1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumeBundleQueries.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/Support/Alignment.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 static cl::opt<bool> ManifestInternal(
52     "attributor-manifest-internal", cl::Hidden,
53     cl::desc("Manifest Attributor internal string attributes."),
54     cl::init(false));
55 
56 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
57                                        cl::Hidden);
58 
59 template <>
60 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
61 
62 static cl::opt<unsigned, true> MaxPotentialValues(
63     "attributor-max-potential-values", cl::Hidden,
64     cl::desc("Maximum number of potential values to be "
65              "tracked for each position."),
66     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
67     cl::init(7));
68 
69 STATISTIC(NumAAs, "Number of abstract attributes created");
70 
71 // Some helper macros to deal with statistics tracking.
72 //
73 // Usage:
74 // For simple IR attribute tracking overload trackStatistics in the abstract
75 // attribute and choose the right STATS_DECLTRACK_********* macro,
76 // e.g.,:
77 //  void trackStatistics() const override {
78 //    STATS_DECLTRACK_ARG_ATTR(returned)
79 //  }
80 // If there is a single "increment" side one can use the macro
81 // STATS_DECLTRACK with a custom message. If there are multiple increment
82 // sides, STATS_DECL and STATS_TRACK can also be used separately.
83 //
84 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
85   ("Number of " #TYPE " marked '" #NAME "'")
86 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
87 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
88 #define STATS_DECL(NAME, TYPE, MSG)                                            \
89   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
90 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
91 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
92   {                                                                            \
93     STATS_DECL(NAME, TYPE, MSG)                                                \
94     STATS_TRACK(NAME, TYPE)                                                    \
95   }
96 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
97   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
98 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
99   STATS_DECLTRACK(NAME, CSArguments,                                           \
100                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
101 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
102   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
103 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
104   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
105 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
106   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
107                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
108 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
109   STATS_DECLTRACK(NAME, CSReturn,                                              \
110                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
111 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
112   STATS_DECLTRACK(NAME, Floating,                                              \
113                   ("Number of floating values known to be '" #NAME "'"))
114 
115 // Specialization of the operator<< for abstract attributes subclasses. This
116 // disambiguates situations where multiple operators are applicable.
117 namespace llvm {
118 #define PIPE_OPERATOR(CLASS)                                                   \
119   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
120     return OS << static_cast<const AbstractAttribute &>(AA);                   \
121   }
122 
123 PIPE_OPERATOR(AAIsDead)
124 PIPE_OPERATOR(AANoUnwind)
125 PIPE_OPERATOR(AANoSync)
126 PIPE_OPERATOR(AANoRecurse)
127 PIPE_OPERATOR(AAWillReturn)
128 PIPE_OPERATOR(AANoReturn)
129 PIPE_OPERATOR(AAReturnedValues)
130 PIPE_OPERATOR(AANonNull)
131 PIPE_OPERATOR(AANoAlias)
132 PIPE_OPERATOR(AADereferenceable)
133 PIPE_OPERATOR(AAAlign)
134 PIPE_OPERATOR(AANoCapture)
135 PIPE_OPERATOR(AAValueSimplify)
136 PIPE_OPERATOR(AANoFree)
137 PIPE_OPERATOR(AAHeapToStack)
138 PIPE_OPERATOR(AAReachability)
139 PIPE_OPERATOR(AAMemoryBehavior)
140 PIPE_OPERATOR(AAMemoryLocation)
141 PIPE_OPERATOR(AAValueConstantRange)
142 PIPE_OPERATOR(AAPrivatizablePtr)
143 PIPE_OPERATOR(AAUndefinedBehavior)
144 PIPE_OPERATOR(AAPotentialValues)
145 PIPE_OPERATOR(AANoUndef)
146 PIPE_OPERATOR(AACallEdges)
147 PIPE_OPERATOR(AAFunctionReachability)
148 PIPE_OPERATOR(AAPointerInfo)
149 
150 #undef PIPE_OPERATOR
151 
152 template <>
153 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
154                                                      const DerefState &R) {
155   ChangeStatus CS0 =
156       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
157   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
158   return CS0 | CS1;
159 }
160 
161 } // namespace llvm
162 
163 /// Get pointer operand of memory accessing instruction. If \p I is
164 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
165 /// is set to false and the instruction is volatile, return nullptr.
166 static const Value *getPointerOperand(const Instruction *I,
167                                       bool AllowVolatile) {
168   if (!AllowVolatile && I->isVolatile())
169     return nullptr;
170 
171   if (auto *LI = dyn_cast<LoadInst>(I)) {
172     return LI->getPointerOperand();
173   }
174 
175   if (auto *SI = dyn_cast<StoreInst>(I)) {
176     return SI->getPointerOperand();
177   }
178 
179   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
180     return CXI->getPointerOperand();
181   }
182 
183   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
184     return RMWI->getPointerOperand();
185   }
186 
187   return nullptr;
188 }
189 
190 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
191 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
192 /// getelement pointer instructions that traverse the natural type of \p Ptr if
193 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
194 /// through a cast to i8*.
195 ///
196 /// TODO: This could probably live somewhere more prominantly if it doesn't
197 ///       already exist.
198 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
199                                int64_t Offset, IRBuilder<NoFolder> &IRB,
200                                const DataLayout &DL) {
201   assert(Offset >= 0 && "Negative offset not supported yet!");
202   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
203                     << "-bytes as " << *ResTy << "\n");
204 
205   if (Offset) {
206     SmallVector<Value *, 4> Indices;
207     std::string GEPName = Ptr->getName().str() + ".0";
208 
209     // Add 0 index to look through the pointer.
210     assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) &&
211            "Offset out of bounds");
212     Indices.push_back(Constant::getNullValue(IRB.getInt32Ty()));
213 
214     Type *Ty = PtrElemTy;
215     do {
216       auto *STy = dyn_cast<StructType>(Ty);
217       if (!STy)
218         // Non-aggregate type, we cast and make byte-wise progress now.
219         break;
220 
221       const StructLayout *SL = DL.getStructLayout(STy);
222       if (int64_t(SL->getSizeInBytes()) < Offset)
223         break;
224 
225       uint64_t Idx = SL->getElementContainingOffset(Offset);
226       assert(Idx < STy->getNumElements() && "Offset calculation error!");
227       uint64_t Rem = Offset - SL->getElementOffset(Idx);
228       Ty = STy->getElementType(Idx);
229 
230       LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
231                         << " Idx: " << Idx << " Rem: " << Rem << "\n");
232 
233       GEPName += "." + std::to_string(Idx);
234       Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
235       Offset = Rem;
236     } while (Offset);
237 
238     // Create a GEP for the indices collected above.
239     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName);
240 
241     // If an offset is left we use byte-wise adjustment.
242     if (Offset) {
243       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
244       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset),
245                           GEPName + ".b" + Twine(Offset));
246     }
247   }
248 
249   // Ensure the result has the requested type.
250   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
251 
252   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
253   return Ptr;
254 }
255 
256 /// Recursively visit all values that might become \p IRP at some point. This
257 /// will be done by looking through cast instructions, selects, phis, and calls
258 /// with the "returned" attribute. Once we cannot look through the value any
259 /// further, the callback \p VisitValueCB is invoked and passed the current
260 /// value, the \p State, and a flag to indicate if we stripped anything.
261 /// Stripped means that we unpacked the value associated with \p IRP at least
262 /// once. Note that the value used for the callback may still be the value
263 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
264 /// we will never visit more values than specified by \p MaxValues.
265 template <typename StateTy>
266 static bool genericValueTraversal(
267     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
268     StateTy &State,
269     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
270         VisitValueCB,
271     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
272     function_ref<Value *(Value *)> StripCB = nullptr) {
273 
274   const AAIsDead *LivenessAA = nullptr;
275   if (IRP.getAnchorScope())
276     LivenessAA = &A.getAAFor<AAIsDead>(
277         QueryingAA,
278         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
279         DepClassTy::NONE);
280   bool AnyDead = false;
281 
282   Value *InitialV = &IRP.getAssociatedValue();
283   using Item = std::pair<Value *, const Instruction *>;
284   SmallSet<Item, 16> Visited;
285   SmallVector<Item, 16> Worklist;
286   Worklist.push_back({InitialV, CtxI});
287 
288   int Iteration = 0;
289   do {
290     Item I = Worklist.pop_back_val();
291     Value *V = I.first;
292     CtxI = I.second;
293     if (StripCB)
294       V = StripCB(V);
295 
296     // Check if we should process the current value. To prevent endless
297     // recursion keep a record of the values we followed!
298     if (!Visited.insert(I).second)
299       continue;
300 
301     // Make sure we limit the compile time for complex expressions.
302     if (Iteration++ >= MaxValues)
303       return false;
304 
305     // Explicitly look through calls with a "returned" attribute if we do
306     // not have a pointer as stripPointerCasts only works on them.
307     Value *NewV = nullptr;
308     if (V->getType()->isPointerTy()) {
309       NewV = V->stripPointerCasts();
310     } else {
311       auto *CB = dyn_cast<CallBase>(V);
312       if (CB && CB->getCalledFunction()) {
313         for (Argument &Arg : CB->getCalledFunction()->args())
314           if (Arg.hasReturnedAttr()) {
315             NewV = CB->getArgOperand(Arg.getArgNo());
316             break;
317           }
318       }
319     }
320     if (NewV && NewV != V) {
321       Worklist.push_back({NewV, CtxI});
322       continue;
323     }
324 
325     // Look through select instructions, visit assumed potential values.
326     if (auto *SI = dyn_cast<SelectInst>(V)) {
327       bool UsedAssumedInformation = false;
328       Optional<Constant *> C = A.getAssumedConstant(
329           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
330       bool NoValueYet = !C.hasValue();
331       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
332         continue;
333       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
334         if (CI->isZero())
335           Worklist.push_back({SI->getFalseValue(), CtxI});
336         else
337           Worklist.push_back({SI->getTrueValue(), CtxI});
338         continue;
339       }
340       // We could not simplify the condition, assume both values.(
341       Worklist.push_back({SI->getTrueValue(), CtxI});
342       Worklist.push_back({SI->getFalseValue(), CtxI});
343       continue;
344     }
345 
346     // Look through phi nodes, visit all live operands.
347     if (auto *PHI = dyn_cast<PHINode>(V)) {
348       assert(LivenessAA &&
349              "Expected liveness in the presence of instructions!");
350       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
351         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
352         bool UsedAssumedInformation = false;
353         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
354                             LivenessAA, UsedAssumedInformation,
355                             /* CheckBBLivenessOnly */ true)) {
356           AnyDead = true;
357           continue;
358         }
359         Worklist.push_back(
360             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
361       }
362       continue;
363     }
364 
365     if (UseValueSimplify && !isa<Constant>(V)) {
366       bool UsedAssumedInformation = false;
367       Optional<Value *> SimpleV =
368           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
369       if (!SimpleV.hasValue())
370         continue;
371       if (!SimpleV.getValue())
372         return false;
373       Value *NewV = SimpleV.getValue();
374       if (NewV != V) {
375         Worklist.push_back({NewV, CtxI});
376         continue;
377       }
378     }
379 
380     // Once a leaf is reached we inform the user through the callback.
381     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
382       return false;
383   } while (!Worklist.empty());
384 
385   // If we actually used liveness information so we have to record a dependence.
386   if (AnyDead)
387     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
388 
389   // All values have been visited.
390   return true;
391 }
392 
393 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
394                                      SmallVectorImpl<Value *> &Objects,
395                                      const AbstractAttribute &QueryingAA,
396                                      const Instruction *CtxI) {
397   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
398   SmallPtrSet<Value *, 8> SeenObjects;
399   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
400                                      SmallVectorImpl<Value *> &Objects,
401                                      bool) -> bool {
402     if (SeenObjects.insert(&Val).second)
403       Objects.push_back(&Val);
404     return true;
405   };
406   if (!genericValueTraversal<decltype(Objects)>(
407           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
408           true, 32, StripCB))
409     return false;
410   return true;
411 }
412 
413 const Value *stripAndAccumulateMinimalOffsets(
414     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
415     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
416     bool UseAssumed = false) {
417 
418   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
419     const IRPosition &Pos = IRPosition::value(V);
420     // Only track dependence if we are going to use the assumed info.
421     const AAValueConstantRange &ValueConstantRangeAA =
422         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
423                                          UseAssumed ? DepClassTy::OPTIONAL
424                                                     : DepClassTy::NONE);
425     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
426                                      : ValueConstantRangeAA.getKnown();
427     // We can only use the lower part of the range because the upper part can
428     // be higher than what the value can really be.
429     ROffset = Range.getSignedMin();
430     return true;
431   };
432 
433   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
434                                                 AttributorAnalysis);
435 }
436 
437 static const Value *getMinimalBaseOfAccsesPointerOperand(
438     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
439     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
440   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
441   if (!Ptr)
442     return nullptr;
443   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
444   const Value *Base = stripAndAccumulateMinimalOffsets(
445       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
446 
447   BytesOffset = OffsetAPInt.getSExtValue();
448   return Base;
449 }
450 
451 static const Value *
452 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
453                                      const DataLayout &DL,
454                                      bool AllowNonInbounds = false) {
455   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
456   if (!Ptr)
457     return nullptr;
458 
459   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
460                                           AllowNonInbounds);
461 }
462 
463 /// Clamp the information known for all returned values of a function
464 /// (identified by \p QueryingAA) into \p S.
465 template <typename AAType, typename StateType = typename AAType::StateType>
466 static void clampReturnedValueStates(
467     Attributor &A, const AAType &QueryingAA, StateType &S,
468     const IRPosition::CallBaseContext *CBContext = nullptr) {
469   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
470                     << QueryingAA << " into " << S << "\n");
471 
472   assert((QueryingAA.getIRPosition().getPositionKind() ==
473               IRPosition::IRP_RETURNED ||
474           QueryingAA.getIRPosition().getPositionKind() ==
475               IRPosition::IRP_CALL_SITE_RETURNED) &&
476          "Can only clamp returned value states for a function returned or call "
477          "site returned position!");
478 
479   // Use an optional state as there might not be any return values and we want
480   // to join (IntegerState::operator&) the state of all there are.
481   Optional<StateType> T;
482 
483   // Callback for each possibly returned value.
484   auto CheckReturnValue = [&](Value &RV) -> bool {
485     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
486     const AAType &AA =
487         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
488     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
489                       << " @ " << RVPos << "\n");
490     const StateType &AAS = AA.getState();
491     if (T.hasValue())
492       *T &= AAS;
493     else
494       T = AAS;
495     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
496                       << "\n");
497     return T->isValidState();
498   };
499 
500   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
501     S.indicatePessimisticFixpoint();
502   else if (T.hasValue())
503     S ^= *T;
504 }
505 
506 /// Helper class for generic deduction: return value -> returned position.
507 template <typename AAType, typename BaseType,
508           typename StateType = typename BaseType::StateType,
509           bool PropagateCallBaseContext = false>
510 struct AAReturnedFromReturnedValues : public BaseType {
511   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
512       : BaseType(IRP, A) {}
513 
514   /// See AbstractAttribute::updateImpl(...).
515   ChangeStatus updateImpl(Attributor &A) override {
516     StateType S(StateType::getBestState(this->getState()));
517     clampReturnedValueStates<AAType, StateType>(
518         A, *this, S,
519         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
520     // TODO: If we know we visited all returned values, thus no are assumed
521     // dead, we can take the known information from the state T.
522     return clampStateAndIndicateChange<StateType>(this->getState(), S);
523   }
524 };
525 
526 /// Clamp the information known at all call sites for a given argument
527 /// (identified by \p QueryingAA) into \p S.
528 template <typename AAType, typename StateType = typename AAType::StateType>
529 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
530                                         StateType &S) {
531   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
532                     << QueryingAA << " into " << S << "\n");
533 
534   assert(QueryingAA.getIRPosition().getPositionKind() ==
535              IRPosition::IRP_ARGUMENT &&
536          "Can only clamp call site argument states for an argument position!");
537 
538   // Use an optional state as there might not be any return values and we want
539   // to join (IntegerState::operator&) the state of all there are.
540   Optional<StateType> T;
541 
542   // The argument number which is also the call site argument number.
543   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
544 
545   auto CallSiteCheck = [&](AbstractCallSite ACS) {
546     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
547     // Check if a coresponding argument was found or if it is on not associated
548     // (which can happen for callback calls).
549     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
550       return false;
551 
552     const AAType &AA =
553         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
554     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
555                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
556     const StateType &AAS = AA.getState();
557     if (T.hasValue())
558       *T &= AAS;
559     else
560       T = AAS;
561     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
562                       << "\n");
563     return T->isValidState();
564   };
565 
566   bool AllCallSitesKnown;
567   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
568                               AllCallSitesKnown))
569     S.indicatePessimisticFixpoint();
570   else if (T.hasValue())
571     S ^= *T;
572 }
573 
574 /// This function is the bridge between argument position and the call base
575 /// context.
576 template <typename AAType, typename BaseType,
577           typename StateType = typename AAType::StateType>
578 bool getArgumentStateFromCallBaseContext(Attributor &A,
579                                          BaseType &QueryingAttribute,
580                                          IRPosition &Pos, StateType &State) {
581   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
582          "Expected an 'argument' position !");
583   const CallBase *CBContext = Pos.getCallBaseContext();
584   if (!CBContext)
585     return false;
586 
587   int ArgNo = Pos.getCallSiteArgNo();
588   assert(ArgNo >= 0 && "Invalid Arg No!");
589 
590   const auto &AA = A.getAAFor<AAType>(
591       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
592       DepClassTy::REQUIRED);
593   const StateType &CBArgumentState =
594       static_cast<const StateType &>(AA.getState());
595 
596   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
597                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
598                     << "\n");
599 
600   // NOTE: If we want to do call site grouping it should happen here.
601   State ^= CBArgumentState;
602   return true;
603 }
604 
605 /// Helper class for generic deduction: call site argument -> argument position.
606 template <typename AAType, typename BaseType,
607           typename StateType = typename AAType::StateType,
608           bool BridgeCallBaseContext = false>
609 struct AAArgumentFromCallSiteArguments : public BaseType {
610   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
611       : BaseType(IRP, A) {}
612 
613   /// See AbstractAttribute::updateImpl(...).
614   ChangeStatus updateImpl(Attributor &A) override {
615     StateType S = StateType::getBestState(this->getState());
616 
617     if (BridgeCallBaseContext) {
618       bool Success =
619           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
620               A, *this, this->getIRPosition(), S);
621       if (Success)
622         return clampStateAndIndicateChange<StateType>(this->getState(), S);
623     }
624     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
625 
626     // TODO: If we know we visited all incoming values, thus no are assumed
627     // dead, we can take the known information from the state T.
628     return clampStateAndIndicateChange<StateType>(this->getState(), S);
629   }
630 };
631 
632 /// Helper class for generic replication: function returned -> cs returned.
633 template <typename AAType, typename BaseType,
634           typename StateType = typename BaseType::StateType,
635           bool IntroduceCallBaseContext = false>
636 struct AACallSiteReturnedFromReturned : public BaseType {
637   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
638       : BaseType(IRP, A) {}
639 
640   /// See AbstractAttribute::updateImpl(...).
641   ChangeStatus updateImpl(Attributor &A) override {
642     assert(this->getIRPosition().getPositionKind() ==
643                IRPosition::IRP_CALL_SITE_RETURNED &&
644            "Can only wrap function returned positions for call site returned "
645            "positions!");
646     auto &S = this->getState();
647 
648     const Function *AssociatedFunction =
649         this->getIRPosition().getAssociatedFunction();
650     if (!AssociatedFunction)
651       return S.indicatePessimisticFixpoint();
652 
653     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
654     if (IntroduceCallBaseContext)
655       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
656                         << CBContext << "\n");
657 
658     IRPosition FnPos = IRPosition::returned(
659         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
660     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
661     return clampStateAndIndicateChange(S, AA.getState());
662   }
663 };
664 
665 /// Helper function to accumulate uses.
666 template <class AAType, typename StateType = typename AAType::StateType>
667 static void followUsesInContext(AAType &AA, Attributor &A,
668                                 MustBeExecutedContextExplorer &Explorer,
669                                 const Instruction *CtxI,
670                                 SetVector<const Use *> &Uses,
671                                 StateType &State) {
672   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
673   for (unsigned u = 0; u < Uses.size(); ++u) {
674     const Use *U = Uses[u];
675     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
676       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
677       if (Found && AA.followUseInMBEC(A, U, UserI, State))
678         for (const Use &Us : UserI->uses())
679           Uses.insert(&Us);
680     }
681   }
682 }
683 
684 /// Use the must-be-executed-context around \p I to add information into \p S.
685 /// The AAType class is required to have `followUseInMBEC` method with the
686 /// following signature and behaviour:
687 ///
688 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
689 /// U - Underlying use.
690 /// I - The user of the \p U.
691 /// Returns true if the value should be tracked transitively.
692 ///
693 template <class AAType, typename StateType = typename AAType::StateType>
694 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
695                              Instruction &CtxI) {
696 
697   // Container for (transitive) uses of the associated value.
698   SetVector<const Use *> Uses;
699   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
700     Uses.insert(&U);
701 
702   MustBeExecutedContextExplorer &Explorer =
703       A.getInfoCache().getMustBeExecutedContextExplorer();
704 
705   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
706 
707   if (S.isAtFixpoint())
708     return;
709 
710   SmallVector<const BranchInst *, 4> BrInsts;
711   auto Pred = [&](const Instruction *I) {
712     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
713       if (Br->isConditional())
714         BrInsts.push_back(Br);
715     return true;
716   };
717 
718   // Here, accumulate conditional branch instructions in the context. We
719   // explore the child paths and collect the known states. The disjunction of
720   // those states can be merged to its own state. Let ParentState_i be a state
721   // to indicate the known information for an i-th branch instruction in the
722   // context. ChildStates are created for its successors respectively.
723   //
724   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
725   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
726   //      ...
727   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
728   //
729   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
730   //
731   // FIXME: Currently, recursive branches are not handled. For example, we
732   // can't deduce that ptr must be dereferenced in below function.
733   //
734   // void f(int a, int c, int *ptr) {
735   //    if(a)
736   //      if (b) {
737   //        *ptr = 0;
738   //      } else {
739   //        *ptr = 1;
740   //      }
741   //    else {
742   //      if (b) {
743   //        *ptr = 0;
744   //      } else {
745   //        *ptr = 1;
746   //      }
747   //    }
748   // }
749 
750   Explorer.checkForAllContext(&CtxI, Pred);
751   for (const BranchInst *Br : BrInsts) {
752     StateType ParentState;
753 
754     // The known state of the parent state is a conjunction of children's
755     // known states so it is initialized with a best state.
756     ParentState.indicateOptimisticFixpoint();
757 
758     for (const BasicBlock *BB : Br->successors()) {
759       StateType ChildState;
760 
761       size_t BeforeSize = Uses.size();
762       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
763 
764       // Erase uses which only appear in the child.
765       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
766         It = Uses.erase(It);
767 
768       ParentState &= ChildState;
769     }
770 
771     // Use only known state.
772     S += ParentState;
773   }
774 }
775 
776 /// ------------------------ PointerInfo ---------------------------------------
777 
778 namespace llvm {
779 namespace AA {
780 namespace PointerInfo {
781 
782 /// An access kind description as used by AAPointerInfo.
783 struct OffsetAndSize;
784 
785 struct State;
786 
787 } // namespace PointerInfo
788 } // namespace AA
789 
790 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
791 template <>
792 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
793   using Access = AAPointerInfo::Access;
794   static inline Access getEmptyKey();
795   static inline Access getTombstoneKey();
796   static unsigned getHashValue(const Access &A);
797   static bool isEqual(const Access &LHS, const Access &RHS);
798 };
799 
800 /// Helper that allows OffsetAndSize as a key in a DenseMap.
801 template <>
802 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
803     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
804 
805 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
806 /// but the instruction
807 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
808   using Base = DenseMapInfo<Instruction *>;
809   using Access = AAPointerInfo::Access;
810   static inline Access getEmptyKey();
811   static inline Access getTombstoneKey();
812   static unsigned getHashValue(const Access &A);
813   static bool isEqual(const Access &LHS, const Access &RHS);
814 };
815 
816 } // namespace llvm
817 
818 /// Helper to represent an access offset and size, with logic to deal with
819 /// uncertainty and check for overlapping accesses.
820 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
821   using BaseTy = std::pair<int64_t, int64_t>;
822   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
823   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
824   int64_t getOffset() const { return first; }
825   int64_t getSize() const { return second; }
826   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
827 
828   /// Return true if this offset and size pair might describe an address that
829   /// overlaps with \p OAS.
830   bool mayOverlap(const OffsetAndSize &OAS) const {
831     // Any unknown value and we are giving up -> overlap.
832     if (OAS.getOffset() == OffsetAndSize::Unknown ||
833         OAS.getSize() == OffsetAndSize::Unknown ||
834         getOffset() == OffsetAndSize::Unknown ||
835         getSize() == OffsetAndSize::Unknown)
836       return true;
837 
838     // Check if one offset point is in the other interval [offset, offset+size].
839     return OAS.getOffset() + OAS.getSize() > getOffset() &&
840            OAS.getOffset() < getOffset() + getSize();
841   }
842 
843   /// Constant used to represent unknown offset or sizes.
844   static constexpr int64_t Unknown = 1 << 31;
845 };
846 
847 /// Implementation of the DenseMapInfo.
848 ///
849 ///{
850 inline llvm::AccessAsInstructionInfo::Access
851 llvm::AccessAsInstructionInfo::getEmptyKey() {
852   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
853 }
854 inline llvm::AccessAsInstructionInfo::Access
855 llvm::AccessAsInstructionInfo::getTombstoneKey() {
856   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
857                 nullptr);
858 }
859 unsigned llvm::AccessAsInstructionInfo::getHashValue(
860     const llvm::AccessAsInstructionInfo::Access &A) {
861   return Base::getHashValue(A.getRemoteInst());
862 }
863 bool llvm::AccessAsInstructionInfo::isEqual(
864     const llvm::AccessAsInstructionInfo::Access &LHS,
865     const llvm::AccessAsInstructionInfo::Access &RHS) {
866   return LHS.getRemoteInst() == RHS.getRemoteInst();
867 }
868 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
869 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
870   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
871                                nullptr);
872 }
873 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
874 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
875   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
876                                nullptr);
877 }
878 
879 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
880     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
881   return detail::combineHashValue(
882              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
883              (A.isWrittenValueYetUndetermined()
884                   ? ~0
885                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
886          A.getKind();
887 }
888 
889 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
890     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
891     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
892   return LHS == RHS;
893 }
894 ///}
895 
896 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
897 struct AA::PointerInfo::State : public AbstractState {
898 
899   /// Return the best possible representable state.
900   static State getBestState(const State &SIS) { return State(); }
901 
902   /// Return the worst possible representable state.
903   static State getWorstState(const State &SIS) {
904     State R;
905     R.indicatePessimisticFixpoint();
906     return R;
907   }
908 
909   State() {}
910   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
911   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
912 
913   const State &getAssumed() const { return *this; }
914 
915   /// See AbstractState::isValidState().
916   bool isValidState() const override { return BS.isValidState(); }
917 
918   /// See AbstractState::isAtFixpoint().
919   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
920 
921   /// See AbstractState::indicateOptimisticFixpoint().
922   ChangeStatus indicateOptimisticFixpoint() override {
923     BS.indicateOptimisticFixpoint();
924     return ChangeStatus::UNCHANGED;
925   }
926 
927   /// See AbstractState::indicatePessimisticFixpoint().
928   ChangeStatus indicatePessimisticFixpoint() override {
929     BS.indicatePessimisticFixpoint();
930     return ChangeStatus::CHANGED;
931   }
932 
933   State &operator=(const State &R) {
934     if (this == &R)
935       return *this;
936     BS = R.BS;
937     AccessBins = R.AccessBins;
938     return *this;
939   }
940 
941   State &operator=(State &&R) {
942     if (this == &R)
943       return *this;
944     std::swap(BS, R.BS);
945     std::swap(AccessBins, R.AccessBins);
946     return *this;
947   }
948 
949   bool operator==(const State &R) const {
950     if (BS != R.BS)
951       return false;
952     if (AccessBins.size() != R.AccessBins.size())
953       return false;
954     auto It = begin(), RIt = R.begin(), E = end();
955     while (It != E) {
956       if (It->getFirst() != RIt->getFirst())
957         return false;
958       auto &Accs = It->getSecond();
959       auto &RAccs = RIt->getSecond();
960       if (Accs.size() != RAccs.size())
961         return false;
962       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
963       while (AccIt != AccE) {
964         if (*AccIt != *RAccIt)
965           return false;
966         ++AccIt;
967         ++RAccIt;
968       }
969       ++It;
970       ++RIt;
971     }
972     return true;
973   }
974   bool operator!=(const State &R) const { return !(*this == R); }
975 
976   /// We store accesses in a set with the instruction as key.
977   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
978 
979   /// We store all accesses in bins denoted by their offset and size.
980   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
981 
982   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
983   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
984 
985 protected:
986   /// The bins with all the accesses for the associated pointer.
987   DenseMap<OffsetAndSize, Accesses> AccessBins;
988 
989   /// Add a new access to the state at offset \p Offset and with size \p Size.
990   /// The access is associated with \p I, writes \p Content (if anything), and
991   /// is of kind \p Kind.
992   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
993   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
994                          Optional<Value *> Content,
995                          AAPointerInfo::AccessKind Kind, Type *Ty,
996                          Instruction *RemoteI = nullptr,
997                          Accesses *BinPtr = nullptr) {
998     OffsetAndSize Key{Offset, Size};
999     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
1000     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
1001     // Check if we have an access for this instruction in this bin, if not,
1002     // simply add it.
1003     auto It = Bin.find(Acc);
1004     if (It == Bin.end()) {
1005       Bin.insert(Acc);
1006       return ChangeStatus::CHANGED;
1007     }
1008     // If the existing access is the same as then new one, nothing changed.
1009     AAPointerInfo::Access Before = *It;
1010     // The new one will be combined with the existing one.
1011     *It &= Acc;
1012     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1013   }
1014 
1015   /// See AAPointerInfo::forallInterferingAccesses.
1016   bool forallInterferingAccesses(
1017       Instruction &I,
1018       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1019     if (!isValidState())
1020       return false;
1021     // First find the offset and size of I.
1022     OffsetAndSize OAS(-1, -1);
1023     for (auto &It : AccessBins) {
1024       for (auto &Access : It.getSecond()) {
1025         if (Access.getRemoteInst() == &I) {
1026           OAS = It.getFirst();
1027           break;
1028         }
1029       }
1030       if (OAS.getSize() != -1)
1031         break;
1032     }
1033     if (OAS.getSize() == -1)
1034       return true;
1035 
1036     // Now that we have an offset and size, find all overlapping ones and use
1037     // the callback on the accesses.
1038     for (auto &It : AccessBins) {
1039       OffsetAndSize ItOAS = It.getFirst();
1040       if (!OAS.mayOverlap(ItOAS))
1041         continue;
1042       for (auto &Access : It.getSecond())
1043         if (!CB(Access, OAS == ItOAS))
1044           return false;
1045     }
1046     return true;
1047   }
1048 
1049 private:
1050   /// State to track fixpoint and validity.
1051   BooleanState BS;
1052 };
1053 
1054 struct AAPointerInfoImpl
1055     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1056   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1057   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1058 
1059   /// See AbstractAttribute::initialize(...).
1060   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1061 
1062   /// See AbstractAttribute::getAsStr().
1063   const std::string getAsStr() const override {
1064     return std::string("PointerInfo ") +
1065            (isValidState() ? (std::string("#") +
1066                               std::to_string(AccessBins.size()) + " bins")
1067                            : "<invalid>");
1068   }
1069 
1070   /// See AbstractAttribute::manifest(...).
1071   ChangeStatus manifest(Attributor &A) override {
1072     return AAPointerInfo::manifest(A);
1073   }
1074 
1075   bool forallInterferingAccesses(
1076       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1077       const override {
1078     return State::forallInterferingAccesses(LI, CB);
1079   }
1080   bool forallInterferingAccesses(
1081       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1082       const override {
1083     return State::forallInterferingAccesses(SI, CB);
1084   }
1085 
1086   ChangeStatus translateAndAddCalleeState(Attributor &A,
1087                                           const AAPointerInfo &CalleeAA,
1088                                           int64_t CallArgOffset, CallBase &CB) {
1089     using namespace AA::PointerInfo;
1090     if (!CalleeAA.getState().isValidState() || !isValidState())
1091       return indicatePessimisticFixpoint();
1092 
1093     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1094     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1095 
1096     // Combine the accesses bin by bin.
1097     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1098     for (auto &It : CalleeImplAA.getState()) {
1099       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1100       if (CallArgOffset != OffsetAndSize::Unknown)
1101         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1102                             It.first.getSize());
1103       Accesses &Bin = AccessBins[OAS];
1104       for (const AAPointerInfo::Access &RAcc : It.second) {
1105         if (IsByval && !RAcc.isRead())
1106           continue;
1107         bool UsedAssumedInformation = false;
1108         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1109             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1110         AccessKind AK =
1111             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1112                                                  : AccessKind::AK_READ_WRITE));
1113         Changed =
1114             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1115                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1116       }
1117     }
1118     return Changed;
1119   }
1120 
1121   /// Statistic tracking for all AAPointerInfo implementations.
1122   /// See AbstractAttribute::trackStatistics().
1123   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1124 };
1125 
1126 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1127   using AccessKind = AAPointerInfo::AccessKind;
1128   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1129       : AAPointerInfoImpl(IRP, A) {}
1130 
1131   /// See AbstractAttribute::initialize(...).
1132   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1133 
1134   /// Deal with an access and signal if it was handled successfully.
1135   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1136                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1137                     ChangeStatus &Changed, Type *Ty,
1138                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1139     using namespace AA::PointerInfo;
1140     // No need to find a size if one is given or the offset is unknown.
1141     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1142         Ty) {
1143       const DataLayout &DL = A.getDataLayout();
1144       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1145       if (!AccessSize.isScalable())
1146         Size = AccessSize.getFixedSize();
1147     }
1148     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1149     return true;
1150   };
1151 
1152   /// See AbstractAttribute::updateImpl(...).
1153   ChangeStatus updateImpl(Attributor &A) override {
1154     using namespace AA::PointerInfo;
1155     State S = getState();
1156     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1157     Value &AssociatedValue = getAssociatedValue();
1158     struct OffsetInfo {
1159       int64_t Offset = 0;
1160     };
1161 
1162     const DataLayout &DL = A.getDataLayout();
1163     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1164     OffsetInfoMap[&AssociatedValue] = {};
1165 
1166     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1167                                      bool &Follow) {
1168       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1169       UsrOI = PtrOI;
1170       Follow = true;
1171       return true;
1172     };
1173 
1174     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1175       Value *CurPtr = U.get();
1176       User *Usr = U.getUser();
1177       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1178                         << *Usr << "\n");
1179 
1180       OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1181 
1182       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1183         if (CE->isCast())
1184           return HandlePassthroughUser(Usr, PtrOI, Follow);
1185         if (CE->isCompare())
1186           return true;
1187         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1188           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1189                             << "\n");
1190           return false;
1191         }
1192       }
1193       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1194         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1195         UsrOI = PtrOI;
1196 
1197         // TODO: Use range information.
1198         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1199             !GEP->hasAllConstantIndices()) {
1200           UsrOI.Offset = OffsetAndSize::Unknown;
1201           Follow = true;
1202           return true;
1203         }
1204 
1205         SmallVector<Value *, 8> Indices;
1206         for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) {
1207           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1208             Indices.push_back(CIdx);
1209             continue;
1210           }
1211 
1212           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1213                             << " : " << *Idx << "\n");
1214           return false;
1215         }
1216         UsrOI.Offset = PtrOI.Offset +
1217                        DL.getIndexedOffsetInType(
1218                            CurPtr->getType()->getPointerElementType(), Indices);
1219         Follow = true;
1220         return true;
1221       }
1222       if (isa<CastInst>(Usr) || isa<PHINode>(Usr) || isa<SelectInst>(Usr))
1223         return HandlePassthroughUser(Usr, PtrOI, Follow);
1224       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1225         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1226                             AccessKind::AK_READ, PtrOI.Offset, Changed,
1227                             LoadI->getType());
1228       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1229         if (StoreI->getValueOperand() == CurPtr) {
1230           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1231                             << *StoreI << "\n");
1232           return false;
1233         }
1234         bool UsedAssumedInformation = false;
1235         Optional<Value *> Content = A.getAssumedSimplified(
1236             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1237         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1238                             PtrOI.Offset, Changed,
1239                             StoreI->getValueOperand()->getType());
1240       }
1241       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1242         if (CB->isLifetimeStartOrEnd())
1243           return true;
1244         if (CB->isArgOperand(&U)) {
1245           unsigned ArgNo = CB->getArgOperandNo(&U);
1246           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1247               *this, IRPosition::callsite_argument(*CB, ArgNo),
1248               DepClassTy::REQUIRED);
1249           Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) |
1250                     Changed;
1251           return true;
1252         }
1253         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1254                           << "\n");
1255         // TODO: Allow some call uses
1256         return false;
1257       }
1258 
1259       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1260       return false;
1261     };
1262     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1263                            /* CheckBBLivenessOnly */ true))
1264       return indicatePessimisticFixpoint();
1265 
1266     LLVM_DEBUG({
1267       dbgs() << "Accesses by bin after update:\n";
1268       for (auto &It : AccessBins) {
1269         dbgs() << "[" << It.first.getOffset() << "-"
1270                << It.first.getOffset() + It.first.getSize()
1271                << "] : " << It.getSecond().size() << "\n";
1272         for (auto &Acc : It.getSecond()) {
1273           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1274                  << "\n";
1275           if (Acc.getLocalInst() != Acc.getRemoteInst())
1276             dbgs() << "     -->                         "
1277                    << *Acc.getRemoteInst() << "\n";
1278           if (!Acc.isWrittenValueYetUndetermined())
1279             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1280         }
1281       }
1282     });
1283 
1284     return Changed;
1285   }
1286 
1287   /// See AbstractAttribute::trackStatistics()
1288   void trackStatistics() const override {
1289     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1290   }
1291 };
1292 
1293 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1294   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1295       : AAPointerInfoImpl(IRP, A) {}
1296 
1297   /// See AbstractAttribute::updateImpl(...).
