       return false;
5607 
5608     InformationCache &InfoCache = A.getInfoCache();
5609     Function *F = I.getFunction();
5610     const auto *DT =
5611         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5612     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5613     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5614     OptimizationRemarkEmitter *ORE = nullptr;
5615 
5616     const DataLayout &DL = I.getModule()->getDataLayout();
5617     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5618     if (Value *SimplifiedI =
5619             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5620       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5621           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5622       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5623     }
5624     return false;
5625   }
5626 
5627   /// See AbstractAttribute::updateImpl(...).
5628   ChangeStatus updateImpl(Attributor &A) override {
5629     auto Before = SimplifiedAssociatedValue;
5630 
5631     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5632                             bool Stripped) -> bool {
5633       auto &AA = A.getAAFor<AAValueSimplify>(
5634           *this, IRPosition::value(V, getCallBaseContext()),
5635           DepClassTy::REQUIRED);
5636       if (!Stripped && this == &AA) {
5637 
5638         if (auto *I = dyn_cast<Instruction>(&V)) {
5639           if (auto *LI = dyn_cast<LoadInst>(&V))
5640             if (updateWithLoad(A, *LI))
5641               return true;
5642           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5643             if (handleCmp(A, *Cmp))
5644               return true;
5645           if (handleGenericInst(A, *I))
5646             return true;
5647         }
5648         // TODO: Look the instruction and check recursively.
5649 
5650         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5651                           << "\n");
5652         return false;
5653       }
5654       return checkAndUpdate(A, *this,
5655                             IRPosition::value(V, getCallBaseContext()));
5656     };
5657 
5658     bool Dummy = false;
5659     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5660                                      VisitValueCB, getCtxI(),
5661                                      /* UseValueSimplify */ false))
5662       if (!askSimplifiedValueForOtherAAs(A))
5663         return indicatePessimisticFixpoint();
5664 
5665     // If a candicate was found in this update, return CHANGED.
5666     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5667                                                : ChangeStatus ::CHANGED;
5668   }
5669 
5670   /// See AbstractAttribute::trackStatistics()
5671   void trackStatistics() const override {
5672     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5673   }
5674 };
5675 
5676 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5677   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5678       : AAValueSimplifyImpl(IRP, A) {}
5679 
5680   /// See AbstractAttribute::initialize(...).
5681   void initialize(Attributor &A) override {
5682     SimplifiedAssociatedValue = nullptr;
5683     indicateOptimisticFixpoint();
5684   }
5685   /// See AbstractAttribute::initialize(...).
5686   ChangeStatus updateImpl(Attributor &A) override {
5687     llvm_unreachable(
5688         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5689   }
5690   /// See AbstractAttribute::trackStatistics()
5691   void trackStatistics() const override {
5692     STATS_DECLTRACK_FN_ATTR(value_simplify)
5693   }
5694 };
5695 
5696 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5697   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5698       : AAValueSimplifyFunction(IRP, A) {}
5699   /// See AbstractAttribute::trackStatistics()
5700   void trackStatistics() const override {
5701     STATS_DECLTRACK_CS_ATTR(value_simplify)
5702   }
5703 };
5704 
5705 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5706   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5707       : AAValueSimplifyImpl(IRP, A) {}
5708 
5709   void initialize(Attributor &A) override {
5710     AAValueSimplifyImpl::initialize(A);
5711     if (!getAssociatedFunction())
5712       indicatePessimisticFixpoint();
5713   }
5714 
5715   /// See AbstractAttribute::updateImpl(...).
5716   ChangeStatus updateImpl(Attributor &A) override {
5717     auto Before = SimplifiedAssociatedValue;
5718     auto &RetAA = A.getAAFor<AAReturnedValues>(
5719         *this, IRPosition::function(*getAssociatedFunction()),
5720         DepClassTy::REQUIRED);
5721     auto PredForReturned =
5722         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5723           bool UsedAssumedInformation = false;
5724           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5725               &RetVal, *cast<CallBase>(getCtxI()), *this,
5726               UsedAssumedInformation);
5727           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5728               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5729           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5730         };
5731     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5732       if (!askSimplifiedValueForOtherAAs(A))
5733         return indicatePessimisticFixpoint();
5734     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5735                                                : ChangeStatus ::CHANGED;
5736   }
5737 
5738   void trackStatistics() const override {
5739     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5740   }
5741 };
5742 
5743 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5744   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5745       : AAValueSimplifyFloating(IRP, A) {}
5746 
5747   /// See AbstractAttribute::manifest(...).
5748   ChangeStatus manifest(Attributor &A) override {
5749     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5750 
5751     if (auto *NewV = getReplacementValue(A)) {
5752       Use &U = cast<CallBase>(&getAnchorValue())
5753                    ->getArgOperandUse(getCallSiteArgNo());
5754       if (A.changeUseAfterManifest(U, *NewV))
5755         Changed = ChangeStatus::CHANGED;
5756     }
5757 
5758     return Changed | AAValueSimplify::manifest(A);
5759   }
5760 
5761   void trackStatistics() const override {
5762     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5763   }
5764 };
5765 
5766 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5767 struct AAHeapToStackFunction final : public AAHeapToStack {
5768 
5769   struct AllocationInfo {
5770     /// The call that allocates the memory.
5771     CallBase *const CB;
5772 
5773     /// The kind of allocation.
5774     const enum class AllocationKind {
5775       MALLOC,
5776       CALLOC,
5777       ALIGNED_ALLOC,
5778     } Kind;
5779 
5780     /// The library function id for the allocation.
5781     LibFunc LibraryFunctionId = NotLibFunc;
5782 
5783     /// The status wrt. a rewrite.
5784     enum {
5785       STACK_DUE_TO_USE,
5786       STACK_DUE_TO_FREE,
5787       INVALID,
5788     } Status = STACK_DUE_TO_USE;
5789 
5790     /// Flag to indicate if we encountered a use that might free this allocation
5791     /// but which is not in the deallocation infos.
5792     bool HasPotentiallyFreeingUnknownUses = false;
5793 
5794     /// The set of free calls that use this allocation.
5795     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5796   };
5797 
5798   struct DeallocationInfo {
5799     /// The call that deallocates the memory.
5800     CallBase *const CB;
5801 
5802     /// Flag to indicate if we don't know all objects this deallocation might
5803     /// free.
5804     bool MightFreeUnknownObjects = false;
5805 
5806     /// The set of allocation calls that are potentially freed.
5807     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5808   };
5809 
5810   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5811       : AAHeapToStack(IRP, A) {}
5812 
5813   ~AAHeapToStackFunction() {
5814     // Ensure we call the destructor so we release any memory allocated in the
5815     // sets.
5816     for (auto &It : AllocationInfos)
5817       It.getSecond()->~AllocationInfo();
5818     for (auto &It : DeallocationInfos)
5819       It.getSecond()->~DeallocationInfo();
5820   }
5821 
5822   void initialize(Attributor &A) override {
5823     AAHeapToStack::initialize(A);
5824 
5825     const Function *F = getAnchorScope();
5826     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5827 
5828     auto AllocationIdentifierCB = [&](Instruction &I) {
5829       CallBase *CB = dyn_cast<CallBase>(&I);
5830       if (!CB)
5831         return true;
5832       if (isFreeCall(CB, TLI)) {
5833         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5834         return true;
5835       }
5836       bool IsMalloc = isMallocLikeFn(CB, TLI);
5837       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5838       bool IsCalloc =
5839           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5840       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5841         return true;
5842       auto Kind =
5843           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5844                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5845                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5846 
5847       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5848       AllocationInfos[CB] = AI;
5849       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5850       return true;
5851     };
5852 
5853     bool UsedAssumedInformation = false;
5854     bool Success = A.checkForAllCallLikeInstructions(
5855         AllocationIdentifierCB, *this, UsedAssumedInformation,
5856         /* CheckBBLivenessOnly */ false,
5857         /* CheckPotentiallyDead */ true);
5858     (void)Success;
5859     assert(Success && "Did not expect the call base visit callback to fail!");
5860   }
5861 
5862   const std::string getAsStr() const override {
5863     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5864     for (const auto &It : AllocationInfos) {
5865       if (It.second->Status == AllocationInfo::INVALID)
5866         ++NumInvalidMallocs;
5867       else
5868         ++NumH2SMallocs;
5869     }
5870     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5871            std::to_string(NumInvalidMallocs);
5872   }
5873 
5874   /// See AbstractAttribute::trackStatistics().
5875   void trackStatistics() const override {
5876     STATS_DECL(
5877         MallocCalls, Function,
5878         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5879     for (auto &It : AllocationInfos)
5880       if (It.second->Status != AllocationInfo::INVALID)
5881         ++BUILD_STAT_NAME(MallocCalls, Function);
5882   }
5883 
5884   bool isAssumedHeapToStack(const CallBase &CB) const override {
5885     if (isValidState())
5886       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5887         return AI->Status != AllocationInfo::INVALID;
5888     return false;
5889   }
5890 
5891   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5892     if (!isValidState())
5893       return false;
5894 
5895     for (auto &It : AllocationInfos) {
5896       AllocationInfo &AI = *It.second;
5897       if (AI.Status == AllocationInfo::INVALID)
5898         continue;
5899 
5900       if (AI.PotentialFreeCalls.count(&CB))
5901         return true;
5902     }
5903 
5904     return false;
5905   }
5906 
5907   ChangeStatus manifest(Attributor &A) override {
5908     assert(getState().isValidState() &&
5909            "Attempted to manifest an invalid state!");
5910 
5911     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5912     Function *F = getAnchorScope();
5913     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5914 
5915     for (auto &It : AllocationInfos) {
5916       AllocationInfo &AI = *It.second;
5917       if (AI.Status == AllocationInfo::INVALID)
5918         continue;
5919 
5920       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5921         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5922         A.deleteAfterManifest(*FreeCall);
5923         HasChanged = ChangeStatus::CHANGED;
5924       }
5925 
5926       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5927                         << "\n");
5928 
5929       auto Remark = [&](OptimizationRemark OR) {
5930         LibFunc IsAllocShared;
5931         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5932           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5933             return OR << "Moving globalized variable to the stack.";
5934         return OR << "Moving memory allocation from the heap to the stack.";
5935       };
5936       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5937         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5938       else
5939         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5940 
5941       Value *Size;
5942       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5943       if (SizeAPI.hasValue()) {
5944         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5945       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5946         auto *Num = AI.CB->getOperand(0);
5947         auto *SizeT = AI.CB->getOperand(1);
5948         IRBuilder<> B(AI.CB);
5949         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5950       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5951         Size = AI.CB->getOperand(1);
5952       } else {
5953         Size = AI.CB->getOperand(0);
5954       }
5955 
5956       Align Alignment(1);
5957       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5958         Alignment = max(Alignment, RetAlign);
5959       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5960         Optional<APInt> AlignmentAPI =
5961             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5962         assert(AlignmentAPI.hasValue() &&
5963                "Expected an alignment during manifest!");
5964         Alignment =
5965             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5966       }
5967 
5968       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5969       Instruction *Alloca =
5970           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5971                          "", AI.CB->getNextNode());
5972 
5973       if (Alloca->getType() != AI.CB->getType())
5974         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5975                                  Alloca->getNextNode());
5976 
5977       A.changeValueAfterManifest(*AI.CB, *Alloca);
5978 
5979       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5980         auto *NBB = II->getNormalDest();
5981         BranchInst::Create(NBB, AI.CB->getParent());
5982         A.deleteAfterManifest(*AI.CB);
5983       } else {
5984         A.deleteAfterManifest(*AI.CB);
5985       }
5986 
5987       // Zero out the allocated memory if it was a calloc.
5988       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5989         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5990                                    Alloca->getNextNode());
5991         Value *Ops[] = {
5992             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5993             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5994 
5995         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5996         Module *M = F->getParent();
5997         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5998         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5999       }
6000       HasChanged = ChangeStatus::CHANGED;
6001     }
6002 
6003     return HasChanged;
6004   }
6005 
6006   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6007                            Value &V) {
6008     bool UsedAssumedInformation = false;
6009     Optional<Constant *> SimpleV =
6010         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6011     if (!SimpleV.hasValue())
6012       return APInt(64, 0);
6013     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
6014       return CI->getValue();
6015     return llvm::None;
6016   }
6017 
6018   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6019                           AllocationInfo &AI) {
6020 
6021     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
6022       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
6023 
6024     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6025       // Only if the alignment is also constant we return a size.
6026       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
6027                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
6028                  : llvm::None;
6029 
6030     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
6031            "Expected only callocs are left");
6032     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
6033     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
6034     if (!Num.hasValue() || !Size.hasValue())
6035       return llvm::None;
6036     bool Overflow = false;
6037     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
6038     return Overflow ? llvm::None : Size;
6039   }
6040 
6041   /// Collection of all malloc-like calls in a function with associated
6042   /// information.
6043   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
6044 
6045   /// Collection of all free-like calls in a function with associated
6046   /// information.
6047   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
6048 
6049   ChangeStatus updateImpl(Attributor &A) override;
6050 };
6051 
6052 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6053   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6054   const Function *F = getAnchorScope();
6055 
6056   const auto &LivenessAA =
6057       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6058 
6059   MustBeExecutedContextExplorer &Explorer =
6060       A.getInfoCache().getMustBeExecutedContextExplorer();
6061 
6062   bool StackIsAccessibleByOtherThreads =
6063       A.getInfoCache().stackIsAccessibleByOtherThreads();
6064 
6065   // Flag to ensure we update our deallocation information at most once per
6066   // updateImpl call and only if we use the free check reasoning.
6067   bool HasUpdatedFrees = false;
6068 
6069   auto UpdateFrees = [&]() {
6070     HasUpdatedFrees = true;
6071 
6072     for (auto &It : DeallocationInfos) {
6073       DeallocationInfo &DI = *It.second;
6074       // For now we cannot use deallocations that have unknown inputs, skip
6075       // them.
6076       if (DI.MightFreeUnknownObjects)
6077         continue;
6078 
6079       // No need to analyze dead calls, ignore them instead.
6080       bool UsedAssumedInformation = false;
6081       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6082                           /* CheckBBLivenessOnly */ true))
6083         continue;
6084 
6085       // Use the optimistic version to get the freed objects, ignoring dead
6086       // branches etc.
6087       SmallVector<Value *, 8> Objects;
6088       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6089                                            *this, DI.CB)) {
6090         LLVM_DEBUG(
6091             dbgs()
6092             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6093         DI.MightFreeUnknownObjects = true;
6094         continue;
6095       }
6096 
6097       // Check each object explicitly.
6098       for (auto *Obj : Objects) {
6099         // Free of null and undef can be ignored as no-ops (or UB in the latter
6100         // case).
6101         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6102           continue;
6103 
6104         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6105         if (!ObjCB) {
6106           LLVM_DEBUG(dbgs()
6107                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6108           DI.MightFreeUnknownObjects = true;
6109           continue;
6110         }
6111 
6112         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6113         if (!AI) {
6114           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6115                             << "\n");
6116           DI.MightFreeUnknownObjects = true;
6117           continue;
6118         }
6119 
6120         DI.PotentialAllocationCalls.insert(ObjCB);
6121       }
6122     }
6123   };
6124 
6125   auto FreeCheck = [&](AllocationInfo &AI) {
6126     // If the stack is not accessible by other threads, the "must-free" logic
6127     // doesn't apply as the pointer could be shared and needs to be places in
6128     // "shareable" memory.
6129     if (!StackIsAccessibleByOtherThreads) {
6130       auto &NoSyncAA =
6131           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6132       if (!NoSyncAA.isAssumedNoSync()) {
6133         LLVM_DEBUG(
6134             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6135                       "other threads and function is not nosync:\n");
6136         return false;
6137       }
6138     }
6139     if (!HasUpdatedFrees)
6140       UpdateFrees();
6141 
6142     // TODO: Allow multi exit functions that have different free calls.
6143     if (AI.PotentialFreeCalls.size() != 1) {
6144       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6145                         << AI.PotentialFreeCalls.size() << "\n");
6146       return false;
6147     }
6148     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6149     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6150     if (!DI) {
6151       LLVM_DEBUG(
6152           dbgs() << "[H2S] unique free call was not known as deallocation call "
6153                  << *UniqueFree << "\n");
6154       return false;
6155     }
6156     if (DI->MightFreeUnknownObjects) {
6157       LLVM_DEBUG(
6158           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6159       return false;
6160     }
6161     if (DI->PotentialAllocationCalls.size() > 1) {
6162       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6163                         << DI->PotentialAllocationCalls.size()
6164                         << " different allocations\n");
6165       return false;
6166     }
6167     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6168       LLVM_DEBUG(
6169           dbgs()
6170           << "[H2S] unique free call not known to free this allocation but "
6171           << **DI->PotentialAllocationCalls.begin() << "\n");
6172       return false;
6173     }
6174     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6175     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6176       LLVM_DEBUG(
6177           dbgs()
6178           << "[H2S] unique free call might not be executed with the allocation "
6179           << *UniqueFree << "\n");
6180       return false;
6181     }
6182     return true;
6183   };
6184 
6185   auto UsesCheck = [&](AllocationInfo &AI) {
6186     bool ValidUsesOnly = true;
6187 
6188     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6189       Instruction *UserI = cast<Instruction>(U.getUser());
6190       if (isa<LoadInst>(UserI))
6191         return true;
6192       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6193         if (SI->getValueOperand() == U.get()) {
6194           LLVM_DEBUG(dbgs()
6195                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6196           ValidUsesOnly = false;
6197         } else {
6198           // A store into the malloc'ed memory is fine.