1298   ChangeStatus updateImpl(Attributor &A) override {
1299     return indicatePessimisticFixpoint();
1300   }
1301 
1302   /// See AbstractAttribute::trackStatistics()
1303   void trackStatistics() const override {
1304     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1305   }
1306 };
1307 
1308 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1309   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1310       : AAPointerInfoFloating(IRP, A) {}
1311 
1312   /// See AbstractAttribute::initialize(...).
1313   void initialize(Attributor &A) override {
1314     AAPointerInfoFloating::initialize(A);
1315     if (getAnchorScope()->isDeclaration())
1316       indicatePessimisticFixpoint();
1317   }
1318 
1319   /// See AbstractAttribute::trackStatistics()
1320   void trackStatistics() const override {
1321     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1322   }
1323 };
1324 
1325 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1326   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1327       : AAPointerInfoFloating(IRP, A) {}
1328 
1329   /// See AbstractAttribute::updateImpl(...).
1330   ChangeStatus updateImpl(Attributor &A) override {
1331     using namespace AA::PointerInfo;
1332     // We handle memory intrinsics explicitly, at least the first (=
1333     // destination) and second (=source) arguments as we know how they are
1334     // accessed.
1335     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1336       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1337       int64_t LengthVal = OffsetAndSize::Unknown;
1338       if (Length)
1339         LengthVal = Length->getSExtValue();
1340       Value &Ptr = getAssociatedValue();
1341       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1342       ChangeStatus Changed;
1343       if (ArgNo == 0) {
1344         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1345                      nullptr, LengthVal);
1346       } else if (ArgNo == 1) {
1347         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1348                      nullptr, LengthVal);
1349       } else {
1350         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1351                           << *MI << "\n");
1352         return indicatePessimisticFixpoint();
1353       }
1354       return Changed;
1355     }
1356 
1357     // TODO: Once we have call site specific value information we can provide
1358     //       call site specific liveness information and then it makes
1359     //       sense to specialize attributes for call sites arguments instead of
1360     //       redirecting requests to the callee argument.
1361     Argument *Arg = getAssociatedArgument();
1362     if (!Arg)
1363       return indicatePessimisticFixpoint();
1364     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1365     auto &ArgAA =
1366         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1367     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1368   }
1369 
1370   /// See AbstractAttribute::trackStatistics()
1371   void trackStatistics() const override {
1372     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1373   }
1374 };
1375 
1376 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1377   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1378       : AAPointerInfoFloating(IRP, A) {}
1379 
1380   /// See AbstractAttribute::trackStatistics()
1381   void trackStatistics() const override {
1382     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1383   }
1384 };
1385 
1386 /// -----------------------NoUnwind Function Attribute--------------------------
1387 
1388 struct AANoUnwindImpl : AANoUnwind {
1389   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1390 
1391   const std::string getAsStr() const override {
1392     return getAssumed() ? "nounwind" : "may-unwind";
1393   }
1394 
1395   /// See AbstractAttribute::updateImpl(...).
1396   ChangeStatus updateImpl(Attributor &A) override {
1397     auto Opcodes = {
1398         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1399         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1400         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1401 
1402     auto CheckForNoUnwind = [&](Instruction &I) {
1403       if (!I.mayThrow())
1404         return true;
1405 
1406       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1407         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1408             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1409         return NoUnwindAA.isAssumedNoUnwind();
1410       }
1411       return false;
1412     };
1413 
1414     bool UsedAssumedInformation = false;
1415     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1416                                    UsedAssumedInformation))
1417       return indicatePessimisticFixpoint();
1418 
1419     return ChangeStatus::UNCHANGED;
1420   }
1421 };
1422 
1423 struct AANoUnwindFunction final : public AANoUnwindImpl {
1424   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1425       : AANoUnwindImpl(IRP, A) {}
1426 
1427   /// See AbstractAttribute::trackStatistics()
1428   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1429 };
1430 
1431 /// NoUnwind attribute deduction for a call sites.
1432 struct AANoUnwindCallSite final : AANoUnwindImpl {
1433   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1434       : AANoUnwindImpl(IRP, A) {}
1435 
1436   /// See AbstractAttribute::initialize(...).
1437   void initialize(Attributor &A) override {
1438     AANoUnwindImpl::initialize(A);
1439     Function *F = getAssociatedFunction();
1440     if (!F || F->isDeclaration())
1441       indicatePessimisticFixpoint();
1442   }
1443 
1444   /// See AbstractAttribute::updateImpl(...).
1445   ChangeStatus updateImpl(Attributor &A) override {
1446     // TODO: Once we have call site specific value information we can provide
1447     //       call site specific liveness information and then it makes
1448     //       sense to specialize attributes for call sites arguments instead of
1449     //       redirecting requests to the callee argument.
1450     Function *F = getAssociatedFunction();
1451     const IRPosition &FnPos = IRPosition::function(*F);
1452     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1453     return clampStateAndIndicateChange(getState(), FnAA.getState());
1454   }
1455 
1456   /// See AbstractAttribute::trackStatistics()
1457   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1458 };
1459 
1460 /// --------------------- Function Return Values -------------------------------
1461 
1462 /// "Attribute" that collects all potential returned values and the return
1463 /// instructions that they arise from.
1464 ///
1465 /// If there is a unique returned value R, the manifest method will:
1466 ///   - mark R with the "returned" attribute, if R is an argument.
1467 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1468 
1469   /// Mapping of values potentially returned by the associated function to the
1470   /// return instructions that might return them.
1471   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1472 
1473   /// State flags
1474   ///
1475   ///{
1476   bool IsFixed = false;
1477   bool IsValidState = true;
1478   ///}
1479 
1480 public:
1481   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1482       : AAReturnedValues(IRP, A) {}
1483 
1484   /// See AbstractAttribute::initialize(...).
1485   void initialize(Attributor &A) override {
1486     // Reset the state.
1487     IsFixed = false;
1488     IsValidState = true;
1489     ReturnedValues.clear();
1490 
1491     Function *F = getAssociatedFunction();
1492     if (!F || F->isDeclaration()) {
1493       indicatePessimisticFixpoint();
1494       return;
1495     }
1496     assert(!F->getReturnType()->isVoidTy() &&
1497            "Did not expect a void return type!");
1498 
1499     // The map from instruction opcodes to those instructions in the function.
1500     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1501 
1502     // Look through all arguments, if one is marked as returned we are done.
1503     for (Argument &Arg : F->args()) {
1504       if (Arg.hasReturnedAttr()) {
1505         auto &ReturnInstSet = ReturnedValues[&Arg];
1506         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1507           for (Instruction *RI : *Insts)
1508             ReturnInstSet.insert(cast<ReturnInst>(RI));
1509 
1510         indicateOptimisticFixpoint();
1511         return;
1512       }
1513     }
1514 
1515     if (!A.isFunctionIPOAmendable(*F))
1516       indicatePessimisticFixpoint();
1517   }
1518 
1519   /// See AbstractAttribute::manifest(...).
1520   ChangeStatus manifest(Attributor &A) override;
1521 
1522   /// See AbstractAttribute::getState(...).
1523   AbstractState &getState() override { return *this; }
1524 
1525   /// See AbstractAttribute::getState(...).
1526   const AbstractState &getState() const override { return *this; }
1527 
1528   /// See AbstractAttribute::updateImpl(Attributor &A).
1529   ChangeStatus updateImpl(Attributor &A) override;
1530 
1531   llvm::iterator_range<iterator> returned_values() override {
1532     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1533   }
1534 
1535   llvm::iterator_range<const_iterator> returned_values() const override {
1536     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1537   }
1538 
1539   /// Return the number of potential return values, -1 if unknown.
1540   size_t getNumReturnValues() const override {
1541     return isValidState() ? ReturnedValues.size() : -1;
1542   }
1543 
1544   /// Return an assumed unique return value if a single candidate is found. If
1545   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1546   /// Optional::NoneType.
1547   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1548 
1549   /// See AbstractState::checkForAllReturnedValues(...).
1550   bool checkForAllReturnedValuesAndReturnInsts(
1551       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1552       const override;
1553 
1554   /// Pretty print the attribute similar to the IR representation.
1555   const std::string getAsStr() const override;
1556 
1557   /// See AbstractState::isAtFixpoint().
1558   bool isAtFixpoint() const override { return IsFixed; }
1559 
1560   /// See AbstractState::isValidState().
1561   bool isValidState() const override { return IsValidState; }
1562 
1563   /// See AbstractState::indicateOptimisticFixpoint(...).
1564   ChangeStatus indicateOptimisticFixpoint() override {
1565     IsFixed = true;
1566     return ChangeStatus::UNCHANGED;
1567   }
1568 
1569   ChangeStatus indicatePessimisticFixpoint() override {
1570     IsFixed = true;
1571     IsValidState = false;
1572     return ChangeStatus::CHANGED;
1573   }
1574 };
1575 
1576 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1577   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1578 
1579   // Bookkeeping.
1580   assert(isValidState());
1581   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1582                   "Number of function with known return values");
1583 
1584   // Check if we have an assumed unique return value that we could manifest.
1585   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1586 
1587   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1588     return Changed;
1589 
1590   // Bookkeeping.
1591   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1592                   "Number of function with unique return");
1593   // If the assumed unique return value is an argument, annotate it.
1594   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1595     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1596             getAssociatedFunction()->getReturnType())) {
1597       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1598       Changed = IRAttribute::manifest(A);
1599     }
1600   }
1601   return Changed;
1602 }
1603 
1604 const std::string AAReturnedValuesImpl::getAsStr() const {
1605   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1606          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1607 }
1608 
1609 Optional<Value *>
1610 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1611   // If checkForAllReturnedValues provides a unique value, ignoring potential
1612   // undef values that can also be present, it is assumed to be the actual
1613   // return value and forwarded to the caller of this method. If there are
1614   // multiple, a nullptr is returned indicating there cannot be a unique
1615   // returned value.
1616   Optional<Value *> UniqueRV;
1617   Type *Ty = getAssociatedFunction()->getReturnType();
1618 
1619   auto Pred = [&](Value &RV) -> bool {
1620     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1621     return UniqueRV != Optional<Value *>(nullptr);
1622   };
1623 
1624   if (!A.checkForAllReturnedValues(Pred, *this))
1625     UniqueRV = nullptr;
1626 
1627   return UniqueRV;
1628 }
1629 
1630 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1631     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1632     const {
1633   if (!isValidState())
1634     return false;
1635 
1636   // Check all returned values but ignore call sites as long as we have not
1637   // encountered an overdefined one during an update.
1638   for (auto &It : ReturnedValues) {
1639     Value *RV = It.first;
1640     if (!Pred(*RV, It.second))
1641       return false;
1642   }
1643 
1644   return true;
1645 }
1646 
1647 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1648   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1649 
1650   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1651                            bool) -> bool {
1652     bool UsedAssumedInformation = false;
1653     Optional<Value *> SimpleRetVal =
1654         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1655     if (!SimpleRetVal.hasValue())
1656       return true;
1657     if (!SimpleRetVal.getValue())
1658       return false;
1659     Value *RetVal = *SimpleRetVal;
1660     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1661            "Assumed returned value should be valid in function scope!");
1662     if (ReturnedValues[RetVal].insert(&Ret))
1663       Changed = ChangeStatus::CHANGED;
1664     return true;
1665   };
1666 
1667   auto ReturnInstCB = [&](Instruction &I) {
1668     ReturnInst &Ret = cast<ReturnInst>(I);
1669     return genericValueTraversal<ReturnInst>(
1670         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1671         &I);
1672   };
1673 
1674   // Discover returned values from all live returned instructions in the
1675   // associated function.
1676   bool UsedAssumedInformation = false;
1677   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1678                                  UsedAssumedInformation))
1679     return indicatePessimisticFixpoint();
1680   return Changed;
1681 }
1682 
1683 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1684   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1685       : AAReturnedValuesImpl(IRP, A) {}
1686 
1687   /// See AbstractAttribute::trackStatistics()
1688   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1689 };
1690 
1691 /// Returned values information for a call sites.
1692 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1693   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1694       : AAReturnedValuesImpl(IRP, A) {}
1695 
1696   /// See AbstractAttribute::initialize(...).
1697   void initialize(Attributor &A) override {
1698     // TODO: Once we have call site specific value information we can provide
1699     //       call site specific liveness information and then it makes
1700     //       sense to specialize attributes for call sites instead of
1701     //       redirecting requests to the callee.
1702     llvm_unreachable("Abstract attributes for returned values are not "
1703                      "supported for call sites yet!");
1704   }
1705 
1706   /// See AbstractAttribute::updateImpl(...).
1707   ChangeStatus updateImpl(Attributor &A) override {
1708     return indicatePessimisticFixpoint();
1709   }
1710 
1711   /// See AbstractAttribute::trackStatistics()
1712   void trackStatistics() const override {}
1713 };
1714 
1715 /// ------------------------ NoSync Function Attribute -------------------------
1716 
1717 struct AANoSyncImpl : AANoSync {
1718   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1719 
1720   const std::string getAsStr() const override {
1721     return getAssumed() ? "nosync" : "may-sync";
1722   }
1723 
1724   /// See AbstractAttribute::updateImpl(...).
1725   ChangeStatus updateImpl(Attributor &A) override;
1726 
1727   /// Helper function used to determine whether an instruction is non-relaxed
1728   /// atomic. In other words, if an atomic instruction does not have unordered
1729   /// or monotonic ordering
1730   static bool isNonRelaxedAtomic(Instruction *I);
1731 
1732   /// Helper function specific for intrinsics which are potentially volatile
1733   static bool isNoSyncIntrinsic(Instruction *I);
1734 };
1735 
1736 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1737   if (!I->isAtomic())
1738     return false;
1739 
1740   if (auto *FI = dyn_cast<FenceInst>(I))
1741     // All legal orderings for fence are stronger than monotonic.
1742     return FI->getSyncScopeID() != SyncScope::SingleThread;
1743   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1744     // Unordered is not a legal ordering for cmpxchg.
1745     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1746             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1747   }
1748 
1749   AtomicOrdering Ordering;
1750   switch (I->getOpcode()) {
1751   case Instruction::AtomicRMW:
1752     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1753     break;
1754   case Instruction::Store:
1755     Ordering = cast<StoreInst>(I)->getOrdering();
1756     break;
1757   case Instruction::Load:
1758     Ordering = cast<LoadInst>(I)->getOrdering();
1759     break;
1760   default:
1761     llvm_unreachable(
1762         "New atomic operations need to be known in the attributor.");
1763   }
1764 
1765   return (Ordering != AtomicOrdering::Unordered &&
1766           Ordering != AtomicOrdering::Monotonic);
1767 }
1768 
1769 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1770 /// which would be nosync except that they have a volatile flag.  All other
1771 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1772 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1773   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1774     return !MI->isVolatile();
1775   return false;
1776 }
1777 
1778 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1779 
1780   auto CheckRWInstForNoSync = [&](Instruction &I) {
1781     /// We are looking for volatile instructions or Non-Relaxed atomics.
1782 
1783     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1784       if (CB->hasFnAttr(Attribute::NoSync))
1785         return true;
1786 
1787       if (isNoSyncIntrinsic(&I))
1788         return true;
1789 
1790       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1791           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1792       return NoSyncAA.isAssumedNoSync();
1793     }
1794 
1795     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1796       return true;
1797 
1798     return false;
1799   };
1800 
1801   auto CheckForNoSync = [&](Instruction &I) {
1802     // At this point we handled all read/write effects and they are all
1803     // nosync, so they can be skipped.
1804     if (I.mayReadOrWriteMemory())
1805       return true;
1806 
1807     // non-convergent and readnone imply nosync.
1808     return !cast<CallBase>(I).isConvergent();
1809   };
1810 
1811   bool UsedAssumedInformation = false;
1812   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1813                                           UsedAssumedInformation) ||
1814       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1815                                          UsedAssumedInformation))
1816     return indicatePessimisticFixpoint();
1817 
1818   return ChangeStatus::UNCHANGED;
1819 }
1820 
1821 struct AANoSyncFunction final : public AANoSyncImpl {
1822   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1823       : AANoSyncImpl(IRP, A) {}
1824 
1825   /// See AbstractAttribute::trackStatistics()
1826   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1827 };
1828 
1829 /// NoSync attribute deduction for a call sites.
1830 struct AANoSyncCallSite final : AANoSyncImpl {
1831   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1832       : AANoSyncImpl(IRP, A) {}
1833 
1834   /// See AbstractAttribute::initialize(...).
1835   void initialize(Attributor &A) override {
1836     AANoSyncImpl::initialize(A);
1837     Function *F = getAssociatedFunction();
1838     if (!F || F->isDeclaration())
1839       indicatePessimisticFixpoint();
1840   }
1841 
1842   /// See AbstractAttribute::updateImpl(...).
1843   ChangeStatus updateImpl(Attributor &A) override {
1844     // TODO: Once we have call site specific value information we can provide
1845     //       call site specific liveness information and then it makes
1846     //       sense to specialize attributes for call sites arguments instead of
1847     //       redirecting requests to the callee argument.
1848     Function *F = getAssociatedFunction();
1849     const IRPosition &FnPos = IRPosition::function(*F);
1850     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1851     return clampStateAndIndicateChange(getState(), FnAA.getState());
1852   }
1853 
1854   /// See AbstractAttribute::trackStatistics()
1855   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1856 };
1857 
1858 /// ------------------------ No-Free Attributes ----------------------------
1859 
1860 struct AANoFreeImpl : public AANoFree {
1861   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1862 
1863   /// See AbstractAttribute::updateImpl(...).
1864   ChangeStatus updateImpl(Attributor &A) override {
1865     auto CheckForNoFree = [&](Instruction &I) {
1866       const auto &CB = cast<CallBase>(I);
1867       if (CB.hasFnAttr(Attribute::NoFree))
1868         return true;
1869 
1870       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1871           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1872       return NoFreeAA.isAssumedNoFree();
1873     };
1874 
1875     bool UsedAssumedInformation = false;
1876     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1877                                            UsedAssumedInformation))
1878       return indicatePessimisticFixpoint();
1879     return ChangeStatus::UNCHANGED;
1880   }
1881 
1882   /// See AbstractAttribute::getAsStr().
1883   const std::string getAsStr() const override {
1884     return getAssumed() ? "nofree" : "may-free";
1885   }
1886 };
1887 
1888 struct AANoFreeFunction final : public AANoFreeImpl {
1889   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1890       : AANoFreeImpl(IRP, A) {}
1891 
1892   /// See AbstractAttribute::trackStatistics()
1893   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1894 };
1895 
1896 /// NoFree attribute deduction for a call sites.
1897 struct AANoFreeCallSite final : AANoFreeImpl {
1898   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1899       : AANoFreeImpl(IRP, A) {}
1900 
1901   /// See AbstractAttribute::initialize(...).
1902   void initialize(Attributor &A) override {
1903     AANoFreeImpl::initialize(A);
1904     Function *F = getAssociatedFunction();
1905     if (!F || F->isDeclaration())
1906       indicatePessimisticFixpoint();
1907   }
1908 
1909   /// See AbstractAttribute::updateImpl(...).
1910   ChangeStatus updateImpl(Attributor &A) override {
1911     // TODO: Once we have call site specific value information we can provide
1912     //       call site specific liveness information and then it makes
1913     //       sense to specialize attributes for call sites arguments instead of
1914     //       redirecting requests to the callee argument.
1915     Function *F = getAssociatedFunction();
1916     const IRPosition &FnPos = IRPosition::function(*F);
1917     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1918     return clampStateAndIndicateChange(getState(), FnAA.getState());
1919   }
1920 
1921   /// See AbstractAttribute::trackStatistics()
1922   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1923 };
1924 
1925 /// NoFree attribute for floating values.
1926 struct AANoFreeFloating : AANoFreeImpl {
1927   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1928       : AANoFreeImpl(IRP, A) {}
1929 
1930   /// See AbstractAttribute::trackStatistics()
1931   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1932 
1933   /// See Abstract Attribute::updateImpl(...).
1934   ChangeStatus updateImpl(Attributor &A) override {
1935     const IRPosition &IRP = getIRPosition();
1936 
1937     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1938         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1939     if (NoFreeAA.isAssumedNoFree())
1940       return ChangeStatus::UNCHANGED;
1941 
1942     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1943     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1944       Instruction *UserI = cast<Instruction>(U.getUser());
1945       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1946         if (CB->isBundleOperand(&U))
1947           return false;
1948         if (!CB->isArgOperand(&U))
1949           return true;
1950         unsigned ArgNo = CB->getArgOperandNo(&U);
1951 
1952         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1953             *this, IRPosition::callsite_argument(*CB, ArgNo),
1954             DepClassTy::REQUIRED);
1955         return NoFreeArg.isAssumedNoFree();
1956       }
1957 
1958       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1959           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1960         Follow = true;
1961         return true;
1962       }
1963       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
1964           isa<ReturnInst>(UserI))
1965         return true;
1966 
1967       // Unknown user.
1968       return false;
1969     };
1970     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1971       return indicatePessimisticFixpoint();
1972 
1973     return ChangeStatus::UNCHANGED;
1974   }
1975 };
1976 
1977 /// NoFree attribute for a call site argument.
1978 struct AANoFreeArgument final : AANoFreeFloating {
1979   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1980       : AANoFreeFloating(IRP, A) {}
1981 
1982   /// See AbstractAttribute::trackStatistics()
1983   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1984 };
1985 
1986 /// NoFree attribute for call site arguments.
1987 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1988   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1989       : AANoFreeFloating(IRP, A) {}
1990 
1991   /// See AbstractAttribute::updateImpl(...).
1992   ChangeStatus updateImpl(Attributor &A) override {
1993     // TODO: Once we have call site specific value information we can provide
1994     //       call site specific liveness information and then it makes
1995     //       sense to specialize attributes for call sites arguments instead of
1996     //       redirecting requests to the callee argument.
1997     Argument *Arg = getAssociatedArgument();
1998     if (!Arg)
1999       return indicatePessimisticFixpoint();
2000     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2001     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2002     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2003   }
2004 
2005   /// See AbstractAttribute::trackStatistics()
2006   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2007 };
2008 
2009 /// NoFree attribute for function return value.
2010 struct AANoFreeReturned final : AANoFreeFloating {
2011   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2012       : AANoFreeFloating(IRP, A) {
2013     llvm_unreachable("NoFree is not applicable to function returns!");
2014   }
2015 
2016   /// See AbstractAttribute::initialize(...).
2017   void initialize(Attributor &A) override {
2018     llvm_unreachable("NoFree is not applicable to function returns!");
2019   }
2020 
2021   /// See AbstractAttribute::updateImpl(...).
2022   ChangeStatus updateImpl(Attributor &A) override {
2023     llvm_unreachable("NoFree is not applicable to function returns!");
2024   }
2025 
2026   /// See AbstractAttribute::trackStatistics()
2027   void trackStatistics() const override {}
2028 };
2029 
2030 /// NoFree attribute deduction for a call site return value.
2031 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2032   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2033       : AANoFreeFloating(IRP, A) {}
2034 
2035   ChangeStatus manifest(Attributor &A) override {
2036     return ChangeStatus::UNCHANGED;
2037   }
2038   /// See AbstractAttribute::trackStatistics()
2039   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2040 };
2041 
2042 /// ------------------------ NonNull Argument Attribute ------------------------
2043 static int64_t getKnownNonNullAndDerefBytesForUse(
2044     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2045     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2046   TrackUse = false;
2047 
2048   const Value *UseV = U->get();
2049   if (!UseV->getType()->isPointerTy())
2050     return 0;
2051 
2052   // We need to follow common pointer manipulation uses to the accesses they
2053   // feed into. We can try to be smart to avoid looking through things we do not
2054   // like for now, e.g., non-inbounds GEPs.
2055   if (isa<CastInst>(I)) {
2056     TrackUse = true;
2057     return 0;
2058   }
2059 
2060   if (isa<GetElementPtrInst>(I)) {
2061     TrackUse = true;
2062     return 0;
2063   }
2064 
2065   Type *PtrTy = UseV->getType();
2066   const Function *F = I->getFunction();
2067   bool NullPointerIsDefined =
2068       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2069   const DataLayout &DL = A.getInfoCache().getDL();
2070   if (const auto *CB = dyn_cast<CallBase>(I)) {
2071     if (CB->isBundleOperand(U)) {
2072       if (RetainedKnowledge RK = getKnowledgeFromUse(
2073               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2074         IsNonNull |=
2075             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2076         return RK.ArgValue;
2077       }
2078       return 0;
2079     }
2080 
2081     if (CB->isCallee(U)) {
2082       IsNonNull |= !NullPointerIsDefined;
2083       return 0;
2084     }
2085 
2086     unsigned ArgNo = CB->getArgOperandNo(U);
2087     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2088     // As long as we only use known information there is no need to track
2089     // dependences here.
2090     auto &DerefAA =
2091         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2092     IsNonNull |= DerefAA.isKnownNonNull();
2093     return DerefAA.getKnownDereferenceableBytes();
2094   }
2095 
2096   int64_t Offset;
2097   const Value *Base =
2098       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
2099   if (Base) {
2100     if (Base == &AssociatedValue &&
2101         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2102       int64_t DerefBytes =
2103           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2104 
2105       IsNonNull |= !NullPointerIsDefined;
2106       return std::max(int64_t(0), DerefBytes);
2107     }
2108   }
2109 
2110   /// Corner case when an offset is 0.
2111   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2112                                               /*AllowNonInbounds*/ true);
2113   if (Base) {
2114     if (Offset == 0 && Base == &AssociatedValue &&
2115         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2116       int64_t DerefBytes =
2117           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2118       IsNonNull |= !NullPointerIsDefined;
2119       return std::max(int64_t(0), DerefBytes);
2120     }
2121   }
2122 
2123   return 0;
2124 }
2125 
2126 struct AANonNullImpl : AANonNull {
2127   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2128       : AANonNull(IRP, A),
2129         NullIsDefined(NullPointerIsDefined(
2130             getAnchorScope(),
2131             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2132 
2133   /// See AbstractAttribute::initialize(...).
2134   void initialize(Attributor &A) override {
2135     Value &V = getAssociatedValue();
2136     if (!NullIsDefined &&
2137         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2138                 /* IgnoreSubsumingPositions */ false, &A)) {
2139       indicateOptimisticFixpoint();
2140       return;
2141     }
2142 
2143     if (isa<ConstantPointerNull>(V)) {
2144       indicatePessimisticFixpoint();
2145       return;
2146     }
2147 
2148     AANonNull::initialize(A);
2149 
2150     bool CanBeNull, CanBeFreed;
2151     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2152                                          CanBeFreed)) {
2153       if (!CanBeNull) {
2154         indicateOptimisticFixpoint();
2155         return;
2156       }
2157     }
2158 
2159     if (isa<GlobalValue>(&getAssociatedValue())) {
2160       indicatePessimisticFixpoint();
2161       return;
2162     }
2163 
2164     if (Instruction *CtxI = getCtxI())
2165       followUsesInMBEC(*this, A, getState(), *CtxI);
2166   }
2167 
2168   /// See followUsesInMBEC
2169   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2170                        AANonNull::StateType &State) {
2171     bool IsNonNull = false;
2172     bool TrackUse = false;
2173     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2174                                        IsNonNull, TrackUse);
2175     State.setKnown(IsNonNull);
2176     return TrackUse;
2177   }
2178 
2179   /// See AbstractAttribute::getAsStr().
2180   const std::string getAsStr() const override {
2181     return getAssumed() ? "nonnull" : "may-null";
2182   }
2183 
2184   /// Flag to determine if the underlying value can be null and still allow
2185   /// valid accesses.
2186   const bool NullIsDefined;
2187 };
2188 
2189 /// NonNull attribute for a floating value.
2190 struct AANonNullFloating : public AANonNullImpl {
2191   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2192       : AANonNullImpl(IRP, A) {}
2193 
2194   /// See AbstractAttribute::updateImpl(...).
2195   ChangeStatus updateImpl(Attributor &A) override {
2196     const DataLayout &DL = A.getDataLayout();
2197 
2198     DominatorTree *DT = nullptr;
2199     AssumptionCache *AC = nullptr;
2200     InformationCache &InfoCache = A.getInfoCache();
2201     if (const Function *Fn = getAnchorScope()) {
2202       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2203       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2204     }
2205 
2206     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2207                             AANonNull::StateType &T, bool Stripped) -> bool {
2208       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2209                                              DepClassTy::REQUIRED);
2210       if (!Stripped && this == &AA) {
2211         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2212           T.indicatePessimisticFixpoint();
2213       } else {
2214         // Use abstract attribute information.
2215         const AANonNull::StateType &NS = AA.getState();
2216         T ^= NS;
2217       }
2218       return T.isValidState();
2219     };
2220 
2221     StateType T;
2222     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2223                                           VisitValueCB, getCtxI()))
2224       return indicatePessimisticFixpoint();
2225 
2226     return clampStateAndIndicateChange(getState(), T);
2227   }
2228 
2229   /// See AbstractAttribute::trackStatistics()
2230   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2231 };
2232 
2233 /// NonNull attribute for function return value.
2234 struct AANonNullReturned final
2235     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2236   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2237       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2238 
2239   /// See AbstractAttribute::getAsStr().
2240   const std::string getAsStr() const override {
2241     return getAssumed() ? "nonnull" : "may-null";
2242   }
2243 
2244   /// See AbstractAttribute::trackStatistics()
2245   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2246 };
2247 
2248 /// NonNull attribute for function argument.
2249 struct AANonNullArgument final
2250     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2251   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2252       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2253 
2254   /// See AbstractAttribute::trackStatistics()
2255   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2256 };
2257 
2258 struct AANonNullCallSiteArgument final : AANonNullFloating {
2259   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2260       : AANonNullFloating(IRP, A) {}
2261 
2262   /// See AbstractAttribute::trackStatistics()
2263   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2264 };
2265 
2266 /// NonNull attribute for a call site return position.
2267 struct AANonNullCallSiteReturned final
2268     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2269   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2270       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2271 
2272   /// See AbstractAttribute::trackStatistics()
2273   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2274 };
2275 
2276 /// ------------------------ No-Recurse Attributes ----------------------------
2277 
2278 struct AANoRecurseImpl : public AANoRecurse {
2279   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2280 
2281   /// See AbstractAttribute::getAsStr()
2282   const std::string getAsStr() const override {
2283     return getAssumed() ? "norecurse" : "may-recurse";
2284   }
2285 };
2286 
2287 struct AANoRecurseFunction final : AANoRecurseImpl {
2288   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2289       : AANoRecurseImpl(IRP, A) {}
2290 
2291   /// See AbstractAttribute::initialize(...).
2292   void initialize(Attributor &A) override {
2293     AANoRecurseImpl::initialize(A);
2294     if (const Function *F = getAnchorScope())
2295       if (A.getInfoCache().getSccSize(*F) != 1)
2296         indicatePessimisticFixpoint();
2297   }
2298 
2299   /// See AbstractAttribute::updateImpl(...).
2300   ChangeStatus updateImpl(Attributor &A) override {
2301 
2302     // If all live call sites are known to be no-recurse, we are as well.
2303     auto CallSitePred = [&](AbstractCallSite ACS) {
2304       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2305           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2306           DepClassTy::NONE);
2307       return NoRecurseAA.isKnownNoRecurse();
2308     };
2309     bool AllCallSitesKnown;
2310     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2311       // If we know all call sites and all are known no-recurse, we are done.
2312       // If all known call sites, which might not be all that exist, are known
2313       // to be no-recurse, we are not done but we can continue to assume
2314       // no-recurse. If one of the call sites we have not visited will become
2315       // live, another update is triggered.
2316       if (AllCallSitesKnown)
2317         indicateOptimisticFixpoint();
2318       return ChangeStatus::UNCHANGED;
2319     }
2320 
2321     // If the above check does not hold anymore we look at the calls.
2322     auto CheckForNoRecurse = [&](Instruction &I) {
2323       const auto &CB = cast<CallBase>(I);
2324       if (CB.hasFnAttr(Attribute::NoRecurse))
2325         return true;
2326 
2327       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2328           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2329       if (!NoRecurseAA.isAssumedNoRecurse())
2330         return false;
2331 
2332       // Recursion to the same function
2333       if (CB.getCalledFunction() == getAnchorScope())
2334         return false;
2335 
2336       return true;
2337     };
2338 
2339     bool UsedAssumedInformation = false;
2340     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2341                                            UsedAssumedInformation))
2342       return indicatePessimisticFixpoint();
2343     return ChangeStatus::UNCHANGED;
2344   }
2345 
2346   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2347 };
2348 
2349 /// NoRecurse attribute deduction for a call sites.
2350 struct AANoRecurseCallSite final : AANoRecurseImpl {
2351   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2352       : AANoRecurseImpl(IRP, A) {}
2353 
2354   /// See AbstractAttribute::initialize(...).
2355   void initialize(Attributor &A) override {
2356     AANoRecurseImpl::initialize(A);
2357     Function *F = getAssociatedFunction();
2358     if (!F || F->isDeclaration())
2359       indicatePessimisticFixpoint();
2360   }
2361 
2362   /// See AbstractAttribute::updateImpl(...).
2363   ChangeStatus updateImpl(Attributor &A) override {
2364     // TODO: Once we have call site specific value information we can provide
2365     //       call site specific liveness information and then it makes
2366     //       sense to specialize attributes for call sites arguments instead of
2367     //       redirecting requests to the callee argument.
2368     Function *F = getAssociatedFunction();
2369     const IRPosition &FnPos = IRPosition::function(*F);
2370     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2371     return clampStateAndIndicateChange(getState(), FnAA.getState());
2372   }
2373 
2374   /// See AbstractAttribute::trackStatistics()
2375   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2376 };
2377 
2378 /// -------------------- Undefined-Behavior Attributes ------------------------
2379 
2380 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2381   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2382       : AAUndefinedBehavior(IRP, A) {}
2383 
2384   /// See AbstractAttribute::updateImpl(...).
2385   // through a pointer (i.e. also branches etc.)
2386   ChangeStatus updateImpl(Attributor &A) override {
2387     const size_t UBPrevSize = KnownUBInsts.size();
2388     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2389 
2390     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2391       // Skip instructions that are already saved.
2392       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2393         return true;
2394 
2395       // If we reach here, we know we have an instruction
2396       // that accesses memory through a pointer operand,
2397       // for which getPointerOperand() should give it to us.
2398       Value *PtrOp =
2399           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2400       assert(PtrOp &&
2401              "Expected pointer operand of memory accessing instruction");
2402 
2403       // Either we stopped and the appropriate action was taken,
2404       // or we got back a simplified value to continue.
2405       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2406       if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue())
2407         return true;
2408       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2409 
2410       // A memory access through a pointer is considered UB
2411       // only if the pointer has constant null value.
2412       // TODO: Expand it to not only check constant values.
2413       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2414         AssumedNoUBInsts.insert(&I);
2415         return true;
2416       }
2417       const Type *PtrTy = PtrOpVal->getType();
2418 
2419       // Because we only consider instructions inside functions,
2420       // assume that a parent function exists.
2421       const Function *F = I.getFunction();
2422 
2423       // A memory access using constant null pointer is only considered UB
2424       // if null pointer is _not_ defined for the target platform.
2425       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2426         AssumedNoUBInsts.insert(&I);
2427       else
2428         KnownUBInsts.insert(&I);
2429       return true;
2430     };
2431 
2432     auto InspectBrInstForUB = [&](Instruction &I) {
2433       // A conditional branch instruction is considered UB if it has `undef`
2434       // condition.
2435 
2436       // Skip instructions that are already saved.
2437       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2438         return true;
2439 
2440       // We know we have a branch instruction.
2441       auto *BrInst = cast<BranchInst>(&I);
2442 
2443       // Unconditional branches are never considered UB.
2444       if (BrInst->isUnconditional())
2445         return true;
2446 
2447       // Either we stopped and the appropriate action was taken,
2448       // or we got back a simplified value to continue.
2449       Optional<Value *> SimplifiedCond =
2450           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2451       if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue())
2452         return true;
2453       AssumedNoUBInsts.insert(&I);
2454       return true;
2455     };
2456 
2457     auto InspectCallSiteForUB = [&](Instruction &I) {
2458       // Check whether a callsite always cause UB or not
2459 
2460       // Skip instructions that are already saved.
2461       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2462         return true;
2463 
2464       // Check nonnull and noundef argument attribute violation for each
2465       // callsite.
2466       CallBase &CB = cast<CallBase>(I);
2467       Function *Callee = CB.getCalledFunction();
2468       if (!Callee)
2469         return true;
2470       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2471         // If current argument is known to be simplified to null pointer and the
2472         // corresponding argument position is known to have nonnull attribute,
2473         // the argument is poison. Furthermore, if the argument is poison and
2474         // the position is known to have noundef attriubte, this callsite is
2475         // considered UB.
2476         if (idx >= Callee->arg_size())
2477           break;
2478         Value *ArgVal = CB.getArgOperand(idx);
2479         if (!ArgVal)
2480           continue;
2481         // Here, we handle three cases.
2482         //   (1) Not having a value means it is dead. (we can replace the value
2483         //       with undef)
2484         //   (2) Simplified to undef. The argument violate noundef attriubte.
2485         //   (3) Simplified to null pointer where known to be nonnull.