6199         }
6200         return true;
6201       }
6202       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6203         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6204           return true;
6205         if (DeallocationInfos.count(CB)) {
6206           AI.PotentialFreeCalls.insert(CB);
6207           return true;
6208         }
6209 
6210         unsigned ArgNo = CB->getArgOperandNo(&U);
6211 
6212         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6213             *this, IRPosition::callsite_argument(*CB, ArgNo),
6214             DepClassTy::OPTIONAL);
6215 
6216         // If a call site argument use is nofree, we are fine.
6217         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6218             *this, IRPosition::callsite_argument(*CB, ArgNo),
6219             DepClassTy::OPTIONAL);
6220 
6221         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6222         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6223         if (MaybeCaptured ||
6224             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6225              MaybeFreed)) {
6226           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6227 
6228           // Emit a missed remark if this is missed OpenMP globalization.
6229           auto Remark = [&](OptimizationRemarkMissed ORM) {
6230             return ORM
6231                    << "Could not move globalized variable to the stack. "
6232                       "Variable is potentially captured in call. Mark "
6233                       "parameter as `__attribute__((noescape))` to override.";
6234           };
6235 
6236           if (ValidUsesOnly &&
6237               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6238             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6239 
6240           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6241           ValidUsesOnly = false;
6242         }
6243         return true;
6244       }
6245 
6246       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6247           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6248         Follow = true;
6249         return true;
6250       }
6251       // Unknown user for which we can not track uses further (in a way that
6252       // makes sense).
6253       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6254       ValidUsesOnly = false;
6255       return true;
6256     };
6257     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6258       return false;
6259     return ValidUsesOnly;
6260   };
6261 
6262   // The actual update starts here. We look at all allocations and depending on
6263   // their status perform the appropriate check(s).
6264   for (auto &It : AllocationInfos) {
6265     AllocationInfo &AI = *It.second;
6266     if (AI.Status == AllocationInfo::INVALID)
6267       continue;
6268 
6269     if (MaxHeapToStackSize == -1) {
6270       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6271         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6272           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6273                             << "\n");
6274           AI.Status = AllocationInfo::INVALID;
6275           Changed = ChangeStatus::CHANGED;
6276           continue;
6277         }
6278     } else {
6279       Optional<APInt> Size = getSize(A, *this, AI);
6280       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6281         LLVM_DEBUG({
6282           if (!Size.hasValue())
6283             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6284                    << "\n";
6285           else
6286             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6287                    << MaxHeapToStackSize << "\n";
6288         });
6289 
6290         AI.Status = AllocationInfo::INVALID;
6291         Changed = ChangeStatus::CHANGED;
6292         continue;
6293       }
6294     }
6295 
6296     switch (AI.Status) {
6297     case AllocationInfo::STACK_DUE_TO_USE:
6298       if (UsesCheck(AI))
6299         continue;
6300       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6301       LLVM_FALLTHROUGH;
6302     case AllocationInfo::STACK_DUE_TO_FREE:
6303       if (FreeCheck(AI))
6304         continue;
6305       AI.Status = AllocationInfo::INVALID;
6306       Changed = ChangeStatus::CHANGED;
6307       continue;
6308     case AllocationInfo::INVALID:
6309       llvm_unreachable("Invalid allocations should never reach this point!");
6310     };
6311   }
6312 
6313   return Changed;
6314 }
6315 
6316 /// ----------------------- Privatizable Pointers ------------------------------
6317 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6318   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6319       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6320 
6321   ChangeStatus indicatePessimisticFixpoint() override {
6322     AAPrivatizablePtr::indicatePessimisticFixpoint();
6323     PrivatizableType = nullptr;
6324     return ChangeStatus::CHANGED;
6325   }
6326 
6327   /// Identify the type we can chose for a private copy of the underlying
6328   /// argument. None means it is not clear yet, nullptr means there is none.
6329   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6330 
6331   /// Return a privatizable type that encloses both T0 and T1.
6332   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6333   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6334     if (!T0.hasValue())
6335       return T1;
6336     if (!T1.hasValue())
6337       return T0;
6338     if (T0 == T1)
6339       return T0;
6340     return nullptr;
6341   }
6342 
6343   Optional<Type *> getPrivatizableType() const override {
6344     return PrivatizableType;
6345   }
6346 
6347   const std::string getAsStr() const override {
6348     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6349   }
6350 
6351 protected:
6352   Optional<Type *> PrivatizableType;
6353 };
6354 
6355 // TODO: Do this for call site arguments (probably also other values) as well.
6356 
6357 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6358   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6359       : AAPrivatizablePtrImpl(IRP, A) {}
6360 
6361   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6362   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6363     // If this is a byval argument and we know all the call sites (so we can
6364     // rewrite them), there is no need to check them explicitly.
6365     bool AllCallSitesKnown;
6366     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6367         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6368                                true, AllCallSitesKnown))
6369       return getAssociatedValue().getType()->getPointerElementType();
6370 
6371     Optional<Type *> Ty;
6372     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6373 
6374     // Make sure the associated call site argument has the same type at all call
6375     // sites and it is an allocation we know is safe to privatize, for now that
6376     // means we only allow alloca instructions.
6377     // TODO: We can additionally analyze the accesses in the callee to  create
6378     //       the type from that information instead. That is a little more
6379     //       involved and will be done in a follow up patch.
6380     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6381       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6382       // Check if a coresponding argument was found or if it is one not
6383       // associated (which can happen for callback calls).
6384       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6385         return false;
6386 
6387       // Check that all call sites agree on a type.
6388       auto &PrivCSArgAA =
6389           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6390       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6391 
6392       LLVM_DEBUG({
6393         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6394         if (CSTy.hasValue() && CSTy.getValue())
6395           CSTy.getValue()->print(dbgs());
6396         else if (CSTy.hasValue())
6397           dbgs() << "<nullptr>";
6398         else
6399           dbgs() << "<none>";
6400       });
6401 
6402       Ty = combineTypes(Ty, CSTy);
6403 
6404       LLVM_DEBUG({
6405         dbgs() << " : New Type: ";
6406         if (Ty.hasValue() && Ty.getValue())
6407           Ty.getValue()->print(dbgs());
6408         else if (Ty.hasValue())
6409           dbgs() << "<nullptr>";
6410         else
6411           dbgs() << "<none>";
6412         dbgs() << "\n";
6413       });
6414 
6415       return !Ty.hasValue() || Ty.getValue();
6416     };
6417 
6418     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6419       return nullptr;
6420     return Ty;
6421   }
6422 
6423   /// See AbstractAttribute::updateImpl(...).
6424   ChangeStatus updateImpl(Attributor &A) override {
6425     PrivatizableType = identifyPrivatizableType(A);
6426     if (!PrivatizableType.hasValue())
6427       return ChangeStatus::UNCHANGED;
6428     if (!PrivatizableType.getValue())
6429       return indicatePessimisticFixpoint();
6430 
6431     // The dependence is optional so we don't give up once we give up on the
6432     // alignment.
6433     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6434                         DepClassTy::OPTIONAL);
6435 
6436     // Avoid arguments with padding for now.
6437     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6438         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6439                                                 A.getInfoCache().getDL())) {
6440       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6441       return indicatePessimisticFixpoint();
6442     }
6443 
6444     // Collect the types that will replace the privatizable type in the function
6445     // signature.
6446     SmallVector<Type *, 16> ReplacementTypes;
6447     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6448 
6449     // Verify callee and caller agree on how the promoted argument would be
6450     // passed.
6451     Function &Fn = *getIRPosition().getAnchorScope();
6452     const auto *TTI =
6453         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6454     if (!TTI) {
6455       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6456                         << Fn.getName() << "\n");
6457       return indicatePessimisticFixpoint();
6458     }
6459 
6460     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6461       CallBase *CB = ACS.getInstruction();
6462       return TTI->areTypesABICompatible(
6463           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6464     };
6465     bool AllCallSitesKnown;
6466     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6467                                 AllCallSitesKnown)) {
6468       LLVM_DEBUG(
6469           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6470                  << Fn.getName() << "\n");
6471       return indicatePessimisticFixpoint();
6472     }
6473 
6474     // Register a rewrite of the argument.
6475     Argument *Arg = getAssociatedArgument();
6476     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6477       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6478       return indicatePessimisticFixpoint();
6479     }
6480 
6481     unsigned ArgNo = Arg->getArgNo();
6482 
6483     // Helper to check if for the given call site the associated argument is
6484     // passed to a callback where the privatization would be different.
6485     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6486       SmallVector<const Use *, 4> CallbackUses;
6487       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6488       for (const Use *U : CallbackUses) {
6489         AbstractCallSite CBACS(U);
6490         assert(CBACS && CBACS.isCallbackCall());
6491         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6492           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6493 
6494           LLVM_DEBUG({
6495             dbgs()
6496                 << "[AAPrivatizablePtr] Argument " << *Arg
6497                 << "check if can be privatized in the context of its parent ("
6498                 << Arg->getParent()->getName()
6499                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6500                    "callback ("
6501                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6502                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6503                 << CBACS.getCallArgOperand(CBArg) << " vs "
6504                 << CB.getArgOperand(ArgNo) << "\n"
6505                 << "[AAPrivatizablePtr] " << CBArg << " : "
6506                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6507           });
6508 
6509           if (CBArgNo != int(ArgNo))
6510             continue;
6511           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6512               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6513           if (CBArgPrivAA.isValidState()) {
6514             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6515             if (!CBArgPrivTy.hasValue())
6516               continue;
6517             if (CBArgPrivTy.getValue() == PrivatizableType)
6518               continue;
6519           }
6520 
6521           LLVM_DEBUG({
6522             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6523                    << " cannot be privatized in the context of its parent ("
6524                    << Arg->getParent()->getName()
6525                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6526                       "callback ("
6527                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6528                    << ").\n[AAPrivatizablePtr] for which the argument "
6529                       "privatization is not compatible.\n";
6530           });
6531           return false;
6532         }
6533       }
6534       return true;
6535     };
6536 
6537     // Helper to check if for the given call site the associated argument is
6538     // passed to a direct call where the privatization would be different.
6539     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6540       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6541       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6542       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6543              "Expected a direct call operand for callback call operand");
6544 
6545       LLVM_DEBUG({
6546         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6547                << " check if be privatized in the context of its parent ("
6548                << Arg->getParent()->getName()
6549                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6550                   "direct call of ("
6551                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6552                << ").\n";
6553       });
6554 
6555       Function *DCCallee = DC->getCalledFunction();
6556       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6557         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6558             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6559             DepClassTy::REQUIRED);
6560         if (DCArgPrivAA.isValidState()) {
6561           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6562           if (!DCArgPrivTy.hasValue())
6563             return true;
6564           if (DCArgPrivTy.getValue() == PrivatizableType)
6565             return true;
6566         }
6567       }
6568 
6569       LLVM_DEBUG({
6570         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6571                << " cannot be privatized in the context of its parent ("
6572                << Arg->getParent()->getName()
6573                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6574                   "direct call of ("
6575                << ACS.getInstruction()->getCalledFunction()->getName()
6576                << ").\n[AAPrivatizablePtr] for which the argument "
6577                   "privatization is not compatible.\n";
6578       });
6579       return false;
6580     };
6581 
6582     // Helper to check if the associated argument is used at the given abstract
6583     // call site in a way that is incompatible with the privatization assumed
6584     // here.
6585     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6586       if (ACS.isDirectCall())
6587         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6588       if (ACS.isCallbackCall())
6589         return IsCompatiblePrivArgOfDirectCS(ACS);
6590       return false;
6591     };
6592 
6593     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6594                                 AllCallSitesKnown))
6595       return indicatePessimisticFixpoint();
6596 
6597     return ChangeStatus::UNCHANGED;
6598   }
6599 
6600   /// Given a type to private \p PrivType, collect the constituates (which are
6601   /// used) in \p ReplacementTypes.
6602   static void
6603   identifyReplacementTypes(Type *PrivType,
6604                            SmallVectorImpl<Type *> &ReplacementTypes) {
6605     // TODO: For now we expand the privatization type to the fullest which can
6606     //       lead to dead arguments that need to be removed later.
6607     assert(PrivType && "Expected privatizable type!");
6608 
6609     // Traverse the type, extract constituate types on the outermost level.
6610     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6611       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6612         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6613     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6614       ReplacementTypes.append(PrivArrayType->getNumElements(),
6615                               PrivArrayType->getElementType());
6616     } else {
6617       ReplacementTypes.push_back(PrivType);
6618     }
6619   }
6620 
6621   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6622   /// The values needed are taken from the arguments of \p F starting at
6623   /// position \p ArgNo.
6624   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6625                                    unsigned ArgNo, Instruction &IP) {
6626     assert(PrivType && "Expected privatizable type!");
6627 
6628     IRBuilder<NoFolder> IRB(&IP);
6629     const DataLayout &DL = F.getParent()->getDataLayout();
6630 
6631     // Traverse the type, build GEPs and stores.
6632     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6633       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6634       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6635         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6636         Value *Ptr =
6637             constructPointer(PointeeTy, PrivType, &Base,
6638                              PrivStructLayout->getElementOffset(u), IRB, DL);
6639         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6640       }
6641     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6642       Type *PointeeTy = PrivArrayType->getElementType();
6643       Type *PointeePtrTy = PointeeTy->getPointerTo();
6644       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6645       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6646         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6647                                       u * PointeeTySize, IRB, DL);
6648         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6649       }
6650     } else {
6651       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6652     }
6653   }
6654 
6655   /// Extract values from \p Base according to the type \p PrivType at the
6656   /// call position \p ACS. The values are appended to \p ReplacementValues.
6657   void createReplacementValues(Align Alignment, Type *PrivType,
6658                                AbstractCallSite ACS, Value *Base,
6659                                SmallVectorImpl<Value *> &ReplacementValues) {
6660     assert(Base && "Expected base value!");
6661     assert(PrivType && "Expected privatizable type!");
6662     Instruction *IP = ACS.getInstruction();
6663 
6664     IRBuilder<NoFolder> IRB(IP);
6665     const DataLayout &DL = IP->getModule()->getDataLayout();
6666 
6667     if (Base->getType()->getPointerElementType() != PrivType)
6668       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6669                                                  "", ACS.getInstruction());
6670 
6671     // Traverse the type, build GEPs and loads.
6672     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6673       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6674       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6675         Type *PointeeTy = PrivStructType->getElementType(u);
6676         Value *Ptr =
6677             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6678                              PrivStructLayout->getElementOffset(u), IRB, DL);
6679         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6680         L->setAlignment(Alignment);
6681         ReplacementValues.push_back(L);
6682       }
6683     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6684       Type *PointeeTy = PrivArrayType->getElementType();
6685       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6686       Type *PointeePtrTy = PointeeTy->getPointerTo();
6687       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6688         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6689                                       u * PointeeTySize, IRB, DL);
6690         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6691         L->setAlignment(Alignment);
6692         ReplacementValues.push_back(L);
6693       }
6694     } else {
6695       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6696       L->setAlignment(Alignment);
6697       ReplacementValues.push_back(L);
6698     }
6699   }
6700 
6701   /// See AbstractAttribute::manifest(...)
6702   ChangeStatus manifest(Attributor &A) override {
6703     if (!PrivatizableType.hasValue())
6704       return ChangeStatus::UNCHANGED;
6705     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6706 
6707     // Collect all tail calls in the function as we cannot allow new allocas to
6708     // escape into tail recursion.
6709     // TODO: Be smarter about new allocas escaping into tail calls.
6710     SmallVector<CallInst *, 16> TailCalls;
6711     bool UsedAssumedInformation = false;
6712     if (!A.checkForAllInstructions(
6713             [&](Instruction &I) {
6714               CallInst &CI = cast<CallInst>(I);
6715               if (CI.isTailCall())
6716                 TailCalls.push_back(&CI);
6717               return true;
6718             },
6719             *this, {Instruction::Call}, UsedAssumedInformation))
6720       return ChangeStatus::UNCHANGED;
6721 
6722     Argument *Arg = getAssociatedArgument();
6723     // Query AAAlign attribute for alignment of associated argument to
6724     // determine the best alignment of loads.
6725     const auto &AlignAA =
6726         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6727 
6728     // Callback to repair the associated function. A new alloca is placed at the
6729     // beginning and initialized with the values passed through arguments. The
6730     // new alloca replaces the use of the old pointer argument.
6731     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6732         [=](const Attributor::ArgumentReplacementInfo &ARI,
6733             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6734           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6735           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6736           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6737                                            Arg->getName() + ".priv", IP);
6738           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6739                                ArgIt->getArgNo(), *IP);
6740 
6741           if (AI->getType() != Arg->getType())
6742             AI =
6743                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6744           Arg->replaceAllUsesWith(AI);
6745 
6746           for (CallInst *CI : TailCalls)
6747             CI->setTailCall(false);
6748         };
6749 
6750     // Callback to repair a call site of the associated function. The elements
6751     // of the privatizable type are loaded prior to the call and passed to the
6752     // new function version.
6753     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6754         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6755                       AbstractCallSite ACS,
6756                       SmallVectorImpl<Value *> &NewArgOperands) {
6757           // When no alignment is specified for the load instruction,
6758           // natural alignment is assumed.
6759           createReplacementValues(
6760               assumeAligned(AlignAA.getAssumedAlign()),
6761               PrivatizableType.getValue(), ACS,
6762               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6763               NewArgOperands);
6764         };
6765 
6766     // Collect the types that will replace the privatizable type in the function
6767     // signature.
6768     SmallVector<Type *, 16> ReplacementTypes;
6769     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6770 
6771     // Register a rewrite of the argument.
6772     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6773                                            std::move(FnRepairCB),
6774                                            std::move(ACSRepairCB)))
6775       return ChangeStatus::CHANGED;
6776     return ChangeStatus::UNCHANGED;
6777   }
6778 
6779   /// See AbstractAttribute::trackStatistics()
6780   void trackStatistics() const override {
6781     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6782   }
6783 };
6784 
6785 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6786   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6787       : AAPrivatizablePtrImpl(IRP, A) {}
6788 
6789   /// See AbstractAttribute::initialize(...).
6790   virtual void initialize(Attributor &A) override {
6791     // TODO: We can privatize more than arguments.
6792     indicatePessimisticFixpoint();
6793   }
6794 
6795   ChangeStatus updateImpl(Attributor &A) override {
6796     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6797                      "updateImpl will not be called");
6798   }
6799 
6800   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6801   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6802     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6803     if (!Obj) {
6804       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6805       return nullptr;
6806     }
6807 
6808     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6809       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6810         if (CI->isOne())
6811           return Obj->getType()->getPointerElementType();
6812     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6813       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6814           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6815       if (PrivArgAA.isAssumedPrivatizablePtr())
6816         return Obj->getType()->getPointerElementType();
6817     }
6818 
6819     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6820                          "alloca nor privatizable argument: "
6821                       << *Obj << "!\n");
6822     return nullptr;
6823   }
6824 
6825   /// See AbstractAttribute::trackStatistics()
6826   void trackStatistics() const override {
6827     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6828   }
6829 };
6830 
6831 struct AAPrivatizablePtrCallSiteArgument final
6832     : public AAPrivatizablePtrFloating {
6833   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6834       : AAPrivatizablePtrFloating(IRP, A) {}
6835 
6836   /// See AbstractAttribute::initialize(...).
6837   void initialize(Attributor &A) override {
6838     if (getIRPosition().hasAttr(Attribute::ByVal))
6839       indicateOptimisticFixpoint();
6840   }
6841 
6842   /// See AbstractAttribute::updateImpl(...).
6843   ChangeStatus updateImpl(Attributor &A) override {
6844     PrivatizableType = identifyPrivatizableType(A);
6845     if (!PrivatizableType.hasValue())
6846       return ChangeStatus::UNCHANGED;
6847     if (!PrivatizableType.getValue())
6848       return indicatePessimisticFixpoint();
6849 
6850     const IRPosition &IRP = getIRPosition();
6851     auto &NoCaptureAA =
6852         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6853     if (!NoCaptureAA.isAssumedNoCapture()) {
6854       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6855       return indicatePessimisticFixpoint();
6856     }
6857 
6858     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6859     if (!NoAliasAA.isAssumedNoAlias()) {
6860       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6861       return indicatePessimisticFixpoint();
6862     }
6863 
6864     const auto &MemBehaviorAA =
6865         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6866     if (!MemBehaviorAA.isAssumedReadOnly()) {
6867       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6868       return indicatePessimisticFixpoint();
6869     }
6870 
6871     return ChangeStatus::UNCHANGED;
6872   }
6873 
6874   /// See AbstractAttribute::trackStatistics()
6875   void trackStatistics() const override {
6876     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6877   }
6878 };
6879 
6880 struct AAPrivatizablePtrCallSiteReturned final
6881     : public AAPrivatizablePtrFloating {
6882   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6883       : AAPrivatizablePtrFloating(IRP, A) {}
6884 
6885   /// See AbstractAttribute::initialize(...).
6886   void initialize(Attributor &A) override {
6887     // TODO: We can privatize more than arguments.
6888     indicatePessimisticFixpoint();
6889   }
6890 
6891   /// See AbstractAttribute::trackStatistics()
6892   void trackStatistics() const override {
6893     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6894   }
6895 };
6896 
6897 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6898   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6899       : AAPrivatizablePtrFloating(IRP, A) {}
6900 
6901   /// See AbstractAttribute::initialize(...).
6902   void initialize(Attributor &A) override {
6903     // TODO: We can privatize more than arguments.
6904     indicatePessimisticFixpoint();
6905   }
6906 
6907   /// See AbstractAttribute::trackStatistics()
6908   void trackStatistics() const override {
6909     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6910   }
6911 };
6912 
6913 /// -------------------- Memory Behavior Attributes ----------------------------
6914 /// Includes read-none, read-only, and write-only.
6915 /// ----------------------------------------------------------------------------
6916 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6917   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6918       : AAMemoryBehavior(IRP, A) {}
6919 
6920   /// See AbstractAttribute::initialize(...).
6921   void initialize(Attributor &A) override {
6922     intersectAssumedBits(BEST_STATE);
6923     getKnownStateFromValue(getIRPosition(), getState());
6924     AAMemoryBehavior::initialize(A);
6925   }
6926 
6927   /// Return the memory behavior information encoded in the IR for \p IRP.
6928   static void getKnownStateFromValue(const IRPosition &IRP,
6929                                      BitIntegerState &State,
6930                                      bool IgnoreSubsumingPositions = false) {
6931     SmallVector<Attribute, 2> Attrs;
6932     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6933     for (const Attribute &Attr : Attrs) {
6934       switch (Attr.getKindAsEnum()) {
6935       case Attribute::ReadNone:
6936         State.addKnownBits(NO_ACCESSES);
6937         break;
6938       case Attribute::ReadOnly:
6939         State.addKnownBits(NO_WRITES);
6940         break;
6941       case Attribute::WriteOnly:
6942         State.addKnownBits(NO_READS);
6943         break;
6944       default:
6945         llvm_unreachable("Unexpected attribute!");
6946       }
6947     }
6948 
6949     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6950       if (!I->mayReadFromMemory())
6951         State.addKnownBits(NO_READS);
6952       if (!I->mayWriteToMemory())
6953         State.addKnownBits(NO_WRITES);
6954     }
6955   }
6956 
6957   /// See AbstractAttribute::getDeducedAttributes(...).
6958   void getDeducedAttributes(LLVMContext &Ctx,
6959                             SmallVectorImpl<Attribute> &Attrs) const override {
6960     assert(Attrs.size() == 0);
6961     if (isAssumedReadNone())
6962       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6963     else if (isAssumedReadOnly())
6964       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6965     else if (isAssumedWriteOnly())
6966       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6967     assert(Attrs.size() <= 1);
6968   }
6969 
6970   /// See AbstractAttribute::manifest(...).
6971   ChangeStatus manifest(Attributor &A) override {
6972     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6973       return ChangeStatus::UNCHANGED;
6974 
6975     const IRPosition &IRP = getIRPosition();
6976 
6977     // Check if we would improve the existing attributes first.
6978     SmallVector<Attribute, 4> DeducedAttrs;
6979     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6980     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6981           return IRP.hasAttr(Attr.getKindAsEnum(),
6982                              /* IgnoreSubsumingPositions */ true);
6983         }))
6984       return ChangeStatus::UNCHANGED;
6985 
6986     // Clear existing attributes.
6987     IRP.removeAttrs(AttrKinds);
6988 
6989     // Use the generic manifest method.
6990     return IRAttribute::manifest(A);
6991   }
6992 
6993   /// See AbstractState::getAsStr().
6994   const std::string getAsStr() const override {
6995     if (isAssumedReadNone())
6996       return "readnone";
6997     if (isAssumedReadOnly())
6998       return "readonly";
6999     if (isAssumedWriteOnly())
7000       return "writeonly";
7001     return "may-read/write";
7002   }
7003 
7004   /// The set of IR attributes AAMemoryBehavior deals with.
7005   static const Attribute::AttrKind AttrKinds[3];
7006 };
7007 
7008 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7009     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7010 
7011 /// Memory behavior attribute for a floating value.
7012 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7013   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7014       : AAMemoryBehaviorImpl(IRP, A) {}
7015 
7016   /// See AbstractAttribute::updateImpl(...).
7017   ChangeStatus updateImpl(Attributor &A) override;
7018 
7019   /// See AbstractAttribute::trackStatistics()
7020   void trackStatistics() const override {
7021     if (isAssumedReadNone())
7022       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7023     else if (isAssumedReadOnly())
7024       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7025     else if (isAssumedWriteOnly())
7026       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7027   }
7028 
7029 private:
7030   /// Return true if users of \p UserI might access the underlying
7031   /// variable/location described by \p U and should therefore be analyzed.
7032   bool followUsersOfUseIn(Attributor &A, const Use &U,
7033                           const Instruction *UserI);
7034 
7035   /// Update the state according to the effect of use \p U in \p UserI.
7036   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7037 };
7038 
7039 /// Memory behavior attribute for function argument.
7040 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7041   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7042       : AAMemoryBehaviorFloating(IRP, A) {}
7043 
7044   /// See AbstractAttribute::initialize(...).
7045   void initialize(Attributor &A) override {
7046     intersectAssumedBits(BEST_STATE);
7047     const IRPosition &IRP = getIRPosition();
7048     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7049     // can query it when we use has/getAttr. That would allow us to reuse the
7050     // initialize of the base class here.
7051     bool HasByVal =
7052         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7053     getKnownStateFromValue(IRP, getState(),
7054                            /* IgnoreSubsumingPositions */ HasByVal);
7055 
7056     // Initialize the use vector with all direct uses of the associated value.
7057     Argument *Arg = getAssociatedArgument();
7058     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7059       indicatePessimisticFixpoint();
7060   }
7061 
7062   ChangeStatus manifest(Attributor &A) override {
7063     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7064     if (!getAssociatedValue().getType()->isPointerTy())
7065       return ChangeStatus::UNCHANGED;
7066 
7067     // TODO: From readattrs.ll: "inalloca parameters are always
7068     //                           considered written"
7069     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7070       removeKnownBits(NO_WRITES);
7071       removeAssumedBits(NO_WRITES);
7072     }
7073     return AAMemoryBehaviorFloating::manifest(A);
7074   }
7075 
7076   /// See AbstractAttribute::trackStatistics()
7077   void trackStatistics() const override {
7078     if (isAssumedReadNone())
7079       STATS_DECLTRACK_ARG_ATTR(readnone)
7080     else if (isAssumedReadOnly())
7081       STATS_DECLTRACK_ARG_ATTR(readonly)
7082     else if (isAssumedWriteOnly())
7083       STATS_DECLTRACK_ARG_ATTR(writeonly)
7084   }
7085 };
7086 
7087 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7088   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7089       : AAMemoryBehaviorArgument(IRP, A) {}
7090 
7091   /// See AbstractAttribute::initialize(...).
7092   void initialize(Attributor &A) override {
7093     // If we don't have an associated attribute this is either a variadic call
7094     // or an indirect call, either way, nothing to do here.
7095     Argument *Arg = getAssociatedArgument();
7096     if (!Arg) {
7097       indicatePessimisticFixpoint();
7098       return;
7099     }
7100     if (Arg->hasByValAttr()) {
7101       addKnownBits(NO_WRITES);
7102       removeKnownBits(NO_READS);
7103       removeAssumedBits(NO_READS);
7104     }
7105     AAMemoryBehaviorArgument::initialize(A);
7106     if (getAssociatedFunction()->isDeclaration())
7107       indicatePessimisticFixpoint();
7108   }
7109 
7110   /// See AbstractAttribute::updateImpl(...).
7111   ChangeStatus updateImpl(Attributor &A) override {
7112     // TODO: Once we have call site specific value information we can provide
7113     //       call site specific liveness liveness information and then it makes
7114     //       sense to specialize attributes for call sites arguments instead of
7115     //       redirecting requests to the callee argument.
7116     Argument *Arg = getAssociatedArgument();
7117     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7118     auto &ArgAA =
7119         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7120     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7121   }
7122 
7123   /// See AbstractAttribute::trackStatistics()
7124   void trackStatistics() const override {
7125     if (isAssumedReadNone())
7126       STATS_DECLTRACK_CSARG_ATTR(readnone)
7127     else if (isAssumedReadOnly())
7128       STATS_DECLTRACK_CSARG_ATTR(readonly)
7129     else if (isAssumedWriteOnly())
7130       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7131   }
7132 };
7133 
7134 /// Memory behavior attribute for a call site return position.
7135 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7136   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7137       : AAMemoryBehaviorFloating(IRP, A) {}
7138 
7139   /// See AbstractAttribute::initialize(...).
7140   void initialize(Attributor &A) override {
7141     AAMemoryBehaviorImpl::initialize(A);
7142     Function *F = getAssociatedFunction();
7143     if (!F || F->isDeclaration())
7144       indicatePessimisticFixpoint();
7145   }
7146 
7147   /// See AbstractAttribute::manifest(...).
7148   ChangeStatus manifest(Attributor &A) override {
7149     // We do not annotate returned values.
7150     return ChangeStatus::UNCHANGED;
7151   }
7152 
7153   /// See AbstractAttribute::trackStatistics()
7154   void trackStatistics() const override {}
7155 };
7156 
7157 /// An AA to represent the memory behavior function attributes.
7158 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7159   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7160       : AAMemoryBehaviorImpl(IRP, A) {}
7161 
7162   /// See AbstractAttribute::updateImpl(Attributor &A).
7163   virtual ChangeStatus updateImpl(Attributor &A) override;
7164 
7165   /// See AbstractAttribute::manifest(...).
7166   ChangeStatus manifest(Attributor &A) override {
7167     Function &F = cast<Function>(getAnchorValue());
7168     if (isAssumedReadNone()) {
7169       F.removeFnAttr(Attribute::ArgMemOnly);
7170       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7171       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7172     }
7173     return AAMemoryBehaviorImpl::manifest(A);
7174   }
7175 
7176   /// See AbstractAttribute::trackStatistics()
7177   void trackStatistics() const override {
7178     if (isAssumedReadNone())
7179       STATS_DECLTRACK_FN_ATTR(readnone)
7180     else if (isAssumedReadOnly())
7181       STATS_DECLTRACK_FN_ATTR(readonly)
7182     else if (isAssumedWriteOnly())
7183       STATS_DECLTRACK_FN_ATTR(writeonly)
7184   }
7185 };
7186 
7187 /// AAMemoryBehavior attribute for call sites.
7188 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7189   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7190       : AAMemoryBehaviorImpl(IRP, A) {}
7191 
7192   /// See AbstractAttribute::initialize(...).
7193   void initialize(Attributor &A) override {
7194     AAMemoryBehaviorImpl::initialize(A);
7195     Function *F = getAssociatedFunction();
7196     if (!F || F->isDeclaration())
7197       indicatePessimisticFixpoint();
7198   }
7199 
7200   /// See AbstractAttribute::updateImpl(...).
7201   ChangeStatus updateImpl(Attributor &A) override {
7202     // TODO: Once we have call site specific value information we can provide
7203     //       call site specific liveness liveness information and then it makes
7204     //       sense to specialize attributes for call sites arguments instead of
7205     //       redirecting requests to the callee argument.
7206     Function *F = getAssociatedFunction();
7207     const IRPosition &FnPos = IRPosition::function(*F);
7208     auto &FnAA =
7209         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7210     return clampStateAndIndicateChange(getState(), FnAA.getState());
7211   }
7212 
7213   /// See AbstractAttribute::trackStatistics()
7214   void trackStatistics() const override {
7215     if (isAssumedReadNone())
7216       STATS_DECLTRACK_CS_ATTR(readnone)
7217     else if (isAssumedReadOnly())
7218       STATS_DECLTRACK_CS_ATTR(readonly)
7219     else if (isAssumedWriteOnly())
7220       STATS_DECLTRACK_CS_ATTR(writeonly)
7221   }
7222 };
7223 
7224 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7225 
7226   // The current assumed state used to determine a change.