2486         //       The argument is a poison value and violate noundef attribute.
2487         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2488         auto &NoUndefAA =
2489             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2490         if (!NoUndefAA.isKnownNoUndef())
2491           continue;
2492         bool UsedAssumedInformation = false;
2493         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2494             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2495         if (UsedAssumedInformation)
2496           continue;
2497         if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue())
2498           return true;
2499         if (!SimplifiedVal.hasValue() ||
2500             isa<UndefValue>(*SimplifiedVal.getValue())) {
2501           KnownUBInsts.insert(&I);
2502           continue;
2503         }
2504         if (!ArgVal->getType()->isPointerTy() ||
2505             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2506           continue;
2507         auto &NonNullAA =
2508             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2509         if (NonNullAA.isKnownNonNull())
2510           KnownUBInsts.insert(&I);
2511       }
2512       return true;
2513     };
2514 
2515     auto InspectReturnInstForUB =
2516         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2517           // Check if a return instruction always cause UB or not
2518           // Note: It is guaranteed that the returned position of the anchor
2519           //       scope has noundef attribute when this is called.
2520           //       We also ensure the return position is not "assumed dead"
2521           //       because the returned value was then potentially simplified to
2522           //       `undef` in AAReturnedValues without removing the `noundef`
2523           //       attribute yet.
2524 
2525           // When the returned position has noundef attriubte, UB occur in the
2526           // following cases.
2527           //   (1) Returned value is known to be undef.
2528           //   (2) The value is known to be a null pointer and the returned
2529           //       position has nonnull attribute (because the returned value is
2530           //       poison).
2531           bool FoundUB = false;
2532           if (isa<UndefValue>(V)) {
2533             FoundUB = true;
2534           } else {
2535             if (isa<ConstantPointerNull>(V)) {
2536               auto &NonNullAA = A.getAAFor<AANonNull>(
2537                   *this, IRPosition::returned(*getAnchorScope()),
2538                   DepClassTy::NONE);
2539               if (NonNullAA.isKnownNonNull())
2540                 FoundUB = true;
2541             }
2542           }
2543 
2544           if (FoundUB)
2545             for (ReturnInst *RI : RetInsts)
2546               KnownUBInsts.insert(RI);
2547           return true;
2548         };
2549 
2550     bool UsedAssumedInformation = false;
2551     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2552                               {Instruction::Load, Instruction::Store,
2553                                Instruction::AtomicCmpXchg,
2554                                Instruction::AtomicRMW},
2555                               UsedAssumedInformation,
2556                               /* CheckBBLivenessOnly */ true);
2557     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2558                               UsedAssumedInformation,
2559                               /* CheckBBLivenessOnly */ true);
2560     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2561                                       UsedAssumedInformation);
2562 
2563     // If the returned position of the anchor scope has noundef attriubte, check
2564     // all returned instructions.
2565     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2566       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2567       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2568         auto &RetPosNoUndefAA =
2569             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2570         if (RetPosNoUndefAA.isKnownNoUndef())
2571           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2572                                                     *this);
2573       }
2574     }
2575 
2576     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2577         UBPrevSize != KnownUBInsts.size())
2578       return ChangeStatus::CHANGED;
2579     return ChangeStatus::UNCHANGED;
2580   }
2581 
2582   bool isKnownToCauseUB(Instruction *I) const override {
2583     return KnownUBInsts.count(I);
2584   }
2585 
2586   bool isAssumedToCauseUB(Instruction *I) const override {
2587     // In simple words, if an instruction is not in the assumed to _not_
2588     // cause UB, then it is assumed UB (that includes those
2589     // in the KnownUBInsts set). The rest is boilerplate
2590     // is to ensure that it is one of the instructions we test
2591     // for UB.
2592 
2593     switch (I->getOpcode()) {
2594     case Instruction::Load:
2595     case Instruction::Store:
2596     case Instruction::AtomicCmpXchg:
2597     case Instruction::AtomicRMW:
2598       return !AssumedNoUBInsts.count(I);
2599     case Instruction::Br: {
2600       auto BrInst = cast<BranchInst>(I);
2601       if (BrInst->isUnconditional())
2602         return false;
2603       return !AssumedNoUBInsts.count(I);
2604     } break;
2605     default:
2606       return false;
2607     }
2608     return false;
2609   }
2610 
2611   ChangeStatus manifest(Attributor &A) override {
2612     if (KnownUBInsts.empty())
2613       return ChangeStatus::UNCHANGED;
2614     for (Instruction *I : KnownUBInsts)
2615       A.changeToUnreachableAfterManifest(I);
2616     return ChangeStatus::CHANGED;
2617   }
2618 
2619   /// See AbstractAttribute::getAsStr()
2620   const std::string getAsStr() const override {
2621     return getAssumed() ? "undefined-behavior" : "no-ub";
2622   }
2623 
2624   /// Note: The correctness of this analysis depends on the fact that the
2625   /// following 2 sets will stop changing after some point.
2626   /// "Change" here means that their size changes.
2627   /// The size of each set is monotonically increasing
2628   /// (we only add items to them) and it is upper bounded by the number of
2629   /// instructions in the processed function (we can never save more
2630   /// elements in either set than this number). Hence, at some point,
2631   /// they will stop increasing.
2632   /// Consequently, at some point, both sets will have stopped
2633   /// changing, effectively making the analysis reach a fixpoint.
2634 
2635   /// Note: These 2 sets are disjoint and an instruction can be considered
2636   /// one of 3 things:
2637   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2638   ///    the KnownUBInsts set.
2639   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2640   ///    has a reason to assume it).
2641   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2642   ///    could not find a reason to assume or prove that it can cause UB,
2643   ///    hence it assumes it doesn't. We have a set for these instructions
2644   ///    so that we don't reprocess them in every update.
2645   ///    Note however that instructions in this set may cause UB.
2646 
2647 protected:
2648   /// A set of all live instructions _known_ to cause UB.
2649   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2650 
2651 private:
2652   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2653   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2654 
2655   // Should be called on updates in which if we're processing an instruction
2656   // \p I that depends on a value \p V, one of the following has to happen:
2657   // - If the value is assumed, then stop.
2658   // - If the value is known but undef, then consider it UB.
2659   // - Otherwise, do specific processing with the simplified value.
2660   // We return None in the first 2 cases to signify that an appropriate
2661   // action was taken and the caller should stop.
2662   // Otherwise, we return the simplified value that the caller should
2663   // use for specific processing.
2664   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2665                                          Instruction *I) {
2666     bool UsedAssumedInformation = false;
2667     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2668         IRPosition::value(*V), *this, UsedAssumedInformation);
2669     if (!UsedAssumedInformation) {
2670       // Don't depend on assumed values.
2671       if (!SimplifiedV.hasValue()) {
2672         // If it is known (which we tested above) but it doesn't have a value,
2673         // then we can assume `undef` and hence the instruction is UB.
2674         KnownUBInsts.insert(I);
2675         return llvm::None;
2676       }
2677       if (!SimplifiedV.getValue())
2678         return nullptr;
2679       V = *SimplifiedV;
2680     }
2681     if (isa<UndefValue>(V)) {
2682       KnownUBInsts.insert(I);
2683       return llvm::None;
2684     }
2685     return V;
2686   }
2687 };
2688 
2689 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2690   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2691       : AAUndefinedBehaviorImpl(IRP, A) {}
2692 
2693   /// See AbstractAttribute::trackStatistics()
2694   void trackStatistics() const override {
2695     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2696                "Number of instructions known to have UB");
2697     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2698         KnownUBInsts.size();
2699   }
2700 };
2701 
2702 /// ------------------------ Will-Return Attributes ----------------------------
2703 
2704 // Helper function that checks whether a function has any cycle which we don't
2705 // know if it is bounded or not.
2706 // Loops with maximum trip count are considered bounded, any other cycle not.
2707 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2708   ScalarEvolution *SE =
2709       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2710   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2711   // If either SCEV or LoopInfo is not available for the function then we assume
2712   // any cycle to be unbounded cycle.
2713   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2714   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2715   if (!SE || !LI) {
2716     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2717       if (SCCI.hasCycle())
2718         return true;
2719     return false;
2720   }
2721 
2722   // If there's irreducible control, the function may contain non-loop cycles.
2723   if (mayContainIrreducibleControl(F, LI))
2724     return true;
2725 
2726   // Any loop that does not have a max trip count is considered unbounded cycle.
2727   for (auto *L : LI->getLoopsInPreorder()) {
2728     if (!SE->getSmallConstantMaxTripCount(L))
2729       return true;
2730   }
2731   return false;
2732 }
2733 
2734 struct AAWillReturnImpl : public AAWillReturn {
2735   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2736       : AAWillReturn(IRP, A) {}
2737 
2738   /// See AbstractAttribute::initialize(...).
2739   void initialize(Attributor &A) override {
2740     AAWillReturn::initialize(A);
2741 
2742     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2743       indicateOptimisticFixpoint();
2744       return;
2745     }
2746   }
2747 
2748   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2749   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2750     // Check for `mustprogress` in the scope and the associated function which
2751     // might be different if this is a call site.
2752     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2753         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2754       return false;
2755 
2756     const auto &MemAA =
2757         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2758     if (!MemAA.isAssumedReadOnly())
2759       return false;
2760     if (KnownOnly && !MemAA.isKnownReadOnly())
2761       return false;
2762     if (!MemAA.isKnownReadOnly())
2763       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2764 
2765     return true;
2766   }
2767 
2768   /// See AbstractAttribute::updateImpl(...).
2769   ChangeStatus updateImpl(Attributor &A) override {
2770     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2771       return ChangeStatus::UNCHANGED;
2772 
2773     auto CheckForWillReturn = [&](Instruction &I) {
2774       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2775       const auto &WillReturnAA =
2776           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2777       if (WillReturnAA.isKnownWillReturn())
2778         return true;
2779       if (!WillReturnAA.isAssumedWillReturn())
2780         return false;
2781       const auto &NoRecurseAA =
2782           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2783       return NoRecurseAA.isAssumedNoRecurse();
2784     };
2785 
2786     bool UsedAssumedInformation = false;
2787     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2788                                            UsedAssumedInformation))
2789       return indicatePessimisticFixpoint();
2790 
2791     return ChangeStatus::UNCHANGED;
2792   }
2793 
2794   /// See AbstractAttribute::getAsStr()
2795   const std::string getAsStr() const override {
2796     return getAssumed() ? "willreturn" : "may-noreturn";
2797   }
2798 };
2799 
2800 struct AAWillReturnFunction final : AAWillReturnImpl {
2801   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2802       : AAWillReturnImpl(IRP, A) {}
2803 
2804   /// See AbstractAttribute::initialize(...).
2805   void initialize(Attributor &A) override {
2806     AAWillReturnImpl::initialize(A);
2807 
2808     Function *F = getAnchorScope();
2809     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2810       indicatePessimisticFixpoint();
2811   }
2812 
2813   /// See AbstractAttribute::trackStatistics()
2814   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2815 };
2816 
2817 /// WillReturn attribute deduction for a call sites.
2818 struct AAWillReturnCallSite final : AAWillReturnImpl {
2819   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2820       : AAWillReturnImpl(IRP, A) {}
2821 
2822   /// See AbstractAttribute::initialize(...).
2823   void initialize(Attributor &A) override {
2824     AAWillReturnImpl::initialize(A);
2825     Function *F = getAssociatedFunction();
2826     if (!F || !A.isFunctionIPOAmendable(*F))
2827       indicatePessimisticFixpoint();
2828   }
2829 
2830   /// See AbstractAttribute::updateImpl(...).
2831   ChangeStatus updateImpl(Attributor &A) override {
2832     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2833       return ChangeStatus::UNCHANGED;
2834 
2835     // TODO: Once we have call site specific value information we can provide
2836     //       call site specific liveness information and then it makes
2837     //       sense to specialize attributes for call sites arguments instead of
2838     //       redirecting requests to the callee argument.
2839     Function *F = getAssociatedFunction();
2840     const IRPosition &FnPos = IRPosition::function(*F);
2841     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2842     return clampStateAndIndicateChange(getState(), FnAA.getState());
2843   }
2844 
2845   /// See AbstractAttribute::trackStatistics()
2846   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2847 };
2848 
2849 /// -------------------AAReachability Attribute--------------------------
2850 
2851 struct AAReachabilityImpl : AAReachability {
2852   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2853       : AAReachability(IRP, A) {}
2854 
2855   const std::string getAsStr() const override {
2856     // TODO: Return the number of reachable queries.
2857     return "reachable";
2858   }
2859 
2860   /// See AbstractAttribute::updateImpl(...).
2861   ChangeStatus updateImpl(Attributor &A) override {
2862     return ChangeStatus::UNCHANGED;
2863   }
2864 };
2865 
2866 struct AAReachabilityFunction final : public AAReachabilityImpl {
2867   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2868       : AAReachabilityImpl(IRP, A) {}
2869 
2870   /// See AbstractAttribute::trackStatistics()
2871   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2872 };
2873 
2874 /// ------------------------ NoAlias Argument Attribute ------------------------
2875 
2876 struct AANoAliasImpl : AANoAlias {
2877   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2878     assert(getAssociatedType()->isPointerTy() &&
2879            "Noalias is a pointer attribute");
2880   }
2881 
2882   const std::string getAsStr() const override {
2883     return getAssumed() ? "noalias" : "may-alias";
2884   }
2885 };
2886 
2887 /// NoAlias attribute for a floating value.
2888 struct AANoAliasFloating final : AANoAliasImpl {
2889   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2890       : AANoAliasImpl(IRP, A) {}
2891 
2892   /// See AbstractAttribute::initialize(...).
2893   void initialize(Attributor &A) override {
2894     AANoAliasImpl::initialize(A);
2895     Value *Val = &getAssociatedValue();
2896     do {
2897       CastInst *CI = dyn_cast<CastInst>(Val);
2898       if (!CI)
2899         break;
2900       Value *Base = CI->getOperand(0);
2901       if (!Base->hasOneUse())
2902         break;
2903       Val = Base;
2904     } while (true);
2905 
2906     if (!Val->getType()->isPointerTy()) {
2907       indicatePessimisticFixpoint();
2908       return;
2909     }
2910 
2911     if (isa<AllocaInst>(Val))
2912       indicateOptimisticFixpoint();
2913     else if (isa<ConstantPointerNull>(Val) &&
2914              !NullPointerIsDefined(getAnchorScope(),
2915                                    Val->getType()->getPointerAddressSpace()))
2916       indicateOptimisticFixpoint();
2917     else if (Val != &getAssociatedValue()) {
2918       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2919           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2920       if (ValNoAliasAA.isKnownNoAlias())
2921         indicateOptimisticFixpoint();
2922     }
2923   }
2924 
2925   /// See AbstractAttribute::updateImpl(...).
2926   ChangeStatus updateImpl(Attributor &A) override {
2927     // TODO: Implement this.
2928     return indicatePessimisticFixpoint();
2929   }
2930 
2931   /// See AbstractAttribute::trackStatistics()
2932   void trackStatistics() const override {
2933     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2934   }
2935 };
2936 
2937 /// NoAlias attribute for an argument.
2938 struct AANoAliasArgument final
2939     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2940   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2941   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2942 
2943   /// See AbstractAttribute::initialize(...).
2944   void initialize(Attributor &A) override {
2945     Base::initialize(A);
2946     // See callsite argument attribute and callee argument attribute.
2947     if (hasAttr({Attribute::ByVal}))
2948       indicateOptimisticFixpoint();
2949   }
2950 
2951   /// See AbstractAttribute::update(...).
2952   ChangeStatus updateImpl(Attributor &A) override {
2953     // We have to make sure no-alias on the argument does not break
2954     // synchronization when this is a callback argument, see also [1] below.
2955     // If synchronization cannot be affected, we delegate to the base updateImpl
2956     // function, otherwise we give up for now.
2957 
2958     // If the function is no-sync, no-alias cannot break synchronization.
2959     const auto &NoSyncAA =
2960         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2961                              DepClassTy::OPTIONAL);
2962     if (NoSyncAA.isAssumedNoSync())
2963       return Base::updateImpl(A);
2964 
2965     // If the argument is read-only, no-alias cannot break synchronization.
2966     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2967         *this, getIRPosition(), DepClassTy::OPTIONAL);
2968     if (MemBehaviorAA.isAssumedReadOnly())
2969       return Base::updateImpl(A);
2970 
2971     // If the argument is never passed through callbacks, no-alias cannot break
2972     // synchronization.
2973     bool AllCallSitesKnown;
2974     if (A.checkForAllCallSites(
2975             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2976             true, AllCallSitesKnown))
2977       return Base::updateImpl(A);
2978 
2979     // TODO: add no-alias but make sure it doesn't break synchronization by
2980     // introducing fake uses. See:
2981     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2982     //     International Workshop on OpenMP 2018,
2983     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2984 
2985     return indicatePessimisticFixpoint();
2986   }
2987 
2988   /// See AbstractAttribute::trackStatistics()
2989   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2990 };
2991 
2992 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2993   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2994       : AANoAliasImpl(IRP, A) {}
2995 
2996   /// See AbstractAttribute::initialize(...).
2997   void initialize(Attributor &A) override {
2998     // See callsite argument attribute and callee argument attribute.
2999     const auto &CB = cast<CallBase>(getAnchorValue());
3000     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3001       indicateOptimisticFixpoint();
3002     Value &Val = getAssociatedValue();
3003     if (isa<ConstantPointerNull>(Val) &&
3004         !NullPointerIsDefined(getAnchorScope(),
3005                               Val.getType()->getPointerAddressSpace()))
3006       indicateOptimisticFixpoint();
3007   }
3008 
3009   /// Determine if the underlying value may alias with the call site argument
3010   /// \p OtherArgNo of \p ICS (= the underlying call site).
3011   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3012                             const AAMemoryBehavior &MemBehaviorAA,
3013                             const CallBase &CB, unsigned OtherArgNo) {
3014     // We do not need to worry about aliasing with the underlying IRP.
3015     if (this->getCalleeArgNo() == (int)OtherArgNo)
3016       return false;
3017 
3018     // If it is not a pointer or pointer vector we do not alias.
3019     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3020     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3021       return false;
3022 
3023     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3024         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3025 
3026     // If the argument is readnone, there is no read-write aliasing.
3027     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3028       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3029       return false;
3030     }
3031 
3032     // If the argument is readonly and the underlying value is readonly, there
3033     // is no read-write aliasing.
3034     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3035     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3036       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3037       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3038       return false;
3039     }
3040 
3041     // We have to utilize actual alias analysis queries so we need the object.
3042     if (!AAR)
3043       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3044 
3045     // Try to rule it out at the call site.
3046     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3047     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3048                          "callsite arguments: "
3049                       << getAssociatedValue() << " " << *ArgOp << " => "
3050                       << (IsAliasing ? "" : "no-") << "alias \n");
3051 
3052     return IsAliasing;
3053   }
3054 
3055   bool
3056   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3057                                          const AAMemoryBehavior &MemBehaviorAA,
3058                                          const AANoAlias &NoAliasAA) {
3059     // We can deduce "noalias" if the following conditions hold.
3060     // (i)   Associated value is assumed to be noalias in the definition.
3061     // (ii)  Associated value is assumed to be no-capture in all the uses
3062     //       possibly executed before this callsite.
3063     // (iii) There is no other pointer argument which could alias with the
3064     //       value.
3065 
3066     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3067     if (!AssociatedValueIsNoAliasAtDef) {
3068       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3069                         << " is not no-alias at the definition\n");
3070       return false;
3071     }
3072 
3073     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3074 
3075     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3076     const Function *ScopeFn = VIRP.getAnchorScope();
3077     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3078     // Check whether the value is captured in the scope using AANoCapture.
3079     //      Look at CFG and check only uses possibly executed before this
3080     //      callsite.
3081     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3082       Instruction *UserI = cast<Instruction>(U.getUser());
3083 
3084       // If UserI is the curr instruction and there is a single potential use of
3085       // the value in UserI we allow the use.
3086       // TODO: We should inspect the operands and allow those that cannot alias
3087       //       with the value.
3088       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3089         return true;
3090 
3091       if (ScopeFn) {
3092         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3093             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3094 
3095         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3096           return true;
3097 
3098         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3099           if (CB->isArgOperand(&U)) {
3100 
3101             unsigned ArgNo = CB->getArgOperandNo(&U);
3102 
3103             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3104                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3105                 DepClassTy::OPTIONAL);
3106 
3107             if (NoCaptureAA.isAssumedNoCapture())
3108               return true;
3109           }
3110         }
3111       }
3112 
3113       // For cases which can potentially have more users
3114       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3115           isa<SelectInst>(U)) {
3116         Follow = true;
3117         return true;
3118       }
3119 
3120       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3121       return false;
3122     };
3123 
3124     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3125       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3126         LLVM_DEBUG(
3127             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3128                    << " cannot be noalias as it is potentially captured\n");
3129         return false;
3130       }
3131     }
3132     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3133 
3134     // Check there is no other pointer argument which could alias with the
3135     // value passed at this call site.
3136     // TODO: AbstractCallSite
3137     const auto &CB = cast<CallBase>(getAnchorValue());
3138     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
3139          OtherArgNo++)
3140       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3141         return false;
3142 
3143     return true;
3144   }
3145 
3146   /// See AbstractAttribute::updateImpl(...).
3147   ChangeStatus updateImpl(Attributor &A) override {
3148     // If the argument is readnone we are done as there are no accesses via the
3149     // argument.
3150     auto &MemBehaviorAA =
3151         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3152     if (MemBehaviorAA.isAssumedReadNone()) {
3153       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3154       return ChangeStatus::UNCHANGED;
3155     }
3156 
3157     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3158     const auto &NoAliasAA =
3159         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3160 
3161     AAResults *AAR = nullptr;
3162     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3163                                                NoAliasAA)) {
3164       LLVM_DEBUG(
3165           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3166       return ChangeStatus::UNCHANGED;
3167     }
3168 
3169     return indicatePessimisticFixpoint();
3170   }
3171 
3172   /// See AbstractAttribute::trackStatistics()
3173   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3174 };
3175 
3176 /// NoAlias attribute for function return value.
3177 struct AANoAliasReturned final : AANoAliasImpl {
3178   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3179       : AANoAliasImpl(IRP, A) {}
3180 
3181   /// See AbstractAttribute::initialize(...).
3182   void initialize(Attributor &A) override {
3183     AANoAliasImpl::initialize(A);
3184     Function *F = getAssociatedFunction();
3185     if (!F || F->isDeclaration())
3186       indicatePessimisticFixpoint();
3187   }
3188 
3189   /// See AbstractAttribute::updateImpl(...).
3190   virtual ChangeStatus updateImpl(Attributor &A) override {
3191 
3192     auto CheckReturnValue = [&](Value &RV) -> bool {
3193       if (Constant *C = dyn_cast<Constant>(&RV))
3194         if (C->isNullValue() || isa<UndefValue>(C))
3195           return true;
3196 
3197       /// For now, we can only deduce noalias if we have call sites.
3198       /// FIXME: add more support.
3199       if (!isa<CallBase>(&RV))
3200         return false;
3201 
3202       const IRPosition &RVPos = IRPosition::value(RV);
3203       const auto &NoAliasAA =
3204           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3205       if (!NoAliasAA.isAssumedNoAlias())
3206         return false;
3207 
3208       const auto &NoCaptureAA =
3209           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3210       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3211     };
3212 
3213     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3214       return indicatePessimisticFixpoint();
3215 
3216     return ChangeStatus::UNCHANGED;
3217   }
3218 
3219   /// See AbstractAttribute::trackStatistics()
3220   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3221 };
3222 
3223 /// NoAlias attribute deduction for a call site return value.
3224 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3225   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3226       : AANoAliasImpl(IRP, A) {}
3227 
3228   /// See AbstractAttribute::initialize(...).
3229   void initialize(Attributor &A) override {
3230     AANoAliasImpl::initialize(A);
3231     Function *F = getAssociatedFunction();
3232     if (!F || F->isDeclaration())
3233       indicatePessimisticFixpoint();
3234   }
3235 
3236   /// See AbstractAttribute::updateImpl(...).
3237   ChangeStatus updateImpl(Attributor &A) override {
3238     // TODO: Once we have call site specific value information we can provide
3239     //       call site specific liveness information and then it makes
3240     //       sense to specialize attributes for call sites arguments instead of
3241     //       redirecting requests to the callee argument.
3242     Function *F = getAssociatedFunction();
3243     const IRPosition &FnPos = IRPosition::returned(*F);
3244     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3245     return clampStateAndIndicateChange(getState(), FnAA.getState());
3246   }
3247 
3248   /// See AbstractAttribute::trackStatistics()
3249   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3250 };
3251 
3252 /// -------------------AAIsDead Function Attribute-----------------------
3253 
3254 struct AAIsDeadValueImpl : public AAIsDead {
3255   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3256 
3257   /// See AAIsDead::isAssumedDead().
3258   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3259 
3260   /// See AAIsDead::isKnownDead().
3261   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3262 
3263   /// See AAIsDead::isAssumedDead(BasicBlock *).
3264   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3265 
3266   /// See AAIsDead::isKnownDead(BasicBlock *).
3267   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3268 
3269   /// See AAIsDead::isAssumedDead(Instruction *I).
3270   bool isAssumedDead(const Instruction *I) const override {
3271     return I == getCtxI() && isAssumedDead();
3272   }
3273 
3274   /// See AAIsDead::isKnownDead(Instruction *I).
3275   bool isKnownDead(const Instruction *I) const override {
3276     return isAssumedDead(I) && isKnownDead();
3277   }
3278 
3279   /// See AbstractAttribute::getAsStr().
3280   const std::string getAsStr() const override {
3281     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3282   }
3283 
3284   /// Check if all uses are assumed dead.
3285   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3286     // Callers might not check the type, void has no uses.
3287     if (V.getType()->isVoidTy())
3288       return true;
3289 
3290     // If we replace a value with a constant there are no uses left afterwards.
3291     if (!isa<Constant>(V)) {
3292       bool UsedAssumedInformation = false;
3293       Optional<Constant *> C =
3294           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3295       if (!C.hasValue() || *C)
3296         return true;
3297     }
3298 
3299     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3300     // Explicitly set the dependence class to required because we want a long
3301     // chain of N dependent instructions to be considered live as soon as one is
3302     // without going through N update cycles. This is not required for
3303     // correctness.
3304     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3305                              DepClassTy::REQUIRED);
3306   }
3307 
3308   /// Determine if \p I is assumed to be side-effect free.
3309   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3310     if (!I || wouldInstructionBeTriviallyDead(I))
3311       return true;
3312 
3313     auto *CB = dyn_cast<CallBase>(I);
3314     if (!CB || isa<IntrinsicInst>(CB))
3315       return false;
3316 
3317     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3318     const auto &NoUnwindAA =
3319         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3320     if (!NoUnwindAA.isAssumedNoUnwind())
3321       return false;
3322     if (!NoUnwindAA.isKnownNoUnwind())
3323       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3324 
3325     const auto &MemBehaviorAA =
3326         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3327     if (MemBehaviorAA.isAssumedReadOnly()) {
3328       if (!MemBehaviorAA.isKnownReadOnly())
3329         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3330       return true;
3331     }
3332     return false;
3333   }
3334 };
3335 
3336 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3337   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3338       : AAIsDeadValueImpl(IRP, A) {}
3339 
3340   /// See AbstractAttribute::initialize(...).
3341   void initialize(Attributor &A) override {
3342     if (isa<UndefValue>(getAssociatedValue())) {
3343       indicatePessimisticFixpoint();
3344       return;
3345     }
3346 
3347     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3348     if (!isAssumedSideEffectFree(A, I)) {
3349       if (!isa_and_nonnull<StoreInst>(I))
3350         indicatePessimisticFixpoint();
3351       else
3352         removeAssumedBits(HAS_NO_EFFECT);
3353     }
3354   }
3355 
3356   bool isDeadStore(Attributor &A, StoreInst &SI) {
3357     bool UsedAssumedInformation = false;
3358     SmallSetVector<Value *, 4> PotentialCopies;
3359     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3360                                              UsedAssumedInformation))
3361       return false;
3362     return llvm::all_of(PotentialCopies, [&](Value *V) {
3363       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3364                              UsedAssumedInformation);
3365     });
3366   }
3367 
3368   /// See AbstractAttribute::updateImpl(...).
3369   ChangeStatus updateImpl(Attributor &A) override {
3370     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3371     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3372       if (!isDeadStore(A, *SI))
3373         return indicatePessimisticFixpoint();
3374     } else {
3375       if (!isAssumedSideEffectFree(A, I))
3376         return indicatePessimisticFixpoint();
3377       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3378         return indicatePessimisticFixpoint();
3379     }
3380     return ChangeStatus::UNCHANGED;
3381   }
3382 
3383   /// See AbstractAttribute::manifest(...).
3384   ChangeStatus manifest(Attributor &A) override {
3385     Value &V = getAssociatedValue();
3386     if (auto *I = dyn_cast<Instruction>(&V)) {
3387       // If we get here we basically know the users are all dead. We check if
3388       // isAssumedSideEffectFree returns true here again because it might not be
3389       // the case and only the users are dead but the instruction (=call) is
3390       // still needed.
3391       if (isa<StoreInst>(I) ||
3392           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3393         A.deleteAfterManifest(*I);
3394         return ChangeStatus::CHANGED;
3395       }
3396     }
3397     if (V.use_empty())
3398       return ChangeStatus::UNCHANGED;
3399 
3400     bool UsedAssumedInformation = false;
3401     Optional<Constant *> C =
3402         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3403     if (C.hasValue() && C.getValue())
3404       return ChangeStatus::UNCHANGED;
3405 
3406     // Replace the value with undef as it is dead but keep droppable uses around
3407     // as they provide information we don't want to give up on just yet.
3408     UndefValue &UV = *UndefValue::get(V.getType());
3409     bool AnyChange =
3410         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3411     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3412   }
3413 
3414   /// See AbstractAttribute::trackStatistics()
3415   void trackStatistics() const override {
3416     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3417   }
3418 };
3419 
3420 struct AAIsDeadArgument : public AAIsDeadFloating {
3421   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3422       : AAIsDeadFloating(IRP, A) {}
3423 
3424   /// See AbstractAttribute::initialize(...).
3425   void initialize(Attributor &A) override {
3426     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3427       indicatePessimisticFixpoint();
3428   }
3429 
3430   /// See AbstractAttribute::manifest(...).
3431   ChangeStatus manifest(Attributor &A) override {
3432     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3433     Argument &Arg = *getAssociatedArgument();
3434     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3435       if (A.registerFunctionSignatureRewrite(
3436               Arg, /* ReplacementTypes */ {},
3437               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3438               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3439         Arg.dropDroppableUses();
3440         return ChangeStatus::CHANGED;
3441       }
3442     return Changed;
3443   }
3444 
3445   /// See AbstractAttribute::trackStatistics()
3446   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3447 };
3448 
3449 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3450   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3451       : AAIsDeadValueImpl(IRP, A) {}
3452 
3453   /// See AbstractAttribute::initialize(...).
3454   void initialize(Attributor &A) override {
3455     if (isa<UndefValue>(getAssociatedValue()))
3456       indicatePessimisticFixpoint();
3457   }
3458 
3459   /// See AbstractAttribute::updateImpl(...).
3460   ChangeStatus updateImpl(Attributor &A) override {
3461     // TODO: Once we have call site specific value information we can provide
3462     //       call site specific liveness information and then it makes
3463     //       sense to specialize attributes for call sites arguments instead of
3464     //       redirecting requests to the callee argument.
3465     Argument *Arg = getAssociatedArgument();
3466     if (!Arg)
3467       return indicatePessimisticFixpoint();
3468     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3469     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3470     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3471   }
3472 
3473   /// See AbstractAttribute::manifest(...).
3474   ChangeStatus manifest(Attributor &A) override {
3475     CallBase &CB = cast<CallBase>(getAnchorValue());
3476     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3477     assert(!isa<UndefValue>(U.get()) &&
3478            "Expected undef values to be filtered out!");
3479     UndefValue &UV = *UndefValue::get(U->getType());
3480     if (A.changeUseAfterManifest(U, UV))
3481       return ChangeStatus::CHANGED;
3482     return ChangeStatus::UNCHANGED;
3483   }
3484 
3485   /// See AbstractAttribute::trackStatistics()
3486   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3487 };
3488 
3489 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3490   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3491       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3492 
3493   /// See AAIsDead::isAssumedDead().
3494   bool isAssumedDead() const override {
3495     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3496   }
3497 
3498   /// See AbstractAttribute::initialize(...).
3499   void initialize(Attributor &A) override {
3500     if (isa<UndefValue>(getAssociatedValue())) {
3501       indicatePessimisticFixpoint();
3502       return;
3503     }
3504 
3505     // We track this separately as a secondary state.
3506     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3507   }
3508 
3509   /// See AbstractAttribute::updateImpl(...).
3510   ChangeStatus updateImpl(Attributor &A) override {
3511     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3512     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3513       IsAssumedSideEffectFree = false;
3514       Changed = ChangeStatus::CHANGED;
3515     }
3516     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3517       return indicatePessimisticFixpoint();
3518     return Changed;
3519   }
3520 
3521   /// See AbstractAttribute::trackStatistics()
3522   void trackStatistics() const override {
3523     if (IsAssumedSideEffectFree)
3524       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3525     else
3526       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3527   }
3528 
3529   /// See AbstractAttribute::getAsStr().
3530   const std::string getAsStr() const override {
3531     return isAssumedDead()
3532                ? "assumed-dead"
3533                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3534   }
3535 
3536 private:
3537   bool IsAssumedSideEffectFree;
3538 };
3539 
3540 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3541   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3542       : AAIsDeadValueImpl(IRP, A) {}
3543 
3544   /// See AbstractAttribute::updateImpl(...).
3545   ChangeStatus updateImpl(Attributor &A) override {
3546 
3547     bool UsedAssumedInformation = false;
3548     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3549                               {Instruction::Ret}, UsedAssumedInformation);
3550 
3551     auto PredForCallSite = [&](AbstractCallSite ACS) {
3552       if (ACS.isCallbackCall() || !ACS.getInstruction())
3553         return false;
3554       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3555     };
3556 
3557     bool AllCallSitesKnown;
3558     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3559                                 AllCallSitesKnown))
3560       return indicatePessimisticFixpoint();
3561 
3562     return ChangeStatus::UNCHANGED;
3563   }
3564 
3565   /// See AbstractAttribute::manifest(...).
3566   ChangeStatus manifest(Attributor &A) override {
3567     // TODO: Rewrite the signature to return void?
3568     bool AnyChange = false;
3569     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3570     auto RetInstPred = [&](Instruction &I) {
3571       ReturnInst &RI = cast<ReturnInst>(I);
3572       if (!isa<UndefValue>(RI.getReturnValue()))
3573         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3574       return true;
3575     };
3576     bool UsedAssumedInformation = false;
3577     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3578                               UsedAssumedInformation);
3579     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3580   }
3581 
3582   /// See AbstractAttribute::trackStatistics()
3583   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3584 };
3585 
3586 struct AAIsDeadFunction : public AAIsDead {
3587   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3588 
3589   /// See AbstractAttribute::initialize(...).
3590   void initialize(Attributor &A) override {
3591     const Function *F = getAnchorScope();
3592     if (F && !F->isDeclaration()) {
3593       // We only want to compute liveness once. If the function is not part of
3594       // the SCC, skip it.
3595       if (A.isRunOn(*const_cast<Function *>(F))) {
3596         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3597         assumeLive(A, F->getEntryBlock());
3598       } else {
3599         indicatePessimisticFixpoint();
3600       }
3601     }
3602   }
3603 
3604   /// See AbstractAttribute::getAsStr().
3605   const std::string getAsStr() const override {
3606     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3607            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3608            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3609            std::to_string(KnownDeadEnds.size()) + "]";
3610   }
3611 
3612   /// See AbstractAttribute::manifest(...).
3613   ChangeStatus manifest(Attributor &A) override {
3614     assert(getState().isValidState() &&
3615            "Attempted to manifest an invalid state!");
3616 
3617     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3618     Function &F = *getAnchorScope();
3619 
3620     if (AssumedLiveBlocks.empty()) {
3621       A.deleteAfterManifest(F);
3622       return ChangeStatus::CHANGED;
3623     }
3624 
3625     // Flag to determine if we can change an invoke to a call assuming the
3626     // callee is nounwind. This is not possible if the personality of the
3627     // function allows to catch asynchronous exceptions.
3628     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3629 
3630     KnownDeadEnds.set_union(ToBeExploredFrom);
3631     for (const Instruction *DeadEndI : KnownDeadEnds) {
3632       auto *CB = dyn_cast<CallBase>(DeadEndI);
3633       if (!CB)
3634         continue;
3635       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3636           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3637       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3638       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3639         continue;
3640 
3641       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3642         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3643       else
3644         A.changeToUnreachableAfterManifest(
3645             const_cast<Instruction *>(DeadEndI->getNextNode()));
3646       HasChanged = ChangeStatus::CHANGED;
3647     }
3648 
3649     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3650     for (BasicBlock &BB : F)
3651       if (!AssumedLiveBlocks.count(&BB)) {
3652         A.deleteAfterManifest(BB);
3653         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3654       }
3655 
3656     return HasChanged;
3657   }
3658 
3659   /// See AbstractAttribute::updateImpl(...).
3660   ChangeStatus updateImpl(Attributor &A) override;
3661 
3662   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3663     return !AssumedLiveEdges.count(std::make_pair(From, To));
3664   }
3665 
3666   /// See AbstractAttribute::trackStatistics()
3667   void trackStatistics() const override {}
3668 
3669   /// Returns true if the function is assumed dead.
3670   bool isAssumedDead() const override { return false; }
3671 
3672   /// See AAIsDead::isKnownDead().