7227   auto AssumedState = getAssumed();
7228 
7229   auto CheckRWInst = [&](Instruction &I) {
7230     // If the instruction has an own memory behavior state, use it to restrict
7231     // the local state. No further analysis is required as the other memory
7232     // state is as optimistic as it gets.
7233     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7234       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7235           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7236       intersectAssumedBits(MemBehaviorAA.getAssumed());
7237       return !isAtFixpoint();
7238     }
7239 
7240     // Remove access kind modifiers if necessary.
7241     if (I.mayReadFromMemory())
7242       removeAssumedBits(NO_READS);
7243     if (I.mayWriteToMemory())
7244       removeAssumedBits(NO_WRITES);
7245     return !isAtFixpoint();
7246   };
7247 
7248   bool UsedAssumedInformation = false;
7249   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7250                                           UsedAssumedInformation))
7251     return indicatePessimisticFixpoint();
7252 
7253   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7254                                         : ChangeStatus::UNCHANGED;
7255 }
7256 
7257 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7258 
7259   const IRPosition &IRP = getIRPosition();
7260   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7261   AAMemoryBehavior::StateType &S = getState();
7262 
7263   // First, check the function scope. We take the known information and we avoid
7264   // work if the assumed information implies the current assumed information for
7265   // this attribute. This is a valid for all but byval arguments.
7266   Argument *Arg = IRP.getAssociatedArgument();
7267   AAMemoryBehavior::base_t FnMemAssumedState =
7268       AAMemoryBehavior::StateType::getWorstState();
7269   if (!Arg || !Arg->hasByValAttr()) {
7270     const auto &FnMemAA =
7271         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7272     FnMemAssumedState = FnMemAA.getAssumed();
7273     S.addKnownBits(FnMemAA.getKnown());
7274     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7275       return ChangeStatus::UNCHANGED;
7276   }
7277 
7278   // The current assumed state used to determine a change.
7279   auto AssumedState = S.getAssumed();
7280 
7281   // Make sure the value is not captured (except through "return"), if
7282   // it is, any information derived would be irrelevant anyway as we cannot
7283   // check the potential aliases introduced by the capture. However, no need
7284   // to fall back to anythign less optimistic than the function state.
7285   const auto &ArgNoCaptureAA =
7286       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7287   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7288     S.intersectAssumedBits(FnMemAssumedState);
7289     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7290                                           : ChangeStatus::UNCHANGED;
7291   }
7292 
7293   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7294   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7295     Instruction *UserI = cast<Instruction>(U.getUser());
7296     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7297                       << " \n");
7298 
7299     // Droppable users, e.g., llvm::assume does not actually perform any action.
7300     if (UserI->isDroppable())
7301       return true;
7302 
7303     // Check if the users of UserI should also be visited.
7304     Follow = followUsersOfUseIn(A, U, UserI);
7305 
7306     // If UserI might touch memory we analyze the use in detail.
7307     if (UserI->mayReadOrWriteMemory())
7308       analyzeUseIn(A, U, UserI);
7309 
7310     return !isAtFixpoint();
7311   };
7312 
7313   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7314     return indicatePessimisticFixpoint();
7315 
7316   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7317                                         : ChangeStatus::UNCHANGED;
7318 }
7319 
7320 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7321                                                   const Instruction *UserI) {
7322   // The loaded value is unrelated to the pointer argument, no need to
7323   // follow the users of the load.
7324   if (isa<LoadInst>(UserI))
7325     return false;
7326 
7327   // By default we follow all uses assuming UserI might leak information on U,
7328   // we have special handling for call sites operands though.
7329   const auto *CB = dyn_cast<CallBase>(UserI);
7330   if (!CB || !CB->isArgOperand(&U))
7331     return true;
7332 
7333   // If the use is a call argument known not to be captured, the users of
7334   // the call do not need to be visited because they have to be unrelated to
7335   // the input. Note that this check is not trivial even though we disallow
7336   // general capturing of the underlying argument. The reason is that the
7337   // call might the argument "through return", which we allow and for which we
7338   // need to check call users.
7339   if (U.get()->getType()->isPointerTy()) {
7340     unsigned ArgNo = CB->getArgOperandNo(&U);
7341     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7342         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7343     return !ArgNoCaptureAA.isAssumedNoCapture();
7344   }
7345 
7346   return true;
7347 }
7348 
7349 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7350                                             const Instruction *UserI) {
7351   assert(UserI->mayReadOrWriteMemory());
7352 
7353   switch (UserI->getOpcode()) {
7354   default:
7355     // TODO: Handle all atomics and other side-effect operations we know of.
7356     break;
7357   case Instruction::Load:
7358     // Loads cause the NO_READS property to disappear.
7359     removeAssumedBits(NO_READS);
7360     return;
7361 
7362   case Instruction::Store:
7363     // Stores cause the NO_WRITES property to disappear if the use is the
7364     // pointer operand. Note that while capturing was taken care of somewhere
7365     // else we need to deal with stores of the value that is not looked through.
7366     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7367       removeAssumedBits(NO_WRITES);
7368     else
7369       indicatePessimisticFixpoint();
7370     return;
7371 
7372   case Instruction::Call:
7373   case Instruction::CallBr:
7374   case Instruction::Invoke: {
7375     // For call sites we look at the argument memory behavior attribute (this
7376     // could be recursive!) in order to restrict our own state.
7377     const auto *CB = cast<CallBase>(UserI);
7378 
7379     // Give up on operand bundles.
7380     if (CB->isBundleOperand(&U)) {
7381       indicatePessimisticFixpoint();
7382       return;
7383     }
7384 
7385     // Calling a function does read the function pointer, maybe write it if the
7386     // function is self-modifying.
7387     if (CB->isCallee(&U)) {
7388       removeAssumedBits(NO_READS);
7389       break;
7390     }
7391 
7392     // Adjust the possible access behavior based on the information on the
7393     // argument.
7394     IRPosition Pos;
7395     if (U.get()->getType()->isPointerTy())
7396       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7397     else
7398       Pos = IRPosition::callsite_function(*CB);
7399     const auto &MemBehaviorAA =
7400         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7401     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7402     // and at least "known".
7403     intersectAssumedBits(MemBehaviorAA.getAssumed());
7404     return;
7405   }
7406   };
7407 
7408   // Generally, look at the "may-properties" and adjust the assumed state if we
7409   // did not trigger special handling before.
7410   if (UserI->mayReadFromMemory())
7411     removeAssumedBits(NO_READS);
7412   if (UserI->mayWriteToMemory())
7413     removeAssumedBits(NO_WRITES);
7414 }
7415 } // namespace
7416 
7417 /// -------------------- Memory Locations Attributes ---------------------------
7418 /// Includes read-none, argmemonly, inaccessiblememonly,
7419 /// inaccessiblememorargmemonly
7420 /// ----------------------------------------------------------------------------
7421 
7422 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7423     AAMemoryLocation::MemoryLocationsKind MLK) {
7424   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7425     return "all memory";
7426   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7427     return "no memory";
7428   std::string S = "memory:";
7429   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7430     S += "stack,";
7431   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7432     S += "constant,";
7433   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7434     S += "internal global,";
7435   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7436     S += "external global,";
7437   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7438     S += "argument,";
7439   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7440     S += "inaccessible,";
7441   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7442     S += "malloced,";
7443   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7444     S += "unknown,";
7445   S.pop_back();
7446   return S;
7447 }
7448 
7449 namespace {
7450 struct AAMemoryLocationImpl : public AAMemoryLocation {
7451 
7452   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7453       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7454     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7455       AccessKind2Accesses[u] = nullptr;
7456   }
7457 
7458   ~AAMemoryLocationImpl() {
7459     // The AccessSets are allocated via a BumpPtrAllocator, we call
7460     // the destructor manually.
7461     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7462       if (AccessKind2Accesses[u])
7463         AccessKind2Accesses[u]->~AccessSet();
7464   }
7465 
7466   /// See AbstractAttribute::initialize(...).
7467   void initialize(Attributor &A) override {
7468     intersectAssumedBits(BEST_STATE);
7469     getKnownStateFromValue(A, getIRPosition(), getState());
7470     AAMemoryLocation::initialize(A);
7471   }
7472 
7473   /// Return the memory behavior information encoded in the IR for \p IRP.
7474   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7475                                      BitIntegerState &State,
7476                                      bool IgnoreSubsumingPositions = false) {
7477     // For internal functions we ignore `argmemonly` and
7478     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7479     // constant propagation. It is unclear if this is the best way but it is
7480     // unlikely this will cause real performance problems. If we are deriving
7481     // attributes for the anchor function we even remove the attribute in
7482     // addition to ignoring it.
7483     bool UseArgMemOnly = true;
7484     Function *AnchorFn = IRP.getAnchorScope();
7485     if (AnchorFn && A.isRunOn(*AnchorFn))
7486       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7487 
7488     SmallVector<Attribute, 2> Attrs;
7489     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7490     for (const Attribute &Attr : Attrs) {
7491       switch (Attr.getKindAsEnum()) {
7492       case Attribute::ReadNone:
7493         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7494         break;
7495       case Attribute::InaccessibleMemOnly:
7496         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7497         break;
7498       case Attribute::ArgMemOnly:
7499         if (UseArgMemOnly)
7500           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7501         else
7502           IRP.removeAttrs({Attribute::ArgMemOnly});
7503         break;
7504       case Attribute::InaccessibleMemOrArgMemOnly:
7505         if (UseArgMemOnly)
7506           State.addKnownBits(inverseLocation(
7507               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7508         else
7509           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7510         break;
7511       default:
7512         llvm_unreachable("Unexpected attribute!");
7513       }
7514     }
7515   }
7516 
7517   /// See AbstractAttribute::getDeducedAttributes(...).
7518   void getDeducedAttributes(LLVMContext &Ctx,
7519                             SmallVectorImpl<Attribute> &Attrs) const override {
7520     assert(Attrs.size() == 0);
7521     if (isAssumedReadNone()) {
7522       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7523     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7524       if (isAssumedInaccessibleMemOnly())
7525         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7526       else if (isAssumedArgMemOnly())
7527         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7528       else if (isAssumedInaccessibleOrArgMemOnly())
7529         Attrs.push_back(
7530             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7531     }
7532     assert(Attrs.size() <= 1);
7533   }
7534 
7535   /// See AbstractAttribute::manifest(...).
7536   ChangeStatus manifest(Attributor &A) override {
7537     const IRPosition &IRP = getIRPosition();
7538 
7539     // Check if we would improve the existing attributes first.
7540     SmallVector<Attribute, 4> DeducedAttrs;
7541     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7542     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7543           return IRP.hasAttr(Attr.getKindAsEnum(),
7544                              /* IgnoreSubsumingPositions */ true);
7545         }))
7546       return ChangeStatus::UNCHANGED;
7547 
7548     // Clear existing attributes.
7549     IRP.removeAttrs(AttrKinds);
7550     if (isAssumedReadNone())
7551       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7552 
7553     // Use the generic manifest method.
7554     return IRAttribute::manifest(A);
7555   }
7556 
7557   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7558   bool checkForAllAccessesToMemoryKind(
7559       function_ref<bool(const Instruction *, const Value *, AccessKind,
7560                         MemoryLocationsKind)>
7561           Pred,
7562       MemoryLocationsKind RequestedMLK) const override {
7563     if (!isValidState())
7564       return false;
7565 
7566     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7567     if (AssumedMLK == NO_LOCATIONS)
7568       return true;
7569 
7570     unsigned Idx = 0;
7571     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7572          CurMLK *= 2, ++Idx) {
7573       if (CurMLK & RequestedMLK)
7574         continue;
7575 
7576       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7577         for (const AccessInfo &AI : *Accesses)
7578           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7579             return false;
7580     }
7581 
7582     return true;
7583   }
7584 
7585   ChangeStatus indicatePessimisticFixpoint() override {
7586     // If we give up and indicate a pessimistic fixpoint this instruction will
7587     // become an access for all potential access kinds:
7588     // TODO: Add pointers for argmemonly and globals to improve the results of
7589     //       checkForAllAccessesToMemoryKind.
7590     bool Changed = false;
7591     MemoryLocationsKind KnownMLK = getKnown();
7592     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7593     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7594       if (!(CurMLK & KnownMLK))
7595         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7596                                   getAccessKindFromInst(I));
7597     return AAMemoryLocation::indicatePessimisticFixpoint();
7598   }
7599 
7600 protected:
7601   /// Helper struct to tie together an instruction that has a read or write
7602   /// effect with the pointer it accesses (if any).
7603   struct AccessInfo {
7604 
7605     /// The instruction that caused the access.
7606     const Instruction *I;
7607 
7608     /// The base pointer that is accessed, or null if unknown.
7609     const Value *Ptr;
7610 
7611     /// The kind of access (read/write/read+write).
7612     AccessKind Kind;
7613 
7614     bool operator==(const AccessInfo &RHS) const {
7615       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7616     }
7617     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7618       if (LHS.I != RHS.I)
7619         return LHS.I < RHS.I;
7620       if (LHS.Ptr != RHS.Ptr)
7621         return LHS.Ptr < RHS.Ptr;
7622       if (LHS.Kind != RHS.Kind)
7623         return LHS.Kind < RHS.Kind;
7624       return false;
7625     }
7626   };
7627 
7628   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7629   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7630   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7631   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7632 
7633   /// Categorize the pointer arguments of CB that might access memory in
7634   /// AccessedLoc and update the state and access map accordingly.
7635   void
7636   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7637                                      AAMemoryLocation::StateType &AccessedLocs,
7638                                      bool &Changed);
7639 
7640   /// Return the kind(s) of location that may be accessed by \p V.
7641   AAMemoryLocation::MemoryLocationsKind
7642   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7643 
7644   /// Return the access kind as determined by \p I.
7645   AccessKind getAccessKindFromInst(const Instruction *I) {
7646     AccessKind AK = READ_WRITE;
7647     if (I) {
7648       AK = I->mayReadFromMemory() ? READ : NONE;
7649       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7650     }
7651     return AK;
7652   }
7653 
7654   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7655   /// an access of kind \p AK to a \p MLK memory location with the access
7656   /// pointer \p Ptr.
7657   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7658                                  MemoryLocationsKind MLK, const Instruction *I,
7659                                  const Value *Ptr, bool &Changed,
7660                                  AccessKind AK = READ_WRITE) {
7661 
7662     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7663     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7664     if (!Accesses)
7665       Accesses = new (Allocator) AccessSet();
7666     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7667     State.removeAssumedBits(MLK);
7668   }
7669 
7670   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7671   /// arguments, and update the state and access map accordingly.
7672   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7673                           AAMemoryLocation::StateType &State, bool &Changed);
7674 
7675   /// Used to allocate access sets.
7676   BumpPtrAllocator &Allocator;
7677 
7678   /// The set of IR attributes AAMemoryLocation deals with.
7679   static const Attribute::AttrKind AttrKinds[4];
7680 };
7681 
7682 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7683     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7684     Attribute::InaccessibleMemOrArgMemOnly};
7685 
7686 void AAMemoryLocationImpl::categorizePtrValue(
7687     Attributor &A, const Instruction &I, const Value &Ptr,
7688     AAMemoryLocation::StateType &State, bool &Changed) {
7689   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7690                     << Ptr << " ["
7691                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7692 
7693   SmallVector<Value *, 8> Objects;
7694   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7695     LLVM_DEBUG(
7696         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7697     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7698                               getAccessKindFromInst(&I));
7699     return;
7700   }
7701 
7702   for (Value *Obj : Objects) {
7703     // TODO: recognize the TBAA used for constant accesses.
7704     MemoryLocationsKind MLK = NO_LOCATIONS;
7705     if (isa<UndefValue>(Obj))
7706       continue;
7707     if (isa<Argument>(Obj)) {
7708       // TODO: For now we do not treat byval arguments as local copies performed
7709       // on the call edge, though, we should. To make that happen we need to
7710       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7711       // would also allow us to mark functions only accessing byval arguments as
7712       // readnone again, atguably their acceses have no effect outside of the
7713       // function, like accesses to allocas.
7714       MLK = NO_ARGUMENT_MEM;
7715     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7716       // Reading constant memory is not treated as a read "effect" by the
7717       // function attr pass so we won't neither. Constants defined by TBAA are
7718       // similar. (We know we do not write it because it is constant.)
7719       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7720         if (GVar->isConstant())
7721           continue;
7722 
7723       if (GV->hasLocalLinkage())
7724         MLK = NO_GLOBAL_INTERNAL_MEM;
7725       else
7726         MLK = NO_GLOBAL_EXTERNAL_MEM;
7727     } else if (isa<ConstantPointerNull>(Obj) &&
7728                !NullPointerIsDefined(getAssociatedFunction(),
7729                                      Ptr.getType()->getPointerAddressSpace())) {
7730       continue;
7731     } else if (isa<AllocaInst>(Obj)) {
7732       MLK = NO_LOCAL_MEM;
7733     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7734       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7735           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7736       if (NoAliasAA.isAssumedNoAlias())
7737         MLK = NO_MALLOCED_MEM;
7738       else
7739         MLK = NO_UNKOWN_MEM;
7740     } else {
7741       MLK = NO_UNKOWN_MEM;
7742     }
7743 
7744     assert(MLK != NO_LOCATIONS && "No location specified!");
7745     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7746                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7747                       << "\n");
7748     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7749                               getAccessKindFromInst(&I));
7750   }
7751 
7752   LLVM_DEBUG(
7753       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7754              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7755 }
7756 
7757 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7758     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7759     bool &Changed) {
7760   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7761 
7762     // Skip non-pointer arguments.
7763     const Value *ArgOp = CB.getArgOperand(ArgNo);
7764     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7765       continue;
7766 
7767     // Skip readnone arguments.
7768     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7769     const auto &ArgOpMemLocationAA =
7770         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7771 
7772     if (ArgOpMemLocationAA.isAssumedReadNone())
7773       continue;
7774 
7775     // Categorize potentially accessed pointer arguments as if there was an
7776     // access instruction with them as pointer.
7777     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7778   }
7779 }
7780 
7781 AAMemoryLocation::MemoryLocationsKind
7782 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7783                                                   bool &Changed) {
7784   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7785                     << I << "\n");
7786 
7787   AAMemoryLocation::StateType AccessedLocs;
7788   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7789 
7790   if (auto *CB = dyn_cast<CallBase>(&I)) {
7791 
7792     // First check if we assume any memory is access is visible.
7793     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7794         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7795     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7796                       << " [" << CBMemLocationAA << "]\n");
7797 
7798     if (CBMemLocationAA.isAssumedReadNone())
7799       return NO_LOCATIONS;
7800 
7801     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7802       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7803                                 Changed, getAccessKindFromInst(&I));
7804       return AccessedLocs.getAssumed();
7805     }
7806 
7807     uint32_t CBAssumedNotAccessedLocs =
7808         CBMemLocationAA.getAssumedNotAccessedLocation();
7809 
7810     // Set the argmemonly and global bit as we handle them separately below.
7811     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7812         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7813 
7814     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7815       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7816         continue;
7817       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7818                                 getAccessKindFromInst(&I));
7819     }
7820 
7821     // Now handle global memory if it might be accessed. This is slightly tricky
7822     // as NO_GLOBAL_MEM has multiple bits set.
7823     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7824     if (HasGlobalAccesses) {
7825       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7826                             AccessKind Kind, MemoryLocationsKind MLK) {
7827         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7828                                   getAccessKindFromInst(&I));
7829         return true;
7830       };
7831       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7832               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7833         return AccessedLocs.getWorstState();
7834     }
7835 
7836     LLVM_DEBUG(
7837         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7838                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7839 
7840     // Now handle argument memory if it might be accessed.
7841     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7842     if (HasArgAccesses)
7843       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7844 
7845     LLVM_DEBUG(
7846         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7847                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7848 
7849     return AccessedLocs.getAssumed();
7850   }
7851 
7852   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7853     LLVM_DEBUG(
7854         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7855                << I << " [" << *Ptr << "]\n");
7856     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7857     return AccessedLocs.getAssumed();
7858   }
7859 
7860   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7861                     << I << "\n");
7862   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7863                             getAccessKindFromInst(&I));
7864   return AccessedLocs.getAssumed();
7865 }
7866 
7867 /// An AA to represent the memory behavior function attributes.
7868 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7869   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7870       : AAMemoryLocationImpl(IRP, A) {}
7871 
7872   /// See AbstractAttribute::updateImpl(Attributor &A).
7873   virtual ChangeStatus updateImpl(Attributor &A) override {
7874 
7875     const auto &MemBehaviorAA =
7876         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7877     if (MemBehaviorAA.isAssumedReadNone()) {
7878       if (MemBehaviorAA.isKnownReadNone())
7879         return indicateOptimisticFixpoint();
7880       assert(isAssumedReadNone() &&
7881              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7882       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7883       return ChangeStatus::UNCHANGED;
7884     }
7885 
7886     // The current assumed state used to determine a change.
7887     auto AssumedState = getAssumed();
7888     bool Changed = false;
7889 
7890     auto CheckRWInst = [&](Instruction &I) {
7891       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7892       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7893                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7894       removeAssumedBits(inverseLocation(MLK, false, false));
7895       // Stop once only the valid bit set in the *not assumed location*, thus
7896       // once we don't actually exclude any memory locations in the state.
7897       return getAssumedNotAccessedLocation() != VALID_STATE;
7898     };
7899 
7900     bool UsedAssumedInformation = false;
7901     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7902                                             UsedAssumedInformation))
7903       return indicatePessimisticFixpoint();
7904 
7905     Changed |= AssumedState != getAssumed();
7906     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7907   }
7908 
7909   /// See AbstractAttribute::trackStatistics()
7910   void trackStatistics() const override {
7911     if (isAssumedReadNone())
7912       STATS_DECLTRACK_FN_ATTR(readnone)
7913     else if (isAssumedArgMemOnly())
7914       STATS_DECLTRACK_FN_ATTR(argmemonly)
7915     else if (isAssumedInaccessibleMemOnly())
7916       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7917     else if (isAssumedInaccessibleOrArgMemOnly())
7918       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7919   }
7920 };
7921 
7922 /// AAMemoryLocation attribute for call sites.
7923 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7924   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7925       : AAMemoryLocationImpl(IRP, A) {}
7926 
7927   /// See AbstractAttribute::initialize(...).
7928   void initialize(Attributor &A) override {
7929     AAMemoryLocationImpl::initialize(A);
7930     Function *F = getAssociatedFunction();
7931     if (!F || F->isDeclaration())
7932       indicatePessimisticFixpoint();
7933   }
7934 
7935   /// See AbstractAttribute::updateImpl(...).
7936   ChangeStatus updateImpl(Attributor &A) override {
7937     // TODO: Once we have call site specific value information we can provide
7938     //       call site specific liveness liveness information and then it makes
7939     //       sense to specialize attributes for call sites arguments instead of
7940     //       redirecting requests to the callee argument.
7941     Function *F = getAssociatedFunction();
7942     const IRPosition &FnPos = IRPosition::function(*F);
7943     auto &FnAA =
7944         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7945     bool Changed = false;
7946     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7947                           AccessKind Kind, MemoryLocationsKind MLK) {
7948       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7949                                 getAccessKindFromInst(I));
7950       return true;
7951     };
7952     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7953       return indicatePessimisticFixpoint();
7954     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7955   }
7956 
7957   /// See AbstractAttribute::trackStatistics()
7958   void trackStatistics() const override {
7959     if (isAssumedReadNone())
7960       STATS_DECLTRACK_CS_ATTR(readnone)
7961   }
7962 };
7963 
7964 /// ------------------ Value Constant Range Attribute -------------------------
7965 
7966 struct AAValueConstantRangeImpl : AAValueConstantRange {
7967   using StateType = IntegerRangeState;
7968   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7969       : AAValueConstantRange(IRP, A) {}
7970 
7971   /// See AbstractAttribute::initialize(..).
7972   void initialize(Attributor &A) override {
7973     if (A.hasSimplificationCallback(getIRPosition())) {
7974       indicatePessimisticFixpoint();
7975       return;
7976     }
7977 
7978     // Intersect a range given by SCEV.
7979     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7980 
7981     // Intersect a range given by LVI.
7982     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7983   }
7984 
7985   /// See AbstractAttribute::getAsStr().
7986   const std::string getAsStr() const override {
7987     std::string Str;
7988     llvm::raw_string_ostream OS(Str);
7989     OS << "range(" << getBitWidth() << ")<";
7990     getKnown().print(OS);
7991     OS << " / ";
7992     getAssumed().print(OS);
7993     OS << ">";
7994     return OS.str();
7995   }
7996 
7997   /// Helper function to get a SCEV expr for the associated value at program
7998   /// point \p I.
7999   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8000     if (!getAnchorScope())
8001       return nullptr;
8002 
8003     ScalarEvolution *SE =
8004         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8005             *getAnchorScope());
8006 
8007     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8008         *getAnchorScope());
8009 
8010     if (!SE || !LI)
8011       return nullptr;
8012 
8013     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8014     if (!I)
8015       return S;
8016 
8017     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8018   }
8019 
8020   /// Helper function to get a range from SCEV for the associated value at
8021   /// program point \p I.
8022   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8023                                          const Instruction *I = nullptr) const {
8024     if (!getAnchorScope())
8025       return getWorstState(getBitWidth());
8026 
8027     ScalarEvolution *SE =
8028         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8029             *getAnchorScope());
8030 
8031     const SCEV *S = getSCEV(A, I);
8032     if (!SE || !S)
8033       return getWorstState(getBitWidth());
8034 
8035     return SE->getUnsignedRange(S);
8036   }
8037 
8038   /// Helper function to get a range from LVI for the associated value at
8039   /// program point \p I.
8040   ConstantRange
8041   getConstantRangeFromLVI(Attributor &A,
8042                           const Instruction *CtxI = nullptr) const {
8043     if (!getAnchorScope())
8044       return getWorstState(getBitWidth());
8045 
8046     LazyValueInfo *LVI =
8047         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8048             *getAnchorScope());
8049 
8050     if (!LVI || !CtxI)
8051       return getWorstState(getBitWidth());
8052     return LVI->getConstantRange(&getAssociatedValue(),
8053                                  const_cast<Instruction *>(CtxI));
8054   }
8055 
8056   /// Return true if \p CtxI is valid for querying outside analyses.
8057   /// This basically makes sure we do not ask intra-procedural analysis
8058   /// about a context in the wrong function or a context that violates
8059   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8060   /// if the original context of this AA is OK or should be considered invalid.
8061   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8062                                                const Instruction *CtxI,
8063                                                bool AllowAACtxI) const {
8064     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8065       return false;
8066 
8067     // Our context might be in a different function, neither intra-procedural
8068     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8069     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8070       return false;
8071 
8072     // If the context is not dominated by the value there are paths to the
8073     // context that do not define the value. This cannot be handled by
8074     // LazyValueInfo so we need to bail.
8075     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8076       InformationCache &InfoCache = A.getInfoCache();
8077       const DominatorTree *DT =
8078           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8079               *I->getFunction());
8080       return DT && DT->dominates(I, CtxI);
8081     }
8082 
8083     return true;
8084   }
8085 
8086   /// See AAValueConstantRange::getKnownConstantRange(..).
8087   ConstantRange
8088   getKnownConstantRange(Attributor &A,
8089                         const Instruction *CtxI = nullptr) const override {
8090     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8091                                                  /* AllowAACtxI */ false))
8092       return getKnown();
8093 
8094     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8095     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8096     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8097   }
8098 
8099   /// See AAValueConstantRange::getAssumedConstantRange(..).
8100   ConstantRange
8101   getAssumedConstantRange(Attributor &A,
8102                           const Instruction *CtxI = nullptr) const override {
8103     // TODO: Make SCEV use Attributor assumption.
8104     //       We may be able to bound a variable range via assumptions in
8105     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8106     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8107     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8108                                                  /* AllowAACtxI */ false))
8109       return getAssumed();
8110 
8111     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8112     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8113     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8114   }
8115 
8116   /// Helper function to create MDNode for range metadata.
8117   static MDNode *
8118   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8119                             const ConstantRange &AssumedConstantRange) {
8120     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8121                                   Ty, AssumedConstantRange.getLower())),
8122                               ConstantAsMetadata::get(ConstantInt::get(
8123                                   Ty, AssumedConstantRange.getUpper()))};
8124     return MDNode::get(Ctx, LowAndHigh);
8125   }
8126 
8127   /// Return true if \p Assumed is included in \p KnownRanges.
8128   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8129 
8130     if (Assumed.isFullSet())
8131       return false;
8132 
8133     if (!KnownRanges)
8134       return true;
8135 
8136     // If multiple ranges are annotated in IR, we give up to annotate assumed
8137     // range for now.
8138 
8139     // TODO:  If there exists a known range which containts assumed range, we
8140     // can say assumed range is better.
8141     if (KnownRanges->getNumOperands() > 2)
8142       return false;
8143 
8144     ConstantInt *Lower =
8145         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8146     ConstantInt *Upper =
8147         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8148 
8149     ConstantRange Known(Lower->getValue(), Upper->getValue());
8150     return Known.contains(Assumed) && Known != Assumed;
8151   }
8152 
8153   /// Helper function to set range metadata.
8154   static bool
8155   setRangeMetadataIfisBetterRange(Instruction *I,
8156                                   const ConstantRange &AssumedConstantRange) {
8157     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8158     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8159       if (!AssumedConstantRange.isEmptySet()) {
8160         I->setMetadata(LLVMContext::MD_range,
8161                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8162                                                  AssumedConstantRange));
8163         return true;
8164       }
8165     }
8166     return false;
8167   }
8168 
8169   /// See AbstractAttribute::manifest()
8170   ChangeStatus manifest(Attributor &A) override {
8171     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8172     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8173     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8174 
8175     auto &V = getAssociatedValue();
8176     if (!AssumedConstantRange.isEmptySet() &&
8177         !AssumedConstantRange.isSingleElement()) {
8178       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8179         assert(I == getCtxI() && "Should not annotate an instruction which is "
8180                                  "not the context instruction");
8181         if (isa<CallInst>(I) || isa<LoadInst>(I))
8182           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8183             Changed = ChangeStatus::CHANGED;
8184       }
8185     }
8186 
8187     return Changed;
8188   }
8189 };
8190 
8191 struct AAValueConstantRangeArgument final
8192     : AAArgumentFromCallSiteArguments<
8193           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8194           true /* BridgeCallBaseContext */> {
8195   using Base = AAArgumentFromCallSiteArguments<
8196       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8197       true /* BridgeCallBaseContext */>;
8198   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8199       : Base(IRP, A) {}
8200 
8201   /// See AbstractAttribute::initialize(..).
8202   void initialize(Attributor &A) override {
8203     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8204       indicatePessimisticFixpoint();
8205     } else {
8206       Base::initialize(A);
8207     }
8208   }
8209 
8210   /// See AbstractAttribute::trackStatistics()
8211   void trackStatistics() const override {
8212     STATS_DECLTRACK_ARG_ATTR(value_range)
8213   }
8214 };
8215 
8216 struct AAValueConstantRangeReturned
8217     : AAReturnedFromReturnedValues<AAValueConstantRange,
8218                                    AAValueConstantRangeImpl,
8219                                    AAValueConstantRangeImpl::StateType,
8220                                    /* PropogateCallBaseContext */ true> {
8221   using Base =
8222       AAReturnedFromReturnedValues<AAValueConstantRange,
8223                                    AAValueConstantRangeImpl,
8224                                    AAValueConstantRangeImpl::StateType,
8225                                    /* PropogateCallBaseContext */ true>;
8226   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8227       : Base(IRP, A) {}
8228 
8229   /// See AbstractAttribute::initialize(...).
8230   void initialize(Attributor &A) override {}
8231 
8232   /// See AbstractAttribute::trackStatistics()
8233   void trackStatistics() const override {
8234     STATS_DECLTRACK_FNRET_ATTR(value_range)
8235   }
8236 };
8237 
8238 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8239   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8240       : AAValueConstantRangeImpl(IRP, A) {}
8241 
8242   /// See AbstractAttribute::initialize(...).
8243   void initialize(Attributor &A) override {
8244     AAValueConstantRangeImpl::initialize(A);
8245     if (isAtFixpoint())
8246       return;
8247 
8248     Value &V = getAssociatedValue();
8249 
8250     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8251       unionAssumed(ConstantRange(C->getValue()));
8252       indicateOptimisticFixpoint();
8253       return;
8254     }
8255 
8256     if (isa<UndefValue>(&V)) {
8257       // Collapse the undef state to 0.
8258       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8259       indicateOptimisticFixpoint();
8260       return;
8261     }
8262 
8263     if (isa<CallBase>(&V))
8264       return;
8265 
8266     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8267       return;
8268 
8269     // If it is a load instruction with range metadata, use it.
8270     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8271       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8272         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8273         return;
8274       }
8275 
8276     // We can work with PHI and select instruction as we traverse their operands
8277     // during update.
8278     if (isa<SelectInst>(V) || isa<PHINode>(V))
8279       return;
8280 
8281     // Otherwise we give up.
8282     indicatePessimisticFixpoint();
8283 
8284     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8285                       << getAssociatedValue() << "\n");
8286   }
8287 
8288   bool calculateBinaryOperator(
8289       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8290       const Instruction *CtxI,
8291       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8292     Value *LHS = BinOp->getOperand(0);
8293     Value *RHS = BinOp->getOperand(1);
8294 
8295     // Simplify the operands first.