3673   bool isKnownDead() const override { return false; }
3674 
3675   /// See AAIsDead::isAssumedDead(BasicBlock *).
3676   bool isAssumedDead(const BasicBlock *BB) const override {
3677     assert(BB->getParent() == getAnchorScope() &&
3678            "BB must be in the same anchor scope function.");
3679 
3680     if (!getAssumed())
3681       return false;
3682     return !AssumedLiveBlocks.count(BB);
3683   }
3684 
3685   /// See AAIsDead::isKnownDead(BasicBlock *).
3686   bool isKnownDead(const BasicBlock *BB) const override {
3687     return getKnown() && isAssumedDead(BB);
3688   }
3689 
3690   /// See AAIsDead::isAssumed(Instruction *I).
3691   bool isAssumedDead(const Instruction *I) const override {
3692     assert(I->getParent()->getParent() == getAnchorScope() &&
3693            "Instruction must be in the same anchor scope function.");
3694 
3695     if (!getAssumed())
3696       return false;
3697 
3698     // If it is not in AssumedLiveBlocks then it for sure dead.
3699     // Otherwise, it can still be after noreturn call in a live block.
3700     if (!AssumedLiveBlocks.count(I->getParent()))
3701       return true;
3702 
3703     // If it is not after a liveness barrier it is live.
3704     const Instruction *PrevI = I->getPrevNode();
3705     while (PrevI) {
3706       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3707         return true;
3708       PrevI = PrevI->getPrevNode();
3709     }
3710     return false;
3711   }
3712 
3713   /// See AAIsDead::isKnownDead(Instruction *I).
3714   bool isKnownDead(const Instruction *I) const override {
3715     return getKnown() && isAssumedDead(I);
3716   }
3717 
3718   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3719   /// that internal function called from \p BB should now be looked at.
3720   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3721     if (!AssumedLiveBlocks.insert(&BB).second)
3722       return false;
3723 
3724     // We assume that all of BB is (probably) live now and if there are calls to
3725     // internal functions we will assume that those are now live as well. This
3726     // is a performance optimization for blocks with calls to a lot of internal
3727     // functions. It can however cause dead functions to be treated as live.
3728     for (const Instruction &I : BB)
3729       if (const auto *CB = dyn_cast<CallBase>(&I))
3730         if (const Function *F = CB->getCalledFunction())
3731           if (F->hasLocalLinkage())
3732             A.markLiveInternalFunction(*F);
3733     return true;
3734   }
3735 
3736   /// Collection of instructions that need to be explored again, e.g., we
3737   /// did assume they do not transfer control to (one of their) successors.
3738   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3739 
3740   /// Collection of instructions that are known to not transfer control.
3741   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3742 
3743   /// Collection of all assumed live edges
3744   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3745 
3746   /// Collection of all assumed live BasicBlocks.
3747   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3748 };
3749 
3750 static bool
3751 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3752                         AbstractAttribute &AA,
3753                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3754   const IRPosition &IPos = IRPosition::callsite_function(CB);
3755 
3756   const auto &NoReturnAA =
3757       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3758   if (NoReturnAA.isAssumedNoReturn())
3759     return !NoReturnAA.isKnownNoReturn();
3760   if (CB.isTerminator())
3761     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3762   else
3763     AliveSuccessors.push_back(CB.getNextNode());
3764   return false;
3765 }
3766 
3767 static bool
3768 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3769                         AbstractAttribute &AA,
3770                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3771   bool UsedAssumedInformation =
3772       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3773 
3774   // First, determine if we can change an invoke to a call assuming the
3775   // callee is nounwind. This is not possible if the personality of the
3776   // function allows to catch asynchronous exceptions.
3777   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3778     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3779   } else {
3780     const IRPosition &IPos = IRPosition::callsite_function(II);
3781     const auto &AANoUnw =
3782         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3783     if (AANoUnw.isAssumedNoUnwind()) {
3784       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3785     } else {
3786       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3787     }
3788   }
3789   return UsedAssumedInformation;
3790 }
3791 
3792 static bool
3793 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3794                         AbstractAttribute &AA,
3795                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3796   bool UsedAssumedInformation = false;
3797   if (BI.getNumSuccessors() == 1) {
3798     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3799   } else {
3800     Optional<Constant *> C =
3801         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3802     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3803       // No value yet, assume both edges are dead.
3804     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3805       const BasicBlock *SuccBB =
3806           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3807       AliveSuccessors.push_back(&SuccBB->front());
3808     } else {
3809       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3810       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3811       UsedAssumedInformation = false;
3812     }
3813   }
3814   return UsedAssumedInformation;
3815 }
3816 
3817 static bool
3818 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3819                         AbstractAttribute &AA,
3820                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3821   bool UsedAssumedInformation = false;
3822   Optional<Constant *> C =
3823       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3824   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3825     // No value yet, assume all edges are dead.
3826   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3827     for (auto &CaseIt : SI.cases()) {
3828       if (CaseIt.getCaseValue() == C.getValue()) {
3829         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3830         return UsedAssumedInformation;
3831       }
3832     }
3833     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3834     return UsedAssumedInformation;
3835   } else {
3836     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3837       AliveSuccessors.push_back(&SuccBB->front());
3838   }
3839   return UsedAssumedInformation;
3840 }
3841 
3842 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3843   ChangeStatus Change = ChangeStatus::UNCHANGED;
3844 
3845   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3846                     << getAnchorScope()->size() << "] BBs and "
3847                     << ToBeExploredFrom.size() << " exploration points and "
3848                     << KnownDeadEnds.size() << " known dead ends\n");
3849 
3850   // Copy and clear the list of instructions we need to explore from. It is
3851   // refilled with instructions the next update has to look at.
3852   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3853                                                ToBeExploredFrom.end());
3854   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3855 
3856   SmallVector<const Instruction *, 8> AliveSuccessors;
3857   while (!Worklist.empty()) {
3858     const Instruction *I = Worklist.pop_back_val();
3859     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3860 
3861     // Fast forward for uninteresting instructions. We could look for UB here
3862     // though.
3863     while (!I->isTerminator() && !isa<CallBase>(I))
3864       I = I->getNextNode();
3865 
3866     AliveSuccessors.clear();
3867 
3868     bool UsedAssumedInformation = false;
3869     switch (I->getOpcode()) {
3870     // TODO: look for (assumed) UB to backwards propagate "deadness".
3871     default:
3872       assert(I->isTerminator() &&
3873              "Expected non-terminators to be handled already!");
3874       for (const BasicBlock *SuccBB : successors(I->getParent()))
3875         AliveSuccessors.push_back(&SuccBB->front());
3876       break;
3877     case Instruction::Call:
3878       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3879                                                        *this, AliveSuccessors);
3880       break;
3881     case Instruction::Invoke:
3882       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3883                                                        *this, AliveSuccessors);
3884       break;
3885     case Instruction::Br:
3886       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3887                                                        *this, AliveSuccessors);
3888       break;
3889     case Instruction::Switch:
3890       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3891                                                        *this, AliveSuccessors);
3892       break;
3893     }
3894 
3895     if (UsedAssumedInformation) {
3896       NewToBeExploredFrom.insert(I);
3897     } else if (AliveSuccessors.empty() ||
3898                (I->isTerminator() &&
3899                 AliveSuccessors.size() < I->getNumSuccessors())) {
3900       if (KnownDeadEnds.insert(I))
3901         Change = ChangeStatus::CHANGED;
3902     }
3903 
3904     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3905                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3906                       << UsedAssumedInformation << "\n");
3907 
3908     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3909       if (!I->isTerminator()) {
3910         assert(AliveSuccessors.size() == 1 &&
3911                "Non-terminator expected to have a single successor!");
3912         Worklist.push_back(AliveSuccessor);
3913       } else {
3914         // record the assumed live edge
3915         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
3916         if (AssumedLiveEdges.insert(Edge).second)
3917           Change = ChangeStatus::CHANGED;
3918         if (assumeLive(A, *AliveSuccessor->getParent()))
3919           Worklist.push_back(AliveSuccessor);
3920       }
3921     }
3922   }
3923 
3924   // Check if the content of ToBeExploredFrom changed, ignore the order.
3925   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
3926       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
3927         return !ToBeExploredFrom.count(I);
3928       })) {
3929     Change = ChangeStatus::CHANGED;
3930     ToBeExploredFrom = std::move(NewToBeExploredFrom);
3931   }
3932 
3933   // If we know everything is live there is no need to query for liveness.
3934   // Instead, indicating a pessimistic fixpoint will cause the state to be
3935   // "invalid" and all queries to be answered conservatively without lookups.
3936   // To be in this state we have to (1) finished the exploration and (3) not
3937   // discovered any non-trivial dead end and (2) not ruled unreachable code
3938   // dead.
3939   if (ToBeExploredFrom.empty() &&
3940       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3941       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3942         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3943       }))
3944     return indicatePessimisticFixpoint();
3945   return Change;
3946 }
3947 
3948 /// Liveness information for a call sites.
3949 struct AAIsDeadCallSite final : AAIsDeadFunction {
3950   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3951       : AAIsDeadFunction(IRP, A) {}
3952 
3953   /// See AbstractAttribute::initialize(...).
3954   void initialize(Attributor &A) override {
3955     // TODO: Once we have call site specific value information we can provide
3956     //       call site specific liveness information and then it makes
3957     //       sense to specialize attributes for call sites instead of
3958     //       redirecting requests to the callee.
3959     llvm_unreachable("Abstract attributes for liveness are not "
3960                      "supported for call sites yet!");
3961   }
3962 
3963   /// See AbstractAttribute::updateImpl(...).
3964   ChangeStatus updateImpl(Attributor &A) override {
3965     return indicatePessimisticFixpoint();
3966   }
3967 
3968   /// See AbstractAttribute::trackStatistics()
3969   void trackStatistics() const override {}
3970 };
3971 
3972 /// -------------------- Dereferenceable Argument Attribute --------------------
3973 
3974 struct AADereferenceableImpl : AADereferenceable {
3975   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3976       : AADereferenceable(IRP, A) {}
3977   using StateType = DerefState;
3978 
3979   /// See AbstractAttribute::initialize(...).
3980   void initialize(Attributor &A) override {
3981     SmallVector<Attribute, 4> Attrs;
3982     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3983              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3984     for (const Attribute &Attr : Attrs)
3985       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3986 
3987     const IRPosition &IRP = this->getIRPosition();
3988     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
3989 
3990     bool CanBeNull, CanBeFreed;
3991     takeKnownDerefBytesMaximum(
3992         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3993             A.getDataLayout(), CanBeNull, CanBeFreed));
3994 
3995     bool IsFnInterface = IRP.isFnInterfaceKind();
3996     Function *FnScope = IRP.getAnchorScope();
3997     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3998       indicatePessimisticFixpoint();
3999       return;
4000     }
4001 
4002     if (Instruction *CtxI = getCtxI())
4003       followUsesInMBEC(*this, A, getState(), *CtxI);
4004   }
4005 
4006   /// See AbstractAttribute::getState()
4007   /// {
4008   StateType &getState() override { return *this; }
4009   const StateType &getState() const override { return *this; }
4010   /// }
4011 
4012   /// Helper function for collecting accessed bytes in must-be-executed-context
4013   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4014                               DerefState &State) {
4015     const Value *UseV = U->get();
4016     if (!UseV->getType()->isPointerTy())
4017       return;
4018 
4019     Type *PtrTy = UseV->getType();
4020     const DataLayout &DL = A.getDataLayout();
4021     int64_t Offset;
4022     if (const Value *Base = getBasePointerOfAccessPointerOperand(
4023             I, Offset, DL, /*AllowNonInbounds*/ true)) {
4024       if (Base == &getAssociatedValue() &&
4025           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4026         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4027         State.addAccessedBytes(Offset, Size);
4028       }
4029     }
4030   }
4031 
4032   /// See followUsesInMBEC
4033   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4034                        AADereferenceable::StateType &State) {
4035     bool IsNonNull = false;
4036     bool TrackUse = false;
4037     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4038         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4039     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4040                       << " for instruction " << *I << "\n");
4041 
4042     addAccessedBytesForUse(A, U, I, State);
4043     State.takeKnownDerefBytesMaximum(DerefBytes);
4044     return TrackUse;
4045   }
4046 
4047   /// See AbstractAttribute::manifest(...).
4048   ChangeStatus manifest(Attributor &A) override {
4049     ChangeStatus Change = AADereferenceable::manifest(A);
4050     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4051       removeAttrs({Attribute::DereferenceableOrNull});
4052       return ChangeStatus::CHANGED;
4053     }
4054     return Change;
4055   }
4056 
4057   void getDeducedAttributes(LLVMContext &Ctx,
4058                             SmallVectorImpl<Attribute> &Attrs) const override {
4059     // TODO: Add *_globally support
4060     if (isAssumedNonNull())
4061       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4062           Ctx, getAssumedDereferenceableBytes()));
4063     else
4064       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4065           Ctx, getAssumedDereferenceableBytes()));
4066   }
4067 
4068   /// See AbstractAttribute::getAsStr().
4069   const std::string getAsStr() const override {
4070     if (!getAssumedDereferenceableBytes())
4071       return "unknown-dereferenceable";
4072     return std::string("dereferenceable") +
4073            (isAssumedNonNull() ? "" : "_or_null") +
4074            (isAssumedGlobal() ? "_globally" : "") + "<" +
4075            std::to_string(getKnownDereferenceableBytes()) + "-" +
4076            std::to_string(getAssumedDereferenceableBytes()) + ">";
4077   }
4078 };
4079 
4080 /// Dereferenceable attribute for a floating value.
4081 struct AADereferenceableFloating : AADereferenceableImpl {
4082   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4083       : AADereferenceableImpl(IRP, A) {}
4084 
4085   /// See AbstractAttribute::updateImpl(...).
4086   ChangeStatus updateImpl(Attributor &A) override {
4087     const DataLayout &DL = A.getDataLayout();
4088 
4089     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4090                             bool Stripped) -> bool {
4091       unsigned IdxWidth =
4092           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4093       APInt Offset(IdxWidth, 0);
4094       const Value *Base =
4095           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4096 
4097       const auto &AA = A.getAAFor<AADereferenceable>(
4098           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4099       int64_t DerefBytes = 0;
4100       if (!Stripped && this == &AA) {
4101         // Use IR information if we did not strip anything.
4102         // TODO: track globally.
4103         bool CanBeNull, CanBeFreed;
4104         DerefBytes =
4105             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4106         T.GlobalState.indicatePessimisticFixpoint();
4107       } else {
4108         const DerefState &DS = AA.getState();
4109         DerefBytes = DS.DerefBytesState.getAssumed();
4110         T.GlobalState &= DS.GlobalState;
4111       }
4112 
4113       // For now we do not try to "increase" dereferenceability due to negative
4114       // indices as we first have to come up with code to deal with loops and
4115       // for overflows of the dereferenceable bytes.
4116       int64_t OffsetSExt = Offset.getSExtValue();
4117       if (OffsetSExt < 0)
4118         OffsetSExt = 0;
4119 
4120       T.takeAssumedDerefBytesMinimum(
4121           std::max(int64_t(0), DerefBytes - OffsetSExt));
4122 
4123       if (this == &AA) {
4124         if (!Stripped) {
4125           // If nothing was stripped IR information is all we got.
4126           T.takeKnownDerefBytesMaximum(
4127               std::max(int64_t(0), DerefBytes - OffsetSExt));
4128           T.indicatePessimisticFixpoint();
4129         } else if (OffsetSExt > 0) {
4130           // If something was stripped but there is circular reasoning we look
4131           // for the offset. If it is positive we basically decrease the
4132           // dereferenceable bytes in a circluar loop now, which will simply
4133           // drive them down to the known value in a very slow way which we
4134           // can accelerate.
4135           T.indicatePessimisticFixpoint();
4136         }
4137       }
4138 
4139       return T.isValidState();
4140     };
4141 
4142     DerefState T;
4143     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4144                                            VisitValueCB, getCtxI()))
4145       return indicatePessimisticFixpoint();
4146 
4147     return clampStateAndIndicateChange(getState(), T);
4148   }
4149 
4150   /// See AbstractAttribute::trackStatistics()
4151   void trackStatistics() const override {
4152     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4153   }
4154 };
4155 
4156 /// Dereferenceable attribute for a return value.
4157 struct AADereferenceableReturned final
4158     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4159   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4160       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4161             IRP, A) {}
4162 
4163   /// See AbstractAttribute::trackStatistics()
4164   void trackStatistics() const override {
4165     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4166   }
4167 };
4168 
4169 /// Dereferenceable attribute for an argument
4170 struct AADereferenceableArgument final
4171     : AAArgumentFromCallSiteArguments<AADereferenceable,
4172                                       AADereferenceableImpl> {
4173   using Base =
4174       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4175   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4176       : Base(IRP, A) {}
4177 
4178   /// See AbstractAttribute::trackStatistics()
4179   void trackStatistics() const override {
4180     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4181   }
4182 };
4183 
4184 /// Dereferenceable attribute for a call site argument.
4185 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4186   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4187       : AADereferenceableFloating(IRP, A) {}
4188 
4189   /// See AbstractAttribute::trackStatistics()
4190   void trackStatistics() const override {
4191     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4192   }
4193 };
4194 
4195 /// Dereferenceable attribute deduction for a call site return value.
4196 struct AADereferenceableCallSiteReturned final
4197     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4198   using Base =
4199       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4200   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4201       : Base(IRP, A) {}
4202 
4203   /// See AbstractAttribute::trackStatistics()
4204   void trackStatistics() const override {
4205     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4206   }
4207 };
4208 
4209 // ------------------------ Align Argument Attribute ------------------------
4210 
4211 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4212                                     Value &AssociatedValue, const Use *U,
4213                                     const Instruction *I, bool &TrackUse) {
4214   // We need to follow common pointer manipulation uses to the accesses they
4215   // feed into.
4216   if (isa<CastInst>(I)) {
4217     // Follow all but ptr2int casts.
4218     TrackUse = !isa<PtrToIntInst>(I);
4219     return 0;
4220   }
4221   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4222     if (GEP->hasAllConstantIndices())
4223       TrackUse = true;
4224     return 0;
4225   }
4226 
4227   MaybeAlign MA;
4228   if (const auto *CB = dyn_cast<CallBase>(I)) {
4229     if (CB->isBundleOperand(U) || CB->isCallee(U))
4230       return 0;
4231 
4232     unsigned ArgNo = CB->getArgOperandNo(U);
4233     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4234     // As long as we only use known information there is no need to track
4235     // dependences here.
4236     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4237     MA = MaybeAlign(AlignAA.getKnownAlign());
4238   }
4239 
4240   const DataLayout &DL = A.getDataLayout();
4241   const Value *UseV = U->get();
4242   if (auto *SI = dyn_cast<StoreInst>(I)) {
4243     if (SI->getPointerOperand() == UseV)
4244       MA = SI->getAlign();
4245   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4246     if (LI->getPointerOperand() == UseV)
4247       MA = LI->getAlign();
4248   }
4249 
4250   if (!MA || *MA <= QueryingAA.getKnownAlign())
4251     return 0;
4252 
4253   unsigned Alignment = MA->value();
4254   int64_t Offset;
4255 
4256   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4257     if (Base == &AssociatedValue) {
4258       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4259       // So we can say that the maximum power of two which is a divisor of
4260       // gcd(Offset, Alignment) is an alignment.
4261 
4262       uint32_t gcd =
4263           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4264       Alignment = llvm::PowerOf2Floor(gcd);
4265     }
4266   }
4267 
4268   return Alignment;
4269 }
4270 
4271 struct AAAlignImpl : AAAlign {
4272   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4273 
4274   /// See AbstractAttribute::initialize(...).
4275   void initialize(Attributor &A) override {
4276     SmallVector<Attribute, 4> Attrs;
4277     getAttrs({Attribute::Alignment}, Attrs);
4278     for (const Attribute &Attr : Attrs)
4279       takeKnownMaximum(Attr.getValueAsInt());
4280 
4281     Value &V = getAssociatedValue();
4282     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4283     //       use of the function pointer. This was caused by D73131. We want to
4284     //       avoid this for function pointers especially because we iterate
4285     //       their uses and int2ptr is not handled. It is not a correctness
4286     //       problem though!
4287     if (!V.getType()->getPointerElementType()->isFunctionTy())
4288       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4289 
4290     if (getIRPosition().isFnInterfaceKind() &&
4291         (!getAnchorScope() ||
4292          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4293       indicatePessimisticFixpoint();
4294       return;
4295     }
4296 
4297     if (Instruction *CtxI = getCtxI())
4298       followUsesInMBEC(*this, A, getState(), *CtxI);
4299   }
4300 
4301   /// See AbstractAttribute::manifest(...).
4302   ChangeStatus manifest(Attributor &A) override {
4303     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4304 
4305     // Check for users that allow alignment annotations.
4306     Value &AssociatedValue = getAssociatedValue();
4307     for (const Use &U : AssociatedValue.uses()) {
4308       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4309         if (SI->getPointerOperand() == &AssociatedValue)
4310           if (SI->getAlignment() < getAssumedAlign()) {
4311             STATS_DECLTRACK(AAAlign, Store,
4312                             "Number of times alignment added to a store");
4313             SI->setAlignment(Align(getAssumedAlign()));
4314             LoadStoreChanged = ChangeStatus::CHANGED;
4315           }
4316       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4317         if (LI->getPointerOperand() == &AssociatedValue)
4318           if (LI->getAlignment() < getAssumedAlign()) {
4319             LI->setAlignment(Align(getAssumedAlign()));
4320             STATS_DECLTRACK(AAAlign, Load,
4321                             "Number of times alignment added to a load");
4322             LoadStoreChanged = ChangeStatus::CHANGED;
4323           }
4324       }
4325     }
4326 
4327     ChangeStatus Changed = AAAlign::manifest(A);
4328 
4329     Align InheritAlign =
4330         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4331     if (InheritAlign >= getAssumedAlign())
4332       return LoadStoreChanged;
4333     return Changed | LoadStoreChanged;
4334   }
4335 
4336   // TODO: Provide a helper to determine the implied ABI alignment and check in
4337   //       the existing manifest method and a new one for AAAlignImpl that value
4338   //       to avoid making the alignment explicit if it did not improve.
4339 
4340   /// See AbstractAttribute::getDeducedAttributes
4341   virtual void
4342   getDeducedAttributes(LLVMContext &Ctx,
4343                        SmallVectorImpl<Attribute> &Attrs) const override {
4344     if (getAssumedAlign() > 1)
4345       Attrs.emplace_back(
4346           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4347   }
4348 
4349   /// See followUsesInMBEC
4350   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4351                        AAAlign::StateType &State) {
4352     bool TrackUse = false;
4353 
4354     unsigned int KnownAlign =
4355         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4356     State.takeKnownMaximum(KnownAlign);
4357 
4358     return TrackUse;
4359   }
4360 
4361   /// See AbstractAttribute::getAsStr().
4362   const std::string getAsStr() const override {
4363     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4364                                 "-" + std::to_string(getAssumedAlign()) + ">")
4365                              : "unknown-align";
4366   }
4367 };
4368 
4369 /// Align attribute for a floating value.
4370 struct AAAlignFloating : AAAlignImpl {
4371   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4372 
4373   /// See AbstractAttribute::updateImpl(...).
4374   ChangeStatus updateImpl(Attributor &A) override {
4375     const DataLayout &DL = A.getDataLayout();
4376 
4377     auto VisitValueCB = [&](Value &V, const Instruction *,
4378                             AAAlign::StateType &T, bool Stripped) -> bool {
4379       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4380                                            DepClassTy::REQUIRED);
4381       if (!Stripped && this == &AA) {
4382         int64_t Offset;
4383         unsigned Alignment = 1;
4384         if (const Value *Base =
4385                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4386           Align PA = Base->getPointerAlignment(DL);
4387           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4388           // So we can say that the maximum power of two which is a divisor of
4389           // gcd(Offset, Alignment) is an alignment.
4390 
4391           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4392                                                uint32_t(PA.value()));
4393           Alignment = llvm::PowerOf2Floor(gcd);
4394         } else {
4395           Alignment = V.getPointerAlignment(DL).value();
4396         }
4397         // Use only IR information if we did not strip anything.
4398         T.takeKnownMaximum(Alignment);
4399         T.indicatePessimisticFixpoint();
4400       } else {
4401         // Use abstract attribute information.
4402         const AAAlign::StateType &DS = AA.getState();
4403         T ^= DS;
4404       }
4405       return T.isValidState();
4406     };
4407 
4408     StateType T;
4409     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4410                                           VisitValueCB, getCtxI()))
4411       return indicatePessimisticFixpoint();
4412 
4413     // TODO: If we know we visited all incoming values, thus no are assumed
4414     // dead, we can take the known information from the state T.
4415     return clampStateAndIndicateChange(getState(), T);
4416   }
4417 
4418   /// See AbstractAttribute::trackStatistics()
4419   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4420 };
4421 
4422 /// Align attribute for function return value.
4423 struct AAAlignReturned final
4424     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4425   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4426   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4427 
4428   /// See AbstractAttribute::initialize(...).
4429   void initialize(Attributor &A) override {
4430     Base::initialize(A);
4431     Function *F = getAssociatedFunction();
4432     if (!F || F->isDeclaration())
4433       indicatePessimisticFixpoint();
4434   }
4435 
4436   /// See AbstractAttribute::trackStatistics()
4437   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4438 };
4439 
4440 /// Align attribute for function argument.
4441 struct AAAlignArgument final
4442     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4443   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4444   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4445 
4446   /// See AbstractAttribute::manifest(...).
4447   ChangeStatus manifest(Attributor &A) override {
4448     // If the associated argument is involved in a must-tail call we give up
4449     // because we would need to keep the argument alignments of caller and
4450     // callee in-sync. Just does not seem worth the trouble right now.
4451     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4452       return ChangeStatus::UNCHANGED;
4453     return Base::manifest(A);
4454   }
4455 
4456   /// See AbstractAttribute::trackStatistics()
4457   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4458 };
4459 
4460 struct AAAlignCallSiteArgument final : AAAlignFloating {
4461   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4462       : AAAlignFloating(IRP, A) {}
4463 
4464   /// See AbstractAttribute::manifest(...).
4465   ChangeStatus manifest(Attributor &A) override {
4466     // If the associated argument is involved in a must-tail call we give up
4467     // because we would need to keep the argument alignments of caller and
4468     // callee in-sync. Just does not seem worth the trouble right now.
4469     if (Argument *Arg = getAssociatedArgument())
4470       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4471         return ChangeStatus::UNCHANGED;
4472     ChangeStatus Changed = AAAlignImpl::manifest(A);
4473     Align InheritAlign =
4474         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4475     if (InheritAlign >= getAssumedAlign())
4476       Changed = ChangeStatus::UNCHANGED;
4477     return Changed;
4478   }
4479 
4480   /// See AbstractAttribute::updateImpl(Attributor &A).
4481   ChangeStatus updateImpl(Attributor &A) override {
4482     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4483     if (Argument *Arg = getAssociatedArgument()) {
4484       // We only take known information from the argument
4485       // so we do not need to track a dependence.
4486       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4487           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4488       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4489     }
4490     return Changed;
4491   }
4492 
4493   /// See AbstractAttribute::trackStatistics()
4494   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4495 };
4496 
4497 /// Align attribute deduction for a call site return value.
4498 struct AAAlignCallSiteReturned final
4499     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4500   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4501   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4502       : Base(IRP, A) {}
4503 
4504   /// See AbstractAttribute::initialize(...).
4505   void initialize(Attributor &A) override {
4506     Base::initialize(A);
4507     Function *F = getAssociatedFunction();
4508     if (!F || F->isDeclaration())
4509       indicatePessimisticFixpoint();
4510   }
4511 
4512   /// See AbstractAttribute::trackStatistics()
4513   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4514 };
4515 
4516 /// ------------------ Function No-Return Attribute ----------------------------
4517 struct AANoReturnImpl : public AANoReturn {
4518   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4519 
4520   /// See AbstractAttribute::initialize(...).
4521   void initialize(Attributor &A) override {
4522     AANoReturn::initialize(A);
4523     Function *F = getAssociatedFunction();
4524     if (!F || F->isDeclaration())
4525       indicatePessimisticFixpoint();
4526   }
4527 
4528   /// See AbstractAttribute::getAsStr().
4529   const std::string getAsStr() const override {
4530     return getAssumed() ? "noreturn" : "may-return";
4531   }
4532 
4533   /// See AbstractAttribute::updateImpl(Attributor &A).
4534   virtual ChangeStatus updateImpl(Attributor &A) override {
4535     auto CheckForNoReturn = [](Instruction &) { return false; };
4536     bool UsedAssumedInformation = false;
4537     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4538                                    {(unsigned)Instruction::Ret},
4539                                    UsedAssumedInformation))
4540       return indicatePessimisticFixpoint();
4541     return ChangeStatus::UNCHANGED;
4542   }
4543 };
4544 
4545 struct AANoReturnFunction final : AANoReturnImpl {
4546   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4547       : AANoReturnImpl(IRP, A) {}
4548 
4549   /// See AbstractAttribute::trackStatistics()
4550   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4551 };
4552 
4553 /// NoReturn attribute deduction for a call sites.
4554 struct AANoReturnCallSite final : AANoReturnImpl {
4555   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4556       : AANoReturnImpl(IRP, A) {}
4557 
4558   /// See AbstractAttribute::initialize(...).
4559   void initialize(Attributor &A) override {
4560     AANoReturnImpl::initialize(A);
4561     if (Function *F = getAssociatedFunction()) {
4562       const IRPosition &FnPos = IRPosition::function(*F);
4563       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4564       if (!FnAA.isAssumedNoReturn())
4565         indicatePessimisticFixpoint();
4566     }
4567   }
4568 
4569   /// See AbstractAttribute::updateImpl(...).
4570   ChangeStatus updateImpl(Attributor &A) override {
4571     // TODO: Once we have call site specific value information we can provide
4572     //       call site specific liveness information and then it makes
4573     //       sense to specialize attributes for call sites arguments instead of
4574     //       redirecting requests to the callee argument.
4575     Function *F = getAssociatedFunction();
4576     const IRPosition &FnPos = IRPosition::function(*F);
4577     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4578     return clampStateAndIndicateChange(getState(), FnAA.getState());
4579   }
4580 
4581   /// See AbstractAttribute::trackStatistics()
4582   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4583 };
4584 
4585 /// ----------------------- Variable Capturing ---------------------------------
4586 
4587 /// A class to hold the state of for no-capture attributes.
4588 struct AANoCaptureImpl : public AANoCapture {
4589   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4590 
4591   /// See AbstractAttribute::initialize(...).
4592   void initialize(Attributor &A) override {
4593     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4594       indicateOptimisticFixpoint();
4595       return;
4596     }
4597     Function *AnchorScope = getAnchorScope();
4598     if (isFnInterfaceKind() &&
4599         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4600       indicatePessimisticFixpoint();
4601       return;
4602     }
4603 
4604     // You cannot "capture" null in the default address space.
4605     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4606         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4607       indicateOptimisticFixpoint();
4608       return;
4609     }
4610 
4611     const Function *F =
4612         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4613 
4614     // Check what state the associated function can actually capture.
4615     if (F)
4616       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4617     else
4618       indicatePessimisticFixpoint();
4619   }
4620 
4621   /// See AbstractAttribute::updateImpl(...).
4622   ChangeStatus updateImpl(Attributor &A) override;
4623 
4624   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4625   virtual void
4626   getDeducedAttributes(LLVMContext &Ctx,
4627                        SmallVectorImpl<Attribute> &Attrs) const override {
4628     if (!isAssumedNoCaptureMaybeReturned())
4629       return;
4630 
4631     if (isArgumentPosition()) {
4632       if (isAssumedNoCapture())
4633         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4634       else if (ManifestInternal)
4635         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4636     }
4637   }
4638 
4639   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4640   /// depending on the ability of the function associated with \p IRP to capture
4641   /// state in memory and through "returning/throwing", respectively.
4642   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4643                                                    const Function &F,
4644                                                    BitIntegerState &State) {
4645     // TODO: Once we have memory behavior attributes we should use them here.
4646 
4647     // If we know we cannot communicate or write to memory, we do not care about
4648     // ptr2int anymore.
4649     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4650         F.getReturnType()->isVoidTy()) {
4651       State.addKnownBits(NO_CAPTURE);
4652       return;
4653     }
4654 
4655     // A function cannot capture state in memory if it only reads memory, it can
4656     // however return/throw state and the state might be influenced by the
4657     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4658     if (F.onlyReadsMemory())
4659       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4660 
4661     // A function cannot communicate state back if it does not through
4662     // exceptions and doesn not return values.
4663     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4664       State.addKnownBits(NOT_CAPTURED_IN_RET);
4665 
4666     // Check existing "returned" attributes.
4667     int ArgNo = IRP.getCalleeArgNo();
4668     if (F.doesNotThrow() && ArgNo >= 0) {
4669       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4670         if (F.hasParamAttribute(u, Attribute::Returned)) {
4671           if (u == unsigned(ArgNo))
4672             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4673           else if (F.onlyReadsMemory())
4674             State.addKnownBits(NO_CAPTURE);
4675           else
4676             State.addKnownBits(NOT_CAPTURED_IN_RET);
4677           break;
4678         }
4679     }
4680   }
4681 
4682   /// See AbstractState::getAsStr().
4683   const std::string getAsStr() const override {
4684     if (isKnownNoCapture())
4685       return "known not-captured";
4686     if (isAssumedNoCapture())
4687       return "assumed not-captured";
4688     if (isKnownNoCaptureMaybeReturned())
4689       return "known not-captured-maybe-returned";
4690     if (isAssumedNoCaptureMaybeReturned())
4691       return "assumed not-captured-maybe-returned";
4692     return "assumed-captured";
4693   }
4694 };
4695 
4696 /// Attributor-aware capture tracker.
4697 struct AACaptureUseTracker final : public CaptureTracker {
4698 
4699   /// Create a capture tracker that can lookup in-flight abstract attributes
4700   /// through the Attributor \p A.
4701   ///
4702   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4703   /// search is stopped. If a use leads to a return instruction,
4704   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4705   /// If a use leads to a ptr2int which may capture the value,
4706   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4707   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4708   /// set. All values in \p PotentialCopies are later tracked as well. For every
4709   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4710   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4711   /// conservatively set to true.
4712   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4713                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4714                       SmallSetVector<Value *, 4> &PotentialCopies,
4715                       unsigned &RemainingUsesToExplore)
4716       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4717         PotentialCopies(PotentialCopies),
4718         RemainingUsesToExplore(RemainingUsesToExplore) {}
4719 
4720   /// Determine if \p V maybe captured. *Also updates the state!*
4721   bool valueMayBeCaptured(const Value *V) {
4722     if (V->getType()->isPointerTy()) {
4723       PointerMayBeCaptured(V, this);
4724     } else {
4725       State.indicatePessimisticFixpoint();
4726     }
4727     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4728   }
4729 
4730   /// See CaptureTracker::tooManyUses().
4731   void tooManyUses() override {
4732     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4733   }
4734 
4735   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4736     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4737       return true;
4738     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4739         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4740     return DerefAA.getAssumedDereferenceableBytes();
4741   }
4742 
4743   /// See CaptureTracker::captured(...).
4744   bool captured(const Use *U) override {
4745     Instruction *UInst = cast<Instruction>(U->getUser());
4746     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4747                       << "\n");
4748 
4749     // Because we may reuse the tracker multiple times we keep track of the
4750     // number of explored uses ourselves as well.
4751     if (RemainingUsesToExplore-- == 0) {
4752       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4753       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4754                           /* Return */ true);
4755     }
4756 
4757     // Deal with ptr2int by following uses.
4758     if (isa<PtrToIntInst>(UInst)) {
4759       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4760       return valueMayBeCaptured(UInst);
4761     }
4762 
4763     // For stores we check if we can follow the value through memory or not.
4764     if (auto *SI = dyn_cast<StoreInst>(UInst)) {
4765       if (SI->isVolatile())
4766         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4767                             /* Return */ false);
4768       bool UsedAssumedInformation = false;
4769       if (!AA::getPotentialCopiesOfStoredValue(
4770               A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation))
4771         return isCapturedIn(/* Memory */ true, /* Integer */ false,
4772                             /* Return */ false);
4773       // Not captured directly, potential copies will be checked.
4774       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4775                           /* Return */ false);
4776     }
4777 
4778     // Explicitly catch return instructions.
4779     if (isa<ReturnInst>(UInst)) {
4780       if (UInst->getFunction() == NoCaptureAA.getAnchorScope())
4781         return isCapturedIn(/* Memory */ false, /* Integer */ false,
4782                             /* Return */ true);
4783       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4784                           /* Return */ true);
4785     }
4786 
4787     // For now we only use special logic for call sites. However, the tracker
4788     // itself knows about a lot of other non-capturing cases already.
4789     auto *CB = dyn_cast<CallBase>(UInst);
4790     if (!CB || !CB->isArgOperand(U))
4791       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4792                           /* Return */ true);
4793 
4794     unsigned ArgNo = CB->getArgOperandNo(U);
4795     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4796     // If we have a abstract no-capture attribute for the argument we can use
4797     // it to justify a non-capture attribute here. This allows recursion!
4798     auto &ArgNoCaptureAA =
4799         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4800     if (ArgNoCaptureAA.isAssumedNoCapture())
4801       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4802                           /* Return */ false);
4803     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4804       addPotentialCopy(*CB);
4805       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4806                           /* Return */ false);
4807     }
4808 
4809     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4810     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4811                         /* Return */ true);
4812   }
4813 
4814   /// Register \p CS as potential copy of the value we are checking.
4815   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4816 
4817   /// See CaptureTracker::shouldExplore(...).
4818   bool shouldExplore(const Use *U) override {
4819     // Check liveness and ignore droppable users.