8296     bool UsedAssumedInformation = false;
8297     const auto &SimplifiedLHS =
8298         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8299                                *this, UsedAssumedInformation);
8300     if (!SimplifiedLHS.hasValue())
8301       return true;
8302     if (!SimplifiedLHS.getValue())
8303       return false;
8304     LHS = *SimplifiedLHS;
8305 
8306     const auto &SimplifiedRHS =
8307         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8308                                *this, UsedAssumedInformation);
8309     if (!SimplifiedRHS.hasValue())
8310       return true;
8311     if (!SimplifiedRHS.getValue())
8312       return false;
8313     RHS = *SimplifiedRHS;
8314 
8315     // TODO: Allow non integers as well.
8316     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8317       return false;
8318 
8319     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8320         *this, IRPosition::value(*LHS, getCallBaseContext()),
8321         DepClassTy::REQUIRED);
8322     QuerriedAAs.push_back(&LHSAA);
8323     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8324 
8325     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8326         *this, IRPosition::value(*RHS, getCallBaseContext()),
8327         DepClassTy::REQUIRED);
8328     QuerriedAAs.push_back(&RHSAA);
8329     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8330 
8331     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8332 
8333     T.unionAssumed(AssumedRange);
8334 
8335     // TODO: Track a known state too.
8336 
8337     return T.isValidState();
8338   }
8339 
8340   bool calculateCastInst(
8341       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8342       const Instruction *CtxI,
8343       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8344     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8345     // TODO: Allow non integers as well.
8346     Value *OpV = CastI->getOperand(0);
8347 
8348     // Simplify the operand first.
8349     bool UsedAssumedInformation = false;
8350     const auto &SimplifiedOpV =
8351         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8352                                *this, UsedAssumedInformation);
8353     if (!SimplifiedOpV.hasValue())
8354       return true;
8355     if (!SimplifiedOpV.getValue())
8356       return false;
8357     OpV = *SimplifiedOpV;
8358 
8359     if (!OpV->getType()->isIntegerTy())
8360       return false;
8361 
8362     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8363         *this, IRPosition::value(*OpV, getCallBaseContext()),
8364         DepClassTy::REQUIRED);
8365     QuerriedAAs.push_back(&OpAA);
8366     T.unionAssumed(
8367         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8368     return T.isValidState();
8369   }
8370 
8371   bool
8372   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8373                    const Instruction *CtxI,
8374                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8375     Value *LHS = CmpI->getOperand(0);
8376     Value *RHS = CmpI->getOperand(1);
8377 
8378     // Simplify the operands first.
8379     bool UsedAssumedInformation = false;
8380     const auto &SimplifiedLHS =
8381         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8382                                *this, UsedAssumedInformation);
8383     if (!SimplifiedLHS.hasValue())
8384       return true;
8385     if (!SimplifiedLHS.getValue())
8386       return false;
8387     LHS = *SimplifiedLHS;
8388 
8389     const auto &SimplifiedRHS =
8390         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8391                                *this, UsedAssumedInformation);
8392     if (!SimplifiedRHS.hasValue())
8393       return true;
8394     if (!SimplifiedRHS.getValue())
8395       return false;
8396     RHS = *SimplifiedRHS;
8397 
8398     // TODO: Allow non integers as well.
8399     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8400       return false;
8401 
8402     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8403         *this, IRPosition::value(*LHS, getCallBaseContext()),
8404         DepClassTy::REQUIRED);
8405     QuerriedAAs.push_back(&LHSAA);
8406     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8407         *this, IRPosition::value(*RHS, getCallBaseContext()),
8408         DepClassTy::REQUIRED);
8409     QuerriedAAs.push_back(&RHSAA);
8410     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8411     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8412 
8413     // If one of them is empty set, we can't decide.
8414     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8415       return true;
8416 
8417     bool MustTrue = false, MustFalse = false;
8418 
8419     auto AllowedRegion =
8420         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8421 
8422     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8423       MustFalse = true;
8424 
8425     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8426       MustTrue = true;
8427 
8428     assert((!MustTrue || !MustFalse) &&
8429            "Either MustTrue or MustFalse should be false!");
8430 
8431     if (MustTrue)
8432       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8433     else if (MustFalse)
8434       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8435     else
8436       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8437 
8438     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8439                       << " " << RHSAA << "\n");
8440 
8441     // TODO: Track a known state too.
8442     return T.isValidState();
8443   }
8444 
8445   /// See AbstractAttribute::updateImpl(...).
8446   ChangeStatus updateImpl(Attributor &A) override {
8447     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8448                             IntegerRangeState &T, bool Stripped) -> bool {
8449       Instruction *I = dyn_cast<Instruction>(&V);
8450       if (!I || isa<CallBase>(I)) {
8451 
8452         // Simplify the operand first.
8453         bool UsedAssumedInformation = false;
8454         const auto &SimplifiedOpV =
8455             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8456                                    *this, UsedAssumedInformation);
8457         if (!SimplifiedOpV.hasValue())
8458           return true;
8459         if (!SimplifiedOpV.getValue())
8460           return false;
8461         Value *VPtr = *SimplifiedOpV;
8462 
8463         // If the value is not instruction, we query AA to Attributor.
8464         const auto &AA = A.getAAFor<AAValueConstantRange>(
8465             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8466             DepClassTy::REQUIRED);
8467 
8468         // Clamp operator is not used to utilize a program point CtxI.
8469         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8470 
8471         return T.isValidState();
8472       }
8473 
8474       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8475       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8476         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8477           return false;
8478       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8479         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8480           return false;
8481       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8482         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8483           return false;
8484       } else {
8485         // Give up with other instructions.
8486         // TODO: Add other instructions
8487 
8488         T.indicatePessimisticFixpoint();
8489         return false;
8490       }
8491 
8492       // Catch circular reasoning in a pessimistic way for now.
8493       // TODO: Check how the range evolves and if we stripped anything, see also
8494       //       AADereferenceable or AAAlign for similar situations.
8495       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8496         if (QueriedAA != this)
8497           continue;
8498         // If we are in a stady state we do not need to worry.
8499         if (T.getAssumed() == getState().getAssumed())
8500           continue;
8501         T.indicatePessimisticFixpoint();
8502       }
8503 
8504       return T.isValidState();
8505     };
8506 
8507     IntegerRangeState T(getBitWidth());
8508 
8509     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8510                                                   VisitValueCB, getCtxI(),
8511                                                   /* UseValueSimplify */ false))
8512       return indicatePessimisticFixpoint();
8513 
8514     return clampStateAndIndicateChange(getState(), T);
8515   }
8516 
8517   /// See AbstractAttribute::trackStatistics()
8518   void trackStatistics() const override {
8519     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8520   }
8521 };
8522 
8523 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8524   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8525       : AAValueConstantRangeImpl(IRP, A) {}
8526 
8527   /// See AbstractAttribute::initialize(...).
8528   ChangeStatus updateImpl(Attributor &A) override {
8529     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8530                      "not be called");
8531   }
8532 
8533   /// See AbstractAttribute::trackStatistics()
8534   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8535 };
8536 
8537 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8538   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8539       : AAValueConstantRangeFunction(IRP, A) {}
8540 
8541   /// See AbstractAttribute::trackStatistics()
8542   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8543 };
8544 
8545 struct AAValueConstantRangeCallSiteReturned
8546     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8547                                      AAValueConstantRangeImpl,
8548                                      AAValueConstantRangeImpl::StateType,
8549                                      /* IntroduceCallBaseContext */ true> {
8550   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8551       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8552                                        AAValueConstantRangeImpl,
8553                                        AAValueConstantRangeImpl::StateType,
8554                                        /* IntroduceCallBaseContext */ true>(IRP,
8555                                                                             A) {
8556   }
8557 
8558   /// See AbstractAttribute::initialize(...).
8559   void initialize(Attributor &A) override {
8560     // If it is a load instruction with range metadata, use the metadata.
8561     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8562       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8563         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8564 
8565     AAValueConstantRangeImpl::initialize(A);
8566   }
8567 
8568   /// See AbstractAttribute::trackStatistics()
8569   void trackStatistics() const override {
8570     STATS_DECLTRACK_CSRET_ATTR(value_range)
8571   }
8572 };
8573 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8574   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8575       : AAValueConstantRangeFloating(IRP, A) {}
8576 
8577   /// See AbstractAttribute::manifest()
8578   ChangeStatus manifest(Attributor &A) override {
8579     return ChangeStatus::UNCHANGED;
8580   }
8581 
8582   /// See AbstractAttribute::trackStatistics()
8583   void trackStatistics() const override {
8584     STATS_DECLTRACK_CSARG_ATTR(value_range)
8585   }
8586 };
8587 
8588 /// ------------------ Potential Values Attribute -------------------------
8589 
8590 struct AAPotentialValuesImpl : AAPotentialValues {
8591   using StateType = PotentialConstantIntValuesState;
8592 
8593   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8594       : AAPotentialValues(IRP, A) {}
8595 
8596   /// See AbstractAttribute::initialize(..).
8597   void initialize(Attributor &A) override {
8598     if (A.hasSimplificationCallback(getIRPosition()))
8599       indicatePessimisticFixpoint();
8600     else
8601       AAPotentialValues::initialize(A);
8602   }
8603 
8604   /// See AbstractAttribute::getAsStr().
8605   const std::string getAsStr() const override {
8606     std::string Str;
8607     llvm::raw_string_ostream OS(Str);
8608     OS << getState();
8609     return OS.str();
8610   }
8611 
8612   /// See AbstractAttribute::updateImpl(...).
8613   ChangeStatus updateImpl(Attributor &A) override {
8614     return indicatePessimisticFixpoint();
8615   }
8616 };
8617 
8618 struct AAPotentialValuesArgument final
8619     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8620                                       PotentialConstantIntValuesState> {
8621   using Base =
8622       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8623                                       PotentialConstantIntValuesState>;
8624   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8625       : Base(IRP, A) {}
8626 
8627   /// See AbstractAttribute::initialize(..).
8628   void initialize(Attributor &A) override {
8629     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8630       indicatePessimisticFixpoint();
8631     } else {
8632       Base::initialize(A);
8633     }
8634   }
8635 
8636   /// See AbstractAttribute::trackStatistics()
8637   void trackStatistics() const override {
8638     STATS_DECLTRACK_ARG_ATTR(potential_values)
8639   }
8640 };
8641 
8642 struct AAPotentialValuesReturned
8643     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8644   using Base =
8645       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8646   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8647       : Base(IRP, A) {}
8648 
8649   /// See AbstractAttribute::trackStatistics()
8650   void trackStatistics() const override {
8651     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8652   }
8653 };
8654 
8655 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8656   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8657       : AAPotentialValuesImpl(IRP, A) {}
8658 
8659   /// See AbstractAttribute::initialize(..).
8660   void initialize(Attributor &A) override {
8661     AAPotentialValuesImpl::initialize(A);
8662     if (isAtFixpoint())
8663       return;
8664 
8665     Value &V = getAssociatedValue();
8666 
8667     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8668       unionAssumed(C->getValue());
8669       indicateOptimisticFixpoint();
8670       return;
8671     }
8672 
8673     if (isa<UndefValue>(&V)) {
8674       unionAssumedWithUndef();
8675       indicateOptimisticFixpoint();
8676       return;
8677     }
8678 
8679     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8680       return;
8681 
8682     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8683       return;
8684 
8685     indicatePessimisticFixpoint();
8686 
8687     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8688                       << getAssociatedValue() << "\n");
8689   }
8690 
8691   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8692                                 const APInt &RHS) {
8693     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8694   }
8695 
8696   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8697                                  uint32_t ResultBitWidth) {
8698     Instruction::CastOps CastOp = CI->getOpcode();
8699     switch (CastOp) {
8700     default:
8701       llvm_unreachable("unsupported or not integer cast");
8702     case Instruction::Trunc:
8703       return Src.trunc(ResultBitWidth);
8704     case Instruction::SExt:
8705       return Src.sext(ResultBitWidth);
8706     case Instruction::ZExt:
8707       return Src.zext(ResultBitWidth);
8708     case Instruction::BitCast:
8709       return Src;
8710     }
8711   }
8712 
8713   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8714                                        const APInt &LHS, const APInt &RHS,
8715                                        bool &SkipOperation, bool &Unsupported) {
8716     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8717     // Unsupported is set to true when the binary operator is not supported.
8718     // SkipOperation is set to true when UB occur with the given operand pair
8719     // (LHS, RHS).
8720     // TODO: we should look at nsw and nuw keywords to handle operations
8721     //       that create poison or undef value.
8722     switch (BinOpcode) {
8723     default:
8724       Unsupported = true;
8725       return LHS;
8726     case Instruction::Add:
8727       return LHS + RHS;
8728     case Instruction::Sub:
8729       return LHS - RHS;
8730     case Instruction::Mul:
8731       return LHS * RHS;
8732     case Instruction::UDiv:
8733       if (RHS.isZero()) {
8734         SkipOperation = true;
8735         return LHS;
8736       }
8737       return LHS.udiv(RHS);
8738     case Instruction::SDiv:
8739       if (RHS.isZero()) {
8740         SkipOperation = true;
8741         return LHS;
8742       }
8743       return LHS.sdiv(RHS);
8744     case Instruction::URem:
8745       if (RHS.isZero()) {
8746         SkipOperation = true;
8747         return LHS;
8748       }
8749       return LHS.urem(RHS);
8750     case Instruction::SRem:
8751       if (RHS.isZero()) {
8752         SkipOperation = true;
8753         return LHS;
8754       }
8755       return LHS.srem(RHS);
8756     case Instruction::Shl:
8757       return LHS.shl(RHS);
8758     case Instruction::LShr:
8759       return LHS.lshr(RHS);
8760     case Instruction::AShr:
8761       return LHS.ashr(RHS);
8762     case Instruction::And:
8763       return LHS & RHS;
8764     case Instruction::Or:
8765       return LHS | RHS;
8766     case Instruction::Xor:
8767       return LHS ^ RHS;
8768     }
8769   }
8770 
8771   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8772                                            const APInt &LHS, const APInt &RHS) {
8773     bool SkipOperation = false;
8774     bool Unsupported = false;
8775     APInt Result =
8776         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8777     if (Unsupported)
8778       return false;
8779     // If SkipOperation is true, we can ignore this operand pair (L, R).
8780     if (!SkipOperation)
8781       unionAssumed(Result);
8782     return isValidState();
8783   }
8784 
8785   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8786     auto AssumedBefore = getAssumed();
8787     Value *LHS = ICI->getOperand(0);
8788     Value *RHS = ICI->getOperand(1);
8789 
8790     // Simplify the operands first.
8791     bool UsedAssumedInformation = false;
8792     const auto &SimplifiedLHS =
8793         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8794                                *this, UsedAssumedInformation);
8795     if (!SimplifiedLHS.hasValue())
8796       return ChangeStatus::UNCHANGED;
8797     if (!SimplifiedLHS.getValue())
8798       return indicatePessimisticFixpoint();
8799     LHS = *SimplifiedLHS;
8800 
8801     const auto &SimplifiedRHS =
8802         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8803                                *this, UsedAssumedInformation);
8804     if (!SimplifiedRHS.hasValue())
8805       return ChangeStatus::UNCHANGED;
8806     if (!SimplifiedRHS.getValue())
8807       return indicatePessimisticFixpoint();
8808     RHS = *SimplifiedRHS;
8809 
8810     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8811       return indicatePessimisticFixpoint();
8812 
8813     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8814                                                 DepClassTy::REQUIRED);
8815     if (!LHSAA.isValidState())
8816       return indicatePessimisticFixpoint();
8817 
8818     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8819                                                 DepClassTy::REQUIRED);
8820     if (!RHSAA.isValidState())
8821       return indicatePessimisticFixpoint();
8822 
8823     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8824     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8825 
8826     // TODO: make use of undef flag to limit potential values aggressively.
8827     bool MaybeTrue = false, MaybeFalse = false;
8828     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8829     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8830       // The result of any comparison between undefs can be soundly replaced
8831       // with undef.
8832       unionAssumedWithUndef();
8833     } else if (LHSAA.undefIsContained()) {
8834       for (const APInt &R : RHSAAPVS) {
8835         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8836         MaybeTrue |= CmpResult;
8837         MaybeFalse |= !CmpResult;
8838         if (MaybeTrue & MaybeFalse)
8839           return indicatePessimisticFixpoint();
8840       }
8841     } else if (RHSAA.undefIsContained()) {
8842       for (const APInt &L : LHSAAPVS) {
8843         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8844         MaybeTrue |= CmpResult;
8845         MaybeFalse |= !CmpResult;
8846         if (MaybeTrue & MaybeFalse)
8847           return indicatePessimisticFixpoint();
8848       }
8849     } else {
8850       for (const APInt &L : LHSAAPVS) {
8851         for (const APInt &R : RHSAAPVS) {
8852           bool CmpResult = calculateICmpInst(ICI, L, R);
8853           MaybeTrue |= CmpResult;
8854           MaybeFalse |= !CmpResult;
8855           if (MaybeTrue & MaybeFalse)
8856             return indicatePessimisticFixpoint();
8857         }
8858       }
8859     }
8860     if (MaybeTrue)
8861       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8862     if (MaybeFalse)
8863       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8864     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8865                                          : ChangeStatus::CHANGED;
8866   }
8867 
8868   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8869     auto AssumedBefore = getAssumed();
8870     Value *LHS = SI->getTrueValue();
8871     Value *RHS = SI->getFalseValue();
8872 
8873     // Simplify the operands first.