4820     bool UsedAssumedInformation = false;
4821     return !U->getUser()->isDroppable() &&
4822            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4823                             UsedAssumedInformation);
4824   }
4825 
4826   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4827   /// \p CapturedInRet, then return the appropriate value for use in the
4828   /// CaptureTracker::captured() interface.
4829   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4830                     bool CapturedInRet) {
4831     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4832                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4833     if (CapturedInMem)
4834       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4835     if (CapturedInInt)
4836       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4837     if (CapturedInRet)
4838       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4839     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4840   }
4841 
4842 private:
4843   /// The attributor providing in-flight abstract attributes.
4844   Attributor &A;
4845 
4846   /// The abstract attribute currently updated.
4847   AANoCapture &NoCaptureAA;
4848 
4849   /// The abstract liveness state.
4850   const AAIsDead &IsDeadAA;
4851 
4852   /// The state currently updated.
4853   AANoCapture::StateType &State;
4854 
4855   /// Set of potential copies of the tracked value.
4856   SmallSetVector<Value *, 4> &PotentialCopies;
4857 
4858   /// Global counter to limit the number of explored uses.
4859   unsigned &RemainingUsesToExplore;
4860 };
4861 
4862 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4863   const IRPosition &IRP = getIRPosition();
4864   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4865                                   : &IRP.getAssociatedValue();
4866   if (!V)
4867     return indicatePessimisticFixpoint();
4868 
4869   const Function *F =
4870       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4871   assert(F && "Expected a function!");
4872   const IRPosition &FnPos = IRPosition::function(*F);
4873   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4874 
4875   AANoCapture::StateType T;
4876 
4877   // Readonly means we cannot capture through memory.
4878   const auto &FnMemAA =
4879       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4880   if (FnMemAA.isAssumedReadOnly()) {
4881     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4882     if (FnMemAA.isKnownReadOnly())
4883       addKnownBits(NOT_CAPTURED_IN_MEM);
4884     else
4885       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4886   }
4887 
4888   // Make sure all returned values are different than the underlying value.
4889   // TODO: we could do this in a more sophisticated way inside
4890   //       AAReturnedValues, e.g., track all values that escape through returns
4891   //       directly somehow.
4892   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4893     bool SeenConstant = false;
4894     for (auto &It : RVAA.returned_values()) {
4895       if (isa<Constant>(It.first)) {
4896         if (SeenConstant)
4897           return false;
4898         SeenConstant = true;
4899       } else if (!isa<Argument>(It.first) ||
4900                  It.first == getAssociatedArgument())
4901         return false;
4902     }
4903     return true;
4904   };
4905 
4906   const auto &NoUnwindAA =
4907       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4908   if (NoUnwindAA.isAssumedNoUnwind()) {
4909     bool IsVoidTy = F->getReturnType()->isVoidTy();
4910     const AAReturnedValues *RVAA =
4911         IsVoidTy ? nullptr
4912                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4913 
4914                                                  DepClassTy::OPTIONAL);
4915     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4916       T.addKnownBits(NOT_CAPTURED_IN_RET);
4917       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4918         return ChangeStatus::UNCHANGED;
4919       if (NoUnwindAA.isKnownNoUnwind() &&
4920           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4921         addKnownBits(NOT_CAPTURED_IN_RET);
4922         if (isKnown(NOT_CAPTURED_IN_MEM))
4923           return indicateOptimisticFixpoint();
4924       }
4925     }
4926   }
4927 
4928   // Use the CaptureTracker interface and logic with the specialized tracker,
4929   // defined in AACaptureUseTracker, that can look at in-flight abstract
4930   // attributes and directly updates the assumed state.
4931   SmallSetVector<Value *, 4> PotentialCopies;
4932   unsigned RemainingUsesToExplore =
4933       getDefaultMaxUsesToExploreForCaptureTracking();
4934   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4935                               RemainingUsesToExplore);
4936 
4937   // Check all potential copies of the associated value until we can assume
4938   // none will be captured or we have to assume at least one might be.
4939   unsigned Idx = 0;
4940   PotentialCopies.insert(V);
4941   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4942     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4943 
4944   AANoCapture::StateType &S = getState();
4945   auto Assumed = S.getAssumed();
4946   S.intersectAssumedBits(T.getAssumed());
4947   if (!isAssumedNoCaptureMaybeReturned())
4948     return indicatePessimisticFixpoint();
4949   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4950                                    : ChangeStatus::CHANGED;
4951 }
4952 
4953 /// NoCapture attribute for function arguments.
4954 struct AANoCaptureArgument final : AANoCaptureImpl {
4955   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4956       : AANoCaptureImpl(IRP, A) {}
4957 
4958   /// See AbstractAttribute::trackStatistics()
4959   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4960 };
4961 
4962 /// NoCapture attribute for call site arguments.
4963 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4964   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4965       : AANoCaptureImpl(IRP, A) {}
4966 
4967   /// See AbstractAttribute::initialize(...).
4968   void initialize(Attributor &A) override {
4969     if (Argument *Arg = getAssociatedArgument())
4970       if (Arg->hasByValAttr())
4971         indicateOptimisticFixpoint();
4972     AANoCaptureImpl::initialize(A);
4973   }
4974 
4975   /// See AbstractAttribute::updateImpl(...).
4976   ChangeStatus updateImpl(Attributor &A) override {
4977     // TODO: Once we have call site specific value information we can provide
4978     //       call site specific liveness information and then it makes
4979     //       sense to specialize attributes for call sites arguments instead of
4980     //       redirecting requests to the callee argument.
4981     Argument *Arg = getAssociatedArgument();
4982     if (!Arg)
4983       return indicatePessimisticFixpoint();
4984     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4985     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
4986     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4987   }
4988 
4989   /// See AbstractAttribute::trackStatistics()
4990   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4991 };
4992 
4993 /// NoCapture attribute for floating values.
4994 struct AANoCaptureFloating final : AANoCaptureImpl {
4995   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4996       : AANoCaptureImpl(IRP, A) {}
4997 
4998   /// See AbstractAttribute::trackStatistics()
4999   void trackStatistics() const override {
5000     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5001   }
5002 };
5003 
5004 /// NoCapture attribute for function return value.
5005 struct AANoCaptureReturned final : AANoCaptureImpl {
5006   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5007       : AANoCaptureImpl(IRP, A) {
5008     llvm_unreachable("NoCapture is not applicable to function returns!");
5009   }
5010 
5011   /// See AbstractAttribute::initialize(...).
5012   void initialize(Attributor &A) override {
5013     llvm_unreachable("NoCapture is not applicable to function returns!");
5014   }
5015 
5016   /// See AbstractAttribute::updateImpl(...).
5017   ChangeStatus updateImpl(Attributor &A) override {
5018     llvm_unreachable("NoCapture is not applicable to function returns!");
5019   }
5020 
5021   /// See AbstractAttribute::trackStatistics()
5022   void trackStatistics() const override {}
5023 };
5024 
5025 /// NoCapture attribute deduction for a call site return value.
5026 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5027   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5028       : AANoCaptureImpl(IRP, A) {}
5029 
5030   /// See AbstractAttribute::initialize(...).
5031   void initialize(Attributor &A) override {
5032     const Function *F = getAnchorScope();
5033     // Check what state the associated function can actually capture.
5034     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5035   }
5036 
5037   /// See AbstractAttribute::trackStatistics()
5038   void trackStatistics() const override {
5039     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5040   }
5041 };
5042 
5043 /// ------------------ Value Simplify Attribute ----------------------------
5044 
5045 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5046   // FIXME: Add a typecast support.
5047   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5048       SimplifiedAssociatedValue, Other, Ty);
5049   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5050     return false;
5051 
5052   LLVM_DEBUG({
5053     if (SimplifiedAssociatedValue.hasValue())
5054       dbgs() << "[ValueSimplify] is assumed to be "
5055              << **SimplifiedAssociatedValue << "\n";
5056     else
5057       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5058   });
5059   return true;
5060 }
5061 
5062 struct AAValueSimplifyImpl : AAValueSimplify {
5063   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5064       : AAValueSimplify(IRP, A) {}
5065 
5066   /// See AbstractAttribute::initialize(...).
5067   void initialize(Attributor &A) override {
5068     if (getAssociatedValue().getType()->isVoidTy())
5069       indicatePessimisticFixpoint();
5070     if (A.hasSimplificationCallback(getIRPosition()))
5071       indicatePessimisticFixpoint();
5072   }
5073 
5074   /// See AbstractAttribute::getAsStr().
5075   const std::string getAsStr() const override {
5076     LLVM_DEBUG({
5077       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5078       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5079         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5080     });
5081     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5082                           : "not-simple";
5083   }
5084 
5085   /// See AbstractAttribute::trackStatistics()
5086   void trackStatistics() const override {}
5087 
5088   /// See AAValueSimplify::getAssumedSimplifiedValue()
5089   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5090     return SimplifiedAssociatedValue;
5091   }
5092 
5093   /// Return a value we can use as replacement for the associated one, or
5094   /// nullptr if we don't have one that makes sense.
5095   Value *getReplacementValue(Attributor &A) const {
5096     Value *NewV;
5097     NewV = SimplifiedAssociatedValue.hasValue()
5098                ? SimplifiedAssociatedValue.getValue()
5099                : UndefValue::get(getAssociatedType());
5100     if (!NewV)
5101       return nullptr;
5102     NewV = AA::getWithType(*NewV, *getAssociatedType());
5103     if (!NewV || NewV == &getAssociatedValue())
5104       return nullptr;
5105     const Instruction *CtxI = getCtxI();
5106     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5107       return nullptr;
5108     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5109       return nullptr;
5110     return NewV;
5111   }
5112 
5113   /// Helper function for querying AAValueSimplify and updating candicate.
5114   /// \param IRP The value position we are trying to unify with SimplifiedValue
5115   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5116                       const IRPosition &IRP, bool Simplify = true) {
5117     bool UsedAssumedInformation = false;
5118     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5119     if (Simplify)
5120       QueryingValueSimplified =
5121           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5122     return unionAssumed(QueryingValueSimplified);
5123   }
5124 
5125   /// Returns a candidate is found or not
5126   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5127     if (!getAssociatedValue().getType()->isIntegerTy())
5128       return false;
5129 
5130     // This will also pass the call base context.
5131     const auto &AA =
5132         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5133 
5134     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5135 
5136     if (!COpt.hasValue()) {
5137       SimplifiedAssociatedValue = llvm::None;
5138       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5139       return true;
5140     }
5141     if (auto *C = COpt.getValue()) {
5142       SimplifiedAssociatedValue = C;
5143       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5144       return true;
5145     }
5146     return false;
5147   }
5148 
5149   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5150     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5151       return true;
5152     if (askSimplifiedValueFor<AAPotentialValues>(A))
5153       return true;
5154     return false;
5155   }
5156 
5157   /// See AbstractAttribute::manifest(...).
5158   ChangeStatus manifest(Attributor &A) override {
5159     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5160     if (getAssociatedValue().user_empty())
5161       return Changed;
5162 
5163     if (auto *NewV = getReplacementValue(A)) {
5164       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5165                         << *NewV << " :: " << *this << "\n");
5166       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5167         Changed = ChangeStatus::CHANGED;
5168     }
5169 
5170     return Changed | AAValueSimplify::manifest(A);
5171   }
5172 
5173   /// See AbstractState::indicatePessimisticFixpoint(...).
5174   ChangeStatus indicatePessimisticFixpoint() override {
5175     SimplifiedAssociatedValue = &getAssociatedValue();
5176     return AAValueSimplify::indicatePessimisticFixpoint();
5177   }
5178 
5179   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5180                          LoadInst &L, function_ref<bool(Value &)> Union) {
5181     auto UnionWrapper = [&](Value &V, Value &Obj) {
5182       if (isa<AllocaInst>(Obj))
5183         return Union(V);
5184       if (!AA::isDynamicallyUnique(A, AA, V))
5185         return false;
5186       if (!AA::isValidAtPosition(V, L, A.getInfoCache()))
5187         return false;
5188       return Union(V);
5189     };
5190 
5191     Value &Ptr = *L.getPointerOperand();
5192     SmallVector<Value *, 8> Objects;
5193     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5194       return false;
5195 
5196     for (Value *Obj : Objects) {
5197       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5198       if (isa<UndefValue>(Obj))
5199         continue;
5200       if (isa<ConstantPointerNull>(Obj)) {
5201         // A null pointer access can be undefined but any offset from null may
5202         // be OK. We do not try to optimize the latter.
5203         bool UsedAssumedInformation = false;
5204         if (!NullPointerIsDefined(L.getFunction(),
5205                                   Ptr.getType()->getPointerAddressSpace()) &&
5206             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5207           continue;
5208         return false;
5209       }
5210       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj))
5211         return false;
5212       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType());
5213       if (!InitialVal || !Union(*InitialVal))
5214         return false;
5215 
5216       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5217                            "propagation, checking accesses next.\n");
5218 
5219       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5220         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5221         if (!Acc.isWrite())
5222           return true;
5223         if (Acc.isWrittenValueYetUndetermined())
5224           return true;
5225         Value *Content = Acc.getWrittenValue();
5226         if (!Content)
5227           return false;
5228         Value *CastedContent =
5229             AA::getWithType(*Content, *AA.getAssociatedType());
5230         if (!CastedContent)
5231           return false;
5232         if (IsExact)
5233           return UnionWrapper(*CastedContent, *Obj);
5234         if (auto *C = dyn_cast<Constant>(CastedContent))
5235           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5236             return UnionWrapper(*CastedContent, *Obj);
5237         return false;
5238       };
5239 
5240       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5241                                            DepClassTy::REQUIRED);
5242       if (!PI.forallInterferingAccesses(L, CheckAccess))
5243         return false;
5244     }
5245     return true;
5246   }
5247 };
5248 
5249 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5250   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5251       : AAValueSimplifyImpl(IRP, A) {}
5252 
5253   void initialize(Attributor &A) override {
5254     AAValueSimplifyImpl::initialize(A);
5255     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5256       indicatePessimisticFixpoint();
5257     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5258                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5259                 /* IgnoreSubsumingPositions */ true))
5260       indicatePessimisticFixpoint();
5261 
5262     // FIXME: This is a hack to prevent us from propagating function poiner in
5263     // the new pass manager CGSCC pass as it creates call edges the
5264     // CallGraphUpdater cannot handle yet.
5265     Value &V = getAssociatedValue();
5266     if (V.getType()->isPointerTy() &&
5267         V.getType()->getPointerElementType()->isFunctionTy() &&
5268         !A.isModulePass())
5269       indicatePessimisticFixpoint();
5270   }
5271 
5272   /// See AbstractAttribute::updateImpl(...).
5273   ChangeStatus updateImpl(Attributor &A) override {
5274     // Byval is only replacable if it is readonly otherwise we would write into
5275     // the replaced value and not the copy that byval creates implicitly.
5276     Argument *Arg = getAssociatedArgument();
5277     if (Arg->hasByValAttr()) {
5278       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5279       //       there is no race by not copying a constant byval.
5280       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5281                                                        DepClassTy::REQUIRED);
5282       if (!MemAA.isAssumedReadOnly())
5283         return indicatePessimisticFixpoint();
5284     }
5285 
5286     auto Before = SimplifiedAssociatedValue;
5287 
5288     auto PredForCallSite = [&](AbstractCallSite ACS) {
5289       const IRPosition &ACSArgPos =
5290           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5291       // Check if a coresponding argument was found or if it is on not
5292       // associated (which can happen for callback calls).
5293       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5294         return false;
5295 
5296       // Simplify the argument operand explicitly and check if the result is
5297       // valid in the current scope. This avoids refering to simplified values
5298       // in other functions, e.g., we don't want to say a an argument in a
5299       // static function is actually an argument in a different function.
5300       bool UsedAssumedInformation = false;
5301       Optional<Constant *> SimpleArgOp =
5302           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5303       if (!SimpleArgOp.hasValue())
5304         return true;
5305       if (!SimpleArgOp.getValue())
5306         return false;
5307       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5308         return false;
5309       return unionAssumed(*SimpleArgOp);
5310     };
5311 
5312     // Generate a answer specific to a call site context.
5313     bool Success;
5314     bool AllCallSitesKnown;
5315     if (hasCallBaseContext() &&
5316         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5317       Success = PredForCallSite(
5318           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5319     else
5320       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5321                                        AllCallSitesKnown);
5322 
5323     if (!Success)
5324       if (!askSimplifiedValueForOtherAAs(A))
5325         return indicatePessimisticFixpoint();
5326 
5327     // If a candicate was found in this update, return CHANGED.
5328     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5329                                                : ChangeStatus ::CHANGED;
5330   }
5331 
5332   /// See AbstractAttribute::trackStatistics()
5333   void trackStatistics() const override {
5334     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5335   }
5336 };
5337 
5338 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5339   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5340       : AAValueSimplifyImpl(IRP, A) {}
5341 
5342   /// See AAValueSimplify::getAssumedSimplifiedValue()
5343   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5344     if (!isValidState())
5345       return nullptr;
5346     return SimplifiedAssociatedValue;
5347   }
5348 
5349   /// See AbstractAttribute::updateImpl(...).
5350   ChangeStatus updateImpl(Attributor &A) override {
5351     auto Before = SimplifiedAssociatedValue;
5352 
5353     auto PredForReturned = [&](Value &V) {
5354       return checkAndUpdate(A, *this,
5355                             IRPosition::value(V, getCallBaseContext()));
5356     };
5357 
5358     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5359       if (!askSimplifiedValueForOtherAAs(A))
5360         return indicatePessimisticFixpoint();
5361 
5362     // If a candicate was found in this update, return CHANGED.
5363     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5364                                                : ChangeStatus ::CHANGED;
5365   }
5366 
5367   ChangeStatus manifest(Attributor &A) override {
5368     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5369 
5370     if (auto *NewV = getReplacementValue(A)) {
5371       auto PredForReturned =
5372           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5373             for (ReturnInst *RI : RetInsts) {
5374               Value *ReturnedVal = RI->getReturnValue();
5375               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5376                 return true;
5377               assert(RI->getFunction() == getAnchorScope() &&
5378                      "ReturnInst in wrong function!");
5379               LLVM_DEBUG(dbgs()
5380                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5381                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5382               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5383                 Changed = ChangeStatus::CHANGED;
5384             }
5385             return true;
5386           };
5387       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5388     }
5389 
5390     return Changed | AAValueSimplify::manifest(A);
5391   }
5392 
5393   /// See AbstractAttribute::trackStatistics()
5394   void trackStatistics() const override {
5395     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5396   }
5397 };
5398 
5399 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5400   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5401       : AAValueSimplifyImpl(IRP, A) {}
5402 
5403   /// See AbstractAttribute::initialize(...).
5404   void initialize(Attributor &A) override {
5405     AAValueSimplifyImpl::initialize(A);
5406     Value &V = getAnchorValue();
5407 
5408     // TODO: add other stuffs
5409     if (isa<Constant>(V))
5410       indicatePessimisticFixpoint();
5411   }
5412 
5413   /// Check if \p Cmp is a comparison we can simplify.
5414   ///
5415   /// We handle multiple cases, one in which at least one operand is an
5416   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5417   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5418   /// will be updated.
5419   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5420     auto Union = [&](Value &V) {
5421       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5422           SimplifiedAssociatedValue, &V, V.getType());
5423       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5424     };
5425 
5426     Value *LHS = Cmp.getOperand(0);
5427     Value *RHS = Cmp.getOperand(1);
5428 
5429     // Simplify the operands first.
5430     bool UsedAssumedInformation = false;
5431     const auto &SimplifiedLHS =
5432         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5433                                *this, UsedAssumedInformation);
5434     if (!SimplifiedLHS.hasValue())
5435       return true;
5436     if (!SimplifiedLHS.getValue())
5437       return false;
5438     LHS = *SimplifiedLHS;
5439 
5440     const auto &SimplifiedRHS =
5441         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5442                                *this, UsedAssumedInformation);
5443     if (!SimplifiedRHS.hasValue())
5444       return true;
5445     if (!SimplifiedRHS.getValue())
5446       return false;
5447     RHS = *SimplifiedRHS;
5448 
5449     LLVMContext &Ctx = Cmp.getContext();
5450     // Handle the trivial case first in which we don't even need to think about
5451     // null or non-null.
5452     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5453       Constant *NewVal =
5454           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5455       if (!Union(*NewVal))
5456         return false;
5457       if (!UsedAssumedInformation)
5458         indicateOptimisticFixpoint();
5459       return true;
5460     }
5461 
5462     // From now on we only handle equalities (==, !=).
5463     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5464     if (!ICmp || !ICmp->isEquality())
5465       return false;
5466 
5467     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5468     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5469     if (!LHSIsNull && !RHSIsNull)
5470       return false;
5471 
5472     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5473     // non-nullptr operand and if we assume it's non-null we can conclude the
5474     // result of the comparison.
5475     assert((LHSIsNull || RHSIsNull) &&
5476            "Expected nullptr versus non-nullptr comparison at this point");
5477 
5478     // The index is the operand that we assume is not null.
5479     unsigned PtrIdx = LHSIsNull;
5480     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5481         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5482         DepClassTy::REQUIRED);
5483     if (!PtrNonNullAA.isAssumedNonNull())
5484       return false;
5485     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5486 
5487     // The new value depends on the predicate, true for != and false for ==.
5488     Constant *NewVal = ConstantInt::get(
5489         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5490     if (!Union(*NewVal))
5491       return false;
5492 
5493     if (!UsedAssumedInformation)
5494       indicateOptimisticFixpoint();
5495 
5496     return true;
5497   }
5498 
5499   bool updateWithLoad(Attributor &A, LoadInst &L) {
5500     auto Union = [&](Value &V) {
5501       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5502           SimplifiedAssociatedValue, &V, L.getType());
5503       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5504     };
5505     return handleLoad(A, *this, L, Union);
5506   }
5507 
5508   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
5509   /// simplify any operand of the instruction \p I. Return true if successful,
5510   /// in that case SimplifiedAssociatedValue will be updated.
5511   bool handleGenericInst(Attributor &A, Instruction &I) {
5512     bool SomeSimplified = false;
5513     bool UsedAssumedInformation = false;
5514 
5515     SmallVector<Value *, 8> NewOps(I.getNumOperands());
5516     int Idx = 0;
5517     for (Value *Op : I.operands()) {
5518       const auto &SimplifiedOp =
5519           A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()),
5520                                  *this, UsedAssumedInformation);
5521       // If we are not sure about any operand we are not sure about the entire
5522       // instruction, we'll wait.
5523       if (!SimplifiedOp.hasValue())
5524         return true;
5525 
5526       if (SimplifiedOp.getValue())
5527         NewOps[Idx] = SimplifiedOp.getValue();
5528       else
5529         NewOps[Idx] = Op;
5530 
5531       SomeSimplified |= (NewOps[Idx] != Op);
5532       ++Idx;
5533     }
5534 
5535     // We won't bother with the InstSimplify interface if we didn't simplify any
5536     // operand ourselves.
5537     if (!SomeSimplified)
5538       return false;
5539 
5540     InformationCache &InfoCache = A.getInfoCache();
5541     Function *F = I.getFunction();
5542     const auto *DT =
5543         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
5544     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5545     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
5546     OptimizationRemarkEmitter *ORE = nullptr;
5547 
5548     const DataLayout &DL = I.getModule()->getDataLayout();
5549     SimplifyQuery Q(DL, TLI, DT, AC, &I);
5550     if (Value *SimplifiedI =
5551             SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) {
5552       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5553           SimplifiedAssociatedValue, SimplifiedI, I.getType());
5554       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5555     }
5556     return false;
5557   }
5558 
5559   /// See AbstractAttribute::updateImpl(...).
5560   ChangeStatus updateImpl(Attributor &A) override {
5561     auto Before = SimplifiedAssociatedValue;
5562 
5563     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5564                             bool Stripped) -> bool {
5565       auto &AA = A.getAAFor<AAValueSimplify>(
5566           *this, IRPosition::value(V, getCallBaseContext()),
5567           DepClassTy::REQUIRED);
5568       if (!Stripped && this == &AA) {
5569 
5570         if (auto *I = dyn_cast<Instruction>(&V)) {
5571           if (auto *LI = dyn_cast<LoadInst>(&V))
5572             if (updateWithLoad(A, *LI))
5573               return true;
5574           if (auto *Cmp = dyn_cast<CmpInst>(&V))
5575             if (handleCmp(A, *Cmp))
5576               return true;
5577           if (handleGenericInst(A, *I))
5578             return true;
5579         }
5580         // TODO: Look the instruction and check recursively.
5581 
5582         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5583                           << "\n");
5584         return false;
5585       }
5586       return checkAndUpdate(A, *this,
5587                             IRPosition::value(V, getCallBaseContext()));
5588     };
5589 
5590     bool Dummy = false;
5591     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5592                                      VisitValueCB, getCtxI(),
5593                                      /* UseValueSimplify */ false))
5594       if (!askSimplifiedValueForOtherAAs(A))
5595         return indicatePessimisticFixpoint();
5596 
5597     // If a candicate was found in this update, return CHANGED.
5598     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5599                                                : ChangeStatus ::CHANGED;
5600   }
5601 
5602   /// See AbstractAttribute::trackStatistics()
5603   void trackStatistics() const override {
5604     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5605   }
5606 };
5607 
5608 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5609   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5610       : AAValueSimplifyImpl(IRP, A) {}
5611 
5612   /// See AbstractAttribute::initialize(...).
5613   void initialize(Attributor &A) override {
5614     SimplifiedAssociatedValue = nullptr;
5615     indicateOptimisticFixpoint();
5616   }
5617   /// See AbstractAttribute::initialize(...).
5618   ChangeStatus updateImpl(Attributor &A) override {
5619     llvm_unreachable(
5620         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5621   }
5622   /// See AbstractAttribute::trackStatistics()
5623   void trackStatistics() const override {
5624     STATS_DECLTRACK_FN_ATTR(value_simplify)
5625   }
5626 };
5627 
5628 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5629   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5630       : AAValueSimplifyFunction(IRP, A) {}
5631   /// See AbstractAttribute::trackStatistics()
5632   void trackStatistics() const override {
5633     STATS_DECLTRACK_CS_ATTR(value_simplify)
5634   }
5635 };
5636 
5637 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5638   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5639       : AAValueSimplifyImpl(IRP, A) {}
5640 
5641   void initialize(Attributor &A) override {
5642     AAValueSimplifyImpl::initialize(A);
5643     if (!getAssociatedFunction())
5644       indicatePessimisticFixpoint();
5645   }
5646 
5647   /// See AbstractAttribute::updateImpl(...).
5648   ChangeStatus updateImpl(Attributor &A) override {
5649     auto Before = SimplifiedAssociatedValue;
5650     auto &RetAA = A.getAAFor<AAReturnedValues>(
5651         *this, IRPosition::function(*getAssociatedFunction()),
5652         DepClassTy::REQUIRED);
5653     auto PredForReturned =
5654         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5655           bool UsedAssumedInformation = false;
5656           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5657               &RetVal, *cast<CallBase>(getCtxI()), *this,
5658               UsedAssumedInformation);
5659           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5660               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5661           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5662         };
5663     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5664       if (!askSimplifiedValueForOtherAAs(A))
5665         return indicatePessimisticFixpoint();
5666     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5667                                                : ChangeStatus ::CHANGED;
5668   }
5669 
5670   void trackStatistics() const override {
5671     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5672   }
5673 };
5674 
5675 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5676   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5677       : AAValueSimplifyFloating(IRP, A) {}
5678 
5679   /// See AbstractAttribute::manifest(...).
5680   ChangeStatus manifest(Attributor &A) override {
5681     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5682 
5683     if (auto *NewV = getReplacementValue(A)) {
5684       Use &U = cast<CallBase>(&getAnchorValue())
5685                    ->getArgOperandUse(getCallSiteArgNo());
5686       if (A.changeUseAfterManifest(U, *NewV))
5687         Changed = ChangeStatus::CHANGED;
5688     }
5689 
5690     return Changed | AAValueSimplify::manifest(A);
5691   }
5692 
5693   void trackStatistics() const override {
5694     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5695   }
5696 };
5697 
5698 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5699 struct AAHeapToStackFunction final : public AAHeapToStack {
5700 
5701   struct AllocationInfo {
5702     /// The call that allocates the memory.
5703     CallBase *const CB;
5704 
5705     /// The kind of allocation.
5706     const enum class AllocationKind {
5707       MALLOC,
5708       CALLOC,
5709       ALIGNED_ALLOC,
5710     } Kind;
5711 
5712     /// The library function id for the allocation.
5713     LibFunc LibraryFunctionId = NotLibFunc;
5714 
5715     /// The status wrt. a rewrite.
5716     enum {
5717       STACK_DUE_TO_USE,
5718       STACK_DUE_TO_FREE,
5719       INVALID,
5720     } Status = STACK_DUE_TO_USE;
5721 
5722     /// Flag to indicate if we encountered a use that might free this allocation
5723     /// but which is not in the deallocation infos.
5724     bool HasPotentiallyFreeingUnknownUses = false;
5725 
5726     /// The set of free calls that use this allocation.
5727     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5728   };
5729 
5730   struct DeallocationInfo {
5731     /// The call that deallocates the memory.
5732     CallBase *const CB;
5733 
5734     /// Flag to indicate if we don't know all objects this deallocation might
5735     /// free.
5736     bool MightFreeUnknownObjects = false;
5737 
5738     /// The set of allocation calls that are potentially freed.
5739     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5740   };
5741 
5742   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5743       : AAHeapToStack(IRP, A) {}
5744 
5745   ~AAHeapToStackFunction() {
5746     // Ensure we call the destructor so we release any memory allocated in the
5747     // sets.
5748     for (auto &It : AllocationInfos)
5749       It.getSecond()->~AllocationInfo();
5750     for (auto &It : DeallocationInfos)
5751       It.getSecond()->~DeallocationInfo();
5752   }
5753 
5754   void initialize(Attributor &A) override {
5755     AAHeapToStack::initialize(A);
5756 
5757     const Function *F = getAnchorScope();
5758     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5759 
5760     auto AllocationIdentifierCB = [&](Instruction &I) {
5761       CallBase *CB = dyn_cast<CallBase>(&I);
5762       if (!CB)
5763         return true;
5764       if (isFreeCall(CB, TLI)) {
5765         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5766         return true;
5767       }
5768       bool IsMalloc = isMallocLikeFn(CB, TLI);
5769       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5770       bool IsCalloc =
5771           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5772       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5773         return true;
5774       auto Kind =
5775           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5776                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5777                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5778 
5779       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5780       AllocationInfos[CB] = AI;
5781       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5782       return true;
5783     };
5784 
5785     bool UsedAssumedInformation = false;
5786     bool Success = A.checkForAllCallLikeInstructions(
5787         AllocationIdentifierCB, *this, UsedAssumedInformation,
5788         /* CheckBBLivenessOnly */ false,
5789         /* CheckPotentiallyDead */ true);
5790     (void)Success;
5791     assert(Success && "Did not expect the call base visit callback to fail!");
5792   }
5793 
5794   const std::string getAsStr() const override {
5795     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5796     for (const auto &It : AllocationInfos) {
5797       if (It.second->Status == AllocationInfo::INVALID)
5798         ++NumInvalidMallocs;
5799       else
5800         ++NumH2SMallocs;
5801     }
5802     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5803            std::to_string(NumInvalidMallocs);
5804   }
5805 
5806   /// See AbstractAttribute::trackStatistics().
5807   void trackStatistics() const override {
5808     STATS_DECL(
5809         MallocCalls, Function,
5810         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5811     for (auto &It : AllocationInfos)
5812       if (It.second->Status != AllocationInfo::INVALID)
5813         ++BUILD_STAT_NAME(MallocCalls, Function);
5814   }
5815 
5816   bool isAssumedHeapToStack(const CallBase &CB) const override {
5817     if (isValidState())
5818       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5819         return AI->Status != AllocationInfo::INVALID;
5820     return false;
5821   }
5822 
5823   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5824     if (!isValidState())
5825       return false;
5826 
5827     for (auto &It : AllocationInfos) {
5828       AllocationInfo &AI = *It.second;
5829       if (AI.Status == AllocationInfo::INVALID)
5830         continue;
5831 
5832       if (AI.PotentialFreeCalls.count(&CB))
5833         return true;
5834     }
5835 
5836     return false;
5837   }
5838 
5839   ChangeStatus manifest(Attributor &A) override {
5840     assert(getState().isValidState() &&
5841            "Attempted to manifest an invalid state!");
5842 
5843     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5844     Function *F = getAnchorScope();
5845     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5846 
5847     for (auto &It : AllocationInfos) {
5848       AllocationInfo &AI = *It.second;
5849       if (AI.Status == AllocationInfo::INVALID)
5850         continue;
5851 
5852       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5853         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5854         A.deleteAfterManifest(*FreeCall);
5855         HasChanged = ChangeStatus::CHANGED;
5856       }
5857 
5858       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5859                         << "\n");
5860 
5861       auto Remark = [&](OptimizationRemark OR) {
5862         LibFunc IsAllocShared;
5863         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5864           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5865             return OR << "Moving globalized variable to the stack.";
5866         return OR << "Moving memory allocation from the heap to the stack.";
5867       };
5868       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5869         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5870       else
5871         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5872 
5873       Value *Size;
5874       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5875       if (SizeAPI.hasValue()) {
5876         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5877       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5878         auto *Num = AI.CB->getOperand(0);
5879         auto *SizeT = AI.CB->getOperand(1);
5880         IRBuilder<> B(AI.CB);
5881         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5882       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5883         Size = AI.CB->getOperand(1);
5884       } else {
5885         Size = AI.CB->getOperand(0);
5886       }
5887 
5888       Align Alignment(1);
5889       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5890         Optional<APInt> AlignmentAPI =
5891             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5892         assert(AlignmentAPI.hasValue() &&
5893                "Expected an alignment during manifest!");
5894         Alignment =
5895             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5896       }
5897 
5898       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5899       Instruction *Alloca =
5900           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5901                          "", AI.CB->getNextNode());
5902 
5903       if (Alloca->getType() != AI.CB->getType())
5904         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5905                                  Alloca->getNextNode());
5906 
5907       A.changeValueAfterManifest(*AI.CB, *Alloca);
5908 
5909       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5910         auto *NBB = II->getNormalDest();
5911         BranchInst::Create(NBB, AI.CB->getParent());
5912         A.deleteAfterManifest(*AI.CB);
5913       } else {
5914         A.deleteAfterManifest(*AI.CB);
5915       }
5916 
5917       // Zero out the allocated memory if it was a calloc.
5918       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5919         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5920                                    Alloca->getNextNode());
5921         Value *Ops[] = {
5922             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5923             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5924 
5925         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5926         Module *M = F->getParent();
5927         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5928         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5929       }
5930       HasChanged = ChangeStatus::CHANGED;
5931     }
5932 
5933     return HasChanged;
5934   }
5935 
5936   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5937                            Value &V) {
5938     bool UsedAssumedInformation = false;
5939     Optional<Constant *> SimpleV =
5940         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5941     if (!SimpleV.hasValue())
5942       return APInt(64, 0);
5943     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5944       return CI->getValue();
5945     return llvm::None;
5946   }
5947 
5948   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5949                           AllocationInfo &AI) {
5950 
5951     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
5952       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
5953 
5954     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
5955       // Only if the alignment is also constant we return a size.
5956       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
5957                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
5958                  : llvm::None;
5959 
5960     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
5961            "Expected only callocs are left");
5962     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
5963     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
5964     if (!Num.hasValue() || !Size.hasValue())
5965       return llvm::None;
5966     bool Overflow = false;
5967     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
5968     return Overflow ? llvm::None : Size;
5969   }
5970 
5971   /// Collection of all malloc-like calls in a function with associated
5972   /// information.
5973   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
5974 
5975   /// Collection of all free-like calls in a function with associated
5976   /// information.
5977   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
5978 
5979   ChangeStatus updateImpl(Attributor &A) override;
5980 };
5981 
5982 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
5983   ChangeStatus Changed = ChangeStatus::UNCHANGED;
5984   const Function *F = getAnchorScope();
5985 
5986   const auto &LivenessAA =
5987       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
5988 
5989   MustBeExecutedContextExplorer &Explorer =
5990       A.getInfoCache().getMustBeExecutedContextExplorer();
5991 
5992   bool StackIsAccessibleByOtherThreads =
5993       A.getInfoCache().stackIsAccessibleByOtherThreads();
5994 
5995   // Flag to ensure we update our deallocation information at most once per
5996   // updateImpl call and only if we use the free check reasoning.
5997   bool HasUpdatedFrees = false;
5998 
5999   auto UpdateFrees = [&]() {
6000     HasUpdatedFrees = true;
6001 
6002     for (auto &It : DeallocationInfos) {
6003       DeallocationInfo &DI = *It.second;
6004       // For now we cannot use deallocations that have unknown inputs, skip
6005       // them.
6006       if (DI.MightFreeUnknownObjects)
6007         continue;
6008 
6009       // No need to analyze dead calls, ignore them instead.
6010       bool UsedAssumedInformation = false;
6011       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6012                           /* CheckBBLivenessOnly */ true))
6013         continue;
6014 
6015       // Use the optimistic version to get the freed objects, ignoring dead
6016       // branches etc.
6017       SmallVector<Value *, 8> Objects;
6018       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
6019                                            *this, DI.CB)) {
6020         LLVM_DEBUG(
6021             dbgs()
6022             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
6023         DI.MightFreeUnknownObjects = true;
6024         continue;
6025       }
6026 
6027       // Check each object explicitly.
6028       for (auto *Obj : Objects) {
6029         // Free of null and undef can be ignored as no-ops (or UB in the latter
6030         // case).
6031         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6032           continue;
6033 
6034         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6035         if (!ObjCB) {
6036           LLVM_DEBUG(dbgs()
6037                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
6038           DI.MightFreeUnknownObjects = true;
6039           continue;
6040         }
6041 
6042         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6043         if (!AI) {
6044           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6045                             << "\n");
6046           DI.MightFreeUnknownObjects = true;
6047           continue;
6048         }
6049 
6050         DI.PotentialAllocationCalls.insert(ObjCB);
6051       }
6052     }
6053   };
6054 
6055   auto FreeCheck = [&](AllocationInfo &AI) {
6056     // If the stack is not accessible by other threads, the "must-free" logic
6057     // doesn't apply as the pointer could be shared and needs to be places in
6058     // "shareable" memory.
6059     if (!StackIsAccessibleByOtherThreads) {
6060       auto &NoSyncAA =
6061           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6062       if (!NoSyncAA.isAssumedNoSync()) {
6063         LLVM_DEBUG(
6064             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6065                       "other threads and function is not nosync:\n");
6066         return false;
6067       }
6068     }
6069     if (!HasUpdatedFrees)
6070       UpdateFrees();
6071 
6072     // TODO: Allow multi exit functions that have different free calls.
6073     if (AI.PotentialFreeCalls.size() != 1) {
6074       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6075                         << AI.PotentialFreeCalls.size() << "\n");
6076       return false;
6077     }
6078     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6079     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6080     if (!DI) {
6081       LLVM_DEBUG(
6082           dbgs() << "[H2S] unique free call was not known as deallocation call "
6083                  << *UniqueFree << "\n");
6084       return false;
6085     }
6086     if (DI->MightFreeUnknownObjects) {
6087       LLVM_DEBUG(
6088           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6089       return false;
6090     }
6091     if (DI->PotentialAllocationCalls.size() > 1) {
6092       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6093                         << DI->PotentialAllocationCalls.size()
6094                         << " different allocations\n");
6095       return false;
6096     }
6097     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6098       LLVM_DEBUG(
6099           dbgs()
6100           << "[H2S] unique free call not known to free this allocation but "
6101           << **DI->PotentialAllocationCalls.begin() << "\n");
6102       return false;
6103     }
6104     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6105     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6106       LLVM_DEBUG(
6107           dbgs()
6108           << "[H2S] unique free call might not be executed with the allocation "
6109           << *UniqueFree << "\n");
6110       return false;
6111     }
6112     return true;
6113   };
6114 
6115   auto UsesCheck = [&](AllocationInfo &AI) {
6116     bool ValidUsesOnly = true;
6117 
6118     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6119       Instruction *UserI = cast<Instruction>(U.getUser());
6120       if (isa<LoadInst>(UserI))
6121         return true;
6122       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6123         if (SI->getValueOperand() == U.get()) {
6124           LLVM_DEBUG(dbgs()
6125                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6126           ValidUsesOnly = false;
6127         } else {
6128           // A store into the malloc'ed memory is fine.
6129         }
6130         return true;
6131       }
6132       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6133         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6134           return true;
6135         if (DeallocationInfos.count(CB)) {
6136           AI.PotentialFreeCalls.insert(CB);
6137           return true;
6138         }
6139 
6140         unsigned ArgNo = CB->getArgOperandNo(&U);
6141 
6142         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6143             *this, IRPosition::callsite_argument(*CB, ArgNo),
6144             DepClassTy::OPTIONAL);
6145 
6146         // If a call site argument use is nofree, we are fine.
6147         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6148             *this, IRPosition::callsite_argument(*CB, ArgNo),
6149             DepClassTy::OPTIONAL);
6150 
6151         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6152         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6153         if (MaybeCaptured ||
6154             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6155              MaybeFreed)) {
6156           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6157 
6158           // Emit a missed remark if this is missed OpenMP globalization.
6159           auto Remark = [&](OptimizationRemarkMissed ORM) {
6160             return ORM
6161                    << "Could not move globalized variable to the stack. "
6162                       "Variable is potentially captured in call. Mark "
6163                       "parameter as `__attribute__((noescape))` to override.";
6164           };
6165 
6166           if (ValidUsesOnly &&
6167               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6168             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6169 
6170           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6171           ValidUsesOnly = false;
6172         }
6173         return true;
6174       }
6175 
6176       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6177           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6178         Follow = true;
6179         return true;
6180       }
6181       // Unknown user for which we can not track uses further (in a way that
6182       // makes sense).
6183       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6184       ValidUsesOnly = false;
6185       return true;
6186     };
6187     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6188       return false;
6189     return ValidUsesOnly;
6190   };
6191 
6192   // The actual update starts here. We look at all allocations and depending on
6193   // their status perform the appropriate check(s).
6194   for (auto &It : AllocationInfos) {
6195     AllocationInfo &AI = *It.second;
6196     if (AI.Status == AllocationInfo::INVALID)
6197       continue;
6198 
6199     if (MaxHeapToStackSize == -1) {
6200       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6201         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6202           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6203                             << "\n");
6204           AI.Status = AllocationInfo::INVALID;
6205           Changed = ChangeStatus::CHANGED;
6206           continue;
6207         }
6208     } else {
6209       Optional<APInt> Size = getSize(A, *this, AI);
6210       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6211         LLVM_DEBUG({
6212           if (!Size.hasValue())
6213             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6214                    << "\n";
6215           else
6216             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6217                    << MaxHeapToStackSize << "\n";
6218         });
6219 
6220         AI.Status = AllocationInfo::INVALID;
6221         Changed = ChangeStatus::CHANGED;
6222         continue;
6223       }
6224     }
6225 
6226     switch (AI.Status) {
6227     case AllocationInfo::STACK_DUE_TO_USE:
6228       if (UsesCheck(AI))
6229         continue;
6230       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6231       LLVM_FALLTHROUGH;
6232     case AllocationInfo::STACK_DUE_TO_FREE:
6233       if (FreeCheck(AI))
6234         continue;
6235       AI.Status = AllocationInfo::INVALID;
6236       Changed = ChangeStatus::CHANGED;
6237       continue;
6238     case AllocationInfo::INVALID:
6239       llvm_unreachable("Invalid allocations should never reach this point!");
6240     };
6241   }
6242 
6243   return Changed;
6244 }
6245 
6246 /// ----------------------- Privatizable Pointers ------------------------------
6247 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6248   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6249       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6250 
6251   ChangeStatus indicatePessimisticFixpoint() override {
6252     AAPrivatizablePtr::indicatePessimisticFixpoint();
6253     PrivatizableType = nullptr;
6254     return ChangeStatus::CHANGED;
6255   }
6256 
6257   /// Identify the type we can chose for a private copy of the underlying
6258   /// argument. None means it is not clear yet, nullptr means there is none.
6259   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6260 
6261   /// Return a privatizable type that encloses both T0 and T1.
6262   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6263   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6264     if (!T0.hasValue())
6265       return T1;
6266     if (!T1.hasValue())
6267       return T0;
6268     if (T0 == T1)
6269       return T0;
6270     return nullptr;
6271   }
6272 
6273   Optional<Type *> getPrivatizableType() const override {
6274     return PrivatizableType;
6275   }
6276 
6277   const std::string getAsStr() const override {
6278     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6279   }
6280 
6281 protected:
6282   Optional<Type *> PrivatizableType;
6283 };
6284 
6285 // TODO: Do this for call site arguments (probably also other values) as well.
6286 
6287 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6288   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6289       : AAPrivatizablePtrImpl(IRP, A) {}
6290 
6291   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6292   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6293     // If this is a byval argument and we know all the call sites (so we can
6294     // rewrite them), there is no need to check them explicitly.
6295     bool AllCallSitesKnown;
6296     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6297         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6298                                true, AllCallSitesKnown))
6299       return getAssociatedValue().getType()->getPointerElementType();
6300 
6301     Optional<Type *> Ty;
6302     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6303 
6304     // Make sure the associated call site argument has the same type at all call
6305     // sites and it is an allocation we know is safe to privatize, for now that
6306     // means we only allow alloca instructions.
6307     // TODO: We can additionally analyze the accesses in the callee to  create
6308     //       the type from that information instead. That is a little more
6309     //       involved and will be done in a follow up patch.
6310     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6311       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6312       // Check if a coresponding argument was found or if it is one not
6313       // associated (which can happen for callback calls).
6314       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6315         return false;
6316 
6317       // Check that all call sites agree on a type.
6318       auto &PrivCSArgAA =
6319           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6320       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6321 
6322       LLVM_DEBUG({
6323         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6324         if (CSTy.hasValue() && CSTy.getValue())
6325           CSTy.getValue()->print(dbgs());
6326         else if (CSTy.hasValue())
6327           dbgs() << "<nullptr>";
6328         else
6329           dbgs() << "<none>";
6330       });
6331 
6332       Ty = combineTypes(Ty, CSTy);
6333 
6334       LLVM_DEBUG({
6335         dbgs() << " : New Type: ";
6336         if (Ty.hasValue() && Ty.getValue())
6337           Ty.getValue()->print(dbgs());
6338         else if (Ty.hasValue())
6339           dbgs() << "<nullptr>";
6340         else
6341           dbgs() << "<none>";
6342         dbgs() << "\n";
6343       });
6344 
6345       return !Ty.hasValue() || Ty.getValue();
6346     };
6347 
6348     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6349       return nullptr;
6350     return Ty;
6351   }
6352 
6353   /// See AbstractAttribute::updateImpl(...).
6354   ChangeStatus updateImpl(Attributor &A) override {
6355     PrivatizableType = identifyPrivatizableType(A);
6356     if (!PrivatizableType.hasValue())
6357       return ChangeStatus::UNCHANGED;
6358     if (!PrivatizableType.getValue())
6359       return indicatePessimisticFixpoint();
6360 
6361     // The dependence is optional so we don't give up once we give up on the
6362     // alignment.
6363     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6364                         DepClassTy::OPTIONAL);
6365 
6366     // Avoid arguments with padding for now.
6367     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6368         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6369                                                 A.getInfoCache().getDL())) {
6370       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6371       return indicatePessimisticFixpoint();
6372     }
6373 
6374     // Verify callee and caller agree on how the promoted argument would be
6375     // passed.
6376     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
6377     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
6378     // which doesn't require the arguments ArgumentPromotion wanted to pass.
6379     Function &Fn = *getIRPosition().getAnchorScope();
6380     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
6381     ArgsToPromote.insert(getAssociatedArgument());
6382     const auto *TTI =
6383         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6384     if (!TTI ||
6385         !ArgumentPromotionPass::areFunctionArgsABICompatible(
6386             Fn, *TTI, ArgsToPromote, Dummy) ||
6387         ArgsToPromote.empty()) {
6388       LLVM_DEBUG(
6389           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6390                  << Fn.getName() << "\n");
6391       return indicatePessimisticFixpoint();
6392     }
6393 
6394     // Collect the types that will replace the privatizable type in the function
6395     // signature.
6396     SmallVector<Type *, 16> ReplacementTypes;
6397     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6398 
6399     // Register a rewrite of the argument.
6400     Argument *Arg = getAssociatedArgument();
6401     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6402       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6403       return indicatePessimisticFixpoint();
6404     }
6405 
6406     unsigned ArgNo = Arg->getArgNo();
6407 
6408     // Helper to check if for the given call site the associated argument is
6409     // passed to a callback where the privatization would be different.
6410     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6411       SmallVector<const Use *, 4> CallbackUses;
6412       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6413       for (const Use *U : CallbackUses) {
6414         AbstractCallSite CBACS(U);
6415         assert(CBACS && CBACS.isCallbackCall());
6416         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6417           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6418 
6419           LLVM_DEBUG({
6420             dbgs()
6421                 << "[AAPrivatizablePtr] Argument " << *Arg
6422                 << "check if can be privatized in the context of its parent ("
6423                 << Arg->getParent()->getName()
6424                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6425                    "callback ("
6426                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6427                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6428                 << CBACS.getCallArgOperand(CBArg) << " vs "
6429                 << CB.getArgOperand(ArgNo) << "\n"
6430                 << "[AAPrivatizablePtr] " << CBArg << " : "
6431                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6432           });
6433 
6434           if (CBArgNo != int(ArgNo))
6435             continue;
6436           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6437               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6438           if (CBArgPrivAA.isValidState()) {
6439             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6440             if (!CBArgPrivTy.hasValue())
6441               continue;
6442             if (CBArgPrivTy.getValue() == PrivatizableType)
6443               continue;
6444           }
6445 
6446           LLVM_DEBUG({
6447             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6448                    << " cannot be privatized in the context of its parent ("
6449                    << Arg->getParent()->getName()
6450                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6451                       "callback ("
6452                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6453                    << ").\n[AAPrivatizablePtr] for which the argument "
6454                       "privatization is not compatible.\n";
6455           });
6456           return false;
6457         }
6458       }
6459       return true;
6460     };
6461 
6462     // Helper to check if for the given call site the associated argument is
6463     // passed to a direct call where the privatization would be different.
6464     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6465       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6466       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6467       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
6468              "Expected a direct call operand for callback call operand");
6469 
6470       LLVM_DEBUG({
6471         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6472                << " check if be privatized in the context of its parent ("
6473                << Arg->getParent()->getName()
6474                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6475                   "direct call of ("
6476                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6477                << ").\n";
6478       });
6479 
6480       Function *DCCallee = DC->getCalledFunction();
6481       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6482         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6483             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6484             DepClassTy::REQUIRED);
6485         if (DCArgPrivAA.isValidState()) {
6486           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6487           if (!DCArgPrivTy.hasValue())
6488             return true;
6489           if (DCArgPrivTy.getValue() == PrivatizableType)
6490             return true;
6491         }
6492       }
6493 
6494       LLVM_DEBUG({
6495         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6496                << " cannot be privatized in the context of its parent ("
6497                << Arg->getParent()->getName()
6498                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6499                   "direct call of ("
6500                << ACS.getInstruction()->getCalledFunction()->getName()
6501                << ").\n[AAPrivatizablePtr] for which the argument "
6502                   "privatization is not compatible.\n";
6503       });
6504       return false;
6505     };
6506 
6507     // Helper to check if the associated argument is used at the given abstract
6508     // call site in a way that is incompatible with the privatization assumed
6509     // here.
6510     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6511       if (ACS.isDirectCall())
6512         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6513       if (ACS.isCallbackCall())
6514         return IsCompatiblePrivArgOfDirectCS(ACS);
6515       return false;
6516     };
6517 
6518     bool AllCallSitesKnown;
6519     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6520                                 AllCallSitesKnown))
6521       return indicatePessimisticFixpoint();
6522 
6523     return ChangeStatus::UNCHANGED;
6524   }
6525 
6526   /// Given a type to private \p PrivType, collect the constituates (which are
6527   /// used) in \p ReplacementTypes.
6528   static void
6529   identifyReplacementTypes(Type *PrivType,
6530                            SmallVectorImpl<Type *> &ReplacementTypes) {
6531     // TODO: For now we expand the privatization type to the fullest which can
6532     //       lead to dead arguments that need to be removed later.
6533     assert(PrivType && "Expected privatizable type!");
6534 
6535     // Traverse the type, extract constituate types on the outermost level.
6536     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6537       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6538         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6539     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6540       ReplacementTypes.append(PrivArrayType->getNumElements(),
6541                               PrivArrayType->getElementType());
6542     } else {
6543       ReplacementTypes.push_back(PrivType);
6544     }
6545   }
6546 
6547   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6548   /// The values needed are taken from the arguments of \p F starting at
6549   /// position \p ArgNo.
6550   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6551                                    unsigned ArgNo, Instruction &IP) {
6552     assert(PrivType && "Expected privatizable type!");
6553 
6554     IRBuilder<NoFolder> IRB(&IP);
6555     const DataLayout &DL = F.getParent()->getDataLayout();
6556 
6557     // Traverse the type, build GEPs and stores.
6558     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6559       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6560       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6561         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6562         Value *Ptr =
6563             constructPointer(PointeeTy, PrivType, &Base,
6564                              PrivStructLayout->getElementOffset(u), IRB, DL);
6565         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6566       }
6567     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6568       Type *PointeeTy = PrivArrayType->getElementType();
6569       Type *PointeePtrTy = PointeeTy->getPointerTo();
6570       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6571       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6572         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6573                                       u * PointeeTySize, IRB, DL);
6574         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6575       }
6576     } else {
6577       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6578     }
6579   }
6580 
6581   /// Extract values from \p Base according to the type \p PrivType at the
6582   /// call position \p ACS. The values are appended to \p ReplacementValues.
6583   void createReplacementValues(Align Alignment, Type *PrivType,
6584                                AbstractCallSite ACS, Value *Base,
6585                                SmallVectorImpl<Value *> &ReplacementValues) {
6586     assert(Base && "Expected base value!");
6587     assert(PrivType && "Expected privatizable type!");
6588     Instruction *IP = ACS.getInstruction();
6589 
6590     IRBuilder<NoFolder> IRB(IP);
6591     const DataLayout &DL = IP->getModule()->getDataLayout();
6592 
6593     if (Base->getType()->getPointerElementType() != PrivType)
6594       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6595                                                  "", ACS.getInstruction());
6596 
6597     // Traverse the type, build GEPs and loads.
6598     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6599       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6600       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6601         Type *PointeeTy = PrivStructType->getElementType(u);
6602         Value *Ptr =
6603             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6604                              PrivStructLayout->getElementOffset(u), IRB, DL);
6605         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6606         L->setAlignment(Alignment);
6607         ReplacementValues.push_back(L);
6608       }
6609     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6610       Type *PointeeTy = PrivArrayType->getElementType();
6611       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6612       Type *PointeePtrTy = PointeeTy->getPointerTo();
6613       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6614         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6615                                       u * PointeeTySize, IRB, DL);
6616         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6617         L->setAlignment(Alignment);
6618         ReplacementValues.push_back(L);
6619       }
6620     } else {
6621       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6622       L->setAlignment(Alignment);
6623       ReplacementValues.push_back(L);
6624     }
6625   }
6626 
6627   /// See AbstractAttribute::manifest(...)
6628   ChangeStatus manifest(Attributor &A) override {
6629     if (!PrivatizableType.hasValue())
6630       return ChangeStatus::UNCHANGED;
6631     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6632 
6633     // Collect all tail calls in the function as we cannot allow new allocas to
6634     // escape into tail recursion.
6635     // TODO: Be smarter about new allocas escaping into tail calls.
6636     SmallVector<CallInst *, 16> TailCalls;
6637     bool UsedAssumedInformation = false;
6638     if (!A.checkForAllInstructions(
6639             [&](Instruction &I) {
6640               CallInst &CI = cast<CallInst>(I);
6641               if (CI.isTailCall())
6642                 TailCalls.push_back(&CI);
6643               return true;
6644             },
6645             *this, {Instruction::Call}, UsedAssumedInformation))
6646       return ChangeStatus::UNCHANGED;
6647 
6648     Argument *Arg = getAssociatedArgument();
6649     // Query AAAlign attribute for alignment of associated argument to
6650     // determine the best alignment of loads.
6651     const auto &AlignAA =
6652         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6653 
6654     // Callback to repair the associated function. A new alloca is placed at the
6655     // beginning and initialized with the values passed through arguments. The
6656     // new alloca replaces the use of the old pointer argument.
6657     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6658         [=](const Attributor::ArgumentReplacementInfo &ARI,
6659             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6660           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6661           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6662           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6663                                            Arg->getName() + ".priv", IP);
6664           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6665                                ArgIt->getArgNo(), *IP);
6666 
6667           if (AI->getType() != Arg->getType())
6668             AI =
6669                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6670           Arg->replaceAllUsesWith(AI);
6671 
6672           for (CallInst *CI : TailCalls)
6673             CI->setTailCall(false);
6674         };
6675 
6676     // Callback to repair a call site of the associated function. The elements
6677     // of the privatizable type are loaded prior to the call and passed to the
6678     // new function version.
6679     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6680         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6681                       AbstractCallSite ACS,
6682                       SmallVectorImpl<Value *> &NewArgOperands) {
6683           // When no alignment is specified for the load instruction,
6684           // natural alignment is assumed.
6685           createReplacementValues(
6686               assumeAligned(AlignAA.getAssumedAlign()),
6687               PrivatizableType.getValue(), ACS,
6688               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6689               NewArgOperands);
6690         };
6691 
6692     // Collect the types that will replace the privatizable type in the function
6693     // signature.
6694     SmallVector<Type *, 16> ReplacementTypes;
6695     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6696 
6697     // Register a rewrite of the argument.
6698     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6699                                            std::move(FnRepairCB),
6700                                            std::move(ACSRepairCB)))
6701       return ChangeStatus::CHANGED;
6702     return ChangeStatus::UNCHANGED;
6703   }
6704 
6705   /// See AbstractAttribute::trackStatistics()
6706   void trackStatistics() const override {
6707     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6708   }
6709 };
6710 
6711 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6712   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6713       : AAPrivatizablePtrImpl(IRP, A) {}
6714 
6715   /// See AbstractAttribute::initialize(...).
6716   virtual void initialize(Attributor &A) override {
6717     // TODO: We can privatize more than arguments.
6718     indicatePessimisticFixpoint();
6719   }
6720 
6721   ChangeStatus updateImpl(Attributor &A) override {
6722     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6723                      "updateImpl will not be called");
6724   }
6725 
6726   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6727   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6728     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6729     if (!Obj) {
6730       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6731       return nullptr;
6732     }
6733 
6734     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6735       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6736         if (CI->isOne())
6737           return Obj->getType()->getPointerElementType();
6738     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6739       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6740           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6741       if (PrivArgAA.isAssumedPrivatizablePtr())
6742         return Obj->getType()->getPointerElementType();
6743     }
6744 
6745     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6746                          "alloca nor privatizable argument: "
6747                       << *Obj << "!\n");
6748     return nullptr;
6749   }
6750 
6751   /// See AbstractAttribute::trackStatistics()
6752   void trackStatistics() const override {
6753     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6754   }
6755 };
6756 
6757 struct AAPrivatizablePtrCallSiteArgument final
6758     : public AAPrivatizablePtrFloating {
6759   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6760       : AAPrivatizablePtrFloating(IRP, A) {}
6761 
6762   /// See AbstractAttribute::initialize(...).
6763   void initialize(Attributor &A) override {
6764     if (getIRPosition().hasAttr(Attribute::ByVal))
6765       indicateOptimisticFixpoint();
6766   }
6767 
6768   /// See AbstractAttribute::updateImpl(...).
6769   ChangeStatus updateImpl(Attributor &A) override {
6770     PrivatizableType = identifyPrivatizableType(A);
6771     if (!PrivatizableType.hasValue())
6772       return ChangeStatus::UNCHANGED;
6773     if (!PrivatizableType.getValue())
6774       return indicatePessimisticFixpoint();
6775 
6776     const IRPosition &IRP = getIRPosition();
6777     auto &NoCaptureAA =
6778         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6779     if (!NoCaptureAA.isAssumedNoCapture()) {
6780       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6781       return indicatePessimisticFixpoint();
6782     }
6783 
6784     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6785     if (!NoAliasAA.isAssumedNoAlias()) {
6786       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6787       return indicatePessimisticFixpoint();
6788     }
6789 
6790     const auto &MemBehaviorAA =
6791         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6792     if (!MemBehaviorAA.isAssumedReadOnly()) {
6793       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6794       return indicatePessimisticFixpoint();
6795     }
6796 
6797     return ChangeStatus::UNCHANGED;
6798   }
6799 
6800   /// See AbstractAttribute::trackStatistics()
6801   void trackStatistics() const override {
6802     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6803   }
6804 };
6805 
6806 struct AAPrivatizablePtrCallSiteReturned final
6807     : public AAPrivatizablePtrFloating {
6808   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6809       : AAPrivatizablePtrFloating(IRP, A) {}
6810 
6811   /// See AbstractAttribute::initialize(...).
6812   void initialize(Attributor &A) override {
6813     // TODO: We can privatize more than arguments.
6814     indicatePessimisticFixpoint();
6815   }
6816 
6817   /// See AbstractAttribute::trackStatistics()
6818   void trackStatistics() const override {
6819     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6820   }
6821 };
6822 
6823 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6824   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6825       : AAPrivatizablePtrFloating(IRP, A) {}
6826 
6827   /// See AbstractAttribute::initialize(...).
6828   void initialize(Attributor &A) override {
6829     // TODO: We can privatize more than arguments.
6830     indicatePessimisticFixpoint();
6831   }
6832 
6833   /// See AbstractAttribute::trackStatistics()
6834   void trackStatistics() const override {
6835     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6836   }
6837 };
6838 
6839 /// -------------------- Memory Behavior Attributes ----------------------------
6840 /// Includes read-none, read-only, and write-only.
6841 /// ----------------------------------------------------------------------------
6842 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6843   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6844       : AAMemoryBehavior(IRP, A) {}
6845 
6846   /// See AbstractAttribute::initialize(...).
6847   void initialize(Attributor &A) override {
6848     intersectAssumedBits(BEST_STATE);
6849     getKnownStateFromValue(getIRPosition(), getState());
6850     AAMemoryBehavior::initialize(A);
6851   }
6852 
6853   /// Return the memory behavior information encoded in the IR for \p IRP.
6854   static void getKnownStateFromValue(const IRPosition &IRP,
6855                                      BitIntegerState &State,
6856                                      bool IgnoreSubsumingPositions = false) {
6857     SmallVector<Attribute, 2> Attrs;
6858     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6859     for (const Attribute &Attr : Attrs) {
6860       switch (Attr.getKindAsEnum()) {
6861       case Attribute::ReadNone:
6862         State.addKnownBits(NO_ACCESSES);
6863         break;
6864       case Attribute::ReadOnly:
6865         State.addKnownBits(NO_WRITES);
6866         break;
6867       case Attribute::WriteOnly:
6868         State.addKnownBits(NO_READS);
6869         break;
6870       default:
6871         llvm_unreachable("Unexpected attribute!");
6872       }
6873     }
6874 
6875     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6876       if (!I->mayReadFromMemory())
6877         State.addKnownBits(NO_READS);
6878       if (!I->mayWriteToMemory())
6879         State.addKnownBits(NO_WRITES);
6880     }
6881   }
6882 
6883   /// See AbstractAttribute::getDeducedAttributes(...).
6884   void getDeducedAttributes(LLVMContext &Ctx,
6885                             SmallVectorImpl<Attribute> &Attrs) const override {
6886     assert(Attrs.size() == 0);
6887     if (isAssumedReadNone())
6888       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6889     else if (isAssumedReadOnly())
6890       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6891     else if (isAssumedWriteOnly())
6892       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6893     assert(Attrs.size() <= 1);
6894   }
6895 
6896   /// See AbstractAttribute::manifest(...).
6897   ChangeStatus manifest(Attributor &A) override {
6898     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6899       return ChangeStatus::UNCHANGED;
6900 
6901     const IRPosition &IRP = getIRPosition();
6902 
6903     // Check if we would improve the existing attributes first.
6904     SmallVector<Attribute, 4> DeducedAttrs;
6905     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6906     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6907           return IRP.hasAttr(Attr.getKindAsEnum(),
6908                              /* IgnoreSubsumingPositions */ true);
6909         }))
6910       return ChangeStatus::UNCHANGED;
6911 
6912     // Clear existing attributes.
6913     IRP.removeAttrs(AttrKinds);
6914 
6915     // Use the generic manifest method.
6916     return IRAttribute::manifest(A);
6917   }
6918 
6919   /// See AbstractState::getAsStr().
6920   const std::string getAsStr() const override {
6921     if (isAssumedReadNone())
6922       return "readnone";
6923     if (isAssumedReadOnly())
6924       return "readonly";
6925     if (isAssumedWriteOnly())
6926       return "writeonly";
6927     return "may-read/write";
6928   }
6929 
6930   /// The set of IR attributes AAMemoryBehavior deals with.
6931   static const Attribute::AttrKind AttrKinds[3];
6932 };
6933 
6934 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6935     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6936 
6937 /// Memory behavior attribute for a floating value.
6938 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6939   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6940       : AAMemoryBehaviorImpl(IRP, A) {}
6941 
6942   /// See AbstractAttribute::updateImpl(...).
6943   ChangeStatus updateImpl(Attributor &A) override;
6944 
6945   /// See AbstractAttribute::trackStatistics()
6946   void trackStatistics() const override {
6947     if (isAssumedReadNone())
6948       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6949     else if (isAssumedReadOnly())
6950       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6951     else if (isAssumedWriteOnly())
6952       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6953   }
6954 
6955 private:
6956   /// Return true if users of \p UserI might access the underlying
6957   /// variable/location described by \p U and should therefore be analyzed.
6958   bool followUsersOfUseIn(Attributor &A, const Use &U,
6959                           const Instruction *UserI);
6960 
6961   /// Update the state according to the effect of use \p U in \p UserI.
6962   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
6963 };
6964 
6965 /// Memory behavior attribute for function argument.
6966 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6967   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6968       : AAMemoryBehaviorFloating(IRP, A) {}
6969 
6970   /// See AbstractAttribute::initialize(...).
6971   void initialize(Attributor &A) override {
6972     intersectAssumedBits(BEST_STATE);
6973     const IRPosition &IRP = getIRPosition();
6974     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
6975     // can query it when we use has/getAttr. That would allow us to reuse the
6976     // initialize of the base class here.
6977     bool HasByVal =
6978         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
6979     getKnownStateFromValue(IRP, getState(),
6980                            /* IgnoreSubsumingPositions */ HasByVal);
6981 
6982     // Initialize the use vector with all direct uses of the associated value.
6983     Argument *Arg = getAssociatedArgument();
6984     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
6985       indicatePessimisticFixpoint();
6986   }
6987 
6988   ChangeStatus manifest(Attributor &A) override {
6989     // TODO: Pointer arguments are not supported on vectors of pointers yet.
6990     if (!getAssociatedValue().getType()->isPointerTy())
6991       return ChangeStatus::UNCHANGED;
6992 
6993     // TODO: From readattrs.ll: "inalloca parameters are always
6994     //                           considered written"
6995     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
6996       removeKnownBits(NO_WRITES);
6997       removeAssumedBits(NO_WRITES);
6998     }
6999     return AAMemoryBehaviorFloating::manifest(A);
7000   }
7001 
7002   /// See AbstractAttribute::trackStatistics()
7003   void trackStatistics() const override {
7004     if (isAssumedReadNone())
7005       STATS_DECLTRACK_ARG_ATTR(readnone)
7006     else if (isAssumedReadOnly())
7007       STATS_DECLTRACK_ARG_ATTR(readonly)
7008     else if (isAssumedWriteOnly())
7009       STATS_DECLTRACK_ARG_ATTR(writeonly)
7010   }
7011 };
7012 
7013 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7014   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7015       : AAMemoryBehaviorArgument(IRP, A) {}
7016 
7017   /// See AbstractAttribute::initialize(...).
7018   void initialize(Attributor &A) override {
7019     // If we don't have an associated attribute this is either a variadic call
7020     // or an indirect call, either way, nothing to do here.
7021     Argument *Arg = getAssociatedArgument();
7022     if (!Arg) {
7023       indicatePessimisticFixpoint();
7024       return;
7025     }
7026     if (Arg->hasByValAttr()) {
7027       addKnownBits(NO_WRITES);
7028       removeKnownBits(NO_READS);
7029       removeAssumedBits(NO_READS);
7030     }
7031     AAMemoryBehaviorArgument::initialize(A);
7032     if (getAssociatedFunction()->isDeclaration())
7033       indicatePessimisticFixpoint();
7034   }
7035 
7036   /// See AbstractAttribute::updateImpl(...).
7037   ChangeStatus updateImpl(Attributor &A) override {
7038     // TODO: Once we have call site specific value information we can provide
7039     //       call site specific liveness liveness information and then it makes
7040     //       sense to specialize attributes for call sites arguments instead of
7041     //       redirecting requests to the callee argument.
7042     Argument *Arg = getAssociatedArgument();
7043     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7044     auto &ArgAA =
7045         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7046     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7047   }
7048 
7049   /// See AbstractAttribute::trackStatistics()
7050   void trackStatistics() const override {
7051     if (isAssumedReadNone())
7052       STATS_DECLTRACK_CSARG_ATTR(readnone)
7053     else if (isAssumedReadOnly())
7054       STATS_DECLTRACK_CSARG_ATTR(readonly)
7055     else if (isAssumedWriteOnly())
7056       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7057   }
7058 };
7059 
7060 /// Memory behavior attribute for a call site return position.
7061 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7062   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7063       : AAMemoryBehaviorFloating(IRP, A) {}
7064 
7065   /// See AbstractAttribute::initialize(...).
7066   void initialize(Attributor &A) override {
7067     AAMemoryBehaviorImpl::initialize(A);
7068     Function *F = getAssociatedFunction();
7069     if (!F || F->isDeclaration())
7070       indicatePessimisticFixpoint();
7071   }
7072 
7073   /// See AbstractAttribute::manifest(...).
7074   ChangeStatus manifest(Attributor &A) override {
7075     // We do not annotate returned values.
7076     return ChangeStatus::UNCHANGED;
7077   }
7078 
7079   /// See AbstractAttribute::trackStatistics()
7080   void trackStatistics() const override {}
7081 };
7082 
7083 /// An AA to represent the memory behavior function attributes.
7084 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7085   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7086       : AAMemoryBehaviorImpl(IRP, A) {}
7087 
7088   /// See AbstractAttribute::updateImpl(Attributor &A).
7089   virtual ChangeStatus updateImpl(Attributor &A) override;
7090 
7091   /// See AbstractAttribute::manifest(...).
7092   ChangeStatus manifest(Attributor &A) override {
7093     Function &F = cast<Function>(getAnchorValue());
7094     if (isAssumedReadNone()) {
7095       F.removeFnAttr(Attribute::ArgMemOnly);
7096       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7097       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7098     }
7099     return AAMemoryBehaviorImpl::manifest(A);
7100   }
7101 
7102   /// See AbstractAttribute::trackStatistics()
7103   void trackStatistics() const override {
7104     if (isAssumedReadNone())
7105       STATS_DECLTRACK_FN_ATTR(readnone)
7106     else if (isAssumedReadOnly())
7107       STATS_DECLTRACK_FN_ATTR(readonly)
7108     else if (isAssumedWriteOnly())
7109       STATS_DECLTRACK_FN_ATTR(writeonly)
7110   }
7111 };
7112 
7113 /// AAMemoryBehavior attribute for call sites.
7114 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7115   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7116       : AAMemoryBehaviorImpl(IRP, A) {}
7117 
7118   /// See AbstractAttribute::initialize(...).
7119   void initialize(Attributor &A) override {
7120     AAMemoryBehaviorImpl::initialize(A);
7121     Function *F = getAssociatedFunction();
7122     if (!F || F->isDeclaration())
7123       indicatePessimisticFixpoint();
7124   }
7125 
7126   /// See AbstractAttribute::updateImpl(...).
7127   ChangeStatus updateImpl(Attributor &A) override {
7128     // TODO: Once we have call site specific value information we can provide
7129     //       call site specific liveness liveness information and then it makes
7130     //       sense to specialize attributes for call sites arguments instead of
7131     //       redirecting requests to the callee argument.
7132     Function *F = getAssociatedFunction();
7133     const IRPosition &FnPos = IRPosition::function(*F);
7134     auto &FnAA =
7135         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7136     return clampStateAndIndicateChange(getState(), FnAA.getState());
7137   }
7138 
7139   /// See AbstractAttribute::trackStatistics()
7140   void trackStatistics() const override {
7141     if (isAssumedReadNone())
7142       STATS_DECLTRACK_CS_ATTR(readnone)
7143     else if (isAssumedReadOnly())
7144       STATS_DECLTRACK_CS_ATTR(readonly)
7145     else if (isAssumedWriteOnly())
7146       STATS_DECLTRACK_CS_ATTR(writeonly)
7147   }
7148 };
7149 
7150 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7151 
7152   // The current assumed state used to determine a change.
7153   auto AssumedState = getAssumed();
7154 
7155   auto CheckRWInst = [&](Instruction &I) {
7156     // If the instruction has an own memory behavior state, use it to restrict
7157     // the local state. No further analysis is required as the other memory
7158     // state is as optimistic as it gets.
7159     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7160       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7161           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7162       intersectAssumedBits(MemBehaviorAA.getAssumed());
7163       return !isAtFixpoint();
7164     }
7165 
7166     // Remove access kind modifiers if necessary.
7167     if (I.mayReadFromMemory())
7168       removeAssumedBits(NO_READS);
7169     if (I.mayWriteToMemory())
7170       removeAssumedBits(NO_WRITES);
7171     return !isAtFixpoint();
7172   };
7173 
7174   bool UsedAssumedInformation = false;
7175   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7176                                           UsedAssumedInformation))
7177     return indicatePessimisticFixpoint();
7178 
7179   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7180                                         : ChangeStatus::UNCHANGED;
7181 }
7182 
7183 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7184 
7185   const IRPosition &IRP = getIRPosition();
7186   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7187   AAMemoryBehavior::StateType &S = getState();
7188 
7189   // First, check the function scope. We take the known information and we avoid
7190   // work if the assumed information implies the current assumed information for
7191   // this attribute. This is a valid for all but byval arguments.
7192   Argument *Arg = IRP.getAssociatedArgument();
7193   AAMemoryBehavior::base_t FnMemAssumedState =
7194       AAMemoryBehavior::StateType::getWorstState();
7195   if (!Arg || !Arg->hasByValAttr()) {
7196     const auto &FnMemAA =
7197         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7198     FnMemAssumedState = FnMemAA.getAssumed();
7199     S.addKnownBits(FnMemAA.getKnown());
7200     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7201       return ChangeStatus::UNCHANGED;
7202   }
7203 
7204   // The current assumed state used to determine a change.
7205   auto AssumedState = S.getAssumed();
7206 
7207   // Make sure the value is not captured (except through "return"), if
7208   // it is, any information derived would be irrelevant anyway as we cannot
7209   // check the potential aliases introduced by the capture. However, no need
7210   // to fall back to anythign less optimistic than the function state.