8874     bool UsedAssumedInformation = false;
8875     const auto &SimplifiedLHS =
8876         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8877                                *this, UsedAssumedInformation);
8878     if (!SimplifiedLHS.hasValue())
8879       return ChangeStatus::UNCHANGED;
8880     if (!SimplifiedLHS.getValue())
8881       return indicatePessimisticFixpoint();
8882     LHS = *SimplifiedLHS;
8883 
8884     const auto &SimplifiedRHS =
8885         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8886                                *this, UsedAssumedInformation);
8887     if (!SimplifiedRHS.hasValue())
8888       return ChangeStatus::UNCHANGED;
8889     if (!SimplifiedRHS.getValue())
8890       return indicatePessimisticFixpoint();
8891     RHS = *SimplifiedRHS;
8892 
8893     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8894       return indicatePessimisticFixpoint();
8895 
8896     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8897                                                   UsedAssumedInformation);
8898 
8899     // Check if we only need one operand.
8900     bool OnlyLeft = false, OnlyRight = false;
8901     if (C.hasValue() && *C && (*C)->isOneValue())
8902       OnlyLeft = true;
8903     else if (C.hasValue() && *C && (*C)->isZeroValue())
8904       OnlyRight = true;
8905 
8906     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8907     if (!OnlyRight) {
8908       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8909                                              DepClassTy::REQUIRED);
8910       if (!LHSAA->isValidState())
8911         return indicatePessimisticFixpoint();
8912     }
8913     if (!OnlyLeft) {
8914       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8915                                              DepClassTy::REQUIRED);
8916       if (!RHSAA->isValidState())
8917         return indicatePessimisticFixpoint();
8918     }
8919 
8920     if (!LHSAA || !RHSAA) {
8921       // select (true/false), lhs, rhs
8922       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8923 
8924       if (OpAA->undefIsContained())
8925         unionAssumedWithUndef();
8926       else
8927         unionAssumed(*OpAA);
8928 
8929     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8930       // select i1 *, undef , undef => undef
8931       unionAssumedWithUndef();
8932     } else {
8933       unionAssumed(*LHSAA);
8934       unionAssumed(*RHSAA);
8935     }
8936     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8937                                          : ChangeStatus::CHANGED;
8938   }
8939 
8940   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8941     auto AssumedBefore = getAssumed();
8942     if (!CI->isIntegerCast())
8943       return indicatePessimisticFixpoint();
8944     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8945     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8946     Value *Src = CI->getOperand(0);
8947 
8948     // Simplify the operand first.
8949     bool UsedAssumedInformation = false;
8950     const auto &SimplifiedSrc =
8951         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8952                                *this, UsedAssumedInformation);
8953     if (!SimplifiedSrc.hasValue())
8954       return ChangeStatus::UNCHANGED;
8955     if (!SimplifiedSrc.getValue())
8956       return indicatePessimisticFixpoint();
8957     Src = *SimplifiedSrc;
8958 
8959     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8960                                                 DepClassTy::REQUIRED);
8961     if (!SrcAA.isValidState())
8962       return indicatePessimisticFixpoint();
8963     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8964     if (SrcAA.undefIsContained())
8965       unionAssumedWithUndef();
8966     else {
8967       for (const APInt &S : SrcAAPVS) {
8968         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8969         unionAssumed(T);
8970       }
8971     }
8972     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8973                                          : ChangeStatus::CHANGED;
8974   }
8975 
8976   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8977     auto AssumedBefore = getAssumed();
8978     Value *LHS = BinOp->getOperand(0);
8979     Value *RHS = BinOp->getOperand(1);
8980 
8981     // Simplify the operands first.
8982     bool UsedAssumedInformation = false;
8983     const auto &SimplifiedLHS =
8984         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8985                                *this, UsedAssumedInformation);
8986     if (!SimplifiedLHS.hasValue())
8987       return ChangeStatus::UNCHANGED;
8988     if (!SimplifiedLHS.getValue())
8989       return indicatePessimisticFixpoint();
8990     LHS = *SimplifiedLHS;
8991 
8992     const auto &SimplifiedRHS =
8993         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8994                                *this, UsedAssumedInformation);
8995     if (!SimplifiedRHS.hasValue())
8996       return ChangeStatus::UNCHANGED;
8997     if (!SimplifiedRHS.getValue())
8998       return indicatePessimisticFixpoint();
8999     RHS = *SimplifiedRHS;
9000 
9001     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9002       return indicatePessimisticFixpoint();
9003 
9004     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
9005                                                 DepClassTy::REQUIRED);
9006     if (!LHSAA.isValidState())
9007       return indicatePessimisticFixpoint();
9008 
9009     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
9010                                                 DepClassTy::REQUIRED);
9011     if (!RHSAA.isValidState())
9012       return indicatePessimisticFixpoint();
9013 
9014     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
9015     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
9016     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9017 
9018     // TODO: make use of undef flag to limit potential values aggressively.
9019     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
9020       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9021         return indicatePessimisticFixpoint();
9022     } else if (LHSAA.undefIsContained()) {
9023       for (const APInt &R : RHSAAPVS) {
9024         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9025           return indicatePessimisticFixpoint();
9026       }
9027     } else if (RHSAA.undefIsContained()) {
9028       for (const APInt &L : LHSAAPVS) {
9029         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9030           return indicatePessimisticFixpoint();
9031       }
9032     } else {
9033       for (const APInt &L : LHSAAPVS) {
9034         for (const APInt &R : RHSAAPVS) {
9035           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9036             return indicatePessimisticFixpoint();
9037         }
9038       }
9039     }
9040     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9041                                          : ChangeStatus::CHANGED;
9042   }
9043 
9044   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
9045     auto AssumedBefore = getAssumed();
9046     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
9047       Value *IncomingValue = PHI->getIncomingValue(u);
9048 
9049       // Simplify the operand first.
9050       bool UsedAssumedInformation = false;
9051       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
9052           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
9053           UsedAssumedInformation);
9054       if (!SimplifiedIncomingValue.hasValue())
9055         continue;
9056       if (!SimplifiedIncomingValue.getValue())
9057         return indicatePessimisticFixpoint();
9058       IncomingValue = *SimplifiedIncomingValue;
9059 
9060       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9061           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9062       if (!PotentialValuesAA.isValidState())
9063         return indicatePessimisticFixpoint();
9064       if (PotentialValuesAA.undefIsContained())
9065         unionAssumedWithUndef();
9066       else
9067         unionAssumed(PotentialValuesAA.getAssumed());
9068     }
9069     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9070                                          : ChangeStatus::CHANGED;
9071   }
9072 
9073   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9074     if (!L.getType()->isIntegerTy())
9075       return indicatePessimisticFixpoint();
9076 
9077     auto Union = [&](Value &V) {
9078       if (isa<UndefValue>(V)) {
9079         unionAssumedWithUndef();
9080         return true;
9081       }
9082       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9083         unionAssumed(CI->getValue());
9084         return true;
9085       }
9086       return false;
9087     };
9088     auto AssumedBefore = getAssumed();
9089 
9090     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9091       return indicatePessimisticFixpoint();
9092 
9093     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9094                                          : ChangeStatus::CHANGED;
9095   }
9096 
9097   /// See AbstractAttribute::updateImpl(...).
9098   ChangeStatus updateImpl(Attributor &A) override {
9099     Value &V = getAssociatedValue();
9100     Instruction *I = dyn_cast<Instruction>(&V);
9101 
9102     if (auto *ICI = dyn_cast<ICmpInst>(I))
9103       return updateWithICmpInst(A, ICI);
9104 
9105     if (auto *SI = dyn_cast<SelectInst>(I))
9106       return updateWithSelectInst(A, SI);
9107 
9108     if (auto *CI = dyn_cast<CastInst>(I))
9109       return updateWithCastInst(A, CI);
9110 
9111     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9112       return updateWithBinaryOperator(A, BinOp);
9113 
9114     if (auto *PHI = dyn_cast<PHINode>(I))
9115       return updateWithPHINode(A, PHI);
9116 
9117     if (auto *L = dyn_cast<LoadInst>(I))
9118       return updateWithLoad(A, *L);
9119 
9120     return indicatePessimisticFixpoint();
9121   }
9122 
9123   /// See AbstractAttribute::trackStatistics()
9124   void trackStatistics() const override {
9125     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9126   }
9127 };
9128 
9129 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9130   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9131       : AAPotentialValuesImpl(IRP, A) {}
9132 
9133   /// See AbstractAttribute::initialize(...).
9134   ChangeStatus updateImpl(Attributor &A) override {
9135     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9136                      "not be called");
9137   }
9138 
9139   /// See AbstractAttribute::trackStatistics()
9140   void trackStatistics() const override {
9141     STATS_DECLTRACK_FN_ATTR(potential_values)
9142   }
9143 };
9144 
9145 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9146   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9147       : AAPotentialValuesFunction(IRP, A) {}
9148 
9149   /// See AbstractAttribute::trackStatistics()
9150   void trackStatistics() const override {
9151     STATS_DECLTRACK_CS_ATTR(potential_values)
9152   }
9153 };
9154 
9155 struct AAPotentialValuesCallSiteReturned
9156     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9157   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9158       : AACallSiteReturnedFromReturned<AAPotentialValues,
9159                                        AAPotentialValuesImpl>(IRP, A) {}
9160 
9161   /// See AbstractAttribute::trackStatistics()
9162   void trackStatistics() const override {
9163     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9164   }
9165 };
9166 
9167 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9168   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9169       : AAPotentialValuesFloating(IRP, A) {}
9170 
9171   /// See AbstractAttribute::initialize(..).
9172   void initialize(Attributor &A) override {
9173     AAPotentialValuesImpl::initialize(A);
9174     if (isAtFixpoint())
9175       return;
9176 
9177     Value &V = getAssociatedValue();
9178 
9179     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9180       unionAssumed(C->getValue());
9181       indicateOptimisticFixpoint();
9182       return;
9183     }
9184 
9185     if (isa<UndefValue>(&V)) {
9186       unionAssumedWithUndef();
9187       indicateOptimisticFixpoint();
9188       return;
9189     }
9190   }
9191 
9192   /// See AbstractAttribute::updateImpl(...).
9193   ChangeStatus updateImpl(Attributor &A) override {
9194     Value &V = getAssociatedValue();
9195     auto AssumedBefore = getAssumed();
9196     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9197                                              DepClassTy::REQUIRED);
9198     const auto &S = AA.getAssumed();
9199     unionAssumed(S);
9200     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9201                                          : ChangeStatus::CHANGED;
9202   }
9203 
9204   /// See AbstractAttribute::trackStatistics()
9205   void trackStatistics() const override {
9206     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9207   }
9208 };
9209 
9210 /// ------------------------ NoUndef Attribute ---------------------------------
9211 struct AANoUndefImpl : AANoUndef {
9212   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9213 
9214   /// See AbstractAttribute::initialize(...).
9215   void initialize(Attributor &A) override {
9216     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9217       indicateOptimisticFixpoint();
9218       return;
9219     }
9220     Value &V = getAssociatedValue();
9221     if (isa<UndefValue>(V))
9222       indicatePessimisticFixpoint();
9223     else if (isa<FreezeInst>(V))
9224       indicateOptimisticFixpoint();
9225     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9226              isGuaranteedNotToBeUndefOrPoison(&V))
9227       indicateOptimisticFixpoint();
9228     else
9229       AANoUndef::initialize(A);
9230   }
9231 
9232   /// See followUsesInMBEC
9233   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9234                        AANoUndef::StateType &State) {
9235     const Value *UseV = U->get();
9236     const DominatorTree *DT = nullptr;
9237     AssumptionCache *AC = nullptr;
9238     InformationCache &InfoCache = A.getInfoCache();
9239     if (Function *F = getAnchorScope()) {
9240       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9241       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9242     }
9243     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9244     bool TrackUse = false;
9245     // Track use for instructions which must produce undef or poison bits when
9246     // at least one operand contains such bits.
9247     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9248       TrackUse = true;
9249     return TrackUse;
9250   }
9251 
9252   /// See AbstractAttribute::getAsStr().
9253   const std::string getAsStr() const override {
9254     return getAssumed() ? "noundef" : "may-undef-or-poison";
9255   }
9256 
9257   ChangeStatus manifest(Attributor &A) override {
9258     // We don't manifest noundef attribute for dead positions because the
9259     // associated values with dead positions would be replaced with undef
9260     // values.
9261     bool UsedAssumedInformation = false;
9262     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9263                         UsedAssumedInformation))
9264       return ChangeStatus::UNCHANGED;
9265     // A position whose simplified value does not have any value is
9266     // considered to be dead. We don't manifest noundef in such positions for
9267     // the same reason above.
9268     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9269              .hasValue())
9270       return ChangeStatus::UNCHANGED;
9271     return AANoUndef::manifest(A);
9272   }
9273 };
9274 
9275 struct AANoUndefFloating : public AANoUndefImpl {
9276   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9277       : AANoUndefImpl(IRP, A) {}
9278 
9279   /// See AbstractAttribute::initialize(...).
9280   void initialize(Attributor &A) override {
9281     AANoUndefImpl::initialize(A);
9282     if (!getState().isAtFixpoint())
9283       if (Instruction *CtxI = getCtxI())
9284         followUsesInMBEC(*this, A, getState(), *CtxI);
9285   }
9286 
9287   /// See AbstractAttribute::updateImpl(...).
9288   ChangeStatus updateImpl(Attributor &A) override {
9289     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9290                             AANoUndef::StateType &T, bool Stripped) -> bool {
9291       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9292                                              DepClassTy::REQUIRED);
9293       if (!Stripped && this == &AA) {
9294         T.indicatePessimisticFixpoint();
9295       } else {
9296         const AANoUndef::StateType &S =
9297             static_cast<const AANoUndef::StateType &>(AA.getState());
9298         T ^= S;
9299       }
9300       return T.isValidState();
9301     };
9302 
9303     StateType T;
9304     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9305                                           VisitValueCB, getCtxI()))
9306       return indicatePessimisticFixpoint();
9307 
9308     return clampStateAndIndicateChange(getState(), T);
9309   }
9310 
9311   /// See AbstractAttribute::trackStatistics()
9312   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9313 };
9314 
9315 struct AANoUndefReturned final
9316     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9317   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9318       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9319 
9320   /// See AbstractAttribute::trackStatistics()
9321   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9322 };
9323 
9324 struct AANoUndefArgument final
9325     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9326   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9327       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9328 
9329   /// See AbstractAttribute::trackStatistics()
9330   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9331 };
9332 
9333 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9334   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9335       : AANoUndefFloating(IRP, A) {}
9336 
9337   /// See AbstractAttribute::trackStatistics()
9338   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9339 };
9340 
9341 struct AANoUndefCallSiteReturned final
9342     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9343   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9344       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9345 
9346   /// See AbstractAttribute::trackStatistics()
9347   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9348 };
9349 
9350 struct AACallEdgesImpl : public AACallEdges {
9351   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9352 
9353   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9354     return CalledFunctions;
9355   }
9356 
9357   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9358 
9359   virtual bool hasNonAsmUnknownCallee() const override {
9360     return HasUnknownCalleeNonAsm;
9361   }
9362 
9363   const std::string getAsStr() const override {
9364     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9365            std::to_string(CalledFunctions.size()) + "]";
9366   }
9367 
9368   void trackStatistics() const override {}
9369 
9370 protected:
9371   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9372     if (CalledFunctions.insert(Fn)) {
9373       Change = ChangeStatus::CHANGED;
9374       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9375                         << "\n");
9376     }
9377   }
9378 
9379   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9380     if (!HasUnknownCallee)
9381       Change = ChangeStatus::CHANGED;
9382     if (NonAsm && !HasUnknownCalleeNonAsm)
9383       Change = ChangeStatus::CHANGED;
9384     HasUnknownCalleeNonAsm |= NonAsm;
9385     HasUnknownCallee = true;
9386   }
9387 
9388 private:
9389   /// Optimistic set of functions that might be called by this position.
9390   SetVector<Function *> CalledFunctions;
9391 
9392   /// Is there any call with a unknown callee.
9393   bool HasUnknownCallee = false;
9394 
9395   /// Is there any call with a unknown callee, excluding any inline asm.
9396   bool HasUnknownCalleeNonAsm = false;
9397 };
9398 
9399 struct AACallEdgesCallSite : public AACallEdgesImpl {
9400   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9401       : AACallEdgesImpl(IRP, A) {}
9402   /// See AbstractAttribute::updateImpl(...).
9403   ChangeStatus updateImpl(Attributor &A) override {
9404     ChangeStatus Change = ChangeStatus::UNCHANGED;
9405 
9406     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9407                           bool Stripped) -> bool {
9408       if (Function *Fn = dyn_cast<Function>(&V)) {
9409         addCalledFunction(Fn, Change);
9410       } else {
9411         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9412         setHasUnknownCallee(true, Change);
9413       }
9414 
9415       // Explore all values.
9416       return true;
9417     };
9418 
9419     // Process any value that we might call.
9420     auto ProcessCalledOperand = [&](Value *V) {
9421       bool DummyValue = false;
9422       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9423                                        DummyValue, VisitValue, nullptr,
9424                                        false)) {
9425         // If we haven't gone through all values, assume that there are unknown
9426         // callees.
9427         setHasUnknownCallee(true, Change);
9428       }
9429     };
9430 
9431     CallBase *CB = static_cast<CallBase *>(getCtxI());
9432 
9433     if (CB->isInlineAsm()) {
9434       setHasUnknownCallee(false, Change);
9435       return Change;
9436     }
9437 
9438     // Process callee metadata if available.
9439     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9440       for (auto &Op : MD->operands()) {
9441         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9442         if (Callee)
9443           addCalledFunction(Callee, Change);
9444       }
9445       return Change;
9446     }
9447 
9448     // The most simple case.
9449     ProcessCalledOperand(CB->getCalledOperand());
9450 
9451     // Process callback functions.
9452     SmallVector<const Use *, 4u> CallbackUses;
9453     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9454     for (const Use *U : CallbackUses)
9455       ProcessCalledOperand(U->get());
9456 
9457     return Change;
9458   }
9459 };
9460 
9461 struct AACallEdgesFunction : public AACallEdgesImpl {
9462   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9463       : AACallEdgesImpl(IRP, A) {}
9464 
9465   /// See AbstractAttribute::updateImpl(...).
9466   ChangeStatus updateImpl(Attributor &A) override {
9467     ChangeStatus Change = ChangeStatus::UNCHANGED;
9468 
9469     auto ProcessCallInst = [&](Instruction &Inst) {
9470       CallBase &CB = static_cast<CallBase &>(Inst);
9471 
9472       auto &CBEdges = A.getAAFor<AACallEdges>(
9473           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9474       if (CBEdges.hasNonAsmUnknownCallee())
9475         setHasUnknownCallee(true, Change);
9476       if (CBEdges.hasUnknownCallee())
9477         setHasUnknownCallee(false, Change);
9478 
9479       for (Function *F : CBEdges.getOptimisticEdges())
9480         addCalledFunction(F, Change);
9481 
9482       return true;
9483     };
9484 
9485     // Visit all callable instructions.
9486     bool UsedAssumedInformation = false;
9487     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9488                                            UsedAssumedInformation)) {
9489       // If we haven't looked at all call like instructions, assume that there
9490       // are unknown callees.
9491       setHasUnknownCallee(true, Change);
9492     }
9493 
9494     return Change;
9495   }
9496 };
9497 
9498 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9499 private:
9500   struct QuerySet {
9501     void markReachable(Function *Fn) {
9502       Reachable.insert(Fn);
9503       Unreachable.erase(Fn);
9504     }
9505 
9506     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9507                         ArrayRef<const AACallEdges *> AAEdgesList) {
9508       ChangeStatus Change = ChangeStatus::UNCHANGED;
9509 
9510       for (auto *AAEdges : AAEdgesList) {
9511         if (AAEdges->hasUnknownCallee()) {
9512           if (!CanReachUnknownCallee)
9513             Change = ChangeStatus::CHANGED;
9514           CanReachUnknownCallee = true;
9515           return Change;
9516         }
9517       }
9518 
9519       for (Function *Fn : make_early_inc_range(Unreachable)) {
9520         if (checkIfReachable(A, AA, AAEdgesList, Fn)) {
9521           Change = ChangeStatus::CHANGED;
9522           markReachable(Fn);
9523         }
9524       }
9525       return Change;
9526     }
9527 
9528     bool isReachable(Attributor &A, const AAFunctionReachability &AA,
9529                      ArrayRef<const AACallEdges *> AAEdgesList, Function *Fn) {
9530       // Assume that we can reach the function.
9531       // TODO: Be more specific with the unknown callee.
9532       if (CanReachUnknownCallee)
9533         return true;
9534 
9535       if (Reachable.count(Fn))
9536         return true;
9537 
9538       if (Unreachable.count(Fn))
9539         return false;
9540 
9541       // We need to assume that this function can't reach Fn to prevent
9542       // an infinite loop if this function is recursive.
9543       Unreachable.insert(Fn);
9544 
9545       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9546       if (Result)
9547         markReachable(Fn);
9548       return Result;
9549     }
9550 
9551     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9552                           ArrayRef<const AACallEdges *> AAEdgesList,
9553                           Function *Fn) const {
9554 
9555       // Handle the most trivial case first.
9556       for (auto *AAEdges : AAEdgesList) {
9557         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9558 
9559         if (Edges.count(Fn))
9560           return true;
9561       }
9562 
9563       SmallVector<const AAFunctionReachability *, 8> Deps;
9564       for (auto &AAEdges : AAEdgesList) {
9565         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9566 
9567         for (Function *Edge : Edges) {
9568           // We don't need a dependency if the result is reachable.
9569           const AAFunctionReachability &EdgeReachability =
9570               A.getAAFor<AAFunctionReachability>(
9571                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9572           Deps.push_back(&EdgeReachability);
9573 
9574           if (EdgeReachability.canReach(A, Fn))
9575             return true;
9576         }
9577       }
9578 
9579       // The result is false for now, set dependencies and leave.
9580       for (auto Dep : Deps)
9581         A.recordDependence(AA, *Dep, DepClassTy::REQUIRED);
9582 
9583       return false;
9584     }
9585 
9586     /// Set of functions that we know for sure is reachable.
9587     DenseSet<Function *> Reachable;
9588 
9589     /// Set of functions that are unreachable, but might become reachable.
9590     DenseSet<Function *> Unreachable;
9591 
9592     /// If we can reach a function with a call to a unknown function we assume
9593     /// that we can reach any function.
9594     bool CanReachUnknownCallee = false;
9595   };
9596 
9597 public:
9598   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9599       : AAFunctionReachability(IRP, A) {}
9600 
9601   bool canReach(Attributor &A, Function *Fn) const override {
9602     const AACallEdges &AAEdges =
9603         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9604 
9605     // Attributor returns attributes as const, so this function has to be
9606     // const for users of this attribute to use it without having to do
9607     // a const_cast.
9608     // This is a hack for us to be able to cache queries.
9609     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9610     bool Result =
9611         NonConstThis->WholeFunction.isReachable(A, *this, {&AAEdges}, Fn);
9612 
9613     return Result;
9614   }
9615 
9616   /// Can \p CB reach \p Fn
9617   bool canReach(Attributor &A, CallBase &CB, Function *Fn) const override {
9618     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9619         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9620 
9621     // Attributor returns attributes as const, so this function has to be
9622     // const for users of this attribute to use it without having to do
9623     // a const_cast.
9624     // This is a hack for us to be able to cache queries.
9625     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9626     QuerySet &CBQuery = NonConstThis->CBQueries[&CB];
9627 
9628     bool Result = CBQuery.isReachable(A, *this, {&AAEdges}, Fn);
9629 
9630     return Result;
9631   }
9632 
9633   /// See AbstractAttribute::updateImpl(...).
9634   ChangeStatus updateImpl(Attributor &A) override {
9635     const AACallEdges &AAEdges =
9636         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9637     ChangeStatus Change = ChangeStatus::UNCHANGED;
9638 
9639     Change |= WholeFunction.update(A, *this, {&AAEdges});
9640 
9641     for (auto CBPair : CBQueries) {
9642       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9643           *this, IRPosition::callsite_function(*CBPair.first),
9644           DepClassTy::REQUIRED);
9645 
9646       Change |= CBPair.second.update(A, *this, {&AAEdges});
9647     }
9648 
9649     return Change;
9650   }
9651 
9652   const std::string getAsStr() const override {
9653     size_t QueryCount =
9654         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9655 
9656     return "FunctionReachability [" +
9657            std::to_string(WholeFunction.Reachable.size()) + "," +
9658            std::to_string(QueryCount) + "]";
9659   }
9660 
9661   void trackStatistics() const override {}
9662 
9663 private:
9664   bool canReachUnknownCallee() const override {
9665     return WholeFunction.CanReachUnknownCallee;
9666   }
9667 
9668   /// Used to answer if a the whole function can reacha a specific function.
9669   QuerySet WholeFunction;
9670 
9671   /// Used to answer if a call base inside this function can reach a specific
9672   /// function.
9673   DenseMap<CallBase *, QuerySet> CBQueries;
9674 };
9675 
9676 /// ---------------------- Assumption Propagation ------------------------------
9677 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
9678   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
9679                        const DenseSet<StringRef> &Known)
9680       : AAAssumptionInfo(IRP, A, Known) {}
9681 
9682   bool hasAssumption(const StringRef Assumption) const override {
9683     return isValidState() && setContains(Assumption);
9684   }
9685 
9686   /// See AbstractAttribute::getAsStr()
9687   const std::string getAsStr() const override {
9688     const SetContents &Known = getKnown();
9689     const SetContents &Assumed = getAssumed();
9690 
9691     const std::string KnownStr =
9692         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
9693     const std::string AssumedStr =
9694         (Assumed.isUniversal())
9695             ? "Universal"
9696             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
9697 
9698     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
9699   }
9700 };
9701 
9702 /// Propagates assumption information from parent functions to all of their
9703 /// successors. An assumption can be propagated if the containing function
9704 /// dominates the called function.
9705 ///
9706 /// We start with a "known" set of assumptions already valid for the associated
9707 /// function and an "assumed" set that initially contains all possible
9708 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
9709 /// contents as concrete values are known. The concrete values are seeded by the
9710 /// first nodes that are either entries into the call graph, or contains no
9711 /// assumptions. Each node is updated as the intersection of the assumed state
9712 /// with all of its predecessors.
9713 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
9714   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
9715       : AAAssumptionInfoImpl(IRP, A,
9716                              getAssumptions(*IRP.getAssociatedFunction())) {}
9717 
9718   /// See AbstractAttribute::manifest(...).
9719   ChangeStatus manifest(Attributor &A) override {
9720     const auto &Assumptions = getKnown();
9721 
9722     // Don't manifest a universal set if it somehow made it here.
9723     if (Assumptions.isUniversal())
9724       return ChangeStatus::UNCHANGED;
9725 
9726     Function *AssociatedFunction = getAssociatedFunction();
9727 
9728     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
9729 
9730     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9731   }
9732 
9733   /// See AbstractAttribute::updateImpl(...).
9734   ChangeStatus updateImpl(Attributor &A) override {
9735     bool Changed = false;
9736 
9737     auto CallSitePred = [&](AbstractCallSite ACS) {
9738       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
9739           *this, IRPosition::callsite_function(*ACS.getInstruction()),
9740           DepClassTy::REQUIRED);
9741       // Get the set of assumptions shared by all of this function's callers.
9742       Changed |= getIntersection(AssumptionAA.getAssumed());
9743       return !getAssumed().empty() || !getKnown().empty();
9744     };
9745 
9746     bool AllCallSitesKnown;
9747     // Get the intersection of all assumptions held by this node's predecessors.
9748     // If we don't know all the call sites then this is either an entry into the
9749     // call graph or an empty node. This node is known to only contain its own
9750     // assumptions and can be propagated to its successors.
9751     if (!A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown))
9752       return indicatePessimisticFixpoint();
9753 
9754     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9755   }
9756 
9757   void trackStatistics() const override {}
9758 };
9759 
9760 /// Assumption Info defined for call sites.
9761 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
9762 
9763   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
9764       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
9765 
9766   /// See AbstractAttribute::initialize(...).
9767   void initialize(Attributor &A) override {
9768     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9769     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9770   }
9771 
9772   /// See AbstractAttribute::manifest(...).
9773   ChangeStatus manifest(Attributor &A) override {
9774     // Don't manifest a universal set if it somehow made it here.
9775     if (getKnown().isUniversal())
9776       return ChangeStatus::UNCHANGED;
9777 
9778     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
9779     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
9780 
9781     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9782   }
9783 
9784   /// See AbstractAttribute::updateImpl(...).
9785   ChangeStatus updateImpl(Attributor &A) override {
9786     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
9787     auto &AssumptionAA =
9788         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
9789     bool Changed = getIntersection(AssumptionAA.getAssumed());
9790     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
9791   }
9792 
9793   /// See AbstractAttribute::trackStatistics()
9794   void trackStatistics() const override {}
9795 
9796 private:
9797   /// Helper to initialized the known set as all the assumptions this call and
9798   /// the callee contain.
9799   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
9800     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
9801     auto Assumptions = getAssumptions(CB);
9802     if (Function *F = IRP.getAssociatedFunction())
9803       set_union(Assumptions, getAssumptions(*F));
9804     if (Function *F = IRP.getAssociatedFunction())
9805       set_union(Assumptions, getAssumptions(*F));
9806     return Assumptions;
9807   }
9808 };
9809 
9810 } // namespace
9811 
9812 AACallGraphNode *AACallEdgeIterator::operator*() const {
9813   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9814       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9815 }
9816 
9817 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9818 
9819 const char AAReturnedValues::ID = 0;
9820 const char AANoUnwind::ID = 0;
9821 const char AANoSync::ID = 0;
9822 const char AANoFree::ID = 0;
9823 const char AANonNull::ID = 0;
9824 const char AANoRecurse::ID = 0;
9825 const char AAWillReturn::ID = 0;
9826 const char AAUndefinedBehavior::ID = 0;
9827 const char AANoAlias::ID = 0;
9828 const char AAReachability::ID = 0;
9829 const char AANoReturn::ID = 0;
9830 const char AAIsDead::ID = 0;
9831 const char AADereferenceable::ID = 0;
9832 const char AAAlign::ID = 0;
9833 const char AANoCapture::ID = 0;
9834 const char AAValueSimplify::ID = 0;
9835 const char AAHeapToStack::ID = 0;
9836 const char AAPrivatizablePtr::ID = 0;
9837 const char AAMemoryBehavior::ID = 0;
9838 const char AAMemoryLocation::ID = 0;
9839 const char AAValueConstantRange::ID = 0;
9840 const char AAPotentialValues::ID = 0;
9841 const char AANoUndef::ID = 0;
9842 const char AACallEdges::ID = 0;
9843 const char AAFunctionReachability::ID = 0;
9844 const char AAPointerInfo::ID = 0;
9845 const char AAAssumptionInfo::ID = 0;
9846 
9847 // Macro magic to create the static generator function for attributes that
9848 // follow the naming scheme.
9849 
9850 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9851   case IRPosition::PK:                                                         \
9852     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9853 
9854 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9855   case IRPosition::PK:                                                         \
9856     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9857     ++NumAAs;                                                                  \
9858     break;
9859 
9860 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9861   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9862     CLASS *AA = nullptr;                                                       \
9863     switch (IRP.getPositionKind()) {                                           \
9864       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9865       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9866       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9867       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9868       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9869       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9870       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9871       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9872     }                                                                          \
9873     return *AA;                                                                \
9874   }
9875 
9876 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9877   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9878     CLASS *AA = nullptr;                                                       \
9879     switch (IRP.getPositionKind()) {                                           \
9880       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9881       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9882       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9883       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9884       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9885       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9886       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9887       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9888     }                                                                          \
9889     return *AA;                                                                \
9890   }
9891 
9892 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9893   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9894     CLASS *AA = nullptr;                                                       \
9895     switch (IRP.getPositionKind()) {                                           \
9896       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9897       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9898       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9899       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9900       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9901       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9902       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9903       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9904     }                                                                          \
9905     return *AA;                                                                \
9906   }
9907 
9908 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9909   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9910     CLASS *AA = nullptr;                                                       \
9911     switch (IRP.getPositionKind()) {                                           \
9912       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9913       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9914       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9915       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9916       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9917       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9918       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9919       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9920     }                                                                          \
9921     return *AA;                                                                \
9922   }
9923 
9924 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9925   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9926     CLASS *AA = nullptr;                                                       \
9927     switch (IRP.getPositionKind()) {                                           \
9928       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9929       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9930       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9931       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9932       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9933       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9934       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9935       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9936     }                                                                          \
9937     return *AA;                                                                \
9938   }
9939 
9940 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9941 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9942 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9943 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9944 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9945 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9946 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9947 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9948 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
9949 
9950 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9951 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9952 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9953 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9954 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9955 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9956 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9957 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9958 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9959 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9960 
9961 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9962 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9963 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9964 
9965 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9966 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9967 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9968 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9969 
9970 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9971 
9972 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9973 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9974 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9975 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9976 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9977 #undef SWITCH_PK_CREATE
9978 #undef SWITCH_PK_INV
9979