7211   const auto &ArgNoCaptureAA =
7212       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7213   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7214     S.intersectAssumedBits(FnMemAssumedState);
7215     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7216                                           : ChangeStatus::UNCHANGED;
7217   }
7218 
7219   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7220   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7221     Instruction *UserI = cast<Instruction>(U.getUser());
7222     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7223                       << " \n");
7224 
7225     // Droppable users, e.g., llvm::assume does not actually perform any action.
7226     if (UserI->isDroppable())
7227       return true;
7228 
7229     // Check if the users of UserI should also be visited.
7230     Follow = followUsersOfUseIn(A, U, UserI);
7231 
7232     // If UserI might touch memory we analyze the use in detail.
7233     if (UserI->mayReadOrWriteMemory())
7234       analyzeUseIn(A, U, UserI);
7235 
7236     return !isAtFixpoint();
7237   };
7238 
7239   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7240     return indicatePessimisticFixpoint();
7241 
7242   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7243                                         : ChangeStatus::UNCHANGED;
7244 }
7245 
7246 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7247                                                   const Instruction *UserI) {
7248   // The loaded value is unrelated to the pointer argument, no need to
7249   // follow the users of the load.
7250   if (isa<LoadInst>(UserI))
7251     return false;
7252 
7253   // By default we follow all uses assuming UserI might leak information on U,
7254   // we have special handling for call sites operands though.
7255   const auto *CB = dyn_cast<CallBase>(UserI);
7256   if (!CB || !CB->isArgOperand(&U))
7257     return true;
7258 
7259   // If the use is a call argument known not to be captured, the users of
7260   // the call do not need to be visited because they have to be unrelated to
7261   // the input. Note that this check is not trivial even though we disallow
7262   // general capturing of the underlying argument. The reason is that the
7263   // call might the argument "through return", which we allow and for which we
7264   // need to check call users.
7265   if (U.get()->getType()->isPointerTy()) {
7266     unsigned ArgNo = CB->getArgOperandNo(&U);
7267     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7268         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7269     return !ArgNoCaptureAA.isAssumedNoCapture();
7270   }
7271 
7272   return true;
7273 }
7274 
7275 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7276                                             const Instruction *UserI) {
7277   assert(UserI->mayReadOrWriteMemory());
7278 
7279   switch (UserI->getOpcode()) {
7280   default:
7281     // TODO: Handle all atomics and other side-effect operations we know of.
7282     break;
7283   case Instruction::Load:
7284     // Loads cause the NO_READS property to disappear.
7285     removeAssumedBits(NO_READS);
7286     return;
7287 
7288   case Instruction::Store:
7289     // Stores cause the NO_WRITES property to disappear if the use is the
7290     // pointer operand. Note that we do assume that capturing was taken care of
7291     // somewhere else.
7292     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7293       removeAssumedBits(NO_WRITES);
7294     return;
7295 
7296   case Instruction::Call:
7297   case Instruction::CallBr:
7298   case Instruction::Invoke: {
7299     // For call sites we look at the argument memory behavior attribute (this
7300     // could be recursive!) in order to restrict our own state.
7301     const auto *CB = cast<CallBase>(UserI);
7302 
7303     // Give up on operand bundles.
7304     if (CB->isBundleOperand(&U)) {
7305       indicatePessimisticFixpoint();
7306       return;
7307     }
7308 
7309     // Calling a function does read the function pointer, maybe write it if the
7310     // function is self-modifying.
7311     if (CB->isCallee(&U)) {
7312       removeAssumedBits(NO_READS);
7313       break;
7314     }
7315 
7316     // Adjust the possible access behavior based on the information on the
7317     // argument.
7318     IRPosition Pos;
7319     if (U.get()->getType()->isPointerTy())
7320       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7321     else
7322       Pos = IRPosition::callsite_function(*CB);
7323     const auto &MemBehaviorAA =
7324         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7325     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7326     // and at least "known".
7327     intersectAssumedBits(MemBehaviorAA.getAssumed());
7328     return;
7329   }
7330   };
7331 
7332   // Generally, look at the "may-properties" and adjust the assumed state if we
7333   // did not trigger special handling before.
7334   if (UserI->mayReadFromMemory())
7335     removeAssumedBits(NO_READS);
7336   if (UserI->mayWriteToMemory())
7337     removeAssumedBits(NO_WRITES);
7338 }
7339 
7340 /// -------------------- Memory Locations Attributes ---------------------------
7341 /// Includes read-none, argmemonly, inaccessiblememonly,
7342 /// inaccessiblememorargmemonly
7343 /// ----------------------------------------------------------------------------
7344 
7345 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7346     AAMemoryLocation::MemoryLocationsKind MLK) {
7347   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7348     return "all memory";
7349   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7350     return "no memory";
7351   std::string S = "memory:";
7352   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7353     S += "stack,";
7354   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7355     S += "constant,";
7356   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7357     S += "internal global,";
7358   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7359     S += "external global,";
7360   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7361     S += "argument,";
7362   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7363     S += "inaccessible,";
7364   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7365     S += "malloced,";
7366   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7367     S += "unknown,";
7368   S.pop_back();
7369   return S;
7370 }
7371 
7372 namespace {
7373 struct AAMemoryLocationImpl : public AAMemoryLocation {
7374 
7375   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7376       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7377     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7378       AccessKind2Accesses[u] = nullptr;
7379   }
7380 
7381   ~AAMemoryLocationImpl() {
7382     // The AccessSets are allocated via a BumpPtrAllocator, we call
7383     // the destructor manually.
7384     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7385       if (AccessKind2Accesses[u])
7386         AccessKind2Accesses[u]->~AccessSet();
7387   }
7388 
7389   /// See AbstractAttribute::initialize(...).
7390   void initialize(Attributor &A) override {
7391     intersectAssumedBits(BEST_STATE);
7392     getKnownStateFromValue(A, getIRPosition(), getState());
7393     AAMemoryLocation::initialize(A);
7394   }
7395 
7396   /// Return the memory behavior information encoded in the IR for \p IRP.
7397   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7398                                      BitIntegerState &State,
7399                                      bool IgnoreSubsumingPositions = false) {
7400     // For internal functions we ignore `argmemonly` and
7401     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7402     // constant propagation. It is unclear if this is the best way but it is
7403     // unlikely this will cause real performance problems. If we are deriving
7404     // attributes for the anchor function we even remove the attribute in
7405     // addition to ignoring it.
7406     bool UseArgMemOnly = true;
7407     Function *AnchorFn = IRP.getAnchorScope();
7408     if (AnchorFn && A.isRunOn(*AnchorFn))
7409       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7410 
7411     SmallVector<Attribute, 2> Attrs;
7412     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7413     for (const Attribute &Attr : Attrs) {
7414       switch (Attr.getKindAsEnum()) {
7415       case Attribute::ReadNone:
7416         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7417         break;
7418       case Attribute::InaccessibleMemOnly:
7419         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7420         break;
7421       case Attribute::ArgMemOnly:
7422         if (UseArgMemOnly)
7423           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7424         else
7425           IRP.removeAttrs({Attribute::ArgMemOnly});
7426         break;
7427       case Attribute::InaccessibleMemOrArgMemOnly:
7428         if (UseArgMemOnly)
7429           State.addKnownBits(inverseLocation(
7430               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7431         else
7432           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7433         break;
7434       default:
7435         llvm_unreachable("Unexpected attribute!");
7436       }
7437     }
7438   }
7439 
7440   /// See AbstractAttribute::getDeducedAttributes(...).
7441   void getDeducedAttributes(LLVMContext &Ctx,
7442                             SmallVectorImpl<Attribute> &Attrs) const override {
7443     assert(Attrs.size() == 0);
7444     if (isAssumedReadNone()) {
7445       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7446     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7447       if (isAssumedInaccessibleMemOnly())
7448         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7449       else if (isAssumedArgMemOnly())
7450         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7451       else if (isAssumedInaccessibleOrArgMemOnly())
7452         Attrs.push_back(
7453             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7454     }
7455     assert(Attrs.size() <= 1);
7456   }
7457 
7458   /// See AbstractAttribute::manifest(...).
7459   ChangeStatus manifest(Attributor &A) override {
7460     const IRPosition &IRP = getIRPosition();
7461 
7462     // Check if we would improve the existing attributes first.
7463     SmallVector<Attribute, 4> DeducedAttrs;
7464     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7465     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7466           return IRP.hasAttr(Attr.getKindAsEnum(),
7467                              /* IgnoreSubsumingPositions */ true);
7468         }))
7469       return ChangeStatus::UNCHANGED;
7470 
7471     // Clear existing attributes.
7472     IRP.removeAttrs(AttrKinds);
7473     if (isAssumedReadNone())
7474       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7475 
7476     // Use the generic manifest method.
7477     return IRAttribute::manifest(A);
7478   }
7479 
7480   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7481   bool checkForAllAccessesToMemoryKind(
7482       function_ref<bool(const Instruction *, const Value *, AccessKind,
7483                         MemoryLocationsKind)>
7484           Pred,
7485       MemoryLocationsKind RequestedMLK) const override {
7486     if (!isValidState())
7487       return false;
7488 
7489     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7490     if (AssumedMLK == NO_LOCATIONS)
7491       return true;
7492 
7493     unsigned Idx = 0;
7494     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7495          CurMLK *= 2, ++Idx) {
7496       if (CurMLK & RequestedMLK)
7497         continue;
7498 
7499       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7500         for (const AccessInfo &AI : *Accesses)
7501           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7502             return false;
7503     }
7504 
7505     return true;
7506   }
7507 
7508   ChangeStatus indicatePessimisticFixpoint() override {
7509     // If we give up and indicate a pessimistic fixpoint this instruction will
7510     // become an access for all potential access kinds:
7511     // TODO: Add pointers for argmemonly and globals to improve the results of
7512     //       checkForAllAccessesToMemoryKind.
7513     bool Changed = false;
7514     MemoryLocationsKind KnownMLK = getKnown();
7515     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7516     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7517       if (!(CurMLK & KnownMLK))
7518         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7519                                   getAccessKindFromInst(I));
7520     return AAMemoryLocation::indicatePessimisticFixpoint();
7521   }
7522 
7523 protected:
7524   /// Helper struct to tie together an instruction that has a read or write
7525   /// effect with the pointer it accesses (if any).
7526   struct AccessInfo {
7527 
7528     /// The instruction that caused the access.
7529     const Instruction *I;
7530 
7531     /// The base pointer that is accessed, or null if unknown.
7532     const Value *Ptr;
7533 
7534     /// The kind of access (read/write/read+write).
7535     AccessKind Kind;
7536 
7537     bool operator==(const AccessInfo &RHS) const {
7538       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7539     }
7540     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7541       if (LHS.I != RHS.I)
7542         return LHS.I < RHS.I;
7543       if (LHS.Ptr != RHS.Ptr)
7544         return LHS.Ptr < RHS.Ptr;
7545       if (LHS.Kind != RHS.Kind)
7546         return LHS.Kind < RHS.Kind;
7547       return false;
7548     }
7549   };
7550 
7551   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7552   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7553   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7554   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7555 
7556   /// Categorize the pointer arguments of CB that might access memory in
7557   /// AccessedLoc and update the state and access map accordingly.
7558   void
7559   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7560                                      AAMemoryLocation::StateType &AccessedLocs,
7561                                      bool &Changed);
7562 
7563   /// Return the kind(s) of location that may be accessed by \p V.
7564   AAMemoryLocation::MemoryLocationsKind
7565   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7566 
7567   /// Return the access kind as determined by \p I.
7568   AccessKind getAccessKindFromInst(const Instruction *I) {
7569     AccessKind AK = READ_WRITE;
7570     if (I) {
7571       AK = I->mayReadFromMemory() ? READ : NONE;
7572       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7573     }
7574     return AK;
7575   }
7576 
7577   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7578   /// an access of kind \p AK to a \p MLK memory location with the access
7579   /// pointer \p Ptr.
7580   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7581                                  MemoryLocationsKind MLK, const Instruction *I,
7582                                  const Value *Ptr, bool &Changed,
7583                                  AccessKind AK = READ_WRITE) {
7584 
7585     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7586     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7587     if (!Accesses)
7588       Accesses = new (Allocator) AccessSet();
7589     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7590     State.removeAssumedBits(MLK);
7591   }
7592 
7593   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7594   /// arguments, and update the state and access map accordingly.
7595   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7596                           AAMemoryLocation::StateType &State, bool &Changed);
7597 
7598   /// Used to allocate access sets.
7599   BumpPtrAllocator &Allocator;
7600 
7601   /// The set of IR attributes AAMemoryLocation deals with.
7602   static const Attribute::AttrKind AttrKinds[4];
7603 };
7604 
7605 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7606     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7607     Attribute::InaccessibleMemOrArgMemOnly};
7608 
7609 void AAMemoryLocationImpl::categorizePtrValue(
7610     Attributor &A, const Instruction &I, const Value &Ptr,
7611     AAMemoryLocation::StateType &State, bool &Changed) {
7612   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7613                     << Ptr << " ["
7614                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7615 
7616   SmallVector<Value *, 8> Objects;
7617   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7618     LLVM_DEBUG(
7619         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7620     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7621                               getAccessKindFromInst(&I));
7622     return;
7623   }
7624 
7625   for (Value *Obj : Objects) {
7626     // TODO: recognize the TBAA used for constant accesses.
7627     MemoryLocationsKind MLK = NO_LOCATIONS;
7628     assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped.");
7629     if (isa<UndefValue>(Obj))
7630       continue;
7631     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7632       if (Arg->hasByValAttr())
7633         MLK = NO_LOCAL_MEM;
7634       else
7635         MLK = NO_ARGUMENT_MEM;
7636     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7637       // Reading constant memory is not treated as a read "effect" by the
7638       // function attr pass so we won't neither. Constants defined by TBAA are
7639       // similar. (We know we do not write it because it is constant.)
7640       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7641         if (GVar->isConstant())
7642           continue;
7643 
7644       if (GV->hasLocalLinkage())
7645         MLK = NO_GLOBAL_INTERNAL_MEM;
7646       else
7647         MLK = NO_GLOBAL_EXTERNAL_MEM;
7648     } else if (isa<ConstantPointerNull>(Obj) &&
7649                !NullPointerIsDefined(getAssociatedFunction(),
7650                                      Ptr.getType()->getPointerAddressSpace())) {
7651       continue;
7652     } else if (isa<AllocaInst>(Obj)) {
7653       MLK = NO_LOCAL_MEM;
7654     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7655       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7656           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7657       if (NoAliasAA.isAssumedNoAlias())
7658         MLK = NO_MALLOCED_MEM;
7659       else
7660         MLK = NO_UNKOWN_MEM;
7661     } else {
7662       MLK = NO_UNKOWN_MEM;
7663     }
7664 
7665     assert(MLK != NO_LOCATIONS && "No location specified!");
7666     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7667                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7668                       << "\n");
7669     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7670                               getAccessKindFromInst(&I));
7671   }
7672 
7673   LLVM_DEBUG(
7674       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7675              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7676 }
7677 
7678 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7679     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7680     bool &Changed) {
7681   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
7682 
7683     // Skip non-pointer arguments.
7684     const Value *ArgOp = CB.getArgOperand(ArgNo);
7685     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7686       continue;
7687 
7688     // Skip readnone arguments.
7689     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7690     const auto &ArgOpMemLocationAA =
7691         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7692 
7693     if (ArgOpMemLocationAA.isAssumedReadNone())
7694       continue;
7695 
7696     // Categorize potentially accessed pointer arguments as if there was an
7697     // access instruction with them as pointer.
7698     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7699   }
7700 }
7701 
7702 AAMemoryLocation::MemoryLocationsKind
7703 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7704                                                   bool &Changed) {
7705   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7706                     << I << "\n");
7707 
7708   AAMemoryLocation::StateType AccessedLocs;
7709   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7710 
7711   if (auto *CB = dyn_cast<CallBase>(&I)) {
7712 
7713     // First check if we assume any memory is access is visible.
7714     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7715         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7716     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7717                       << " [" << CBMemLocationAA << "]\n");
7718 
7719     if (CBMemLocationAA.isAssumedReadNone())
7720       return NO_LOCATIONS;
7721 
7722     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7723       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7724                                 Changed, getAccessKindFromInst(&I));
7725       return AccessedLocs.getAssumed();
7726     }
7727 
7728     uint32_t CBAssumedNotAccessedLocs =
7729         CBMemLocationAA.getAssumedNotAccessedLocation();
7730 
7731     // Set the argmemonly and global bit as we handle them separately below.
7732     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7733         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7734 
7735     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7736       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7737         continue;
7738       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7739                                 getAccessKindFromInst(&I));
7740     }
7741 
7742     // Now handle global memory if it might be accessed. This is slightly tricky
7743     // as NO_GLOBAL_MEM has multiple bits set.
7744     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7745     if (HasGlobalAccesses) {
7746       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7747                             AccessKind Kind, MemoryLocationsKind MLK) {
7748         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7749                                   getAccessKindFromInst(&I));
7750         return true;
7751       };
7752       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7753               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7754         return AccessedLocs.getWorstState();
7755     }
7756 
7757     LLVM_DEBUG(
7758         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7759                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7760 
7761     // Now handle argument memory if it might be accessed.
7762     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7763     if (HasArgAccesses)
7764       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7765 
7766     LLVM_DEBUG(
7767         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7768                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7769 
7770     return AccessedLocs.getAssumed();
7771   }
7772 
7773   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7774     LLVM_DEBUG(
7775         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7776                << I << " [" << *Ptr << "]\n");
7777     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7778     return AccessedLocs.getAssumed();
7779   }
7780 
7781   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7782                     << I << "\n");
7783   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7784                             getAccessKindFromInst(&I));
7785   return AccessedLocs.getAssumed();
7786 }
7787 
7788 /// An AA to represent the memory behavior function attributes.
7789 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7790   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7791       : AAMemoryLocationImpl(IRP, A) {}
7792 
7793   /// See AbstractAttribute::updateImpl(Attributor &A).
7794   virtual ChangeStatus updateImpl(Attributor &A) override {
7795 
7796     const auto &MemBehaviorAA =
7797         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7798     if (MemBehaviorAA.isAssumedReadNone()) {
7799       if (MemBehaviorAA.isKnownReadNone())
7800         return indicateOptimisticFixpoint();
7801       assert(isAssumedReadNone() &&
7802              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7803       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7804       return ChangeStatus::UNCHANGED;
7805     }
7806 
7807     // The current assumed state used to determine a change.
7808     auto AssumedState = getAssumed();
7809     bool Changed = false;
7810 
7811     auto CheckRWInst = [&](Instruction &I) {
7812       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7813       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7814                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7815       removeAssumedBits(inverseLocation(MLK, false, false));
7816       // Stop once only the valid bit set in the *not assumed location*, thus
7817       // once we don't actually exclude any memory locations in the state.
7818       return getAssumedNotAccessedLocation() != VALID_STATE;
7819     };
7820 
7821     bool UsedAssumedInformation = false;
7822     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7823                                             UsedAssumedInformation))
7824       return indicatePessimisticFixpoint();
7825 
7826     Changed |= AssumedState != getAssumed();
7827     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7828   }
7829 
7830   /// See AbstractAttribute::trackStatistics()
7831   void trackStatistics() const override {
7832     if (isAssumedReadNone())
7833       STATS_DECLTRACK_FN_ATTR(readnone)
7834     else if (isAssumedArgMemOnly())
7835       STATS_DECLTRACK_FN_ATTR(argmemonly)
7836     else if (isAssumedInaccessibleMemOnly())
7837       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7838     else if (isAssumedInaccessibleOrArgMemOnly())
7839       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7840   }
7841 };
7842 
7843 /// AAMemoryLocation attribute for call sites.
7844 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7845   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7846       : AAMemoryLocationImpl(IRP, A) {}
7847 
7848   /// See AbstractAttribute::initialize(...).
7849   void initialize(Attributor &A) override {
7850     AAMemoryLocationImpl::initialize(A);
7851     Function *F = getAssociatedFunction();
7852     if (!F || F->isDeclaration())
7853       indicatePessimisticFixpoint();
7854   }
7855 
7856   /// See AbstractAttribute::updateImpl(...).
7857   ChangeStatus updateImpl(Attributor &A) override {
7858     // TODO: Once we have call site specific value information we can provide
7859     //       call site specific liveness liveness information and then it makes
7860     //       sense to specialize attributes for call sites arguments instead of
7861     //       redirecting requests to the callee argument.
7862     Function *F = getAssociatedFunction();
7863     const IRPosition &FnPos = IRPosition::function(*F);
7864     auto &FnAA =
7865         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7866     bool Changed = false;
7867     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7868                           AccessKind Kind, MemoryLocationsKind MLK) {
7869       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7870                                 getAccessKindFromInst(I));
7871       return true;
7872     };
7873     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7874       return indicatePessimisticFixpoint();
7875     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7876   }
7877 
7878   /// See AbstractAttribute::trackStatistics()
7879   void trackStatistics() const override {
7880     if (isAssumedReadNone())
7881       STATS_DECLTRACK_CS_ATTR(readnone)
7882   }
7883 };
7884 
7885 /// ------------------ Value Constant Range Attribute -------------------------
7886 
7887 struct AAValueConstantRangeImpl : AAValueConstantRange {
7888   using StateType = IntegerRangeState;
7889   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7890       : AAValueConstantRange(IRP, A) {}
7891 
7892   /// See AbstractAttribute::initialize(..).
7893   void initialize(Attributor &A) override {
7894     if (A.hasSimplificationCallback(getIRPosition())) {
7895       indicatePessimisticFixpoint();
7896       return;
7897     }
7898 
7899     // Intersect a range given by SCEV.
7900     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7901 
7902     // Intersect a range given by LVI.
7903     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7904   }
7905 
7906   /// See AbstractAttribute::getAsStr().
7907   const std::string getAsStr() const override {
7908     std::string Str;
7909     llvm::raw_string_ostream OS(Str);
7910     OS << "range(" << getBitWidth() << ")<";
7911     getKnown().print(OS);
7912     OS << " / ";
7913     getAssumed().print(OS);
7914     OS << ">";
7915     return OS.str();
7916   }
7917 
7918   /// Helper function to get a SCEV expr for the associated value at program
7919   /// point \p I.
7920   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7921     if (!getAnchorScope())
7922       return nullptr;
7923 
7924     ScalarEvolution *SE =
7925         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7926             *getAnchorScope());
7927 
7928     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7929         *getAnchorScope());
7930 
7931     if (!SE || !LI)
7932       return nullptr;
7933 
7934     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7935     if (!I)
7936       return S;
7937 
7938     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7939   }
7940 
7941   /// Helper function to get a range from SCEV for the associated value at
7942   /// program point \p I.
7943   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7944                                          const Instruction *I = nullptr) const {
7945     if (!getAnchorScope())
7946       return getWorstState(getBitWidth());
7947 
7948     ScalarEvolution *SE =
7949         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7950             *getAnchorScope());
7951 
7952     const SCEV *S = getSCEV(A, I);
7953     if (!SE || !S)
7954       return getWorstState(getBitWidth());
7955 
7956     return SE->getUnsignedRange(S);
7957   }
7958 
7959   /// Helper function to get a range from LVI for the associated value at
7960   /// program point \p I.
7961   ConstantRange
7962   getConstantRangeFromLVI(Attributor &A,
7963                           const Instruction *CtxI = nullptr) const {
7964     if (!getAnchorScope())
7965       return getWorstState(getBitWidth());
7966 
7967     LazyValueInfo *LVI =
7968         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
7969             *getAnchorScope());
7970 
7971     if (!LVI || !CtxI)
7972       return getWorstState(getBitWidth());
7973     return LVI->getConstantRange(&getAssociatedValue(),
7974                                  const_cast<Instruction *>(CtxI));
7975   }
7976 
7977   /// Return true if \p CtxI is valid for querying outside analyses.
7978   /// This basically makes sure we do not ask intra-procedural analysis
7979   /// about a context in the wrong function or a context that violates
7980   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
7981   /// if the original context of this AA is OK or should be considered invalid.
7982   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
7983                                                const Instruction *CtxI,
7984                                                bool AllowAACtxI) const {
7985     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
7986       return false;
7987 
7988     // Our context might be in a different function, neither intra-procedural
7989     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
7990     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
7991       return false;
7992 
7993     // If the context is not dominated by the value there are paths to the
7994     // context that do not define the value. This cannot be handled by
7995     // LazyValueInfo so we need to bail.
7996     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
7997       InformationCache &InfoCache = A.getInfoCache();
7998       const DominatorTree *DT =
7999           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8000               *I->getFunction());
8001       return DT && DT->dominates(I, CtxI);
8002     }
8003 
8004     return true;
8005   }
8006 
8007   /// See AAValueConstantRange::getKnownConstantRange(..).
8008   ConstantRange
8009   getKnownConstantRange(Attributor &A,
8010                         const Instruction *CtxI = nullptr) const override {
8011     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8012                                                  /* AllowAACtxI */ false))
8013       return getKnown();
8014 
8015     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8016     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8017     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8018   }
8019 
8020   /// See AAValueConstantRange::getAssumedConstantRange(..).
8021   ConstantRange
8022   getAssumedConstantRange(Attributor &A,
8023                           const Instruction *CtxI = nullptr) const override {
8024     // TODO: Make SCEV use Attributor assumption.
8025     //       We may be able to bound a variable range via assumptions in
8026     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8027     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8028     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8029                                                  /* AllowAACtxI */ false))
8030       return getAssumed();
8031 
8032     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8033     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8034     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8035   }
8036 
8037   /// Helper function to create MDNode for range metadata.
8038   static MDNode *
8039   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8040                             const ConstantRange &AssumedConstantRange) {
8041     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8042                                   Ty, AssumedConstantRange.getLower())),
8043                               ConstantAsMetadata::get(ConstantInt::get(
8044                                   Ty, AssumedConstantRange.getUpper()))};
8045     return MDNode::get(Ctx, LowAndHigh);
8046   }
8047 
8048   /// Return true if \p Assumed is included in \p KnownRanges.
8049   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8050 
8051     if (Assumed.isFullSet())
8052       return false;
8053 
8054     if (!KnownRanges)
8055       return true;
8056 
8057     // If multiple ranges are annotated in IR, we give up to annotate assumed
8058     // range for now.
8059 
8060     // TODO:  If there exists a known range which containts assumed range, we
8061     // can say assumed range is better.
8062     if (KnownRanges->getNumOperands() > 2)
8063       return false;
8064 
8065     ConstantInt *Lower =
8066         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8067     ConstantInt *Upper =
8068         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8069 
8070     ConstantRange Known(Lower->getValue(), Upper->getValue());
8071     return Known.contains(Assumed) && Known != Assumed;
8072   }
8073 
8074   /// Helper function to set range metadata.
8075   static bool
8076   setRangeMetadataIfisBetterRange(Instruction *I,
8077                                   const ConstantRange &AssumedConstantRange) {
8078     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8079     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8080       if (!AssumedConstantRange.isEmptySet()) {
8081         I->setMetadata(LLVMContext::MD_range,
8082                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8083                                                  AssumedConstantRange));
8084         return true;
8085       }
8086     }
8087     return false;
8088   }
8089 
8090   /// See AbstractAttribute::manifest()
8091   ChangeStatus manifest(Attributor &A) override {
8092     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8093     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8094     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8095 
8096     auto &V = getAssociatedValue();
8097     if (!AssumedConstantRange.isEmptySet() &&
8098         !AssumedConstantRange.isSingleElement()) {
8099       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8100         assert(I == getCtxI() && "Should not annotate an instruction which is "
8101                                  "not the context instruction");
8102         if (isa<CallInst>(I) || isa<LoadInst>(I))
8103           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8104             Changed = ChangeStatus::CHANGED;
8105       }
8106     }
8107 
8108     return Changed;
8109   }
8110 };
8111 
8112 struct AAValueConstantRangeArgument final
8113     : AAArgumentFromCallSiteArguments<
8114           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8115           true /* BridgeCallBaseContext */> {
8116   using Base = AAArgumentFromCallSiteArguments<
8117       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8118       true /* BridgeCallBaseContext */>;
8119   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8120       : Base(IRP, A) {}
8121 
8122   /// See AbstractAttribute::initialize(..).
8123   void initialize(Attributor &A) override {
8124     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8125       indicatePessimisticFixpoint();
8126     } else {
8127       Base::initialize(A);
8128     }
8129   }
8130 
8131   /// See AbstractAttribute::trackStatistics()
8132   void trackStatistics() const override {
8133     STATS_DECLTRACK_ARG_ATTR(value_range)
8134   }
8135 };
8136 
8137 struct AAValueConstantRangeReturned
8138     : AAReturnedFromReturnedValues<AAValueConstantRange,
8139                                    AAValueConstantRangeImpl,
8140                                    AAValueConstantRangeImpl::StateType,
8141                                    /* PropogateCallBaseContext */ true> {
8142   using Base =
8143       AAReturnedFromReturnedValues<AAValueConstantRange,
8144                                    AAValueConstantRangeImpl,
8145                                    AAValueConstantRangeImpl::StateType,
8146                                    /* PropogateCallBaseContext */ true>;
8147   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8148       : Base(IRP, A) {}
8149 
8150   /// See AbstractAttribute::initialize(...).
8151   void initialize(Attributor &A) override {}
8152 
8153   /// See AbstractAttribute::trackStatistics()
8154   void trackStatistics() const override {
8155     STATS_DECLTRACK_FNRET_ATTR(value_range)
8156   }
8157 };
8158 
8159 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8160   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8161       : AAValueConstantRangeImpl(IRP, A) {}
8162 
8163   /// See AbstractAttribute::initialize(...).
8164   void initialize(Attributor &A) override {
8165     AAValueConstantRangeImpl::initialize(A);
8166     if (isAtFixpoint())
8167       return;
8168 
8169     Value &V = getAssociatedValue();
8170 
8171     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8172       unionAssumed(ConstantRange(C->getValue()));
8173       indicateOptimisticFixpoint();
8174       return;
8175     }
8176 
8177     if (isa<UndefValue>(&V)) {
8178       // Collapse the undef state to 0.
8179       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8180       indicateOptimisticFixpoint();
8181       return;
8182     }
8183 
8184     if (isa<CallBase>(&V))
8185       return;
8186 
8187     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8188       return;
8189 
8190     // If it is a load instruction with range metadata, use it.
8191     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8192       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8193         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8194         return;
8195       }
8196 
8197     // We can work with PHI and select instruction as we traverse their operands
8198     // during update.
8199     if (isa<SelectInst>(V) || isa<PHINode>(V))
8200       return;
8201 
8202     // Otherwise we give up.
8203     indicatePessimisticFixpoint();
8204 
8205     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8206                       << getAssociatedValue() << "\n");
8207   }
8208 
8209   bool calculateBinaryOperator(
8210       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8211       const Instruction *CtxI,
8212       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8213     Value *LHS = BinOp->getOperand(0);
8214     Value *RHS = BinOp->getOperand(1);
8215 
8216     // Simplify the operands first.
8217     bool UsedAssumedInformation = false;
8218     const auto &SimplifiedLHS =
8219         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8220                                *this, UsedAssumedInformation);
8221     if (!SimplifiedLHS.hasValue())
8222       return true;
8223     if (!SimplifiedLHS.getValue())
8224       return false;
8225     LHS = *SimplifiedLHS;
8226 
8227     const auto &SimplifiedRHS =
8228         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8229                                *this, UsedAssumedInformation);
8230     if (!SimplifiedRHS.hasValue())
8231       return true;
8232     if (!SimplifiedRHS.getValue())
8233       return false;
8234     RHS = *SimplifiedRHS;
8235 
8236     // TODO: Allow non integers as well.
8237     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8238       return false;
8239 
8240     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8241         *this, IRPosition::value(*LHS, getCallBaseContext()),
8242         DepClassTy::REQUIRED);
8243     QuerriedAAs.push_back(&LHSAA);
8244     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8245 
8246     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8247         *this, IRPosition::value(*RHS, getCallBaseContext()),
8248         DepClassTy::REQUIRED);
8249     QuerriedAAs.push_back(&RHSAA);
8250     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8251 
8252     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8253 
8254     T.unionAssumed(AssumedRange);
8255 
8256     // TODO: Track a known state too.
8257 
8258     return T.isValidState();
8259   }
8260 
8261   bool calculateCastInst(
8262       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8263       const Instruction *CtxI,
8264       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8265     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8266     // TODO: Allow non integers as well.
8267     Value *OpV = CastI->getOperand(0);
8268 
8269     // Simplify the operand first.
8270     bool UsedAssumedInformation = false;
8271     const auto &SimplifiedOpV =
8272         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8273                                *this, UsedAssumedInformation);
8274     if (!SimplifiedOpV.hasValue())
8275       return true;
8276     if (!SimplifiedOpV.getValue())
8277       return false;
8278     OpV = *SimplifiedOpV;
8279 
8280     if (!OpV->getType()->isIntegerTy())
8281       return false;
8282 
8283     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8284         *this, IRPosition::value(*OpV, getCallBaseContext()),
8285         DepClassTy::REQUIRED);
8286     QuerriedAAs.push_back(&OpAA);
8287     T.unionAssumed(
8288         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8289     return T.isValidState();
8290   }
8291 
8292   bool
8293   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8294                    const Instruction *CtxI,
8295                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8296     Value *LHS = CmpI->getOperand(0);
8297     Value *RHS = CmpI->getOperand(1);
8298 
8299     // Simplify the operands first.
8300     bool UsedAssumedInformation = false;
8301     const auto &SimplifiedLHS =
8302         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8303                                *this, UsedAssumedInformation);
8304     if (!SimplifiedLHS.hasValue())
8305       return true;
8306     if (!SimplifiedLHS.getValue())
8307       return false;
8308     LHS = *SimplifiedLHS;
8309 
8310     const auto &SimplifiedRHS =
8311         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8312                                *this, UsedAssumedInformation);
8313     if (!SimplifiedRHS.hasValue())
8314       return true;
8315     if (!SimplifiedRHS.getValue())
8316       return false;
8317     RHS = *SimplifiedRHS;
8318 
8319     // TODO: Allow non integers as well.
8320     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8321       return false;
8322 
8323     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8324         *this, IRPosition::value(*LHS, getCallBaseContext()),
8325         DepClassTy::REQUIRED);
8326     QuerriedAAs.push_back(&LHSAA);
8327     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8328         *this, IRPosition::value(*RHS, getCallBaseContext()),
8329         DepClassTy::REQUIRED);
8330     QuerriedAAs.push_back(&RHSAA);
8331     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8332     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8333 
8334     // If one of them is empty set, we can't decide.
8335     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8336       return true;
8337 
8338     bool MustTrue = false, MustFalse = false;
8339 
8340     auto AllowedRegion =
8341         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8342 
8343     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8344       MustFalse = true;
8345 
8346     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8347       MustTrue = true;
8348 
8349     assert((!MustTrue || !MustFalse) &&
8350            "Either MustTrue or MustFalse should be false!");
8351 
8352     if (MustTrue)
8353       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8354     else if (MustFalse)
8355       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8356     else
8357       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8358 
8359     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8360                       << " " << RHSAA << "\n");
8361 
8362     // TODO: Track a known state too.
8363     return T.isValidState();
8364   }
8365 
8366   /// See AbstractAttribute::updateImpl(...).
8367   ChangeStatus updateImpl(Attributor &A) override {
8368     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8369                             IntegerRangeState &T, bool Stripped) -> bool {
8370       Instruction *I = dyn_cast<Instruction>(&V);
8371       if (!I || isa<CallBase>(I)) {
8372 
8373         // Simplify the operand first.
8374         bool UsedAssumedInformation = false;
8375         const auto &SimplifiedOpV =
8376             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8377                                    *this, UsedAssumedInformation);
8378         if (!SimplifiedOpV.hasValue())
8379           return true;
8380         if (!SimplifiedOpV.getValue())
8381           return false;
8382         Value *VPtr = *SimplifiedOpV;
8383 
8384         // If the value is not instruction, we query AA to Attributor.
8385         const auto &AA = A.getAAFor<AAValueConstantRange>(
8386             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8387             DepClassTy::REQUIRED);
8388 
8389         // Clamp operator is not used to utilize a program point CtxI.
8390         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8391 
8392         return T.isValidState();
8393       }
8394 
8395       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8396       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8397         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8398           return false;
8399       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8400         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8401           return false;
8402       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8403         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8404           return false;
8405       } else {
8406         // Give up with other instructions.
8407         // TODO: Add other instructions
8408 
8409         T.indicatePessimisticFixpoint();
8410         return false;
8411       }
8412 
8413       // Catch circular reasoning in a pessimistic way for now.
8414       // TODO: Check how the range evolves and if we stripped anything, see also
8415       //       AADereferenceable or AAAlign for similar situations.
8416       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8417         if (QueriedAA != this)
8418           continue;
8419         // If we are in a stady state we do not need to worry.
8420         if (T.getAssumed() == getState().getAssumed())
8421           continue;
8422         T.indicatePessimisticFixpoint();
8423       }
8424 
8425       return T.isValidState();
8426     };
8427 
8428     IntegerRangeState T(getBitWidth());
8429 
8430     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8431                                                   VisitValueCB, getCtxI(),
8432                                                   /* UseValueSimplify */ false))
8433       return indicatePessimisticFixpoint();
8434 
8435     return clampStateAndIndicateChange(getState(), T);
8436   }
8437 
8438   /// See AbstractAttribute::trackStatistics()
8439   void trackStatistics() const override {
8440     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8441   }
8442 };
8443 
8444 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8445   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8446       : AAValueConstantRangeImpl(IRP, A) {}
8447 
8448   /// See AbstractAttribute::initialize(...).
8449   ChangeStatus updateImpl(Attributor &A) override {
8450     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8451                      "not be called");
8452   }
8453 
8454   /// See AbstractAttribute::trackStatistics()
8455   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8456 };
8457 
8458 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8459   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8460       : AAValueConstantRangeFunction(IRP, A) {}
8461 
8462   /// See AbstractAttribute::trackStatistics()
8463   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8464 };
8465 
8466 struct AAValueConstantRangeCallSiteReturned
8467     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8468                                      AAValueConstantRangeImpl,
8469                                      AAValueConstantRangeImpl::StateType,
8470                                      /* IntroduceCallBaseContext */ true> {
8471   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8472       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8473                                        AAValueConstantRangeImpl,
8474                                        AAValueConstantRangeImpl::StateType,
8475                                        /* IntroduceCallBaseContext */ true>(IRP,
8476                                                                             A) {
8477   }
8478 
8479   /// See AbstractAttribute::initialize(...).
8480   void initialize(Attributor &A) override {
8481     // If it is a load instruction with range metadata, use the metadata.
8482     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8483       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8484         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8485 
8486     AAValueConstantRangeImpl::initialize(A);
8487   }
8488 
8489   /// See AbstractAttribute::trackStatistics()
8490   void trackStatistics() const override {
8491     STATS_DECLTRACK_CSRET_ATTR(value_range)
8492   }
8493 };
8494 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8495   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8496       : AAValueConstantRangeFloating(IRP, A) {}
8497 
8498   /// See AbstractAttribute::manifest()
8499   ChangeStatus manifest(Attributor &A) override {
8500     return ChangeStatus::UNCHANGED;
8501   }
8502 
8503   /// See AbstractAttribute::trackStatistics()
8504   void trackStatistics() const override {
8505     STATS_DECLTRACK_CSARG_ATTR(value_range)
8506   }
8507 };
8508 
8509 /// ------------------ Potential Values Attribute -------------------------
8510 
8511 struct AAPotentialValuesImpl : AAPotentialValues {
8512   using StateType = PotentialConstantIntValuesState;
8513 
8514   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8515       : AAPotentialValues(IRP, A) {}
8516 
8517   /// See AbstractAttribute::initialize(..).
8518   void initialize(Attributor &A) override {
8519     if (A.hasSimplificationCallback(getIRPosition()))
8520       indicatePessimisticFixpoint();
8521     else
8522       AAPotentialValues::initialize(A);
8523   }
8524 
8525   /// See AbstractAttribute::getAsStr().
8526   const std::string getAsStr() const override {
8527     std::string Str;
8528     llvm::raw_string_ostream OS(Str);
8529     OS << getState();
8530     return OS.str();
8531   }
8532 
8533   /// See AbstractAttribute::updateImpl(...).
8534   ChangeStatus updateImpl(Attributor &A) override {
8535     return indicatePessimisticFixpoint();
8536   }
8537 };
8538 
8539 struct AAPotentialValuesArgument final
8540     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8541                                       PotentialConstantIntValuesState> {
8542   using Base =
8543       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8544                                       PotentialConstantIntValuesState>;
8545   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8546       : Base(IRP, A) {}
8547 
8548   /// See AbstractAttribute::initialize(..).
8549   void initialize(Attributor &A) override {
8550     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8551       indicatePessimisticFixpoint();
8552     } else {
8553       Base::initialize(A);
8554     }
8555   }
8556 
8557   /// See AbstractAttribute::trackStatistics()
8558   void trackStatistics() const override {
8559     STATS_DECLTRACK_ARG_ATTR(potential_values)
8560   }
8561 };
8562 
8563 struct AAPotentialValuesReturned
8564     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8565   using Base =
8566       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8567   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8568       : Base(IRP, A) {}
8569 
8570   /// See AbstractAttribute::trackStatistics()
8571   void trackStatistics() const override {
8572     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8573   }
8574 };
8575 
8576 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8577   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8578       : AAPotentialValuesImpl(IRP, A) {}
8579 
8580   /// See AbstractAttribute::initialize(..).
8581   void initialize(Attributor &A) override {
8582     AAPotentialValuesImpl::initialize(A);
8583     if (isAtFixpoint())
8584       return;
8585 
8586     Value &V = getAssociatedValue();
8587 
8588     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8589       unionAssumed(C->getValue());
8590       indicateOptimisticFixpoint();
8591       return;
8592     }
8593 
8594     if (isa<UndefValue>(&V)) {
8595       unionAssumedWithUndef();
8596       indicateOptimisticFixpoint();
8597       return;
8598     }
8599 
8600     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8601       return;
8602 
8603     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8604       return;
8605 
8606     indicatePessimisticFixpoint();
8607 
8608     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8609                       << getAssociatedValue() << "\n");
8610   }
8611 
8612   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8613                                 const APInt &RHS) {
8614     ICmpInst::Predicate Pred = ICI->getPredicate();
8615     switch (Pred) {
8616     case ICmpInst::ICMP_UGT:
8617       return LHS.ugt(RHS);
8618     case ICmpInst::ICMP_SGT:
8619       return LHS.sgt(RHS);
8620     case ICmpInst::ICMP_EQ:
8621       return LHS.eq(RHS);
8622     case ICmpInst::ICMP_UGE:
8623       return LHS.uge(RHS);
8624     case ICmpInst::ICMP_SGE:
8625       return LHS.sge(RHS);
8626     case ICmpInst::ICMP_ULT:
8627       return LHS.ult(RHS);
8628     case ICmpInst::ICMP_SLT:
8629       return LHS.slt(RHS);
8630     case ICmpInst::ICMP_NE:
8631       return LHS.ne(RHS);
8632     case ICmpInst::ICMP_ULE:
8633       return LHS.ule(RHS);
8634     case ICmpInst::ICMP_SLE:
8635       return LHS.sle(RHS);
8636     default:
8637       llvm_unreachable("Invalid ICmp predicate!");
8638     }
8639   }
8640 
8641   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8642                                  uint32_t ResultBitWidth) {
8643     Instruction::CastOps CastOp = CI->getOpcode();
8644     switch (CastOp) {
8645     default:
8646       llvm_unreachable("unsupported or not integer cast");
8647     case Instruction::Trunc:
8648       return Src.trunc(ResultBitWidth);
8649     case Instruction::SExt:
8650       return Src.sext(ResultBitWidth);
8651     case Instruction::ZExt:
8652       return Src.zext(ResultBitWidth);
8653     case Instruction::BitCast:
8654       return Src;
8655     }
8656   }
8657 
8658   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8659                                        const APInt &LHS, const APInt &RHS,
8660                                        bool &SkipOperation, bool &Unsupported) {
8661     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8662     // Unsupported is set to true when the binary operator is not supported.
8663     // SkipOperation is set to true when UB occur with the given operand pair
8664     // (LHS, RHS).
8665     // TODO: we should look at nsw and nuw keywords to handle operations
8666     //       that create poison or undef value.
8667     switch (BinOpcode) {
8668     default:
8669       Unsupported = true;
8670       return LHS;
8671     case Instruction::Add:
8672       return LHS + RHS;
8673     case Instruction::Sub:
8674       return LHS - RHS;
8675     case Instruction::Mul:
8676       return LHS * RHS;
8677     case Instruction::UDiv:
8678       if (RHS.isNullValue()) {
8679         SkipOperation = true;
8680         return LHS;
8681       }
8682       return LHS.udiv(RHS);
8683     case Instruction::SDiv:
8684       if (RHS.isNullValue()) {
8685         SkipOperation = true;
8686         return LHS;
8687       }
8688       return LHS.sdiv(RHS);
8689     case Instruction::URem:
8690       if (RHS.isNullValue()) {
8691         SkipOperation = true;
8692         return LHS;
8693       }
8694       return LHS.urem(RHS);
8695     case Instruction::SRem:
8696       if (RHS.isNullValue()) {
8697         SkipOperation = true;
8698         return LHS;
8699       }
8700       return LHS.srem(RHS);
8701     case Instruction::Shl:
8702       return LHS.shl(RHS);
8703     case Instruction::LShr:
8704       return LHS.lshr(RHS);
8705     case Instruction::AShr:
8706       return LHS.ashr(RHS);
8707     case Instruction::And:
8708       return LHS & RHS;
8709     case Instruction::Or:
8710       return LHS | RHS;
8711     case Instruction::Xor:
8712       return LHS ^ RHS;
8713     }
8714   }
8715 
8716   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8717                                            const APInt &LHS, const APInt &RHS) {
8718     bool SkipOperation = false;
8719     bool Unsupported = false;
8720     APInt Result =
8721         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8722     if (Unsupported)
8723       return false;
8724     // If SkipOperation is true, we can ignore this operand pair (L, R).
8725     if (!SkipOperation)
8726       unionAssumed(Result);
8727     return isValidState();
8728   }
8729 
8730   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8731     auto AssumedBefore = getAssumed();
8732     Value *LHS = ICI->getOperand(0);
8733     Value *RHS = ICI->getOperand(1);
8734 
8735     // Simplify the operands first.
8736     bool UsedAssumedInformation = false;
8737     const auto &SimplifiedLHS =
8738         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8739                                *this, UsedAssumedInformation);
8740     if (!SimplifiedLHS.hasValue())
8741       return ChangeStatus::UNCHANGED;
8742     if (!SimplifiedLHS.getValue())
8743       return indicatePessimisticFixpoint();
8744     LHS = *SimplifiedLHS;
8745 
8746     const auto &SimplifiedRHS =
8747         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8748                                *this, UsedAssumedInformation);
8749     if (!SimplifiedRHS.hasValue())
8750       return ChangeStatus::UNCHANGED;
8751     if (!SimplifiedRHS.getValue())
8752       return indicatePessimisticFixpoint();
8753     RHS = *SimplifiedRHS;
8754 
8755     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8756       return indicatePessimisticFixpoint();
8757 
8758     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8759                                                 DepClassTy::REQUIRED);
8760     if (!LHSAA.isValidState())
8761       return indicatePessimisticFixpoint();
8762 
8763     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8764                                                 DepClassTy::REQUIRED);
8765     if (!RHSAA.isValidState())
8766       return indicatePessimisticFixpoint();
8767 
8768     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8769     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8770 
8771     // TODO: make use of undef flag to limit potential values aggressively.
8772     bool MaybeTrue = false, MaybeFalse = false;
8773     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8774     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8775       // The result of any comparison between undefs can be soundly replaced
8776       // with undef.
8777       unionAssumedWithUndef();
8778     } else if (LHSAA.undefIsContained()) {
8779       for (const APInt &R : RHSAAPVS) {
8780         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8781         MaybeTrue |= CmpResult;
8782         MaybeFalse |= !CmpResult;
8783         if (MaybeTrue & MaybeFalse)
8784           return indicatePessimisticFixpoint();
8785       }
8786     } else if (RHSAA.undefIsContained()) {
8787       for (const APInt &L : LHSAAPVS) {
8788         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8789         MaybeTrue |= CmpResult;
8790         MaybeFalse |= !CmpResult;
8791         if (MaybeTrue & MaybeFalse)
8792           return indicatePessimisticFixpoint();
8793       }
8794     } else {
8795       for (const APInt &L : LHSAAPVS) {
8796         for (const APInt &R : RHSAAPVS) {
8797           bool CmpResult = calculateICmpInst(ICI, L, R);
8798           MaybeTrue |= CmpResult;
8799           MaybeFalse |= !CmpResult;
8800           if (MaybeTrue & MaybeFalse)
8801             return indicatePessimisticFixpoint();
8802         }
8803       }
8804     }
8805     if (MaybeTrue)
8806       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8807     if (MaybeFalse)
8808       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8809     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8810                                          : ChangeStatus::CHANGED;
8811   }
8812 
8813   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8814     auto AssumedBefore = getAssumed();
8815     Value *LHS = SI->getTrueValue();
8816     Value *RHS = SI->getFalseValue();
8817 
8818     // Simplify the operands first.
8819     bool UsedAssumedInformation = false;
8820     const auto &SimplifiedLHS =
8821         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8822                                *this, UsedAssumedInformation);
8823     if (!SimplifiedLHS.hasValue())
8824       return ChangeStatus::UNCHANGED;
8825     if (!SimplifiedLHS.getValue())
8826       return indicatePessimisticFixpoint();
8827     LHS = *SimplifiedLHS;
8828 
8829     const auto &SimplifiedRHS =
8830         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8831                                *this, UsedAssumedInformation);
8832     if (!SimplifiedRHS.hasValue())
8833       return ChangeStatus::UNCHANGED;
8834     if (!SimplifiedRHS.getValue())
8835       return indicatePessimisticFixpoint();
8836     RHS = *SimplifiedRHS;
8837 
8838     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8839       return indicatePessimisticFixpoint();
8840 
8841     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8842                                                   UsedAssumedInformation);
8843 
8844     // Check if we only need one operand.
8845     bool OnlyLeft = false, OnlyRight = false;
8846     if (C.hasValue() && *C && (*C)->isOneValue())
8847       OnlyLeft = true;
8848     else if (C.hasValue() && *C && (*C)->isZeroValue())
8849       OnlyRight = true;
8850 
8851     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8852     if (!OnlyRight) {
8853       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8854                                              DepClassTy::REQUIRED);
8855       if (!LHSAA->isValidState())
8856         return indicatePessimisticFixpoint();
8857     }
8858     if (!OnlyLeft) {
8859       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8860                                              DepClassTy::REQUIRED);
8861       if (!RHSAA->isValidState())
8862         return indicatePessimisticFixpoint();
8863     }
8864 
8865     if (!LHSAA || !RHSAA) {
8866       // select (true/false), lhs, rhs
8867       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8868 
8869       if (OpAA->undefIsContained())
8870         unionAssumedWithUndef();
8871       else
8872         unionAssumed(*OpAA);
8873 
8874     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8875       // select i1 *, undef , undef => undef
8876       unionAssumedWithUndef();
8877     } else {
8878       unionAssumed(*LHSAA);
8879       unionAssumed(*RHSAA);
8880     }
8881     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8882                                          : ChangeStatus::CHANGED;
8883   }
8884 
8885   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8886     auto AssumedBefore = getAssumed();
8887     if (!CI->isIntegerCast())
8888       return indicatePessimisticFixpoint();
8889     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8890     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8891     Value *Src = CI->getOperand(0);
8892 
8893     // Simplify the operand first.
8894     bool UsedAssumedInformation = false;
8895     const auto &SimplifiedSrc =
8896         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8897                                *this, UsedAssumedInformation);
8898     if (!SimplifiedSrc.hasValue())
8899       return ChangeStatus::UNCHANGED;
8900     if (!SimplifiedSrc.getValue())
8901       return indicatePessimisticFixpoint();
8902     Src = *SimplifiedSrc;
8903 
8904     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8905                                                 DepClassTy::REQUIRED);
8906     if (!SrcAA.isValidState())
8907       return indicatePessimisticFixpoint();
8908     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8909     if (SrcAA.undefIsContained())
8910       unionAssumedWithUndef();
8911     else {
8912       for (const APInt &S : SrcAAPVS) {
8913         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8914         unionAssumed(T);
8915       }
8916     }
8917     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8918                                          : ChangeStatus::CHANGED;
8919   }
8920 
8921   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8922     auto AssumedBefore = getAssumed();
8923     Value *LHS = BinOp->getOperand(0);
8924     Value *RHS = BinOp->getOperand(1);
8925 
8926     // Simplify the operands first.
8927     bool UsedAssumedInformation = false;
8928     const auto &SimplifiedLHS =
8929         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8930                                *this, UsedAssumedInformation);
8931     if (!SimplifiedLHS.hasValue())
8932       return ChangeStatus::UNCHANGED;
8933     if (!SimplifiedLHS.getValue())
8934       return indicatePessimisticFixpoint();
8935     LHS = *SimplifiedLHS;
8936 
8937     const auto &SimplifiedRHS =
8938         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8939                                *this, UsedAssumedInformation);
8940     if (!SimplifiedRHS.hasValue())
8941       return ChangeStatus::UNCHANGED;
8942     if (!SimplifiedRHS.getValue())
8943       return indicatePessimisticFixpoint();
8944     RHS = *SimplifiedRHS;
8945 
8946     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8947       return indicatePessimisticFixpoint();
8948 
8949     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8950                                                 DepClassTy::REQUIRED);
8951     if (!LHSAA.isValidState())
8952       return indicatePessimisticFixpoint();
8953 
8954     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8955                                                 DepClassTy::REQUIRED);
8956     if (!RHSAA.isValidState())
8957       return indicatePessimisticFixpoint();
8958 
8959     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8960     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8961     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
8962 
8963     // TODO: make use of undef flag to limit potential values aggressively.
8964     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8965       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
8966         return indicatePessimisticFixpoint();
8967     } else if (LHSAA.undefIsContained()) {
8968       for (const APInt &R : RHSAAPVS) {
8969         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
8970           return indicatePessimisticFixpoint();
8971       }
8972     } else if (RHSAA.undefIsContained()) {
8973       for (const APInt &L : LHSAAPVS) {
8974         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
8975           return indicatePessimisticFixpoint();
8976       }
8977     } else {
8978       for (const APInt &L : LHSAAPVS) {
8979         for (const APInt &R : RHSAAPVS) {
8980           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
8981             return indicatePessimisticFixpoint();
8982         }
8983       }
8984     }
8985     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8986                                          : ChangeStatus::CHANGED;
8987   }
8988 
8989   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
8990     auto AssumedBefore = getAssumed();
8991     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
8992       Value *IncomingValue = PHI->getIncomingValue(u);
8993 
8994       // Simplify the operand first.
8995       bool UsedAssumedInformation = false;
8996       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
8997           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
8998           UsedAssumedInformation);
8999       if (!SimplifiedIncomingValue.hasValue())
9000         continue;
9001       if (!SimplifiedIncomingValue.getValue())
9002         return indicatePessimisticFixpoint();
9003       IncomingValue = *SimplifiedIncomingValue;
9004 
9005       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
9006           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
9007       if (!PotentialValuesAA.isValidState())
9008         return indicatePessimisticFixpoint();
9009       if (PotentialValuesAA.undefIsContained())
9010         unionAssumedWithUndef();
9011       else
9012         unionAssumed(PotentialValuesAA.getAssumed());
9013     }
9014     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9015                                          : ChangeStatus::CHANGED;
9016   }
9017 
9018   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
9019     if (!L.getType()->isIntegerTy())
9020       return indicatePessimisticFixpoint();
9021 
9022     auto Union = [&](Value &V) {
9023       if (isa<UndefValue>(V)) {
9024         unionAssumedWithUndef();
9025         return true;
9026       }
9027       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
9028         unionAssumed(CI->getValue());
9029         return true;
9030       }
9031       return false;
9032     };
9033     auto AssumedBefore = getAssumed();
9034 
9035     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
9036       return indicatePessimisticFixpoint();
9037 
9038     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9039                                          : ChangeStatus::CHANGED;
9040   }
9041 
9042   /// See AbstractAttribute::updateImpl(...).
9043   ChangeStatus updateImpl(Attributor &A) override {
9044     Value &V = getAssociatedValue();
9045     Instruction *I = dyn_cast<Instruction>(&V);
9046 
9047     if (auto *ICI = dyn_cast<ICmpInst>(I))
9048       return updateWithICmpInst(A, ICI);
9049 
9050     if (auto *SI = dyn_cast<SelectInst>(I))
9051       return updateWithSelectInst(A, SI);
9052 
9053     if (auto *CI = dyn_cast<CastInst>(I))
9054       return updateWithCastInst(A, CI);
9055 
9056     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9057       return updateWithBinaryOperator(A, BinOp);
9058 
9059     if (auto *PHI = dyn_cast<PHINode>(I))
9060       return updateWithPHINode(A, PHI);
9061 
9062     if (auto *L = dyn_cast<LoadInst>(I))
9063       return updateWithLoad(A, *L);
9064 
9065     return indicatePessimisticFixpoint();
9066   }
9067 
9068   /// See AbstractAttribute::trackStatistics()
9069   void trackStatistics() const override {
9070     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9071   }
9072 };
9073 
9074 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
9075   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
9076       : AAPotentialValuesImpl(IRP, A) {}
9077 
9078   /// See AbstractAttribute::initialize(...).
9079   ChangeStatus updateImpl(Attributor &A) override {
9080     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
9081                      "not be called");
9082   }
9083 
9084   /// See AbstractAttribute::trackStatistics()
9085   void trackStatistics() const override {
9086     STATS_DECLTRACK_FN_ATTR(potential_values)
9087   }
9088 };
9089 
9090 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
9091   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
9092       : AAPotentialValuesFunction(IRP, A) {}
9093 
9094   /// See AbstractAttribute::trackStatistics()
9095   void trackStatistics() const override {
9096     STATS_DECLTRACK_CS_ATTR(potential_values)
9097   }
9098 };
9099 
9100 struct AAPotentialValuesCallSiteReturned
9101     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
9102   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
9103       : AACallSiteReturnedFromReturned<AAPotentialValues,
9104                                        AAPotentialValuesImpl>(IRP, A) {}
9105 
9106   /// See AbstractAttribute::trackStatistics()
9107   void trackStatistics() const override {
9108     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9109   }
9110 };
9111 
9112 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
9113   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
9114       : AAPotentialValuesFloating(IRP, A) {}
9115 
9116   /// See AbstractAttribute::initialize(..).
9117   void initialize(Attributor &A) override {
9118     AAPotentialValuesImpl::initialize(A);
9119     if (isAtFixpoint())
9120       return;
9121 
9122     Value &V = getAssociatedValue();
9123 
9124     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9125       unionAssumed(C->getValue());
9126       indicateOptimisticFixpoint();
9127       return;
9128     }
9129 
9130     if (isa<UndefValue>(&V)) {
9131       unionAssumedWithUndef();
9132       indicateOptimisticFixpoint();
9133       return;
9134     }
9135   }
9136 
9137   /// See AbstractAttribute::updateImpl(...).
9138   ChangeStatus updateImpl(Attributor &A) override {
9139     Value &V = getAssociatedValue();
9140     auto AssumedBefore = getAssumed();
9141     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
9142                                              DepClassTy::REQUIRED);
9143     const auto &S = AA.getAssumed();
9144     unionAssumed(S);
9145     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9146                                          : ChangeStatus::CHANGED;
9147   }
9148 
9149   /// See AbstractAttribute::trackStatistics()
9150   void trackStatistics() const override {
9151     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9152   }
9153 };
9154 
9155 /// ------------------------ NoUndef Attribute ---------------------------------
9156 struct AANoUndefImpl : AANoUndef {
9157   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9158 
9159   /// See AbstractAttribute::initialize(...).
9160   void initialize(Attributor &A) override {
9161     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9162       indicateOptimisticFixpoint();
9163       return;
9164     }
9165     Value &V = getAssociatedValue();
9166     if (isa<UndefValue>(V))
9167       indicatePessimisticFixpoint();
9168     else if (isa<FreezeInst>(V))
9169       indicateOptimisticFixpoint();
9170     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9171              isGuaranteedNotToBeUndefOrPoison(&V))
9172       indicateOptimisticFixpoint();
9173     else
9174       AANoUndef::initialize(A);
9175   }
9176 
9177   /// See followUsesInMBEC
9178   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9179                        AANoUndef::StateType &State) {
9180     const Value *UseV = U->get();
9181     const DominatorTree *DT = nullptr;
9182     AssumptionCache *AC = nullptr;
9183     InformationCache &InfoCache = A.getInfoCache();
9184     if (Function *F = getAnchorScope()) {
9185       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9186       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9187     }
9188     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9189     bool TrackUse = false;
9190     // Track use for instructions which must produce undef or poison bits when
9191     // at least one operand contains such bits.
9192     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9193       TrackUse = true;
9194     return TrackUse;
9195   }
9196 
9197   /// See AbstractAttribute::getAsStr().
9198   const std::string getAsStr() const override {
9199     return getAssumed() ? "noundef" : "may-undef-or-poison";
9200   }
9201 
9202   ChangeStatus manifest(Attributor &A) override {
9203     // We don't manifest noundef attribute for dead positions because the
9204     // associated values with dead positions would be replaced with undef
9205     // values.
9206     bool UsedAssumedInformation = false;
9207     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9208                         UsedAssumedInformation))
9209       return ChangeStatus::UNCHANGED;
9210     // A position whose simplified value does not have any value is
9211     // considered to be dead. We don't manifest noundef in such positions for
9212     // the same reason above.
9213     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9214              .hasValue())
9215       return ChangeStatus::UNCHANGED;
9216     return AANoUndef::manifest(A);
9217   }
9218 };
9219 
9220 struct AANoUndefFloating : public AANoUndefImpl {
9221   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9222       : AANoUndefImpl(IRP, A) {}
9223 
9224   /// See AbstractAttribute::initialize(...).
9225   void initialize(Attributor &A) override {
9226     AANoUndefImpl::initialize(A);
9227     if (!getState().isAtFixpoint())
9228       if (Instruction *CtxI = getCtxI())
9229         followUsesInMBEC(*this, A, getState(), *CtxI);
9230   }
9231 
9232   /// See AbstractAttribute::updateImpl(...).
9233   ChangeStatus updateImpl(Attributor &A) override {
9234     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9235                             AANoUndef::StateType &T, bool Stripped) -> bool {
9236       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9237                                              DepClassTy::REQUIRED);
9238       if (!Stripped && this == &AA) {
9239         T.indicatePessimisticFixpoint();
9240       } else {
9241         const AANoUndef::StateType &S =
9242             static_cast<const AANoUndef::StateType &>(AA.getState());
9243         T ^= S;
9244       }
9245       return T.isValidState();
9246     };
9247 
9248     StateType T;
9249     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9250                                           VisitValueCB, getCtxI()))
9251       return indicatePessimisticFixpoint();
9252 
9253     return clampStateAndIndicateChange(getState(), T);
9254   }
9255 
9256   /// See AbstractAttribute::trackStatistics()
9257   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9258 };
9259 
9260 struct AANoUndefReturned final
9261     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9262   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9263       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9264 
9265   /// See AbstractAttribute::trackStatistics()
9266   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9267 };
9268 
9269 struct AANoUndefArgument final
9270     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9271   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9272       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9273 
9274   /// See AbstractAttribute::trackStatistics()
9275   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9276 };
9277 
9278 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9279   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9280       : AANoUndefFloating(IRP, A) {}
9281 
9282   /// See AbstractAttribute::trackStatistics()
9283   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9284 };
9285 
9286 struct AANoUndefCallSiteReturned final
9287     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9288   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9289       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9290 
9291   /// See AbstractAttribute::trackStatistics()
9292   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9293 };
9294 
9295 struct AACallEdgesFunction : public AACallEdges {
9296   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9297       : AACallEdges(IRP, A) {}
9298 
9299   /// See AbstractAttribute::updateImpl(...).
9300   ChangeStatus updateImpl(Attributor &A) override {
9301     ChangeStatus Change = ChangeStatus::UNCHANGED;
9302     bool OldHasUnknownCallee = HasUnknownCallee;
9303     bool OldHasUnknownCalleeNonAsm = HasUnknownCalleeNonAsm;
9304 
9305     auto AddCalledFunction = [&](Function *Fn) {
9306       if (CalledFunctions.insert(Fn)) {
9307         Change = ChangeStatus::CHANGED;
9308         LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9309                           << "\n");
9310       }
9311     };
9312 
9313     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9314                           bool Stripped) -> bool {
9315       if (Function *Fn = dyn_cast<Function>(&V)) {
9316         AddCalledFunction(Fn);
9317       } else {
9318         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9319         HasUnknown = true;
9320         HasUnknownCalleeNonAsm = true;
9321       }
9322 
9323       // Explore all values.
9324       return true;
9325     };
9326 
9327     // Process any value that we might call.
9328     auto ProcessCalledOperand = [&](Value *V, Instruction *Ctx) {
9329       if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this,
9330                                        HasUnknownCallee, VisitValue, nullptr,
9331                                        false)) {
9332         // If we haven't gone through all values, assume that there are unknown
9333         // callees.
9334         HasUnknownCallee = true;
9335         HasUnknownCalleeNonAsm = true;
9336       }
9337     };
9338 
9339     auto ProcessCallInst = [&](Instruction &Inst) {
9340       CallBase &CB = static_cast<CallBase &>(Inst);
9341       if (CB.isInlineAsm()) {
9342         HasUnknownCallee = true;
9343         return true;
9344       }
9345 
9346       // Process callee metadata if available.
9347       if (auto *MD = Inst.getMetadata(LLVMContext::MD_callees)) {
9348         for (auto &Op : MD->operands()) {
9349           Function *Callee = mdconst::extract_or_null<Function>(Op);
9350           if (Callee)
9351             AddCalledFunction(Callee);
9352         }
9353         // Callees metadata grantees that the called function is one of its
9354         // operands, So we are done.
9355         return true;
9356       }
9357 
9358       // The most simple case.
9359       ProcessCalledOperand(CB.getCalledOperand(), &Inst);
9360 
9361       // Process callback functions.
9362       SmallVector<const Use *, 4u> CallbackUses;
9363       AbstractCallSite::getCallbackUses(CB, CallbackUses);
9364       for (const Use *U : CallbackUses)
9365         ProcessCalledOperand(U->get(), &Inst);
9366 
9367       return true;
9368     };
9369 
9370     // Visit all callable instructions.
9371     bool UsedAssumedInformation = false;
9372     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9373                                            UsedAssumedInformation)) {
9374       // If we haven't looked at all call like instructions, assume that there
9375       // are unknown callees.
9376       HasUnknownCallee = true;
9377       HasUnknownCalleeNonAsm = true;
9378     }
9379 
9380     // Track changes.
9381     if (OldHasUnknownCallee != HasUnknownCallee ||
9382         OldHasUnknownCalleeNonAsm != HasUnknownCalleeNonAsm)
9383       Change = ChangeStatus::CHANGED;
9384 
9385     return Change;
9386   }
9387 
9388   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9389     return CalledFunctions;
9390   };
9391 
9392   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9393 
9394   virtual bool hasNonAsmUnknownCallee() const override {
9395     return HasUnknownCalleeNonAsm;
9396   }
9397 
9398   const std::string getAsStr() const override {
9399     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9400            std::to_string(CalledFunctions.size()) + "]";
9401   }
9402 
9403   void trackStatistics() const override {}
9404 
9405   /// Optimistic set of functions that might be called by this function.
9406   SetVector<Function *> CalledFunctions;
9407 
9408   /// Is there any call with a unknown callee.
9409   bool HasUnknownCallee = false;
9410 
9411   /// Is there any call with a unknown callee, excluding any inline asm.
9412   bool HasUnknownCalleeNonAsm = false;
9413 };
9414 
9415 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9416   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9417       : AAFunctionReachability(IRP, A) {}
9418 
9419   bool canReach(Attributor &A, Function *Fn) const override {
9420     // Assume that we can reach any function if we can reach a call with
9421     // unknown callee.
9422     if (CanReachUnknownCallee)
9423       return true;
9424 
9425     if (ReachableQueries.count(Fn))
9426       return true;
9427 
9428     if (UnreachableQueries.count(Fn))
9429       return false;
9430 
9431     const AACallEdges &AAEdges =
9432         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9433 
9434     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9435     bool Result = checkIfReachable(A, Edges, Fn);
9436 
9437     // Attributor returns attributes as const, so this function has to be
9438     // const for users of this attribute to use it without having to do
9439     // a const_cast.
9440     // This is a hack for us to be able to cache queries.
9441     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9442 
9443     if (Result)
9444       NonConstThis->ReachableQueries.insert(Fn);
9445     else
9446       NonConstThis->UnreachableQueries.insert(Fn);
9447 
9448     return Result;
9449   }
9450 
9451   /// See AbstractAttribute::updateImpl(...).
9452   ChangeStatus updateImpl(Attributor &A) override {
9453     if (CanReachUnknownCallee)
9454       return ChangeStatus::UNCHANGED;
9455 
9456     const AACallEdges &AAEdges =
9457         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9458     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9459     ChangeStatus Change = ChangeStatus::UNCHANGED;
9460 
9461     if (AAEdges.hasUnknownCallee()) {
9462       bool OldCanReachUnknown = CanReachUnknownCallee;
9463       CanReachUnknownCallee = true;
9464       return OldCanReachUnknown ? ChangeStatus::UNCHANGED
9465                                 : ChangeStatus::CHANGED;
9466     }
9467 
9468     // Check if any of the unreachable functions become reachable.
9469     for (auto Current = UnreachableQueries.begin();
9470          Current != UnreachableQueries.end();) {
9471       if (!checkIfReachable(A, Edges, *Current)) {
9472         Current++;
9473         continue;
9474       }
9475       ReachableQueries.insert(*Current);
9476       UnreachableQueries.erase(*Current++);
9477       Change = ChangeStatus::CHANGED;
9478     }
9479 
9480     return Change;
9481   }
9482 
9483   const std::string getAsStr() const override {
9484     size_t QueryCount = ReachableQueries.size() + UnreachableQueries.size();
9485 
9486     return "FunctionReachability [" + std::to_string(ReachableQueries.size()) +
9487            "," + std::to_string(QueryCount) + "]";
9488   }
9489 
9490   void trackStatistics() const override {}
9491 
9492 private:
9493   bool canReachUnknownCallee() const override { return CanReachUnknownCallee; }
9494 
9495   bool checkIfReachable(Attributor &A, const SetVector<Function *> &Edges,
9496                         Function *Fn) const {
9497     if (Edges.count(Fn))
9498       return true;
9499 
9500     for (Function *Edge : Edges) {
9501       // We don't need a dependency if the result is reachable.
9502       const AAFunctionReachability &EdgeReachability =
9503           A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Edge),
9504                                              DepClassTy::NONE);
9505 
9506       if (EdgeReachability.canReach(A, Fn))
9507         return true;
9508     }
9509     for (Function *Fn : Edges)
9510       A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Fn),
9511                                          DepClassTy::REQUIRED);
9512 
9513     return false;
9514   }
9515 
9516   /// Set of functions that we know for sure is reachable.
9517   SmallPtrSet<Function *, 8> ReachableQueries;
9518 
9519   /// Set of functions that are unreachable, but might become reachable.
9520   SmallPtrSet<Function *, 8> UnreachableQueries;
9521 
9522   /// If we can reach a function with a call to a unknown function we assume
9523   /// that we can reach any function.
9524   bool CanReachUnknownCallee = false;
9525 };
9526 
9527 } // namespace
9528 
9529 AACallGraphNode *AACallEdgeIterator::operator*() const {
9530   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9531       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9532 }
9533 
9534 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9535 
9536 const char AAReturnedValues::ID = 0;
9537 const char AANoUnwind::ID = 0;
9538 const char AANoSync::ID = 0;
9539 const char AANoFree::ID = 0;
9540 const char AANonNull::ID = 0;
9541 const char AANoRecurse::ID = 0;
9542 const char AAWillReturn::ID = 0;
9543 const char AAUndefinedBehavior::ID = 0;
9544 const char AANoAlias::ID = 0;
9545 const char AAReachability::ID = 0;
9546 const char AANoReturn::ID = 0;
9547 const char AAIsDead::ID = 0;
9548 const char AADereferenceable::ID = 0;
9549 const char AAAlign::ID = 0;
9550 const char AANoCapture::ID = 0;
9551 const char AAValueSimplify::ID = 0;
9552 const char AAHeapToStack::ID = 0;
9553 const char AAPrivatizablePtr::ID = 0;
9554 const char AAMemoryBehavior::ID = 0;
9555 const char AAMemoryLocation::ID = 0;
9556 const char AAValueConstantRange::ID = 0;
9557 const char AAPotentialValues::ID = 0;
9558 const char AANoUndef::ID = 0;
9559 const char AACallEdges::ID = 0;
9560 const char AAFunctionReachability::ID = 0;
9561 const char AAPointerInfo::ID = 0;
9562 
9563 // Macro magic to create the static generator function for attributes that
9564 // follow the naming scheme.
9565 
9566 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9567   case IRPosition::PK:                                                         \
9568     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9569 
9570 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9571   case IRPosition::PK:                                                         \
9572     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9573     ++NumAAs;                                                                  \
9574     break;
9575 
9576 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9577   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9578     CLASS *AA = nullptr;                                                       \
9579     switch (IRP.getPositionKind()) {                                           \
9580       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9581       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9582       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9583       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9584       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9585       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9586       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9587       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9588     }                                                                          \
9589     return *AA;                                                                \
9590   }
9591 
9592 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9593   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9594     CLASS *AA = nullptr;                                                       \
9595     switch (IRP.getPositionKind()) {                                           \
9596       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9597       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9598       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9599       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9600       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9601       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9602       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9603       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9604     }                                                                          \
9605     return *AA;                                                                \
9606   }
9607 
9608 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9609   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9610     CLASS *AA = nullptr;                                                       \
9611     switch (IRP.getPositionKind()) {                                           \
9612       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9613       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9614       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9615       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9616       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9617       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9618       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9619       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9620     }                                                                          \
9621     return *AA;                                                                \
9622   }
9623 
9624 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9625   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9626     CLASS *AA = nullptr;                                                       \
9627     switch (IRP.getPositionKind()) {                                           \
9628       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9629       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9630       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9631       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9632       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9633       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9634       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9635       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9636     }                                                                          \
9637     return *AA;                                                                \
9638   }
9639 
9640 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9641   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9642     CLASS *AA = nullptr;                                                       \
9643     switch (IRP.getPositionKind()) {                                           \
9644       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9645       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9646       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9647       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9648       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9649       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9650       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9651       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9652     }                                                                          \
9653     return *AA;                                                                \
9654   }
9655 
9656 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9657 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9658 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9659 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9660 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9661 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9662 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9663 
9664 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9665 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9666 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9667 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9668 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9669 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9670 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9671 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9672 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9673 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9674 
9675 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9676 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9677 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9678 
9679 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9680 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9681 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9682 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9683 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9684 
9685 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9686 
9687 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9688 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9689 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9690 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9691 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9692 #undef SWITCH_PK_CREATE
9693 #undef SWITCH_PK_INV
9694